xref: /wlan-dirver/qca-wifi-host-cmn/os_if/linux/scan/src/wlan_cfg80211_scan.c (revision 302a1d9701784af5f4797b1a9fe07ae820b51907)
1 /*
2  * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /**
20  * DOC: defines driver functions interfacing with linux kernel
21  */
22 
23 #include <qdf_list.h>
24 #include <qdf_status.h>
25 #include <linux/wireless.h>
26 #include <linux/netdevice.h>
27 #include <net/cfg80211.h>
28 #include <wlan_scan_utils_api.h>
29 #include <wlan_cfg80211.h>
30 #include <wlan_cfg80211_scan.h>
31 #include <wlan_osif_priv.h>
32 #include <wlan_scan_public_structs.h>
33 #include <wlan_scan_ucfg_api.h>
34 #include <wlan_cfg80211_scan.h>
35 #include <qdf_mem.h>
36 #include <wlan_utility.h>
37 #ifdef WLAN_POLICY_MGR_ENABLE
38 #include <wlan_policy_mgr_api.h>
39 #endif
40 #include <wlan_reg_services_api.h>
41 
42 static const
43 struct nla_policy scan_policy[QCA_WLAN_VENDOR_ATTR_SCAN_MAX + 1] = {
44 	[QCA_WLAN_VENDOR_ATTR_SCAN_FLAGS] = {.type = NLA_U32},
45 	[QCA_WLAN_VENDOR_ATTR_SCAN_TX_NO_CCK_RATE] = {.type = NLA_FLAG},
46 	[QCA_WLAN_VENDOR_ATTR_SCAN_COOKIE] = {.type = NLA_U64},
47 };
48 
49 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0))
50 static uint32_t hdd_config_sched_scan_start_delay(
51 		struct cfg80211_sched_scan_request *request)
52 {
53 	return request->delay;
54 }
55 #else
56 static uint32_t hdd_config_sched_scan_start_delay(
57 		struct cfg80211_sched_scan_request *request)
58 {
59 	return 0;
60 }
61 #endif
62 
63 #if defined(CFG80211_SCAN_RANDOM_MAC_ADDR) || \
64 	(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0))
65 /**
66  * wlan_fill_scan_rand_attrs() - Populate the scan randomization attrs
67  * @vdev: pointer to objmgr vdev
68  * @flags: cfg80211 scan flags
69  * @mac_addr: random mac addr from cfg80211
70  * @mac_addr_mask: mac addr mask from cfg80211
71  * @randomize: output variable to check scan randomization status
72  * @addr: output variable to hold random addr
73  * @mask: output variable to hold mac mask
74  *
75  * Return: None
76  */
77 static void wlan_fill_scan_rand_attrs(struct wlan_objmgr_vdev *vdev,
78 				      uint32_t flags,
79 				      uint8_t *mac_addr,
80 				      uint8_t *mac_addr_mask,
81 				      bool *randomize,
82 				      uint8_t *addr,
83 				      uint8_t *mask)
84 {
85 	*randomize = false;
86 	if (!(flags & NL80211_SCAN_FLAG_RANDOM_ADDR))
87 		return;
88 
89 	if (wlan_vdev_mlme_get_opmode(vdev) != QDF_STA_MODE)
90 		return;
91 
92 	if (wlan_vdev_is_connected(vdev))
93 		return;
94 
95 	*randomize = true;
96 	memcpy(addr, mac_addr, QDF_MAC_ADDR_SIZE);
97 	memcpy(mask, mac_addr_mask, QDF_MAC_ADDR_SIZE);
98 	cfg80211_debug("Random mac addr: %pM and Random mac mask: %pM",
99 		       addr, mask);
100 }
101 
102 /**
103  * wlan_scan_rand_attrs() - Wrapper function to fill scan random attrs
104  * @vdev: pointer to objmgr vdev
105  * @request: pointer to cfg80211 scan request
106  * @req: pointer to cmn module scan request
107  *
108  * This is a wrapper function which invokes wlan_fill_scan_rand_attrs()
109  * to fill random attributes of internal scan request with cfg80211_scan_request
110  *
111  * Return: None
112  */
113 static void wlan_scan_rand_attrs(struct wlan_objmgr_vdev *vdev,
114 				 struct cfg80211_scan_request *request,
115 				 struct scan_start_request *req)
116 {
117 	bool *randomize = &req->scan_req.scan_random.randomize;
118 	uint8_t *mac_addr = req->scan_req.scan_random.mac_addr;
119 	uint8_t *mac_mask = req->scan_req.scan_random.mac_mask;
120 
121 	wlan_fill_scan_rand_attrs(vdev, request->flags, request->mac_addr,
122 				  request->mac_addr_mask, randomize, mac_addr,
123 				  mac_mask);
124 	if (!*randomize)
125 		return;
126 
127 	req->scan_req.scan_f_add_spoofed_mac_in_probe = true;
128 	req->scan_req.scan_f_add_rand_seq_in_probe = true;
129 }
130 #else
131 /**
132  * wlan_scan_rand_attrs() - Wrapper function to fill scan random attrs
133  * @vdev: pointer to objmgr vdev
134  * @request: pointer to cfg80211 scan request
135  * @req: pointer to cmn module scan request
136  *
137  * This is a wrapper function which invokes wlan_fill_scan_rand_attrs()
138  * to fill random attributes of internal scan request with cfg80211_scan_request
139  *
140  * Return: None
141  */
142 static void wlan_scan_rand_attrs(struct wlan_objmgr_vdev *vdev,
143 				 struct cfg80211_scan_request *request,
144 				 struct scan_start_request *req)
145 {
146 }
147 #endif
148 
149 #ifdef FEATURE_WLAN_SCAN_PNO
150 #if ((LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)) || \
151 	defined(CFG80211_MULTI_SCAN_PLAN_BACKPORT))
152 
153 /**
154  * wlan_config_sched_scan_plan() - configures the sched scan plans
155  *   from the framework.
156  * @pno_req: pointer to PNO scan request
157  * @request: pointer to scan request from framework
158  *
159  * Return: None
160  */
161 static void wlan_config_sched_scan_plan(struct pno_scan_req_params *pno_req,
162 	struct cfg80211_sched_scan_request *request)
163 {
164 	/*
165 	 * As of now max 2 scan plans were supported by firmware
166 	 * if number of scan plan supported by firmware increased below logic
167 	 * must change.
168 	 */
169 	if (request->n_scan_plans == SCAN_PNO_MAX_PLAN_REQUEST) {
170 		pno_req->fast_scan_period =
171 			request->scan_plans[0].interval * MSEC_PER_SEC;
172 		pno_req->fast_scan_max_cycles =
173 			request->scan_plans[0].iterations;
174 		pno_req->slow_scan_period =
175 			request->scan_plans[1].interval * MSEC_PER_SEC;
176 	} else if (request->n_scan_plans == 1) {
177 		pno_req->fast_scan_period =
178 			request->scan_plans[0].interval * MSEC_PER_SEC;
179 		/*
180 		 * if only one scan plan is configured from framework
181 		 * then both fast and slow scan should be configured with the
182 		 * same value that is why fast scan cycles are hardcoded to one
183 		 */
184 		pno_req->fast_scan_max_cycles = 1;
185 		pno_req->slow_scan_period =
186 			request->scan_plans[0].interval * MSEC_PER_SEC;
187 	} else {
188 		cfg80211_err("Invalid number of scan plans %d !!",
189 			request->n_scan_plans);
190 	}
191 }
192 #else
193 static void wlan_config_sched_scan_plan(struct pno_scan_req_params *pno_req,
194 	struct cfg80211_sched_scan_request *request)
195 {
196 	pno_req->fast_scan_period = request->interval;
197 	pno_req->fast_scan_max_cycles = SCAN_PNO_DEF_SCAN_TIMER_REPEAT;
198 	pno_req->slow_scan_period =
199 		SCAN_PNO_DEF_SLOW_SCAN_MULTIPLIER *
200 		pno_req->fast_scan_period;
201 }
202 #endif
203 
204 #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 12, 0)
205 static inline void
206 wlan_cfg80211_sched_scan_results(struct wiphy *wiphy, uint64_t reqid)
207 {
208 	cfg80211_sched_scan_results(wiphy);
209 }
210 #else
211 static inline void
212 wlan_cfg80211_sched_scan_results(struct wiphy *wiphy, uint64_t reqid)
213 {
214 	cfg80211_sched_scan_results(wiphy, reqid);
215 }
216 #endif
217 
218 /**
219  * wlan_cfg80211_pno_callback() - pno callback function to handle
220  * pno events.
