xref: /wlan-dirver/qca-wifi-host-cmn/os_if/linux/scan/src/wlan_cfg80211_scan.c (revision 4865edfd190c086bbe2c69aae12a8226f877b91e)
1 /*
2  * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /**
20  * DOC: defines driver functions interfacing with linux kernel
21  */
22 
23 #include <qdf_list.h>
24 #include <qdf_status.h>
25 #include <linux/wireless.h>
26 #include <linux/netdevice.h>
27 #include <net/cfg80211.h>
28 #include <wlan_scan_utils_api.h>
29 #include <wlan_cfg80211.h>
30 #include <wlan_cfg80211_scan.h>
31 #include <wlan_osif_priv.h>
32 #include <wlan_scan_public_structs.h>
33 #include <wlan_scan_ucfg_api.h>
34 #include <wlan_cfg80211_scan.h>
35 #include <qdf_mem.h>
36 #include <wlan_utility.h>
37 #ifdef WLAN_POLICY_MGR_ENABLE
38 #include <wlan_policy_mgr_api.h>
39 #endif
40 #include <wlan_reg_services_api.h>
41 
42 static const
43 struct nla_policy scan_policy[QCA_WLAN_VENDOR_ATTR_SCAN_MAX + 1] = {
44 	[QCA_WLAN_VENDOR_ATTR_SCAN_FLAGS] = {.type = NLA_U32},
45 	[QCA_WLAN_VENDOR_ATTR_SCAN_TX_NO_CCK_RATE] = {.type = NLA_FLAG},
46 	[QCA_WLAN_VENDOR_ATTR_SCAN_COOKIE] = {.type = NLA_U64},
47 };
48 
49 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0))
50 static uint32_t hdd_config_sched_scan_start_delay(
51 		struct cfg80211_sched_scan_request *request)
52 {
53 	return request->delay;
54 }
55 #else
56 static uint32_t hdd_config_sched_scan_start_delay(
57 		struct cfg80211_sched_scan_request *request)
58 {
59 	return 0;
60 }
61 #endif
62 
63 #if defined(CFG80211_SCAN_RANDOM_MAC_ADDR) || \
64 	(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0))
65 /**
66  * wlan_fill_scan_rand_attrs() - Populate the scan randomization attrs
67  * @vdev: pointer to objmgr vdev
68  * @flags: cfg80211 scan flags
69  * @mac_addr: random mac addr from cfg80211
70  * @mac_addr_mask: mac addr mask from cfg80211
71  * @randomize: output variable to check scan randomization status
72  * @addr: output variable to hold random addr
73  * @mask: output variable to hold mac mask
74  *
75  * Return: None
76  */
77 static void wlan_fill_scan_rand_attrs(struct wlan_objmgr_vdev *vdev,
78 				      uint32_t flags,
79 				      uint8_t *mac_addr,
80 				      uint8_t *mac_addr_mask,
81 				      bool *randomize,
82 				      uint8_t *addr,
83 				      uint8_t *mask)
84 {
85 	*randomize = false;
86 	if (!(flags & NL80211_SCAN_FLAG_RANDOM_ADDR))
87 		return;
88 
89 	if (wlan_vdev_mlme_get_opmode(vdev) != QDF_STA_MODE)
90 		return;
91 
92 	if (wlan_vdev_is_connected(vdev))
93 		return;
94 
95 	*randomize = true;
96 	memcpy(addr, mac_addr, QDF_MAC_ADDR_SIZE);
97 	memcpy(mask, mac_addr_mask, QDF_MAC_ADDR_SIZE);
98 	cfg80211_info("Random mac addr: %pM and Random mac mask: %pM",
99 		      addr, mask);
100 }
101 
102 /**
103  * wlan_scan_rand_attrs() - Wrapper function to fill scan random attrs
104  * @vdev: pointer to objmgr vdev
105  * @request: pointer to cfg80211 scan request
106  * @req: pointer to cmn module scan request
107  *
108  * This is a wrapper function which invokes wlan_fill_scan_rand_attrs()
109  * to fill random attributes of internal scan request with cfg80211_scan_request
110  *
111  * Return: None
112  */
113 static void wlan_scan_rand_attrs(struct wlan_objmgr_vdev *vdev,
114 				 struct cfg80211_scan_request *request,
115 				 struct scan_start_request *req)
116 {
117 	bool *randomize = &req->scan_req.scan_random.randomize;
118 	uint8_t *mac_addr = req->scan_req.scan_random.mac_addr;
119 	uint8_t *mac_mask = req->scan_req.scan_random.mac_mask;
120 
121 	wlan_fill_scan_rand_attrs(vdev, request->flags, request->mac_addr,
122 				  request->mac_addr_mask, randomize, mac_addr,
123 				  mac_mask);
124 	if (!*randomize)
125 		return;
126 
127 	req->scan_req.scan_f_add_spoofed_mac_in_probe = true;
128 	req->scan_req.scan_f_add_rand_seq_in_probe = true;
129 }
130 #else
131 /**
132  * wlan_scan_rand_attrs() - Wrapper function to fill scan random attrs
133  * @vdev: pointer to objmgr vdev
134  * @request: pointer to cfg80211 scan request
135  * @req: pointer to cmn module scan request
136  *
137  * This is a wrapper function which invokes wlan_fill_scan_rand_attrs()
138  * to fill random attributes of internal scan request with cfg80211_scan_request
139  *
140  * Return: None
141  */
142 static void wlan_scan_rand_attrs(struct wlan_objmgr_vdev *vdev,
143 				 struct cfg80211_scan_request *request,
144 				 struct scan_start_request *req)
145 {
146 }
147 #endif
148 
149 #ifdef FEATURE_WLAN_SCAN_PNO
150 #if ((LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)) || \
151 	defined(CFG80211_MULTI_SCAN_PLAN_BACKPORT))
152 
153 /**
154  * wlan_config_sched_scan_plan() - configures the sched scan plans
155  *   from the framework.
156  * @pno_req: pointer to PNO scan request
157  * @request: pointer to scan request from framework
158  *
159  * Return: None
160  */
161 static void wlan_config_sched_scan_plan(struct pno_scan_req_params *pno_req,
162 	struct cfg80211_sched_scan_request *request)
163 {
164 	/*
165 	 * As of now max 2 scan plans were supported by firmware
166 	 * if number of scan plan supported by firmware increased below logic
167 	 * must change.
168 	 */
169 	if (request->n_scan_plans == SCAN_PNO_MAX_PLAN_REQUEST) {
170 		pno_req->fast_scan_period =
171 			request->scan_plans[0].interval * MSEC_PER_SEC;
172 		pno_req->fast_scan_max_cycles =
173 			request->scan_plans[0].iterations;
174 		pno_req->slow_scan_period =
175 			request->scan_plans[1].interval * MSEC_PER_SEC;
176 	} else if (request->n_scan_plans == 1) {
177 		pno_req->fast_scan_period =
178 			request->scan_plans[0].interval * MSEC_PER_SEC;
179 		/*
180 		 * if only one scan plan is configured from framework
181 		 * then both fast and slow scan should be configured with the
182 		 * same value that is why fast scan cycles are hardcoded to one
183 		 */
184 		pno_req->fast_scan_max_cycles = 1;
185 		pno_req->slow_scan_period =
186 			request->scan_plans[0].interval * MSEC_PER_SEC;
187 	} else {
188 		cfg80211_err("Invalid number of scan plans %d !!",
189 			request->n_scan_plans);
190 	}
191 }
192 #else
193 static void wlan_config_sched_scan_plan(struct pno_scan_req_params *pno_req,
194 	struct cfg80211_sched_scan_request *request)
195 {
196 	pno_req->fast_scan_period = request->interval;
197 	pno_req->fast_scan_max_cycles = SCAN_PNO_DEF_SCAN_TIMER_REPEAT;
198 	pno_req->slow_scan_period =
199 		SCAN_PNO_DEF_SLOW_SCAN_MULTIPLIER *
200 		pno_req->fast_scan_period;
201 }
202 #endif
203 
204 #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 12, 0)
205 static inline void
206 wlan_cfg80211_sched_scan_results(struct wiphy *wiphy, uint64_t reqid)
207 {
208 	cfg80211_sched_scan_results(wiphy);
209 }
210 #else
211 static inline void
212 wlan_cfg80211_sched_scan_results(struct wiphy *wiphy, uint64_t reqid)
213 {
214 	cfg80211_sched_scan_results(wiphy, reqid);
215 }
216 #endif
217 
218 /**
219  * wlan_cfg80211_pno_callback() - pno callback function to handle
220  * pno events.
