xref: /wlan-dirver/qca-wifi-host-cmn/qdf/linux/src/qdf_mem.c (revision 8ddef7dd9a290d4a9b1efd5d3efacf51d78a1a0d)
1 /*
2  * Copyright (c) 2014-2019 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /**
20  * DOC: qdf_mem
21  * This file provides OS dependent memory management APIs
22  */
23 
24 #include "qdf_debugfs.h"
25 #include "qdf_mem.h"
26 #include "qdf_nbuf.h"
27 #include "qdf_lock.h"
28 #include "qdf_mc_timer.h"
29 #include "qdf_module.h"
30 #include <qdf_trace.h>
31 #include "qdf_atomic.h"
32 #include "qdf_str.h"
33 #include "qdf_talloc.h"
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 
38 #if defined(CONFIG_CNSS)
39 #include <net/cnss.h>
40 #endif
41 
42 #ifdef CONFIG_WCNSS_MEM_PRE_ALLOC
43 #include <net/cnss_prealloc.h>
44 #endif
45 
46 #ifdef MEMORY_DEBUG
47 #include "qdf_debug_domain.h"
48 #include <qdf_list.h>
49 
50 /* Preprocessor Definitions and Constants */
51 #define QDF_MEM_MAX_MALLOC (4096 * 1024) /* 4 Mega Bytes */
52 #define QDF_MEM_WARN_THRESHOLD 300 /* ms */
53 #define QDF_DEBUG_STRING_SIZE 512
54 
55 static qdf_list_t qdf_mem_domains[QDF_DEBUG_DOMAIN_COUNT];
56 static qdf_spinlock_t qdf_mem_list_lock;
57 
58 static qdf_list_t qdf_mem_dma_domains[QDF_DEBUG_DOMAIN_COUNT];
59 static qdf_spinlock_t qdf_mem_dma_list_lock;
60 
61 static inline qdf_list_t *qdf_mem_list_get(enum qdf_debug_domain domain)
62 {
63 	return &qdf_mem_domains[domain];
64 }
65 
66 static inline qdf_list_t *qdf_mem_dma_list(enum qdf_debug_domain domain)
67 {
68 	return &qdf_mem_dma_domains[domain];
69 }
70 
71 /**
72  * struct qdf_mem_header - memory object to dubug
73  * @node: node to the list
74  * @domain: the active memory domain at time of allocation
75  * @freed: flag set during free, used to detect double frees
76  *	Use uint8_t so we can detect corruption
77  * @func: name of the function the allocation was made from
78  * @line: line number of the file the allocation was made from
79  * @size: size of the allocation in bytes
80  * @caller: Caller of the function for which memory is allocated
81  * @header: a known value, used to detect out-of-bounds access
82  * @time: timestamp at which allocation was made
83  */
84 struct qdf_mem_header {
85 	qdf_list_node_t node;
86 	enum qdf_debug_domain domain;
87 	uint8_t freed;
88 	char func[QDF_MEM_FUNC_NAME_SIZE];
89 	uint32_t line;
90 	uint32_t size;
91 	void *caller;
92 	uint64_t header;
93 	uint64_t time;
94 };
95 
96 static uint64_t WLAN_MEM_HEADER = 0x6162636465666768;
97 static uint64_t WLAN_MEM_TRAILER = 0x8081828384858687;
98 
99 static inline struct qdf_mem_header *qdf_mem_get_header(void *ptr)
100 {
101 	return (struct qdf_mem_header *)ptr - 1;
102 }
103 
104 static inline struct qdf_mem_header *qdf_mem_dma_get_header(void *ptr,
105 							    qdf_size_t size)
106 {
107 	return (struct qdf_mem_header *) ((uint8_t *) ptr + size);
108 }
109 
110 static inline uint64_t *qdf_mem_get_trailer(struct qdf_mem_header *header)
111 {
112 	return (uint64_t *)((void *)(header + 1) + header->size);
113 }
114 
115 static inline void *qdf_mem_get_ptr(struct qdf_mem_header *header)
116 {
117 	return (void *)(header + 1);
118 }
119 
120 /* number of bytes needed for the qdf memory debug information */
121 #define QDF_MEM_DEBUG_SIZE \
122 	(sizeof(struct qdf_mem_header) + sizeof(WLAN_MEM_TRAILER))
123 
124 /* number of bytes needed for the qdf dma memory debug information */
125 #define QDF_DMA_MEM_DEBUG_SIZE \
126 	(sizeof(struct qdf_mem_header))
127 
128 static void qdf_mem_trailer_init(struct qdf_mem_header *header)
129 {
130 	QDF_BUG(header);
131 	if (!header)
132 		return;
133 	*qdf_mem_get_trailer(header) = WLAN_MEM_TRAILER;
134 }
135 
136 static void qdf_mem_header_init(struct qdf_mem_header *header, qdf_size_t size,
137 				const char *func, uint32_t line, void *caller)
138 {
139 	QDF_BUG(header);
140 	if (!header)
141 		return;
142 
143 	header->domain = qdf_debug_domain_get();
144 	header->freed = false;
145 
146 	qdf_str_lcopy(header->func, func, QDF_MEM_FUNC_NAME_SIZE);
147 
148 	header->line = line;
149 	header->size = size;
150 	header->caller = caller;
151 	header->header = WLAN_MEM_HEADER;
152 	header->time = qdf_get_log_timestamp();
153 }
154 
155 enum qdf_mem_validation_bitmap {
156 	QDF_MEM_BAD_HEADER = 1 << 0,
157 	QDF_MEM_BAD_TRAILER = 1 << 1,
158 	QDF_MEM_BAD_SIZE = 1 << 2,
159 	QDF_MEM_DOUBLE_FREE = 1 << 3,
160 	QDF_MEM_BAD_FREED = 1 << 4,
161 	QDF_MEM_BAD_NODE = 1 << 5,
162 	QDF_MEM_BAD_DOMAIN = 1 << 6,
163 	QDF_MEM_WRONG_DOMAIN = 1 << 7,
164 };
165 
166 static enum qdf_mem_validation_bitmap
167 qdf_mem_trailer_validate(struct qdf_mem_header *header)
168 {
169 	enum qdf_mem_validation_bitmap error_bitmap = 0;
170 
171 	if (*qdf_mem_get_trailer(header) != WLAN_MEM_TRAILER)
172 		error_bitmap |= QDF_MEM_BAD_TRAILER;
173 	return error_bitmap;
174 }
175 
176 static enum qdf_mem_validation_bitmap
177 qdf_mem_header_validate(struct qdf_mem_header *header,
178 			enum qdf_debug_domain domain)
179 {
180 	enum qdf_mem_validation_bitmap error_bitmap = 0;
181 
182 	if (header->header != WLAN_MEM_HEADER)
183 		error_bitmap |= QDF_MEM_BAD_HEADER;
184 
185 	if (header->size > QDF_MEM_MAX_MALLOC)
186 		error_bitmap |= QDF_MEM_BAD_SIZE;
187 
188 	if (header->freed == true)
189 		error_bitmap |= QDF_MEM_DOUBLE_FREE;
190 	else if (header->freed)
191 		error_bitmap |= QDF_MEM_BAD_FREED;
192 
193 	if (!qdf_list_node_in_any_list(&header->node))
194 		error_bitmap |= QDF_MEM_BAD_NODE;
195 
196 	if (header->domain < QDF_DEBUG_DOMAIN_INIT ||
197 	    header->domain >= QDF_DEBUG_DOMAIN_COUNT)
198 		error_bitmap |= QDF_MEM_BAD_DOMAIN;
199 	else if (header->domain != domain)
200 		error_bitmap |= QDF_MEM_WRONG_DOMAIN;
201 
202 	return error_bitmap;
203 }
204 
205 static void
206 qdf_mem_header_assert_valid(struct qdf_mem_header *header,
207 			    enum qdf_debug_domain current_domain,
208 			    enum qdf_mem_validation_bitmap error_bitmap,
209 			    const char *func,
210 			    uint32_t line)
211 {
212 	if (!error_bitmap)
213 		return;
214 
215 	if (error_bitmap & QDF_MEM_BAD_HEADER)
216 		qdf_err("Corrupted memory header 0x%llx (expected 0x%llx)",
217 			header->header, WLAN_MEM_HEADER);
218 
219 	if (error_bitmap & QDF_MEM_BAD_SIZE)
220 		qdf_err("Corrupted memory size %u (expected < %d)",
221 			header->size, QDF_MEM_MAX_MALLOC);
222 
223 	if (error_bitmap & QDF_MEM_BAD_TRAILER)
224 		qdf_err("Corrupted memory trailer 0x%llx (expected 0x%llx)",
225 			*qdf_mem_get_trailer(header), WLAN_MEM_TRAILER);
226 
227 	if (error_bitmap & QDF_MEM_DOUBLE_FREE)
228 		qdf_err("Memory has previously been freed");
229 
230 	if (error_bitmap & QDF_MEM_BAD_FREED)
231 		qdf_err("Corrupted memory freed flag 0x%x", header->freed);
232 
233 	if (error_bitmap & QDF_MEM_BAD_NODE)
234 		qdf_err("Corrupted memory header node or double free");
235 
236 	if (error_bitmap & QDF_MEM_BAD_DOMAIN)
237 		qdf_err("Corrupted memory domain 0x%x", header->domain);
238 
239 	if (error_bitmap & QDF_MEM_WRONG_DOMAIN)
240 		qdf_err("Memory domain mismatch; allocated:%s(%d), current:%s(%d)",
241 			qdf_debug_domain_name(header->domain), header->domain,
242 			qdf_debug_domain_name(current_domain), current_domain);
243 
244 	QDF_DEBUG_PANIC("Fatal memory error detected @ %s:%d", func, line);
245 }
246 #endif /* MEMORY_DEBUG */
247 
248 u_int8_t prealloc_disabled = 1;
249 qdf_declare_param(prealloc_disabled, byte);
250 qdf_export_symbol(prealloc_disabled);
251 
252 #if defined WLAN_DEBUGFS
253 
254 /* Debugfs root directory for qdf_mem */
