xref: /wlan-dirver/qca-wifi-host-cmn/hif/src/pcie/if_pci.c (revision 2888b71da71bce103343119fa1b31f4a0cee07c8)
1 /*
2  * Copyright (c) 2013-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <linux/pci.h>
21 #include <linux/slab.h>
22 #include <linux/interrupt.h>
23 #include <linux/if_arp.h>
24 #include <linux/of_pci.h>
25 #include <linux/version.h>
26 #include "hif_io32.h"
27 #include "if_pci.h"
28 #include "hif.h"
29 #include "target_type.h"
30 #include "hif_main.h"
31 #include "ce_main.h"
32 #include "ce_api.h"
33 #include "ce_internal.h"
34 #include "ce_reg.h"
35 #include "ce_bmi.h"
36 #include "regtable.h"
37 #include "hif_hw_version.h"
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include "qdf_status.h"
41 #include "qdf_atomic.h"
42 #include "qdf_platform.h"
43 #include "pld_common.h"
44 #include "mp_dev.h"
45 #include "hif_debug.h"
46 
47 #ifdef QCA_SUPPORT_LEGACY_INTERRUPTS
48 char *legacy_ic_irqname[] = {
49 "ce0",
50 "ce1",
51 "ce2",
52 "ce3",
53 "ce4",
54 "ce5",
55 "ce6",
56 "ce7",
57 "ce8",
58 "ce9",
59 "ce10",
60 "ce11",
61 "ce12",
62 "ce13",
63 "ce14",
64 "ce15",
65 "reo2sw8_intr2",
66 "reo2sw7_intr2",
67 "reo2sw6_intr2",
68 "reo2sw5_intr2",
69 "reo2sw4_intr2",
70 "reo2sw3_intr2",
71 "reo2sw2_intr2",
72 "reo2sw1_intr2",
73 "reo2sw0_intr2",
74 "reo2sw8_intr",
75 "reo2sw7_intr",
76 "reo2sw6_inrr",
77 "reo2sw5_intr",
78 "reo2sw4_intr",
79 "reo2sw3_intr",
80 "reo2sw2_intr",
81 "reo2sw1_intr",
82 "reo2sw0_intr",
83 "reo2status_intr2",
84 "reo_status",
85 "reo2rxdma_out_2",
86 "reo2rxdma_out_1",
87 "reo_cmd",
88 "sw2reo6",
89 "sw2reo5",
90 "sw2reo1",
91 "sw2reo",
92 "rxdma2reo_mlo_0_dst_ring1",
93 "rxdma2reo_mlo_0_dst_ring0",
94 "rxdma2reo_mlo_1_dst_ring1",
95 "rxdma2reo_mlo_1_dst_ring0",
96 "rxdma2reo_dst_ring1",
97 "rxdma2reo_dst_ring0",
98 "rxdma2sw_dst_ring1",
99 "rxdma2sw_dst_ring0",
100 "rxdma2release_dst_ring1",
101 "rxdma2release_dst_ring0",
102 "sw2rxdma_2_src_ring",
103 "sw2rxdma_1_src_ring",
104 "sw2rxdma_0",
105 "wbm2sw6_release2",
106 "wbm2sw5_release2",
107 "wbm2sw4_release2",
108 "wbm2sw3_release2",
109 "wbm2sw2_release2",
110 "wbm2sw1_release2",
111 "wbm2sw0_release2",
112 "wbm2sw6_release",
113 "wbm2sw5_release",
114 "wbm2sw4_release",
115 "wbm2sw3_release",
116 "wbm2sw2_release",
117 "wbm2sw1_release",
118 "wbm2sw0_release",
119 "wbm2sw_link",
120 "wbm_error_release",
121 "sw2txmon_src_ring",
122 "sw2rxmon_src_ring",
123 "txmon2sw_p1_intr1",
124 "txmon2sw_p1_intr0",
125 "txmon2sw_p0_dest1",
126 "txmon2sw_p0_dest0",
127 "rxmon2sw_p1_intr1",
128 "rxmon2sw_p1_intr0",
129 "rxmon2sw_p0_dest1",
130 "rxmon2sw_p0_dest0",
131 "sw_release",
132 "sw2tcl_credit2",
133 "sw2tcl_credit",
134 "sw2tcl4",
135 "sw2tcl5",
136 "sw2tcl3",
137 "sw2tcl2",
138 "sw2tcl1",
139 "sw2wbm1",
140 "misc_8",
141 "misc_7",
142 "misc_6",
143 "misc_5",
144 "misc_4",
145 "misc_3",
146 "misc_2",
147 "misc_1",
148 "misc_0",
149 };
150 #endif
151 
152 #if (defined(QCA_WIFI_QCA6390) || defined(QCA_WIFI_QCA6490) || \
153 	defined(QCA_WIFI_KIWI))
154 #include "hal_api.h"
155 #endif
156 
157 #include "if_pci_internal.h"
158 #include "ce_tasklet.h"
159 #include "targaddrs.h"
160 #include "hif_exec.h"
161 
162 #include "pci_api.h"
163 #include "ahb_api.h"
164 #include "wlan_cfg.h"
165 #include "qdf_hang_event_notifier.h"
166 #include "qdf_platform.h"
167 #include "qal_devnode.h"
168 #include "qdf_irq.h"
169 
170 /* Maximum ms timeout for host to wake up target */
171 #define PCIE_WAKE_TIMEOUT 1000
172 #define RAMDUMP_EVENT_TIMEOUT 2500
173 
174 /* Setting SOC_GLOBAL_RESET during driver unload causes intermittent
175  * PCIe data bus error
176  * As workaround for this issue - changing the reset sequence to
177  * use TargetCPU warm reset * instead of SOC_GLOBAL_RESET
178  */
179 #define CPU_WARM_RESET_WAR
180 #define WLAN_CFG_MAX_PCIE_GROUPS 4
181 #ifdef QCA_WIFI_QCN9224
182 #define WLAN_CFG_MAX_CE_COUNT 16
183 #else
184 #define WLAN_CFG_MAX_CE_COUNT 12
185 #endif
186 #define DP_IRQ_NAME_LEN 25
187 char dp_irqname[WLAN_CFG_MAX_PCIE_GROUPS][WLAN_CFG_INT_NUM_CONTEXTS][DP_IRQ_NAME_LEN] = {};
188 char ce_irqname[WLAN_CFG_MAX_PCIE_GROUPS][WLAN_CFG_MAX_CE_COUNT][DP_IRQ_NAME_LEN] = {};
189 
190 static inline int hif_get_pci_slot(struct hif_softc *scn)
191 {
192 	int pci_slot = pld_get_pci_slot(scn->qdf_dev->dev);
193 
194 	if (pci_slot < 0) {
195 		hif_err("Invalid PCI SLOT %d", pci_slot);
196 		qdf_assert_always(0);
197 		return 0;
198 	} else {
199 		return pci_slot;
200 	}
201 }
202 
203 /*
204  * Top-level interrupt handler for all PCI interrupts from a Target.
205  * When a block of MSI interrupts is allocated, this top-level handler
206  * is not used; instead, we directly call the correct sub-handler.
207  */
208 struct ce_irq_reg_table {
209 	uint32_t irq_enable;
210 	uint32_t irq_status;
211 };
212 
213 #ifndef QCA_WIFI_3_0_ADRASTEA
214 static inline void hif_pci_route_adrastea_interrupt(struct hif_pci_softc *sc)
215 {
216 }
217 #else
218 static void hif_pci_route_adrastea_interrupt(struct hif_pci_softc *sc)
219 {
220 	struct hif_softc *scn = HIF_GET_SOFTC(sc);
221 	unsigned int target_enable0, target_enable1;
222 	unsigned int target_cause0, target_cause1;
223 
224 	target_enable0 = hif_read32_mb(sc, sc->mem + Q6_ENABLE_REGISTER_0);
225 	target_enable1 = hif_read32_mb(sc, sc->mem + Q6_ENABLE_REGISTER_1);
226 	target_cause0 = hif_read32_mb(sc, sc->mem + Q6_CAUSE_REGISTER_0);
227 	target_cause1 = hif_read32_mb(sc, sc->mem + Q6_CAUSE_REGISTER_1);
228 
229 	if ((target_enable0 & target_cause0) ||
230 	    (target_enable1 & target_cause1)) {
231 		hif_write32_mb(sc, sc->mem + Q6_ENABLE_REGISTER_0, 0);
232 		hif_write32_mb(sc, sc->mem + Q6_ENABLE_REGISTER_1, 0);
233 
234 		if (scn->notice_send)
235 			pld_intr_notify_q6(sc->dev);
236 	}
237 }
238 #endif
239 
240 
241 /**
242  * pci_dispatch_ce_irq() - pci_dispatch_ce_irq
243  * @scn: scn
244  *
245  * Return: N/A
246  */
247 static void pci_dispatch_interrupt(struct hif_softc *scn)
248 {
249 	uint32_t intr_summary;
250 	int id;
251 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
252 
253 	if (scn->hif_init_done != true)
254 		return;
255 
256 	if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
257 		return;
258 
259 	intr_summary = CE_INTERRUPT_SUMMARY(scn);
260 
261 	if (intr_summary == 0) {
262 		if ((scn->target_status != TARGET_STATUS_RESET) &&
263 			(!qdf_atomic_read(&scn->link_suspended))) {
264 
265 			hif_write32_mb(scn, scn->mem +
266 				(SOC_CORE_BASE_ADDRESS |
267 				PCIE_INTR_ENABLE_ADDRESS),
268 				HOST_GROUP0_MASK);
269 
270 			hif_read32_mb(scn, scn->mem +
271 					(SOC_CORE_BASE_ADDRESS |
272 					PCIE_INTR_ENABLE_ADDRESS));
273 		}
274 		Q_TARGET_ACCESS_END(scn);
275 		return;
276 	}
277 	Q_TARGET_ACCESS_END(scn);
278 
279 	scn->ce_irq_summary = intr_summary;
280 	for (id = 0; intr_summary && (id < scn->ce_count); id++) {
281 		if (intr_summary & (1 << id)) {
282 			intr_summary &= ~(1 << id);
283 			ce_dispatch_interrupt(id,  &hif_state->tasklets[id]);
284 		}
285 	}
286 }
287 
288 irqreturn_t hif_pci_legacy_ce_interrupt_handler(int irq, void *arg)
289 {
290 	struct hif_pci_softc *sc = (struct hif_pci_softc *)arg;
291 	struct hif_softc *scn = HIF_GET_SOFTC(sc);
292 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(arg);
293 
294 	volatile int tmp;
295 	uint16_t val = 0;
296 	uint32_t bar0 = 0;
297 	uint32_t fw_indicator_address, fw_indicator;
298 	bool ssr_irq = false;
299 	unsigned int host_cause, host_enable;
300 
301 	if (LEGACY_INTERRUPTS(sc)) {
302 		if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
303 			return IRQ_HANDLED;
304 
305 		if (ADRASTEA_BU) {
306 			host_enable = hif_read32_mb(sc, sc->mem +
307 						    PCIE_INTR_ENABLE_ADDRESS);
308 			host_cause = hif_read32_mb(sc, sc->mem +
309 						   PCIE_INTR_CAUSE_ADDRESS);
310 			if (!(host_enable & host_cause)) {
311 				hif_pci_route_adrastea_interrupt(sc);
312 				return IRQ_HANDLED;
313 			}
314 		}
315 
316 		/* Clear Legacy PCI line interrupts
317 		 * IMPORTANT: INTR_CLR regiser has to be set
318 		 * after INTR_ENABLE is set to 0,
319 		 * otherwise interrupt can not be really cleared
320 		 */
321 		hif_write32_mb(sc, sc->mem +
322 			      (SOC_CORE_BASE_ADDRESS |
323 			       PCIE_INTR_ENABLE_ADDRESS), 0);
324 
325 		hif_write32_mb(sc, sc->mem +
326 			      (SOC_CORE_BASE_ADDRESS | PCIE_INTR_CLR_ADDRESS),
327 			       ADRASTEA_BU ?
328 			       (host_enable & host_cause) :
329 			      HOST_GROUP0_MASK);
330 
331 		if (ADRASTEA_BU)
332 			hif_write32_mb(sc, sc->mem + 0x2f100c,
333 				       (host_cause >> 1));
334 
335 		/* IMPORTANT: this extra read transaction is required to
336 		 * flush the posted write buffer
337 		 */
338 		if (!ADRASTEA_BU) {
339 		tmp =
340 			hif_read32_mb(sc, sc->mem +
341 				     (SOC_CORE_BASE_ADDRESS |
342 				      PCIE_INTR_ENABLE_ADDRESS));
343 
344 		if (tmp == 0xdeadbeef) {
345 			hif_err("SoC returns 0xdeadbeef!!");
346 
347 			pci_read_config_word(sc->pdev, PCI_VENDOR_ID, &val);
348 			hif_err("PCI Vendor ID = 0x%04x", val);
349 
350 			pci_read_config_word(sc->pdev, PCI_DEVICE_ID, &val);
351 			hif_err("PCI Device ID = 0x%04x", val);
352 
353 			pci_read_config_word(sc->pdev, PCI_COMMAND, &val);
354 			hif_err("PCI Command = 0x%04x", val);
355 
356 			pci_read_config_word(sc->pdev, PCI_STATUS, &val);
357 			hif_err("PCI Status = 0x%04x", val);
358 
359 			pci_read_config_dword(sc->pdev, PCI_BASE_ADDRESS_0,
360 					      &bar0);
361 			hif_err("PCI BAR0 = 0x%08x", bar0);
362 
363 			hif_err("RTC_STATE_ADDRESS = 0x%08x",
364 				hif_read32_mb(sc, sc->mem +
365 					PCIE_LOCAL_BASE_ADDRESS
366 					+ RTC_STATE_ADDRESS));
367 			hif_err("PCIE_SOC_WAKE_ADDRESS = 0x%08x",
368 				hif_read32_mb(sc, sc->mem +
369 					PCIE_LOCAL_BASE_ADDRESS
370 					+ PCIE_SOC_WAKE_ADDRESS));
371 			hif_err("0x80008 = 0x%08x, 0x8000c = 0x%08x",
372 				hif_read32_mb(sc, sc->mem + 0x80008),
373 				hif_read32_mb(sc, sc->mem + 0x8000c));
374 			hif_err("0x80010 = 0x%08x, 0x80014 = 0x%08x",
375 				hif_read32_mb(sc, sc->mem + 0x80010),
376 				hif_read32_mb(sc, sc->mem + 0x80014));
377 			hif_err("0x80018 = 0x%08x, 0x8001c = 0x%08x",
378 				hif_read32_mb(sc, sc->mem + 0x80018),
379 				hif_read32_mb(sc, sc->mem + 0x8001c));
380 			QDF_BUG(0);
381 		}
382 
383 		PCI_CLR_CAUSE0_REGISTER(sc);
384 		}
385 
386 		if (HAS_FW_INDICATOR) {
387 			fw_indicator_address = hif_state->fw_indicator_address;
388 			fw_indicator = A_TARGET_READ(scn, fw_indicator_address);
389 			if ((fw_indicator != ~0) &&
390 			   (fw_indicator & FW_IND_EVENT_PENDING))
391 				ssr_irq = true;
392 		}
393 
394 		if (Q_TARGET_ACCESS_END(scn) < 0)
395 			return IRQ_HANDLED;
396 	}
397 	/* TBDXXX: Add support for WMAC */
398 
399 	if (ssr_irq) {
400 		sc->irq_event = irq;
401 		qdf_atomic_set(&scn->tasklet_from_intr, 1);
402 
403 		qdf_atomic_inc(&scn->active_tasklet_cnt);
404 		tasklet_schedule(&sc->intr_tq);
405 	} else {
406 		pci_dispatch_interrupt(scn);
407 	}
408 
409 	return IRQ_HANDLED;
410 }
411 
412 bool hif_pci_targ_is_present(struct hif_softc *scn, void *__iomem *mem)
413 {
414 	return 1;               /* FIX THIS */
415 }
416 
417 int hif_get_irq_num(struct hif_opaque_softc *scn, int *irq, uint32_t size)
418 {
419 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
420 	int i = 0;
421 
422 	if (!irq || !size) {
423 		return -EINVAL;
424 	}
425 
426 	if (!sc->num_msi_intrs || sc->num_msi_intrs == 1) {
427 		irq[0] = sc->irq;
428 		return 1;
429 	}
430 
431 	if (sc->num_msi_intrs > size) {
432 		qdf_print("Not enough space in irq buffer to return irqs");
433 		return -EINVAL;
434 	}
435 
436 	for (i = 0; i < sc->num_msi_intrs; i++) {
437 		irq[i] = sc->irq +  i + MSI_ASSIGN_CE_INITIAL;
438 	}
439 
440 	return sc->num_msi_intrs;
441 }
442 
443 
444 /**
445  * hif_pci_cancel_deferred_target_sleep() - cancels the defered target sleep
446  * @scn: hif_softc
447  *
448  * Return: void
449  */
450 #if CONFIG_ATH_PCIE_MAX_PERF == 0
451 void hif_pci_cancel_deferred_target_sleep(struct hif_softc *scn)
452 {
453 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
454 	A_target_id_t pci_addr = scn->mem;
455 
456 	qdf_spin_lock_irqsave(&hif_state->keep_awake_lock);
457 	/*
458 	 * If the deferred sleep timer is running cancel it
459 	 * and put the soc into sleep.