221  * @vdev: vdev ptr
222  * @event: scan events
223  * @args: argument
224  *
225  * Return: void
226  */
227 static void wlan_cfg80211_pno_callback(struct wlan_objmgr_vdev *vdev,
228 	struct scan_event *event,
229 	void *args)
230 {
231 	struct wlan_objmgr_pdev *pdev;
232 	struct pdev_osif_priv *pdev_ospriv;
233 
234 	if (event->type != SCAN_EVENT_TYPE_NLO_COMPLETE)
235 		return;
236 
237 	cfg80211_info("vdev id = %d", event->vdev_id);
238 
239 	pdev = wlan_vdev_get_pdev(vdev);
240 	if (!pdev) {
241 		cfg80211_err("pdev is NULL");
242 		return;
243 	}
244 
245 	pdev_ospriv = wlan_pdev_get_ospriv(pdev);
246 	if (!pdev_ospriv) {
247 		cfg80211_err("pdev_ospriv is NULL");
248 		return;
249 	}
250 	wlan_cfg80211_sched_scan_results(pdev_ospriv->wiphy, 0);
251 }
252 
253 #ifdef WLAN_POLICY_MGR_ENABLE
254 static bool wlan_cfg80211_is_ap_go_present(struct wlan_objmgr_psoc *psoc)
255 {
256 	return policy_mgr_mode_specific_connection_count(psoc,
257 							  PM_SAP_MODE,
258 							  NULL) ||
259 		policy_mgr_mode_specific_connection_count(psoc,
260 							  PM_P2P_GO_MODE,
261 							  NULL);
262 }
263 
264 static QDF_STATUS wlan_cfg80211_is_chan_ok_for_dnbs(
265 			struct wlan_objmgr_psoc *psoc,
266 			u8 channel, bool *ok)
267 {
268 	QDF_STATUS status = policy_mgr_is_chan_ok_for_dnbs(psoc, channel, ok);
269 
270 	if (QDF_IS_STATUS_ERROR(status)) {
271 		cfg80211_err("DNBS check failed");
272 		return status;
273 	}
274 
275 	return QDF_STATUS_SUCCESS;
276 }
277 #else
278 static bool wlan_cfg80211_is_ap_go_present(struct wlan_objmgr_psoc *psoc)
279 {
280 	return false;
281 }
282 
283 static QDF_STATUS wlan_cfg80211_is_chan_ok_for_dnbs(
284 			struct wlan_objmgr_psoc *psoc,
285 			u8 channel,
286 			bool *ok)
287 {
288 	if (!ok)
289 		return QDF_STATUS_E_INVAL;
290 
291 	*ok = true;
292 	return QDF_STATUS_SUCCESS;
293 }
294 #endif
295 
296 #if defined(CFG80211_SCAN_RANDOM_MAC_ADDR) || \
297 	(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0))
298 /**
299  * wlan_pno_scan_rand_attr() - Wrapper function to fill sched scan random attrs
300  * @vdev: pointer to objmgr vdev
301  * @request: pointer to cfg80211 sched scan request
302  * @req: pointer to cmn module pno scan request
303  *
304  * This is a wrapper function which invokes wlan_fill_scan_rand_attrs()
305  * to fill random attributes of internal pno scan
306  * with cfg80211_sched_scan_request
307  *
308  * Return: None
309  */
310 static void wlan_pno_scan_rand_attr(struct wlan_objmgr_vdev *vdev,
311 				    struct cfg80211_sched_scan_request *request,
312 				    struct pno_scan_req_params *req)
313 {
314 	bool *randomize = &req->scan_random.randomize;
315 	uint8_t *mac_addr = req->scan_random.mac_addr;
316 	uint8_t *mac_mask = req->scan_random.mac_mask;
317 
318 	wlan_fill_scan_rand_attrs(vdev, request->flags, request->mac_addr,
319 				  request->mac_addr_mask, randomize, mac_addr,
320 				  mac_mask);
321 }
322 #else
323 /**
324  * wlan_pno_scan_rand_attr() - Wrapper function to fill sched scan random attrs
325  * @vdev: pointer to objmgr vdev
326  * @request: pointer to cfg80211 sched scan request
327  * @req: pointer to cmn module pno scan request
328  *
329  * This is a wrapper function which invokes wlan_fill_scan_rand_attrs()
330  * to fill random attributes of internal pno scan
331  * with cfg80211_sched_scan_request
332  *
333  * Return: None
334  */
335 static void wlan_pno_scan_rand_attr(struct wlan_objmgr_vdev *vdev,
336 				    struct cfg80211_sched_scan_request *request,
337 				    struct pno_scan_req_params *req)
338 {
339 }
340 #endif
341 
342 /**
343  * wlan_hdd_sched_scan_update_relative_rssi() - update CPNO params
344  * @pno_request: pointer to PNO scan request
345  * @request: Pointer to cfg80211 scheduled scan start request
346  *
347  * This function is used to update Connected PNO params sent by kernel
348  *
349  * Return: None
350  */
351 #if defined(CFG80211_REPORT_BETTER_BSS_IN_SCHED_SCAN) || \
352 	(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0))
353 static inline void wlan_hdd_sched_scan_update_relative_rssi(
354 			struct pno_scan_req_params *pno_request,
355 			struct cfg80211_sched_scan_request *request)
356 {
357 	pno_request->relative_rssi_set = request->relative_rssi_set;
358 	pno_request->relative_rssi = request->relative_rssi;
359 	if (NL80211_BAND_2GHZ == request->rssi_adjust.band)
360 		pno_request->band_rssi_pref.band = WLAN_BAND_2_4_GHZ;
361 	else if (NL80211_BAND_5GHZ == request->rssi_adjust.band)
362 		pno_request->band_rssi_pref.band = WLAN_BAND_5_GHZ;
363 	pno_request->band_rssi_pref.rssi = request->rssi_adjust.delta;
364 }
365 #else
366 static inline void wlan_hdd_sched_scan_update_relative_rssi(
367 			struct pno_scan_req_params *pno_request,
368 			struct cfg80211_sched_scan_request *request)
369 {
370 }
371 #endif
372 
373 int wlan_cfg80211_sched_scan_start(struct wlan_objmgr_pdev *pdev,
374 	struct net_device *dev,
375 	struct cfg80211_sched_scan_request *request,
376 	uint8_t scan_backoff_multiplier)
377 {
378 	struct pno_scan_req_params *req;
379 	int i, j, ret = 0;
380 	QDF_STATUS status;
381 	uint8_t num_chan = 0, channel;
382 	struct wlan_objmgr_vdev *vdev;
383 	struct wlan_objmgr_psoc *psoc;
384 	uint32_t valid_ch[SCAN_PNO_MAX_NETW_CHANNELS_EX] = {0};
385 
386 	vdev = wlan_objmgr_get_vdev_by_macaddr_from_pdev(pdev, dev->dev_addr,
387 		WLAN_OSIF_ID);
388 	if (!vdev) {
389 		cfg80211_err("vdev object is NULL");
390 		return -EIO;
391 	}
392 
393 	if (ucfg_scan_get_pno_in_progress(vdev)) {
394 		cfg80211_debug("pno is already in progress");
395 		wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
396 		return -EBUSY;
397 	}
398 
399 	if (ucfg_scan_get_pdev_status(pdev) !=
400 	   SCAN_NOT_IN_PROGRESS) {
401 		status = wlan_abort_scan(pdev,
402 				wlan_objmgr_pdev_get_pdev_id(pdev),
403 				INVAL_VDEV_ID, INVAL_SCAN_ID, true);
404 		if (QDF_IS_STATUS_ERROR(status)) {
405 			cfg80211_err("aborting the existing scan is unsuccessful");
406 			wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
407 			return -EBUSY;
408 		}
409 	}
410 
411 	req = qdf_mem_malloc(sizeof(*req));
412 	if (!req) {
413 		cfg80211_err("req malloc failed");
414 		wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
415 		return -ENOMEM;
416 	}
417 
418 	wlan_pdev_obj_lock(pdev);
419 	psoc = wlan_pdev_get_psoc(pdev);
420 	wlan_pdev_obj_unlock(pdev);
421 
422 	req->networks_cnt = request->n_match_sets;
423 	req->vdev_id = wlan_vdev_get_id(vdev);
424 
425 	if ((!req->networks_cnt) ||
426 	    (req->networks_cnt > SCAN_PNO_MAX_SUPP_NETWORKS)) {
427 		cfg80211_err("Network input is not correct %d",
428 			req->networks_cnt);
429 		ret = -EINVAL;
430 		goto error;
431 	}
432 
433 	if (request->n_channels > SCAN_PNO_MAX_NETW_CHANNELS_EX) {
434 		cfg80211_err("Incorrect number of channels %d",
435 			request->n_channels);
436 		ret = -EINVAL;
437 		goto error;
438 	}
439 
440 	if (request->n_channels) {
441 		char chl[(request->n_channels * 5) + 1];
442 		int len = 0;
443 		bool ap_or_go_present = wlan_cfg80211_is_ap_go_present(psoc);
444 
445 		for (i = 0; i < request->n_channels; i++) {
446 			channel = request->channels[i]->hw_value;
447 			if (wlan_is_dsrc_channel(wlan_chan_to_freq(channel)))
448 				continue;
449 
450 			if (ap_or_go_present) {
451 				bool ok;
452 
453 				status =
454 				wlan_cfg80211_is_chan_ok_for_dnbs(psoc,
455 								  channel,
456 								  &ok);
457 				if (QDF_IS_STATUS_ERROR(status)) {
458 					cfg80211_err("DNBS check failed");
459 					qdf_mem_free(req);
460 					ret = -EINVAL;
461 					goto error;
462 				}
463 				if (!ok)
464 					continue;
465 			}
466 			len += snprintf(chl + len, 5, "%d ", channel);
467 			valid_ch[num_chan++] = wlan_chan_to_freq(channel);
468 		}
469 		cfg80211_notice("No. of Scan Channels: %d", num_chan);
470 		cfg80211_notice("Channel-List: %s", chl);
471 		/* If all channels are DFS and dropped,
472 		 * then ignore the PNO request
473 		 */
474 		if (!num_chan) {
475 			cfg80211_notice("Channel list empty due to filtering of DSRC");
476 			ret = -EINVAL;
477 			goto error;
478 		}
479 	}
480 
481 	/* Filling per profile  params */
482 	for (i = 0; i < req->networks_cnt; i++) {
483 		req->networks_list[i].ssid.length =
484 			request->match_sets[i].ssid.ssid_len;
485 
486 		if ((!req->networks_list[i].ssid.length) ||
487 		    (req->networks_list[i].ssid.length > WLAN_SSID_MAX_LEN)) {
488 			cfg80211_err(" SSID Len %d is not correct for network %d",
489 				  req->networks_list[i].ssid.length, i);
490 			ret = -EINVAL;
491 			goto error;
492 		}
493 
494 		qdf_mem_copy(req->networks_list[i].ssid.ssid,
495 			request->match_sets[i].ssid.ssid,
496 			req->networks_list[i].ssid.length);
497 		req->networks_list[i].authentication = 0;   /*eAUTH_TYPE_ANY */
498 		req->networks_list[i].encryption = 0;       /*eED_ANY */
499 		req->networks_list[i].bc_new_type = 0;    /*eBCAST_UNKNOWN */
500 
501 		cfg80211_notice("Received ssid:%.*s",
502 			req->networks_list[i].ssid.length,
503 			req->networks_list[i].ssid.ssid);
504 
505 		/*Copying list of valid channel into request */
506 		qdf_mem_copy(req->networks_list[i].channels, valid_ch,
507 			num_chan * sizeof(uint32_t));
508 		req->networks_list[i].channel_cnt = num_chan;
509 		req->networks_list[i].rssi_thresh =
510 			request->match_sets[i].rssi_thold;
511 	}
512 
513 	/* set scan to passive if no SSIDs are specified in the request */
514 	if (0 == request->n_ssids)
515 		req->do_passive_scan = true;
516 	else
517 		req->do_passive_scan = false;
518 
519 	for (i = 0; i < request->n_ssids; i++) {
520 		j = 0;
521 		while (j < req->networks_cnt) {
522 			if ((req->networks_list[j].ssid.length ==
523 			     request->ssids[i].ssid_len) &&
524 			    (!qdf_mem_cmp(req->networks_list[j].ssid.ssid,
525 					 request->ssids[i].ssid,
526 					 req->networks_list[j].ssid.length))) {
527 				req->networks_list[j].bc_new_type =
528 					SSID_BC_TYPE_HIDDEN;
529 				break;
530 			}
531 			j++;
532 		}
533 	}
534 	cfg80211_notice("Number of hidden networks being Configured = %d",
535 		  request->n_ssids);
536 
537 	if (req->scan_random.randomize)
538 		wlan_pno_scan_rand_attr(vdev, request, req);
539 	/*
540 	 * Before Kernel 4.4
541 	 *   Driver gets only one time interval which is hard coded in
542 	 *   supplicant for 10000ms.