255 static struct dentry *qdf_mem_debugfs_root;
256 
257 /**
258  * struct __qdf_mem_stat - qdf memory statistics
259  * @kmalloc:	total kmalloc allocations
260  * @dma:	total dma allocations
261  * @skb:	total skb allocations
262  */
263 static struct __qdf_mem_stat {
264 	qdf_atomic_t kmalloc;
265 	qdf_atomic_t dma;
266 	qdf_atomic_t skb;
267 } qdf_mem_stat;
268 
269 void qdf_mem_kmalloc_inc(qdf_size_t size)
270 {
271 	qdf_atomic_add(size, &qdf_mem_stat.kmalloc);
272 }
273 
274 static void qdf_mem_dma_inc(qdf_size_t size)
275 {
276 	qdf_atomic_add(size, &qdf_mem_stat.dma);
277 }
278 
279 void qdf_mem_skb_inc(qdf_size_t size)
280 {
281 	qdf_atomic_add(size, &qdf_mem_stat.skb);
282 }
283 
284 void qdf_mem_kmalloc_dec(qdf_size_t size)
285 {
286 	qdf_atomic_sub(size, &qdf_mem_stat.kmalloc);
287 }
288 
289 static inline void qdf_mem_dma_dec(qdf_size_t size)
290 {
291 	qdf_atomic_sub(size, &qdf_mem_stat.dma);
292 }
293 
294 void qdf_mem_skb_dec(qdf_size_t size)
295 {
296 	qdf_atomic_sub(size, &qdf_mem_stat.skb);
297 }
298 
299 #ifdef MEMORY_DEBUG
300 static int qdf_err_printer(void *priv, const char *fmt, ...)
301 {
302 	va_list args;
303 
304 	va_start(args, fmt);
305 	QDF_VTRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, (char *)fmt, args);
306 	va_end(args);
307 
308 	return 0;
309 }
310 
311 static int seq_printf_printer(void *priv, const char *fmt, ...)
312 {
313 	struct seq_file *file = priv;
314 	va_list args;
315 
316 	va_start(args, fmt);
317 	seq_vprintf(file, fmt, args);
318 	seq_puts(file, "\n");
319 	va_end(args);
320 
321 	return 0;
322 }
323 
324 /**
325  * struct __qdf_mem_info - memory statistics
326  * @func: the function which allocated memory
327  * @line: the line at which allocation happened
328  * @size: the size of allocation
329  * @caller: Address of the caller function
330  * @count: how many allocations of same type
331  * @time: timestamp at which allocation happened
332  */
333 struct __qdf_mem_info {
334 	char func[QDF_MEM_FUNC_NAME_SIZE];
335 	uint32_t line;
336 	uint32_t size;
337 	void *caller;
338 	uint32_t count;
339 	uint64_t time;
340 };
341 
342 /*
343  * The table depth defines the de-duplication proximity scope.
344  * A deeper table takes more time, so choose any optimum value.
345  */
346 #define QDF_MEM_STAT_TABLE_SIZE 8
347 
348 /**
349  * qdf_mem_domain_print_header() - memory domain header print logic
350  * @print: the print adapter function
351  * @print_priv: the private data to be consumed by @print
352  *
353  * Return: None
354  */
355 static void qdf_mem_domain_print_header(qdf_abstract_print print,
356 					void *print_priv)
357 {
358 	print(print_priv,
359 	      "--------------------------------------------------------------");
360 	print(print_priv,
361 	      " count    size     total    filename     caller    timestamp");
362 	print(print_priv,
363 	      "--------------------------------------------------------------");
364 }
365 
366 /**
367  * qdf_mem_meta_table_print() - memory metadata table print logic
368  * @table: the memory metadata table to print
369  * @print: the print adapter function
370  * @print_priv: the private data to be consumed by @print
371  *
372  * Return: None
373  */
374 static void qdf_mem_meta_table_print(struct __qdf_mem_info *table,
375 				     qdf_abstract_print print,
376 				     void *print_priv)
377 {
378 	int i;
379 	char debug_str[QDF_DEBUG_STRING_SIZE];
380 	size_t len = 0;
381 	char *debug_prefix = "WLAN_BUG_RCA: memory leak detected";
382 
383 	len += qdf_scnprintf(debug_str, sizeof(debug_str) - len,
384 			     "%s", debug_prefix);
385 
386 	for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
387 		if (!table[i].count)
388 			break;
389 
390 		print(print_priv,
391 		      "%6u x %5u = %7uB @ %s:%u   %pS %llu",
392 		      table[i].count,
393 		      table[i].size,
394 		      table[i].count * table[i].size,
395 		      table[i].func,
396 		      table[i].line, table[i].caller,
397 		      table[i].time);
398 		len += qdf_scnprintf(debug_str + len,
399 				     sizeof(debug_str) - len,
400 				     " @ %s:%u %pS",
401 				     table[i].func,
402 				     table[i].line,
403 				     table[i].caller);
404 	}
405 	print(print_priv, "%s", debug_str);
406 }
407 
408 /**
409  * qdf_mem_meta_table_insert() - insert memory metadata into the given table
410  * @table: the memory metadata table to insert into
411  * @meta: the memory metadata to insert
412  *
413  * Return: true if the table is full after inserting, false otherwise
414  */
415 static bool qdf_mem_meta_table_insert(struct __qdf_mem_info *table,
416 				      struct qdf_mem_header *meta)
417 {
418 	int i;
419 
420 	for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
421 		if (!table[i].count) {
422 			qdf_str_lcopy(table[i].func, meta->func,
423 				      QDF_MEM_FUNC_NAME_SIZE);
424 			table[i].line = meta->line;
425 			table[i].size = meta->size;
426 			table[i].count = 1;
427 			table[i].caller = meta->caller;
428 			table[i].time = meta->time;
429 			break;
430 		}
431 
432 		if (qdf_str_eq(table[i].func, meta->func) &&
433 		    table[i].line == meta->line &&
434 		    table[i].size == meta->size &&
435 		    table[i].caller == meta->caller) {
436 			table[i].count++;
437 			break;
438 		}
439 	}
440 
441 	/* return true if the table is now full */
442 	return i >= QDF_MEM_STAT_TABLE_SIZE - 1;
443 }
444 
445 /**
446  * qdf_mem_domain_print() - output agnostic memory domain print logic
447  * @domain: the memory domain to print
448  * @print: the print adapter function
449  * @print_priv: the private data to be consumed by @print
450  *
451  * Return: None
452  */
453 static void qdf_mem_domain_print(qdf_list_t *domain,
454 				 qdf_abstract_print print,
455 				 void *print_priv)
456 {
457 	QDF_STATUS status;
458 	struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
459 	qdf_list_node_t *node;
460 
461 	qdf_mem_zero(table, sizeof(table));
462 	qdf_mem_domain_print_header(print, print_priv);
463 
464 	/* hold lock while inserting to avoid use-after free of the metadata */
465 	qdf_spin_lock(&qdf_mem_list_lock);
466 	status = qdf_list_peek_front(domain, &node);
467 	while (QDF_IS_STATUS_SUCCESS(status)) {
468 		struct qdf_mem_header *meta = (struct qdf_mem_header *)node;
469 		bool is_full = qdf_mem_meta_table_insert(table, meta);
470 
471 		qdf_spin_unlock(&qdf_mem_list_lock);
472 
473 		if (is_full) {
474 			qdf_mem_meta_table_print(table, print, print_priv);
475 			qdf_mem_zero(table, sizeof(table));
476 		}
477 
478 		qdf_spin_lock(&qdf_mem_list_lock);
479 		status = qdf_list_peek_next(domain, node, &node);
480 	}
481 	qdf_spin_unlock(&qdf_mem_list_lock);
482 
483 	qdf_mem_meta_table_print(table, print, print_priv);
484 }
485 
486 /**
487  * qdf_mem_seq_start() - sequential callback to start
488  * @seq: seq_file handle
489  * @pos: The start position of the sequence
490  *
491  * Return: iterator pointer, or NULL if iteration is complete
492  */
493 static void *qdf_mem_seq_start(struct seq_file *seq, loff_t *pos)
494 {
495 	enum qdf_debug_domain domain = *pos;
496 
497 	if (!qdf_debug_domain_valid(domain))
498 		return NULL;
499 
500 	/* just use the current position as our iterator */
501 	return pos;
502 }
503 
504 /**
505  * qdf_mem_seq_next() - next sequential callback
506  * @seq: seq_file handle
507  * @v: the current iterator
508  * @pos: the current position
509  *
510  * Get the next node and release previous node.