221  * @vdev: vdev ptr
222  * @event: scan events
223  * @args: argument
224  *
225  * Return: void
226  */
227 static void wlan_cfg80211_pno_callback(struct wlan_objmgr_vdev *vdev,
228 	struct scan_event *event,
229 	void *args)
230 {
231 	struct wlan_objmgr_pdev *pdev;
232 	struct pdev_osif_priv *pdev_ospriv;
233 
234 	if (event->type != SCAN_EVENT_TYPE_NLO_COMPLETE)
235 		return;
236 
237 	cfg80211_debug("vdev id = %d", event->vdev_id);
238 
239 	pdev = wlan_vdev_get_pdev(vdev);
240 	if (!pdev) {
241 		cfg80211_err("pdev is NULL");
242 		return;
243 	}
244 
245 	pdev_ospriv = wlan_pdev_get_ospriv(pdev);
246 	if (!pdev_ospriv) {
247 		cfg80211_err("pdev_ospriv is NULL");
248 		return;
249 	}
250 	wlan_cfg80211_sched_scan_results(pdev_ospriv->wiphy, 0);
251 }
252 
253 #ifdef WLAN_POLICY_MGR_ENABLE
254 static bool wlan_cfg80211_is_ap_go_present(struct wlan_objmgr_psoc *psoc)
255 {
256 	return policy_mgr_mode_specific_connection_count(psoc,
257 							  PM_SAP_MODE,
258 							  NULL) ||
259 		policy_mgr_mode_specific_connection_count(psoc,
260 							  PM_P2P_GO_MODE,
261 							  NULL);
262 }
263 
264 static QDF_STATUS wlan_cfg80211_is_chan_ok_for_dnbs(
265 			struct wlan_objmgr_psoc *psoc,
266 			u8 channel, bool *ok)
267 {
268 	QDF_STATUS status = policy_mgr_is_chan_ok_for_dnbs(psoc, channel, ok);
269 
270 	if (QDF_IS_STATUS_ERROR(status)) {
271 		cfg80211_err("DNBS check failed");
272 		return status;
273 	}
274 
275 	return QDF_STATUS_SUCCESS;
276 }
277 #else
278 static bool wlan_cfg80211_is_ap_go_present(struct wlan_objmgr_psoc *psoc)
279 {
280 	return false;
281 }
282 
283 static QDF_STATUS wlan_cfg80211_is_chan_ok_for_dnbs(
284 			struct wlan_objmgr_psoc *psoc,
285 			u8 channel,
286 			bool *ok)
287 {
288 	if (!ok)
289 		return QDF_STATUS_E_INVAL;
290 
291 	*ok = true;
292 	return QDF_STATUS_SUCCESS;
293 }
294 #endif
295 
296 #if defined(CFG80211_SCAN_RANDOM_MAC_ADDR) || \
297 	(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0))
298 /**
299  * wlan_pno_scan_rand_attr() - Wrapper function to fill sched scan random attrs
300  * @vdev: pointer to objmgr vdev
301  * @request: pointer to cfg80211 sched scan request
302  * @req: pointer to cmn module pno scan request
303  *
304  * This is a wrapper function which invokes wlan_fill_scan_rand_attrs()
305  * to fill random attributes of internal pno scan
306  * with cfg80211_sched_scan_request
307  *
308  * Return: None
309  */
310 static void wlan_pno_scan_rand_attr(struct wlan_objmgr_vdev *vdev,
311 				    struct cfg80211_sched_scan_request *request,
312 				    struct pno_scan_req_params *req)
313 {
314 	bool *randomize = &req->scan_random.randomize;
315 	uint8_t *mac_addr = req->scan_random.mac_addr;
316 	uint8_t *mac_mask = req->scan_random.mac_mask;
317 
318 	wlan_fill_scan_rand_attrs(vdev, request->flags, request->mac_addr,
319 				  request->mac_addr_mask, randomize, mac_addr,
320 				  mac_mask);
321 }
322 #else
323 /**
324  * wlan_pno_scan_rand_attr() - Wrapper function to fill sched scan random attrs
325  * @vdev: pointer to objmgr vdev
326  * @request: pointer to cfg80211 sched scan request
327  * @req: pointer to cmn module pno scan request
328  *
329  * This is a wrapper function which invokes wlan_fill_scan_rand_attrs()
330  * to fill random attributes of internal pno scan
331  * with cfg80211_sched_scan_request
332  *
333  * Return: None
334  */
335 static void wlan_pno_scan_rand_attr(struct wlan_objmgr_vdev *vdev,
336 				    struct cfg80211_sched_scan_request *request,
337 				    struct pno_scan_req_params *req)
338 {
339 }
340 #endif
341 
342 /**
343  * wlan_hdd_sched_scan_update_relative_rssi() - update CPNO params
344  * @pno_request: pointer to PNO scan request
345  * @request: Pointer to cfg80211 scheduled scan start request
346  *
347  * This function is used to update Connected PNO params sent by kernel
348  *
349  * Return: None
350  */
351 #if defined(CFG80211_REPORT_BETTER_BSS_IN_SCHED_SCAN) || \
352 	(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0))
353 static inline void wlan_hdd_sched_scan_update_relative_rssi(
354 			struct pno_scan_req_params *pno_request,
355 			struct cfg80211_sched_scan_request *request)
356 {
357 	pno_request->relative_rssi_set = request->relative_rssi_set;
358 	pno_request->relative_rssi = request->relative_rssi;
359 	if (NL80211_BAND_2GHZ == request->rssi_adjust.band)
360 		pno_request->band_rssi_pref.band = WLAN_BAND_2_4_GHZ;
361 	else if (NL80211_BAND_5GHZ == request->rssi_adjust.band)
362 		pno_request->band_rssi_pref.band = WLAN_BAND_5_GHZ;
363 	pno_request->band_rssi_pref.rssi = request->rssi_adjust.delta;
364 }
365 #else
366 static inline void wlan_hdd_sched_scan_update_relative_rssi(
367 			struct pno_scan_req_params *pno_request,
368 			struct cfg80211_sched_scan_request *request)
369 {
370 }
371 #endif
372 
373 int wlan_cfg80211_sched_scan_start(struct wlan_objmgr_pdev *pdev,
374 	struct net_device *dev,
375 	struct cfg80211_sched_scan_request *request,
376 	uint8_t scan_backoff_multiplier)
377 {
378 	struct pno_scan_req_params *req;
379 	int i, j, ret = 0;
380 	QDF_STATUS status;
381 	uint8_t num_chan = 0, channel;
382 	struct wlan_objmgr_vdev *vdev;
383 	struct wlan_objmgr_psoc *psoc;
384 	uint32_t valid_ch[SCAN_PNO_MAX_NETW_CHANNELS_EX] = {0};
385 
386 	vdev = wlan_objmgr_get_vdev_by_macaddr_from_pdev(pdev, dev->dev_addr,
387 		WLAN_OSIF_ID);
388 	if (!vdev) {
389 		cfg80211_err("vdev object is NULL");
390 		return -EIO;
391 	}
392 
393 	if (ucfg_scan_get_pno_in_progress(vdev)) {
394 		cfg80211_debug("pno is already in progress");
395 		wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
396 		return -EBUSY;
397 	}
398 
399 	if (ucfg_scan_get_pdev_status(pdev) !=
400 	   SCAN_NOT_IN_PROGRESS) {
401 		status = wlan_abort_scan(pdev,
402 				wlan_objmgr_pdev_get_pdev_id(pdev),
403 				INVAL_VDEV_ID, INVAL_SCAN_ID, true);
404 		if (QDF_IS_STATUS_ERROR(status)) {
405 			cfg80211_err("aborting the existing scan is unsuccessful");
406 			wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
407 			return -EBUSY;
408 		}
409 	}
410 
411 	req = qdf_mem_malloc(sizeof(*req));
412 	if (!req) {
413 		cfg80211_err("req malloc failed");
414 		wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
415 		return -ENOMEM;
416 	}
417 
418 	wlan_pdev_obj_lock(pdev);
419 	psoc = wlan_pdev_get_psoc(pdev);
420 	wlan_pdev_obj_unlock(pdev);
421 
422 	req->networks_cnt = request->n_match_sets;
423 	req->vdev_id = wlan_vdev_get_id(vdev);
424 
425 	if ((!req->networks_cnt) ||
426 	    (req->networks_cnt > SCAN_PNO_MAX_SUPP_NETWORKS)) {
427 		cfg80211_err("Network input is not correct %d",
428 			req->networks_cnt);
429 		ret = -EINVAL;
430 		goto error;
431 	}
432 
433 	if (request->n_channels > SCAN_PNO_MAX_NETW_CHANNELS_EX) {
434 		cfg80211_err("Incorrect number of channels %d",
435 			request->n_channels);
436 		ret = -EINVAL;
437 		goto error;
438 	}
439 
440 	if (request->n_channels) {
441 		char chl[(request->n_channels * 5) + 1];
442 		int len = 0;
443 		bool ap_or_go_present = wlan_cfg80211_is_ap_go_present(psoc);
444 
445 		for (i = 0; i < request->n_channels; i++) {
446 			channel = request->channels[i]->hw_value;
447 			if (wlan_reg_is_dsrc_chan(pdev, channel))
448 				continue;
449 
450 			if (ap_or_go_present) {
451 				bool ok;
452 
453 				status =
454 				wlan_cfg80211_is_chan_ok_for_dnbs(psoc,
455 								  channel,
456 								  &ok);
457 				if (QDF_IS_STATUS_ERROR(status)) {
458 					cfg80211_err("DNBS check failed");
459 					qdf_mem_free(req);
460 					ret = -EINVAL;
461 					goto error;
462 				}
463 				if (!ok)
464 					continue;
465 			}
466 			len += snprintf(chl + len, 5, "%d ", channel);
467 			valid_ch[num_chan++] = wlan_chan_to_freq(channel);
468 		}
469 		cfg80211_notice("No. of Scan Channels: %d", num_chan);
470 		cfg80211_notice("Channel-List: %s", chl);
471 		/* If all channels are DFS and dropped,
472 		 * then ignore the PNO request
473 		 */
474 		if (!num_chan) {
475 			cfg80211_notice("Channel list empty due to filtering of DSRC");
476 			ret = -EINVAL;
477 			goto error;
478 		}
479 	}
480 
481 	/* Filling per profile  params */
482 	for (i = 0; i < req->networks_cnt; i++) {
483 		req->networks_list[i].ssid.length =
484 			request->match_sets[i].ssid.ssid_len;
485 
486 		if ((!req->networks_list[i].ssid.length) ||
487 		    (req->networks_list[i].ssid.length > WLAN_SSID_MAX_LEN)) {
488 			cfg80211_err(" SSID Len %d is not correct for network %d",
489 				  req->networks_list[i].ssid.length, i);
490 			ret = -EINVAL;
491 			goto error;
492 		}
493 
494 		qdf_mem_copy(req->networks_list[i].ssid.ssid,
495 			request->match_sets[i].ssid.ssid,
496 			req->networks_list[i].ssid.length);
497 		req->networks_list[i].authentication = 0;   /*eAUTH_TYPE_ANY */
498 		req->networks_list[i].encryption = 0;       /*eED_ANY */
499 		req->networks_list[i].bc_new_type = 0;    /*eBCAST_UNKNOWN */
500 
501 		cfg80211_notice("Received ssid:%.*s",
502 			req->networks_list[i].ssid.length,
503 			req->networks_list[i].ssid.ssid);
504 
505 		/*Copying list of valid channel into request */
506 		qdf_mem_copy(req->networks_list[i].channels, valid_ch,
507 			num_chan * sizeof(uint32_t));
508 		req->networks_list[i].channel_cnt = num_chan;
509 		req->networks_list[i].rssi_thresh =
510 			request->match_sets[i].rssi_thold;
511 	}
512 
513 	/* set scan to passive if no SSIDs are specified in the request */
514 	if (0 == request->n_ssids)
515 		req->do_passive_scan = true;
516 	else
517 		req->do_passive_scan = false;
518 
519 	for (i = 0; i < request->n_ssids; i++) {
520 		j = 0;
521 		while (j < req->networks_cnt) {
522 			if ((req->networks_list[j].ssid.length ==
523 			     request->ssids[i].ssid_len) &&
524 			    (!qdf_mem_cmp(req->networks_list[j].ssid.ssid,
525 					 request->ssids[i].ssid,
526 					 req->networks_list[j].ssid.length))) {
527 				req->networks_list[j].bc_new_type =
528 					SSID_BC_TYPE_HIDDEN;
529 				break;
530 			}
531 			j++;
532 		}
533 	}
534 	cfg80211_notice("Number of hidden networks being Configured = %d",
535 		  request->n_ssids);
536 
537 	/*
538 	 * Before Kernel 4.4
539 	 *   Driver gets only one time interval which is hard coded in
540 	 *   supplicant for 10000ms.