543 	 *
544 	 * After Kernel 4.4
545 	 *   User can configure multiple scan_plans, each scan would have
546 	 *   separate scan cycle and interval. (interval is in unit of second.)
547 	 *   For our use case, we would only have supplicant set one scan_plan,
548 	 *   and firmware also support only one as well, so pick up the first
549 	 *   index.
550 	 *
551 	 *   Taking power consumption into account
552 	 *   firmware after gPNOScanTimerRepeatValue times fast_scan_period
553 	 *   switches slow_scan_period. This is less frequent scans and firmware
554 	 *   shall be in slow_scan_period mode until next PNO Start.
555 	 */
556 	wlan_config_sched_scan_plan(req, request);
557 	req->delay_start_time = hdd_config_sched_scan_start_delay(request);
558 	req->scan_backoff_multiplier = scan_backoff_multiplier;
559 	cfg80211_notice("Base scan interval: %d sec, scan cycles: %d, slow scan interval %d",
560 		req->fast_scan_period, req->fast_scan_max_cycles,
561 		req->slow_scan_period);
562 	wlan_hdd_sched_scan_update_relative_rssi(req, request);
563 
564 	psoc = wlan_pdev_get_psoc(pdev);
565 	ucfg_scan_register_pno_cb(psoc,
566 		wlan_cfg80211_pno_callback, NULL);
567 	ucfg_scan_get_pno_def_params(vdev, req);
568 	if (ucfg_ie_whitelist_enabled(psoc, vdev))
569 		ucfg_copy_ie_whitelist_attrs(psoc, &req->ie_whitelist);
570 	status = ucfg_scan_pno_start(vdev, req);
571 	if (QDF_IS_STATUS_ERROR(status)) {
572 		cfg80211_err("Failed to enable PNO");
573 		ret = -EINVAL;
574 		goto error;
575 	}
576 
577 	cfg80211_info("PNO scan request offloaded");
578 
579 error:
580 	wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
581 	qdf_mem_free(req);
582 	return ret;
583 }
584 
585 int wlan_cfg80211_sched_scan_stop(struct wlan_objmgr_pdev *pdev,
586 	struct net_device *dev)
587 {
588 	int ret = 0;
589 	QDF_STATUS status;
590 	struct wlan_objmgr_vdev *vdev;
591 
592 	vdev = wlan_objmgr_get_vdev_by_macaddr_from_pdev(pdev, dev->dev_addr,
593 		WLAN_OSIF_ID);
594 	if (!vdev) {
595 		cfg80211_err("vdev object is NULL");
596 		return -EIO;
597 	}
598 
599 	status = ucfg_scan_pno_stop(vdev);
600 	if (QDF_IS_STATUS_ERROR(status)) {
601 		cfg80211_err("Failed to disabled PNO");
602 		ret = -EINVAL;
603 	} else {
604 		cfg80211_info("PNO scan disabled");
605 	}
606 
607 	wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
608 	return ret;
609 }
610 #endif /*FEATURE_WLAN_SCAN_PNO */
611 
612 /**
613  * wlan_copy_bssid_scan_request() - API to copy the bssid to Scan request
614  * @scan_req: Pointer to scan_start_request
615  * @request: scan request from Supplicant
616  *
617  * This API copies the BSSID in scan request from Supplicant and copies it to
618  * the scan_start_request
619  *
620  * Return: None
621  */
622 #if defined(CFG80211_SCAN_BSSID) || \
623 	(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0))
624 static inline void
625 wlan_copy_bssid_scan_request(struct scan_start_request *scan_req,
626 		struct cfg80211_scan_request *request)
627 {
628 	qdf_mem_copy(scan_req->scan_req.bssid_list[0].bytes,
629 				request->bssid, QDF_MAC_ADDR_SIZE);
630 }
631 #else
632 static inline void
633 wlan_copy_bssid_scan_request(struct scan_start_request *scan_req,
634 		struct cfg80211_scan_request *request)
635 {
636 
637 }
638 #endif
639 
640 /**
641  * wlan_scan_request_enqueue() - enqueue Scan Request
642  * @pdev: pointer to pdev object
643  * @req: Pointer to the scan request
644  * @source: source of the scan request
645  * @scan_id: scan identifier
646  *
647  * Enqueue scan request in the global  scan list.This list
648  * stores the active scan request information.
649  *
650  * Return: 0 on success, error number otherwise
651  */
652 static int wlan_scan_request_enqueue(struct wlan_objmgr_pdev *pdev,
653 			struct cfg80211_scan_request *req,
654 			uint8_t source, uint32_t scan_id)
655 {
656 	struct scan_req *scan_req;
657 	QDF_STATUS status;
658 	struct pdev_osif_priv *osif_ctx;
659 	struct osif_scan_pdev *osif_scan;
660 
661 	scan_req = qdf_mem_malloc(sizeof(*scan_req));
662 	if (NULL == scan_req) {
663 		cfg80211_alert("malloc failed for Scan req");
664 		return -ENOMEM;
665 	}
666 
667 	/* Get NL global context from objmgr*/
668 	osif_ctx = wlan_pdev_get_ospriv(pdev);
669 	osif_scan = osif_ctx->osif_scan;
670 	scan_req->scan_request = req;
671 	scan_req->source = source;
672 	scan_req->scan_id = scan_id;
673 	scan_req->dev = req->wdev->netdev;
674 
675 	qdf_mutex_acquire(&osif_scan->scan_req_q_lock);
676 	status = qdf_list_insert_back(&osif_scan->scan_req_q,
677 					&scan_req->node);
678 	qdf_mutex_release(&osif_scan->scan_req_q_lock);
679 	if (QDF_STATUS_SUCCESS != status) {
680 		cfg80211_err("Failed to enqueue Scan Req");
681 		qdf_mem_free(scan_req);
682 		return -EINVAL;
683 	}
684 
685 	return 0;
686 }
687 
688 /**
689  * wlan_scan_request_dequeue() - dequeue scan request
690  * @nl_ctx: Global HDD context
691  * @scan_id: scan id
692  * @req: scan request
693  * @dev: net device
694  * @source : returns source of the scan request
695  *
696  * Return: QDF_STATUS
697  */
698 static QDF_STATUS wlan_scan_request_dequeue(
699 	struct wlan_objmgr_pdev *pdev,
700 	uint32_t scan_id, struct cfg80211_scan_request **req,
701 	uint8_t *source, struct net_device **dev)
702 {
703 	QDF_STATUS status = QDF_STATUS_E_FAILURE;
704 	struct scan_req *scan_req;
705 	qdf_list_node_t *node = NULL, *next_node = NULL;
706 	struct pdev_osif_priv *osif_ctx;
707 	struct osif_scan_pdev *scan_priv;
708 
709 	cfg80211_info("Dequeue Scan id: %d", scan_id);
710 
711 	if ((source == NULL) || (req == NULL)) {
712 		cfg80211_err("source or request is NULL");
713 		return QDF_STATUS_E_NULL_VALUE;
714 	}
715 
716 	/* Get NL global context from objmgr*/
717 	osif_ctx = wlan_pdev_get_ospriv(pdev);
718 	if (!osif_ctx) {
719 		cfg80211_err("Failed to retrieve osif context");
720 		return status;
721 	}
722 	scan_priv = osif_ctx->osif_scan;
723 
724 	if (qdf_list_empty(&scan_priv->scan_req_q)) {
725 		cfg80211_info("Scan List is empty");
726 		return QDF_STATUS_E_FAILURE;
727 	}
728 
729 	qdf_mutex_acquire(&scan_priv->scan_req_q_lock);
730 	if (QDF_STATUS_SUCCESS !=
731 		qdf_list_peek_front(&scan_priv->scan_req_q, &next_node)) {
732 		qdf_mutex_release(&scan_priv->scan_req_q_lock);
733 		cfg80211_err("Failed to remove Scan Req from queue");
734 		return QDF_STATUS_E_FAILURE;
735 	}
736 
737 	do {
738 		node = next_node;
739 		scan_req = qdf_container_of(node, struct scan_req,
740 					node);
741 		if (scan_req->scan_id == scan_id) {
742 			status = qdf_list_remove_node(&scan_priv->scan_req_q,
743 					node);
744 			if (status == QDF_STATUS_SUCCESS) {
745 				*req = scan_req->scan_request;
746 				*source = scan_req->source;
747 				*dev = scan_req->dev;
748 				qdf_mem_free(scan_req);
749 				qdf_mutex_release(&scan_priv->scan_req_q_lock);
750 				cfg80211_info("removed Scan id: %d, req = %pK, pending scans %d",
