xref: /wlan-dirver/qca-wifi-host-cmn/os_if/linux/scan/src/wlan_cfg80211_scan.c (revision 8b3dca18206e1a0461492f082fa6e270b092c035)
1 /*
2  * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /**
21  * DOC: defines driver functions interfacing with linux kernel
22  */
23 
24 #include <qdf_list.h>
25 #include <qdf_status.h>
26 #include <qdf_module.h>
27 #include <linux/wireless.h>
28 #include <linux/netdevice.h>
29 #include <net/cfg80211.h>
30 #include <wlan_scan_utils_api.h>
31 #include <wlan_cfg80211.h>
32 #include <wlan_cfg80211_scan.h>
33 #include <wlan_osif_priv.h>
34 #include <wlan_scan_public_structs.h>
35 #include <wlan_scan_ucfg_api.h>
36 #include <wlan_cfg80211_scan.h>
37 #include <qdf_mem.h>
38 #include <wlan_utility.h>
39 #include "cfg_ucfg_api.h"
40 #ifdef WLAN_POLICY_MGR_ENABLE
41 #include <wlan_policy_mgr_api.h>
42 #endif
43 #include <wlan_reg_services_api.h>
44 #ifdef FEATURE_WLAN_DIAG_SUPPORT
45 #include "host_diag_core_event.h"
46 #endif
47 
48 const struct nla_policy cfg80211_scan_policy[
49 			QCA_WLAN_VENDOR_ATTR_SCAN_MAX + 1] = {
50 	[QCA_WLAN_VENDOR_ATTR_SCAN_FLAGS] = {.type = NLA_U32},
51 	[QCA_WLAN_VENDOR_ATTR_SCAN_TX_NO_CCK_RATE] = {.type = NLA_FLAG},
52 	[QCA_WLAN_VENDOR_ATTR_SCAN_COOKIE] = {.type = NLA_U64},
53 };
54 
55 /**
56  * wlan_cfg80211_is_colocated_6ghz_scan_supported() - Check whether colocated
57  * 6ghz scan flag present in scan request or not
58  * @scan_flag: Flags bitmap comming from kernel
59  *
60  * Return: True if colocated 6ghz scan flag present in scan req
61  */
62 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0))
63 static bool
64 wlan_cfg80211_is_colocated_6ghz_scan_supported(uint32_t scan_flag)
65 {
66 	return !!(scan_flag & NL80211_SCAN_FLAG_COLOCATED_6GHZ);
67 }
68 #else
69 static inline bool
70 wlan_cfg80211_is_colocated_6ghz_scan_supported(uint32_t scan_flag)
71 {
72 	return false;
73 }
74 #endif
75 
76 #if defined(CFG80211_SCAN_RANDOM_MAC_ADDR) || \
77 	(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0))
78 /**
79  * wlan_fill_scan_rand_attrs() - Populate the scan randomization attrs
80  * @vdev: pointer to objmgr vdev
81  * @flags: cfg80211 scan flags
82  * @mac_addr: random mac addr from cfg80211
83  * @mac_addr_mask: mac addr mask from cfg80211
84  * @randomize: output variable to check scan randomization status
85  * @addr: output variable to hold random addr
86  * @mask: output variable to hold mac mask
87  *
88  * Return: None
89  */
90 static void wlan_fill_scan_rand_attrs(struct wlan_objmgr_vdev *vdev,
91 				      uint32_t flags,
92 				      uint8_t *mac_addr,
93 				      uint8_t *mac_addr_mask,
94 				      bool *randomize,
95 				      uint8_t *addr,
96 				      uint8_t *mask)
97 {
98 	*randomize = false;
99 	if (!(flags & NL80211_SCAN_FLAG_RANDOM_ADDR))
100 		return;
101 
102 	if (wlan_vdev_mlme_get_opmode(vdev) != QDF_STA_MODE)
103 		return;
104 
105 	if (wlan_vdev_is_up(vdev) == QDF_STATUS_SUCCESS)
106 		return;
107 
108 	*randomize = true;
109 	memcpy(addr, mac_addr, QDF_MAC_ADDR_SIZE);
110 	memcpy(mask, mac_addr_mask, QDF_MAC_ADDR_SIZE);
111 	osif_debug("Random mac addr: "QDF_MAC_ADDR_FMT" and Random mac mask: "QDF_FULL_MAC_FMT,
112 		   QDF_MAC_ADDR_REF(addr), QDF_FULL_MAC_REF(mask));
113 }
114 
115 /**
116  * wlan_scan_rand_attrs() - Wrapper function to fill scan random attrs
117  * @vdev: pointer to objmgr vdev
118  * @request: pointer to cfg80211 scan request
119  * @req: pointer to cmn module scan request
120  *
121  * This is a wrapper function which invokes wlan_fill_scan_rand_attrs()
122  * to fill random attributes of internal scan request with cfg80211_scan_request
123  *
124  * Return: None
125  */
126 static void wlan_scan_rand_attrs(struct wlan_objmgr_vdev *vdev,
127 				 struct cfg80211_scan_request *request,
128 				 struct scan_start_request *req)
129 {
130 	bool *randomize = &req->scan_req.scan_random.randomize;
131 	uint8_t *mac_addr = req->scan_req.scan_random.mac_addr;
132 	uint8_t *mac_mask = req->scan_req.scan_random.mac_mask;
133 
134 	wlan_fill_scan_rand_attrs(vdev, request->flags, request->mac_addr,
135 				  request->mac_addr_mask, randomize, mac_addr,
136 				  mac_mask);
137 	if (!*randomize)
138 		return;
139 
140 	req->scan_req.scan_f_add_spoofed_mac_in_probe = true;
141 	req->scan_req.scan_f_add_rand_seq_in_probe = true;
142 }
143 #else
144 /**
145  * wlan_scan_rand_attrs() - Wrapper function to fill scan random attrs
146  * @vdev: pointer to objmgr vdev
147  * @request: pointer to cfg80211 scan request
148  * @req: pointer to cmn module scan request
149  *
150  * This is a wrapper function which invokes wlan_fill_scan_rand_attrs()
151  * to fill random attributes of internal scan request with cfg80211_scan_request
152  *
153  * Return: None
154  */
155 static void wlan_scan_rand_attrs(struct wlan_objmgr_vdev *vdev,
156 				 struct cfg80211_scan_request *request,
157 				 struct scan_start_request *req)
158 {
159 }
160 #endif
161 
162 #ifdef FEATURE_WLAN_SCAN_PNO
163 #if ((LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)) || \
164 	defined(CFG80211_MULTI_SCAN_PLAN_BACKPORT))
165 
166 /**
167  * wlan_config_sched_scan_plan() - configures the sched scan plans
168  *   from the framework.
169  * @pno_req: pointer to PNO scan request
170  * @request: pointer to scan request from framework
171  *
172  * Return: None
173  */
174 static void
175 wlan_config_sched_scan_plan(struct wlan_objmgr_psoc *psoc,
176 			    struct pno_scan_req_params *pno_req,
177 			    struct cfg80211_sched_scan_request *request)
178 {
179 	if (!ucfg_scan_get_user_config_sched_scan_plan(psoc) ||
180 	    request->n_scan_plans == 1) {
181 		pno_req->fast_scan_period =
182 		request->scan_plans[0].interval * MSEC_PER_SEC;
183 		/*
184 		 * if only one scan plan is configured from framework
185 		 * then both fast and slow scan should be configured with the
186 		 * same value that is why fast scan cycles are hardcoded to one
187 		 */
188 		pno_req->fast_scan_max_cycles = 1;
189 		pno_req->slow_scan_period =
190 			request->scan_plans[0].interval * MSEC_PER_SEC;
191 	}
192 	/*
193 	 * As of now max 2 scan plans were supported by firmware
194 	 * if number of scan plan supported by firmware increased below logic
195 	 * must change.
196 	 */
197 	else if (request->n_scan_plans == SCAN_PNO_MAX_PLAN_REQUEST) {
198 		pno_req->fast_scan_period =
199 			request->scan_plans[0].interval * MSEC_PER_SEC;
200 		pno_req->fast_scan_max_cycles =
201 			request->scan_plans[0].iterations;
202 		pno_req->slow_scan_period =
203 			request->scan_plans[1].interval * MSEC_PER_SEC;
204 	} else {
205 		osif_err("Invalid number of scan plans %d !!",
206 			 request->n_scan_plans);
207 	}
208 }
209 #else
210 #define wlan_config_sched_scan_plan(psoc, pno_req, request) \
211 	__wlan_config_sched_scan_plan(pno_req, request, psoc)
212 
213 static void
214 __wlan_config_sched_scan_plan(struct pno_scan_req_params *pno_req,
215 			      struct cfg80211_sched_scan_request *request,
216 			      struct wlan_objmgr_psoc *psoc)
217 {
218 	uint32_t scan_timer_repeat_value, slow_scan_multiplier;
219 
220 	scan_timer_repeat_value = ucfg_scan_get_scan_timer_repeat_value(psoc);
221 	slow_scan_multiplier = ucfg_scan_get_slow_scan_multiplier(psoc);
222 
223 	pno_req->fast_scan_period = request->interval;
224 	pno_req->fast_scan_max_cycles = scan_timer_repeat_value;
225 	pno_req->slow_scan_period =
226 		(slow_scan_multiplier * pno_req->fast_scan_period);
227 }
228 #endif
229 
230 #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 12, 0)
231 static inline void
232 wlan_cfg80211_sched_scan_results(struct wiphy *wiphy, uint64_t reqid)
233 {
234 	cfg80211_sched_scan_results(wiphy);
235 }
236 #else
237 static inline void
238 wlan_cfg80211_sched_scan_results(struct wiphy *wiphy, uint64_t reqid)
239 {
240 	cfg80211_sched_scan_results(wiphy, reqid);
241 }
242 #endif
243 
244 /**
245  * wlan_cfg80211_pno_callback() - pno callback function to handle
246  * pno events.