511  *
512  * Return: iterator pointer, or NULL if iteration is complete
513  */
514 static void *qdf_mem_seq_next(struct seq_file *seq, void *v, loff_t *pos)
515 {
516 	++*pos;
517 
518 	return qdf_mem_seq_start(seq, pos);
519 }
520 
521 /**
522  * qdf_mem_seq_stop() - stop sequential callback
523  * @seq: seq_file handle
524  * @v: current iterator
525  *
526  * Return: None
527  */
528 static void qdf_mem_seq_stop(struct seq_file *seq, void *v) { }
529 
530 /**
531  * qdf_mem_seq_show() - print sequential callback
532  * @seq: seq_file handle
533  * @v: current iterator
534  *
535  * Return: 0 - success
536  */
537 static int qdf_mem_seq_show(struct seq_file *seq, void *v)
538 {
539 	enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
540 
541 	seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
542 		   qdf_debug_domain_name(domain_id), domain_id);
543 	qdf_mem_domain_print(qdf_mem_list_get(domain_id),
544 			     seq_printf_printer, seq);
545 
546 	return 0;
547 }
548 
549 /* sequential file operation table */
550 static const struct seq_operations qdf_mem_seq_ops = {
551 	.start = qdf_mem_seq_start,
552 	.next  = qdf_mem_seq_next,
553 	.stop  = qdf_mem_seq_stop,
554 	.show  = qdf_mem_seq_show,
555 };
556 
557 
558 static int qdf_mem_debugfs_open(struct inode *inode, struct file *file)
559 {
560 	return seq_open(file, &qdf_mem_seq_ops);
561 }
562 
563 /* debugfs file operation table */
564 static const struct file_operations fops_qdf_mem_debugfs = {
565 	.owner = THIS_MODULE,
566 	.open = qdf_mem_debugfs_open,
567 	.read = seq_read,
568 	.llseek = seq_lseek,
569 	.release = seq_release,
570 };
571 
572 static QDF_STATUS qdf_mem_debug_debugfs_init(void)
573 {
574 	if (!qdf_mem_debugfs_root)
575 		return QDF_STATUS_E_FAILURE;
576 
577 	debugfs_create_file("list",
578 			    S_IRUSR,
579 			    qdf_mem_debugfs_root,
580 			    NULL,
581 			    &fops_qdf_mem_debugfs);
582 
583 	return QDF_STATUS_SUCCESS;
584 }
585 
586 static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
587 {
588 	return QDF_STATUS_SUCCESS;
589 }
590 
591 #else /* MEMORY_DEBUG */
592 
593 static QDF_STATUS qdf_mem_debug_debugfs_init(void)
594 {
595 	return QDF_STATUS_E_NOSUPPORT;
596 }
597 
598 static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
599 {
600 	return QDF_STATUS_E_NOSUPPORT;
601 }
602 
603 #endif /* MEMORY_DEBUG */
604 
605 
606 static void qdf_mem_debugfs_exit(void)
607 {
608 	debugfs_remove_recursive(qdf_mem_debugfs_root);
609 	qdf_mem_debugfs_root = NULL;
610 }
611 
612 static QDF_STATUS qdf_mem_debugfs_init(void)
613 {
614 	struct dentry *qdf_debugfs_root = qdf_debugfs_get_root();
615 
616 	if (!qdf_debugfs_root)
617 		return QDF_STATUS_E_FAILURE;
618 
619 	qdf_mem_debugfs_root = debugfs_create_dir("mem", qdf_debugfs_root);
620 
621 	if (!qdf_mem_debugfs_root)
622 		return QDF_STATUS_E_FAILURE;
623 
624 
625 	debugfs_create_atomic_t("kmalloc",
626 				S_IRUSR,
627 				qdf_mem_debugfs_root,
628 				&qdf_mem_stat.kmalloc);
629 
630 	debugfs_create_atomic_t("dma",
631 				S_IRUSR,
632 				qdf_mem_debugfs_root,
633 				&qdf_mem_stat.dma);
634 
635 	debugfs_create_atomic_t("skb",
636 				S_IRUSR,
637 				qdf_mem_debugfs_root,
638 				&qdf_mem_stat.skb);
639 
640 	return QDF_STATUS_SUCCESS;
641 }
642 
643 #else /* WLAN_DEBUGFS */
644 
645 static inline void qdf_mem_dma_inc(qdf_size_t size) {}
646 static inline void qdf_mem_dma_dec(qdf_size_t size) {}
647 
648 static QDF_STATUS qdf_mem_debugfs_init(void)
649 {
650 	return QDF_STATUS_E_NOSUPPORT;
651 }
652 static void qdf_mem_debugfs_exit(void) {}
653 
654 
655 static QDF_STATUS qdf_mem_debug_debugfs_init(void)
656 {
657 	return QDF_STATUS_E_NOSUPPORT;
658 }
659 
660 static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
661 {
662 	return QDF_STATUS_E_NOSUPPORT;
663 }
664 
665 #endif /* WLAN_DEBUGFS */
666 
667 /**
668  * __qdf_mempool_init() - Create and initialize memory pool
669  *
670  * @osdev: platform device object
671  * @pool_addr: address of the pool created
672  * @elem_cnt: no. of elements in pool
673  * @elem_size: size of each pool element in bytes
674  * @flags: flags
675  *
676  * return: Handle to memory pool or NULL if allocation failed
677  */
678 int __qdf_mempool_init(qdf_device_t osdev, __qdf_mempool_t *pool_addr,
679 		       int elem_cnt, size_t elem_size, u_int32_t flags)
680 {
681 	__qdf_mempool_ctxt_t *new_pool = NULL;
682 	u_int32_t align = L1_CACHE_BYTES;
683 	unsigned long aligned_pool_mem;
684 	int pool_id;
685 	int i;
686 
687 	if (prealloc_disabled) {
688 		/* TBD: We can maintain a list of pools in qdf_device_t
689 		 * to help debugging
690 		 * when pre-allocation is not enabled
691 		 */
692 		new_pool = (__qdf_mempool_ctxt_t *)
693 			kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
694 		if (new_pool == NULL)
695 			return QDF_STATUS_E_NOMEM;
696 
697 		memset(new_pool, 0, sizeof(*new_pool));
698 		/* TBD: define flags for zeroing buffers etc */
699 		new_pool->flags = flags;
700 		new_pool->elem_size = elem_size;
701 		new_pool->max_elem = elem_cnt;
702 		*pool_addr = new_pool;
703 		return 0;
704 	}
705 
706 	for (pool_id = 0; pool_id < MAX_MEM_POOLS; pool_id++) {
707 		if (osdev->mem_pool[pool_id] == NULL)
708 			break;
709 	}
710 
711 	if (pool_id == MAX_MEM_POOLS)
712 		return -ENOMEM;
713 
714 	new_pool = osdev->mem_pool[pool_id] = (__qdf_mempool_ctxt_t *)
715 		kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
716 	if (new_pool == NULL)
717 		return -ENOMEM;
718 
719 	memset(new_pool, 0, sizeof(*new_pool));
720 	/* TBD: define flags for zeroing buffers etc */
721 	new_pool->flags = flags;
722 	new_pool->pool_id = pool_id;
723 
724 	/* Round up the element size to cacheline */
725 	new_pool->elem_size = roundup(elem_size, L1_CACHE_BYTES);
726 	new_pool->mem_size = elem_cnt * new_pool->elem_size +
727 				((align)?(align - 1):0);
728 
729 	new_pool->pool_mem = kzalloc(new_pool->mem_size, GFP_KERNEL);
730 	if (new_pool->pool_mem == NULL) {
731 			/* TBD: Check if we need get_free_pages above */
732 		kfree(new_pool);
733 		osdev->mem_pool[pool_id] = NULL;
734 		return -ENOMEM;
735 	}
736 
737 	spin_lock_init(&new_pool->lock);
738 
739 	/* Initialize free list */
740 	aligned_pool_mem = (unsigned long)(new_pool->pool_mem) +
741 			((align) ? (unsigned long)(new_pool->pool_mem)%align:0);
742 	STAILQ_INIT(&new_pool->free_list);
743 
744 	for (i = 0; i < elem_cnt; i++)
745 		STAILQ_INSERT_TAIL(&(new_pool->free_list),
746 			(mempool_elem_t *)(aligned_pool_mem +
747 			(new_pool->elem_size * i)), mempool_entry);
748 
749 
750 	new_pool->free_cnt = elem_cnt;
751 	*pool_addr = new_pool;
752 	return 0;
753 }
754 qdf_export_symbol(__qdf_mempool_init);
755 
756 /**