751 				      scan_id, req,
752 				      qdf_list_size(&scan_priv->scan_req_q));
753 				return QDF_STATUS_SUCCESS;
754 			} else {
755 				qdf_mutex_release(&scan_priv->scan_req_q_lock);
756 				cfg80211_err("Failed to remove node scan id %d, pending scans %d",
757 				      scan_id,
758 				      qdf_list_size(&scan_priv->scan_req_q));
759 				return status;
760 			}
761 		}
762 	} while (QDF_STATUS_SUCCESS ==
763 		qdf_list_peek_next(&scan_priv->scan_req_q, node, &next_node));
764 	qdf_mutex_release(&scan_priv->scan_req_q_lock);
765 	cfg80211_err("Failed to find scan id %d", scan_id);
766 
767 	return status;
768 }
769 
770 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0))
771 /**
772  * wlan_cfg80211_scan_done() - Scan completed callback to cfg80211
773  * @netdev: Net device
774  * @req : Scan request
775  * @aborted : true scan aborted false scan success
776  *
777  * This function notifies scan done to cfg80211
778  *
779  * Return: none
780  */
781 static void wlan_cfg80211_scan_done(struct net_device *netdev,
782 				    struct cfg80211_scan_request *req,
783 				    bool aborted)
784 {
785 	struct cfg80211_scan_info info = {
786 		.aborted = aborted
787 	};
788 
789 	if (netdev->flags & IFF_UP)
790 		cfg80211_scan_done(req, &info);
791 }
792 #elif (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0))
793 /**
794  * wlan_cfg80211_scan_done() - Scan completed callback to cfg80211
795  * @netdev: Net device
796  * @req : Scan request
797  * @aborted : true scan aborted false scan success
798  *
799  * This function notifies scan done to cfg80211
800  *
801  * Return: none
802  */
803 static void wlan_cfg80211_scan_done(struct net_device *netdev,
804 				    struct cfg80211_scan_request *req,
805 				    bool aborted)
806 {
807 	if (netdev->flags & IFF_UP)
808 		cfg80211_scan_done(req, aborted);
809 }
810 #endif
811 
812 /**
813  * wlan_vendor_scan_callback() - Scan completed callback event
814  *
815  * @req : Scan request
816  * @aborted : true scan aborted false scan success
817  *
818  * This function sends scan completed callback event to NL.
819  *
820  * Return: none
821  */
822 static void wlan_vendor_scan_callback(struct cfg80211_scan_request *req,
823 					bool aborted)
824 {
825 	struct sk_buff *skb;
826 	struct nlattr *attr;
827 	int i;
828 	uint8_t scan_status;
829 	uint64_t cookie;
830 
831 	skb = cfg80211_vendor_event_alloc(req->wdev->wiphy, req->wdev,
832 			SCAN_DONE_EVENT_BUF_SIZE + 4 + NLMSG_HDRLEN,
833 			QCA_NL80211_VENDOR_SUBCMD_SCAN_DONE_INDEX,
834 			GFP_KERNEL);
835 
836 	if (!skb) {
837 		cfg80211_err("skb alloc failed");
838 		qdf_mem_free(req);
839 		return;
840 	}
841 
842 	cookie = (uintptr_t)req;
843 
844 	attr = nla_nest_start(skb, QCA_WLAN_VENDOR_ATTR_SCAN_SSIDS);
845 	if (!attr)
846 		goto nla_put_failure;
847 	for (i = 0; i < req->n_ssids; i++) {
848 		if (nla_put(skb, i, req->ssids[i].ssid_len, req->ssids[i].ssid))
849 			goto nla_put_failure;
850 	}
851 	nla_nest_end(skb, attr);
852 
853 	attr = nla_nest_start(skb, QCA_WLAN_VENDOR_ATTR_SCAN_FREQUENCIES);
854 	if (!attr)
855 		goto nla_put_failure;
856 	for (i = 0; i < req->n_channels; i++) {
857 		if (nla_put_u32(skb, i, req->channels[i]->center_freq))
858 			goto nla_put_failure;
859 	}
860 	nla_nest_end(skb, attr);
861 
862 	if (req->ie &&
863 		nla_put(skb, QCA_WLAN_VENDOR_ATTR_SCAN_IE, req->ie_len,
864 			req->ie))
865 		goto nla_put_failure;
866 
867 	if (req->flags &&
868 		nla_put_u32(skb, QCA_WLAN_VENDOR_ATTR_SCAN_FLAGS, req->flags))
869 		goto nla_put_failure;
870 
871 	if (wlan_cfg80211_nla_put_u64(skb, QCA_WLAN_VENDOR_ATTR_SCAN_COOKIE,
872 					cookie))
873 		goto nla_put_failure;
874 
875 	scan_status = (aborted == true) ? VENDOR_SCAN_STATUS_ABORTED :
876 		VENDOR_SCAN_STATUS_NEW_RESULTS;
877 	if (nla_put_u8(skb, QCA_WLAN_VENDOR_ATTR_SCAN_STATUS, scan_status))
878 		goto nla_put_failure;
879 
880 	cfg80211_vendor_event(skb, GFP_KERNEL);
881 	qdf_mem_free(req);
882 
883 	return;
884 
885 nla_put_failure:
886 	kfree_skb(skb);
887 	qdf_mem_free(req);
888 }
889 
890 
891 /**
892  * wlan_cfg80211_scan_done_callback() - scan done callback function called after
893  * scan is finished
894  * @vdev: vdev ptr
895  * @event: Scan event
896  * @args: Scan cb arg
897  *
898  * Return: void
899  */
900 static void wlan_cfg80211_scan_done_callback(
901 					struct wlan_objmgr_vdev *vdev,
902 					struct scan_event *event,
903 					void *args)
904 {
905 	struct cfg80211_scan_request *req = NULL;
906 	bool aborted = false;
907 	uint32_t scan_id = event->scan_id;
908 	uint8_t source = NL_SCAN;
909 	struct wlan_objmgr_pdev *pdev;
910 	struct pdev_osif_priv *osif_priv;
911 	struct net_device *netdev = NULL;
912 	QDF_STATUS status;
913 
914 	if ((event->type != SCAN_EVENT_TYPE_COMPLETED) &&
915 	    (event->type != SCAN_EVENT_TYPE_DEQUEUED) &&
916 	    (event->type != SCAN_EVENT_TYPE_START_FAILED))
917 		return;
918 
919 	cfg80211_info("scan ID = %d vdev id = %d, event type %s(%d) reason = %s(%d)",
920 		scan_id, event->vdev_id,
921 		util_scan_get_ev_type_name(event->type),
922 		event->type,
923 		util_scan_get_ev_reason_name(event->reason),
924 		event->reason);
925 
926 	/*
927 	 * cfg80211_scan_done informing NL80211 about completion
928 	 * of scanning
929 	 */
930 	if ((event->type == SCAN_EVENT_TYPE_COMPLETED) &&
931 	    ((event->reason == SCAN_REASON_CANCELLED) ||
932 	     (event->reason == SCAN_REASON_TIMEDOUT) ||
933 	     (event->reason == SCAN_REASON_INTERNAL_FAILURE))) {
934 		aborted = true;
935 	} else if ((event->type == SCAN_EVENT_TYPE_COMPLETED) &&
936 		   (event->reason == SCAN_REASON_COMPLETED))
937 		aborted = false;
938 	else if ((event->type == SCAN_EVENT_TYPE_DEQUEUED) &&
939 		 (event->reason == SCAN_REASON_CANCELLED))
940 		aborted = true;
941 	else if ((event->type == SCAN_EVENT_TYPE_START_FAILED) &&
942 		 (event->reason == SCAN_REASON_COMPLETED))
943 		aborted = true;
944 	else
945 		/* cfg80211 is not interested on all other scan events */
946 		return;
947 
948 	pdev = wlan_vdev_get_pdev(vdev);
949 	status = wlan_scan_request_dequeue(
950 			pdev, scan_id, &req, &source, &netdev);
951 	if (QDF_IS_STATUS_ERROR(status)) {
952 		cfg80211_err("Dequeue of scan request failed ID: %d", scan_id);
953 		goto allow_suspend;
954 	}
955 
956 	if (!netdev) {
957 		cfg80211_err("net dev is NULL,Drop scan event Id: %d",
958 				 scan_id);
959 		goto allow_suspend;
960 	}
961 
962 	/* Make sure vdev is active */
963 	status = wlan_objmgr_vdev_try_get_ref(vdev, WLAN_OSIF_ID);
964 	if (QDF_IS_STATUS_ERROR(status)) {
965 		cfg80211_err("Failed to get vdev reference: scan Id: %d",
966 				 scan_id);
967 		goto allow_suspend;
968 	}
969 
970 	/*
971 	 * Scan can be triggred from NL or vendor scan
972 	 * - If scan is triggered from NL then cfg80211 scan done should be
973 	 * called to updated scan completion to NL.