460 	 */
461 	if (hif_state->fake_sleep == true) {
462 		qdf_timer_stop(&hif_state->sleep_timer);
463 		if (hif_state->verified_awake == false) {
464 			hif_write32_mb(scn, pci_addr + PCIE_LOCAL_BASE_ADDRESS +
465 				      PCIE_SOC_WAKE_ADDRESS,
466 				      PCIE_SOC_WAKE_RESET);
467 		}
468 		hif_state->fake_sleep = false;
469 	}
470 	qdf_spin_unlock_irqrestore(&hif_state->keep_awake_lock);
471 }
472 #else
473 inline void hif_pci_cancel_deferred_target_sleep(struct hif_softc *scn)
474 {
475 }
476 #endif
477 
478 #define A_PCIE_LOCAL_REG_READ(sc, mem, addr) \
479 	hif_read32_mb(sc, (char *)(mem) + \
480 	PCIE_LOCAL_BASE_ADDRESS + (uint32_t)(addr))
481 
482 #define A_PCIE_LOCAL_REG_WRITE(sc, mem, addr, val) \
483 	hif_write32_mb(sc, ((char *)(mem) + \
484 	PCIE_LOCAL_BASE_ADDRESS + (uint32_t)(addr)), (val))
485 
486 #ifdef QCA_WIFI_3_0
487 /**
488  * hif_targ_is_awake() - check to see if the target is awake
489  * @hif_ctx: hif context
490  *
491  * emulation never goes to sleep
492  *
493  * Return: true if target is awake
494  */
495 static bool hif_targ_is_awake(struct hif_softc *hif_ctx, void *__iomem *mem)
496 {
497 	return true;
498 }
499 #else
500 /**
501  * hif_targ_is_awake() - check to see if the target is awake
502  * @hif_ctx: hif context
503  *
504  * Return: true if the targets clocks are on
505  */
506 static bool hif_targ_is_awake(struct hif_softc *scn, void *__iomem *mem)
507 {
508 	uint32_t val;
509 
510 	if (scn->recovery)
511 		return false;
512 	val = hif_read32_mb(scn, mem + PCIE_LOCAL_BASE_ADDRESS
513 		+ RTC_STATE_ADDRESS);
514 	return (RTC_STATE_V_GET(val) & RTC_STATE_V_ON) == RTC_STATE_V_ON;
515 }
516 #endif
517 
518 #define ATH_PCI_RESET_WAIT_MAX 10       /* Ms */
519 static void hif_pci_device_reset(struct hif_pci_softc *sc)
520 {
521 	void __iomem *mem = sc->mem;
522 	int i;
523 	uint32_t val;
524 	struct hif_softc *scn = HIF_GET_SOFTC(sc);
525 
526 	if (!scn->hostdef)
527 		return;
528 
529 	/* NB: Don't check resetok here.  This form of reset
530 	 * is integral to correct operation.
531 	 */
532 
533 	if (!SOC_GLOBAL_RESET_ADDRESS)
534 		return;
535 
536 	if (!mem)
537 		return;
538 
539 	hif_err("Reset Device");
540 
541 	/*
542 	 * NB: If we try to write SOC_GLOBAL_RESET_ADDRESS without first
543 	 * writing WAKE_V, the Target may scribble over Host memory!
544 	 */
545 	A_PCIE_LOCAL_REG_WRITE(sc, mem, PCIE_SOC_WAKE_ADDRESS,
546 			       PCIE_SOC_WAKE_V_MASK);
547 	for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
548 		if (hif_targ_is_awake(scn, mem))
549 			break;
550 
551 		qdf_mdelay(1);
552 	}
553 
554 	/* Put Target, including PCIe, into RESET. */
555 	val = A_PCIE_LOCAL_REG_READ(sc, mem, SOC_GLOBAL_RESET_ADDRESS);
556 	val |= 1;
557 	A_PCIE_LOCAL_REG_WRITE(sc, mem, SOC_GLOBAL_RESET_ADDRESS, val);
558 	for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
559 		if (A_PCIE_LOCAL_REG_READ(sc, mem, RTC_STATE_ADDRESS) &
560 		    RTC_STATE_COLD_RESET_MASK)
561 			break;
562 
563 		qdf_mdelay(1);
564 	}
565 
566 	/* Pull Target, including PCIe, out of RESET. */
567 	val &= ~1;
568 	A_PCIE_LOCAL_REG_WRITE(sc, mem, SOC_GLOBAL_RESET_ADDRESS, val);
569 	for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
570 		if (!
571 		    (A_PCIE_LOCAL_REG_READ(sc, mem, RTC_STATE_ADDRESS) &
572 		     RTC_STATE_COLD_RESET_MASK))
573 			break;
574 
575 		qdf_mdelay(1);
576 	}
577 
578 	A_PCIE_LOCAL_REG_WRITE(sc, mem, PCIE_SOC_WAKE_ADDRESS,
579 			       PCIE_SOC_WAKE_RESET);
580 }
581 
582 /* CPU warm reset function
583  * Steps:
584  * 1. Disable all pending interrupts - so no pending interrupts on WARM reset
585  * 2. Clear the FW_INDICATOR_ADDRESS -so Traget CPU initializes FW
586  *    correctly on WARM reset
587  * 3. Clear TARGET CPU LF timer interrupt
588  * 4. Reset all CEs to clear any pending CE tarnsactions
589  * 5. Warm reset CPU
590  */
591 static void hif_pci_device_warm_reset(struct hif_pci_softc *sc)
592 {
593 	void __iomem *mem = sc->mem;
594 	int i;
595 	uint32_t val;
596 	uint32_t fw_indicator;
597 	struct hif_softc *scn = HIF_GET_SOFTC(sc);
598 
599 	/* NB: Don't check resetok here.  This form of reset is
600 	 * integral to correct operation.
601 	 */
602 
603 	if (!mem)
604 		return;
605 
606 	hif_debug("Target Warm Reset");
607 
608 	/*
609 	 * NB: If we try to write SOC_GLOBAL_RESET_ADDRESS without first
610 	 * writing WAKE_V, the Target may scribble over Host memory!
611 	 */
612 	A_PCIE_LOCAL_REG_WRITE(sc, mem, PCIE_SOC_WAKE_ADDRESS,
613 			       PCIE_SOC_WAKE_V_MASK);
614 	for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
615 		if (hif_targ_is_awake(scn, mem))
616 			break;
617 		qdf_mdelay(1);
618 	}
619 
620 	/*
621 	 * Disable Pending interrupts
622 	 */
623 	val =
624 		hif_read32_mb(sc, mem +
625 			     (SOC_CORE_BASE_ADDRESS |
626 			      PCIE_INTR_CAUSE_ADDRESS));
627 	hif_debug("Host Intr Cause reg 0x%x: value : 0x%x",
628 		  (SOC_CORE_BASE_ADDRESS | PCIE_INTR_CAUSE_ADDRESS), val);
629 	/* Target CPU Intr Cause */
630 	val = hif_read32_mb(sc, mem +
631 			    (SOC_CORE_BASE_ADDRESS | CPU_INTR_ADDRESS));
632 	hif_debug("Target CPU Intr Cause 0x%x", val);
633 
634 	val =
635 		hif_read32_mb(sc, mem +
636 			     (SOC_CORE_BASE_ADDRESS |
637 			      PCIE_INTR_ENABLE_ADDRESS));
638 	hif_write32_mb(sc, (mem +
639 		       (SOC_CORE_BASE_ADDRESS | PCIE_INTR_ENABLE_ADDRESS)), 0);
640 	hif_write32_mb(sc, (mem +
641 		       (SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS)),
642 		       HOST_GROUP0_MASK);
643 
644 	qdf_mdelay(100);
645 
646 	/* Clear FW_INDICATOR_ADDRESS */
647 	if (HAS_FW_INDICATOR) {
648 		fw_indicator = hif_read32_mb(sc, mem + FW_INDICATOR_ADDRESS);
649 		hif_write32_mb(sc, mem + FW_INDICATOR_ADDRESS, 0);
650 	}
651 
652 	/* Clear Target LF Timer interrupts */
653 	val =
654 		hif_read32_mb(sc, mem +
655 			     (RTC_SOC_BASE_ADDRESS +
656 			      SOC_LF_TIMER_CONTROL0_ADDRESS));
657 	hif_debug("addr 0x%x : 0x%x",
658 	       (RTC_SOC_BASE_ADDRESS + SOC_LF_TIMER_CONTROL0_ADDRESS), val);
659 	val &= ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK;
660 	hif_write32_mb(sc, mem +
661 		      (RTC_SOC_BASE_ADDRESS + SOC_LF_TIMER_CONTROL0_ADDRESS),
662 		      val);
663 
664 	/* Reset CE */
665 	val =
666 		hif_read32_mb(sc, mem +
667 			     (RTC_SOC_BASE_ADDRESS |
668 			      SOC_RESET_CONTROL_ADDRESS));
669 	val |= SOC_RESET_CONTROL_CE_RST_MASK;
670 	hif_write32_mb(sc, (mem +
671 		       (RTC_SOC_BASE_ADDRESS | SOC_RESET_CONTROL_ADDRESS)),
672 		      val);
673 	val =
674 		hif_read32_mb(sc, mem +
675 			     (RTC_SOC_BASE_ADDRESS |
676 			      SOC_RESET_CONTROL_ADDRESS));
677 	qdf_mdelay(10);
678 
679 	/* CE unreset */
680 	val &= ~SOC_RESET_CONTROL_CE_RST_MASK;
681 	hif_write32_mb(sc, mem + (RTC_SOC_BASE_ADDRESS |
682 		       SOC_RESET_CONTROL_ADDRESS), val);
683 	val =
684 		hif_read32_mb(sc, mem +
685 			     (RTC_SOC_BASE_ADDRESS |
686 			      SOC_RESET_CONTROL_ADDRESS));
687 	qdf_mdelay(10);
688 
689 	/* Read Target CPU Intr Cause */
690 	val = hif_read32_mb(sc, mem +
691 			    (SOC_CORE_BASE_ADDRESS | CPU_INTR_ADDRESS));
692 	hif_debug("Target CPU Intr Cause after CE reset 0x%x", val);
693 
694 	/* CPU warm RESET */
695 	val =
696 		hif_read32_mb(sc, mem +
697 			     (RTC_SOC_BASE_ADDRESS |
698 			      SOC_RESET_CONTROL_ADDRESS));
699 	val |= SOC_RESET_CONTROL_CPU_WARM_RST_MASK;
700 	hif_write32_mb(sc, mem + (RTC_SOC_BASE_ADDRESS |
701 		       SOC_RESET_CONTROL_ADDRESS), val);
702 	val =
703 		hif_read32_mb(sc, mem +
704 			     (RTC_SOC_BASE_ADDRESS |
705 			      SOC_RESET_CONTROL_ADDRESS));
706 	hif_debug("RESET_CONTROL after cpu warm reset 0x%x", val);
707 
708 	qdf_mdelay(100);
709 	hif_debug("Target Warm reset complete");
710 
711 }
712 
713 #ifndef QCA_WIFI_3_0
714 /* only applicable to legacy ce */
715 int hif_check_fw_reg(struct hif_opaque_softc *hif_ctx)
716 {
717 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
718 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
719 	void __iomem *mem = sc->mem;
720 	uint32_t val;
721 
722 	if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
723 		return ATH_ISR_NOSCHED;
724 	val = hif_read32_mb(sc, mem + FW_INDICATOR_ADDRESS);
725 	if (Q_TARGET_ACCESS_END(scn) < 0)
726 		return ATH_ISR_SCHED;
727 
728 	hif_debug("FW_INDICATOR register is 0x%x", val);
729 
730 	if (val & FW_IND_HELPER)
731 		return 0;
732 
733 	return 1;
734 }
735 #endif
736 
737 int hif_check_soc_status(struct hif_opaque_softc *hif_ctx)
738 {
739 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
740 	uint16_t device_id = 0;
741 	uint32_t val;
742 	uint16_t timeout_count = 0;
743 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
744 
745 	/* Check device ID from PCIe configuration space for link status */
746 	pfrm_read_config_word(sc->pdev, PCI_DEVICE_ID, &device_id);
747 	if (device_id != sc->devid) {
748 		hif_err("Device ID does match (read 0x%x, expect 0x%x)",
749 			device_id, sc->devid);
750 		return -EACCES;
751 	}
752 
753 	/* Check PCIe local register for bar/memory access */
754 	val = hif_read32_mb(sc, sc->mem + PCIE_LOCAL_BASE_ADDRESS +
755 			   RTC_STATE_ADDRESS);
756 	hif_debug("RTC_STATE_ADDRESS is %08x", val);
757 
758 	/* Try to wake up taget if it sleeps */
759 	hif_write32_mb(sc, sc->mem + PCIE_LOCAL_BASE_ADDRESS +
760 		PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_V_MASK);
761 	hif_debug("PCIE_SOC_WAKE_ADDRESS is %08x",
762 		hif_read32_mb(sc, sc->mem + PCIE_LOCAL_BASE_ADDRESS +
763 		PCIE_SOC_WAKE_ADDRESS));
764 
765 	/* Check if taget can be woken up */
766 	while (!hif_targ_is_awake(scn, sc->mem)) {
767 		if (timeout_count >= PCIE_WAKE_TIMEOUT) {
768 			hif_err("wake up timeout, %08x, %08x",
769 				hif_read32_mb(sc, sc->mem +
770 				     PCIE_LOCAL_BASE_ADDRESS +
771 				     RTC_STATE_ADDRESS),
772 				hif_read32_mb(sc, sc->mem +
773 				     PCIE_LOCAL_BASE_ADDRESS +
774 				     PCIE_SOC_WAKE_ADDRESS));
775 			return -EACCES;
776 		}
777 
778 		hif_write32_mb(sc, sc->mem + PCIE_LOCAL_BASE_ADDRESS +
779 			      PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_V_MASK);
780 
781 		qdf_mdelay(100);
782 		timeout_count += 100;
783 	}
784 
785 	/* Check Power register for SoC internal bus issues */
786 	val =
787 		hif_read32_mb(sc, sc->mem + RTC_SOC_BASE_ADDRESS +
788 			     SOC_POWER_REG_OFFSET);
789 	hif_debug("Power register is %08x", val);
790 
791 	return 0;
792 }
793 
794 /**
795  * __hif_pci_dump_registers(): dump other PCI debug registers
796  * @scn: struct hif_softc
797  *
798  * This function dumps pci debug registers.  The parrent function
799  * dumps the copy engine registers before calling this function.