247  * @vdev: vdev ptr
248  * @event: scan events
249  * @args: argument
250  *
251  * Return: void
252  */
253 static void wlan_cfg80211_pno_callback(struct wlan_objmgr_vdev *vdev,
254 	struct scan_event *event,
255 	void *args)
256 {
257 	struct wlan_objmgr_pdev *pdev;
258 	struct pdev_osif_priv *pdev_ospriv;
259 
260 	if (event->type != SCAN_EVENT_TYPE_NLO_COMPLETE)
261 		return;
262 
263 	osif_debug("vdev id = %d", event->vdev_id);
264 
265 	pdev = wlan_vdev_get_pdev(vdev);
266 	if (!pdev) {
267 		osif_err("pdev is NULL");
268 		return;
269 	}
270 
271 	pdev_ospriv = wlan_pdev_get_ospriv(pdev);
272 	if (!pdev_ospriv) {
273 		osif_err("pdev_ospriv is NULL");
274 		return;
275 	}
276 	wlan_cfg80211_sched_scan_results(pdev_ospriv->wiphy, 0);
277 }
278 
279 #ifdef WLAN_POLICY_MGR_ENABLE
280 static bool wlan_cfg80211_is_ap_go_present(struct wlan_objmgr_psoc *psoc)
281 {
282 	return policy_mgr_mode_specific_connection_count(psoc,
283 							  PM_SAP_MODE,
284 							  NULL) ||
285 		policy_mgr_mode_specific_connection_count(psoc,
286 							  PM_P2P_GO_MODE,
287 							  NULL);
288 }
289 
290 static QDF_STATUS wlan_cfg80211_is_chan_ok_for_dnbs(
291 			struct wlan_objmgr_psoc *psoc,
292 			u16 chan_freq, bool *ok)
293 {
294 	QDF_STATUS status = policy_mgr_is_chan_ok_for_dnbs(
295 				psoc, chan_freq, ok);
296 
297 	if (QDF_IS_STATUS_ERROR(status)) {
298 		osif_err("DNBS check failed");
299 		return status;
300 	}
301 
302 	return QDF_STATUS_SUCCESS;
303 }
304 #else
305 static bool wlan_cfg80211_is_ap_go_present(struct wlan_objmgr_psoc *psoc)
306 {
307 	return false;
308 }
309 
310 static QDF_STATUS wlan_cfg80211_is_chan_ok_for_dnbs(
311 			struct wlan_objmgr_psoc *psoc,
312 			u16 chan_freq,
313 			bool *ok)
314 {
315 	if (!ok)
316 		return QDF_STATUS_E_INVAL;
317 
318 	*ok = true;
319 	return QDF_STATUS_SUCCESS;
320 }
321 #endif
322 
323 #if defined(CFG80211_SCAN_RANDOM_MAC_ADDR) || \
324 	(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0))
325 /**
326  * wlan_pno_scan_rand_attr() - Wrapper function to fill sched scan random attrs
327  * @vdev: pointer to objmgr vdev
328  * @request: pointer to cfg80211 sched scan request
329  * @req: pointer to cmn module pno scan request
330  *
331  * This is a wrapper function which invokes wlan_fill_scan_rand_attrs()
332  * to fill random attributes of internal pno scan
333  * with cfg80211_sched_scan_request
334  *
335  * Return: None
336  */
337 static void wlan_pno_scan_rand_attr(struct wlan_objmgr_vdev *vdev,
338 				    struct cfg80211_sched_scan_request *request,
339 				    struct pno_scan_req_params *req)
340 {
341 	bool *randomize = &req->scan_random.randomize;
342 	uint8_t *mac_addr = req->scan_random.mac_addr;
343 	uint8_t *mac_mask = req->scan_random.mac_mask;
344 
345 	wlan_fill_scan_rand_attrs(vdev, request->flags, request->mac_addr,
346 				  request->mac_addr_mask, randomize, mac_addr,
347 				  mac_mask);
348 }
349 #else
350 /**
351  * wlan_pno_scan_rand_attr() - Wrapper function to fill sched scan random attrs
352  * @vdev: pointer to objmgr vdev
353  * @request: pointer to cfg80211 sched scan request
354  * @req: pointer to cmn module pno scan request
355  *
356  * This is a wrapper function which invokes wlan_fill_scan_rand_attrs()
357  * to fill random attributes of internal pno scan
358  * with cfg80211_sched_scan_request
359  *
360  * Return: None
361  */
362 static void wlan_pno_scan_rand_attr(struct wlan_objmgr_vdev *vdev,
363 				    struct cfg80211_sched_scan_request *request,
364 				    struct pno_scan_req_params *req)
365 {
366 }
367 #endif
368 
369 /**
370  * wlan_hdd_sched_scan_update_relative_rssi() - update CPNO params
371  * @pno_request: pointer to PNO scan request
372  * @request: Pointer to cfg80211 scheduled scan start request
373  *
374  * This function is used to update Connected PNO params sent by kernel
375  *
376  * Return: None
377  */
378 #if defined(CFG80211_REPORT_BETTER_BSS_IN_SCHED_SCAN) || \
379 	(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0))
380 static inline void wlan_hdd_sched_scan_update_relative_rssi(
381 			struct pno_scan_req_params *pno_request,
382 			struct cfg80211_sched_scan_request *request)
383 {
384 	pno_request->relative_rssi_set = request->relative_rssi_set;
385 	pno_request->relative_rssi = request->relative_rssi;
386 	if (NL80211_BAND_2GHZ == request->rssi_adjust.band)
387 		pno_request->band_rssi_pref.band = WLAN_BAND_2_4_GHZ;
388 	else if (NL80211_BAND_5GHZ == request->rssi_adjust.band)
389 		pno_request->band_rssi_pref.band = WLAN_BAND_5_GHZ;
390 	pno_request->band_rssi_pref.rssi = request->rssi_adjust.delta;
391 }
392 #else
393 static inline void wlan_hdd_sched_scan_update_relative_rssi(
394 			struct pno_scan_req_params *pno_request,
395 			struct cfg80211_sched_scan_request *request)
396 {
397 }
398 #endif
399 
400 #ifdef FEATURE_WLAN_SCAN_PNO
401 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0))
402 static uint32_t wlan_config_sched_scan_start_delay(
403 		struct cfg80211_sched_scan_request *request)
404 {
405 	return request->delay;
406 }
407 #else
408 static uint32_t wlan_config_sched_scan_start_delay(
409 		struct cfg80211_sched_scan_request *request)
410 {
411 	return 0;
412 }
413 #endif /*(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)) */
414 #endif /* FEATURE_WLAN_SCAN_PNO */
415 
416 int wlan_cfg80211_sched_scan_start(struct wlan_objmgr_vdev *vdev,
417 				   struct cfg80211_sched_scan_request *request,
418 				   uint8_t scan_backoff_multiplier)
419 {
420 	struct pno_scan_req_params *req;
421 	int i, j, ret = 0;
422 	QDF_STATUS status;
423 	uint8_t num_chan = 0;
424 	uint8_t updated_num_chan = 0;
425 	uint16_t chan_freq;
426 	struct wlan_objmgr_pdev *pdev = wlan_vdev_get_pdev(vdev);
427 	struct wlan_objmgr_psoc *psoc;
428 	uint32_t valid_ch[SCAN_PNO_MAX_NETW_CHANNELS_EX] = {0};
429 	bool enable_dfs_pno_chnl_scan;
430 
431 	if (ucfg_scan_get_pno_in_progress(vdev)) {
432 		osif_debug("pno is already in progress");
433 		return -EBUSY;
434 	}
435 
436 	if (ucfg_scan_get_pdev_status(pdev) !=
437 	   SCAN_NOT_IN_PROGRESS) {
438 		status = wlan_abort_scan(pdev,
439 				wlan_objmgr_pdev_get_pdev_id(pdev),
440 				INVAL_VDEV_ID, INVAL_SCAN_ID, true);
441 		if (QDF_IS_STATUS_ERROR(status))
442 			return -EBUSY;
443 	}
444 
445 	req = qdf_mem_malloc(sizeof(*req));
446 	if (!req)
447 		return -ENOMEM;
448 
449 	wlan_pdev_obj_lock(pdev);
450 	psoc = wlan_pdev_get_psoc(pdev);
451 	wlan_pdev_obj_unlock(pdev);
452 
453 	req->networks_cnt = request->n_match_sets;
454 	req->vdev_id = wlan_vdev_get_id(vdev);
455 	req->vdev = vdev;
456 	req->scan_policy_colocated_6ghz =
457 		wlan_cfg80211_is_colocated_6ghz_scan_supported(request->flags);
458 
459 	if ((!req->networks_cnt) ||
460 	    (req->networks_cnt > SCAN_PNO_MAX_SUPP_NETWORKS)) {
461 		osif_err("Network input is not correct %d",
462 			 req->networks_cnt);
463 		ret = -EINVAL;
464 		goto error;
465 	}
466 
467 	if (request->n_channels > SCAN_PNO_MAX_NETW_CHANNELS_EX) {
468 		osif_err("Incorrect number of channels %d",
469 			 request->n_channels);
470 		ret = -EINVAL;
471 		goto error;
472 	}
473 
474 	enable_dfs_pno_chnl_scan = ucfg_scan_is_dfs_chnl_scan_enabled(psoc);
475 	if (request->n_channels) {
476 		uint32_t buff_len;
477 		char *chl;
478 		int len = 0;
479 		bool ap_or_go_present = wlan_cfg80211_is_ap_go_present(psoc);
480 
481 		buff_len = (request->n_channels * 5) + 1;
482 		chl = qdf_mem_malloc(buff_len);
483 		if (!chl) {
484 			ret = -ENOMEM;
485 			goto error;
486 		}
487 		for (i = 0; i < request->n_channels; i++) {
488 			chan_freq = request->channels[i]->center_freq;
489 			if ((!enable_dfs_pno_chnl_scan) &&
490 			    (wlan_reg_is_dfs_for_freq(pdev, chan_freq))) {
491 				osif_debug("Dropping DFS channel freq :%d",
492 					   chan_freq);
493 				continue;
494 			}
495 			if (wlan_reg_is_dsrc_freq(chan_freq))
496 				continue;
497 
498 			if (ap_or_go_present) {
499 				bool ok;
500 
501 				status =
502 				wlan_cfg80211_is_chan_ok_for_dnbs(psoc,
503 								  chan_freq,
504 								  &ok);
505 				if (QDF_IS_STATUS_ERROR(status)) {
506 					osif_err("DNBS check failed");
507 					qdf_mem_free(chl);
508 					chl = NULL;
509 					ret = -EINVAL;
510 					goto error;
511 				}
512 				if (!ok)
513 					continue;
514 			}
515 			len += qdf_scnprintf(chl + len, buff_len - len, " %d", chan_freq);
516 			valid_ch[num_chan++] = chan_freq;
517 		}
518 		osif_debug("Channel-List[%d]:%s", num_chan, chl);
519 		qdf_mem_free(chl);
520 		chl = NULL;
521 		/* If all channels are DFS and dropped,
522 		 * then ignore the PNO request
523 		 */
524 		if (!num_chan) {
525 			osif_notice("Channel list empty due to filtering of DSRC");
526 			ret = -EINVAL;
527 			goto error;
528 		}
529 	}
530 
531 	/* Filling per profile  params */
532 	for (i = 0; i < req->networks_cnt; i++) {
533 		struct cfg80211_match_set *user_req = &request->match_sets[i];
534 		struct pno_nw_type *tgt_req = &req->networks_list[i];
535 
536 		tgt_req->ssid.length = user_req->ssid.ssid_len;
537 
538 		if (!tgt_req->ssid.length ||
539 		    tgt_req->ssid.length > WLAN_SSID_MAX_LEN) {
540 			osif_err(" SSID Len %d is not correct for network %d",
541 				 tgt_req->ssid.length, i);
542 			ret = -EINVAL;
543 			goto error;
544 		}
545 
546 		qdf_mem_copy(tgt_req->ssid.ssid, user_req->ssid.ssid,
547 			     tgt_req->ssid.length);
548 		tgt_req->authentication = 0;   /*eAUTH_TYPE_ANY */
549 		tgt_req->encryption = 0;       /*eED_ANY */
550 		tgt_req->bc_new_type = 0;    /*eBCAST_UNKNOWN */
551 
552 
553 		/*Copying list of valid channel into request */
554 		for (j = 0; j < num_chan; j++)
555 			tgt_req->pno_chan_list.chan[j].freq = valid_ch[j];
556 		tgt_req->pno_chan_list.num_chan = num_chan;
557 
558 		if (ucfg_is_6ghz_pno_scan_optimization_supported(psoc)) {
559 			uint32_t short_ssid =
560 				wlan_construct_shortssid(tgt_req->ssid.ssid,
561 							 tgt_req->ssid.length);
562 			updated_num_chan = num_chan;
563 			ucfg_scan_add_flags_to_pno_chan_list(vdev, req,
564 							     &updated_num_chan,
565 							     short_ssid, i);
566 		}
567 
568 		tgt_req->rssi_thresh = user_req->rssi_thold;
569 	}
570 
571 	/* set scan to passive if no SSIDs are specified in the request */
572 	if (0 == request->n_ssids)
573 		req->do_passive_scan = true;
574 	else
575 		req->do_passive_scan = false;
576 
577 	for (i = 0; i < request->n_ssids; i++) {
578 		j = 0;
579 		while (j < req->networks_cnt) {
580 			if ((req->networks_list[j].ssid.length ==
581 			     request->ssids[i].ssid_len) &&
582 			    (!qdf_mem_cmp(req->networks_list[j].ssid.ssid,
583 					 request->ssids[i].ssid,
584 					 req->networks_list[j].ssid.length))) {
585 				req->networks_list[j].bc_new_type =
586 					SSID_BC_TYPE_HIDDEN;
587 				break;
588 			}
589 			j++;
590 		}
591 	}
592 
593 	/*
594 	 * Before Kernel 4.4
595 	 *   Driver gets only one time interval which is hard coded in
596 	 *   supplicant for 10000ms.
597 	 *
598 	 * After Kernel 4.4
599 	 *   User can configure multiple scan_plans, each scan would have
600 	 *   separate scan cycle and interval. (interval is in unit of second.)
601 	 *   For our use case, we would only have supplicant set one scan_plan,
602 	 *   and firmware also support only one as well, so pick up the first
603 	 *   index.
604 	 *
605 	 *   Taking power consumption into account
606 	 *   firmware after gPNOScanTimerRepeatValue times fast_scan_period
607 	 *   switches slow_scan_period. This is less frequent scans and firmware
608 	 *   shall be in slow_scan_period mode until next PNO Start.