974 	 * - If scan is triggred through vendor command then
975 	 * scan done event will be posted
976 	 */
977 	if (NL_SCAN == source)
978 		wlan_cfg80211_scan_done(netdev, req, aborted);
979 	else
980 		wlan_vendor_scan_callback(req, aborted);
981 
982 	wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
983 allow_suspend:
984 	osif_priv = wlan_pdev_get_ospriv(pdev);
985 	if (qdf_list_empty(&osif_priv->osif_scan->scan_req_q))
986 		qdf_runtime_pm_allow_suspend(
987 			&osif_priv->osif_scan->runtime_pm_lock);
988 
989 }
990 
991 QDF_STATUS wlan_scan_runtime_pm_init(struct wlan_objmgr_pdev *pdev)
992 {
993 	struct pdev_osif_priv *osif_priv;
994 	struct osif_scan_pdev *scan_priv;
995 
996 	wlan_pdev_obj_lock(pdev);
997 	osif_priv = wlan_pdev_get_ospriv(pdev);
998 	wlan_pdev_obj_unlock(pdev);
999 
1000 	scan_priv = osif_priv->osif_scan;
1001 
1002 	return qdf_runtime_lock_init(&scan_priv->runtime_pm_lock);
1003 }
1004 
1005 void wlan_scan_runtime_pm_deinit(struct wlan_objmgr_pdev *pdev)
1006 {
1007 	struct pdev_osif_priv *osif_priv;
1008 	struct osif_scan_pdev *scan_priv;
1009 
1010 	wlan_pdev_obj_lock(pdev);
1011 	osif_priv = wlan_pdev_get_ospriv(pdev);
1012 	wlan_pdev_obj_unlock(pdev);
1013 
1014 	scan_priv = osif_priv->osif_scan;
1015 	qdf_runtime_lock_deinit(&scan_priv->runtime_pm_lock);
1016 }
1017 
1018 QDF_STATUS wlan_cfg80211_scan_priv_init(struct wlan_objmgr_pdev *pdev)
1019 {
1020 	struct pdev_osif_priv *osif_priv;
1021 	struct osif_scan_pdev *scan_priv;
1022 	struct wlan_objmgr_psoc *psoc;
1023 	wlan_scan_requester req_id;
1024 
1025 	psoc = wlan_pdev_get_psoc(pdev);
1026 
1027 	req_id = ucfg_scan_register_requester(psoc, "CFG",
1028 		wlan_cfg80211_scan_done_callback, NULL);
1029 
1030 	osif_priv = wlan_pdev_get_ospriv(pdev);
1031 	scan_priv = qdf_mem_malloc(sizeof(*scan_priv));
1032 	if (!scan_priv) {
1033 		cfg80211_err("failed to allocate memory");
1034 		return QDF_STATUS_E_NOMEM;
1035 	}
1036 	/* Initialize the scan request queue */
1037 	osif_priv->osif_scan = scan_priv;
1038 	qdf_list_create(&scan_priv->scan_req_q, WLAN_MAX_SCAN_COUNT);
1039 	qdf_mutex_create(&scan_priv->scan_req_q_lock);
1040 	scan_priv->req_id = req_id;
1041 
1042 	return QDF_STATUS_SUCCESS;
1043 }
1044 
1045 QDF_STATUS wlan_cfg80211_scan_priv_deinit(struct wlan_objmgr_pdev *pdev)
1046 {
1047 	struct pdev_osif_priv *osif_priv;
1048 	struct osif_scan_pdev *scan_priv;
1049 	struct wlan_objmgr_psoc *psoc;
1050 
1051 	psoc = wlan_pdev_get_psoc(pdev);
1052 	osif_priv = wlan_pdev_get_ospriv(pdev);
1053 
1054 	wlan_cfg80211_cleanup_scan_queue(pdev, NULL);
1055 	scan_priv = osif_priv->osif_scan;
1056 	ucfg_scan_unregister_requester(psoc, scan_priv->req_id);
1057 	qdf_list_destroy(&scan_priv->scan_req_q);
1058 	qdf_mutex_destroy(&scan_priv->scan_req_q_lock);
1059 	qdf_mem_free(scan_priv);
1060 	osif_priv->osif_scan = NULL;
1061 
1062 	return QDF_STATUS_SUCCESS;
1063 }
1064 
1065 /**
1066  * wlan_cfg80211_enqueue_for_cleanup() - Function to populate scan cleanup queue
1067  * @scan_cleanup_q: Scan cleanup queue to be populated
1068  * @scan_priv: Pointer to scan related data used by cfg80211 scan
1069  * @dev: Netdevice pointer
1070  *
1071  * The function synchrounously iterates through the global scan queue to
1072  * identify entries that have to be cleaned up, copies identified entries
1073  * to another queue(to send scan complete event to NL later) and removes the
1074  * entry from the global scan queue.
1075  *
1076  * Return: None
1077  */
1078 static void
1079 wlan_cfg80211_enqueue_for_cleanup(qdf_list_t *scan_cleanup_q,
1080 				  struct osif_scan_pdev *scan_priv,
1081 				  struct net_device *dev)
1082 {
1083 	struct scan_req *scan_req, *scan_cleanup;
1084 	qdf_list_node_t *node = NULL, *next_node = NULL;
1085 
1086 	qdf_mutex_acquire(&scan_priv->scan_req_q_lock);
1087 	if (QDF_STATUS_SUCCESS !=
1088 		qdf_list_peek_front(&scan_priv->scan_req_q,
1089 				    &node)) {
1090 		qdf_mutex_release(&scan_priv->scan_req_q_lock);
1091 		return;
1092 	}
1093 
1094 	while (node) {
1095 		/*
1096 		 * Keep track of the next node, to traverse through the list
1097 		 * in the event of the current node being deleted.
1098 		 */
1099 		qdf_list_peek_next(&scan_priv->scan_req_q,
1100 				   node, &next_node);
1101 		scan_req = qdf_container_of(node, struct scan_req, node);
1102 		if (!dev || (dev == scan_req->dev)) {
1103 			scan_cleanup = qdf_mem_malloc(sizeof(struct scan_req));
1104 			if (!scan_cleanup) {
1105 				qdf_mutex_release(&scan_priv->scan_req_q_lock);
1106 				cfg80211_err("Failed to allocate memory");
1107 				return;
1108 			}
1109 			scan_cleanup->scan_request = scan_req->scan_request;
1110 			scan_cleanup->scan_id = scan_req->scan_id;
1111 			scan_cleanup->source = scan_req->source;
1112 			scan_cleanup->dev = scan_req->dev;
1113 			qdf_list_insert_back(scan_cleanup_q,
1114 					     &scan_cleanup->node);
1115 			if (QDF_STATUS_SUCCESS !=
1116 				qdf_list_remove_node(&scan_priv->scan_req_q,
1117 						     node)) {
1118 				qdf_mutex_release(&scan_priv->scan_req_q_lock);
1119 				cfg80211_err("Failed to remove scan request");
1120 				return;
1121 			}
1122 			qdf_mem_free(scan_req);
1123 		}
1124 		node = next_node;
1125 		next_node = NULL;
1126 	}
1127 	qdf_mutex_release(&scan_priv->scan_req_q_lock);
1128 }
1129 
1130 void wlan_cfg80211_cleanup_scan_queue(struct wlan_objmgr_pdev *pdev,
1131 				      struct net_device *dev)
1132 {
1133 	struct scan_req *scan_req;
1134 	struct cfg80211_scan_request *req;
1135 	uint8_t source;
1136 	bool aborted = true;
1137 	struct pdev_osif_priv *osif_priv;
1138 	qdf_list_t scan_cleanup_q;
1139 	qdf_list_node_t *node = NULL;
1140 
1141 	if (!pdev) {
1142 		cfg80211_err("pdev is Null");
1143 		return;
1144 	}
1145 
1146 	osif_priv = wlan_pdev_get_ospriv(pdev);
1147 
1148 	/*
1149 	 * To avoid any race conditions, create a local list to copy all the
1150 	 * scan entries to be removed and then send scan complete for each of
1151 	 * the identified entries to NL.