757  * __qdf_mempool_destroy() - Destroy memory pool
758  * @osdev: platform device object
759  * @Handle: to memory pool
760  *
761  * Returns: none
762  */
763 void __qdf_mempool_destroy(qdf_device_t osdev, __qdf_mempool_t pool)
764 {
765 	int pool_id = 0;
766 
767 	if (!pool)
768 		return;
769 
770 	if (prealloc_disabled) {
771 		kfree(pool);
772 		return;
773 	}
774 
775 	pool_id = pool->pool_id;
776 
777 	/* TBD: Check if free count matches elem_cnt if debug is enabled */
778 	kfree(pool->pool_mem);
779 	kfree(pool);
780 	osdev->mem_pool[pool_id] = NULL;
781 }
782 qdf_export_symbol(__qdf_mempool_destroy);
783 
784 /**
785  * __qdf_mempool_alloc() - Allocate an element memory pool
786  *
787  * @osdev: platform device object
788  * @Handle: to memory pool
789  *
790  * Return: Pointer to the allocated element or NULL if the pool is empty
791  */
792 void *__qdf_mempool_alloc(qdf_device_t osdev, __qdf_mempool_t pool)
793 {
794 	void *buf = NULL;
795 
796 	if (!pool)
797 		return NULL;
798 
799 	if (prealloc_disabled)
800 		return  qdf_mem_malloc(pool->elem_size);
801 
802 	spin_lock_bh(&pool->lock);
803 
804 	buf = STAILQ_FIRST(&pool->free_list);
805 	if (buf != NULL) {
806 		STAILQ_REMOVE_HEAD(&pool->free_list, mempool_entry);
807 		pool->free_cnt--;
808 	}
809 
810 	/* TBD: Update free count if debug is enabled */
811 	spin_unlock_bh(&pool->lock);
812 
813 	return buf;
814 }
815 qdf_export_symbol(__qdf_mempool_alloc);
816 
817 /**
818  * __qdf_mempool_free() - Free a memory pool element
819  * @osdev: Platform device object
820  * @pool: Handle to memory pool
821  * @buf: Element to be freed
822  *
823  * Returns: none
824  */
825 void __qdf_mempool_free(qdf_device_t osdev, __qdf_mempool_t pool, void *buf)
826 {
827 	if (!pool)
828 		return;
829 
830 
831 	if (prealloc_disabled)
832 		return qdf_mem_free(buf);
833 
834 	spin_lock_bh(&pool->lock);
835 	pool->free_cnt++;
836 
837 	STAILQ_INSERT_TAIL
838 		(&pool->free_list, (mempool_elem_t *)buf, mempool_entry);
839 	spin_unlock_bh(&pool->lock);
840 }
841 qdf_export_symbol(__qdf_mempool_free);
842 
843 /**
844  * qdf_mem_alloc_outline() - allocation QDF memory
845  * @osdev: platform device object
846  * @size: Number of bytes of memory to allocate.
847  *
848  * This function will dynamicallly allocate the specified number of bytes of
849  * memory.
850  *
851  * Return:
852  * Upon successful allocate, returns a non-NULL pointer to the allocated
853  * memory.  If this function is unable to allocate the amount of memory
854  * specified (for any reason) it returns NULL.
855  */
856 void *
857 qdf_mem_alloc_outline(qdf_device_t osdev, size_t size)
858 {
859 	return qdf_mem_malloc(size);
860 }
861 qdf_export_symbol(qdf_mem_alloc_outline);
862 
863 /**
864  * qdf_mem_free_outline() - QDF memory free API
865  * @ptr: Pointer to the starting address of the memory to be free'd.
866  *
867  * This function will free the memory pointed to by 'ptr'. It also checks
868  * is memory is corrupted or getting double freed and panic.
869  *
870  * Return: none
871  */
872 void
873 qdf_mem_free_outline(void *buf)
874 {
875 	qdf_mem_free(buf);
876 }
877 qdf_export_symbol(qdf_mem_free_outline);
878 
879 /**
880  * qdf_mem_zero_outline() - zero out memory
881  * @buf: pointer to memory that will be set to zero
882  * @size: number of bytes zero
883  *
884  * This function sets the memory location to all zeros, essentially clearing
885  * the memory.
886  *
887  * Return: none
888  */
889 void
890 qdf_mem_zero_outline(void *buf, qdf_size_t size)
891 {
892 	qdf_mem_zero(buf, size);
893 }
894 qdf_export_symbol(qdf_mem_zero_outline);
895 
896 #ifdef CONFIG_WCNSS_MEM_PRE_ALLOC
897 /**
898  * qdf_mem_prealloc_get() - conditionally pre-allocate memory
899  * @size: the number of bytes to allocate
900  *
901  * If size if greater than WCNSS_PRE_ALLOC_GET_THRESHOLD, this function returns
902  * a chunk of pre-allocated memory. If size if less than or equal to
903  * WCNSS_PRE_ALLOC_GET_THRESHOLD, or an error occurs, NULL is returned instead.
904  *
905  * Return: NULL on failure, non-NULL on success
906  */
907 static void *qdf_mem_prealloc_get(size_t size)
908 {
909 	void *ptr;
910 
911 	if (size <= WCNSS_PRE_ALLOC_GET_THRESHOLD)
912 		return NULL;
913 
914 	ptr = wcnss_prealloc_get(size);
915 	if (!ptr)
916 		return NULL;
917 
918 	memset(ptr, 0, size);
919 
920 	return ptr;
921 }
922 
923 static inline bool qdf_mem_prealloc_put(void *ptr)
924 {
925 	return wcnss_prealloc_put(ptr);
926 }
927 #else
928 static inline void *qdf_mem_prealloc_get(size_t size)
929 {
930 	return NULL;
931 }
932 
933 static inline bool qdf_mem_prealloc_put(void *ptr)
934 {
935 	return false;
936 }
937 #endif /* CONFIG_WCNSS_MEM_PRE_ALLOC */
938 
939 static int qdf_mem_malloc_flags(void)
940 {
941 	if (in_interrupt() || irqs_disabled() || in_atomic())
942 		return GFP_ATOMIC;
943 
944 	return GFP_KERNEL;
945 }
946 
947 /* External Function implementation */
948 #ifdef MEMORY_DEBUG
949 
950 /**
951  * qdf_mem_debug_init() - initialize qdf memory debug functionality
952  *
953  * Return: none
954  */
955 static void qdf_mem_debug_init(void)
956 {
957 	int i;
958 
959 	/* Initalizing the list with maximum size of 60000 */
960 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
961 		qdf_list_create(&qdf_mem_domains[i], 60000);
962 	qdf_spinlock_create(&qdf_mem_list_lock);
963 
964 	/* dma */
965 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
966 		qdf_list_create(&qdf_mem_dma_domains[i], 0);
967 	qdf_spinlock_create(&qdf_mem_dma_list_lock);
968 }
969 
970 static uint32_t
971 qdf_mem_domain_check_for_leaks(enum qdf_debug_domain domain,
972 			       qdf_list_t *mem_list)
973 {
974 	if (qdf_list_empty(mem_list))
975 		return 0;
976 
977 	qdf_err("Memory leaks detected in %s domain!",
978 		qdf_debug_domain_name(domain));
979 	qdf_mem_domain_print(mem_list, qdf_err_printer, NULL);
980 
981 	return mem_list->count;
982 }
983 
984 static void qdf_mem_domain_set_check_for_leaks(qdf_list_t *domains)
985 {
986 	uint32_t leak_count = 0;
987 	int i;
988 
989 	/* detect and print leaks */
990 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
991 		leak_count += qdf_mem_domain_check_for_leaks(i, domains + i);
992 
993 	if (leak_count)
994 		panic("%u fatal memory leaks detected!", leak_count);
995 }
996 
997 /**
998  * qdf_mem_debug_exit() - exit qdf memory debug functionality
999  *
1000  * Return: none
1001  */
1002 static void qdf_mem_debug_exit(void)
1003 {
1004 	int i;
1005 
1006 	/* mem */
1007 	qdf_mem_domain_set_check_for_leaks(qdf_mem_domains);
1008 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
1009 		qdf_list_destroy(qdf_mem_list_get(i));
1010 