541 	 *
542 	 * After Kernel 4.4
543 	 *   User can configure multiple scan_plans, each scan would have
544 	 *   separate scan cycle and interval. (interval is in unit of second.)
545 	 *   For our use case, we would only have supplicant set one scan_plan,
546 	 *   and firmware also support only one as well, so pick up the first
547 	 *   index.
548 	 *
549 	 *   Taking power consumption into account
550 	 *   firmware after gPNOScanTimerRepeatValue times fast_scan_period
551 	 *   switches slow_scan_period. This is less frequent scans and firmware
552 	 *   shall be in slow_scan_period mode until next PNO Start.
553 	 */
554 	wlan_config_sched_scan_plan(req, request);
555 	req->delay_start_time = hdd_config_sched_scan_start_delay(request);
556 	req->scan_backoff_multiplier = scan_backoff_multiplier;
557 	cfg80211_notice("Base scan interval: %d sec, scan cycles: %d, slow scan interval %d",
558 		req->fast_scan_period, req->fast_scan_max_cycles,
559 		req->slow_scan_period);
560 	wlan_hdd_sched_scan_update_relative_rssi(req, request);
561 
562 	psoc = wlan_pdev_get_psoc(pdev);
563 	ucfg_scan_register_pno_cb(psoc,
564 		wlan_cfg80211_pno_callback, NULL);
565 	ucfg_scan_get_pno_def_params(vdev, req);
566 
567 	if (req->scan_random.randomize)
568 		wlan_pno_scan_rand_attr(vdev, request, req);
569 
570 	if (ucfg_ie_whitelist_enabled(psoc, vdev))
571 		ucfg_copy_ie_whitelist_attrs(psoc, &req->ie_whitelist);
572 	status = ucfg_scan_pno_start(vdev, req);
573 	if (QDF_IS_STATUS_ERROR(status)) {
574 		cfg80211_err("Failed to enable PNO");
575 		ret = -EINVAL;
576 		goto error;
577 	}
578 
579 	cfg80211_info("PNO scan request offloaded");
580 
581 error:
582 	wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
583 	qdf_mem_free(req);
584 	return ret;
585 }
586 
587 int wlan_cfg80211_sched_scan_stop(struct wlan_objmgr_pdev *pdev,
588 	struct net_device *dev)
589 {
590 	int ret = 0;
591 	QDF_STATUS status;
592 	struct wlan_objmgr_vdev *vdev;
593 
594 	vdev = wlan_objmgr_get_vdev_by_macaddr_from_pdev(pdev, dev->dev_addr,
595 		WLAN_OSIF_ID);
596 	if (!vdev) {
597 		cfg80211_err("vdev object is NULL");
598 		return -EIO;
599 	}
600 
601 	status = ucfg_scan_pno_stop(vdev);
602 	if (QDF_IS_STATUS_ERROR(status)) {
603 		cfg80211_err("Failed to disabled PNO");
604 		ret = -EINVAL;
605 	} else {
606 		cfg80211_info("PNO scan disabled");
607 	}
608 
609 	wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
610 	return ret;
611 }
612 #endif /*FEATURE_WLAN_SCAN_PNO */
613 
614 /**
615  * wlan_copy_bssid_scan_request() - API to copy the bssid to Scan request
616  * @scan_req: Pointer to scan_start_request
617  * @request: scan request from Supplicant
618  *
619  * This API copies the BSSID in scan request from Supplicant and copies it to
620  * the scan_start_request
621  *
622  * Return: None
623  */
624 #if defined(CFG80211_SCAN_BSSID) || \
625 	(LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0))
626 static inline void
627 wlan_copy_bssid_scan_request(struct scan_start_request *scan_req,
628 		struct cfg80211_scan_request *request)
629 {
630 	qdf_mem_copy(scan_req->scan_req.bssid_list[0].bytes,
631 				request->bssid, QDF_MAC_ADDR_SIZE);
632 }
633 #else
634 static inline void
635 wlan_copy_bssid_scan_request(struct scan_start_request *scan_req,
636 		struct cfg80211_scan_request *request)
637 {
638 
639 }
640 #endif
641 
642 /**
643  * wlan_scan_request_enqueue() - enqueue Scan Request
644  * @pdev: pointer to pdev object
645  * @req: Pointer to the scan request
646  * @source: source of the scan request
647  * @scan_id: scan identifier
648  *
649  * Enqueue scan request in the global  scan list.This list
650  * stores the active scan request information.