1152 	 */
1153 	qdf_list_create(&scan_cleanup_q, WLAN_MAX_SCAN_COUNT);
1154 	wlan_cfg80211_enqueue_for_cleanup(&scan_cleanup_q,
1155 					  osif_priv->osif_scan, dev);
1156 
1157 	while (!qdf_list_empty(&scan_cleanup_q)) {
1158 		if (QDF_STATUS_SUCCESS != qdf_list_remove_front(&scan_cleanup_q,
1159 								&node)) {
1160 			cfg80211_err("Failed to remove scan request");
1161 			return;
1162 		}
1163 		scan_req = container_of(node, struct scan_req, node);
1164 		req = scan_req->scan_request;
1165 		source = scan_req->source;
1166 		if (NL_SCAN == source)
1167 			wlan_cfg80211_scan_done(scan_req->dev, req,
1168 						aborted);
1169 		else
1170 			wlan_vendor_scan_callback(req, aborted);
1171 
1172 		qdf_mem_free(scan_req);
1173 	}
1174 	qdf_list_destroy(&scan_cleanup_q);
1175 
1176 	return;
1177 }
1178 
1179 /**
1180  * wlan_cfg80211_update_scan_policy_type_flags() - Set scan flags according to
1181  * scan request
1182  * @scan_req: Pointer to csr scan req
1183  *
1184  * Return: None
1185  */
1186 #if defined(CFG80211_SCAN_DBS_CONTROL_SUPPORT) || \
1187 	   (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 16, 0))
1188 static void wlan_cfg80211_update_scan_policy_type_flags(
1189 	struct cfg80211_scan_request *req,
1190 	struct scan_req_params *scan_req)
1191 {
1192 	if (req->flags & NL80211_SCAN_FLAG_HIGH_ACCURACY)
1193 		scan_req->scan_policy_high_accuracy = true;
1194 	if (req->flags & NL80211_SCAN_FLAG_LOW_SPAN)
1195 		scan_req->scan_policy_low_span = true;
1196 	if (req->flags & NL80211_SCAN_FLAG_LOW_POWER)
1197 		scan_req->scan_policy_low_power = true;
1198 }
1199 #else
1200 static inline void wlan_cfg80211_update_scan_policy_type_flags(
1201 		struct cfg80211_scan_request *req,
1202 		struct scan_req_params *scan_req)
1203 {
1204 }
1205 #endif
1206 
1207 int wlan_cfg80211_scan(struct wlan_objmgr_pdev *pdev,
1208 		struct cfg80211_scan_request *request,
1209 		struct scan_params *params)
1210 {
1211 	struct net_device *dev = request->wdev->netdev;
1212 	struct scan_start_request *req;
1213 	struct wlan_ssid *pssid;
1214 	uint8_t i;
1215 	int status;
1216 	uint8_t num_chan = 0, channel;
1217 	uint32_t c_freq;
1218 	struct wlan_objmgr_vdev *vdev;
1219 	wlan_scan_requester req_id;
1220 	struct pdev_osif_priv *osif_priv;
1221 	struct wlan_objmgr_psoc *psoc;
1222 	wlan_scan_id scan_id;
1223 	bool is_p2p_scan = false;
1224 	enum wlan_band band;
1225 	struct net_device *netdev = NULL;
1226 
1227 	/* Get the vdev object */
1228 	vdev = wlan_objmgr_get_vdev_by_macaddr_from_pdev(pdev, dev->dev_addr,
1229 		WLAN_OSIF_ID);
1230 	if (vdev == NULL) {
1231 		cfg80211_err("vdev object is NULL");
1232 		return -EIO;
1233 	}
1234 	psoc = wlan_pdev_get_psoc(pdev);
1235 	if (!psoc) {
1236 		wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
1237 		cfg80211_err("Invalid psoc object");
1238 		return -EINVAL;
1239 	}
1240 	req = qdf_mem_malloc(sizeof(*req));
1241 	if (!req) {
1242 		wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
1243 		cfg80211_err("Failed to allocate scan request memory");
1244 		return -EINVAL;
1245 	}
1246 	/* Initialize the scan global params */
1247 	ucfg_scan_init_default_params(vdev, req);
1248 
1249 	/* Get NL global context from objmgr*/
1250 	osif_priv = wlan_pdev_get_ospriv(pdev);
1251 	req_id = osif_priv->osif_scan->req_id;
1252 	scan_id = ucfg_scan_get_scan_id(psoc);
1253 	if (!scan_id) {
1254 		wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
1255 		cfg80211_err("Invalid scan id");
1256 		qdf_mem_free(req);
1257 		return -EINVAL;
1258 	}
1259 	/* fill the scan request structure */
1260 	req->vdev = vdev;
1261 	req->scan_req.vdev_id = wlan_vdev_get_id(vdev);
1262 	req->scan_req.scan_id = scan_id;
1263 	req->scan_req.scan_req_id = req_id;
1264 
1265 	/* Update scan policy type flags according to cfg scan request */
1266 	wlan_cfg80211_update_scan_policy_type_flags(request,
1267 					     &req->scan_req);
1268 	/*
1269 	 * Even though supplicant doesn't provide any SSIDs, n_ssids is
1270 	 * set to 1.  Because of this, driver is assuming that this is not
1271 	 * wildcard scan and so is not aging out the scan results.
1272 	 */
1273 	if ((request->ssids) && (request->n_ssids == 1) &&
1274 	    ('\0' == request->ssids->ssid[0])) {
1275 		request->n_ssids = 0;
1276 	}
1277 
1278 	if ((request->ssids) && (0 < request->n_ssids)) {
1279 		int j;
1280 		req->scan_req.num_ssids = request->n_ssids;
1281 
1282 		/* copy all the ssid's and their length */
1283 		for (j = 0; j < request->n_ssids; j++)  {
1284 			pssid = &req->scan_req.ssid[j];
1285 			/* get the ssid length */
1286 			pssid->length = request->ssids[j].ssid_len;
1287 			qdf_mem_copy(pssid->ssid,
1288 				     &request->ssids[j].ssid[0],
1289 				     pssid->length);
1290 			pssid->ssid[pssid->length] = '\0';
1291 			cfg80211_notice("SSID number %d: %s", j,
1292 				    pssid->ssid);
1293 		}
1294 	}
1295 	if (request->ssids ||
1296 	   (wlan_vdev_mlme_get_opmode(vdev) == QDF_P2P_GO_MODE))
1297 		req->scan_req.scan_f_passive = false;
1298 
1299 	if (params->half_rate)
1300 		req->scan_req.scan_f_half_rate = true;
1301 	else if (params->quarter_rate)
1302 		req->scan_req.scan_f_quarter_rate = true;
1303 
1304 	if ((request->n_ssids == 1) && request->ssids &&
1305 	   !qdf_mem_cmp(&request->ssids[0], "DIRECT-", 7))
1306 		is_p2p_scan = true;
1307 
1308 	if (is_p2p_scan && request->no_cck)
1309 		req->scan_req.p2p_scan_type = SCAN_P2P_SEARCH;
1310 
1311 	/* Set dwell time mode according to scan policy type flags */
1312 	if (req->scan_req.scan_policy_high_accuracy)
1313 		req->scan_req.adaptive_dwell_time_mode =
1314 					SCAN_DWELL_MODE_STATIC;
1315 	if ((req->scan_req.scan_policy_low_power) ||
1316 	   (req->scan_req.scan_policy_low_span))
1317 		req->scan_req.adaptive_dwell_time_mode =
1318 					SCAN_DWELL_MODE_AGGRESSIVE;
1319 
1320 	/*
1321 	 * FW require at least 1 MAC to send probe request.
1322 	 * If MAC is all 0 set it to BC addr as this is the address on
1323 	 * which fw will send probe req.
1324 	 */
1325 	req->scan_req.num_bssid = 1;
1326 	wlan_copy_bssid_scan_request(req, request);
1327 	if (qdf_is_macaddr_zero(&req->scan_req.bssid_list[0]))
1328 		qdf_set_macaddr_broadcast(&req->scan_req.bssid_list[0]);
1329 
1330 	if (request->n_channels) {
1331 		char chl[(request->n_channels * 5) + 1];
1332 		int len = 0;
1333 #ifdef WLAN_POLICY_MGR_ENABLE
1334 		bool ap_or_go_present =
1335 			policy_mgr_mode_specific_connection_count(
1336 			     psoc, PM_SAP_MODE, NULL) ||
1337 			     policy_mgr_mode_specific_connection_count(
1338 			     psoc, PM_P2P_GO_MODE, NULL);
1339 #endif
1340 
1341 		for (i = 0; i < request->n_channels; i++) {
1342 			channel = request->channels[i]->hw_value;
1343 			c_freq = wlan_reg_chan_to_freq(pdev, channel);
1344 			if (wlan_is_dsrc_channel(c_freq))
1345 				continue;
1346 #ifdef WLAN_POLICY_MGR_ENABLE
1347 			if (ap_or_go_present) {
1348 				bool ok;
1349 				int ret;
1350 
1351 				ret = policy_mgr_is_chan_ok_for_dnbs(psoc,
1352 								channel,
1353 								&ok);
1354 
1355 				if (QDF_IS_STATUS_ERROR(ret)) {
1356 					cfg80211_err("DNBS check failed");
1357 					qdf_mem_free(req);
1358 					status = -EINVAL;
1359 					goto end;
1360 				}
1361 				if (!ok)
1362 					continue;
1363 			}
1364 #endif
1365 			len += snprintf(chl + len, 5, "%d ", channel);
1366 			req->scan_req.chan_list.chan[num_chan].freq = c_freq;
1367 			band = util_scan_scm_freq_to_band(c_freq);
1368 			if (band == WLAN_BAND_2_4_GHZ)
1369 				req->scan_req.chan_list.chan[num_chan].phymode =
1370 					SCAN_PHY_MODE_11G;
1371 			else
1372 				req->scan_req.chan_list.chan[num_chan].phymode =
1373 					SCAN_PHY_MODE_11A;
1374 			num_chan++;
1375 		}
1376 		cfg80211_notice("Channel-List: %s", chl);
1377 		cfg80211_notice("No. of Scan Channels: %d", num_chan);
1378 	}
1379 	if (!num_chan) {
1380 		cfg80211_err("Received zero non-dsrc channels");
1381 		qdf_mem_free(req);
1382 		status = -EINVAL;
1383 		goto end;
1384 	}
1385 	req->scan_req.chan_list.num_chan = num_chan;
1386 
1387 	/* P2P increase the scan priority */
1388 	if (is_p2p_scan)
1389 		req->scan_req.scan_priority = SCAN_PRIORITY_HIGH;
1390 	if (request->ie_len) {
1391 		req->scan_req.extraie.ptr = qdf_mem_malloc(request->ie_len);
1392 		if (!req->scan_req.extraie.ptr) {
1393 			cfg80211_err("Failed to allocate memory");
1394 			status = -ENOMEM;
1395 			qdf_mem_free(req);
1396 			goto end;
1397 		}
1398 		req->scan_req.extraie.len = request->ie_len;
1399 		qdf_mem_copy(req->scan_req.extraie.ptr, request->ie,
1400 				request->ie_len);
1401 	} else if (params->default_ie.ptr && params->default_ie.len) {
1402 		req->scan_req.extraie.ptr =
1403 			qdf_mem_malloc(params->default_ie.len);
1404 		if (!req->scan_req.extraie.ptr) {
1405 			cfg80211_err("Failed to allocate memory");
1406 			status = -ENOMEM;
1407 			qdf_mem_free(req);
1408 			goto end;
1409 		}
1410 		req->scan_req.extraie.len = params->default_ie.len;
1411 		qdf_mem_copy(req->scan_req.extraie.ptr, params->default_ie.ptr,
1412 			     params->default_ie.len);
1413 	}
1414 
1415 	if (!is_p2p_scan) {
1416 		if (req->scan_req.scan_random.randomize)
1417 			wlan_scan_rand_attrs(vdev, request, req);
1418 		if (ucfg_ie_whitelist_enabled(psoc, vdev) &&
1419 		    ucfg_copy_ie_whitelist_attrs(psoc,
1420 					&req->scan_req.ie_whitelist))
1421 			req->scan_req.scan_f_en_ie_whitelist_in_probe = true;
1422 	}
1423 
1424 	if (request->flags & NL80211_SCAN_FLAG_FLUSH)
1425 		ucfg_scan_flush_results(pdev, NULL);
1426 
1427 	/* Enqueue the scan request */
1428 	wlan_scan_request_enqueue(pdev, request, params->source,
1429 				  req->scan_req.scan_id);
1430 
1431 	qdf_runtime_pm_prevent_suspend(
1432 		&osif_priv->osif_scan->runtime_pm_lock);
1433 
1434 	status = ucfg_scan_start(req);
1435 	if (QDF_STATUS_SUCCESS != status) {
1436 		cfg80211_err("ucfg_scan_start returned error %d", status);
1437 		if (QDF_STATUS_E_RESOURCES == status) {
1438 			cfg80211_err("HO is in progress.So defer the scan by informing busy");
1439 			status = -EBUSY;
1440 		} else {
1441 			status = -EIO;
1442 		}
1443 		wlan_scan_request_dequeue(pdev, scan_id, &request,
1444 					  &params->source, &netdev);
1445 		if (qdf_list_empty(&osif_priv->osif_scan->scan_req_q))
1446 			qdf_runtime_pm_allow_suspend(
1447 				&osif_priv->osif_scan->runtime_pm_lock);
1448 	}
1449 
1450 end:
1451 	wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
1452 	return status;
1453 }
1454 
1455 /**
1456  * wlan_get_scanid() - API to get the scan id
1457  * from the scan cookie attribute.