1011 	qdf_spinlock_destroy(&qdf_mem_list_lock);
1012 
1013 	/* dma */
1014 	qdf_mem_domain_set_check_for_leaks(qdf_mem_dma_domains);
1015 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
1016 		qdf_list_destroy(&qdf_mem_dma_domains[i]);
1017 	qdf_spinlock_destroy(&qdf_mem_dma_list_lock);
1018 }
1019 
1020 void *qdf_mem_malloc_debug(size_t size, const char *func, uint32_t line,
1021 			   void *caller, uint32_t flag)
1022 {
1023 	QDF_STATUS status;
1024 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
1025 	qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
1026 	struct qdf_mem_header *header;
1027 	void *ptr;
1028 	unsigned long start, duration;
1029 
1030 	if (!size || size > QDF_MEM_MAX_MALLOC) {
1031 		qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
1032 		return NULL;
1033 	}
1034 
1035 	ptr = qdf_mem_prealloc_get(size);
1036 	if (ptr)
1037 		return ptr;
1038 
1039 	if (!flag)
1040 		flag = qdf_mem_malloc_flags();
1041 
1042 	start = qdf_mc_timer_get_system_time();
1043 	header = kzalloc(size + QDF_MEM_DEBUG_SIZE, flag);
1044 	duration = qdf_mc_timer_get_system_time() - start;
1045 
1046 	if (duration > QDF_MEM_WARN_THRESHOLD)
1047 		qdf_warn("Malloc slept; %lums, %zuB @ %s:%d",
1048 			 duration, size, func, line);
1049 
1050 	if (!header) {
1051 		qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
1052 		return NULL;
1053 	}
1054 
1055 	qdf_mem_header_init(header, size, func, line, caller);
1056 	qdf_mem_trailer_init(header);
1057 	ptr = qdf_mem_get_ptr(header);
1058 
1059 	qdf_spin_lock_irqsave(&qdf_mem_list_lock);
1060 	status = qdf_list_insert_front(mem_list, &header->node);
1061 	qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
1062 	if (QDF_IS_STATUS_ERROR(status))
1063 		qdf_err("Failed to insert memory header; status %d", status);
1064 
1065 	qdf_mem_kmalloc_inc(size);
1066 
1067 	return ptr;
1068 }
1069 qdf_export_symbol(qdf_mem_malloc_debug);
1070 
1071 void qdf_mem_free_debug(void *ptr, const char *func, uint32_t line)
1072 {
1073 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
1074 	struct qdf_mem_header *header;
1075 	enum qdf_mem_validation_bitmap error_bitmap;
1076 
1077 	/* freeing a null pointer is valid */
1078 	if (qdf_unlikely(!ptr))
1079 		return;
1080 
1081 	if (qdf_mem_prealloc_put(ptr))
1082 		return;
1083 
1084 	if (qdf_unlikely((qdf_size_t)ptr <= sizeof(*header)))
1085 		panic("Failed to free invalid memory location %pK", ptr);
1086 
1087 	qdf_talloc_assert_no_children_fl(ptr, func, line);
1088 
1089 	qdf_spin_lock_irqsave(&qdf_mem_list_lock);
1090 	header = qdf_mem_get_header(ptr);
1091 	error_bitmap = qdf_mem_header_validate(header, current_domain);
1092 	error_bitmap |= qdf_mem_trailer_validate(header);
1093 
1094 	if (!error_bitmap) {
1095 		header->freed = true;
1096 		qdf_list_remove_node(qdf_mem_list_get(header->domain),
1097 				     &header->node);
1098 	}
1099 	qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
1100 
1101 	qdf_mem_header_assert_valid(header, current_domain, error_bitmap,
1102 				    func, line);
1103 
1104 	qdf_mem_kmalloc_dec(header->size);
1105 	kfree(header);
1106 }
1107 qdf_export_symbol(qdf_mem_free_debug);
1108 
1109 void qdf_mem_check_for_leaks(void)
1110 {
1111 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
1112 	qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
1113 	qdf_list_t *dma_list = qdf_mem_dma_list(current_domain);
1114 	uint32_t leaks_count = 0;
1115 
1116 	leaks_count += qdf_mem_domain_check_for_leaks(current_domain, mem_list);
1117 	leaks_count += qdf_mem_domain_check_for_leaks(current_domain, dma_list);
1118 
1119 	if (leaks_count)
1120 		panic("%u fatal memory leaks detected!", leaks_count);
1121 }
1122 
1123 #else
1124 static void qdf_mem_debug_init(void) {}
1125 
1126 static void qdf_mem_debug_exit(void) {}
1127 
1128 void *qdf_mem_malloc_fl(size_t size, const char *func, uint32_t line)
1129 {
1130 	void *ptr;
1131 
1132 	ptr = qdf_mem_prealloc_get(size);
1133 	if (ptr)
1134 		return ptr;
1135 
1136 	ptr = kzalloc(size, qdf_mem_malloc_flags());
1137 	if (!ptr) {
1138 		qdf_nofl_err("Failed to malloc %zuB @ %s:%d",
1139 			     size, func, line);
1140 		return NULL;
1141 	}
1142 
1143 	qdf_mem_kmalloc_inc(ksize(ptr));
1144 
1145 	return ptr;
1146 }
1147 qdf_export_symbol(qdf_mem_malloc_fl);
1148 
1149 void *qdf_mem_malloc_atomic_fl(size_t size, const char *func, uint32_t line)
1150 {
1151 	void *ptr;
1152 
1153 	ptr = qdf_mem_prealloc_get(size);
1154 	if (ptr)
1155 		return ptr;
1156 
1157 	ptr = kzalloc(size, GFP_ATOMIC);
1158 	if (!ptr) {
1159 		qdf_nofl_warn("Failed to malloc %zuB @ %s:%d",
1160 			      size, func, line);
1161 		return NULL;
1162 	}
1163 
1164 	qdf_mem_kmalloc_inc(ksize(ptr));
1165 
1166 	return ptr;
1167 }
1168 qdf_export_symbol(qdf_mem_malloc_atomic_fl);
1169 
1170 /**
1171  * qdf_mem_free() - free QDF memory
1172  * @ptr: Pointer to the starting address of the memory to be free'd.
1173  *
1174  * This function will free the memory pointed to by 'ptr'.
1175  *
1176  * Return: None
1177  */
1178 void qdf_mem_free(void *ptr)
1179 {
1180 	if (!ptr)
1181 		return;
1182 
1183 	if (qdf_mem_prealloc_put(ptr))
1184 		return;
1185 
1186 	qdf_mem_kmalloc_dec(ksize(ptr));
1187 
1188 	kfree(ptr);
1189 }
1190 
1191 qdf_export_symbol(qdf_mem_free);
1192 #endif
1193 
1194 void *qdf_aligned_malloc_fl(qdf_size_t size, uint32_t ring_base_align,
1195 			    void **vaddr_unaligned,
1196 			    const char *func, uint32_t line)
1197 {
1198 	void *vaddr_aligned;
1199 
1200 	*vaddr_unaligned = qdf_mem_malloc_fl(size, func, line);
1201 	if (!*vaddr_unaligned) {
1202 		qdf_warn("Failed to alloc %zuB @ %s:%d", size, func, line);
1203 		return NULL;
1204 	}
1205 
1206 	if ((unsigned long)(*vaddr_unaligned) % ring_base_align) {
1207 		qdf_mem_free(*vaddr_unaligned);
1208 		*vaddr_unaligned = qdf_mem_malloc_fl(size + ring_base_align - 1,
1209 						  func, line);
1210 		if (!*vaddr_unaligned) {
1211 			qdf_warn("Failed to alloc %zuB @ %s:%d",
1212 				 size, func, line);
1213 			return NULL;
1214 		}
1215 	}
1216 
1217 	vaddr_aligned = (*vaddr_unaligned) +
1218 		((unsigned long)(*vaddr_unaligned) % ring_base_align);
1219 
1220 	return vaddr_aligned;
1221 }
1222 qdf_export_symbol(qdf_aligned_malloc_fl);
1223 
1224 /**
1225  * qdf_mem_multi_pages_alloc() - allocate large size of kernel memory
1226  * @osdev: OS device handle pointer
1227  * @pages: Multi page information storage
1228  * @element_size: Each element size
1229  * @element_num: Total number of elements should be allocated
1230  * @memctxt: Memory context
1231  * @cacheable: Coherent memory or cacheable memory
1232  *
1233  * This function will allocate large size of memory over multiple pages.