651  *
652  * Return: 0 on success, error number otherwise
653  */
654 static int wlan_scan_request_enqueue(struct wlan_objmgr_pdev *pdev,
655 			struct cfg80211_scan_request *req,
656 			uint8_t source, uint32_t scan_id)
657 {
658 	struct scan_req *scan_req;
659 	QDF_STATUS status;
660 	struct pdev_osif_priv *osif_ctx;
661 	struct osif_scan_pdev *osif_scan;
662 
663 	scan_req = qdf_mem_malloc(sizeof(*scan_req));
664 	if (NULL == scan_req) {
665 		cfg80211_alert("malloc failed for Scan req");
666 		return -ENOMEM;
667 	}
668 
669 	/* Get NL global context from objmgr*/
670 	osif_ctx = wlan_pdev_get_ospriv(pdev);
671 	osif_scan = osif_ctx->osif_scan;
672 	scan_req->scan_request = req;
673 	scan_req->source = source;
674 	scan_req->scan_id = scan_id;
675 	scan_req->dev = req->wdev->netdev;
676 
677 	qdf_mutex_acquire(&osif_scan->scan_req_q_lock);
678 	status = qdf_list_insert_back(&osif_scan->scan_req_q,
679 					&scan_req->node);
680 	qdf_mutex_release(&osif_scan->scan_req_q_lock);
681 	if (QDF_STATUS_SUCCESS != status) {
682 		cfg80211_err("Failed to enqueue Scan Req");
683 		qdf_mem_free(scan_req);
684 		return -EINVAL;
685 	}
686 
687 	return 0;
688 }
689 
690 /**
691  * wlan_scan_request_dequeue() - dequeue scan request
692  * @nl_ctx: Global HDD context
693  * @scan_id: scan id
694  * @req: scan request
695  * @dev: net device
696  * @source : returns source of the scan request
697  *
698  * Return: QDF_STATUS
699  */
700 static QDF_STATUS wlan_scan_request_dequeue(
701 	struct wlan_objmgr_pdev *pdev,
702 	uint32_t scan_id, struct cfg80211_scan_request **req,
703 	uint8_t *source, struct net_device **dev)
704 {
705 	QDF_STATUS status = QDF_STATUS_E_FAILURE;
706 	struct scan_req *scan_req;
707 	qdf_list_node_t *node = NULL, *next_node = NULL;
708 	struct pdev_osif_priv *osif_ctx;
709 	struct osif_scan_pdev *scan_priv;
710 
711 	cfg80211_debug("Dequeue Scan id: %d", scan_id);
712 
713 	if ((source == NULL) || (req == NULL)) {
714 		cfg80211_err("source or request is NULL");
715 		return QDF_STATUS_E_NULL_VALUE;
716 	}
717 
718 	/* Get NL global context from objmgr*/
719 	osif_ctx = wlan_pdev_get_ospriv(pdev);
720 	if (!osif_ctx) {
721 		cfg80211_err("Failed to retrieve osif context");
722 		return status;
723 	}
724 	scan_priv = osif_ctx->osif_scan;
725 
726 	if (qdf_list_empty(&scan_priv->scan_req_q)) {
727 		cfg80211_info("Scan List is empty");
728 		return QDF_STATUS_E_FAILURE;
729 	}
730 
731 	qdf_mutex_acquire(&scan_priv->scan_req_q_lock);
732 	if (QDF_STATUS_SUCCESS !=
733 		qdf_list_peek_front(&scan_priv->scan_req_q, &next_node)) {
734 		qdf_mutex_release(&scan_priv->scan_req_q_lock);
735 		cfg80211_err("Failed to remove Scan Req from queue");
736 		return QDF_STATUS_E_FAILURE;
737 	}
738 
739 	do {
740 		node = next_node;
741 		scan_req = qdf_container_of(node, struct scan_req,
742 					node);
743 		if (scan_req->scan_id == scan_id) {
744 			status = qdf_list_remove_node(&scan_priv->scan_req_q,
745 					node);
746 			if (status == QDF_STATUS_SUCCESS) {
747 				*req = scan_req->scan_request;
748 				*source = scan_req->source;
749 				*dev = scan_req->dev;
750 				qdf_mem_free(scan_req);
751 				qdf_mutex_release(&scan_priv->scan_req_q_lock);
752 				cfg80211_debug("removed Scan id: %d, req = %pK, pending scans %d",
753 					       scan_id, req,
754 					       qdf_list_size(&scan_priv->
755 							     scan_req_q));
756 				return QDF_STATUS_SUCCESS;
757 			} else {
758 				qdf_mutex_release(&scan_priv->scan_req_q_lock);
759 				cfg80211_err("Failed to remove node scan id %d, pending scans %d",
760 				      scan_id,
761 				      qdf_list_size(&scan_priv->scan_req_q));
762 				return status;
763 			}
764 		}
765 	} while (QDF_STATUS_SUCCESS ==
766 		qdf_list_peek_next(&scan_priv->scan_req_q, node, &next_node));
767 	qdf_mutex_release(&scan_priv->scan_req_q_lock);
768 	cfg80211_err("Failed to find scan id %d", scan_id);
769 
770 	return status;
771 }
772 
773 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0))
774 /**
775  * wlan_cfg80211_scan_done() - Scan completed callback to cfg80211
776  * @netdev: Net device
777  * @req : Scan request
778  * @aborted : true scan aborted false scan success
779  *
780  * This function notifies scan done to cfg80211
781  *
782  * Return: none
783  */
784 static void wlan_cfg80211_scan_done(struct net_device *netdev,
785 				    struct cfg80211_scan_request *req,
786 				    bool aborted)
787 {
788 	struct cfg80211_scan_info info = {
789 		.aborted = aborted
790 	};
791 
792 	if (netdev->flags & IFF_UP)
793 		cfg80211_scan_done(req, &info);
794 }
795 #elif (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0))
796 /**
797  * wlan_cfg80211_scan_done() - Scan completed callback to cfg80211
798  * @netdev: Net device
799  * @req : Scan request
800  * @aborted : true scan aborted false scan success
801  *
802  * This function notifies scan done to cfg80211
803  *
804  * Return: none
805  */
806 static void wlan_cfg80211_scan_done(struct net_device *netdev,
807 				    struct cfg80211_scan_request *req,
808 				    bool aborted)
809 {
810 	if (netdev->flags & IFF_UP)
811 		cfg80211_scan_done(req, aborted);
812 }
813 #endif
814 
815 /**
816  * wlan_vendor_scan_callback() - Scan completed callback event
817  *
818  * @req : Scan request
819  * @aborted : true scan aborted false scan success
820  *
821  * This function sends scan completed callback event to NL.
822  *
823  * Return: none
824  */
825 static void wlan_vendor_scan_callback(struct cfg80211_scan_request *req,
826 					bool aborted)
827 {
828 	struct sk_buff *skb;
829 	struct nlattr *attr;
830 	int i;
831 	uint8_t scan_status;
832 	uint64_t cookie;
833 
834 	skb = cfg80211_vendor_event_alloc(req->wdev->wiphy, req->wdev,
835 			SCAN_DONE_EVENT_BUF_SIZE + 4 + NLMSG_HDRLEN,
836 			QCA_NL80211_VENDOR_SUBCMD_SCAN_DONE_INDEX,
837 			GFP_ATOMIC);
838 
839 	if (!skb) {
840 		cfg80211_err("skb alloc failed");
841 		qdf_mem_free(req);
842 		return;
843 	}
844 
845 	cookie = (uintptr_t)req;
846 
847 	attr = nla_nest_start(skb, QCA_WLAN_VENDOR_ATTR_SCAN_SSIDS);
848 	if (!attr)
849 		goto nla_put_failure;
850 	for (i = 0; i < req->n_ssids; i++) {
851 		if (nla_put(skb, i, req->ssids[i].ssid_len, req->ssids[i].ssid))
852 			goto nla_put_failure;
853 	}
854 	nla_nest_end(skb, attr);
855 
856 	attr = nla_nest_start(skb, QCA_WLAN_VENDOR_ATTR_SCAN_FREQUENCIES);
857 	if (!attr)
858 		goto nla_put_failure;
859 	for (i = 0; i < req->n_channels; i++) {
860 		if (nla_put_u32(skb, i, req->channels[i]->center_freq))
861 			goto nla_put_failure;
862 	}
863 	nla_nest_end(skb, attr);
864 
865 	if (req->ie &&
866 		nla_put(skb, QCA_WLAN_VENDOR_ATTR_SCAN_IE, req->ie_len,
867 			req->ie))
868 		goto nla_put_failure;
869 
870 	if (req->flags &&
871 		nla_put_u32(skb, QCA_WLAN_VENDOR_ATTR_SCAN_FLAGS, req->flags))
872 		goto nla_put_failure;
873 
874 	if (wlan_cfg80211_nla_put_u64(skb, QCA_WLAN_VENDOR_ATTR_SCAN_COOKIE,
875 					cookie))
876 		goto nla_put_failure;
877 
878 	scan_status = (aborted == true) ? VENDOR_SCAN_STATUS_ABORTED :
879 		VENDOR_SCAN_STATUS_NEW_RESULTS;
880 	if (nla_put_u8(skb, QCA_WLAN_VENDOR_ATTR_SCAN_STATUS, scan_status))
881 		goto nla_put_failure;
882 
883 	cfg80211_vendor_event(skb, GFP_ATOMIC);
884 	qdf_mem_free(req);
885 
886 	return;
887 
888 nla_put_failure:
889 	kfree_skb(skb);
890 	qdf_mem_free(req);
891 }
892 
893 
894 /**
895  * wlan_cfg80211_scan_done_callback() - scan done callback function called after
896  * scan is finished
897  * @vdev: vdev ptr
898  * @event: Scan event
899  * @args: Scan cb arg
900  *
901  * Return: void
902  */
903 static void wlan_cfg80211_scan_done_callback(
904 					struct wlan_objmgr_vdev *vdev,
905 					struct scan_event *event,
906 					void *args)
907 {
908 	struct cfg80211_scan_request *req = NULL;
909 	bool success = false;
910 	uint32_t scan_id = event->scan_id;
911 	uint8_t source = NL_SCAN;
912 	struct wlan_objmgr_pdev *pdev;
913 	struct pdev_osif_priv *osif_priv;
914 	struct net_device *netdev = NULL;
915 	QDF_STATUS status;
916 
917 	if (!util_is_scan_completed(event, &success))
918 		return;
919 
920 	cfg80211_debug("scan ID = %d vdev id = %d, event type %s(%d) reason = %s(%d)",
921 		       scan_id, event->vdev_id,
922 		       util_scan_get_ev_type_name(event->type), event->type,
923 		       util_scan_get_ev_reason_name(event->reason),
924 		       event->reason);
925 
926 	pdev = wlan_vdev_get_pdev(vdev);
927 	status = wlan_scan_request_dequeue(
928 			pdev, scan_id, &req, &source, &netdev);
929 	if (QDF_IS_STATUS_ERROR(status)) {
930 		cfg80211_err("Dequeue of scan request failed ID: %d", scan_id);
931 		goto allow_suspend;
932 	}
933 
934 	if (!netdev) {
935 		cfg80211_err("net dev is NULL,Drop scan event Id: %d",
936 				 scan_id);
937 		goto allow_suspend;
938 	}
939 
940 	/* Make sure vdev is active */
941 	status = wlan_objmgr_vdev_try_get_ref(vdev, WLAN_OSIF_ID);
942 	if (QDF_IS_STATUS_ERROR(status)) {
943 		cfg80211_err("Failed to get vdev reference: scan Id: %d",
944 				 scan_id);
945 		goto allow_suspend;
946 	}
947 
948 	/*
949 	 * Scan can be triggred from NL or vendor scan
950 	 * - If scan is triggered from NL then cfg80211 scan done should be
951 	 * called to updated scan completion to NL.