609 	 */
610 	wlan_config_sched_scan_plan(psoc, req, request);
611 	req->delay_start_time = wlan_config_sched_scan_start_delay(request);
612 	req->scan_backoff_multiplier = scan_backoff_multiplier;
613 
614 	wlan_hdd_sched_scan_update_relative_rssi(req, request);
615 
616 	psoc = wlan_pdev_get_psoc(pdev);
617 	ucfg_scan_register_pno_cb(psoc,
618 		wlan_cfg80211_pno_callback, NULL);
619 	ucfg_scan_get_pno_def_params(vdev, req);
620 
621 	if (req->scan_random.randomize)
622 		wlan_pno_scan_rand_attr(vdev, request, req);
623 
624 	if (ucfg_ie_allowlist_enabled(psoc, vdev))
625 		ucfg_copy_ie_allowlist_attrs(psoc, &req->ie_allowlist);
626 
627 	osif_debug("Network count %d n_ssids %d fast_scan_period: %d msec slow_scan_period: %d msec, fast_scan_max_cycles: %d, relative_rssi %d band_pref %d, rssi_pref %d",
628 		   req->networks_cnt, request->n_ssids, req->fast_scan_period,
629 		   req->slow_scan_period, req->fast_scan_max_cycles,
630 		   req->relative_rssi, req->band_rssi_pref.band,
631 		   req->band_rssi_pref.rssi);
632 
633 	for (i = 0; i < req->networks_cnt; i++)
634 		osif_debug("[%d] ssid: %.*s, RSSI th %d bc NW type %u",
635 			   i, req->networks_list[i].ssid.length,
636 			   req->networks_list[i].ssid.ssid,
637 			   req->networks_list[i].rssi_thresh,
638 			   req->networks_list[i].bc_new_type);
639 
640 	status = ucfg_scan_pno_start(vdev, req);
641 	if (QDF_IS_STATUS_ERROR(status)) {
642 		osif_err("Failed to enable PNO");
643 		ret = -EINVAL;
644 		goto error;
645 	}
646 
647 error:
648 	qdf_mem_free(req);
649 	return ret;
650 }
651 
652 int wlan_cfg80211_sched_scan_stop(struct wlan_objmgr_vdev *vdev)
653 {
654 	QDF_STATUS status;
655 
656 	status = ucfg_scan_pno_stop(vdev);
657 	if (QDF_IS_STATUS_ERROR(status))
658 		osif_debug("Failed to disable PNO");
659 
660 	return 0;
661 }
662 #endif /*FEATURE_WLAN_SCAN_PNO */
663 
664 /**
665  * wlan_copy_bssid_scan_request() - API to copy the bssid to Scan request
666  * @scan_req: Pointer to scan_start_request
667  * @request: scan request from Supplicant
668  *
669  * This API copies the BSSID in scan request from Supplicant and copies it to
670  * the scan_start_request
671  *
672  * Return: None
673  */
674 #if defined(CFG80211_SCAN_BSSID) || \
675 	(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0))
676 static inline void
677 wlan_copy_bssid_scan_request(struct scan_start_request *scan_req,
678 		struct cfg80211_scan_request *request)
679 {
680 	qdf_mem_copy(scan_req->scan_req.bssid_list[0].bytes,
681 				request->bssid, QDF_MAC_ADDR_SIZE);
682 }
683 #else
684 static inline void
685 wlan_copy_bssid_scan_request(struct scan_start_request *scan_req,
686 		struct cfg80211_scan_request *request)
687 {
688 
689 }
690 #endif
691 
692 /**
693  * wlan_schedule_scan_start_request() - Schedule scan start request
694  * @pdev: pointer to pdev object
695  * @req: Pointer to the scan request
696  * @source: source of the scan request
697  * @scan_start_req: pointer to scan start request
698  *
699  * Schedule scan start request and enqueue scan request in the global scan
700  * list. This list stores the active scan request information.
701  *
702  * Return: QDF_STATUS
703  */
704 static QDF_STATUS
705 wlan_schedule_scan_start_request(struct wlan_objmgr_pdev *pdev,
706 				 struct cfg80211_scan_request *req,
707 				 uint8_t source,
708 				 struct scan_start_request *scan_start_req)
709 {
710 	struct scan_req *scan_req;
711 	QDF_STATUS status;
712 	struct pdev_osif_priv *osif_ctx;
713 	struct osif_scan_pdev *osif_scan;
714 
715 	scan_req = qdf_mem_malloc(sizeof(*scan_req));
716 	if (!scan_req) {
717 		ucfg_scm_scan_free_scan_request_mem(scan_start_req);
718 		return QDF_STATUS_E_NOMEM;
719 	}
720 
721 	/* Get NL global context from objmgr*/
722 	osif_ctx = wlan_pdev_get_ospriv(pdev);
723 	osif_scan = osif_ctx->osif_scan;
724 	scan_req->scan_request = req;
725 	scan_req->source = source;
726 	scan_req->scan_id = scan_start_req->scan_req.scan_id;
727 	scan_req->dev = req->wdev->netdev;
728 	scan_req->scan_start_timestamp = qdf_get_time_of_the_day_ms();
729 
730 	qdf_mutex_acquire(&osif_scan->scan_req_q_lock);
731 	if (qdf_list_size(&osif_scan->scan_req_q) < WLAN_MAX_SCAN_COUNT) {
732 		status = ucfg_scan_start(scan_start_req);
733 		if (QDF_IS_STATUS_SUCCESS(status)) {
734 			qdf_list_insert_back(&osif_scan->scan_req_q,
735 					     &scan_req->node);
736 		} else {
737 			osif_err("scan req failed with error %d", status);
738 			if (status == QDF_STATUS_E_RESOURCES)
739 				osif_err("HO is in progress.So defer the scan by informing busy");
740 		}
741 	} else {
742 		ucfg_scm_scan_free_scan_request_mem(scan_start_req);
743 		status = QDF_STATUS_E_RESOURCES;
744 	}
745 
746 	qdf_mutex_release(&osif_scan->scan_req_q_lock);
747 	if (QDF_IS_STATUS_ERROR(status)) {
748 		osif_rl_debug("Failed to enqueue Scan Req as max scan %d already queued",
749 			      qdf_list_size(&osif_scan->scan_req_q));
750 		qdf_mem_free(scan_req);
751 	}
752 
753 	return status;
754 }
755 
756 /**
757  * wlan_scan_request_dequeue() - dequeue scan request
758  * @nl_ctx: Global HDD context
759  * @scan_id: scan id
760  * @req: scan request
761  * @dev: net device
762  * @source : returns source of the scan request
763  *
764  * Return: QDF_STATUS
765  */
766 static QDF_STATUS wlan_scan_request_dequeue(
767 	struct wlan_objmgr_pdev *pdev,
768 	uint32_t scan_id, struct cfg80211_scan_request **req,
769 	uint8_t *source, struct net_device **dev,
770 	qdf_time_t *scan_start_timestamp)
771 {
772 	QDF_STATUS status = QDF_STATUS_E_FAILURE;
773 	struct scan_req *scan_req;
774 	qdf_list_node_t *node = NULL, *next_node = NULL;
775 	struct pdev_osif_priv *osif_ctx;
776 	struct osif_scan_pdev *scan_priv;
777 
778 	if ((!source) || (!req)) {
779 		osif_err("source or request is NULL");
780 		return QDF_STATUS_E_NULL_VALUE;
781 	}
782 
783 	/* Get NL global context from objmgr*/
784 	osif_ctx = wlan_pdev_get_ospriv(pdev);
785 	if (!osif_ctx) {
786 		osif_err("Failed to retrieve osif context");
787 		return status;
788 	}
789 	scan_priv = osif_ctx->osif_scan;
790 
791 	qdf_mutex_acquire(&scan_priv->scan_req_q_lock);
792 	if (qdf_list_empty(&scan_priv->scan_req_q)) {
793 		osif_info("Scan List is empty");
794 		qdf_mutex_release(&scan_priv->scan_req_q_lock);
795 		return QDF_STATUS_E_FAILURE;
796 	}
797 
798 	if (QDF_STATUS_SUCCESS !=
799 		qdf_list_peek_front(&scan_priv->scan_req_q, &next_node)) {
800 		qdf_mutex_release(&scan_priv->scan_req_q_lock);
801 		osif_err("Failed to remove Scan Req from queue");
802 		return QDF_STATUS_E_FAILURE;
803 	}
804 
805 	do {
806 		node = next_node;
807 		scan_req = qdf_container_of(node, struct scan_req, node);
808 		if (scan_req->scan_id == scan_id) {
809 			status = qdf_list_remove_node(&scan_priv->scan_req_q,
810 						      node);
811 			if (status == QDF_STATUS_SUCCESS) {
812 				*req = scan_req->scan_request;
813 				*source = scan_req->source;
814 				*dev = scan_req->dev;
815 				*scan_start_timestamp =
816 					scan_req->scan_start_timestamp;
817 				qdf_mem_free(scan_req);
818 				qdf_mutex_release(&scan_priv->scan_req_q_lock);
819 				osif_debug("removed Scan id: %d, req = %pK, pending scans %d",
820 					   scan_id, req,
821 					   qdf_list_size(&scan_priv->scan_req_q));
822 				return QDF_STATUS_SUCCESS;
823 			} else {
824 				qdf_mutex_release(&scan_priv->scan_req_q_lock);
825 				osif_err("Failed to remove scan id %d, pending scans %d",
826 					 scan_id,
827 					 qdf_list_size(&scan_priv->scan_req_q));
828 				return status;
829 			}
830 		}
831 	} while (QDF_STATUS_SUCCESS ==
832 		qdf_list_peek_next(&scan_priv->scan_req_q, node, &next_node));
833 	qdf_mutex_release(&scan_priv->scan_req_q_lock);
834 	osif_debug("Failed to find scan id %d", scan_id);
835 
836 	return status;
837 }
838 
839 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0))
840 /**
841  * wlan_cfg80211_scan_done() - Scan completed callback to cfg80211
842  * @netdev: Net device
843  * @req : Scan request
844  * @aborted : true scan aborted false scan success
845  * @osif_priv: OS private structure
846  *
847  * This function notifies scan done to cfg80211
848  *
849  * Return: none
850  */
851 void wlan_cfg80211_scan_done(struct net_device *netdev,
852 			     struct cfg80211_scan_request *req,
853 			     bool aborted, struct pdev_osif_priv *osif_priv)
854 {
855 	struct cfg80211_scan_info info = {
856 		.aborted = aborted
857 	};
858 	bool driver_internal_netdev_state;
859 
860 	driver_internal_netdev_state = netdev->flags & IFF_UP;
861 	if (osif_priv->osif_check_netdev_state)
862 		driver_internal_netdev_state =
863 			osif_priv->osif_check_netdev_state(netdev);
864 
865 	if (driver_internal_netdev_state)
866 		cfg80211_scan_done(req, &info);
867 	else
868 		osif_debug("scan done callback has been dropped :%s",
869 			   (netdev)->name);
870 }
871 #elif (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0))
872 /**
873  * wlan_cfg80211_scan_done() - Scan completed callback to cfg80211
874  * @netdev: Net device
875  * @req : Scan request
876  * @aborted : true scan aborted false scan success
877  * @osif_priv - OS private structure
878  *
879  * This function notifies scan done to cfg80211
880  *
881  * Return: none
882  */
883 void wlan_cfg80211_scan_done(struct net_device *netdev,
884 			     struct cfg80211_scan_request *req,
885 			     bool aborted, struct pdev_osif_priv *osif_priv)
886 {
887 	bool driver_internal_net_state;
888 
889 	driver_internal_netdev_state = netdev->flags & IFF_UP;
890 	if (osif_priv->osif_check_netdev_state)
891 		driver_internal_net_state =
892 			osif_priv->osif_check_netdev_state(netdev);
893 
894 	if (driver_internal_netdev_state)
895 		cfg80211_scan_done(req, aborted);
896 	else
897 		osif_debug("scan request has been dropped :%s", (netdev)->name);
898 }
899 #endif
900 
901 /**
902  * wlan_vendor_scan_callback() - Scan completed callback event
903  *
904  * @req : Scan request
905  * @aborted : true scan aborted false scan success
906  *
907  * This function sends scan completed callback event to NL.