1458  * @pdev: Pointer to pdev object
1459  * @scan_id: Pointer to scan id
1460  * @cookie : Scan cookie attribute
1461  *
1462  * API to get the scan id from the scan cookie attribute
1463  * sent from supplicant by matching scan request.
1464  *
1465  * Return: 0 for success, non zero for failure
1466  */
1467 static int wlan_get_scanid(struct wlan_objmgr_pdev *pdev,
1468 			       uint32_t *scan_id, uint64_t cookie)
1469 {
1470 	struct scan_req *scan_req;
1471 	qdf_list_node_t *node = NULL;
1472 	qdf_list_node_t *ptr_node = NULL;
1473 	int ret = -EINVAL;
1474 	struct pdev_osif_priv *osif_ctx;
1475 	struct osif_scan_pdev *scan_priv;
1476 
1477 	/* Get NL global context from objmgr*/
1478 	osif_ctx = wlan_pdev_get_ospriv(pdev);
1479 	if (!osif_ctx) {
1480 		cfg80211_err("Failed to retrieve osif context");
1481 		return ret;
1482 	}
1483 	scan_priv = osif_ctx->osif_scan;
1484 	qdf_mutex_acquire(&scan_priv->scan_req_q_lock);
1485 	if (qdf_list_empty(&scan_priv->scan_req_q)) {
1486 		qdf_mutex_release(&scan_priv->scan_req_q_lock);
1487 		cfg80211_err("Failed to retrieve scan id");
1488 		return ret;
1489 	}
1490 
1491 	if (QDF_STATUS_SUCCESS !=
1492 			    qdf_list_peek_front(&scan_priv->scan_req_q,
1493 			    &ptr_node)) {
1494 		qdf_mutex_release(&scan_priv->scan_req_q_lock);
1495 		return ret;
1496 	}
1497 
1498 	do {
1499 		node = ptr_node;
1500 		scan_req = qdf_container_of(node, struct scan_req, node);
1501 		if (cookie ==
1502 		    (uintptr_t)(scan_req->scan_request)) {
1503 			*scan_id = scan_req->scan_id;
1504 			ret = 0;
1505 			break;
1506 		}
1507 	} while (QDF_STATUS_SUCCESS ==
1508 		 qdf_list_peek_next(&scan_priv->scan_req_q,
1509 		 node, &ptr_node));
1510 
1511 	qdf_mutex_release(&scan_priv->scan_req_q_lock);
1512 
1513 	return ret;
1514 }
1515 
1516 QDF_STATUS wlan_abort_scan(struct wlan_objmgr_pdev *pdev,
1517 				   uint32_t pdev_id, uint32_t vdev_id,
1518 				   wlan_scan_id scan_id, bool sync)
1519 {
1520 	struct scan_cancel_request *req;
1521 	struct pdev_osif_priv *osif_ctx;
1522 	struct osif_scan_pdev *scan_priv;
1523 	QDF_STATUS status;
1524 	struct wlan_objmgr_vdev *vdev;
1525 
1526 	req = qdf_mem_malloc(sizeof(*req));
1527 	if (!req) {
1528 		cfg80211_err("Failed to allocate memory");
1529 		return QDF_STATUS_E_NOMEM;
1530 	}
1531 
1532 	/* Get NL global context from objmgr*/
1533 	osif_ctx = wlan_pdev_get_ospriv(pdev);
1534 	if (!osif_ctx) {
1535 		cfg80211_err("Failed to retrieve osif context");
1536 		qdf_mem_free(req);
1537 		return QDF_STATUS_E_FAILURE;
1538 	}
1539 	if (vdev_id == INVAL_VDEV_ID)
1540 		vdev = wlan_objmgr_get_vdev_by_id_from_pdev(pdev,
1541 				0, WLAN_OSIF_ID);
1542 	else
1543 		vdev = wlan_objmgr_get_vdev_by_id_from_pdev(pdev,
1544 				vdev_id, WLAN_OSIF_ID);
1545 
1546 	if (!vdev) {
1547 		cfg80211_err("Failed get vdev");
1548 		qdf_mem_free(req);
1549 		return QDF_STATUS_E_INVAL;
1550 	}
1551 	scan_priv = osif_ctx->osif_scan;
1552 	req->cancel_req.requester = scan_priv->req_id;
1553 	req->vdev = vdev;
1554 	req->cancel_req.scan_id = scan_id;
1555 	req->cancel_req.pdev_id = pdev_id;
1556 	req->cancel_req.vdev_id = vdev_id;
1557 	if (scan_id != INVAL_SCAN_ID)
1558 		req->cancel_req.req_type = WLAN_SCAN_CANCEL_SINGLE;
1559 	if (vdev_id == INVAL_VDEV_ID)
1560 		req->cancel_req.req_type = WLAN_SCAN_CANCEL_PDEV_ALL;
1561 	else
1562 		req->cancel_req.req_type = WLAN_SCAN_CANCEL_VDEV_ALL;
1563 
1564 	if (sync)
1565 		status = ucfg_scan_cancel_sync(req);
1566 	else
1567 		status = ucfg_scan_cancel(req);
1568 	if (QDF_IS_STATUS_ERROR(status))
1569 		cfg80211_err("Cancel scan request failed");
1570 
1571 	wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
1572 
1573 	return status;
1574 }
1575 
1576 int wlan_cfg80211_abort_scan(struct wlan_objmgr_pdev *pdev)
1577 {
1578 	uint8_t pdev_id;
1579 
1580 	pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
1581 
1582 	if (ucfg_scan_get_pdev_status(pdev) !=
1583 	   SCAN_NOT_IN_PROGRESS)
1584 		wlan_abort_scan(pdev, pdev_id,
1585 			INVAL_VDEV_ID, INVAL_SCAN_ID, true);
1586 
1587 	return 0;
1588 }
1589 
1590 int wlan_vendor_abort_scan(struct wlan_objmgr_pdev *pdev,
1591 			const void *data, int data_len)
1592 {
1593 	struct nlattr *tb[QCA_WLAN_VENDOR_ATTR_SCAN_MAX + 1];
1594 	int ret = -EINVAL;
1595 	wlan_scan_id scan_id;
1596 	uint64_t cookie;
1597 	uint8_t pdev_id;
1598 
1599 	pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
1600 	if (wlan_cfg80211_nla_parse(tb, QCA_WLAN_VENDOR_ATTR_SCAN_MAX, data,
1601 				    data_len, scan_policy)) {
1602 		cfg80211_err("Invalid ATTR");
1603 		return ret;
1604 	}
1605 
1606 	if (tb[QCA_WLAN_VENDOR_ATTR_SCAN_COOKIE]) {
1607 		cookie = nla_get_u64(
1608 			    tb[QCA_WLAN_VENDOR_ATTR_SCAN_COOKIE]);
1609 		ret = wlan_get_scanid(pdev, &scan_id, cookie);
1610 		if (ret != 0)
1611 			return ret;
1612 		if (ucfg_scan_get_pdev_status(pdev) !=
1613 		   SCAN_NOT_IN_PROGRESS)
1614 			wlan_abort_scan(pdev, pdev_id,
1615 					INVAL_VDEV_ID, scan_id, true);
1616 	}
1617 	return 0;
1618 }
1619 
1620 static inline struct ieee80211_channel *
1621 wlan_get_ieee80211_channel(struct wiphy *wiphy,
1622 		struct wlan_objmgr_pdev *pdev,
1623 		int chan_no)
1624 {
1625 	unsigned int freq;
1626 	struct ieee80211_channel *chan;
1627 
1628 	freq = wlan_reg_chan_to_freq(pdev, chan_no);
1629 	chan = ieee80211_get_channel(wiphy, freq);
1630 	if (!chan)
1631 		cfg80211_err("chan is NULL, chan_no: %d freq: %d",
1632 			chan_no, freq);
1633 
1634 	return chan;
1635 }
1636 
1637 #ifdef WLAN_ENABLE_AGEIE_ON_SCAN_RESULTS
1638 static inline int wlan_get_frame_len(struct scan_cache_entry *scan_params)
1639 {
1640 	return util_scan_entry_frame_len(scan_params) + sizeof(qcom_ie_age);
1641 }
1642 
1643 static inline void wlan_add_age_ie(uint8_t *mgmt_frame,
1644 	struct scan_cache_entry *scan_params)
1645 {
1646 	qcom_ie_age *qie_age = NULL;
1647 
1648 	/* GPS Requirement: need age ie per entry. Using vendor specific. */
1649 	/* Assuming this is the last IE, copy at the end */
1650 	qie_age = (qcom_ie_age *) (mgmt_frame +
1651 		   util_scan_entry_frame_len(scan_params));
1652 	qie_age->element_id = QCOM_VENDOR_IE_ID;
1653 	qie_age->len = QCOM_VENDOR_IE_AGE_LEN;
1654 	qie_age->oui_1 = QCOM_OUI1;
1655 	qie_age->oui_2 = QCOM_OUI2;
1656 	qie_age->oui_3 = QCOM_OUI3;
1657 	qie_age->type = QCOM_VENDOR_IE_AGE_TYPE;
1658 	/*
1659 	 * Lowi expects the timestamp of bss in units of 1/10 ms. In driver
1660 	 * all bss related timestamp is in units of ms. Due to this when scan
1661 	 * results are sent to lowi the scan age is high.To address this,
1662 	 * send age in units of 1/10 ms.