952 	 * - If scan is triggred through vendor command then
953 	 * scan done event will be posted
954 	 */
955 	if (NL_SCAN == source)
956 		wlan_cfg80211_scan_done(netdev, req, !success);
957 	else
958 		wlan_vendor_scan_callback(req, !success);
959 
960 	wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
961 allow_suspend:
962 	osif_priv = wlan_pdev_get_ospriv(pdev);
963 	if (qdf_list_empty(&osif_priv->osif_scan->scan_req_q))
964 		qdf_runtime_pm_allow_suspend(
965 			&osif_priv->osif_scan->runtime_pm_lock);
966 
967 }
968 
969 QDF_STATUS wlan_scan_runtime_pm_init(struct wlan_objmgr_pdev *pdev)
970 {
971 	struct pdev_osif_priv *osif_priv;
972 	struct osif_scan_pdev *scan_priv;
973 
974 	wlan_pdev_obj_lock(pdev);
975 	osif_priv = wlan_pdev_get_ospriv(pdev);
976 	wlan_pdev_obj_unlock(pdev);
977 
978 	scan_priv = osif_priv->osif_scan;
979 
980 	return qdf_runtime_lock_init(&scan_priv->runtime_pm_lock);
981 }
982 
983 void wlan_scan_runtime_pm_deinit(struct wlan_objmgr_pdev *pdev)
984 {
985 	struct pdev_osif_priv *osif_priv;
986 	struct osif_scan_pdev *scan_priv;
987 
988 	wlan_pdev_obj_lock(pdev);
989 	osif_priv = wlan_pdev_get_ospriv(pdev);
990 	wlan_pdev_obj_unlock(pdev);
991 
992 	scan_priv = osif_priv->osif_scan;
993 	qdf_runtime_lock_deinit(&scan_priv->runtime_pm_lock);
994 }
995 
996 QDF_STATUS wlan_cfg80211_scan_priv_init(struct wlan_objmgr_pdev *pdev)
997 {
998 	struct pdev_osif_priv *osif_priv;
999 	struct osif_scan_pdev *scan_priv;
1000 	struct wlan_objmgr_psoc *psoc;
1001 	wlan_scan_requester req_id;
1002 
1003 	psoc = wlan_pdev_get_psoc(pdev);
1004 
1005 	req_id = ucfg_scan_register_requester(psoc, "CFG",
1006 		wlan_cfg80211_scan_done_callback, NULL);
1007 
1008 	osif_priv = wlan_pdev_get_ospriv(pdev);
1009 	scan_priv = qdf_mem_malloc(sizeof(*scan_priv));
1010 	if (!scan_priv) {
1011 		cfg80211_err("failed to allocate memory");
1012 		return QDF_STATUS_E_NOMEM;
1013 	}
1014 	/* Initialize the scan request queue */
1015 	osif_priv->osif_scan = scan_priv;
1016 	qdf_list_create(&scan_priv->scan_req_q, WLAN_MAX_SCAN_COUNT);
1017 	qdf_mutex_create(&scan_priv->scan_req_q_lock);
1018 	scan_priv->req_id = req_id;
1019 
1020 	return QDF_STATUS_SUCCESS;
1021 }
1022 
1023 QDF_STATUS wlan_cfg80211_scan_priv_deinit(struct wlan_objmgr_pdev *pdev)
1024 {
1025 	struct pdev_osif_priv *osif_priv;
1026 	struct osif_scan_pdev *scan_priv;
1027 	struct wlan_objmgr_psoc *psoc;
1028 
1029 	psoc = wlan_pdev_get_psoc(pdev);
1030 	osif_priv = wlan_pdev_get_ospriv(pdev);
1031 
1032 	wlan_cfg80211_cleanup_scan_queue(pdev, NULL);
1033 	scan_priv = osif_priv->osif_scan;
1034 	ucfg_scan_unregister_requester(psoc, scan_priv->req_id);
1035 	qdf_list_destroy(&scan_priv->scan_req_q);
1036 	qdf_mutex_destroy(&scan_priv->scan_req_q_lock);
1037 	qdf_mem_free(scan_priv);
1038 	osif_priv->osif_scan = NULL;
1039 
1040 	return QDF_STATUS_SUCCESS;
1041 }
1042 
1043 /**
1044  * wlan_cfg80211_enqueue_for_cleanup() - Function to populate scan cleanup queue
1045  * @scan_cleanup_q: Scan cleanup queue to be populated
1046  * @scan_priv: Pointer to scan related data used by cfg80211 scan
1047  * @dev: Netdevice pointer
1048  *
1049  * The function synchrounously iterates through the global scan queue to
1050  * identify entries that have to be cleaned up, copies identified entries
1051  * to another queue(to send scan complete event to NL later) and removes the
1052  * entry from the global scan queue.
1053  *
1054  * Return: None
1055  */
1056 static void
1057 wlan_cfg80211_enqueue_for_cleanup(qdf_list_t *scan_cleanup_q,
1058 				  struct osif_scan_pdev *scan_priv,
1059 				  struct net_device *dev)
1060 {
1061 	struct scan_req *scan_req, *scan_cleanup;
1062 	qdf_list_node_t *node = NULL, *next_node = NULL;
1063 
1064 	qdf_mutex_acquire(&scan_priv->scan_req_q_lock);
1065 	if (QDF_STATUS_SUCCESS !=
1066 		qdf_list_peek_front(&scan_priv->scan_req_q,
1067 				    &node)) {
1068 		qdf_mutex_release(&scan_priv->scan_req_q_lock);
1069 		return;
1070 	}
1071 
1072 	while (node) {
1073 		/*
1074 		 * Keep track of the next node, to traverse through the list
1075 		 * in the event of the current node being deleted.
1076 		 */
1077 		qdf_list_peek_next(&scan_priv->scan_req_q,
1078 				   node, &next_node);
1079 		scan_req = qdf_container_of(node, struct scan_req, node);
1080 		if (!dev || (dev == scan_req->dev)) {
1081 			scan_cleanup = qdf_mem_malloc(sizeof(struct scan_req));
1082 			if (!scan_cleanup) {
1083 				qdf_mutex_release(&scan_priv->scan_req_q_lock);
1084 				cfg80211_err("Failed to allocate memory");
1085 				return;
1086 			}
1087 			scan_cleanup->scan_request = scan_req->scan_request;
1088 			scan_cleanup->scan_id = scan_req->scan_id;
1089 			scan_cleanup->source = scan_req->source;
1090 			scan_cleanup->dev = scan_req->dev;
1091 			qdf_list_insert_back(scan_cleanup_q,
1092 					     &scan_cleanup->node);
1093 			if (QDF_STATUS_SUCCESS !=
1094 				qdf_list_remove_node(&scan_priv->scan_req_q,
1095 						     node)) {
1096 				qdf_mutex_release(&scan_priv->scan_req_q_lock);
1097 				cfg80211_err("Failed to remove scan request");
1098 				return;
1099 			}
1100 			qdf_mem_free(scan_req);
1101 		}
1102 		node = next_node;
1103 		next_node = NULL;
1104 	}
1105 	qdf_mutex_release(&scan_priv->scan_req_q_lock);
1106 }
1107 
1108 void wlan_cfg80211_cleanup_scan_queue(struct wlan_objmgr_pdev *pdev,
1109 				      struct net_device *dev)
1110 {
1111 	struct scan_req *scan_req;
1112 	struct cfg80211_scan_request *req;
1113 	uint8_t source;
1114 	bool aborted = true;
1115 	struct pdev_osif_priv *osif_priv;
1116 	qdf_list_t scan_cleanup_q;
1117 	qdf_list_node_t *node = NULL;
1118 
1119 	if (!pdev) {
1120 		cfg80211_err("pdev is Null");
1121 		return;
1122 	}
1123 
1124 	osif_priv = wlan_pdev_get_ospriv(pdev);
1125 
1126 	/*
1127 	 * To avoid any race conditions, create a local list to copy all the
1128 	 * scan entries to be removed and then send scan complete for each of
1129 	 * the identified entries to NL.