908  *
909  * Return: none
910  */
911 static void wlan_vendor_scan_callback(struct cfg80211_scan_request *req,
912 					bool aborted)
913 {
914 	struct sk_buff *skb;
915 	struct nlattr *attr;
916 	int i;
917 	uint8_t scan_status;
918 	uint64_t cookie;
919 	int index = QCA_NL80211_VENDOR_SUBCMD_SCAN_DONE_INDEX;
920 
921 	skb = wlan_cfg80211_vendor_event_alloc(req->wdev->wiphy, req->wdev,
922 					       SCAN_DONE_EVENT_BUF_SIZE + 4 +
923 					       NLMSG_HDRLEN,
924 					       index,
925 					       GFP_ATOMIC);
926 
927 	if (!skb) {
928 		osif_err("skb alloc failed");
929 		qdf_mem_free(req);
930 		return;
931 	}
932 
933 	cookie = (uintptr_t)req;
934 
935 	attr = nla_nest_start(skb, QCA_WLAN_VENDOR_ATTR_SCAN_SSIDS);
936 	if (!attr)
937 		goto nla_put_failure;
938 	for (i = 0; i < req->n_ssids; i++) {
939 		if (nla_put(skb, i, req->ssids[i].ssid_len, req->ssids[i].ssid))
940 			goto nla_put_failure;
941 	}
942 	nla_nest_end(skb, attr);
943 
944 	attr = nla_nest_start(skb, QCA_WLAN_VENDOR_ATTR_SCAN_FREQUENCIES);
945 	if (!attr)
946 		goto nla_put_failure;
947 	for (i = 0; i < req->n_channels; i++) {
948 		if (nla_put_u32(skb, i, req->channels[i]->center_freq))
949 			goto nla_put_failure;
950 	}
951 	nla_nest_end(skb, attr);
952 
953 	if (req->ie &&
954 		nla_put(skb, QCA_WLAN_VENDOR_ATTR_SCAN_IE, req->ie_len,
955 			req->ie))
956 		goto nla_put_failure;
957 
958 	if (req->flags &&
959 		nla_put_u32(skb, QCA_WLAN_VENDOR_ATTR_SCAN_FLAGS, req->flags))
960 		goto nla_put_failure;
961 
962 	if (wlan_cfg80211_nla_put_u64(skb, QCA_WLAN_VENDOR_ATTR_SCAN_COOKIE,
963 					cookie))
964 		goto nla_put_failure;
965 
966 	scan_status = (aborted == true) ? VENDOR_SCAN_STATUS_ABORTED :
967 		VENDOR_SCAN_STATUS_NEW_RESULTS;
968 	if (nla_put_u8(skb, QCA_WLAN_VENDOR_ATTR_SCAN_STATUS, scan_status))
969 		goto nla_put_failure;
970 
971 	wlan_cfg80211_vendor_event(skb, GFP_ATOMIC);
972 	qdf_mem_free(req);
973 
974 	return;
975 
976 nla_put_failure:
977 	wlan_cfg80211_vendor_free_skb(skb);
978 	qdf_mem_free(req);
979 }
980 
981 /**
982  * wlan_scan_acquire_wake_lock_timeout() - acquire scan wake lock
983  * @psoc: psoc ptr
984  * @scan_wake_lock: Scan wake lock
985  * @timeout: timeout in ms
986  *
987  * Return: void
988  */
989 static inline
990 void wlan_scan_acquire_wake_lock_timeout(struct wlan_objmgr_psoc *psoc,
991 					 qdf_wake_lock_t *scan_wake_lock,
992 					 uint32_t timeout)
993 {
994 	if (!psoc || !scan_wake_lock)
995 		return;
996 
997 	if (ucfg_scan_wake_lock_in_user_scan(psoc))
998 		qdf_wake_lock_timeout_acquire(scan_wake_lock, timeout);
999 }
1000 
1001 
1002 /**
1003  * wlan_scan_release_wake_lock() - release scan wake lock
1004  * @psoc: psoc ptr
1005  * @scan_wake_lock: Scan wake lock
1006  *
1007  * Return: void
1008  */
1009 #ifdef FEATURE_WLAN_DIAG_SUPPORT
1010 static inline
1011 void wlan_scan_release_wake_lock(struct wlan_objmgr_psoc *psoc,
1012 				 qdf_wake_lock_t *scan_wake_lock)
1013 {
1014 	if (!psoc || !scan_wake_lock)
1015 		return;
1016 
1017 	if (ucfg_scan_wake_lock_in_user_scan(psoc))
1018 		qdf_wake_lock_release(scan_wake_lock,
1019 				      WIFI_POWER_EVENT_WAKELOCK_SCAN);
1020 }
1021 #else
1022 static inline
1023 void wlan_scan_release_wake_lock(struct wlan_objmgr_psoc *psoc,
1024 				 qdf_wake_lock_t *scan_wake_lock)
1025 {
1026 	if (!psoc || !scan_wake_lock)
1027 		return;
1028 
1029 	if (ucfg_scan_wake_lock_in_user_scan(psoc))
1030 		qdf_wake_lock_release(scan_wake_lock, 0);
1031 }
1032 #endif
1033 
1034 static
1035 uint32_t wlan_scan_get_bss_count_for_scan(struct wlan_objmgr_pdev *pdev,
1036 					  qdf_time_t scan_start_ts)
1037 {
1038 	struct scan_filter *filter;
1039 	qdf_list_t *list = NULL;
1040 	uint32_t count = 0;
1041 
1042 	if (!scan_start_ts)
1043 		return count;
1044 
1045 	filter = qdf_mem_malloc(sizeof(*filter));
1046 	if (!filter)
1047 		return count;
1048 
1049 	filter->ignore_auth_enc_type = true;
1050 	filter->age_threshold = qdf_get_time_of_the_day_ms() - scan_start_ts;
1051 
1052 	list = ucfg_scan_get_result(pdev, filter);
1053 
1054 	qdf_mem_free(filter);
1055 
1056 	if (list) {
1057 		count = qdf_list_size(list);
1058 		ucfg_scan_purge_results(list);
1059 	}
1060 
1061 	return count;
1062 }
1063 
1064 /**
1065  * wlan_cfg80211_scan_done_callback() - scan done callback function called after
1066  * scan is finished
1067  * @vdev: vdev ptr
1068  * @event: Scan event
1069  * @args: Scan cb arg
1070  *
1071  * Return: void
1072  */
1073 static void wlan_cfg80211_scan_done_callback(
1074 					struct wlan_objmgr_vdev *vdev,
1075 					struct scan_event *event,
1076 					void *args)
1077 {
1078 	struct cfg80211_scan_request *req = NULL;
1079 	bool success = false;
1080 	uint32_t scan_id;
1081 	uint8_t source = NL_SCAN;
1082 	struct wlan_objmgr_pdev *pdev;
1083 	struct pdev_osif_priv *osif_priv;
1084 	struct net_device *netdev = NULL;
1085 	QDF_STATUS status;
1086 	qdf_time_t scan_start_timestamp = 0;
1087 	uint32_t unique_bss_count = 0;
1088 
1089 	if (!event) {
1090 		osif_nofl_err("Invalid scan event received");
1091 		return;
1092 	}
1093 
1094 	scan_id = event->scan_id;
1095 
1096 	qdf_mtrace(QDF_MODULE_ID_SCAN, QDF_MODULE_ID_OS_IF, event->type,
1097 		   event->vdev_id, scan_id);
1098 
1099 	if (event->type == SCAN_EVENT_TYPE_STARTED)
1100 		osif_nofl_info("scan start scan id %d", scan_id);
1101 
1102 	if (!util_is_scan_completed(event, &success))
1103 		return;
1104 
1105 	pdev = wlan_vdev_get_pdev(vdev);
1106 	osif_priv = wlan_pdev_get_ospriv(pdev);
1107 	status = wlan_scan_request_dequeue(
1108 			pdev, scan_id, &req, &source, &netdev,
1109 			&scan_start_timestamp);
1110 	if (QDF_IS_STATUS_ERROR(status)) {
1111 		osif_err("Dequeue of scan request failed ID: %d", scan_id);
1112 		goto allow_suspend;
1113 	}
1114 
1115 	if (!netdev) {
1116 		osif_err("net dev is NULL,Drop scan event Id: %d", scan_id);
1117 		/*
1118 		 * Free scan request in case of VENDOR_SCAN as it is
1119 		 * allocated in driver.
1120 		 */
1121 		if (source == VENDOR_SCAN)
1122 			qdf_mem_free(req);
1123 		goto allow_suspend;
1124 	}
1125 
1126 	/* Make sure vdev is active */
1127 	status = wlan_objmgr_vdev_try_get_ref(vdev, WLAN_OSIF_ID);
1128 	if (QDF_IS_STATUS_ERROR(status)) {
1129 		osif_err("Failed to get vdev reference: scan Id: %d", scan_id);
1130 		/*
1131 		 * Free scan request in case of VENDOR_SCAN as it is
1132 		 * allocated in driver.
1133 		 */
1134 		if (source == VENDOR_SCAN)
1135 			qdf_mem_free(req);
1136 		goto allow_suspend;
1137 	}
1138 
1139 	/*
1140 	 * Scan can be triggred from NL or vendor scan
1141 	 * - If scan is triggered from NL then cfg80211 scan done should be
1142 	 * called to updated scan completion to NL.
1143 	 * - If scan is triggred through vendor command then
1144 	 * scan done event will be posted
1145 	 */
1146 	if (NL_SCAN == source)
1147 		wlan_cfg80211_scan_done(netdev, req, !success, osif_priv);
1148 	else
1149 		wlan_vendor_scan_callback(req, !success);
1150 
1151 	wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
1152 
1153 	unique_bss_count = wlan_scan_get_bss_count_for_scan(pdev,
1154 							  scan_start_timestamp);
1155 	osif_nofl_info("vdev %d, scan id %d type %s(%d) reason %s(%d) scan found %d bss",
1156 		       event->vdev_id, scan_id,
1157 		       util_scan_get_ev_type_name(event->type), event->type,
1158 		       util_scan_get_ev_reason_name(event->reason),
1159 		       event->reason, unique_bss_count);
1160 allow_suspend:
1161 	qdf_mutex_acquire(&osif_priv->osif_scan->scan_req_q_lock);
1162 	if (qdf_list_empty(&osif_priv->osif_scan->scan_req_q)) {
1163 		struct wlan_objmgr_psoc *psoc;
1164 
1165 		qdf_mutex_release(&osif_priv->osif_scan->scan_req_q_lock);
1166 		qdf_runtime_pm_allow_suspend(
1167 			&osif_priv->osif_scan->runtime_pm_lock);
1168 
1169 		psoc = wlan_pdev_get_psoc(pdev);
1170 		wlan_scan_release_wake_lock(psoc,
1171 					&osif_priv->osif_scan->scan_wake_lock);
1172 		/*
1173 		 * Acquire wakelock to handle the case where APP's tries
1174 		 * to suspend immediately after the driver gets connect
1175 		 * request(i.e after scan) from supplicant, this result in
1176 		 * app's is suspending and not able to process the connect
1177 		 * request to AP
1178 		 */
1179 		wlan_scan_acquire_wake_lock_timeout(psoc,
1180 					&osif_priv->osif_scan->scan_wake_lock,
1181 					SCAN_WAKE_LOCK_CONNECT_DURATION);
1182 	} else {
1183 		qdf_mutex_release(&osif_priv->osif_scan->scan_req_q_lock);
1184 	}
1185 
1186 }
1187 
1188 QDF_STATUS wlan_scan_runtime_pm_init(struct wlan_objmgr_pdev *pdev)
1189 {
1190 	struct pdev_osif_priv *osif_priv;
1191 	struct osif_scan_pdev *scan_priv;
1192 
1193 	wlan_pdev_obj_lock(pdev);
1194 	osif_priv = wlan_pdev_get_ospriv(pdev);
1195 	wlan_pdev_obj_unlock(pdev);
1196 
1197 	scan_priv = osif_priv->osif_scan;
1198 
1199 	return qdf_runtime_lock_init(&scan_priv->runtime_pm_lock);
1200 }
1201 
1202 void wlan_scan_runtime_pm_deinit(struct wlan_objmgr_pdev *pdev)
1203 {
1204 	struct pdev_osif_priv *osif_priv;
1205 	struct osif_scan_pdev *scan_priv;
1206 
1207 	wlan_pdev_obj_lock(pdev);
1208 	osif_priv = wlan_pdev_get_ospriv(pdev);
1209 	wlan_pdev_obj_unlock(pdev);
1210 
1211 	scan_priv = osif_priv->osif_scan;
1212 	qdf_runtime_lock_deinit(&scan_priv->runtime_pm_lock);
1213 }
1214 
1215 QDF_STATUS wlan_cfg80211_scan_priv_init(struct wlan_objmgr_pdev *pdev)
1216 {
1217 	struct pdev_osif_priv *osif_priv;
1218 	struct osif_scan_pdev *scan_priv;
1219 	struct wlan_objmgr_psoc *psoc;
1220 	wlan_scan_requester req_id;
1221 
1222 	psoc = wlan_pdev_get_psoc(pdev);
1223 
1224 	req_id = ucfg_scan_register_requester(psoc, "CFG",
1225 		wlan_cfg80211_scan_done_callback, NULL);
1226 
1227 	osif_priv = wlan_pdev_get_ospriv(pdev);
1228 	scan_priv = qdf_mem_malloc(sizeof(*scan_priv));
1229 	if (!scan_priv)
1230 		return QDF_STATUS_E_NOMEM;
1231 
1232 	/* Initialize the scan request queue */
1233 	osif_priv->osif_scan = scan_priv;
1234 	scan_priv->req_id = req_id;
1235 	qdf_list_create(&scan_priv->scan_req_q, WLAN_MAX_SCAN_COUNT);
1236 	qdf_mutex_create(&scan_priv->scan_req_q_lock);
1237 	qdf_wake_lock_create(&scan_priv->scan_wake_lock, "scan_wake_lock");
1238 
1239 	return QDF_STATUS_SUCCESS;
1240 }
1241 
1242 QDF_STATUS wlan_cfg80211_scan_priv_deinit(struct wlan_objmgr_pdev *pdev)
1243 {
1244 	struct pdev_osif_priv *osif_priv;
1245 	struct osif_scan_pdev *scan_priv;
1246 	struct wlan_objmgr_psoc *psoc;
1247 
1248 	psoc = wlan_pdev_get_psoc(pdev);
1249 	osif_priv = wlan_pdev_get_ospriv(pdev);
1250 
1251 	wlan_cfg80211_cleanup_scan_queue(pdev, NULL);
1252 	scan_priv = osif_priv->osif_scan;
1253 	qdf_wake_lock_destroy(&scan_priv->scan_wake_lock);
1254 	qdf_mutex_destroy(&scan_priv->scan_req_q_lock);
1255 	qdf_list_destroy(&scan_priv->scan_req_q);
1256 	ucfg_scan_unregister_requester(psoc, scan_priv->req_id);
1257 	osif_priv->osif_scan = NULL;
1258 	qdf_mem_free(scan_priv);
1259 
1260 	return QDF_STATUS_SUCCESS;
1261 }
1262 
1263 /**
1264  * wlan_cfg80211_enqueue_for_cleanup() - Function to populate scan cleanup queue
1265  * @scan_cleanup_q: Scan cleanup queue to be populated
1266  * @scan_priv: Pointer to scan related data used by cfg80211 scan
1267  * @dev: Netdevice pointer
1268  *
1269  * The function synchrounously iterates through the global scan queue to
1270  * identify entries that have to be cleaned up, copies identified entries
1271  * to another queue(to send scan complete event to NL later) and removes the
1272  * entry from the global scan queue.