1663 	 */
1664 	qie_age->age =
1665 		(uint32_t)(qdf_mc_timer_get_system_time() -
1666 		  scan_params->scan_entry_time)/10;
1667 	qie_age->tsf_delta = scan_params->tsf_delta;
1668 	memcpy(&qie_age->beacon_tsf, scan_params->tsf_info.data,
1669 		  sizeof(qie_age->beacon_tsf));
1670 	memcpy(&qie_age->seq_ctrl, &scan_params->seq_num,
1671 	       sizeof(qie_age->seq_ctrl));
1672 }
1673 #else
1674 static inline int wlan_get_frame_len(struct scan_cache_entry *scan_params)
1675 {
1676 	return util_scan_entry_frame_len(scan_params);
1677 }
1678 
1679 static inline void wlan_add_age_ie(uint8_t *mgmt_frame,
1680 	struct scan_cache_entry *scan_params)
1681 {
1682 }
1683 #endif /* WLAN_ENABLE_AGEIE_ON_SCAN_RESULTS */
1684 
1685 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)) || \
1686 	defined(CFG80211_INFORM_BSS_FRAME_DATA)
1687 /**
1688  * wlan_fill_per_chain_rssi() - fill per chain RSSI in inform bss
1689  * @data: bss data
1690  * @per_chain_snr: per chain RSSI
1691  *
1692  * Return: void
1693  */
1694 #if defined(CFG80211_SCAN_PER_CHAIN_RSSI_SUPPORT) || \
1695 	   (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 16, 0))
1696 static void wlan_fill_per_chain_rssi(struct cfg80211_inform_bss *data,
1697 	struct wlan_cfg80211_inform_bss *bss)
1698 {
1699 
1700 	uint32_t i;
1701 
1702 	if (!bss || !data) {
1703 		cfg80211_err("Received bss is NULL");
1704 		return;
1705 	}
1706 	for (i = 0; i < WLAN_MGMT_TXRX_HOST_MAX_ANTENNA; i++) {
1707 		if (!bss->per_chain_snr[i] ||
1708 		    (bss->per_chain_snr[i] == WLAN_INVALID_PER_CHAIN_RSSI))
1709 			continue;
1710 		/* Add noise margin to SNR to convert it to RSSI */
1711 		data->chain_signal[i] = bss->per_chain_snr[i] +
1712 					WLAN_NOISE_FLOOR_DBM_DEFAULT;
1713 		data->chains |= BIT(i);
1714 	}
1715 }
1716 #else
1717 static inline void
1718 wlan_fill_per_chain_rssi(struct cfg80211_inform_bss *data,
1719 	struct wlan_cfg80211_inform_bss *bss)
1720 {
1721 }
1722 #endif
1723 
1724 struct cfg80211_bss *
1725 wlan_cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1726 		struct wlan_cfg80211_inform_bss *bss)
1727 {
1728 	struct cfg80211_inform_bss data  = {0};
1729 
1730 	if (!bss) {
1731 		cfg80211_err("bss is null");
1732 		return NULL;
1733 	}
1734 	wlan_fill_per_chain_rssi(&data, bss);
1735 
1736 	data.chan = bss->chan;
1737 	data.boottime_ns = bss->boottime_ns;
1738 	data.signal = bss->rssi;
1739 	return cfg80211_inform_bss_frame_data(wiphy, &data, bss->mgmt,
1740 					      bss->frame_len, GFP_KERNEL);
1741 }
1742 #else
1743 struct cfg80211_bss *
1744 wlan_cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1745 		struct wlan_cfg80211_inform_bss *bss)
1746 
1747 {
1748 	return cfg80211_inform_bss_frame(wiphy, bss->chan, bss->mgmt,
1749 					 bss->frame_len,
1750 					 bss->rssi, GFP_KERNEL);
1751 }
1752 #endif
1753 
1754 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
1755 static inline void wlan_cfg80211_put_bss(struct wiphy *wiphy,
1756 		struct cfg80211_bss *bss)
1757 {
1758 	cfg80211_put_bss(wiphy, bss);
1759 }
1760 #else
1761 static inline void wlan_cfg80211_put_bss(struct wiphy *wiphy,
1762 		struct cfg80211_bss *bss)
1763 {
1764 	cfg80211_put_bss(bss);
1765 }
1766 #endif
1767 
1768 void wlan_cfg80211_inform_bss_frame(struct wlan_objmgr_pdev *pdev,
1769 		struct scan_cache_entry *scan_params)
1770 {
1771 	struct pdev_osif_priv *pdev_ospriv = wlan_pdev_get_ospriv(pdev);
1772 	struct wiphy *wiphy;
1773 	struct cfg80211_bss *bss = NULL;
1774 	struct wlan_cfg80211_inform_bss bss_data = {0};
1775 
1776 	if (!pdev_ospriv) {
1777 		cfg80211_err("os_priv is NULL");
1778 		return;
1779 	}
1780 
1781 	wiphy = pdev_ospriv->wiphy;
1782 
1783 	bss_data.frame_len = wlan_get_frame_len(scan_params);
1784 	bss_data.mgmt = qdf_mem_malloc(bss_data.frame_len);
1785 	if (!bss_data.mgmt) {
1786 		cfg80211_err("mem alloc failed");
1787 		return;
1788 	}
1789 	qdf_mem_copy(bss_data.mgmt,
1790 		 util_scan_entry_frame_ptr(scan_params),
1791 		 util_scan_entry_frame_len(scan_params));
1792 	/*
1793 	 * Android does not want the timestamp from the frame.
1794 	 * Instead it wants a monotonic increasing value
1795 	 */
1796 	bss_data.mgmt->u.probe_resp.timestamp = qdf_get_monotonic_boottime();
1797 	wlan_add_age_ie((uint8_t *)bss_data.mgmt, scan_params);
1798 	/*
1799 	 * Based on .ini configuration, raw rssi can be reported for bss.
1800 	 * Raw rssi is typically used for estimating power.
1801 	 */
1802 	bss_data.rssi = scan_params->rssi_raw;
1803 
1804 	bss_data.chan = wlan_get_ieee80211_channel(wiphy, pdev,
1805 		scan_params->channel.chan_idx);
1806 	if (!bss_data.chan) {
1807 		qdf_mem_free(bss_data.mgmt);
1808 		return;
1809 	}
1810 
1811 	/*
1812 	 * Supplicant takes the signal strength in terms of
1813 	 * mBm (1 dBm = 100 mBm).
1814 	 */
1815 	bss_data.rssi = QDF_MIN(bss_data.rssi, 0) * 100;
1816 
1817 	bss_data.boottime_ns = scan_params->boottime_ns;
1818 
1819 	qdf_mem_copy(bss_data.per_chain_snr, scan_params->per_chain_snr,
1820 		     WLAN_MGMT_TXRX_HOST_MAX_ANTENNA);
1821 
1822 	cfg80211_info("BSSID: %pM Channel:%d RSSI:%d",
1823 		bss_data.mgmt->bssid, bss_data.chan->center_freq,
1824 		(int)(bss_data.rssi / 100));
1825 
1826 	bss = wlan_cfg80211_inform_bss_frame_data(wiphy, &bss_data);
1827 	if (!bss)
1828 		cfg80211_err("failed to inform bss");
1829 	else
1830 		wlan_cfg80211_put_bss(wiphy, bss);
1831 
1832 	qdf_mem_free(bss_data.mgmt);
1833 }
1834