1234  * Large size of contiguous memory allocation will fail frequently, then
1235  * instead of allocate large memory by one shot, allocate through multiple, non
1236  * contiguous memory and combine pages when actual usage
1237  *
1238  * Return: None
1239  */
1240 void qdf_mem_multi_pages_alloc(qdf_device_t osdev,
1241 			       struct qdf_mem_multi_page_t *pages,
1242 			       size_t element_size, uint16_t element_num,
1243 			       qdf_dma_context_t memctxt, bool cacheable)
1244 {
1245 	uint16_t page_idx;
1246 	struct qdf_mem_dma_page_t *dma_pages;
1247 	void **cacheable_pages = NULL;
1248 	uint16_t i;
1249 
1250 	pages->num_element_per_page = PAGE_SIZE / element_size;
1251 	if (!pages->num_element_per_page) {
1252 		qdf_print("Invalid page %d or element size %d",
1253 			  (int)PAGE_SIZE, (int)element_size);
1254 		goto out_fail;
1255 	}
1256 
1257 	pages->num_pages = element_num / pages->num_element_per_page;
1258 	if (element_num % pages->num_element_per_page)
1259 		pages->num_pages++;
1260 
1261 	if (cacheable) {
1262 		/* Pages information storage */
1263 		pages->cacheable_pages = qdf_mem_malloc(
1264 			pages->num_pages * sizeof(pages->cacheable_pages));
1265 		if (!pages->cacheable_pages)
1266 			goto out_fail;
1267 
1268 		cacheable_pages = pages->cacheable_pages;
1269 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
1270 			cacheable_pages[page_idx] = qdf_mem_malloc(PAGE_SIZE);
1271 			if (!cacheable_pages[page_idx])
1272 				goto page_alloc_fail;
1273 		}
1274 		pages->dma_pages = NULL;
1275 	} else {
1276 		pages->dma_pages = qdf_mem_malloc(
1277 			pages->num_pages * sizeof(struct qdf_mem_dma_page_t));
1278 		if (!pages->dma_pages)
1279 			goto out_fail;
1280 
1281 		dma_pages = pages->dma_pages;
1282 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
1283 			dma_pages->page_v_addr_start =
1284 				qdf_mem_alloc_consistent(osdev, osdev->dev,
1285 					 PAGE_SIZE,
1286 					&dma_pages->page_p_addr);
1287 			if (!dma_pages->page_v_addr_start) {
1288 				qdf_print("dmaable page alloc fail pi %d",
1289 					page_idx);
1290 				goto page_alloc_fail;
1291 			}
1292 			dma_pages->page_v_addr_end =
1293 				dma_pages->page_v_addr_start + PAGE_SIZE;
1294 			dma_pages++;
1295 		}
1296 		pages->cacheable_pages = NULL;
1297 	}
1298 	return;
1299 
1300 page_alloc_fail:
1301 	if (cacheable) {
1302 		for (i = 0; i < page_idx; i++)
1303 			qdf_mem_free(pages->cacheable_pages[i]);
1304 		qdf_mem_free(pages->cacheable_pages);
1305 	} else {
1306 		dma_pages = pages->dma_pages;
1307 		for (i = 0; i < page_idx; i++) {
1308 			qdf_mem_free_consistent(osdev, osdev->dev, PAGE_SIZE,
1309 				dma_pages->page_v_addr_start,
1310 				dma_pages->page_p_addr, memctxt);
1311 			dma_pages++;
1312 		}
1313 		qdf_mem_free(pages->dma_pages);
1314 	}
1315 
1316 out_fail:
1317 	pages->cacheable_pages = NULL;
1318 	pages->dma_pages = NULL;
1319 	pages->num_pages = 0;
1320 	return;
1321 }
1322 qdf_export_symbol(qdf_mem_multi_pages_alloc);
1323 
1324 /**
1325  * qdf_mem_multi_pages_free() - free large size of kernel memory
1326  * @osdev: OS device handle pointer
1327  * @pages: Multi page information storage
1328  * @memctxt: Memory context
1329  * @cacheable: Coherent memory or cacheable memory
1330  *
1331  * This function will free large size of memory over multiple pages.
1332  *
1333  * Return: None
1334  */
1335 void qdf_mem_multi_pages_free(qdf_device_t osdev,
1336 			      struct qdf_mem_multi_page_t *pages,
1337 			      qdf_dma_context_t memctxt, bool cacheable)
1338 {
1339 	unsigned int page_idx;
1340 	struct qdf_mem_dma_page_t *dma_pages;
1341 
1342 	if (cacheable) {
1343 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
1344 			qdf_mem_free(pages->cacheable_pages[page_idx]);
1345 		qdf_mem_free(pages->cacheable_pages);
1346 	} else {
1347 		dma_pages = pages->dma_pages;
1348 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
1349 			qdf_mem_free_consistent(osdev, osdev->dev, PAGE_SIZE,
1350 				dma_pages->page_v_addr_start,
1351 				dma_pages->page_p_addr, memctxt);
1352 			dma_pages++;
1353 		}
1354 		qdf_mem_free(pages->dma_pages);
1355 	}
1356 
1357 	pages->cacheable_pages = NULL;
1358 	pages->dma_pages = NULL;
1359 	pages->num_pages = 0;
1360 	return;
1361 }
1362 qdf_export_symbol(qdf_mem_multi_pages_free);
1363 
1364 /**
1365  * qdf_mem_multi_page_link() - Make links for multi page elements
1366  * @osdev: OS device handle pointer
1367  * @pages: Multi page information storage
1368  * @elem_size: Single element size
1369  * @elem_count: elements count should be linked
1370  * @cacheable: Coherent memory or cacheable memory
1371  *
1372  * This function will make links for multi page allocated structure
1373  *
1374  * Return: 0 success
1375  */
1376 int qdf_mem_multi_page_link(qdf_device_t osdev,
1377 		struct qdf_mem_multi_page_t *pages,
1378 		uint32_t elem_size, uint32_t elem_count, uint8_t cacheable)
1379 {
1380 	uint16_t i, i_int;
1381 	void *page_info;
1382 	void **c_elem = NULL;
1383 	uint32_t num_link = 0;
1384 
1385 	for (i = 0; i < pages->num_pages; i++) {
1386 		if (cacheable)
1387 			page_info = pages->cacheable_pages[i];
1388 		else
1389 			page_info = pages->dma_pages[i].page_v_addr_start;
1390 
1391 		if (!page_info)
1392 			return -ENOMEM;
1393 
1394 		c_elem = (void **)page_info;
1395 		for (i_int = 0; i_int < pages->num_element_per_page; i_int++) {
1396 			if (i_int == (pages->num_element_per_page - 1)) {
1397 				if (cacheable)
1398 					*c_elem = pages->
1399 						cacheable_pages[i + 1];
1400 				else
1401 					*c_elem = pages->
1402 						dma_pages[i + 1].
1403 							page_v_addr_start;
1404 				num_link++;
1405 				break;
1406 			} else {
1407 				*c_elem =
1408 					(void *)(((char *)c_elem) + elem_size);
1409 			}
1410 			num_link++;
1411 			c_elem = (void **)*c_elem;
1412 
1413 			/* Last link established exit */
1414 			if (num_link == (elem_count - 1))
1415 				break;
1416 		}
1417 	}
1418 
1419 	if (c_elem)
1420 		*c_elem = NULL;
1421 
1422 	return 0;
1423 }
1424 qdf_export_symbol(qdf_mem_multi_page_link);
1425 
1426 /**
1427  * qdf_mem_copy() - copy memory
1428  * @dst_addr: Pointer to destination memory location (to copy to)
1429  * @src_addr: Pointer to source memory location (to copy from)
1430  * @num_bytes: Number of bytes to copy.
1431  *
1432  * Copy host memory from one location to another, similar to memcpy in
1433  * standard C.  Note this function does not specifically handle overlapping
1434  * source and destination memory locations.  Calling this function with
1435  * overlapping source and destination memory locations will result in
1436  * unpredictable results.  Use qdf_mem_move() if the memory locations
1437  * for the source and destination are overlapping (or could be overlapping!)
1438  *
1439  * Return: none
1440  */
1441 void qdf_mem_copy(void *dst_addr, const void *src_addr, uint32_t num_bytes)
1442 {
1443 	if (0 == num_bytes) {
1444 		/* special case where dst_addr or src_addr can be NULL */
1445 		return;
1446 	}
1447 
1448 	if ((dst_addr == NULL) || (src_addr == NULL)) {
1449 		QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
1450 			  "%s called with NULL parameter, source:%pK destination:%pK",
1451 			  __func__, src_addr, dst_addr);
1452 		QDF_ASSERT(0);
1453 		return;
1454 	}
1455 	memcpy(dst_addr, src_addr, num_bytes);
1456 }
1457 qdf_export_symbol(qdf_mem_copy);
1458 
1459 qdf_shared_mem_t *qdf_mem_shared_mem_alloc(qdf_device_t osdev, uint32_t size)
1460 {
1461 	qdf_shared_mem_t *shared_mem;
1462 	qdf_dma_addr_t dma_addr, paddr;
1463 	int ret;
1464 
1465 	shared_mem = qdf_mem_malloc(sizeof(*shared_mem));
1466 	if (!shared_mem)
1467 		return NULL;
1468 
1469 	shared_mem->vaddr = qdf_mem_alloc_consistent(osdev, osdev->dev,
1470 				size, qdf_mem_get_dma_addr_ptr(osdev,
1471 						&shared_mem->mem_info));
1472 	if (!shared_mem->vaddr) {
1473 		qdf_err("Unable to allocate DMA memory for shared resource");
1474 		qdf_mem_free(shared_mem);
1475 		return NULL;
1476 	}
1477 
1478 	qdf_mem_set_dma_size(osdev, &shared_mem->mem_info, size);
1479 	size = qdf_mem_get_dma_size(osdev, &shared_mem->mem_info);
1480 
1481 	qdf_mem_zero(shared_mem->vaddr, size);
1482 	dma_addr = qdf_mem_get_dma_addr(osdev, &shared_mem->mem_info);
1483 	paddr = qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
1484 
1485 	qdf_mem_set_dma_pa(osdev, &shared_mem->mem_info, paddr);
1486 	ret = qdf_mem_dma_get_sgtable(osdev->dev, &shared_mem->sgtable,
1487 				      shared_mem->vaddr, dma_addr, size);
1488 	if (ret) {
1489 		qdf_err("Unable to get DMA sgtable");
1490 		qdf_mem_free_consistent(osdev, osdev->dev,
1491 					shared_mem->mem_info.size,
1492 					shared_mem->vaddr,
1493 					dma_addr,
1494 					qdf_get_dma_mem_context(shared_mem,
1495 								memctx));
1496 		qdf_mem_free(shared_mem);
1497 		return NULL;
1498 	}
1499 
1500 	qdf_dma_get_sgtable_dma_addr(&shared_mem->sgtable);
1501 
1502 	return shared_mem;
1503 }
1504 
1505 qdf_export_symbol(qdf_mem_shared_mem_alloc);
1506 
1507 /**
1508  * qdf_mem_zero() - zero out memory
1509  * @ptr: pointer to memory that will be set to zero
1510  * @num_bytes: number of bytes zero
1511  *
1512  * This function sets the memory location to all zeros, essentially clearing
1513  * the memory.