800  *
801  * Return: void
802  */
803 static void __hif_pci_dump_registers(struct hif_softc *scn)
804 {
805 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
806 	void __iomem *mem = sc->mem;
807 	uint32_t val, i, j;
808 	uint32_t wrapper_idx[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
809 	uint32_t ce_base;
810 
811 	if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
812 		return;
813 
814 	/* DEBUG_INPUT_SEL_SRC = 0x6 */
815 	val =
816 		hif_read32_mb(sc, mem + GPIO_BASE_ADDRESS +
817 			     WLAN_DEBUG_INPUT_SEL_OFFSET);
818 	val &= ~WLAN_DEBUG_INPUT_SEL_SRC_MASK;
819 	val |= WLAN_DEBUG_INPUT_SEL_SRC_SET(0x6);
820 	hif_write32_mb(sc, mem + GPIO_BASE_ADDRESS +
821 		       WLAN_DEBUG_INPUT_SEL_OFFSET, val);
822 
823 	/* DEBUG_CONTROL_ENABLE = 0x1 */
824 	val = hif_read32_mb(sc, mem + GPIO_BASE_ADDRESS +
825 			   WLAN_DEBUG_CONTROL_OFFSET);
826 	val &= ~WLAN_DEBUG_CONTROL_ENABLE_MASK;
827 	val |= WLAN_DEBUG_CONTROL_ENABLE_SET(0x1);
828 	hif_write32_mb(sc, mem + GPIO_BASE_ADDRESS +
829 		      WLAN_DEBUG_CONTROL_OFFSET, val);
830 
831 	hif_debug("Debug: inputsel: %x dbgctrl: %x",
832 	       hif_read32_mb(sc, mem + GPIO_BASE_ADDRESS +
833 			    WLAN_DEBUG_INPUT_SEL_OFFSET),
834 	       hif_read32_mb(sc, mem + GPIO_BASE_ADDRESS +
835 			    WLAN_DEBUG_CONTROL_OFFSET));
836 
837 	hif_debug("Debug CE");
838 	/* Loop CE debug output */
839 	/* AMBA_DEBUG_BUS_SEL = 0xc */
840 	val = hif_read32_mb(sc, mem + GPIO_BASE_ADDRESS +
841 			    AMBA_DEBUG_BUS_OFFSET);
842 	val &= ~AMBA_DEBUG_BUS_SEL_MASK;
843 	val |= AMBA_DEBUG_BUS_SEL_SET(0xc);
844 	hif_write32_mb(sc, mem + GPIO_BASE_ADDRESS + AMBA_DEBUG_BUS_OFFSET,
845 		       val);
846 
847 	for (i = 0; i < sizeof(wrapper_idx) / sizeof(uint32_t); i++) {
848 		/* For (i=1,2,3,4,8,9) write CE_WRAPPER_DEBUG_SEL = i */
849 		val = hif_read32_mb(sc, mem + CE_WRAPPER_BASE_ADDRESS +
850 				   CE_WRAPPER_DEBUG_OFFSET);
851 		val &= ~CE_WRAPPER_DEBUG_SEL_MASK;
852 		val |= CE_WRAPPER_DEBUG_SEL_SET(wrapper_idx[i]);
853 		hif_write32_mb(sc, mem + CE_WRAPPER_BASE_ADDRESS +
854 			      CE_WRAPPER_DEBUG_OFFSET, val);
855 
856 		hif_debug("ce wrapper: %d amdbg: %x cewdbg: %x",
857 			  wrapper_idx[i],
858 			  hif_read32_mb(sc, mem + GPIO_BASE_ADDRESS +
859 				AMBA_DEBUG_BUS_OFFSET),
860 			  hif_read32_mb(sc, mem + CE_WRAPPER_BASE_ADDRESS +
861 				CE_WRAPPER_DEBUG_OFFSET));
862 
863 		if (wrapper_idx[i] <= 7) {
864 			for (j = 0; j <= 5; j++) {
865 				ce_base = CE_BASE_ADDRESS(wrapper_idx[i]);
866 				/* For (j=0~5) write CE_DEBUG_SEL = j */
867 				val =
868 					hif_read32_mb(sc, mem + ce_base +
869 						     CE_DEBUG_OFFSET);
870 				val &= ~CE_DEBUG_SEL_MASK;
871 				val |= CE_DEBUG_SEL_SET(j);
872 				hif_write32_mb(sc, mem + ce_base +
873 					       CE_DEBUG_OFFSET, val);
874 
875 				/* read (@gpio_athr_wlan_reg)
876 				 * WLAN_DEBUG_OUT_DATA
877 				 */
878 				val = hif_read32_mb(sc, mem + GPIO_BASE_ADDRESS
879 						    + WLAN_DEBUG_OUT_OFFSET);
880 				val = WLAN_DEBUG_OUT_DATA_GET(val);
881 
882 				hif_debug("module%d: cedbg: %x out: %x",
883 					  j,
884 					  hif_read32_mb(sc, mem + ce_base +
885 						CE_DEBUG_OFFSET), val);
886 			}
887 		} else {
888 			/* read (@gpio_athr_wlan_reg) WLAN_DEBUG_OUT_DATA */
889 			val =
890 				hif_read32_mb(sc, mem + GPIO_BASE_ADDRESS +
891 					     WLAN_DEBUG_OUT_OFFSET);
892 			val = WLAN_DEBUG_OUT_DATA_GET(val);
893 
894 			hif_debug("out: %x", val);
895 		}
896 	}
897 
898 	hif_debug("Debug PCIe:");
899 	/* Loop PCIe debug output */
900 	/* Write AMBA_DEBUG_BUS_SEL = 0x1c */
901 	val = hif_read32_mb(sc, mem + GPIO_BASE_ADDRESS +
902 			    AMBA_DEBUG_BUS_OFFSET);
903 	val &= ~AMBA_DEBUG_BUS_SEL_MASK;
904 	val |= AMBA_DEBUG_BUS_SEL_SET(0x1c);
905 	hif_write32_mb(sc, mem + GPIO_BASE_ADDRESS +
906 		       AMBA_DEBUG_BUS_OFFSET, val);
907 
908 	for (i = 0; i <= 8; i++) {
909 		/* For (i=1~8) write AMBA_DEBUG_BUS_PCIE_DEBUG_SEL = i */
910 		val =
911 			hif_read32_mb(sc, mem + GPIO_BASE_ADDRESS +
912 				     AMBA_DEBUG_BUS_OFFSET);
913 		val &= ~AMBA_DEBUG_BUS_PCIE_DEBUG_SEL_MASK;
914 		val |= AMBA_DEBUG_BUS_PCIE_DEBUG_SEL_SET(i);
915 		hif_write32_mb(sc, mem + GPIO_BASE_ADDRESS +
916 			       AMBA_DEBUG_BUS_OFFSET, val);
917 
918 		/* read (@gpio_athr_wlan_reg) WLAN_DEBUG_OUT_DATA */
919 		val =
920 			hif_read32_mb(sc, mem + GPIO_BASE_ADDRESS +
921 				     WLAN_DEBUG_OUT_OFFSET);
922 		val = WLAN_DEBUG_OUT_DATA_GET(val);
923 
924 		hif_debug("amdbg: %x out: %x %x",
925 			  hif_read32_mb(sc, mem + GPIO_BASE_ADDRESS +
926 				WLAN_DEBUG_OUT_OFFSET), val,
927 			  hif_read32_mb(sc, mem + GPIO_BASE_ADDRESS +
928 				WLAN_DEBUG_OUT_OFFSET));
929 	}
930 
931 	Q_TARGET_ACCESS_END(scn);
932 }
933 
934 /**
935  * hif_dump_registers(): dump bus debug registers
936  * @scn: struct hif_opaque_softc
937  *
938  * This function dumps hif bus debug registers
939  *
940  * Return: 0 for success or error code
941  */
942 int hif_pci_dump_registers(struct hif_softc *hif_ctx)
943 {
944 	int status;
945 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
946 
947 	status = hif_dump_ce_registers(scn);
948 
949 	if (status)
950 		hif_err("Dump CE Registers Failed");
951 
952 	/* dump non copy engine pci registers */
953 	__hif_pci_dump_registers(scn);
954 
955 	return 0;
956 }
957 
958 #ifdef HIF_CONFIG_SLUB_DEBUG_ON
959 
960 /* worker thread to schedule wlan_tasklet in SLUB debug build */
961 static void reschedule_tasklet_work_handler(void *arg)
962 {
963 	struct hif_pci_softc *sc = arg;
964 	struct hif_softc *scn = HIF_GET_SOFTC(sc);
965 
966 	if (!scn) {
967 		hif_err("hif_softc is NULL");
968 		return;
969 	}
970 
971 	if (scn->hif_init_done == false) {
972 		hif_err("wlan driver is unloaded");
973 		return;
974 	}
975 
976 	tasklet_schedule(&sc->intr_tq);
977 }
978 
979 /**
980  * hif_init_reschedule_tasklet_work() - API to initialize reschedule tasklet
981  * work
982  * @sc: HIF PCI Context
983  *
984  * Return: void
985  */
986 static void hif_init_reschedule_tasklet_work(struct hif_pci_softc *sc)
987 {
988 	qdf_create_work(0, &sc->reschedule_tasklet_work,
989 				reschedule_tasklet_work_handler, NULL);
990 }
991 #else
992 static void hif_init_reschedule_tasklet_work(struct hif_pci_softc *sc) { }
993 #endif /* HIF_CONFIG_SLUB_DEBUG_ON */
994 
995 void wlan_tasklet(unsigned long data)
996 {
997 	struct hif_pci_softc *sc = (struct hif_pci_softc *)data;
998 	struct hif_softc *scn = HIF_GET_SOFTC(sc);
999 
1000 	if (scn->hif_init_done == false)
1001 		goto end;
1002 
1003 	if (qdf_atomic_read(&scn->link_suspended))
1004 		goto end;
1005 
1006 	if (!ADRASTEA_BU) {
1007 		hif_fw_interrupt_handler(sc->irq_event, scn);
1008 		if (scn->target_status == TARGET_STATUS_RESET)
1009 			goto end;
1010 	}
1011 
1012 end:
1013 	qdf_atomic_set(&scn->tasklet_from_intr, 0);
1014 	qdf_atomic_dec(&scn->active_tasklet_cnt);
1015 }
1016 
1017 /**
1018  * hif_disable_power_gating() - disable HW power gating
1019  * @hif_ctx: hif context
1020  *
1021  * disables pcie L1 power states
1022  */
1023 static void hif_disable_power_gating(struct hif_opaque_softc *hif_ctx)
1024 {
1025 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
1026 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(hif_ctx);
1027 
1028 	if (!scn) {
1029 		hif_err("Could not disable ASPM scn is null");
1030 		return;
1031 	}
1032 
1033 	/* Disable ASPM when pkt log is enabled */
1034 	pfrm_read_config_dword(sc->pdev, 0x80, &sc->lcr_val);
1035 	pfrm_write_config_dword(sc->pdev, 0x80, (sc->lcr_val & 0xffffff00));
1036 }
1037 
1038 /**
1039  * hif_enable_power_gating() - enable HW power gating
1040  * @hif_ctx: hif context
1041  *
1042  * enables pcie L1 power states
1043  */
1044 static void hif_enable_power_gating(struct hif_pci_softc *sc)
1045 {
1046 	if (!sc) {
1047 		hif_err("Could not disable ASPM scn is null");
1048 		return;
1049 	}
1050 
1051 	/* Re-enable ASPM after firmware/OTP download is complete */
1052 	pfrm_write_config_dword(sc->pdev, 0x80, sc->lcr_val);
1053 }
1054 
1055 /**
1056  * hif_enable_power_management() - enable power management
1057  * @hif_ctx: hif context
1058  *
1059  * Enables runtime pm, aspm(PCI.. hif_enable_power_gating) and re-enabling
1060  * soc-sleep after driver load (hif_pci_target_sleep_state_adjust).
1061  *
1062  * note: epping mode does not call this function as it does not
1063  *       care about saving power.
1064  */
1065 void hif_pci_enable_power_management(struct hif_softc *hif_sc,
1066 				 bool is_packet_log_enabled)
1067 {
1068 	struct hif_pci_softc *pci_ctx = HIF_GET_PCI_SOFTC(hif_sc);
1069 	uint32_t mode;
1070 
1071 	if (!pci_ctx) {
1072 		hif_err("hif_ctx null");
1073 		return;
1074 	}
1075 
1076 	mode = hif_get_conparam(hif_sc);
1077 	if (mode == QDF_GLOBAL_FTM_MODE) {
1078 		hif_info("Enable power gating for FTM mode");
1079 		hif_enable_power_gating(pci_ctx);
1080 		return;
1081 	}
1082 
1083 	hif_rtpm_start(hif_sc);
1084 
1085 	if (!is_packet_log_enabled)
1086 		hif_enable_power_gating(pci_ctx);
1087 
1088 	if (!CONFIG_ATH_PCIE_MAX_PERF &&
1089 	    CONFIG_ATH_PCIE_AWAKE_WHILE_DRIVER_LOAD &&
1090 	    !ce_srng_based(hif_sc)) {
1091 		/* allow sleep for PCIE_AWAKE_WHILE_DRIVER_LOAD feature */
1092 		if (hif_pci_target_sleep_state_adjust(hif_sc, true, false) < 0)
1093 			hif_err("Failed to set target to sleep");
1094 	}
1095 }
1096 
1097 /**
1098  * hif_disable_power_management() - disable power management
1099  * @hif_ctx: hif context
1100  *
1101  * Currently disables runtime pm. Should be updated to behave
1102  * if runtime pm is not started. Should be updated to take care
1103  * of aspm and soc sleep for driver load.
1104  */
1105 void hif_pci_disable_power_management(struct hif_softc *hif_ctx)
1106 {
1107 	struct hif_pci_softc *pci_ctx = HIF_GET_PCI_SOFTC(hif_ctx);
1108 
1109 	if (!pci_ctx) {
1110 		hif_err("hif_ctx null");
1111 		return;
1112 	}
1113 
1114 	hif_rtpm_stop(hif_ctx);
1115 }
1116 
1117 void hif_pci_display_stats(struct hif_softc *hif_ctx)
1118 {
1119 	struct hif_pci_softc *pci_ctx = HIF_GET_PCI_SOFTC(hif_ctx);
1120 
1121 	if (!pci_ctx) {
1122 		hif_err("hif_ctx null");
1123 		return;
1124 	}
1125 	hif_display_ce_stats(hif_ctx);
1126 
1127 	hif_print_pci_stats(pci_ctx);
1128 }
1129 
1130 void hif_pci_clear_stats(struct hif_softc *hif_ctx)
1131 {
1132 	struct hif_pci_softc *pci_ctx = HIF_GET_PCI_SOFTC(hif_ctx);
1133 
1134 	if (!pci_ctx) {
1135 		hif_err("hif_ctx null");
1136 		return;
1137 	}
1138 	hif_clear_ce_stats(&pci_ctx->ce_sc);
1139 }
1140 
1141 #define ATH_PCI_PROBE_RETRY_MAX 3
1142 /**
1143  * hif_bus_open(): hif_bus_open
1144  * @scn: scn
1145  * @bus_type: bus type
1146  *
1147  * Return: n/a
1148  */
1149 QDF_STATUS hif_pci_open(struct hif_softc *hif_ctx, enum qdf_bus_type bus_type)
1150 {
1151 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(hif_ctx);
1152 
1153 	hif_ctx->bus_type = bus_type;
1154 	hif_rtpm_open(hif_ctx);
1155 
1156 	qdf_spinlock_create(&sc->irq_lock);
1157 
1158 	return hif_ce_open(hif_ctx);
1159 }
1160 
1161 /**
1162  * hif_wake_target_cpu() - wake the target's cpu
1163  * @scn: hif context
1164  *
1165  * Send an interrupt to the device to wake up the Target CPU
1166  * so it has an opportunity to notice any changed state.
1167  */
1168 static void hif_wake_target_cpu(struct hif_softc *scn)
1169 {
1170 	QDF_STATUS rv;
1171 	uint32_t core_ctrl;
1172 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
1173 
1174 	rv = hif_diag_read_access(hif_hdl,
1175 				  SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS,
1176 				  &core_ctrl);
1177 	QDF_ASSERT(rv == QDF_STATUS_SUCCESS);
1178 	/* A_INUM_FIRMWARE interrupt to Target CPU */
1179 	core_ctrl |= CORE_CTRL_CPU_INTR_MASK;
1180 
1181 	rv = hif_diag_write_access(hif_hdl,
1182 				   SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS,
1183 				   core_ctrl);
1184 	QDF_ASSERT(rv == QDF_STATUS_SUCCESS);
1185 }
1186 
1187 /**
1188  * soc_wake_reset() - allow the target to go to sleep
1189  * @scn: hif_softc
1190  *
1191  * Clear the force wake register.  This is done by
1192  * hif_sleep_entry and cancel defered timer sleep.
1193  */
1194 static void soc_wake_reset(struct hif_softc *scn)
1195 {
1196 	hif_write32_mb(scn, scn->mem +
1197 		PCIE_LOCAL_BASE_ADDRESS +
1198 		PCIE_SOC_WAKE_ADDRESS,
1199 		PCIE_SOC_WAKE_RESET);
1200 }
1201 
1202 /**
1203  * hif_sleep_entry() - gate target sleep
1204  * @arg: hif context
1205  *
1206  * This function is the callback for the sleep timer.