1273  *
1274  * Return: None
1275  */
1276 static void
1277 wlan_cfg80211_enqueue_for_cleanup(qdf_list_t *scan_cleanup_q,
1278 				  struct osif_scan_pdev *scan_priv,
1279 				  struct net_device *dev)
1280 {
1281 	struct scan_req *scan_req, *scan_cleanup;
1282 	qdf_list_node_t *node = NULL, *next_node = NULL;
1283 
1284 	qdf_mutex_acquire(&scan_priv->scan_req_q_lock);
1285 	if (QDF_STATUS_SUCCESS !=
1286 		qdf_list_peek_front(&scan_priv->scan_req_q,
1287 				    &node)) {
1288 		qdf_mutex_release(&scan_priv->scan_req_q_lock);
1289 		return;
1290 	}
1291 
1292 	while (node) {
1293 		/*
1294 		 * Keep track of the next node, to traverse through the list
1295 		 * in the event of the current node being deleted.
1296 		 */
1297 		qdf_list_peek_next(&scan_priv->scan_req_q,
1298 				   node, &next_node);
1299 		scan_req = qdf_container_of(node, struct scan_req, node);
1300 		if (!dev || (dev == scan_req->dev)) {
1301 			scan_cleanup = qdf_mem_malloc(sizeof(struct scan_req));
1302 			if (!scan_cleanup) {
1303 				qdf_mutex_release(&scan_priv->scan_req_q_lock);
1304 				return;
1305 			}
1306 			scan_cleanup->scan_request = scan_req->scan_request;
1307 			scan_cleanup->scan_id = scan_req->scan_id;
1308 			scan_cleanup->source = scan_req->source;
1309 			scan_cleanup->dev = scan_req->dev;
1310 			qdf_list_insert_back(scan_cleanup_q,
1311 					     &scan_cleanup->node);
1312 			if (QDF_STATUS_SUCCESS !=
1313 				qdf_list_remove_node(&scan_priv->scan_req_q,
1314 						     node)) {
1315 				qdf_mutex_release(&scan_priv->scan_req_q_lock);
1316 				osif_err("Failed to remove scan request");
1317 				return;
1318 			}
1319 			qdf_mem_free(scan_req);
1320 		}
1321 		node = next_node;
1322 		next_node = NULL;
1323 	}
1324 	qdf_mutex_release(&scan_priv->scan_req_q_lock);
1325 }
1326 
1327 void wlan_cfg80211_cleanup_scan_queue(struct wlan_objmgr_pdev *pdev,
1328 				      struct net_device *dev)
1329 {
1330 	struct scan_req *scan_req;
1331 	struct cfg80211_scan_request *req;
1332 	uint8_t source;
1333 	bool aborted = true;
1334 	struct pdev_osif_priv *osif_priv;
1335 	qdf_list_t scan_cleanup_q;
1336 	qdf_list_node_t *node = NULL;
1337 
1338 	if (!pdev) {
1339 		osif_err("pdev is Null");
1340 		return;
1341 	}
1342 
1343 	osif_priv = wlan_pdev_get_ospriv(pdev);
1344 
1345 	/*
1346 	 * To avoid any race conditions, create a local list to copy all the
1347 	 * scan entries to be removed and then send scan complete for each of
1348 	 * the identified entries to NL.
1349 	 */
1350 	qdf_list_create(&scan_cleanup_q, WLAN_MAX_SCAN_COUNT);
1351 	wlan_cfg80211_enqueue_for_cleanup(&scan_cleanup_q,
1352 					  osif_priv->osif_scan, dev);
1353 
1354 	while (!qdf_list_empty(&scan_cleanup_q)) {
1355 		if (QDF_STATUS_SUCCESS != qdf_list_remove_front(&scan_cleanup_q,
1356 								&node)) {
1357 			osif_err("Failed to remove scan request");
1358 			return;
1359 		}
1360 		scan_req = container_of(node, struct scan_req, node);
1361 		req = scan_req->scan_request;
1362 		source = scan_req->source;
1363 		if (NL_SCAN == source)
1364 			wlan_cfg80211_scan_done(scan_req->dev, req,
1365 						aborted, osif_priv);
1366 		else
1367 			wlan_vendor_scan_callback(req, aborted);
1368 
1369 		qdf_mem_free(scan_req);
1370 	}
1371 	qdf_list_destroy(&scan_cleanup_q);
1372 
1373 	return;
1374 }
1375 
1376 /**
1377  * wlan_cfg80211_update_scan_policy_type_flags() - Set scan flags according to
1378  * scan request
1379  * @scan_req: Pointer to csr scan req
1380  *
1381  * Return: None
1382  */
1383 #if defined(CFG80211_SCAN_DBS_CONTROL_SUPPORT) || \
1384 	   (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 16, 0))
1385 static void wlan_cfg80211_update_scan_policy_type_flags(
1386 	struct cfg80211_scan_request *req,
1387 	struct scan_req_params *scan_req)
1388 {
1389 	if (req->flags & NL80211_SCAN_FLAG_HIGH_ACCURACY)
1390 		scan_req->scan_policy_high_accuracy = true;
1391 	if (req->flags & NL80211_SCAN_FLAG_LOW_SPAN)
1392 		scan_req->scan_policy_low_span = true;
1393 	if (req->flags & NL80211_SCAN_FLAG_LOW_POWER)
1394 		scan_req->scan_policy_low_power = true;
1395 
1396 	if (wlan_cfg80211_is_colocated_6ghz_scan_supported(req->flags))
1397 		scan_req->scan_policy_colocated_6ghz = true;
1398 }
1399 #else
1400 static inline void wlan_cfg80211_update_scan_policy_type_flags(
1401 		struct cfg80211_scan_request *req,
1402 		struct scan_req_params *scan_req)
1403 {
1404 }
1405 #endif
1406 
1407 #ifdef WLAN_POLICY_MGR_ENABLE
1408 static bool
1409 wlan_cfg80211_allow_simultaneous_scan(struct wlan_objmgr_psoc *psoc)
1410 {
1411 	return policy_mgr_is_scan_simultaneous_capable(psoc);
1412 }
1413 #else
1414 static bool
1415 wlan_cfg80211_allow_simultaneous_scan(struct wlan_objmgr_psoc *psoc)
1416 {
1417 	return true;
1418 }
1419 #endif
1420 
1421 enum scan_priority convert_nl_scan_priority_to_internal(
1422 	enum qca_wlan_vendor_scan_priority nl_scan_priority)
1423 {
1424 	switch (nl_scan_priority) {
1425 	case QCA_WLAN_VENDOR_SCAN_PRIORITY_VERY_LOW:
1426 		return SCAN_PRIORITY_VERY_LOW;
1427 
1428 	case QCA_WLAN_VENDOR_SCAN_PRIORITY_LOW:
1429 		return SCAN_PRIORITY_LOW;
1430 
1431 	case QCA_WLAN_VENDOR_SCAN_PRIORITY_MEDIUM:
1432 		return SCAN_PRIORITY_MEDIUM;
1433 
1434 	case QCA_WLAN_VENDOR_SCAN_PRIORITY_HIGH:
1435 		return SCAN_PRIORITY_HIGH;
1436 
1437 	case QCA_WLAN_VENDOR_SCAN_PRIORITY_VERY_HIGH:
1438 		return SCAN_PRIORITY_VERY_HIGH;
1439 
1440 	default:
1441 		return SCAN_PRIORITY_COUNT;
1442 	}
1443 }
1444 
1445 int wlan_cfg80211_scan(struct wlan_objmgr_vdev *vdev,
1446 		       struct cfg80211_scan_request *request,
1447 		       struct scan_params *params)
1448 {
1449 	struct scan_start_request *req;
1450 	struct wlan_ssid *pssid;
1451 	uint8_t i;
1452 	int ret = 0;
1453 	uint8_t num_chan = 0;
1454 	uint32_t c_freq;
1455 	struct wlan_objmgr_pdev *pdev = wlan_vdev_get_pdev(vdev);
1456 	wlan_scan_requester req_id;
1457 	struct pdev_osif_priv *osif_priv;
1458 	struct wlan_objmgr_psoc *psoc;
1459 	wlan_scan_id scan_id;
1460 	bool is_p2p_scan = false;
1461 	enum wlan_band band;
1462 	QDF_STATUS qdf_status;
1463 	enum QDF_OPMODE opmode;
1464 	uint32_t extra_ie_len = 0;
1465 
1466 	psoc = wlan_pdev_get_psoc(pdev);
1467 	if (!psoc) {
1468 		osif_err("Invalid psoc object");
1469 		return -EINVAL;
1470 	}
1471 	opmode = wlan_vdev_mlme_get_opmode(vdev);
1472 
1473 	osif_debug("%s(vdev%d): mode %d", request->wdev->netdev->name,
1474 		   wlan_vdev_get_id(vdev), opmode);
1475 
1476 	/* Get NL global context from objmgr*/
1477 	osif_priv = wlan_pdev_get_ospriv(pdev);
1478 	if (!osif_priv) {
1479 		osif_err("Invalid osif priv object");
1480 		return -EINVAL;
1481 	}
1482 
1483 	/*
1484 	 * For a non-SAP vdevs, if a scan is already going on i.e the scan queue
1485 	 * is not empty, and the simultaneous scan is disabled, dont allow 2nd
1486 	 * scan.