1130 	 */
1131 	qdf_list_create(&scan_cleanup_q, WLAN_MAX_SCAN_COUNT);
1132 	wlan_cfg80211_enqueue_for_cleanup(&scan_cleanup_q,
1133 					  osif_priv->osif_scan, dev);
1134 
1135 	while (!qdf_list_empty(&scan_cleanup_q)) {
1136 		if (QDF_STATUS_SUCCESS != qdf_list_remove_front(&scan_cleanup_q,
1137 								&node)) {
1138 			cfg80211_err("Failed to remove scan request");
1139 			return;
1140 		}
1141 		scan_req = container_of(node, struct scan_req, node);
1142 		req = scan_req->scan_request;
1143 		source = scan_req->source;
1144 		if (NL_SCAN == source)
1145 			wlan_cfg80211_scan_done(scan_req->dev, req,
1146 						aborted);
1147 		else
1148 			wlan_vendor_scan_callback(req, aborted);
1149 
1150 		qdf_mem_free(scan_req);
1151 	}
1152 	qdf_list_destroy(&scan_cleanup_q);
1153 
1154 	return;
1155 }
1156 
1157 /**
1158  * wlan_cfg80211_update_scan_policy_type_flags() - Set scan flags according to
1159  * scan request
1160  * @scan_req: Pointer to csr scan req
1161  *
1162  * Return: None
1163  */
1164 #if defined(CFG80211_SCAN_DBS_CONTROL_SUPPORT) || \
1165 	   (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 16, 0))
1166 static void wlan_cfg80211_update_scan_policy_type_flags(
1167 	struct cfg80211_scan_request *req,
1168 	struct scan_req_params *scan_req)
1169 {
1170 	if (req->flags & NL80211_SCAN_FLAG_HIGH_ACCURACY)
1171 		scan_req->scan_policy_high_accuracy = true;
1172 	if (req->flags & NL80211_SCAN_FLAG_LOW_SPAN)
1173 		scan_req->scan_policy_low_span = true;
1174 	if (req->flags & NL80211_SCAN_FLAG_LOW_POWER)
1175 		scan_req->scan_policy_low_power = true;
1176 }
1177 #else
1178 static inline void wlan_cfg80211_update_scan_policy_type_flags(
1179 		struct cfg80211_scan_request *req,
1180 		struct scan_req_params *scan_req)
1181 {
1182 }
1183 #endif
1184 
1185 int wlan_cfg80211_scan(struct wlan_objmgr_pdev *pdev,
1186 		struct cfg80211_scan_request *request,
1187 		struct scan_params *params)
1188 {
1189 	struct net_device *dev = request->wdev->netdev;
1190 	struct scan_start_request *req;
1191 	struct wlan_ssid *pssid;
1192 	uint8_t i;
1193 	int status;
1194 	uint8_t num_chan = 0, channel;
1195 	uint32_t c_freq;
1196 	struct wlan_objmgr_vdev *vdev;
1197 	wlan_scan_requester req_id;
1198 	struct pdev_osif_priv *osif_priv;
1199 	struct wlan_objmgr_psoc *psoc;
1200 	wlan_scan_id scan_id;
1201 	bool is_p2p_scan = false;
1202 	enum wlan_band band;
1203 	struct net_device *netdev = NULL;
1204 
1205 	/* Get the vdev object */
1206 	vdev = wlan_objmgr_get_vdev_by_macaddr_from_pdev(pdev, dev->dev_addr,
1207 		WLAN_OSIF_ID);
1208 	if (vdev == NULL) {
1209 		cfg80211_err("vdev object is NULL");
1210 		return -EIO;
1211 	}
1212 	psoc = wlan_pdev_get_psoc(pdev);
1213 	if (!psoc) {
1214 		wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
1215 		cfg80211_err("Invalid psoc object");
1216 		return -EINVAL;
1217 	}
1218 	req = qdf_mem_malloc(sizeof(*req));
1219 	if (!req) {
1220 		wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
1221 		cfg80211_err("Failed to allocate scan request memory");
1222 		return -EINVAL;
1223 	}
1224 	/* Initialize the scan global params */
1225 	ucfg_scan_init_default_params(vdev, req);
1226 
1227 	/* Get NL global context from objmgr*/
1228 	osif_priv = wlan_pdev_get_ospriv(pdev);
1229 	req_id = osif_priv->osif_scan->req_id;
1230 	scan_id = ucfg_scan_get_scan_id(psoc);
1231 	if (!scan_id) {
1232 		wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
1233 		cfg80211_err("Invalid scan id");
1234 		qdf_mem_free(req);
1235 		return -EINVAL;
1236 	}
1237 	/* fill the scan request structure */
1238 	req->vdev = vdev;
1239 	req->scan_req.vdev_id = wlan_vdev_get_id(vdev);
1240 	req->scan_req.scan_id = scan_id;
1241 	req->scan_req.scan_req_id = req_id;
1242 
1243 	/* Update scan policy type flags according to cfg scan request */
1244 	wlan_cfg80211_update_scan_policy_type_flags(request,
1245 					     &req->scan_req);
1246 	/*
1247 	 * Even though supplicant doesn't provide any SSIDs, n_ssids is
1248 	 * set to 1.  Because of this, driver is assuming that this is not
1249 	 * wildcard scan and so is not aging out the scan results.
1250 	 */
1251 	if ((request->ssids) && (request->n_ssids == 1) &&
1252 	    ('\0' == request->ssids->ssid[0])) {
1253 		request->n_ssids = 0;
1254 	}
1255 
1256 	if ((request->ssids) && (0 < request->n_ssids)) {
1257 		int j;
1258 		req->scan_req.num_ssids = request->n_ssids;
1259 
1260 		/* copy all the ssid's and their length */
1261 		for (j = 0; j < request->n_ssids; j++)  {
1262 			pssid = &req->scan_req.ssid[j];
1263 			/* get the ssid length */
1264 			pssid->length = request->ssids[j].ssid_len;
1265 			qdf_mem_copy(pssid->ssid,
1266 				     &request->ssids[j].ssid[0],
1267 				     pssid->length);
1268 			pssid->ssid[pssid->length] = '\0';
1269 			cfg80211_notice("SSID number %d: %s", j,
1270 				    pssid->ssid);
1271 		}
1272 	}
1273 	if (request->ssids ||
1274 	   (wlan_vdev_mlme_get_opmode(vdev) == QDF_P2P_GO_MODE))
1275 		req->scan_req.scan_f_passive = false;
1276 
1277 	if (params->half_rate)
1278 		req->scan_req.scan_f_half_rate = true;
1279 	else if (params->quarter_rate)
1280 		req->scan_req.scan_f_quarter_rate = true;
1281 
1282 	if (params->strict_pscan)
1283 		req->scan_req.scan_f_strict_passive_pch = true;
1284 
1285 	if ((request->n_ssids == 1) && request->ssids &&
1286 	   !qdf_mem_cmp(&request->ssids[0], "DIRECT-", 7))
1287 		is_p2p_scan = true;
1288 
1289 	if (is_p2p_scan && request->no_cck)
1290 		req->scan_req.p2p_scan_type = SCAN_P2P_SEARCH;
1291 
1292 	/* Set dwell time mode according to scan policy type flags */
1293 	if (req->scan_req.scan_policy_high_accuracy)
1294 		req->scan_req.adaptive_dwell_time_mode =
1295 					SCAN_DWELL_MODE_STATIC;
1296 	if ((req->scan_req.scan_policy_low_power) ||
1297 	   (req->scan_req.scan_policy_low_span))
1298 		req->scan_req.adaptive_dwell_time_mode =
1299 					SCAN_DWELL_MODE_AGGRESSIVE;
1300 
1301 	/*
1302 	 * FW require at least 1 MAC to send probe request.
1303 	 * If MAC is all 0 set it to BC addr as this is the address on
1304 	 * which fw will send probe req.
1305 	 */
1306 	req->scan_req.num_bssid = 1;
1307 	wlan_copy_bssid_scan_request(req, request);
1308 	if (qdf_is_macaddr_zero(&req->scan_req.bssid_list[0]))
1309 		qdf_set_macaddr_broadcast(&req->scan_req.bssid_list[0]);
1310 
1311 	if (request->n_channels) {
1312 		char chl[(request->n_channels * 5) + 1];
1313 		int len = 0;
1314 #ifdef WLAN_POLICY_MGR_ENABLE
1315 		bool ap_or_go_present =
1316 			policy_mgr_mode_specific_connection_count(
1317 			     psoc, PM_SAP_MODE, NULL) ||
1318 			     policy_mgr_mode_specific_connection_count(
1319 			     psoc, PM_P2P_GO_MODE, NULL);
1320 #endif
1321 
1322 		for (i = 0; i < request->n_channels; i++) {
1323 			channel = request->channels[i]->hw_value;
1324 			c_freq = wlan_reg_chan_to_freq(pdev, channel);
1325 			if (wlan_reg_is_dsrc_chan(pdev, channel))
1326 				continue;
1327 #ifdef WLAN_POLICY_MGR_ENABLE
1328 			if (ap_or_go_present) {
1329 				bool ok;
1330 				int ret;
1331 
1332 				ret = policy_mgr_is_chan_ok_for_dnbs(psoc,
1333 								channel,
1334 								&ok);
1335 
1336 				if (QDF_IS_STATUS_ERROR(ret)) {
1337 					cfg80211_err("DNBS check failed");
1338 					qdf_mem_free(req);
1339 					status = -EINVAL;
1340 					goto end;
1341 				}
1342 				if (!ok)
1343 					continue;
1344 			}
1345 #endif
1346 			len += snprintf(chl + len, 5, "%d ", channel);
1347 			req->scan_req.chan_list.chan[num_chan].freq = c_freq;
1348 			band = util_scan_scm_freq_to_band(c_freq);
1349 			if (band == WLAN_BAND_2_4_GHZ)
1350 				req->scan_req.chan_list.chan[num_chan].phymode =
1351 					SCAN_PHY_MODE_11G;
1352 			else
1353 				req->scan_req.chan_list.chan[num_chan].phymode =
1354 					SCAN_PHY_MODE_11A;
1355 			num_chan++;
1356 		}
1357 		cfg80211_notice("Channel-List: %s", chl);
1358 		cfg80211_notice("No. of Scan Channels: %d", num_chan);
1359 	}
1360 	if (!num_chan) {
1361 		cfg80211_err("Received zero non-dsrc channels");
1362 		qdf_mem_free(req);
1363 		status = -EINVAL;
1364 		goto end;
1365 	}
1366 	req->scan_req.chan_list.num_chan = num_chan;
1367 
1368 	/* P2P increase the scan priority */
1369 	if (is_p2p_scan)
1370 		req->scan_req.scan_priority = SCAN_PRIORITY_HIGH;
1371 	if (request->ie_len) {
1372 		req->scan_req.extraie.ptr = qdf_mem_malloc(request->ie_len);
1373 		if (!req->scan_req.extraie.ptr) {
1374 			cfg80211_err("Failed to allocate memory");
1375 			status = -ENOMEM;
1376 			qdf_mem_free(req);
1377 			goto end;
1378 		}
1379 		req->scan_req.extraie.len = request->ie_len;
1380 		qdf_mem_copy(req->scan_req.extraie.ptr, request->ie,
1381 				request->ie_len);
1382 	} else if (params->default_ie.ptr && params->default_ie.len) {
1383 		req->scan_req.extraie.ptr =
1384 			qdf_mem_malloc(params->default_ie.len);
1385 		if (!req->scan_req.extraie.ptr) {
1386 			cfg80211_err("Failed to allocate memory");
1387 			status = -ENOMEM;
1388 			qdf_mem_free(req);
1389 			goto end;
1390 		}
1391 		req->scan_req.extraie.len = params->default_ie.len;
1392 		qdf_mem_copy(req->scan_req.extraie.ptr, params->default_ie.ptr,
1393 			     params->default_ie.len);
1394 	}
1395 
1396 	if (!is_p2p_scan) {
1397 		if (req->scan_req.scan_random.randomize)
1398 			wlan_scan_rand_attrs(vdev, request, req);
1399 		if (ucfg_ie_whitelist_enabled(psoc, vdev) &&
1400 		    ucfg_copy_ie_whitelist_attrs(psoc,
1401 					&req->scan_req.ie_whitelist))
1402 			req->scan_req.scan_f_en_ie_whitelist_in_probe = true;
1403 	}
1404 
1405 	if (request->flags & NL80211_SCAN_FLAG_FLUSH)
1406 		ucfg_scan_flush_results(pdev, NULL);
1407 
1408 	/* Enqueue the scan request */
1409 	wlan_scan_request_enqueue(pdev, request, params->source,
1410 				  req->scan_req.scan_id);
1411 
1412 	qdf_runtime_pm_prevent_suspend(
1413 		&osif_priv->osif_scan->runtime_pm_lock);
1414 
1415 	status = ucfg_scan_start(req);
1416 	if (QDF_STATUS_SUCCESS != status) {
1417 		cfg80211_err("ucfg_scan_start returned error %d", status);
1418 		if (QDF_STATUS_E_RESOURCES == status) {
1419 			cfg80211_err("HO is in progress.So defer the scan by informing busy");
1420 			status = -EBUSY;
1421 		} else {
1422 			status = -EIO;
1423 		}
1424 		wlan_scan_request_dequeue(pdev, scan_id, &request,
1425 					  &params->source, &netdev);
1426 		if (qdf_list_empty(&osif_priv->osif_scan->scan_req_q))
1427 			qdf_runtime_pm_allow_suspend(
1428 				&osif_priv->osif_scan->runtime_pm_lock);
1429 	}
1430 
1431 end:
1432 	wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
1433 	return status;
1434 }
1435 
1436 /**
1437  * wlan_get_scanid() - API to get the scan id
1438  * from the scan cookie attribute.