1207  * Check if last force awake critical section was at least
1208  * HIF_MIN_SLEEP_INACTIVITY_TIME_MS time ago.  if it was,
1209  * allow the target to go to sleep and cancel the sleep timer.
1210  * otherwise reschedule the sleep timer.
1211  */
1212 static void hif_sleep_entry(void *arg)
1213 {
1214 	struct HIF_CE_state *hif_state = (struct HIF_CE_state *)arg;
1215 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
1216 	uint32_t idle_ms;
1217 
1218 	if (scn->recovery)
1219 		return;
1220 
1221 	if (hif_is_driver_unloading(scn))
1222 		return;
1223 
1224 	qdf_spin_lock_irqsave(&hif_state->keep_awake_lock);
1225 	if (hif_state->fake_sleep) {
1226 		idle_ms = qdf_system_ticks_to_msecs(qdf_system_ticks()
1227 						    - hif_state->sleep_ticks);
1228 		if (!hif_state->verified_awake &&
1229 		    idle_ms >= HIF_MIN_SLEEP_INACTIVITY_TIME_MS) {
1230 			if (!qdf_atomic_read(&scn->link_suspended)) {
1231 				soc_wake_reset(scn);
1232 				hif_state->fake_sleep = false;
1233 			}
1234 		} else {
1235 			qdf_timer_stop(&hif_state->sleep_timer);
1236 			qdf_timer_start(&hif_state->sleep_timer,
1237 					HIF_SLEEP_INACTIVITY_TIMER_PERIOD_MS);
1238 		}
1239 	}
1240 	qdf_spin_unlock_irqrestore(&hif_state->keep_awake_lock);
1241 }
1242 
1243 #define HIF_HIA_MAX_POLL_LOOP    1000000
1244 #define HIF_HIA_POLLING_DELAY_MS 10
1245 
1246 #ifdef QCA_HIF_HIA_EXTND
1247 
1248 static void hif_set_hia_extnd(struct hif_softc *scn)
1249 {
1250 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
1251 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
1252 	uint32_t target_type = tgt_info->target_type;
1253 
1254 	hif_info("E");
1255 
1256 	if ((target_type == TARGET_TYPE_AR900B) ||
1257 			target_type == TARGET_TYPE_QCA9984 ||
1258 			target_type == TARGET_TYPE_QCA9888) {
1259 		/* CHIP revision is 8-11 bits of the CHIP_ID register 0xec
1260 		 * in RTC space
1261 		 */
1262 		tgt_info->target_revision
1263 			= CHIP_ID_REVISION_GET(hif_read32_mb(scn, scn->mem
1264 					+ CHIP_ID_ADDRESS));
1265 		qdf_print("chip_id 0x%x chip_revision 0x%x",
1266 			  target_type, tgt_info->target_revision);
1267 	}
1268 
1269 	{
1270 		uint32_t flag2_value = 0;
1271 		uint32_t flag2_targ_addr =
1272 			host_interest_item_address(target_type,
1273 			offsetof(struct host_interest_s, hi_skip_clock_init));
1274 
1275 		if ((ar900b_20_targ_clk != -1) &&
1276 			(frac != -1) && (intval != -1)) {
1277 			hif_diag_read_access(hif_hdl, flag2_targ_addr,
1278 				&flag2_value);
1279 			qdf_print("\n Setting clk_override");
1280 			flag2_value |= CLOCK_OVERRIDE;
1281 
1282 			hif_diag_write_access(hif_hdl, flag2_targ_addr,
1283 					flag2_value);
1284 			qdf_print("\n CLOCK PLL val set %d", flag2_value);
1285 		} else {
1286 			qdf_print("\n CLOCK PLL skipped");
1287 		}
1288 	}
1289 
1290 	if (target_type == TARGET_TYPE_AR900B
1291 			|| target_type == TARGET_TYPE_QCA9984
1292 			|| target_type == TARGET_TYPE_QCA9888) {
1293 
1294 		/* for AR9980_2.0, 300 mhz clock is used, right now we assume
1295 		 * this would be supplied through module parameters,
1296 		 * if not supplied assumed default or same behavior as 1.0.
1297 		 * Assume 1.0 clock can't be tuned, reset to defaults
1298 		 */
1299 
1300 		qdf_print(KERN_INFO
1301 			  "%s: setting the target pll frac %x intval %x",
1302 			  __func__, frac, intval);
1303 
1304 		/* do not touch frac, and int val, let them be default -1,
1305 		 * if desired, host can supply these through module params
1306 		 */
1307 		if (frac != -1 || intval != -1) {
1308 			uint32_t flag2_value = 0;
1309 			uint32_t flag2_targ_addr;
1310 
1311 			flag2_targ_addr =
1312 				host_interest_item_address(target_type,
1313 				offsetof(struct host_interest_s,
1314 					hi_clock_info));
1315 			hif_diag_read_access(hif_hdl,
1316 				flag2_targ_addr, &flag2_value);
1317 			qdf_print("\n ====> FRAC Val %x Address %x", frac,
1318 				  flag2_value);
1319 			hif_diag_write_access(hif_hdl, flag2_value, frac);
1320 			qdf_print("\n INT Val %x  Address %x",
1321 				  intval, flag2_value + 4);
1322 			hif_diag_write_access(hif_hdl,
1323 					flag2_value + 4, intval);
1324 		} else {
1325 			qdf_print(KERN_INFO
1326 				  "%s: no frac provided, skipping pre-configuring PLL",
1327 				  __func__);
1328 		}
1329 
1330 		/* for 2.0 write 300 mhz into hi_desired_cpu_speed_hz */
1331 		if ((target_type == TARGET_TYPE_AR900B)
1332 			&& (tgt_info->target_revision == AR900B_REV_2)
1333 			&& ar900b_20_targ_clk != -1) {
1334 			uint32_t flag2_value = 0;
1335 			uint32_t flag2_targ_addr;
1336 
1337 			flag2_targ_addr
1338 				= host_interest_item_address(target_type,
1339 					offsetof(struct host_interest_s,
1340 					hi_desired_cpu_speed_hz));
1341 			hif_diag_read_access(hif_hdl, flag2_targ_addr,
1342 							&flag2_value);
1343 			qdf_print("\n ==> hi_desired_cpu_speed_hz Address %x",
1344 				  flag2_value);
1345 			hif_diag_write_access(hif_hdl, flag2_value,
1346 				ar900b_20_targ_clk/*300000000u*/);
1347 		} else if (target_type == TARGET_TYPE_QCA9888) {
1348 			uint32_t flag2_targ_addr;
1349 
1350 			if (200000000u != qca9888_20_targ_clk) {
1351 				qca9888_20_targ_clk = 300000000u;
1352 				/* Setting the target clock speed to 300 mhz */
1353 			}
1354 
1355 			flag2_targ_addr
1356 				= host_interest_item_address(target_type,
1357 					offsetof(struct host_interest_s,
1358 					hi_desired_cpu_speed_hz));
1359 			hif_diag_write_access(hif_hdl, flag2_targ_addr,
1360 				qca9888_20_targ_clk);
1361 		} else {
1362 			qdf_print("%s: targ_clk is not provided, skipping pre-configuring PLL",
1363 				  __func__);
1364 		}
1365 	} else {
1366 		if (frac != -1 || intval != -1) {
1367 			uint32_t flag2_value = 0;
1368 			uint32_t flag2_targ_addr =
1369 				host_interest_item_address(target_type,
1370 					offsetof(struct host_interest_s,
1371 							hi_clock_info));
1372 			hif_diag_read_access(hif_hdl, flag2_targ_addr,
1373 						&flag2_value);
1374 			qdf_print("\n ====> FRAC Val %x Address %x", frac,
1375 				  flag2_value);
1376 			hif_diag_write_access(hif_hdl, flag2_value, frac);
1377 			qdf_print("\n INT Val %x  Address %x", intval,
1378 				  flag2_value + 4);
1379 			hif_diag_write_access(hif_hdl, flag2_value + 4,
1380 					      intval);
1381 		}
1382 	}
1383 }
1384 
1385 #else
1386 
1387 static void hif_set_hia_extnd(struct hif_softc *scn)
1388 {
1389 }
1390 
1391 #endif
1392 
1393 /**
1394  * hif_set_hia() - fill out the host interest area
1395  * @scn: hif context
1396  *
1397  * This is replaced by hif_wlan_enable for integrated targets.
1398  * This fills out the host interest area.  The firmware will
1399  * process these memory addresses when it is first brought out
1400  * of reset.
1401  *
1402  * Return: 0 for success.
1403  */
1404 static int hif_set_hia(struct hif_softc *scn)
1405 {
1406 	QDF_STATUS rv;
1407 	uint32_t interconnect_targ_addr = 0;
1408 	uint32_t pcie_state_targ_addr = 0;
1409 	uint32_t pipe_cfg_targ_addr = 0;
1410 	uint32_t svc_to_pipe_map = 0;
1411 	uint32_t pcie_config_flags = 0;
1412 	uint32_t flag2_value = 0;
1413 	uint32_t flag2_targ_addr = 0;
1414 #ifdef QCA_WIFI_3_0
1415 	uint32_t host_interest_area = 0;
1416 	uint8_t i;
1417 #else
1418 	uint32_t ealloc_value = 0;
1419 	uint32_t ealloc_targ_addr = 0;
1420 	uint8_t banks_switched = 1;
1421 	uint32_t chip_id;
1422 #endif
1423 	uint32_t pipe_cfg_addr;
1424 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
1425 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
1426 	uint32_t target_type = tgt_info->target_type;
1427 	uint32_t target_ce_config_sz, target_service_to_ce_map_sz;
1428 	static struct CE_pipe_config *target_ce_config;
1429 	struct service_to_pipe *target_service_to_ce_map;
1430 
1431 	hif_info("E");
1432 
1433 	hif_get_target_ce_config(scn,
1434 				 &target_ce_config, &target_ce_config_sz,
1435 				 &target_service_to_ce_map,
1436 				 &target_service_to_ce_map_sz,
1437 				 NULL, NULL);
1438 
1439 	if (ADRASTEA_BU)
1440 		return 0;
1441 
1442 #ifdef QCA_WIFI_3_0
1443 	i = 0;
1444 	while (i < HIF_HIA_MAX_POLL_LOOP) {
1445 		host_interest_area = hif_read32_mb(scn, scn->mem +
1446 						A_SOC_CORE_SCRATCH_0_ADDRESS);
1447 		if ((host_interest_area & 0x01) == 0) {
1448 			qdf_mdelay(HIF_HIA_POLLING_DELAY_MS);
1449 			host_interest_area = 0;
1450 			i++;
1451 			if (i > HIF_HIA_MAX_POLL_LOOP && (i % 1000 == 0))
1452 				hif_err("poll timeout: %d", i);
1453 		} else {
1454 			host_interest_area &= (~0x01);
1455 			hif_write32_mb(scn, scn->mem + 0x113014, 0);
1456 			break;
1457 		}
1458 	}
1459 
1460 	if (i >= HIF_HIA_MAX_POLL_LOOP) {
1461 		hif_err("hia polling timeout");
1462 		return -EIO;
1463 	}
1464 
1465 	if (host_interest_area == 0) {
1466 		hif_err("host_interest_area = 0");
1467 		return -EIO;
1468 	}
1469 
1470 	interconnect_targ_addr = host_interest_area +
1471 			offsetof(struct host_interest_area_t,
1472 			hi_interconnect_state);
1473 
1474 	flag2_targ_addr = host_interest_area +
1475 			offsetof(struct host_interest_area_t, hi_option_flag2);
1476 
1477 #else
1478 	interconnect_targ_addr = hif_hia_item_address(target_type,
1479 		offsetof(struct host_interest_s, hi_interconnect_state));
1480 	ealloc_targ_addr = hif_hia_item_address(target_type,
1481 		offsetof(struct host_interest_s, hi_early_alloc));
1482 	flag2_targ_addr = hif_hia_item_address(target_type,
1483 		offsetof(struct host_interest_s, hi_option_flag2));
1484 #endif
1485 	/* Supply Target-side CE configuration */
1486 	rv = hif_diag_read_access(hif_hdl, interconnect_targ_addr,
1487 			  &pcie_state_targ_addr);
1488 	if (rv != QDF_STATUS_SUCCESS) {
1489 		hif_err("interconnect_targ_addr = 0x%0x, ret = %d",
1490 			interconnect_targ_addr, rv);
1491 		goto done;
1492 	}
1493 	if (pcie_state_targ_addr == 0) {
1494 		rv = QDF_STATUS_E_FAILURE;
1495 		hif_err("pcie state addr is 0");
1496 		goto done;
1497 	}
1498 	pipe_cfg_addr = pcie_state_targ_addr +
1499 			  offsetof(struct pcie_state_s,
1500 			  pipe_cfg_addr);
1501 	rv = hif_diag_read_access(hif_hdl,
1502 			  pipe_cfg_addr,
1503 			  &pipe_cfg_targ_addr);
1504 	if (rv != QDF_STATUS_SUCCESS) {
1505 		hif_err("pipe_cfg_addr = 0x%0x, ret = %d", pipe_cfg_addr, rv);
1506 		goto done;
1507 	}
1508 	if (pipe_cfg_targ_addr == 0) {
1509 		rv = QDF_STATUS_E_FAILURE;
1510 		hif_err("pipe cfg addr is 0");
1511 		goto done;
1512 	}
1513 
1514 	rv = hif_diag_write_mem(hif_hdl, pipe_cfg_targ_addr,
1515 			(uint8_t *) target_ce_config,
1516 			target_ce_config_sz);
1517 
1518 	if (rv != QDF_STATUS_SUCCESS) {
1519 		hif_err("write pipe cfg: %d", rv);
1520 		goto done;
1521 	}
1522 
1523 	rv = hif_diag_read_access(hif_hdl,
1524 			  pcie_state_targ_addr +
1525 			  offsetof(struct pcie_state_s,
1526 			   svc_to_pipe_map),
1527 			  &svc_to_pipe_map);
1528 	if (rv != QDF_STATUS_SUCCESS) {
1529 		hif_err("get svc/pipe map: %d", rv);
1530 		goto done;
1531 	}
1532 	if (svc_to_pipe_map == 0) {
1533 		rv = QDF_STATUS_E_FAILURE;
1534 		hif_err("svc_to_pipe map is 0");
1535 		goto done;
1536 	}
1537 
1538 	rv = hif_diag_write_mem(hif_hdl,
1539 			svc_to_pipe_map,
1540 			(uint8_t *) target_service_to_ce_map,
1541 			target_service_to_ce_map_sz);
1542 	if (rv != QDF_STATUS_SUCCESS) {
1543 		hif_err("write svc/pipe map: %d", rv);
1544 		goto done;
1545 	}
1546 
1547 	rv = hif_diag_read_access(hif_hdl,
1548 			pcie_state_targ_addr +
1549 			offsetof(struct pcie_state_s,
1550 			config_flags),
1551 			&pcie_config_flags);
1552 	if (rv != QDF_STATUS_SUCCESS) {
1553 		hif_err("get pcie config_flags: %d", rv);
1554 		goto done;
1555 	}
1556 #if (CONFIG_PCIE_ENABLE_L1_CLOCK_GATE)
1557 	pcie_config_flags |= PCIE_CONFIG_FLAG_ENABLE_L1;
1558 #else
1559 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1560 #endif /* CONFIG_PCIE_ENABLE_L1_CLOCK_GATE */
1561 	pcie_config_flags |= PCIE_CONFIG_FLAG_CLK_SWITCH_WAIT;
1562 #if (CONFIG_PCIE_ENABLE_AXI_CLK_GATE)
1563 	pcie_config_flags |= PCIE_CONFIG_FLAG_AXI_CLK_GATE;
1564 #endif
1565 	rv = hif_diag_write_mem(hif_hdl,
1566 			pcie_state_targ_addr +
1567 			offsetof(struct pcie_state_s,
1568 			config_flags),
1569 			(uint8_t *) &pcie_config_flags,
1570 			sizeof(pcie_config_flags));
1571 	if (rv != QDF_STATUS_SUCCESS) {
1572 		hif_err("write pcie config_flags: %d", rv);
1573 		goto done;
1574 	}
1575 
1576 #ifndef QCA_WIFI_3_0
1577 	/* configure early allocation */
1578 	ealloc_targ_addr = hif_hia_item_address(target_type,
1579 						offsetof(
1580 						struct host_interest_s,
1581 						hi_early_alloc));
1582 
1583 	rv = hif_diag_read_access(hif_hdl, ealloc_targ_addr,
1584 			&ealloc_value);
1585 	if (rv != QDF_STATUS_SUCCESS) {
1586 		hif_err("get early alloc val: %d", rv);
1587 		goto done;
1588 	}
1589 
1590 	/* 1 bank is switched to IRAM, except ROME 1.0 */
1591 	ealloc_value |=
1592 		((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1593 		 HI_EARLY_ALLOC_MAGIC_MASK);
1594 
1595 	rv = hif_diag_read_access(hif_hdl,
1596 			  CHIP_ID_ADDRESS |
1597 			  RTC_SOC_BASE_ADDRESS, &chip_id);
1598 	if (rv != QDF_STATUS_SUCCESS) {
1599 		hif_err("get chip id val: %d", rv);
1600 		goto done;
1601 	}
1602 	if (CHIP_ID_VERSION_GET(chip_id) == 0xD) {
1603 		tgt_info->target_revision = CHIP_ID_REVISION_GET(chip_id);
1604 		switch (CHIP_ID_REVISION_GET(chip_id)) {
1605 		case 0x2:       /* ROME 1.3 */
1606 			/* 2 banks are switched to IRAM */
1607 			banks_switched = 2;
1608 			break;
1609 		case 0x4:       /* ROME 2.1 */
1610 		case 0x5:       /* ROME 2.2 */
1611 			banks_switched = 6;
1612 			break;
1613 		case 0x8:       /* ROME 3.0 */
1614 		case 0x9:       /* ROME 3.1 */
1615 		case 0xA:       /* ROME 3.2 */
1616 			banks_switched = 9;
1617 			break;
1618 		case 0x0:       /* ROME 1.0 */
1619 		case 0x1:       /* ROME 1.1 */
1620 		default:
1621 			/* 3 banks are switched to IRAM */
1622 			banks_switched = 3;
1623 			break;
1624 		}
1625 	}
1626 
1627 	ealloc_value |=
1628 		((banks_switched << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT)
1629 		 & HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1630 
1631 	rv = hif_diag_write_access(hif_hdl,
1632 				ealloc_targ_addr,
1633 				ealloc_value);
1634 	if (rv != QDF_STATUS_SUCCESS) {
1635 		hif_err("set early alloc val: %d", rv);
1636 		goto done;
1637 	}
1638 #endif
1639 	if ((target_type == TARGET_TYPE_AR900B)
1640 			|| (target_type == TARGET_TYPE_QCA9984)
1641 			|| (target_type == TARGET_TYPE_QCA9888)
1642 			|| (target_type == TARGET_TYPE_AR9888)) {
1643 		hif_set_hia_extnd(scn);
1644 	}
1645 
1646 	/* Tell Target to proceed with initialization */
1647 	flag2_targ_addr = hif_hia_item_address(target_type,
1648 						offsetof(
1649 						struct host_interest_s,
1650 						hi_option_flag2));
1651 
1652 	rv = hif_diag_read_access(hif_hdl, flag2_targ_addr,
1653 			  &flag2_value);
1654 	if (rv != QDF_STATUS_SUCCESS) {
1655 		hif_err("get option val: %d", rv);
1656 		goto done;
1657 	}
1658 
1659 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1660 	rv = hif_diag_write_access(hif_hdl, flag2_targ_addr,
1661 			   flag2_value);
1662 	if (rv != QDF_STATUS_SUCCESS) {
1663 		hif_err("set option val: %d", rv);
1664 		goto done;
1665 	}
1666 
1667 	hif_wake_target_cpu(scn);
1668 
1669 done:
1670 
1671 	return qdf_status_to_os_return(rv);
1672 }
1673 
1674 /**
1675  * hif_bus_configure() - configure the pcie bus
1676  * @hif_sc: pointer to the hif context.