1487 	 */
1488 	qdf_mutex_acquire(&osif_priv->osif_scan->scan_req_q_lock);
1489 	if (!wlan_cfg80211_allow_simultaneous_scan(psoc) &&
1490 	    !qdf_list_empty(&osif_priv->osif_scan->scan_req_q) &&
1491 	    opmode != QDF_SAP_MODE) {
1492 		qdf_mutex_release(&osif_priv->osif_scan->scan_req_q_lock);
1493 		osif_err("Simultaneous scan disabled, reject scan");
1494 		return -EBUSY;
1495 	}
1496 	qdf_mutex_release(&osif_priv->osif_scan->scan_req_q_lock);
1497 
1498 	req = qdf_mem_malloc(sizeof(*req));
1499 	if (!req)
1500 		return -EINVAL;
1501 
1502 	/* Initialize the scan global params */
1503 	ucfg_scan_init_default_params(vdev, req);
1504 
1505 	req_id = osif_priv->osif_scan->req_id;
1506 	scan_id = ucfg_scan_get_scan_id(psoc);
1507 	if (!scan_id) {
1508 		osif_err("Invalid scan id");
1509 		qdf_mem_free(req);
1510 		return -EINVAL;
1511 	}
1512 
1513 	/* fill the scan request structure */
1514 	req->vdev = vdev;
1515 	req->scan_req.vdev_id = wlan_vdev_get_id(vdev);
1516 	req->scan_req.scan_id = scan_id;
1517 	req->scan_req.scan_req_id = req_id;
1518 
1519 	/* Update scan policy type flags according to cfg scan request */
1520 	wlan_cfg80211_update_scan_policy_type_flags(request,
1521 					     &req->scan_req);
1522 	/*
1523 	 * Even though supplicant doesn't provide any SSIDs, n_ssids is
1524 	 * set to 1.  Because of this, driver is assuming that this is not
1525 	 * wildcard scan and so is not aging out the scan results.
1526 	 */
1527 	if ((request->ssids) && (request->n_ssids == 1) &&
1528 	    ('\0' == request->ssids->ssid[0])) {
1529 		request->n_ssids = 0;
1530 	}
1531 
1532 	if ((request->ssids) && (0 < request->n_ssids)) {
1533 		int j;
1534 		req->scan_req.num_ssids = request->n_ssids;
1535 
1536 		if (req->scan_req.num_ssids > WLAN_SCAN_MAX_NUM_SSID) {
1537 			osif_info("number of ssid %d greater than MAX %d",
1538 				  req->scan_req.num_ssids,
1539 				  WLAN_SCAN_MAX_NUM_SSID);
1540 			req->scan_req.num_ssids = WLAN_SCAN_MAX_NUM_SSID;
1541 		}
1542 		/* copy all the ssid's and their length */
1543 		for (j = 0; j < req->scan_req.num_ssids; j++)  {
1544 			pssid = &req->scan_req.ssid[j];
1545 			/* get the ssid length */
1546 			pssid->length = request->ssids[j].ssid_len;
1547 			if (pssid->length > WLAN_SSID_MAX_LEN)
1548 				pssid->length = WLAN_SSID_MAX_LEN;
1549 			qdf_mem_copy(pssid->ssid,
1550 				     &request->ssids[j].ssid[0],
1551 				     pssid->length);
1552 		}
1553 	}
1554 	if (request->ssids ||
1555 	   (opmode == QDF_P2P_GO_MODE) || (opmode == QDF_P2P_DEVICE_MODE))
1556 		req->scan_req.scan_f_passive = false;
1557 
1558 	if (params->half_rate)
1559 		req->scan_req.scan_f_half_rate = true;
1560 	else if (params->quarter_rate)
1561 		req->scan_req.scan_f_quarter_rate = true;
1562 
1563 	if (params->strict_pscan)
1564 		req->scan_req.scan_f_strict_passive_pch = true;
1565 
1566 	if ((request->n_ssids == 1) && request->ssids &&
1567 	   !qdf_mem_cmp(&request->ssids[0], "DIRECT-", 7))
1568 		is_p2p_scan = true;
1569 
1570 	if (is_p2p_scan && request->no_cck)
1571 		req->scan_req.scan_type = SCAN_TYPE_P2P_SEARCH;
1572 
1573 	if (params->dwell_time_active)
1574 		req->scan_req.dwell_time_active = params->dwell_time_active;
1575 
1576 	if (params->dwell_time_active_2g)
1577 		req->scan_req.dwell_time_active_2g =
1578 			params->dwell_time_active_2g;
1579 
1580 	if (params->dwell_time_passive)
1581 		req->scan_req.dwell_time_passive = params->dwell_time_passive;
1582 
1583 	if (params->dwell_time_active_6g)
1584 		req->scan_req.dwell_time_active_6g =
1585 			params->dwell_time_active_6g;
1586 
1587 	if (params->dwell_time_passive_6g)
1588 		req->scan_req.dwell_time_passive_6g =
1589 			params->dwell_time_passive_6g;
1590 
1591 	/* Set dwell time mode according to scan policy type flags */
1592 	if (ucfg_scan_cfg_honour_nl_scan_policy_flags(psoc)) {
1593 		if (req->scan_req.scan_policy_high_accuracy)
1594 			req->scan_req.adaptive_dwell_time_mode =
1595 						SCAN_DWELL_MODE_STATIC;
1596 		if (req->scan_req.scan_policy_low_power)
1597 			req->scan_req.adaptive_dwell_time_mode =
1598 						SCAN_DWELL_MODE_AGGRESSIVE;
1599 	}
1600 
1601 	/*
1602 	 * FW require at least 1 MAC to send probe request.
1603 	 * If MAC is all 0 set it to BC addr as this is the address on
1604 	 * which fw will send probe req.
1605 	 */
1606 	req->scan_req.num_bssid = 1;
1607 	wlan_copy_bssid_scan_request(req, request);
1608 	if (qdf_is_macaddr_zero(&req->scan_req.bssid_list[0]))
1609 		qdf_set_macaddr_broadcast(&req->scan_req.bssid_list[0]);
1610 
1611 	if (params->scan_f_2ghz && !params->scan_f_5ghz) {
1612 		req->scan_req.scan_f_2ghz = true;
1613 		req->scan_req.scan_f_5ghz = false;
1614 	} else if (!params->scan_f_2ghz && params->scan_f_5ghz) {
1615 		req->scan_req.scan_f_2ghz = false;
1616 		req->scan_req.scan_f_5ghz = true;
1617 	}
1618 
1619 	if (request->n_channels) {
1620 #ifdef WLAN_POLICY_MGR_ENABLE
1621 		bool ap_or_go_present =
1622 			policy_mgr_mode_specific_connection_count(
1623 			     psoc, PM_SAP_MODE, NULL) ||
1624 			     policy_mgr_mode_specific_connection_count(
1625 			     psoc, PM_P2P_GO_MODE, NULL);
1626 #endif
1627 		for (i = 0; i < request->n_channels; i++) {
1628 			c_freq = request->channels[i]->center_freq;
1629 			if (wlan_reg_is_dsrc_freq(c_freq))
1630 				continue;
1631 #ifdef WLAN_POLICY_MGR_ENABLE
1632 			if (ap_or_go_present) {
1633 				bool ok;
1634 
1635 				qdf_status = policy_mgr_is_chan_ok_for_dnbs(
1636 							psoc, c_freq, &ok);
1637 
1638 				if (QDF_IS_STATUS_ERROR(qdf_status)) {
1639 					osif_err("DNBS check failed");
1640 					ret = -EINVAL;
1641 					goto err;
1642 				}
1643 				if (!ok)
1644 					continue;
1645 			}
1646 #endif
1647 
1648 			if ((req->scan_req.scan_f_2ghz &&
1649 			     WLAN_REG_IS_24GHZ_CH_FREQ(c_freq)) ||
1650 			    (req->scan_req.scan_f_5ghz &&
1651 			     (WLAN_REG_IS_5GHZ_CH_FREQ(c_freq) ||
1652 			      WLAN_REG_IS_49GHZ_FREQ(c_freq) ||
1653 			      WLAN_REG_IS_6GHZ_CHAN_FREQ(c_freq)))) {
1654 				req->scan_req.chan_list.chan[num_chan].freq =
1655 									c_freq;
1656 				band = util_scan_scm_freq_to_band(c_freq);
1657 				if (band == WLAN_BAND_2_4_GHZ)
1658 					req->scan_req.chan_list.chan[num_chan].phymode =
1659 						SCAN_PHY_MODE_11G;
1660 				else
1661 					req->scan_req.chan_list.chan[num_chan].phymode =
1662 						SCAN_PHY_MODE_11A;
1663 				num_chan++;
1664 				if (num_chan >= NUM_CHANNELS)
1665 					break;
1666 			}
1667 		}
1668 	}
1669 	if (!num_chan) {
1670 		osif_err("Received zero non-dsrc channels");
1671 		ret = -EINVAL;
1672 		goto err;
1673 	}
1674 	req->scan_req.chan_list.num_chan = num_chan;
1675 
1676 	/* P2P increase the scan priority */
1677 	if (is_p2p_scan)
1678 		req->scan_req.scan_priority = SCAN_PRIORITY_HIGH;
1679 
1680 	if (params->priority != SCAN_PRIORITY_COUNT)
1681 		req->scan_req.scan_priority = params->priority;
1682 
1683 	if (request->ie_len)
1684 		extra_ie_len = request->ie_len;
1685 	else if (params->default_ie.ptr && params->default_ie.len)
1686 		extra_ie_len = params->default_ie.len;
1687 
1688 	if (params->vendor_ie.ptr && params->vendor_ie.len)
1689 		extra_ie_len += params->vendor_ie.len;
1690 
1691 	if (extra_ie_len) {
1692 		req->scan_req.extraie.ptr = qdf_mem_malloc(extra_ie_len);
1693 		if (!req->scan_req.extraie.ptr) {
1694 			ret = -ENOMEM;
1695 			goto err;
1696 		}
1697 	}
1698 
1699 	if (request->ie_len) {
1700 		req->scan_req.extraie.len = request->ie_len;
1701 		qdf_mem_copy(req->scan_req.extraie.ptr, request->ie,
1702 			     request->ie_len);
1703 	} else if (params->default_ie.ptr && params->default_ie.len) {
1704 		req->scan_req.extraie.len = params->default_ie.len;
1705 		qdf_mem_copy(req->scan_req.extraie.ptr, params->default_ie.ptr,
1706 			     params->default_ie.len);
1707 	}
1708 
1709 	if (params->vendor_ie.ptr && params->vendor_ie.len) {
1710 		qdf_mem_copy((req->scan_req.extraie.ptr +
1711 			      req->scan_req.extraie.len),
1712 			     params->vendor_ie.ptr, params->vendor_ie.len);
1713 
1714 		req->scan_req.extraie.len += params->vendor_ie.len;
1715 	}
1716 
1717 	if (!is_p2p_scan) {
1718 		if (req->scan_req.scan_random.randomize)
1719 			wlan_scan_rand_attrs(vdev, request, req);
1720 		if (ucfg_ie_allowlist_enabled(psoc, vdev) &&
1721 		    ucfg_copy_ie_allowlist_attrs(psoc,
1722 						 &req->scan_req.ie_allowlist))
1723 			req->scan_req.scan_f_en_ie_allowlist_in_probe = true;
1724 	}
1725 
1726 	if (request->flags & NL80211_SCAN_FLAG_FLUSH)
1727 		ucfg_scan_flush_results(pdev, NULL);
1728 
1729 	if (params->scan_probe_unicast_ra)
1730 		req->scan_req.scan_ctrl_flags_ext |=
1731 				SCAN_FLAG_EXT_FORCE_UNICAST_RA;
1732 
1733 	osif_debug("scan_ctrl_flags_ext %0x",
1734 		   req->scan_req.scan_ctrl_flags_ext);
1735 
1736 	/*
1737 	 * Acquire wakelock to handle the case where APP's send scan to connect.
1738 	 * If suspend is received during scan scan will be aborted and APP will
1739 	 * not get scan result and not connect. eg if PNO is implemented in
1740 	 * framework.
1741 	 */
1742 	wlan_scan_acquire_wake_lock_timeout(psoc,
1743 					&osif_priv->osif_scan->scan_wake_lock,
1744 					SCAN_WAKE_LOCK_SCAN_DURATION);
1745 
1746 	qdf_runtime_pm_prevent_suspend(
1747 		&osif_priv->osif_scan->runtime_pm_lock);
1748 
1749 	qdf_status = wlan_schedule_scan_start_request(pdev, request,
1750 						      params->source, req);
1751 	if (QDF_IS_STATUS_ERROR(qdf_status)) {
1752 		qdf_mutex_acquire(&osif_priv->osif_scan->scan_req_q_lock);
1753 		if (qdf_list_empty(&osif_priv->osif_scan->scan_req_q)) {
1754 			qdf_mutex_release(
1755 				&osif_priv->osif_scan->scan_req_q_lock);
1756 			qdf_runtime_pm_allow_suspend(
1757 					&osif_priv->osif_scan->runtime_pm_lock);
1758 			wlan_scan_release_wake_lock(
1759 					psoc,
1760 					&osif_priv->osif_scan->scan_wake_lock);
1761 		} else {
1762 			qdf_mutex_release(
1763 				&osif_priv->osif_scan->scan_req_q_lock);
1764 		}
1765 	}
1766 
1767 	return qdf_status_to_os_return(qdf_status);
1768 
1769 err:
1770 	qdf_mem_free(req);
1771 	return ret;
1772 }
1773 
1774 /**
1775  * wlan_get_scanid() - API to get the scan id
1776  * from the scan cookie attribute.