1514  *
1515  * Return: None
1516  */
1517 void qdf_mem_zero(void *ptr, uint32_t num_bytes)
1518 {
1519 	if (0 == num_bytes) {
1520 		/* special case where ptr can be NULL */
1521 		return;
1522 	}
1523 
1524 	if (ptr == NULL) {
1525 		QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
1526 			  "%s called with NULL parameter ptr", __func__);
1527 		return;
1528 	}
1529 	memset(ptr, 0, num_bytes);
1530 }
1531 qdf_export_symbol(qdf_mem_zero);
1532 
1533 /**
1534  * qdf_mem_copy_toio() - copy memory
1535  * @dst_addr: Pointer to destination memory location (to copy to)
1536  * @src_addr: Pointer to source memory location (to copy from)
1537  * @num_bytes: Number of bytes to copy.
1538  *
1539  * Return: none
1540  */
1541 void qdf_mem_copy_toio(void *dst_addr, const void *src_addr, uint32_t num_bytes)
1542 {
1543 	if (0 == num_bytes) {
1544 		/* special case where dst_addr or src_addr can be NULL */
1545 		return;
1546 	}
1547 
1548 	if ((!dst_addr) || (!src_addr)) {
1549 		QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
1550 			  "%s called with NULL parameter, source:%pK destination:%pK",
1551 			  __func__, src_addr, dst_addr);
1552 		QDF_ASSERT(0);
1553 		return;
1554 	}
1555 	memcpy_toio(dst_addr, src_addr, num_bytes);
1556 }
1557 
1558 qdf_export_symbol(qdf_mem_copy_toio);
1559 
1560 /**
1561  * qdf_mem_set_io() - set (fill) memory with a specified byte value.
1562  * @ptr: Pointer to memory that will be set
1563  * @value: Byte set in memory
1564  * @num_bytes: Number of bytes to be set
1565  *
1566  * Return: None
1567  */
1568 void qdf_mem_set_io(void *ptr, uint32_t num_bytes, uint32_t value)
1569 {
1570 	if (!ptr) {
1571 		qdf_print("%s called with NULL parameter ptr", __func__);
1572 		return;
1573 	}
1574 	memset_io(ptr, value, num_bytes);
1575 }
1576 
1577 qdf_export_symbol(qdf_mem_set_io);
1578 
1579 /**
1580  * qdf_mem_set() - set (fill) memory with a specified byte value.
1581  * @ptr: Pointer to memory that will be set
1582  * @num_bytes: Number of bytes to be set
1583  * @value: Byte set in memory
1584  *
1585  * WARNING: parameter @num_bytes and @value are swapped comparing with
1586  * standard C function "memset", please ensure correct usage of this function!
1587  *
1588  * Return: None
1589  */
1590 void qdf_mem_set(void *ptr, uint32_t num_bytes, uint32_t value)
1591 {
1592 	if (ptr == NULL) {
1593 		qdf_print("%s called with NULL parameter ptr", __func__);
1594 		return;
1595 	}
1596 	memset(ptr, value, num_bytes);
1597 }
1598 qdf_export_symbol(qdf_mem_set);
1599 
1600 /**
1601  * qdf_mem_move() - move memory
1602  * @dst_addr: pointer to destination memory location (to move to)
1603  * @src_addr: pointer to source memory location (to move from)
1604  * @num_bytes: number of bytes to move.
1605  *
1606  * Move host memory from one location to another, similar to memmove in
1607  * standard C.  Note this function *does* handle overlapping
1608  * source and destination memory locations.
1609 
1610  * Return: None
1611  */
1612 void qdf_mem_move(void *dst_addr, const void *src_addr, uint32_t num_bytes)
1613 {
1614 	if (0 == num_bytes) {
1615 		/* special case where dst_addr or src_addr can be NULL */
1616 		return;
1617 	}
1618 
1619 	if ((dst_addr == NULL) || (src_addr == NULL)) {
1620 		QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
1621 			  "%s called with NULL parameter, source:%pK destination:%pK",
1622 			  __func__, src_addr, dst_addr);
1623 		QDF_ASSERT(0);
1624 		return;
1625 	}
1626 	memmove(dst_addr, src_addr, num_bytes);
1627 }
1628 qdf_export_symbol(qdf_mem_move);
1629 
1630 #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
1631 /**
1632  * qdf_mem_dma_alloc() - allocates memory for dma
1633  * @osdev: OS device handle
1634  * @dev: Pointer to device handle
1635  * @size: Size to be allocated
1636  * @phy_addr: Physical address
1637  *
1638  * Return: pointer of allocated memory or null if memory alloc fails
1639  */
1640 static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
1641 				      qdf_size_t size,
1642 				      qdf_dma_addr_t *phy_addr)
1643 {
1644 	void *vaddr;
1645 
1646 	vaddr = qdf_mem_malloc(size);
1647 	*phy_addr = ((uintptr_t) vaddr);
1648 	/* using this type conversion to suppress "cast from pointer to integer
1649 	 * of different size" warning on some platforms
1650 	 */
1651 	BUILD_BUG_ON(sizeof(*phy_addr) < sizeof(vaddr));
1652 	return vaddr;
1653 }
1654 
1655 #elif defined(QCA_WIFI_QCA8074) && defined(BUILD_X86)
1656 #define QCA8074_RAM_BASE 0x50000000
1657 #define QDF_MEM_ALLOC_X86_MAX_RETRIES 10
1658 void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev, qdf_size_t size,
1659 			qdf_dma_addr_t *phy_addr)
1660 {
1661 	void *vaddr = NULL;
1662 	int i;
1663 
1664 	*phy_addr = 0;
1665 
1666 	for (i = 0; i < QDF_MEM_ALLOC_X86_MAX_RETRIES; i++) {
1667 		vaddr = dma_alloc_coherent(dev, size, phy_addr,
1668 					   qdf_mem_malloc_flags());
1669 
1670 		if (!vaddr) {
1671 			qdf_err("%s failed , size: %zu!", __func__, size);
1672 			return NULL;
1673 		}
1674 
1675 		if (*phy_addr >= QCA8074_RAM_BASE)
1676 			return vaddr;
1677 
1678 		dma_free_coherent(dev, size, vaddr, *phy_addr);
1679 	}
1680 
1681 	return NULL;
1682 }
1683 
1684 #else
1685 static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
1686 				      qdf_size_t size, qdf_dma_addr_t *paddr)
1687 {
1688 	return dma_alloc_coherent(dev, size, paddr, qdf_mem_malloc_flags());
1689 }
1690 #endif
1691 
1692 #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
1693 static inline void
1694 qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
1695 {
1696 	qdf_mem_free(vaddr);
1697 }
1698 #else
1699 
1700 static inline void
1701 qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
1702 {
1703 	dma_free_coherent(dev, size, vaddr, paddr);
1704 }
1705 #endif
1706 
1707 #ifdef MEMORY_DEBUG
1708 void *qdf_mem_alloc_consistent_debug(qdf_device_t osdev, void *dev,
1709 				     qdf_size_t size, qdf_dma_addr_t *paddr,
1710 				     const char *func, uint32_t line,
1711 				     void *caller)
1712 {
1713 	QDF_STATUS status;
1714 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
1715 	qdf_list_t *mem_list = qdf_mem_dma_list(current_domain);
1716 	struct qdf_mem_header *header;
1717 	void *vaddr;
1718 
1719 	if (!size || size > QDF_MEM_MAX_MALLOC) {
1720 		qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
1721 		return NULL;
1722 	}
1723 
1724 	vaddr = qdf_mem_dma_alloc(osdev, dev, size + QDF_DMA_MEM_DEBUG_SIZE,
1725 				   paddr);
1726 
1727 	if (!vaddr) {
1728 		qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
1729 		return NULL;
1730 	}
1731 
1732 	header = qdf_mem_dma_get_header(vaddr, size);
1733 	/* For DMA buffers we only add trailers, this function will init