1677  *
1678  * return: 0 for success. nonzero for failure.
1679  */
1680 int hif_pci_bus_configure(struct hif_softc *hif_sc)
1681 {
1682 	int status = 0;
1683 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
1684 	struct hif_opaque_softc *hif_osc = GET_HIF_OPAQUE_HDL(hif_sc);
1685 
1686 	hif_ce_prepare_config(hif_sc);
1687 
1688 	/* initialize sleep state adjust variables */
1689 	hif_state->sleep_timer_init = true;
1690 	hif_state->keep_awake_count = 0;
1691 	hif_state->fake_sleep = false;
1692 	hif_state->sleep_ticks = 0;
1693 
1694 	qdf_timer_init(NULL, &hif_state->sleep_timer,
1695 			       hif_sleep_entry, (void *)hif_state,
1696 			       QDF_TIMER_TYPE_WAKE_APPS);
1697 	hif_state->sleep_timer_init = true;
1698 
1699 	status = hif_wlan_enable(hif_sc);
1700 	if (status) {
1701 		hif_err("hif_wlan_enable error: %d", status);
1702 		goto timer_free;
1703 	}
1704 
1705 	A_TARGET_ACCESS_LIKELY(hif_sc);
1706 
1707 	if ((CONFIG_ATH_PCIE_MAX_PERF ||
1708 	     CONFIG_ATH_PCIE_AWAKE_WHILE_DRIVER_LOAD) &&
1709 	    !ce_srng_based(hif_sc)) {
1710 		/*
1711 		 * prevent sleep for PCIE_AWAKE_WHILE_DRIVER_LOAD feature
1712 		 * prevent sleep when we want to keep firmware always awake
1713 		 * note: when we want to keep firmware always awake,
1714 		 *       hif_target_sleep_state_adjust will point to a dummy
1715 		 *       function, and hif_pci_target_sleep_state_adjust must
1716 		 *       be called instead.
1717 		 * note: bus type check is here because AHB bus is reusing
1718 		 *       hif_pci_bus_configure code.
1719 		 */
1720 		if (hif_sc->bus_type == QDF_BUS_TYPE_PCI) {
1721 			if (hif_pci_target_sleep_state_adjust(hif_sc,
1722 					false, true) < 0) {
1723 				status = -EACCES;
1724 				goto disable_wlan;
1725 			}
1726 		}
1727 	}
1728 
1729 	/* todo: consider replacing this with an srng field */
1730 	if (((hif_sc->target_info.target_type == TARGET_TYPE_QCA8074) ||
1731 	     (hif_sc->target_info.target_type == TARGET_TYPE_QCA8074V2) ||
1732 	     (hif_sc->target_info.target_type == TARGET_TYPE_QCA9574) ||
1733 	     (hif_sc->target_info.target_type == TARGET_TYPE_QCA5332) ||
1734 	     (hif_sc->target_info.target_type == TARGET_TYPE_QCA5018) ||
1735 	     (hif_sc->target_info.target_type == TARGET_TYPE_QCN6122) ||
1736 	     (hif_sc->target_info.target_type == TARGET_TYPE_QCA6018)) &&
1737 	    (hif_sc->bus_type == QDF_BUS_TYPE_AHB)) {
1738 		hif_sc->per_ce_irq = true;
1739 	}
1740 
1741 	status = hif_config_ce(hif_sc);
1742 	if (status)
1743 		goto disable_wlan;
1744 
1745 	if (hif_needs_bmi(hif_osc)) {
1746 		status = hif_set_hia(hif_sc);
1747 		if (status)
1748 			goto unconfig_ce;
1749 
1750 		hif_debug("hif_set_hia done");
1751 
1752 	}
1753 
1754 	if (((hif_sc->target_info.target_type == TARGET_TYPE_QCA8074) ||
1755 	     (hif_sc->target_info.target_type == TARGET_TYPE_QCA8074V2) ||
1756 	     (hif_sc->target_info.target_type == TARGET_TYPE_QCA9574) ||
1757 	     (hif_sc->target_info.target_type == TARGET_TYPE_QCA5332) ||
1758 	     (hif_sc->target_info.target_type == TARGET_TYPE_QCA5018) ||
1759 	     (hif_sc->target_info.target_type == TARGET_TYPE_QCN6122) ||
1760 	     (hif_sc->target_info.target_type == TARGET_TYPE_QCA6018)) &&
1761 	    (hif_sc->bus_type == QDF_BUS_TYPE_PCI))
1762 		hif_debug("Skip irq config for PCI based 8074 target");
1763 	else {
1764 		status = hif_configure_irq(hif_sc);
1765 		if (status < 0)
1766 			goto unconfig_ce;
1767 	}
1768 
1769 	A_TARGET_ACCESS_UNLIKELY(hif_sc);
1770 
1771 	return status;
1772 
1773 unconfig_ce:
1774 	hif_unconfig_ce(hif_sc);
1775 disable_wlan:
1776 	A_TARGET_ACCESS_UNLIKELY(hif_sc);
1777 	hif_wlan_disable(hif_sc);
1778 
1779 timer_free:
1780 	qdf_timer_stop(&hif_state->sleep_timer);
1781 	qdf_timer_free(&hif_state->sleep_timer);
1782 	hif_state->sleep_timer_init = false;
1783 
1784 	hif_err("Failed, status: %d", status);
1785 	return status;
1786 }
1787 
1788 /**
1789  * hif_bus_close(): hif_bus_close
1790  *
1791  * Return: n/a
1792  */
1793 void hif_pci_close(struct hif_softc *hif_sc)
1794 {
1795 	hif_rtpm_close(hif_sc);
1796 	hif_ce_close(hif_sc);
1797 }
1798 
1799 #define BAR_NUM 0
1800 
1801 static int hif_enable_pci_nopld(struct hif_pci_softc *sc,
1802 				struct pci_dev *pdev,
1803 				const struct pci_device_id *id)
1804 {
1805 	void __iomem *mem;
1806 	int ret = 0;
1807 	uint16_t device_id = 0;
1808 	struct hif_softc *ol_sc = HIF_GET_SOFTC(sc);
1809 
1810 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
1811 	if (device_id != id->device)  {
1812 		hif_err(
1813 		   "dev id mismatch, config id = 0x%x, probing id = 0x%x",
1814 		   device_id, id->device);
1815 		/* pci link is down, so returing with error code */
1816 		return -EIO;
1817 	}
1818 
1819 	/* FIXME: temp. commenting out assign_resource
1820 	 * call for dev_attach to work on 2.6.38 kernel
1821 	 */
1822 #if (!defined(__LINUX_ARM_ARCH__))
1823 	if (pci_assign_resource(pdev, BAR_NUM)) {
1824 		hif_err("pci_assign_resource error");
1825 		return -EIO;
1826 	}
1827 #endif
1828 	if (pci_enable_device(pdev)) {
1829 		hif_err("pci_enable_device error");
1830 		return -EIO;
1831 	}
1832 
1833 	/* Request MMIO resources */
1834 	ret = pci_request_region(pdev, BAR_NUM, "ath");
1835 	if (ret) {
1836 		hif_err("PCI MMIO reservation error");
1837 		ret = -EIO;
1838 		goto err_region;
1839 	}
1840 
1841 #ifdef CONFIG_ARM_LPAE
1842 	/* if CONFIG_ARM_LPAE is enabled, we have to set 64 bits mask
1843 	 * for 32 bits device also.
1844 	 */
1845 	ret =  pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1846 	if (ret) {
1847 		hif_err("Cannot enable 64-bit pci DMA");
1848 		goto err_dma;
1849 	}
1850 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1851 	if (ret) {
1852 		hif_err("Cannot enable 64-bit DMA");
1853 		goto err_dma;
1854 	}
1855 #else
1856 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1857 	if (ret) {
1858 		hif_err("Cannot enable 32-bit pci DMA");
1859 		goto err_dma;
1860 	}
1861 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1862 	if (ret) {
1863 		hif_err("Cannot enable 32-bit consistent DMA!");
1864 		goto err_dma;
1865 	}
1866 #endif
1867 
1868 	PCI_CFG_TO_DISABLE_L1SS_STATES(pdev, 0x188);
1869 
1870 	/* Set bus master bit in PCI_COMMAND to enable DMA */
1871 	pci_set_master(pdev);
1872 
1873 	/* Arrange for access to Target SoC registers. */
1874 	mem = pci_iomap(pdev, BAR_NUM, 0);
1875 	if (!mem) {
1876 		hif_err("PCI iomap error");
1877 		ret = -EIO;
1878 		goto err_iomap;
1879 	}
1880 
1881 	hif_info("*****BAR is %pK", (void *)mem);
1882 
1883 	sc->mem = mem;
1884 
1885 	/* Hawkeye emulation specific change */
1886 	if ((device_id == RUMIM2M_DEVICE_ID_NODE0) ||
1887 		(device_id == RUMIM2M_DEVICE_ID_NODE1) ||
1888 		(device_id == RUMIM2M_DEVICE_ID_NODE2) ||
1889 		(device_id == RUMIM2M_DEVICE_ID_NODE3) ||
1890 		(device_id == RUMIM2M_DEVICE_ID_NODE4) ||
1891 		(device_id == RUMIM2M_DEVICE_ID_NODE5)) {
1892 		mem = mem + 0x0c000000;
1893 		sc->mem = mem;
1894 		hif_info("Changing PCI mem base to %pK", sc->mem);
1895 	}
1896 
1897 	sc->mem_len = pci_resource_len(pdev, BAR_NUM);
1898 	ol_sc->mem = mem;
1899 	ol_sc->mem_pa = pci_resource_start(pdev, BAR_NUM);
1900 	sc->pci_enabled = true;
1901 	return ret;
1902 
1903 err_iomap:
1904 	pci_clear_master(pdev);
1905 err_dma:
1906 	pci_release_region(pdev, BAR_NUM);
1907 err_region:
1908 	pci_disable_device(pdev);
1909 	return ret;
1910 }
1911 
1912 static int hif_enable_pci_pld(struct hif_pci_softc *sc,
1913 			      struct pci_dev *pdev,
1914 			      const struct pci_device_id *id)
1915 {
1916 	PCI_CFG_TO_DISABLE_L1SS_STATES(pdev, 0x188);
1917 	sc->pci_enabled = true;
1918 	return 0;
1919 }
1920 
1921 
1922 static void hif_pci_deinit_nopld(struct hif_pci_softc *sc)
1923 {
1924 	pci_disable_msi(sc->pdev);
1925 	pci_iounmap(sc->pdev, sc->mem);
1926 	pci_clear_master(sc->pdev);
1927 	pci_release_region(sc->pdev, BAR_NUM);
1928 	pci_disable_device(sc->pdev);
1929 }
1930 
1931 static void hif_pci_deinit_pld(struct hif_pci_softc *sc) {}
1932 
1933 static void hif_disable_pci(struct hif_pci_softc *sc)
1934 {
1935 	struct hif_softc *ol_sc = HIF_GET_SOFTC(sc);
1936 
1937 	if (!ol_sc) {
1938 		hif_err("ol_sc = NULL");
1939 		return;
1940 	}
1941 	hif_pci_device_reset(sc);
1942 	sc->hif_pci_deinit(sc);
1943 
1944 	sc->mem = NULL;
1945 	ol_sc->mem = NULL;
1946 }
1947 
1948 static int hif_pci_probe_tgt_wakeup(struct hif_pci_softc *sc)
1949 {
1950 	int ret = 0;
1951 	int targ_awake_limit = 500;
1952 #ifndef QCA_WIFI_3_0
1953 	uint32_t fw_indicator;
1954 #endif
1955 	struct hif_softc *scn = HIF_GET_SOFTC(sc);
1956 
1957 	/*
1958 	 * Verify that the Target was started cleanly.*
1959 	 * The case where this is most likely is with an AUX-powered
1960 	 * Target and a Host in WoW mode. If the Host crashes,
1961 	 * loses power, or is restarted (without unloading the driver)
1962 	 * then the Target is left (aux) powered and running.  On a
1963 	 * subsequent driver load, the Target is in an unexpected state.
1964 	 * We try to catch that here in order to reset the Target and
1965 	 * retry the probe.