1439  * @pdev: Pointer to pdev object
1440  * @scan_id: Pointer to scan id
1441  * @cookie : Scan cookie attribute
1442  *
1443  * API to get the scan id from the scan cookie attribute
1444  * sent from supplicant by matching scan request.
1445  *
1446  * Return: 0 for success, non zero for failure
1447  */
1448 static int wlan_get_scanid(struct wlan_objmgr_pdev *pdev,
1449 			       uint32_t *scan_id, uint64_t cookie)
1450 {
1451 	struct scan_req *scan_req;
1452 	qdf_list_node_t *node = NULL;
1453 	qdf_list_node_t *ptr_node = NULL;
1454 	int ret = -EINVAL;
1455 	struct pdev_osif_priv *osif_ctx;
1456 	struct osif_scan_pdev *scan_priv;
1457 
1458 	/* Get NL global context from objmgr*/
1459 	osif_ctx = wlan_pdev_get_ospriv(pdev);
1460 	if (!osif_ctx) {
1461 		cfg80211_err("Failed to retrieve osif context");
1462 		return ret;
1463 	}
1464 	scan_priv = osif_ctx->osif_scan;
1465 	qdf_mutex_acquire(&scan_priv->scan_req_q_lock);
1466 	if (qdf_list_empty(&scan_priv->scan_req_q)) {
1467 		qdf_mutex_release(&scan_priv->scan_req_q_lock);
1468 		cfg80211_err("Failed to retrieve scan id");
1469 		return ret;
1470 	}
1471 
1472 	if (QDF_STATUS_SUCCESS !=
1473 			    qdf_list_peek_front(&scan_priv->scan_req_q,
1474 			    &ptr_node)) {
1475 		qdf_mutex_release(&scan_priv->scan_req_q_lock);
1476 		return ret;
1477 	}
1478 
1479 	do {
1480 		node = ptr_node;
1481 		scan_req = qdf_container_of(node, struct scan_req, node);
1482 		if (cookie ==
1483 		    (uintptr_t)(scan_req->scan_request)) {
1484 			*scan_id = scan_req->scan_id;
1485 			ret = 0;
1486 			break;
1487 		}
1488 	} while (QDF_STATUS_SUCCESS ==
1489 		 qdf_list_peek_next(&scan_priv->scan_req_q,
1490 		 node, &ptr_node));
1491 
1492 	qdf_mutex_release(&scan_priv->scan_req_q_lock);
1493 
1494 	return ret;
1495 }
1496 
1497 QDF_STATUS wlan_abort_scan(struct wlan_objmgr_pdev *pdev,
1498 				   uint32_t pdev_id, uint32_t vdev_id,
1499 				   wlan_scan_id scan_id, bool sync)
1500 {
1501 	struct scan_cancel_request *req;
1502 	struct pdev_osif_priv *osif_ctx;
1503 	struct osif_scan_pdev *scan_priv;
1504 	QDF_STATUS status;
1505 	struct wlan_objmgr_vdev *vdev;
1506 
1507 	req = qdf_mem_malloc(sizeof(*req));
1508 	if (!req) {
1509 		cfg80211_err("Failed to allocate memory");
1510 		return QDF_STATUS_E_NOMEM;
1511 	}
1512 
1513 	/* Get NL global context from objmgr*/
1514 	osif_ctx = wlan_pdev_get_ospriv(pdev);
1515 	if (!osif_ctx) {
1516 		cfg80211_err("Failed to retrieve osif context");
1517 		qdf_mem_free(req);
1518 		return QDF_STATUS_E_FAILURE;
1519 	}
1520 	if (vdev_id == INVAL_VDEV_ID)
1521 		vdev = wlan_objmgr_get_vdev_by_id_from_pdev(pdev,
1522 				0, WLAN_OSIF_ID);
1523 	else
1524 		vdev = wlan_objmgr_get_vdev_by_id_from_pdev(pdev,
1525 				vdev_id, WLAN_OSIF_ID);
1526 
1527 	if (!vdev) {
1528 		cfg80211_err("Failed get vdev");
1529 		qdf_mem_free(req);
1530 		return QDF_STATUS_E_INVAL;
1531 	}
1532 	scan_priv = osif_ctx->osif_scan;
1533 	req->cancel_req.requester = scan_priv->req_id;
1534 	req->vdev = vdev;
1535 	req->cancel_req.scan_id = scan_id;
1536 	req->cancel_req.pdev_id = pdev_id;
1537 	req->cancel_req.vdev_id = vdev_id;
1538 	if (scan_id != INVAL_SCAN_ID)
1539 		req->cancel_req.req_type = WLAN_SCAN_CANCEL_SINGLE;
1540 	else if (vdev_id == INVAL_VDEV_ID)
1541 		req->cancel_req.req_type = WLAN_SCAN_CANCEL_PDEV_ALL;
1542 	else
1543 		req->cancel_req.req_type = WLAN_SCAN_CANCEL_VDEV_ALL;
1544 
1545 	if (sync)
1546 		status = ucfg_scan_cancel_sync(req);
1547 	else
1548 		status = ucfg_scan_cancel(req);
1549 	if (QDF_IS_STATUS_ERROR(status))
1550 		cfg80211_err("Cancel scan request failed");
1551 
1552 	wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
1553 
1554 	return status;
1555 }
1556 
1557 int wlan_cfg80211_abort_scan(struct wlan_objmgr_pdev *pdev)
1558 {
1559 	uint8_t pdev_id;
1560 
1561 	pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
1562 
1563 	if (ucfg_scan_get_pdev_status(pdev) !=
1564 	   SCAN_NOT_IN_PROGRESS)
1565 		wlan_abort_scan(pdev, pdev_id,
1566 			INVAL_VDEV_ID, INVAL_SCAN_ID, true);
1567 
1568 	return 0;
1569 }
1570 
1571 int wlan_vendor_abort_scan(struct wlan_objmgr_pdev *pdev,
1572 			const void *data, int data_len)
1573 {
1574 	struct nlattr *tb[QCA_WLAN_VENDOR_ATTR_SCAN_MAX + 1];
1575 	int ret = -EINVAL;
1576 	wlan_scan_id scan_id;
1577 	uint64_t cookie;
1578 	uint8_t pdev_id;
1579 
1580 	pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
1581 	if (wlan_cfg80211_nla_parse(tb, QCA_WLAN_VENDOR_ATTR_SCAN_MAX, data,
1582 				    data_len, scan_policy)) {
1583 		cfg80211_err("Invalid ATTR");
1584 		return ret;
1585 	}
1586 
1587 	if (tb[QCA_WLAN_VENDOR_ATTR_SCAN_COOKIE]) {
1588 		cookie = nla_get_u64(
1589 			    tb[QCA_WLAN_VENDOR_ATTR_SCAN_COOKIE]);
1590 		ret = wlan_get_scanid(pdev, &scan_id, cookie);
1591 		if (ret != 0)
1592 			return ret;
1593 		if (ucfg_scan_get_pdev_status(pdev) !=
1594 		   SCAN_NOT_IN_PROGRESS)
1595 			wlan_abort_scan(pdev, INVAL_PDEV_ID,
1596 					INVAL_VDEV_ID, scan_id, true);
1597 	}
1598 	return 0;
1599 }
1600 
1601 static inline struct ieee80211_channel *
1602 wlan_get_ieee80211_channel(struct wiphy *wiphy,
1603 		struct wlan_objmgr_pdev *pdev,
1604 		int chan_no)
1605 {
1606 	unsigned int freq;
1607 	struct ieee80211_channel *chan;
1608 
1609 	freq = wlan_reg_chan_to_freq(pdev, chan_no);
1610 	chan = ieee80211_get_channel(wiphy, freq);
1611 	if (!chan)
1612 		cfg80211_err("chan is NULL, chan_no: %d freq: %d",
1613 			chan_no, freq);
1614 
1615 	return chan;
1616 }
1617 
1618 #ifdef WLAN_ENABLE_AGEIE_ON_SCAN_RESULTS
1619 static inline int wlan_get_frame_len(struct scan_cache_entry *scan_params)
1620 {
1621 	return util_scan_entry_frame_len(scan_params) + sizeof(qcom_ie_age);
1622 }
1623 
1624 static inline void wlan_add_age_ie(uint8_t *mgmt_frame,
1625 	struct scan_cache_entry *scan_params)
1626 {
1627 	qcom_ie_age *qie_age = NULL;
1628 
1629 	/* GPS Requirement: need age ie per entry. Using vendor specific. */
1630 	/* Assuming this is the last IE, copy at the end */
1631 	qie_age = (qcom_ie_age *) (mgmt_frame +
1632 		   util_scan_entry_frame_len(scan_params));
1633 	qie_age->element_id = QCOM_VENDOR_IE_ID;
1634 	qie_age->len = QCOM_VENDOR_IE_AGE_LEN;
1635 	qie_age->oui_1 = QCOM_OUI1;
1636 	qie_age->oui_2 = QCOM_OUI2;
1637 	qie_age->oui_3 = QCOM_OUI3;
1638 	qie_age->type = QCOM_VENDOR_IE_AGE_TYPE;
1639 	/*
1640 	 * Lowi expects the timestamp of bss in units of 1/10 ms. In driver
1641 	 * all bss related timestamp is in units of ms. Due to this when scan
1642 	 * results are sent to lowi the scan age is high.To address this,
1643 	 * send age in units of 1/10 ms.