1777  * @pdev: Pointer to pdev object
1778  * @scan_id: Pointer to scan id
1779  * @cookie : Scan cookie attribute
1780  *
1781  * API to get the scan id from the scan cookie attribute
1782  * sent from supplicant by matching scan request.
1783  *
1784  * Return: 0 for success, non zero for failure
1785  */
1786 static int wlan_get_scanid(struct wlan_objmgr_pdev *pdev,
1787 			       uint32_t *scan_id, uint64_t cookie)
1788 {
1789 	struct scan_req *scan_req;
1790 	qdf_list_node_t *node = NULL;
1791 	qdf_list_node_t *ptr_node = NULL;
1792 	int ret = -EINVAL;
1793 	struct pdev_osif_priv *osif_ctx;
1794 	struct osif_scan_pdev *scan_priv;
1795 
1796 	/* Get NL global context from objmgr*/
1797 	osif_ctx = wlan_pdev_get_ospriv(pdev);
1798 	if (!osif_ctx) {
1799 		osif_err("Failed to retrieve osif context");
1800 		return ret;
1801 	}
1802 	scan_priv = osif_ctx->osif_scan;
1803 	qdf_mutex_acquire(&scan_priv->scan_req_q_lock);
1804 	if (qdf_list_empty(&scan_priv->scan_req_q)) {
1805 		qdf_mutex_release(&scan_priv->scan_req_q_lock);
1806 		osif_err("Failed to retrieve scan id");
1807 		return ret;
1808 	}
1809 
1810 	if (QDF_STATUS_SUCCESS !=
1811 			    qdf_list_peek_front(&scan_priv->scan_req_q,
1812 			    &ptr_node)) {
1813 		qdf_mutex_release(&scan_priv->scan_req_q_lock);
1814 		return ret;
1815 	}
1816 
1817 	do {
1818 		node = ptr_node;
1819 		scan_req = qdf_container_of(node, struct scan_req, node);
1820 		if (cookie ==
1821 		    (uintptr_t)(scan_req->scan_request)) {
1822 			*scan_id = scan_req->scan_id;
1823 			ret = 0;
1824 			break;
1825 		}
1826 	} while (QDF_STATUS_SUCCESS ==
1827 		 qdf_list_peek_next(&scan_priv->scan_req_q,
1828 		 node, &ptr_node));
1829 
1830 	qdf_mutex_release(&scan_priv->scan_req_q_lock);
1831 
1832 	return ret;
1833 }
1834 
1835 QDF_STATUS wlan_abort_scan(struct wlan_objmgr_pdev *pdev,
1836 				   uint32_t pdev_id, uint32_t vdev_id,
1837 				   wlan_scan_id scan_id, bool sync)
1838 {
1839 	struct scan_cancel_request *req;
1840 	struct pdev_osif_priv *osif_ctx;
1841 	struct osif_scan_pdev *scan_priv;
1842 	QDF_STATUS status;
1843 	struct wlan_objmgr_vdev *vdev;
1844 
1845 	req = qdf_mem_malloc(sizeof(*req));
1846 	if (!req)
1847 		return QDF_STATUS_E_NOMEM;
1848 
1849 	/* Get NL global context from objmgr*/
1850 	osif_ctx = wlan_pdev_get_ospriv(pdev);
1851 	if (!osif_ctx) {
1852 		osif_err("Failed to retrieve osif context");
1853 		qdf_mem_free(req);
1854 		return QDF_STATUS_E_FAILURE;
1855 	}
1856 	if (vdev_id == INVAL_VDEV_ID)
1857 		vdev = wlan_objmgr_pdev_get_first_vdev(pdev, WLAN_OSIF_ID);
1858 	else
1859 		vdev = wlan_objmgr_get_vdev_by_id_from_pdev(pdev,
1860 				vdev_id, WLAN_OSIF_ID);
1861 
1862 	if (!vdev) {
1863 		qdf_mem_free(req);
1864 		return QDF_STATUS_E_INVAL;
1865 	}
1866 	scan_priv = osif_ctx->osif_scan;
1867 	req->cancel_req.requester = scan_priv->req_id;
1868 	req->vdev = vdev;
1869 	req->cancel_req.scan_id = scan_id;
1870 	req->cancel_req.pdev_id = pdev_id;
1871 	req->cancel_req.vdev_id = vdev_id;
1872 	if (scan_id != INVAL_SCAN_ID && scan_id != CANCEL_HOST_SCAN_ID)
1873 		req->cancel_req.req_type = WLAN_SCAN_CANCEL_SINGLE;
1874 	else if (scan_id == CANCEL_HOST_SCAN_ID)
1875 		req->cancel_req.req_type = WLAN_SCAN_CANCEL_HOST_VDEV_ALL;
1876 	else if (vdev_id == INVAL_VDEV_ID)
1877 		req->cancel_req.req_type = WLAN_SCAN_CANCEL_PDEV_ALL;
1878 	else
1879 		req->cancel_req.req_type = WLAN_SCAN_CANCEL_VDEV_ALL;
1880 
1881 	osif_debug("Type %d Vdev %d pdev %d scan id %d sync %d",
1882 		   req->cancel_req.req_type, req->cancel_req.vdev_id,
1883 		   req->cancel_req.pdev_id, req->cancel_req.scan_id, sync);
1884 
1885 	if (sync)
1886 		status = ucfg_scan_cancel_sync(req);
1887 	else
1888 		status = ucfg_scan_cancel(req);
1889 	if (QDF_IS_STATUS_ERROR(status))
1890 		osif_err("Cancel scan request failed");
1891 
1892 	wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
1893 
1894 	return status;
1895 }
1896 
1897 qdf_export_symbol(wlan_abort_scan);
1898 
1899 int wlan_cfg80211_abort_scan(struct wlan_objmgr_pdev *pdev)
1900 {
1901 	uint8_t pdev_id;
1902 
1903 	pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
1904 
1905 	if (ucfg_scan_get_pdev_status(pdev) !=
1906 	   SCAN_NOT_IN_PROGRESS)
1907 		wlan_abort_scan(pdev, pdev_id,
1908 			INVAL_VDEV_ID, INVAL_SCAN_ID, true);
1909 
1910 	return 0;
1911 }
1912 
1913 int wlan_vendor_abort_scan(struct wlan_objmgr_pdev *pdev,
1914 			const void *data, int data_len)
1915 {
1916 	struct nlattr *tb[QCA_WLAN_VENDOR_ATTR_SCAN_MAX + 1];
1917 	int ret = -EINVAL;
1918 	wlan_scan_id scan_id;
1919 	uint64_t cookie;
1920 	uint8_t pdev_id;
1921 
1922 	pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
1923 	if (wlan_cfg80211_nla_parse(tb, QCA_WLAN_VENDOR_ATTR_SCAN_MAX, data,
1924 				    data_len, cfg80211_scan_policy)) {
1925 		osif_err("Invalid ATTR");
1926 		return ret;
1927 	}
1928 
1929 	if (tb[QCA_WLAN_VENDOR_ATTR_SCAN_COOKIE]) {
1930 		cookie = nla_get_u64(
1931 			    tb[QCA_WLAN_VENDOR_ATTR_SCAN_COOKIE]);
1932 		ret = wlan_get_scanid(pdev, &scan_id, cookie);
1933 		if (ret != 0)
1934 			return ret;
1935 		if (ucfg_scan_get_pdev_status(pdev) !=
1936 		   SCAN_NOT_IN_PROGRESS)
1937 			wlan_abort_scan(pdev, INVAL_PDEV_ID,
1938 					INVAL_VDEV_ID, scan_id, true);
1939 	}
1940 	return 0;
1941 }
1942 
1943 static inline struct ieee80211_channel *
1944 wlan_get_ieee80211_channel(struct wiphy *wiphy,
1945 		struct wlan_objmgr_pdev *pdev,
1946 		int chan_freq)
1947 {
1948 	struct ieee80211_channel *chan;
1949 
1950 	chan = ieee80211_get_channel(wiphy, chan_freq);
1951 	if (!chan)
1952 		osif_err_rl("chan is NULL, freq: %d", chan_freq);
1953 
1954 	return chan;
1955 }
1956 
1957 #ifdef WLAN_ENABLE_AGEIE_ON_SCAN_RESULTS
1958 static inline int wlan_get_frame_len(struct scan_cache_entry *scan_params)
1959 {
1960 	return util_scan_entry_frame_len(scan_params) + sizeof(qcom_ie_age);
1961 }
1962 
1963 static inline void wlan_add_age_ie(uint8_t *mgmt_frame,
1964 	struct scan_cache_entry *scan_params)
1965 {
1966 	qcom_ie_age *qie_age = NULL;
1967 
1968 	/* GPS Requirement: need age ie per entry. Using vendor specific. */
1969 	/* Assuming this is the last IE, copy at the end */
1970 	qie_age = (qcom_ie_age *) (mgmt_frame +
1971 		   util_scan_entry_frame_len(scan_params));
1972 	qie_age->element_id = QCOM_VENDOR_IE_ID;
1973 	qie_age->len = QCOM_VENDOR_IE_AGE_LEN;
1974 	qie_age->oui_1 = QCOM_OUI1;
1975 	qie_age->oui_2 = QCOM_OUI2;
1976 	qie_age->oui_3 = QCOM_OUI3;
1977 	qie_age->type = QCOM_VENDOR_IE_AGE_TYPE;
1978 	/*
1979 	 * Lowi expects the timestamp of bss in units of 1/10 ms. In driver
1980 	 * all bss related timestamp is in units of ms. Due to this when scan
1981 	 * results are sent to lowi the scan age is high.To address this,
1982 	 * send age in units of 1/10 ms.