1966 	 */
1967 	hif_write32_mb(sc, sc->mem + PCIE_LOCAL_BASE_ADDRESS +
1968 				  PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_V_MASK);
1969 	while (!hif_targ_is_awake(scn, sc->mem)) {
1970 		if (0 == targ_awake_limit) {
1971 			hif_err("target awake timeout");
1972 			ret = -EAGAIN;
1973 			goto end;
1974 		}
1975 		qdf_mdelay(1);
1976 		targ_awake_limit--;
1977 	}
1978 
1979 #if PCIE_BAR0_READY_CHECKING
1980 	{
1981 		int wait_limit = 200;
1982 		/* Synchronization point: wait the BAR0 is configured */
1983 		while (wait_limit-- &&
1984 			   !(hif_read32_mb(sc, c->mem +
1985 					  PCIE_LOCAL_BASE_ADDRESS +
1986 					  PCIE_SOC_RDY_STATUS_ADDRESS)
1987 					  & PCIE_SOC_RDY_STATUS_BAR_MASK)) {
1988 			qdf_mdelay(10);
1989 		}
1990 		if (wait_limit < 0) {
1991 			/* AR6320v1 doesn't support checking of BAR0
1992 			 * configuration, takes one sec to wait BAR0 ready
1993 			 */
1994 			hif_debug("AR6320v1 waits two sec for BAR0");
1995 		}
1996 	}
1997 #endif
1998 
1999 #ifndef QCA_WIFI_3_0
2000 	fw_indicator = hif_read32_mb(sc, sc->mem + FW_INDICATOR_ADDRESS);
2001 	hif_write32_mb(sc, sc->mem + PCIE_LOCAL_BASE_ADDRESS +
2002 				  PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_RESET);
2003 
2004 	if (fw_indicator & FW_IND_INITIALIZED) {
2005 		hif_err("Target is in an unknown state. EAGAIN");
2006 		ret = -EAGAIN;
2007 		goto end;
2008 	}
2009 #endif
2010 
2011 end:
2012 	return ret;
2013 }
2014 
2015 static int hif_pci_configure_legacy_irq(struct hif_pci_softc *sc)
2016 {
2017 	int ret = 0;
2018 	struct hif_softc *scn = HIF_GET_SOFTC(sc);
2019 	uint32_t target_type = scn->target_info.target_type;
2020 
2021 	hif_info("E");
2022 
2023 	/* do notn support MSI or MSI IRQ failed */
2024 	tasklet_init(&sc->intr_tq, wlan_tasklet, (unsigned long)sc);
2025 	ret = request_irq(sc->pdev->irq,
2026 			  hif_pci_legacy_ce_interrupt_handler, IRQF_SHARED,
2027 			  "wlan_pci", sc);
2028 	if (ret) {
2029 		hif_err("request_irq failed, ret: %d", ret);
2030 		goto end;
2031 	}
2032 	scn->wake_irq = sc->pdev->irq;
2033 	/* Use sc->irq instead of sc->pdev-irq
2034 	 * platform_device pdev doesn't have an irq field
2035 	 */
2036 	sc->irq = sc->pdev->irq;
2037 	/* Use Legacy PCI Interrupts */
2038 	hif_write32_mb(sc, sc->mem + (SOC_CORE_BASE_ADDRESS |
2039 		  PCIE_INTR_ENABLE_ADDRESS),
2040 		  HOST_GROUP0_MASK);
2041 	hif_read32_mb(sc, sc->mem + (SOC_CORE_BASE_ADDRESS |
2042 			       PCIE_INTR_ENABLE_ADDRESS));
2043 	hif_write32_mb(sc, sc->mem + PCIE_LOCAL_BASE_ADDRESS +
2044 		      PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_RESET);
2045 
2046 	if ((target_type == TARGET_TYPE_AR900B)  ||
2047 			(target_type == TARGET_TYPE_QCA9984) ||
2048 			(target_type == TARGET_TYPE_AR9888) ||
2049 			(target_type == TARGET_TYPE_QCA9888) ||
2050 			(target_type == TARGET_TYPE_AR6320V1) ||
2051 			(target_type == TARGET_TYPE_AR6320V2) ||
2052 			(target_type == TARGET_TYPE_AR6320V3)) {
2053 		hif_write32_mb(scn, scn->mem + PCIE_LOCAL_BASE_ADDRESS +
2054 				PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_V_MASK);
2055 	}
2056 end:
2057 	QDF_TRACE(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_ERROR,
2058 			  "%s: X, ret = %d", __func__, ret);
2059 	return ret;
2060 }
2061 
2062 static int hif_ce_srng_free_irq(struct hif_softc *scn)
2063 {
2064 	int ret = 0;
2065 	int ce_id, irq;
2066 	uint32_t msi_data_start;
2067 	uint32_t msi_data_count;
2068 	uint32_t msi_irq_start;
2069 	struct HIF_CE_state *ce_sc = HIF_GET_CE_STATE(scn);
2070 	struct CE_attr *host_ce_conf = ce_sc->host_ce_config;
2071 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
2072 
2073 	if (!pld_get_enable_intx(scn->qdf_dev->dev)) {
2074 		ret = pld_get_user_msi_assignment(scn->qdf_dev->dev, "CE",
2075 						  &msi_data_count,
2076 						  &msi_data_start,
2077 						  &msi_irq_start);
2078 		if (ret)
2079 			return ret;
2080 	}
2081 
2082 	/* needs to match the ce_id -> irq data mapping
2083 	 * used in the srng parameter configuration
2084 	 */
2085 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
2086 		if (host_ce_conf[ce_id].flags & CE_ATTR_DISABLE_INTR)
2087 			continue;
2088 
2089 		if (!ce_sc->tasklets[ce_id].inited)
2090 			continue;
2091 
2092 		irq = sc->ce_irq_num[ce_id];
2093 
2094 		hif_ce_irq_remove_affinity_hint(irq);
2095 
2096 		hif_debug("%s: (ce_id %d, irq %d)", __func__, ce_id, irq);
2097 
2098 		pfrm_free_irq(scn->qdf_dev->dev, irq, &ce_sc->tasklets[ce_id]);
2099 	}
2100 
2101 	return ret;
2102 }
2103 
2104 void hif_pci_deconfigure_grp_irq(struct hif_softc *scn)
2105 {
2106 	int i, j, irq;
2107 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2108 	struct hif_exec_context *hif_ext_group;
2109 
2110 	for (i = 0; i < hif_state->hif_num_extgroup; i++) {
2111 		hif_ext_group = hif_state->hif_ext_group[i];
2112 		if (hif_ext_group->irq_requested) {
2113 			hif_ext_group->irq_requested = false;
2114 			for (j = 0; j < hif_ext_group->numirq; j++) {
2115 				irq = hif_ext_group->os_irq[j];
2116 				if (scn->irq_unlazy_disable) {
2117 					qdf_dev_clear_irq_status_flags(
2118 							irq,
2119 							QDF_IRQ_DISABLE_UNLAZY);
2120 				}
2121 				pfrm_free_irq(scn->qdf_dev->dev,
2122 					      irq, hif_ext_group);
2123 			}
2124 			hif_ext_group->numirq = 0;
2125 		}
2126 	}
2127 }
2128 
2129 /**
2130  * hif_nointrs(): disable IRQ
2131  *
2132  * This function stops interrupt(s)
2133  *
2134  * @scn: struct hif_softc
2135  *
2136  * Return: none
2137  */
2138 void hif_pci_nointrs(struct hif_softc *scn)
2139 {
2140 	int i, ret;
2141 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
2142 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2143 
2144 	scn->free_irq_done = true;
2145 	ce_unregister_irq(hif_state, CE_ALL_BITMAP);
2146 
2147 	if (scn->request_irq_done == false)
2148 		return;
2149 
2150 	hif_pci_deconfigure_grp_irq(scn);
2151 
2152 	ret = hif_ce_srng_free_irq(scn);
2153 	if (ret != -EINVAL) {
2154 		/* ce irqs freed in hif_ce_srng_free_irq */
2155 
2156 		if (scn->wake_irq)
2157 			pfrm_free_irq(scn->qdf_dev->dev, scn->wake_irq, scn);
2158 		scn->wake_irq = 0;
2159 	} else if (sc->num_msi_intrs > 0) {
2160 		/* MSI interrupt(s) */
2161 		for (i = 0; i < sc->num_msi_intrs; i++)
2162 			free_irq(sc->irq + i, sc);
2163 		sc->num_msi_intrs = 0;
2164 	} else {
2165 		/* Legacy PCI line interrupt
2166 		 * Use sc->irq instead of sc->pdev-irq
2167 		 * platform_device pdev doesn't have an irq field
2168 		 */
2169 		free_irq(sc->irq, sc);
2170 	}
2171 	scn->request_irq_done = false;
2172 }
2173 
2174 static inline
2175 bool hif_pci_default_link_up(struct hif_target_info *tgt_info)
2176 {
2177 	if (ADRASTEA_BU && (tgt_info->target_type != TARGET_TYPE_QCN7605))
2178 		return true;
2179 	else
2180 		return false;
2181 }
2182 /**
2183  * hif_disable_bus(): hif_disable_bus
2184  *
2185  * This function disables the bus
2186  *
2187  * @bdev: bus dev
2188  *
2189  * Return: none
2190  */
2191 void hif_pci_disable_bus(struct hif_softc *scn)
2192 {
2193 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
2194 	struct pci_dev *pdev;
2195 	void __iomem *mem;
2196 	struct hif_target_info *tgt_info = &scn->target_info;
2197 
2198 	/* Attach did not succeed, all resources have been
2199 	 * freed in error handler
2200 	 */
2201 	if (!sc)
2202 		return;
2203 
2204 	pdev = sc->pdev;
2205 	if (hif_pci_default_link_up(tgt_info)) {
2206 		hif_vote_link_down(GET_HIF_OPAQUE_HDL(scn));
2207 
2208 		hif_write32_mb(sc, sc->mem + PCIE_INTR_ENABLE_ADDRESS, 0);
2209 		hif_write32_mb(sc, sc->mem + PCIE_INTR_CLR_ADDRESS,
2210 			       HOST_GROUP0_MASK);
2211 	}
2212 
2213 #if defined(CPU_WARM_RESET_WAR)
2214 	/* Currently CPU warm reset sequence is tested only for AR9888_REV2
2215 	 * Need to enable for AR9888_REV1 once CPU warm reset sequence is
2216 	 * verified for AR9888_REV1
2217 	 */
2218 	if ((tgt_info->target_version == AR9888_REV2_VERSION) ||
2219 	    (tgt_info->target_version == AR9887_REV1_VERSION))
2220 		hif_pci_device_warm_reset(sc);
2221 	else
2222 		hif_pci_device_reset(sc);
2223 #else
2224 	hif_pci_device_reset(sc);
2225 #endif
2226 	mem = (void __iomem *)sc->mem;
2227 	if (mem) {
2228 		hif_dump_pipe_debug_count(scn);
2229 		if (scn->athdiag_procfs_inited) {
2230 			athdiag_procfs_remove();
2231 			scn->athdiag_procfs_inited = false;
2232 		}
2233 		sc->hif_pci_deinit(sc);
2234 		scn->mem = NULL;
2235 	}
2236 	hif_info("X");
2237 }
2238 
2239 #define OL_ATH_PCI_PM_CONTROL 0x44
2240 
2241 #ifdef CONFIG_PLD_PCIE_CNSS
2242 /**
2243  * hif_pci_prevent_linkdown(): allow or permit linkdown
2244  * @flag: true prevents linkdown, false allows
2245  *
2246  * Calls into the platform driver to vote against taking down the
2247  * pcie link.
2248  *
2249  * Return: n/a
2250  */
2251 void hif_pci_prevent_linkdown(struct hif_softc *scn, bool flag)
2252 {
2253 	int errno;
2254 
2255 	hif_info("wlan: %s pcie power collapse", flag ? "disable" : "enable");
2256 	hif_runtime_prevent_linkdown(scn, flag);
2257 
2258 	errno = pld_wlan_pm_control(scn->qdf_dev->dev, flag);
2259 	if (errno)
2260 		hif_err("Failed pld_wlan_pm_control; errno %d", errno);
2261 }
2262 #else
2263 void hif_pci_prevent_linkdown(struct hif_softc *scn, bool flag)
2264 {
2265 }
2266 #endif
2267 
2268 #ifdef CONFIG_PCI_LOW_POWER_INT_REG
2269 /**
2270  * hif_pci_config_low_power_int_register(): configure pci low power
2271  * interrupt  register.
2272  * @enable: true to enable the bits, false clear.
2273  *
2274  * Configure the bits INTR_L1SS and INTR_CLKPM of
2275  * PCIE_LOW_POWER_INT_MASK register.
2276  *
2277  * Return: n/a
2278  */
2279 static void hif_pci_config_low_power_int_register(struct hif_softc *scn,
2280 						  bool enable)
2281 {
2282 	void *address;
2283 	uint32_t value;
2284 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
2285 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
2286 	uint32_t target_type = tgt_info->target_type;
2287 
2288 	/*
2289 	 * Only configure the bits INTR_L1SS and INTR_CLKPM of
2290 	 * PCIE_LOW_POWER_INT_MASK register for QCA6174 for high
2291 	 * consumption issue. NFA344A power consumption is above 80mA
2292 	 * after entering Modern Standby. But the power will drop to normal
2293 	 * after PERST# de-assert.
2294 	 */
2295 	if ((target_type == TARGET_TYPE_AR6320) ||
2296 	    (target_type == TARGET_TYPE_AR6320V1) ||
2297 	    (target_type == TARGET_TYPE_AR6320V2) ||
2298 	    (target_type == TARGET_TYPE_AR6320V3)) {
2299 		hif_info("Configure PCI low power int mask register");
2300 
2301 		address = scn->mem + PCIE_LOW_POWER_INT_MASK_OFFSET;
2302 
2303 		/* Configure bit3 INTR_L1SS */
2304 		value = hif_read32_mb(scn, address);
2305 		if (enable)
2306 			value |= INTR_L1SS;
2307 		else
2308 			value &= ~INTR_L1SS;
2309 		hif_write32_mb(scn, address, value);
2310 
2311 		/* Configure bit4 INTR_CLKPM */
2312 		value = hif_read32_mb(scn, address);
2313 		if (enable)
2314 			value |= INTR_CLKPM;
2315 		else
2316 			value &= ~INTR_CLKPM;
2317 		hif_write32_mb(scn, address, value);
2318 	}
2319 }
2320 #else
2321 static inline void hif_pci_config_low_power_int_register(struct hif_softc *scn,
2322 							 bool enable)
2323 {
2324 }
2325 #endif
2326 
2327 /**
2328  * hif_pci_bus_suspend(): prepare hif for suspend
2329  *
2330  * Return: Errno
2331  */
2332 int hif_pci_bus_suspend(struct hif_softc *scn)
2333 {
2334 	QDF_STATUS ret;
2335 
2336 	hif_apps_irqs_disable(GET_HIF_OPAQUE_HDL(scn));
2337 
2338 	ret = hif_try_complete_tasks(scn);
2339 	if (QDF_IS_STATUS_ERROR(ret)) {
2340 		hif_apps_irqs_enable(GET_HIF_OPAQUE_HDL(scn));
2341 		return -EBUSY;
2342 	}
2343 
2344 	/*
2345 	 * In an unlikely case, if draining becomes infinite loop,
2346 	 * it returns an error, shall abort the bus suspend.
2347 	 */
2348 	ret = hif_drain_fw_diag_ce(scn);
2349 	if (ret) {
2350 		hif_err("draining fw_diag_ce goes infinite, so abort suspend");
2351 		hif_apps_irqs_enable(GET_HIF_OPAQUE_HDL(scn));
2352 		return -EBUSY;
2353 	}
2354 
2355 	/* Stop the HIF Sleep Timer */
2356 	hif_cancel_deferred_target_sleep(scn);
2357 
2358 	/*
2359 	 * Only need clear the bits INTR_L1SS/INTR_CLKPM after suspend.
2360 	 * No need do enable bits after resume, as firmware will restore
2361 	 * the bits after resume.
2362 	 */
2363 	hif_pci_config_low_power_int_register(scn, false);
2364 
2365 	scn->bus_suspended = true;
2366 
2367 	return 0;
2368 }
2369 
2370 #ifdef PCI_LINK_STATUS_SANITY
2371 /**
2372  * __hif_check_link_status() - API to check if PCIe link is active/not
2373  * @scn: HIF Context
2374  *
2375  * API reads the PCIe config space to verify if PCIe link training is
2376  * successful or not.