1734 	 * the header structure at the tail
1735 	 * Prefix the header into DMA buffer causes SMMU faults, so
1736 	 * do not prefix header into the DMA buffers
1737 	 */
1738 	qdf_mem_header_init(header, size, func, line, caller);
1739 
1740 	qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
1741 	status = qdf_list_insert_front(mem_list, &header->node);
1742 	qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
1743 	if (QDF_IS_STATUS_ERROR(status))
1744 		qdf_err("Failed to insert memory header; status %d", status);
1745 
1746 	qdf_mem_dma_inc(size);
1747 
1748 	return vaddr;
1749 }
1750 qdf_export_symbol(qdf_mem_alloc_consistent_debug);
1751 
1752 void qdf_mem_free_consistent_debug(qdf_device_t osdev, void *dev,
1753 				   qdf_size_t size, void *vaddr,
1754 				   qdf_dma_addr_t paddr,
1755 				   qdf_dma_context_t memctx,
1756 				   const char *func, uint32_t line)
1757 {
1758 	enum qdf_debug_domain domain = qdf_debug_domain_get();
1759 	struct qdf_mem_header *header;
1760 	enum qdf_mem_validation_bitmap error_bitmap;
1761 
1762 	/* freeing a null pointer is valid */
1763 	if (qdf_unlikely(!vaddr))
1764 		return;
1765 
1766 	qdf_talloc_assert_no_children_fl(vaddr, func, line);
1767 
1768 	qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
1769 	/* For DMA buffers we only add trailers, this function will retrieve
1770 	 * the header structure at the tail
1771 	 * Prefix the header into DMA buffer causes SMMU faults, so
1772 	 * do not prefix header into the DMA buffers
1773 	 */
1774 	header = qdf_mem_dma_get_header(vaddr, size);
1775 	error_bitmap = qdf_mem_header_validate(header, domain);
1776 	if (!error_bitmap) {
1777 		header->freed = true;
1778 		qdf_list_remove_node(qdf_mem_dma_list(header->domain),
1779 				     &header->node);
1780 	}
1781 	qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
1782 
1783 	qdf_mem_header_assert_valid(header, domain, error_bitmap, func, line);
1784 
1785 	qdf_mem_dma_dec(header->size);
1786 	qdf_mem_dma_free(dev, size + QDF_DMA_MEM_DEBUG_SIZE, vaddr, paddr);
1787 }
1788 qdf_export_symbol(qdf_mem_free_consistent_debug);
1789 
1790 #else
1791 
1792 void *qdf_mem_alloc_consistent(qdf_device_t osdev, void *dev,
1793 			       qdf_size_t size, qdf_dma_addr_t *paddr)
1794 {
1795 	void *vaddr = qdf_mem_dma_alloc(osdev, dev, size, paddr);
1796 
1797 	if (vaddr)
1798 		qdf_mem_dma_inc(size);
1799 
1800 	return vaddr;
1801 }
1802 qdf_export_symbol(qdf_mem_alloc_consistent);
1803 
1804 void qdf_mem_free_consistent(qdf_device_t osdev, void *dev,
1805 			     qdf_size_t size, void *vaddr,
1806 			     qdf_dma_addr_t paddr, qdf_dma_context_t memctx)
1807 {
1808 	qdf_mem_dma_dec(size);
1809 	qdf_mem_dma_free(dev, size, vaddr, paddr);
1810 }
1811 qdf_export_symbol(qdf_mem_free_consistent);
1812 
1813 #endif /* MEMORY_DEBUG */
1814 
1815 void *qdf_aligned_mem_alloc_consistent_fl(
1816 	qdf_device_t osdev, void *dev, qdf_size_t size,
1817 	void **vaddr_unaligned, qdf_dma_addr_t *paddr_unaligned,
1818 	qdf_dma_addr_t *paddr_aligned, uint32_t ring_base_align,
1819 	const char *func, uint32_t line)
1820 {
1821 	void *vaddr_aligned;
1822 
1823 	*vaddr_unaligned = qdf_mem_alloc_consistent(osdev, dev, size,
1824 						    paddr_unaligned);
1825 	if (!*vaddr_unaligned) {
1826 		qdf_warn("Failed to alloc %zuB @ %s:%d", size, func, line);
1827 		return NULL;
1828 	}
1829 
1830 	if ((unsigned long)(*vaddr_unaligned) % ring_base_align) {
1831 		qdf_mem_free_consistent(osdev, dev, size, *vaddr_unaligned,
1832 					*paddr_unaligned, 0);
1833 		*vaddr_unaligned = qdf_mem_alloc_consistent(osdev, dev,
1834 				size + ring_base_align - 1, paddr_unaligned);
1835 		if (!*vaddr_unaligned) {
1836 			qdf_warn("Failed to alloc %zuB @ %s:%d",
1837 				 size, func, line);
1838 			return NULL;
1839 		}
1840 	}
1841 
1842 	vaddr_aligned = *vaddr_unaligned +
1843 		((unsigned long)(*vaddr_unaligned) % ring_base_align);
1844 	*paddr_aligned = *paddr_unaligned + ((unsigned long)(vaddr_aligned) -
1845 		 (unsigned long)(*vaddr_unaligned));
1846 
1847 	return vaddr_aligned;
1848 }
1849 qdf_export_symbol(qdf_aligned_mem_alloc_consistent_fl);
1850 
1851 /**
1852  * qdf_mem_dma_sync_single_for_device() - assign memory to device
1853  * @osdev: OS device handle
1854  * @bus_addr: dma address to give to the device
1855  * @size: Size of the memory block
1856  * @direction: direction data will be DMAed
1857  *
1858  * Assign memory to the remote device.
1859  * The cache lines are flushed to ram or invalidated as needed.
1860  *
1861  * Return: none
1862  */
1863 void qdf_mem_dma_sync_single_for_device(qdf_device_t osdev,
1864 					qdf_dma_addr_t bus_addr,
1865 					qdf_size_t size,
1866 					enum dma_data_direction direction)
1867 {
1868 	dma_sync_single_for_device(osdev->dev, bus_addr,  size, direction);
1869 }
1870 qdf_export_symbol(qdf_mem_dma_sync_single_for_device);
1871 
1872 /**
1873  * qdf_mem_dma_sync_single_for_cpu() - assign memory to CPU
1874  * @osdev: OS device handle
1875  * @bus_addr: dma address to give to the cpu
1876  * @size: Size of the memory block
1877  * @direction: direction data will be DMAed
1878  *
1879  * Assign memory to the CPU.
1880  *
1881  * Return: none
1882  */
1883 void qdf_mem_dma_sync_single_for_cpu(qdf_device_t osdev,
1884 				     qdf_dma_addr_t bus_addr,
1885 				     qdf_size_t size,
1886 				     enum dma_data_direction direction)
1887 {
1888 	dma_sync_single_for_cpu(osdev->dev, bus_addr,  size, direction);
1889 }
1890 qdf_export_symbol(qdf_mem_dma_sync_single_for_cpu);
1891 
1892 void qdf_mem_init(void)
1893 {
1894 	qdf_mem_debug_init();
1895 	qdf_net_buf_debug_init();
1896 	qdf_mem_debugfs_init();
1897 	qdf_mem_debug_debugfs_init();
1898 }
1899 qdf_export_symbol(qdf_mem_init);
1900 
1901 void qdf_mem_exit(void)
1902 {
1903 	qdf_mem_debug_debugfs_exit();
1904 	qdf_mem_debugfs_exit();
1905 	qdf_net_buf_debug_exit();
1906 	qdf_mem_debug_exit();
1907 }
1908 qdf_export_symbol(qdf_mem_exit);
1909 
1910 /**
1911  * qdf_ether_addr_copy() - copy an Ethernet address
1912  *
1913  * @dst_addr: A six-byte array Ethernet address destination
1914  * @src_addr: A six-byte array Ethernet address source
1915  *
1916  * Please note: dst & src must both be aligned to u16.
1917  *
1918  * Return: none
1919  */
1920 void qdf_ether_addr_copy(void *dst_addr, const void *src_addr)
1921 {
1922 	if ((dst_addr == NULL) || (src_addr == NULL)) {
1923 		QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
1924 			  "%s called with NULL parameter, source:%pK destination:%pK",
1925 			  __func__, src_addr, dst_addr);
1926 		QDF_ASSERT(0);
1927 		return;
1928 	}
1929 	ether_addr_copy(dst_addr, src_addr);
1930 }
1931 qdf_export_symbol(qdf_ether_addr_copy);
1932 
1933