1644 	 */
1645 	qie_age->age =
1646 		(uint32_t)(qdf_mc_timer_get_system_time() -
1647 		  scan_params->scan_entry_time)/10;
1648 	qie_age->tsf_delta = scan_params->tsf_delta;
1649 	memcpy(&qie_age->beacon_tsf, scan_params->tsf_info.data,
1650 		  sizeof(qie_age->beacon_tsf));
1651 	memcpy(&qie_age->seq_ctrl, &scan_params->seq_num,
1652 	       sizeof(qie_age->seq_ctrl));
1653 }
1654 #else
1655 static inline int wlan_get_frame_len(struct scan_cache_entry *scan_params)
1656 {
1657 	return util_scan_entry_frame_len(scan_params);
1658 }
1659 
1660 static inline void wlan_add_age_ie(uint8_t *mgmt_frame,
1661 	struct scan_cache_entry *scan_params)
1662 {
1663 }
1664 #endif /* WLAN_ENABLE_AGEIE_ON_SCAN_RESULTS */
1665 
1666 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)) || \
1667 	defined(CFG80211_INFORM_BSS_FRAME_DATA)
1668 /**
1669  * wlan_fill_per_chain_rssi() - fill per chain RSSI in inform bss
1670  * @data: bss data
1671  * @per_chain_snr: per chain RSSI
1672  *
1673  * Return: void
1674  */
1675 #if defined(CFG80211_SCAN_PER_CHAIN_RSSI_SUPPORT) || \
1676 	   (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 16, 0))
1677 static void wlan_fill_per_chain_rssi(struct cfg80211_inform_bss *data,
1678 	struct wlan_cfg80211_inform_bss *bss)
1679 {
1680 
1681 	uint32_t i;
1682 
1683 	if (!bss || !data) {
1684 		cfg80211_err("Received bss is NULL");
1685 		return;
1686 	}
1687 	for (i = 0; i < WLAN_MGMT_TXRX_HOST_MAX_ANTENNA; i++) {
1688 		if (!bss->per_chain_snr[i] ||
1689 		    (bss->per_chain_snr[i] == WLAN_INVALID_PER_CHAIN_RSSI))
1690 			continue;
1691 		/* Add noise margin to SNR to convert it to RSSI */
1692 		data->chain_signal[i] = bss->per_chain_snr[i] +
1693 					WLAN_NOISE_FLOOR_DBM_DEFAULT;
1694 		data->chains |= BIT(i);
1695 	}
1696 }
1697 #else
1698 static inline void
1699 wlan_fill_per_chain_rssi(struct cfg80211_inform_bss *data,
1700 	struct wlan_cfg80211_inform_bss *bss)
1701 {
1702 }
1703 #endif
1704 
1705 struct cfg80211_bss *
1706 wlan_cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1707 		struct wlan_cfg80211_inform_bss *bss)
1708 {
1709 	struct cfg80211_inform_bss data  = {0};
1710 
1711 	if (!bss) {
1712 		cfg80211_err("bss is null");
1713 		return NULL;
1714 	}
1715 	wlan_fill_per_chain_rssi(&data, bss);
1716 
1717 	data.chan = bss->chan;
1718 	data.boottime_ns = bss->boottime_ns;
1719 	data.signal = bss->rssi;
1720 	return cfg80211_inform_bss_frame_data(wiphy, &data, bss->mgmt,
1721 					      bss->frame_len, GFP_ATOMIC);
1722 }
1723 #else
1724 struct cfg80211_bss *
1725 wlan_cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1726 		struct wlan_cfg80211_inform_bss *bss)
1727 
1728 {
1729 	return cfg80211_inform_bss_frame(wiphy, bss->chan, bss->mgmt,
1730 					 bss->frame_len,
1731 					 bss->rssi, GFP_ATOMIC);
1732 }
1733 #endif
1734 
1735 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
1736 static inline void wlan_cfg80211_put_bss(struct wiphy *wiphy,
1737 		struct cfg80211_bss *bss)
1738 {
1739 	cfg80211_put_bss(wiphy, bss);
1740 }
1741 #else
1742 static inline void wlan_cfg80211_put_bss(struct wiphy *wiphy,
1743 		struct cfg80211_bss *bss)
1744 {
1745 	cfg80211_put_bss(bss);
1746 }
1747 #endif
1748 
1749 void wlan_cfg80211_inform_bss_frame(struct wlan_objmgr_pdev *pdev,
1750 		struct scan_cache_entry *scan_params)
1751 {
1752 	struct pdev_osif_priv *pdev_ospriv = wlan_pdev_get_ospriv(pdev);
1753 	struct wiphy *wiphy;
1754 	struct cfg80211_bss *bss = NULL;
1755 	struct wlan_cfg80211_inform_bss bss_data = {0};
1756 
1757 	if (!pdev_ospriv) {
1758 		cfg80211_err("os_priv is NULL");
1759 		return;
1760 	}
1761 
1762 	wiphy = pdev_ospriv->wiphy;
1763 
1764 	bss_data.frame_len = wlan_get_frame_len(scan_params);
1765 	bss_data.mgmt = qdf_mem_malloc_atomic(bss_data.frame_len);
1766 	if (!bss_data.mgmt) {
1767 		cfg80211_err("mem alloc failed");
1768 		return;
1769 	}
1770 	qdf_mem_copy(bss_data.mgmt,
1771 		 util_scan_entry_frame_ptr(scan_params),
1772 		 util_scan_entry_frame_len(scan_params));
1773 	/*
1774 	 * Android does not want the timestamp from the frame.
1775 	 * Instead it wants a monotonic increasing value
1776 	 */
1777 	bss_data.mgmt->u.probe_resp.timestamp = qdf_get_monotonic_boottime();
1778 	wlan_add_age_ie((uint8_t *)bss_data.mgmt, scan_params);
1779 	/*
1780 	 * Based on .ini configuration, raw rssi can be reported for bss.
1781 	 * Raw rssi is typically used for estimating power.
1782 	 */
1783 	bss_data.rssi = scan_params->rssi_raw;
1784 
1785 	bss_data.chan = wlan_get_ieee80211_channel(wiphy, pdev,
1786 		scan_params->channel.chan_idx);
1787 	if (!bss_data.chan) {
1788 		qdf_mem_free(bss_data.mgmt);
1789 		return;
1790 	}
1791 
1792 	/*
1793 	 * Supplicant takes the signal strength in terms of
1794 	 * mBm (1 dBm = 100 mBm).
1795 	 */
1796 	bss_data.rssi = QDF_MIN(bss_data.rssi, 0) * 100;
1797 
1798 	bss_data.boottime_ns = scan_params->boottime_ns;
1799 
1800 	qdf_mem_copy(bss_data.per_chain_snr, scan_params->per_chain_snr,
1801 		     WLAN_MGMT_TXRX_HOST_MAX_ANTENNA);
1802 
1803 	cfg80211_debug("BSSID: %pM Channel:%d RSSI:%d", bss_data.mgmt->bssid,
1804 		       bss_data.chan->center_freq, (int)(bss_data.rssi / 100));
1805 
1806 	bss = wlan_cfg80211_inform_bss_frame_data(wiphy, &bss_data);
1807 	if (!bss)
1808 		cfg80211_err("failed to inform bss");
1809 	else
1810 		wlan_cfg80211_put_bss(wiphy, bss);
1811 
1812 	qdf_mem_free(bss_data.mgmt);
1813 }
1814