2377  *
2378  * Return: Success/Failure
2379  */
2380 static int __hif_check_link_status(struct hif_softc *scn)
2381 {
2382 	uint16_t dev_id = 0;
2383 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
2384 	struct hif_driver_state_callbacks *cbk = hif_get_callbacks_handle(scn);
2385 
2386 	if (!sc) {
2387 		hif_err("HIF Bus Context is Invalid");
2388 		return -EINVAL;
2389 	}
2390 
2391 	pfrm_read_config_word(sc->pdev, PCI_DEVICE_ID, &dev_id);
2392 
2393 	if (dev_id == sc->devid)
2394 		return 0;
2395 
2396 	hif_err("Invalid PCIe Config Space; PCIe link down dev_id:0x%04x",
2397 	       dev_id);
2398 
2399 	scn->recovery = true;
2400 
2401 	if (cbk && cbk->set_recovery_in_progress)
2402 		cbk->set_recovery_in_progress(cbk->context, true);
2403 	else
2404 		hif_err("Driver Global Recovery is not set");
2405 
2406 	pld_is_pci_link_down(sc->dev);
2407 	return -EACCES;
2408 }
2409 #else
2410 static inline int __hif_check_link_status(struct hif_softc *scn)
2411 {
2412 	return 0;
2413 }
2414 #endif
2415 
2416 
2417 #ifdef HIF_BUS_LOG_INFO
2418 bool hif_log_pcie_info(struct hif_softc *scn, uint8_t *data,
2419 		       unsigned int *offset)
2420 {
2421 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
2422 	struct hang_event_bus_info info = {0};
2423 	size_t size;
2424 
2425 	if (!sc) {
2426 		hif_err("HIF Bus Context is Invalid");
2427 		return false;
2428 	}
2429 
2430 	pfrm_read_config_word(sc->pdev, PCI_DEVICE_ID, &info.dev_id);
2431 
2432 	size = sizeof(info);
2433 	QDF_HANG_EVT_SET_HDR(&info.tlv_header, HANG_EVT_TAG_BUS_INFO,
2434 			     size - QDF_HANG_EVENT_TLV_HDR_SIZE);
2435 
2436 	if (*offset + size > QDF_WLAN_HANG_FW_OFFSET)
2437 		return false;
2438 
2439 	qdf_mem_copy(data + *offset, &info, size);
2440 	*offset = *offset + size;
2441 
2442 	if (info.dev_id == sc->devid)
2443 		return false;
2444 
2445 	qdf_recovery_reason_update(QCA_HANG_BUS_FAILURE);
2446 	qdf_get_bus_reg_dump(scn->qdf_dev->dev, data,
2447 			     (QDF_WLAN_HANG_FW_OFFSET - size));
2448 	return true;
2449 }
2450 #endif
2451 
2452 /**
2453  * hif_pci_bus_resume(): prepare hif for resume
2454  *
2455  * Return: Errno
2456  */
2457 int hif_pci_bus_resume(struct hif_softc *scn)
2458 {
2459 	int errno;
2460 
2461 	scn->bus_suspended = false;
2462 
2463 	errno = __hif_check_link_status(scn);
2464 	if (errno)
2465 		return errno;
2466 
2467 	hif_apps_irqs_enable(GET_HIF_OPAQUE_HDL(scn));
2468 
2469 	return 0;
2470 }
2471 
2472 /**
2473  * hif_pci_bus_suspend_noirq() - ensure there are no pending transactions
2474  * @scn: hif context
2475  *
2476  * Ensure that if we received the wakeup message before the irq
2477  * was disabled that the message is pocessed before suspending.
2478  *
2479  * Return: -EBUSY if we fail to flush the tasklets.
2480  */
2481 int hif_pci_bus_suspend_noirq(struct hif_softc *scn)
2482 {
2483 	if (hif_can_suspend_link(GET_HIF_OPAQUE_HDL(scn)))
2484 		qdf_atomic_set(&scn->link_suspended, 1);
2485 
2486 	return 0;
2487 }
2488 
2489 /**
2490  * hif_pci_bus_resume_noirq() - ensure there are no pending transactions
2491  * @scn: hif context
2492  *
2493  * Ensure that if we received the wakeup message before the irq
2494  * was disabled that the message is pocessed before suspending.
2495  *
2496  * Return: -EBUSY if we fail to flush the tasklets.
2497  */
2498 int hif_pci_bus_resume_noirq(struct hif_softc *scn)
2499 {
2500 	/* a vote for link up can come in the middle of the ongoing resume
2501 	 * process. hence, clear the link suspend flag once
2502 	 * hif_bus_resume_noirq() succeeds since PCIe link is already resumed
2503 	 * by this time
2504 	 */
2505 	qdf_atomic_set(&scn->link_suspended, 0);
2506 
2507 	return 0;
2508 }
2509 
2510 #if CONFIG_PCIE_64BIT_MSI
2511 static void hif_free_msi_ctx(struct hif_softc *scn)
2512 {
2513 	struct hif_pci_softc *sc = scn->hif_sc;
2514 	struct hif_msi_info *info = &sc->msi_info;
2515 	struct device *dev = scn->qdf_dev->dev;
2516 
2517 	OS_FREE_CONSISTENT(dev, 4, info->magic, info->magic_dma,
2518 			   OS_GET_DMA_MEM_CONTEXT(scn, dmacontext));
2519 	info->magic = NULL;
2520 	info->magic_dma = 0;
2521 }
2522 #else
2523 static void hif_free_msi_ctx(struct hif_softc *scn)
2524 {
2525 }
2526 #endif
2527 
2528 void hif_pci_disable_isr(struct hif_softc *scn)
2529 {
2530 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
2531 
2532 	hif_exec_kill(&scn->osc);
2533 	hif_nointrs(scn);
2534 	hif_free_msi_ctx(scn);
2535 	/* Cancel the pending tasklet */
2536 	ce_tasklet_kill(scn);
2537 	tasklet_kill(&sc->intr_tq);
2538 	qdf_atomic_set(&scn->active_tasklet_cnt, 0);
2539 	qdf_atomic_set(&scn->active_grp_tasklet_cnt, 0);
2540 }
2541 
2542 /* Function to reset SoC */
2543 void hif_pci_reset_soc(struct hif_softc *hif_sc)
2544 {
2545 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(hif_sc);
2546 	struct hif_opaque_softc *ol_sc = GET_HIF_OPAQUE_HDL(hif_sc);
2547 	struct hif_target_info *tgt_info = hif_get_target_info_handle(ol_sc);
2548 
2549 #if defined(CPU_WARM_RESET_WAR)
2550 	/* Currently CPU warm reset sequence is tested only for AR9888_REV2
2551 	 * Need to enable for AR9888_REV1 once CPU warm reset sequence is
2552 	 * verified for AR9888_REV1
2553 	 */
2554 	if (tgt_info->target_version == AR9888_REV2_VERSION)
2555 		hif_pci_device_warm_reset(sc);
2556 	else
2557 		hif_pci_device_reset(sc);
2558 #else
2559 	hif_pci_device_reset(sc);
2560 #endif
2561 }
2562 
2563 /**
2564  * hif_log_soc_wakeup_timeout() - API to log PCIe and SOC Info
2565  * @sc: HIF PCIe Context
2566  *
2567  * API to log PCIe Config space and SOC info when SOC wakeup timeout happens
2568  *
2569  * Return: Failure to caller
2570  */
2571 static int hif_log_soc_wakeup_timeout(struct hif_pci_softc *sc)
2572 {
2573 	uint16_t val = 0;
2574 	uint32_t bar = 0;
2575 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(sc);
2576 	struct hif_softc *scn = HIF_GET_SOFTC(sc);
2577 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(sc);
2578 	struct hif_config_info *cfg = hif_get_ini_handle(hif_hdl);
2579 	struct hif_driver_state_callbacks *cbk = hif_get_callbacks_handle(scn);
2580 	A_target_id_t pci_addr = scn->mem;
2581 
2582 	hif_info("keep_awake_count = %d", hif_state->keep_awake_count);
2583 
2584 	pfrm_read_config_word(sc->pdev, PCI_VENDOR_ID, &val);
2585 
2586 	hif_info("PCI Vendor ID = 0x%04x", val);
2587 
2588 	pfrm_read_config_word(sc->pdev, PCI_DEVICE_ID, &val);
2589 
2590 	hif_info("PCI Device ID = 0x%04x", val);
2591 
2592 	pfrm_read_config_word(sc->pdev, PCI_COMMAND, &val);
2593 
2594 	hif_info("PCI Command = 0x%04x", val);
2595 
2596 	pfrm_read_config_word(sc->pdev, PCI_STATUS, &val);
2597 
2598 	hif_info("PCI Status = 0x%04x", val);
2599 
2600 	pfrm_read_config_dword(sc->pdev, PCI_BASE_ADDRESS_0, &bar);
2601 
2602 	hif_info("PCI BAR 0 = 0x%08x", bar);
2603 
2604 	hif_info("SOC_WAKE_ADDR 0%08x",
2605 		hif_read32_mb(scn, pci_addr + PCIE_LOCAL_BASE_ADDRESS +
2606 				PCIE_SOC_WAKE_ADDRESS));
2607 
2608 	hif_info("RTC_STATE_ADDR 0x%08x",
2609 		hif_read32_mb(scn, pci_addr + PCIE_LOCAL_BASE_ADDRESS +
2610 							RTC_STATE_ADDRESS));
2611 
2612 	hif_info("wakeup target");
2613 
2614 	if (!cfg->enable_self_recovery)
2615 		QDF_BUG(0);
2616 
2617 	scn->recovery = true;
2618 
2619 	if (cbk->set_recovery_in_progress)
2620 		cbk->set_recovery_in_progress(cbk->context, true);
2621 
2622 	pld_is_pci_link_down(sc->dev);
2623 	return -EACCES;
2624 }
2625 
2626 /*
2627  * For now, we use simple on-demand sleep/wake.
2628  * Some possible improvements:
2629  *  -Use the Host-destined A_INUM_PCIE_AWAKE interrupt rather than spin/delay
2630  *   (or perhaps spin/delay for a short while, then convert to sleep/interrupt)
2631  *   Careful, though, these functions may be used by
2632  *  interrupt handlers ("atomic")
2633  *  -Don't use host_reg_table for this code; instead use values directly
2634  *  -Use a separate timer to track activity and allow Target to sleep only
2635  *   if it hasn't done anything for a while; may even want to delay some
2636  *   processing for a short while in order to "batch" (e.g.) transmit
2637  *   requests with completion processing into "windows of up time".  Costs
2638  *   some performance, but improves power utilization.
2639  *  -On some platforms, it might be possible to eliminate explicit
2640  *   sleep/wakeup. Instead, take a chance that each access works OK. If not,
2641  *   recover from the failure by forcing the Target awake.
2642  *  -Change keep_awake_count to an atomic_t in order to avoid spin lock
2643  *   overhead in some cases. Perhaps this makes more sense when
2644  *   CONFIG_ATH_PCIE_ACCESS_LIKELY is used and less sense when LIKELY is
2645  *   disabled.
2646  *  -It is possible to compile this code out and simply force the Target
2647  *   to remain awake.  That would yield optimal performance at the cost of
2648  *   increased power. See CONFIG_ATH_PCIE_MAX_PERF.
2649  *
2650  * Note: parameter wait_for_it has meaning only when waking (when sleep_ok==0).
2651  */
2652 /**
2653  * hif_target_sleep_state_adjust() - on-demand sleep/wake
2654  * @scn: hif_softc pointer.
2655  * @sleep_ok: bool
2656  * @wait_for_it: bool
2657  *
2658  * Output the pipe error counts of each pipe to log file
2659  *
2660  * Return: int
2661  */
2662 int hif_pci_target_sleep_state_adjust(struct hif_softc *scn,
2663 			      bool sleep_ok, bool wait_for_it)
2664 {
2665 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2666 	A_target_id_t pci_addr = scn->mem;
2667 	static int max_delay;
2668 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
2669 	static int debug;
2670 	if (scn->recovery)
2671 		return -EACCES;
2672 
2673 	if (qdf_atomic_read(&scn->link_suspended)) {
2674 		hif_err("Invalid access, PCIe link is down");
2675 		debug = true;
2676 		QDF_ASSERT(0);
2677 		return -EACCES;
2678 	}
2679 
2680 	if (debug) {
2681 		wait_for_it = true;
2682 		hif_err("Invalid access, PCIe link is suspended");
2683 		QDF_ASSERT(0);
2684 	}
2685 
2686 	if (sleep_ok) {
2687 		qdf_spin_lock_irqsave(&hif_state->keep_awake_lock);
2688 		hif_state->keep_awake_count--;
2689 		if (hif_state->keep_awake_count == 0) {
2690 			/* Allow sleep */
2691 			hif_state->verified_awake = false;
2692 			hif_state->sleep_ticks = qdf_system_ticks();
2693 		}
2694 		if (hif_state->fake_sleep == false) {
2695 			/* Set the Fake Sleep */
2696 			hif_state->fake_sleep = true;
2697 
2698 			/* Start the Sleep Timer */
2699 			qdf_timer_stop(&hif_state->sleep_timer);
2700 			qdf_timer_start(&hif_state->sleep_timer,
2701 				HIF_SLEEP_INACTIVITY_TIMER_PERIOD_MS);
2702 		}
2703 		qdf_spin_unlock_irqrestore(&hif_state->keep_awake_lock);
2704 	} else {
2705 		qdf_spin_lock_irqsave(&hif_state->keep_awake_lock);
2706 
2707 		if (hif_state->fake_sleep) {
2708 			hif_state->verified_awake = true;
2709 		} else {
2710 			if (hif_state->keep_awake_count == 0) {
2711 				/* Force AWAKE */
2712 				hif_write32_mb(sc, pci_addr +
2713 					      PCIE_LOCAL_BASE_ADDRESS +
2714 					      PCIE_SOC_WAKE_ADDRESS,
2715 					      PCIE_SOC_WAKE_V_MASK);
2716 			}
2717 		}
2718 		hif_state->keep_awake_count++;
2719 		qdf_spin_unlock_irqrestore(&hif_state->keep_awake_lock);
2720 
2721 		if (wait_for_it && !hif_state->verified_awake) {
2722 #define PCIE_SLEEP_ADJUST_TIMEOUT 8000  /* 8Ms */
2723 			int tot_delay = 0;
2724 			int curr_delay = 5;
2725 
2726 			for (;; ) {
2727 				if (hif_targ_is_awake(scn, pci_addr)) {
2728 					hif_state->verified_awake = true;
2729 					break;
2730 				}
2731 				if (!hif_pci_targ_is_present(scn, pci_addr))
2732 					break;
2733 				if (tot_delay > PCIE_SLEEP_ADJUST_TIMEOUT)
2734 					return hif_log_soc_wakeup_timeout(sc);
2735 
2736 				OS_DELAY(curr_delay);
2737 				tot_delay += curr_delay;
2738 
2739 				if (curr_delay < 50)
2740 					curr_delay += 5;
2741 			}
2742 
2743 			/*
2744 			 * NB: If Target has to come out of Deep Sleep,
2745 			 * this may take a few Msecs. Typically, though
2746 			 * this delay should be <30us.