1983 	 */
1984 	qie_age->age =
1985 		(uint32_t)(qdf_mc_timer_get_system_time() -
1986 		  scan_params->scan_entry_time)/10;
1987 	qie_age->tsf_delta = scan_params->tsf_delta;
1988 	memcpy(&qie_age->beacon_tsf, scan_params->tsf_info.data,
1989 		  sizeof(qie_age->beacon_tsf));
1990 	memcpy(&qie_age->seq_ctrl, &scan_params->seq_num,
1991 	       sizeof(qie_age->seq_ctrl));
1992 }
1993 #else
1994 static inline int wlan_get_frame_len(struct scan_cache_entry *scan_params)
1995 {
1996 	return util_scan_entry_frame_len(scan_params);
1997 }
1998 
1999 static inline void wlan_add_age_ie(uint8_t *mgmt_frame,
2000 	struct scan_cache_entry *scan_params)
2001 {
2002 }
2003 #endif /* WLAN_ENABLE_AGEIE_ON_SCAN_RESULTS */
2004 
2005 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)) || \
2006 	defined(CFG80211_INFORM_BSS_FRAME_DATA)
2007 /**
2008  * wlan_fill_per_chain_rssi() - fill per chain RSSI in inform bss
2009  * @data: bss data
2010  * @per_chain_snr: per chain RSSI
2011  *
2012  * Return: void
2013  */
2014 #if defined(CFG80211_SCAN_PER_CHAIN_RSSI_SUPPORT) || \
2015 	   (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 16, 0))
2016 static void wlan_fill_per_chain_rssi(struct cfg80211_inform_bss *data,
2017 	struct wlan_cfg80211_inform_bss *bss)
2018 {
2019 
2020 	uint32_t i;
2021 
2022 	if (!bss || !data) {
2023 		osif_err("Received bss is NULL");
2024 		return;
2025 	}
2026 	for (i = 0; i < WLAN_MGMT_TXRX_HOST_MAX_ANTENNA; i++) {
2027 		if (!bss->per_chain_rssi[i] ||
2028 		    (bss->per_chain_rssi[i] == WLAN_INVALID_PER_CHAIN_RSSI))
2029 			continue;
2030 		data->chain_signal[i] = bss->per_chain_rssi[i];
2031 		data->chains |= BIT(i);
2032 	}
2033 }
2034 #else
2035 static inline void
2036 wlan_fill_per_chain_rssi(struct cfg80211_inform_bss *data,
2037 	struct wlan_cfg80211_inform_bss *bss)
2038 {
2039 }
2040 #endif
2041 
2042 struct cfg80211_bss *
2043 wlan_cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2044 		struct wlan_cfg80211_inform_bss *bss)
2045 {
2046 	struct cfg80211_inform_bss data  = {0};
2047 
2048 	if (!bss) {
2049 		osif_err("bss is null");
2050 		return NULL;
2051 	}
2052 	wlan_fill_per_chain_rssi(&data, bss);
2053 
2054 	data.chan = bss->chan;
2055 	data.boottime_ns = bss->boottime_ns;
2056 	data.signal = bss->rssi;
2057 	return cfg80211_inform_bss_frame_data(wiphy, &data, bss->mgmt,
2058 					      bss->frame_len, GFP_ATOMIC);
2059 }
2060 #else
2061 struct cfg80211_bss *
2062 wlan_cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2063 		struct wlan_cfg80211_inform_bss *bss)
2064 
2065 {
2066 	return cfg80211_inform_bss_frame(wiphy, bss->chan, bss->mgmt,
2067 					 bss->frame_len,
2068 					 bss->rssi, GFP_ATOMIC);
2069 }
2070 #endif
2071 
2072 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
2073 static inline void wlan_cfg80211_put_bss(struct wiphy *wiphy,
2074 		struct cfg80211_bss *bss)
2075 {
2076 	cfg80211_put_bss(wiphy, bss);
2077 }
2078 #else
2079 static inline void wlan_cfg80211_put_bss(struct wiphy *wiphy,
2080 		struct cfg80211_bss *bss)
2081 {
2082 	cfg80211_put_bss(bss);
2083 }
2084 #endif
2085 
2086 void wlan_cfg80211_inform_bss_frame(struct wlan_objmgr_pdev *pdev,
2087 		struct scan_cache_entry *scan_params)
2088 {
2089 	struct pdev_osif_priv *pdev_ospriv = wlan_pdev_get_ospriv(pdev);
2090 	struct wiphy *wiphy;
2091 	struct cfg80211_bss *bss = NULL;
2092 	struct wlan_cfg80211_inform_bss bss_data = {0};
2093 
2094 	if (!pdev_ospriv) {
2095 		osif_err("os_priv is NULL");
2096 		return;
2097 	}
2098 
2099 	wiphy = pdev_ospriv->wiphy;
2100 
2101 	bss_data.frame_len = wlan_get_frame_len(scan_params);
2102 	bss_data.mgmt = qdf_mem_malloc_atomic(bss_data.frame_len);
2103 	if (!bss_data.mgmt) {
2104 		osif_err("bss mem alloc failed for seq %d",
2105 			 scan_params->seq_num);
2106 		return;
2107 	}
2108 	qdf_mem_copy(bss_data.mgmt,
2109 		 util_scan_entry_frame_ptr(scan_params),
2110 		 util_scan_entry_frame_len(scan_params));
2111 	/*
2112 	 * Android does not want the timestamp from the frame.
2113 	 * Instead it wants a monotonic increasing value
2114 	 */
2115 	bss_data.mgmt->u.probe_resp.timestamp = qdf_get_monotonic_boottime();
2116 	wlan_add_age_ie((uint8_t *)bss_data.mgmt, scan_params);
2117 	/*
2118 	 * Based on .ini configuration, raw rssi can be reported for bss.
2119 	 * Raw rssi is typically used for estimating power.
2120 	 */
2121 	bss_data.rssi = scan_params->rssi_raw;
2122 
2123 	bss_data.chan = wlan_get_ieee80211_channel(wiphy, pdev,
2124 		scan_params->channel.chan_freq);
2125 	if (!bss_data.chan) {
2126 		osif_err_rl("Channel not found for bss " QDF_MAC_ADDR_FMT " seq %d chan_freq %d",
2127 			    QDF_MAC_ADDR_REF(bss_data.mgmt->bssid),
2128 			    scan_params->seq_num,
2129 			    scan_params->channel.chan_freq);
2130 		qdf_mem_free(bss_data.mgmt);
2131 		return;
2132 	}
2133 
2134 	/*
2135 	 * Supplicant takes the signal strength in terms of
2136 	 * mBm (1 dBm = 100 mBm).
2137 	 */
2138 	bss_data.rssi = QDF_MIN(bss_data.rssi, 0) * 100;
2139 
2140 	bss_data.boottime_ns = scan_params->boottime_ns;
2141 
2142 	qdf_mem_copy(bss_data.per_chain_rssi, scan_params->per_chain_rssi,
2143 		     WLAN_MGMT_TXRX_HOST_MAX_ANTENNA);
2144 
2145 	bss = wlan_cfg80211_inform_bss_frame_data(wiphy, &bss_data);
2146 	if (!bss)
2147 		osif_err("failed to inform bss "QDF_MAC_ADDR_FMT" seq %d",
2148 			 QDF_MAC_ADDR_REF(bss_data.mgmt->bssid),
2149 			 scan_params->seq_num);
2150 	else
2151 		wlan_cfg80211_put_bss(wiphy, bss);
2152 
2153 	qdf_mem_free(bss_data.mgmt);
2154 }
2155 
2156 #if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 1, 0)) && \
2157 	!defined(WITH_BACKPORTS) && !defined(IEEE80211_PRIVACY)
2158 struct cfg80211_bss *wlan_cfg80211_get_bss(struct wiphy *wiphy,
2159 					   struct ieee80211_channel *channel,
2160 					   const u8 *bssid, const u8 *ssid,
2161 					   size_t ssid_len)
2162 {
2163 	return cfg80211_get_bss(wiphy, channel, bssid,
2164 				ssid, ssid_len,
2165 				WLAN_CAPABILITY_ESS,
2166 				WLAN_CAPABILITY_ESS);
2167 }
2168 #else
2169 struct cfg80211_bss *wlan_cfg80211_get_bss(struct wiphy *wiphy,
2170 					   struct ieee80211_channel *channel,
2171 					   const u8 *bssid, const u8 *ssid,
2172 					   size_t ssid_len)
2173 {
2174 	return cfg80211_get_bss(wiphy, channel, bssid,
2175 				ssid, ssid_len,
2176 				IEEE80211_BSS_TYPE_ESS,
2177 				IEEE80211_PRIVACY_ANY);
2178 }
2179 #endif
2180 
2181 QDF_STATUS  __wlan_cfg80211_unlink_bss_list(struct wiphy *wiphy,
2182 					    struct wlan_objmgr_pdev *pdev,
2183 					    uint8_t *bssid, uint8_t *ssid,
2184 					    uint8_t ssid_len)
2185 {
2186 	struct cfg80211_bss *bss = NULL;
2187 	uint8_t vdev_id;
2188 
2189 	if (bssid && wlan_get_connected_vdev_by_bssid(pdev, bssid, &vdev_id)) {
2190 		osif_debug("BSS "QDF_MAC_ADDR_FMT" connected on vdev %d dont unlink",
2191 			   QDF_MAC_ADDR_REF(bssid), vdev_id);
2192 		return QDF_STATUS_E_FAILURE;
2193 	}
2194 
2195 	bss = wlan_cfg80211_get_bss(wiphy, NULL, bssid,
2196 				    ssid, ssid_len);
2197 	if (!bss) {
2198 		osif_info("BSS "QDF_MAC_ADDR_FMT" not found",
2199 			  QDF_MAC_ADDR_REF(bssid));
2200 	} else {
2201 		osif_debug("unlink entry for ssid:%.*s and BSSID "QDF_MAC_ADDR_FMT,
2202 			   ssid_len, ssid, QDF_MAC_ADDR_REF(bssid));
2203 		cfg80211_unlink_bss(wiphy, bss);
2204 		wlan_cfg80211_put_bss(wiphy, bss);
2205 	}
2206 
2207 	/*
2208 	 * Kernel creates separate entries into it's bss list for probe resp
2209 	 * and beacon for hidden AP. Both have separate ref count and thus
2210 	 * deleting one will not delete other entry.
2211 	 * If beacon entry of the hidden AP is not deleted and AP switch to
2212 	 * broadcasting SSID from Hiding SSID, kernel will reject the beacon
2213 	 * entry. So unlink the hidden beacon entry (if present) as well from
2214 	 * kernel, to avoid such issue.
2215 	 */
2216 	bss = wlan_cfg80211_get_bss(wiphy, NULL, bssid, NULL, 0);
2217 	if (!bss) {
2218 		osif_debug("Hidden bss not found for Ssid:%.*s BSSID: "QDF_MAC_ADDR_FMT" sid_len %d",
2219 			   ssid_len, ssid, QDF_MAC_ADDR_REF(bssid), ssid_len);
2220 	} else {
2221 		osif_debug("unlink entry for Hidden ssid:%.*s and BSSID "QDF_MAC_ADDR_FMT,
2222 			   ssid_len, ssid, QDF_MAC_ADDR_REF(bssid));
2223 
2224 		cfg80211_unlink_bss(wiphy, bss);
2225 		/* cfg80211_get_bss get bss with ref count so release it */
2226 		wlan_cfg80211_put_bss(wiphy, bss);
2227 	}
2228 
2229 	return QDF_STATUS_SUCCESS;
2230 }
2231 void wlan_cfg80211_unlink_bss_list(struct wlan_objmgr_pdev *pdev,
2232 				   struct scan_cache_entry *scan_entry)
2233 {
2234 	struct pdev_osif_priv *pdev_ospriv = wlan_pdev_get_ospriv(pdev);
2235 	struct wiphy *wiphy;
2236 
2237 	if (!pdev_ospriv) {
2238 		osif_err("os_priv is NULL");
2239 		return;
2240 	}
2241 
2242 	wiphy = pdev_ospriv->wiphy;
2243 
2244 	__wlan_cfg80211_unlink_bss_list(wiphy, pdev, scan_entry->bssid.bytes,
2245 					scan_entry->ssid.ssid,
2246 					scan_entry->ssid.length);
2247 }
2248 
2249 #if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 12, 0))
2250 /*
2251  * wlan_scan_wiphy_set_max_sched_scans() - set maximum number of scheduled scans
2252  * to wiphy.
2253  * @wiphy: pointer to wiphy
2254  * @max_scans: max num scans to be configured
2255  *
2256  */
2257 static inline void
2258 wlan_scan_wiphy_set_max_sched_scans(struct wiphy *wiphy, uint8_t max_scans)
2259 {
2260 	if (max_scans == 0)
2261 		wiphy->flags &= ~WIPHY_FLAG_SUPPORTS_SCHED_SCAN;
2262 	else
2263 		wiphy->flags |= WIPHY_FLAG_SUPPORTS_SCHED_SCAN;
2264 }
2265 #else
2266 static inline void
2267 wlan_scan_wiphy_set_max_sched_scans(struct wiphy *wiphy, uint8_t max_scans)
2268 {
2269 	wiphy->max_sched_scan_reqs = max_scans;
2270 }
2271 #endif /* KERNEL_VERSION(4, 12, 0) */
2272 
2273 #if defined(CFG80211_REPORT_BETTER_BSS_IN_SCHED_SCAN) || \
2274 	(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0))
2275 void wlan_scan_cfg80211_add_connected_pno_support(struct wiphy *wiphy)
2276 {
2277 	wiphy_ext_feature_set(wiphy,
2278 			      NL80211_EXT_FEATURE_SCHED_SCAN_RELATIVE_RSSI);
2279 }
2280 #endif
2281 
2282 #if ((LINUX_VERSION_CODE > KERNEL_VERSION(4, 4, 0)) || \
2283 		defined(CFG80211_MULTI_SCAN_PLAN_BACKPORT)) && \
2284 		defined(FEATURE_WLAN_SCAN_PNO)
2285 void wlan_config_sched_scan_plans_to_wiphy(struct wiphy *wiphy,
2286 					   struct wlan_objmgr_psoc *psoc)
2287 {
2288 	if (ucfg_scan_get_pno_scan_support(psoc)) {
2289 		wlan_scan_wiphy_set_max_sched_scans(wiphy, 1);
2290 		wiphy->max_sched_scan_ssids = SCAN_PNO_MAX_SUPP_NETWORKS;
2291 		wiphy->max_match_sets = SCAN_PNO_MAX_SUPP_NETWORKS;
2292 		wiphy->max_sched_scan_ie_len = SCAN_MAX_IE_LENGTH;
2293 		wiphy->max_sched_scan_plans = SCAN_PNO_MAX_PLAN_REQUEST;
2294 
2295 		wiphy->max_sched_scan_plan_interval =
2296 			ucfg_scan_get_max_sched_scan_plan_interval(psoc);
2297 
2298 		wiphy->max_sched_scan_plan_iterations =
2299 			ucfg_scan_get_max_sched_scan_plan_iterations(psoc);
2300 	}
2301 }
2302 #endif
2303