2747 			 */
2748 			if (tot_delay > max_delay)
2749 				max_delay = tot_delay;
2750 		}
2751 	}
2752 
2753 	if (debug && hif_state->verified_awake) {
2754 		debug = 0;
2755 		hif_err("INTR_ENABLE_REG = 0x%08x, INTR_CAUSE_REG = 0x%08x, CPU_INTR_REG = 0x%08x, INTR_CLR_REG = 0x%08x, CE_INTERRUPT_SUMMARY_REG = 0x%08x",
2756 			hif_read32_mb(sc, sc->mem + SOC_CORE_BASE_ADDRESS +
2757 				PCIE_INTR_ENABLE_ADDRESS),
2758 			hif_read32_mb(sc, sc->mem + SOC_CORE_BASE_ADDRESS +
2759 				PCIE_INTR_CAUSE_ADDRESS),
2760 			hif_read32_mb(sc, sc->mem + SOC_CORE_BASE_ADDRESS +
2761 				CPU_INTR_ADDRESS),
2762 			hif_read32_mb(sc, sc->mem + SOC_CORE_BASE_ADDRESS +
2763 				PCIE_INTR_CLR_ADDRESS),
2764 			hif_read32_mb(sc, sc->mem + CE_WRAPPER_BASE_ADDRESS +
2765 				CE_WRAPPER_INTERRUPT_SUMMARY_ADDRESS));
2766 	}
2767 
2768 	return 0;
2769 }
2770 
2771 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
2772 uint32_t hif_target_read_checked(struct hif_softc *scn, uint32_t offset)
2773 {
2774 	uint32_t value;
2775 	void *addr;
2776 
2777 	addr = scn->mem + offset;
2778 	value = hif_read32_mb(scn, addr);
2779 
2780 	{
2781 		unsigned long irq_flags;
2782 		int idx = pcie_access_log_seqnum % PCIE_ACCESS_LOG_NUM;
2783 
2784 		spin_lock_irqsave(&pcie_access_log_lock, irq_flags);
2785 		pcie_access_log[idx].seqnum = pcie_access_log_seqnum;
2786 		pcie_access_log[idx].is_write = false;
2787 		pcie_access_log[idx].addr = addr;
2788 		pcie_access_log[idx].value = value;
2789 		pcie_access_log_seqnum++;
2790 		spin_unlock_irqrestore(&pcie_access_log_lock, irq_flags);
2791 	}
2792 
2793 	return value;
2794 }
2795 
2796 void
2797 hif_target_write_checked(struct hif_softc *scn, uint32_t offset, uint32_t value)
2798 {
2799 	void *addr;
2800 
2801 	addr = scn->mem + (offset);
2802 	hif_write32_mb(scn, addr, value);
2803 
2804 	{
2805 		unsigned long irq_flags;
2806 		int idx = pcie_access_log_seqnum % PCIE_ACCESS_LOG_NUM;
2807 
2808 		spin_lock_irqsave(&pcie_access_log_lock, irq_flags);
2809 		pcie_access_log[idx].seqnum = pcie_access_log_seqnum;
2810 		pcie_access_log[idx].is_write = true;
2811 		pcie_access_log[idx].addr = addr;
2812 		pcie_access_log[idx].value = value;
2813 		pcie_access_log_seqnum++;
2814 		spin_unlock_irqrestore(&pcie_access_log_lock, irq_flags);
2815 	}
2816 }
2817 
2818 /**
2819  * hif_target_dump_access_log() - dump access log
2820  *
2821  * dump access log
2822  *
2823  * Return: n/a
2824  */
2825 void hif_target_dump_access_log(void)
2826 {
2827 	int idx, len, start_idx, cur_idx;
2828 	unsigned long irq_flags;
2829 
2830 	spin_lock_irqsave(&pcie_access_log_lock, irq_flags);
2831 	if (pcie_access_log_seqnum > PCIE_ACCESS_LOG_NUM) {
2832 		len = PCIE_ACCESS_LOG_NUM;
2833 		start_idx = pcie_access_log_seqnum % PCIE_ACCESS_LOG_NUM;
2834 	} else {
2835 		len = pcie_access_log_seqnum;
2836 		start_idx = 0;
2837 	}
2838 
2839 	for (idx = 0; idx < len; idx++) {
2840 		cur_idx = (start_idx + idx) % PCIE_ACCESS_LOG_NUM;
2841 		hif_debug("idx:%d sn:%u wr:%d addr:%pK val:%u",
2842 		       idx,
2843 		       pcie_access_log[cur_idx].seqnum,
2844 		       pcie_access_log[cur_idx].is_write,
2845 		       pcie_access_log[cur_idx].addr,
2846 		       pcie_access_log[cur_idx].value);
2847 	}
2848 
2849 	pcie_access_log_seqnum = 0;
2850 	spin_unlock_irqrestore(&pcie_access_log_lock, irq_flags);
2851 }
2852 #endif
2853 
2854 #ifndef HIF_AHB
2855 int hif_ahb_configure_irq(struct hif_pci_softc *sc)
2856 {
2857 	QDF_BUG(0);
2858 	return -EINVAL;
2859 }
2860 #endif
2861 
2862 static irqreturn_t hif_ce_interrupt_handler(int irq, void *context)
2863 {
2864 	struct ce_tasklet_entry *tasklet_entry = context;
2865 	return ce_dispatch_interrupt(tasklet_entry->ce_id, tasklet_entry);
2866 }
2867 extern const char *ce_name[];
2868 
2869 static int hif_ce_msi_map_ce_to_irq(struct hif_softc *scn, int ce_id)
2870 {
2871 	struct hif_pci_softc *pci_scn = HIF_GET_PCI_SOFTC(scn);
2872 
2873 	return pci_scn->ce_irq_num[ce_id];
2874 }
2875 
2876 /* hif_srng_msi_irq_disable() - disable the irq for msi
2877  * @hif_sc: hif context
2878  * @ce_id: which ce to disable copy complete interrupts for
2879  *
2880  * since MSI interrupts are not level based, the system can function
2881  * without disabling these interrupts.  Interrupt mitigation can be
2882  * added here for better system performance.
2883  */
2884 static void hif_ce_srng_msi_irq_disable(struct hif_softc *hif_sc, int ce_id)
2885 {
2886 	pfrm_disable_irq_nosync(hif_sc->qdf_dev->dev,
2887 				hif_ce_msi_map_ce_to_irq(hif_sc, ce_id));
2888 }
2889 
2890 static void hif_ce_srng_msi_irq_enable(struct hif_softc *hif_sc, int ce_id)
2891 {
2892 	if (__hif_check_link_status(hif_sc))
2893 		return;
2894 
2895 	pfrm_enable_irq(hif_sc->qdf_dev->dev,
2896 			hif_ce_msi_map_ce_to_irq(hif_sc, ce_id));
2897 }
2898 
2899 static void hif_ce_legacy_msi_irq_disable(struct hif_softc *hif_sc, int ce_id)
2900 {
2901 	disable_irq_nosync(hif_ce_msi_map_ce_to_irq(hif_sc, ce_id));
2902 }
2903 
2904 static void hif_ce_legacy_msi_irq_enable(struct hif_softc *hif_sc, int ce_id)
2905 {
2906 	enable_irq(hif_ce_msi_map_ce_to_irq(hif_sc, ce_id));
2907 }
2908 
2909 #ifdef QCA_SUPPORT_LEGACY_INTERRUPTS
2910 /**
2911  * hif_ce_configure_legacyirq() - Configure CE interrupts
2912  * @scn: hif_softc pointer
2913  *
2914  * Configure CE legacy interrupts
2915  *
2916  * Return: int
2917  */
2918 static int hif_ce_configure_legacyirq(struct hif_softc *scn)
2919 {
2920 	int ret = 0;
2921 	int irq, ce_id;
2922 	struct HIF_CE_state *ce_sc = HIF_GET_CE_STATE(scn);
2923 	struct CE_attr *host_ce_conf = ce_sc->host_ce_config;
2924 	struct hif_pci_softc *pci_sc = HIF_GET_PCI_SOFTC(scn);
2925 	int pci_slot;
2926 	qdf_device_t qdf_dev = scn->qdf_dev;
2927 
2928 	if (!pld_get_enable_intx(scn->qdf_dev->dev))
2929 		return -EINVAL;
2930 
2931 	scn->bus_ops.hif_irq_disable = &hif_ce_srng_msi_irq_disable;
2932 	scn->bus_ops.hif_irq_enable = &hif_ce_srng_msi_irq_enable;
2933 	scn->bus_ops.hif_map_ce_to_irq = &hif_ce_msi_map_ce_to_irq;
2934 
2935 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
2936 		if (host_ce_conf[ce_id].flags & CE_ATTR_DISABLE_INTR)
2937 			continue;
2938 
2939 		if (host_ce_conf[ce_id].flags & CE_ATTR_INIT_ON_DEMAND)
2940 			continue;
2941 
2942 		ret = pfrm_get_irq(scn->qdf_dev->dev,
2943 				   (struct qdf_pfm_hndl *)qdf_dev->cnss_pdev,
2944 				   legacy_ic_irqname[ce_id], ce_id, &irq);
2945 		if (ret) {
2946 			dev_err(scn->qdf_dev->dev, "get irq failed\n");
2947 			ret = -EFAULT;
2948 			goto skip;
2949 		}
2950 
2951 		pci_slot = hif_get_pci_slot(scn);
2952 		qdf_scnprintf(ce_irqname[pci_slot][ce_id],
2953 			      DP_IRQ_NAME_LEN, "pci%d_ce_%u", pci_slot, ce_id);
2954 		pci_sc->ce_irq_num[ce_id] = irq;
2955 
2956 		ret = pfrm_request_irq(scn->qdf_dev->dev, irq,
2957 				       hif_ce_interrupt_handler,
2958 				       IRQF_SHARED,
2959 				       ce_irqname[pci_slot][ce_id],
2960 				       &ce_sc->tasklets[ce_id]);
2961 		if (ret) {
2962 			hif_err("error = %d", ret);
2963 			return -EINVAL;
2964 		}
2965 	}
2966 
2967 skip:
2968 	return ret;
2969 }
2970 #else
2971 /**
2972  * hif_ce_configure_legacyirq() - Configure CE interrupts
2973  * @scn: hif_softc pointer
2974  *
2975  * Configure CE legacy interrupts
2976  *
2977  * Return: int
2978  */
2979 static int hif_ce_configure_legacyirq(struct hif_softc *scn)
2980 {
2981 	return 0;
2982 }
2983 #endif
2984 
2985 int hif_ce_msi_configure_irq_by_ceid(struct hif_softc *scn, int ce_id)
2986 {
2987 	int ret = 0;
2988 	int irq;
2989 	uint32_t msi_data_start;
2990 	uint32_t msi_data_count;
2991 	unsigned int msi_data;
2992 	int irq_id;
2993 	uint32_t msi_irq_start;
2994 	struct HIF_CE_state *ce_sc = HIF_GET_CE_STATE(scn);
2995 	struct hif_pci_softc *pci_sc = HIF_GET_PCI_SOFTC(scn);
2996 	int pci_slot;
2997 
2998 	if (ce_id >= CE_COUNT_MAX)
2999 		return -EINVAL;
3000 
3001 	/* do ce irq assignments */
3002 	ret = pld_get_user_msi_assignment(scn->qdf_dev->dev, "CE",
3003 					  &msi_data_count, &msi_data_start,
3004 					  &msi_irq_start);
3005 
3006 	if (ret) {
3007 		hif_err("Failed to get CE msi config");
3008 		return -EINVAL;
3009 	}
3010 
3011 	irq_id = scn->int_assignment->msi_idx[ce_id];
3012 	/* needs to match the ce_id -> irq data mapping
3013 	 * used in the srng parameter configuration
3014 	 */
3015 	pci_slot = hif_get_pci_slot(scn);
3016 	msi_data = irq_id + msi_irq_start;
3017 	irq = pld_get_msi_irq(scn->qdf_dev->dev, msi_data);
3018 	hif_debug("%s: (ce_id %d, irq_id %d, msi_data %d, irq %d tasklet %pK)",
3019 		  __func__, ce_id, irq_id, msi_data, irq,
3020 		  &ce_sc->tasklets[ce_id]);
3021 
3022 	/* implies the ce is also initialized */
3023 	if (!ce_sc->tasklets[ce_id].inited)
3024 		goto skip;
3025 
3026 	pci_sc->ce_irq_num[ce_id] = irq;
3027 
3028 	qdf_scnprintf(ce_irqname[pci_slot][ce_id],
3029 		      DP_IRQ_NAME_LEN, "pci%u_wlan_ce_%u",
3030 		      pci_slot, ce_id);
3031 
3032 	ret = pfrm_request_irq(scn->qdf_dev->dev,
3033 			       irq, hif_ce_interrupt_handler, IRQF_SHARED,
3034 			       ce_irqname[pci_slot][ce_id],
3035 			       &ce_sc->tasklets[ce_id]);
3036 	if (ret)
3037 		return -EINVAL;
3038 
3039 skip:
3040 	return ret;
3041 }
3042 
3043 static int hif_ce_msi_configure_irq(struct hif_softc *scn)
3044 {
3045 	int ret;
3046 	int ce_id, irq;
3047 	uint32_t msi_data_start;
3048 	uint32_t msi_data_count;
3049 	uint32_t msi_irq_start;
3050 	struct HIF_CE_state *ce_sc = HIF_GET_CE_STATE(scn);
3051 	struct CE_attr *host_ce_conf = ce_sc->host_ce_config;
3052 
3053 	if (!scn->disable_wake_irq) {
3054 		/* do wake irq assignment */
3055 		ret = pld_get_user_msi_assignment(scn->qdf_dev->dev, "WAKE",
3056 						  &msi_data_count,
3057 						  &msi_data_start,
3058 						  &msi_irq_start);
3059 		if (ret)
3060 			return ret;
3061 
3062 		scn->wake_irq = pld_get_msi_irq(scn->qdf_dev->dev,
3063 						msi_irq_start);
3064 		scn->wake_irq_type = HIF_PM_MSI_WAKE;
3065 
3066 		ret = pfrm_request_irq(scn->qdf_dev->dev, scn->wake_irq,
3067 				       hif_wake_interrupt_handler,
3068 				       IRQF_NO_SUSPEND, "wlan_wake_irq", scn);
3069 
3070 		if (ret)
3071 			return ret;
3072 	}
3073 
3074 	/* do ce irq assignments */
3075 	ret = pld_get_user_msi_assignment(scn->qdf_dev->dev, "CE",
3076 					  &msi_data_count, &msi_data_start,
3077 					  &msi_irq_start);
3078 	if (ret)
3079 		goto free_wake_irq;
3080 
3081 	if (ce_srng_based(scn)) {
3082 		scn->bus_ops.hif_irq_disable = &hif_ce_srng_msi_irq_disable;
3083 		scn->bus_ops.hif_irq_enable = &hif_ce_srng_msi_irq_enable;
3084 	} else {
3085 		scn->bus_ops.hif_irq_disable = &hif_ce_legacy_msi_irq_disable;
3086 		scn->bus_ops.hif_irq_enable = &hif_ce_legacy_msi_irq_enable;
3087 	}
3088 
3089 	scn->bus_ops.hif_map_ce_to_irq = &hif_ce_msi_map_ce_to_irq;
3090 
3091 	/* needs to match the ce_id -> irq data mapping
3092 	 * used in the srng parameter configuration
3093 	 */
3094 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
3095 		if (host_ce_conf[ce_id].flags & CE_ATTR_DISABLE_INTR)
3096 			continue;
3097 
3098 		if (host_ce_conf[ce_id].flags & CE_ATTR_INIT_ON_DEMAND)
3099 			continue;
3100 
3101 		ret = hif_ce_msi_configure_irq_by_ceid(scn, ce_id);
3102 		if (ret)
3103 			goto free_irq;
3104 	}
3105 
3106 	return ret;
3107 
3108 free_irq:
3109 	/* the request_irq for the last ce_id failed so skip it. */
3110 	while (ce_id > 0 && ce_id < scn->ce_count) {
3111 		unsigned int msi_data;
3112 
3113 		ce_id--;
3114 		msi_data = (ce_id % msi_data_count) + msi_irq_start;
3115 		irq = pld_get_msi_irq(scn->qdf_dev->dev, msi_data);
3116 		pfrm_free_irq(scn->qdf_dev->dev,
3117 			      irq, &ce_sc->tasklets[ce_id]);
3118 	}
3119 
3120 free_wake_irq:
3121 	if (!scn->disable_wake_irq) {
3122 		pfrm_free_irq(scn->qdf_dev->dev,
3123 			      scn->wake_irq, scn->qdf_dev->dev);
3124 		scn->wake_irq = 0;
3125 		scn->wake_irq_type = HIF_PM_INVALID_WAKE;
3126 	}
3127 
3128 	return ret;
3129 }
3130 
3131 static void hif_exec_grp_irq_disable(struct hif_exec_context *hif_ext_group)
3132 {
3133 	int i;
3134 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ext_group->hif);
3135 
3136 	for (i = 0; i < hif_ext_group->numirq; i++)
3137 		pfrm_disable_irq_nosync(scn->qdf_dev->dev,
3138 					hif_ext_group->os_irq[i]);
3139 }
3140 
3141 static void hif_exec_grp_irq_enable(struct hif_exec_context *hif_ext_group)
3142 {
3143 	int i;
3144 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ext_group->hif);
3145 
3146 	for (i = 0; i < hif_ext_group->numirq; i++)
3147 		pfrm_enable_irq(scn->qdf_dev->dev, hif_ext_group->os_irq[i]);
3148 }
3149 
3150 /**
3151  * hif_pci_get_irq_name() - get irqname
3152  * This function gives irqnumber to irqname
3153  * mapping.
3154  *
3155  * @irq_no: irq number
3156  *
3157  * Return: irq name
3158  */
3159 const char *hif_pci_get_irq_name(int irq_no)
3160 {
3161 	return "pci-dummy";
3162 }
3163 
3164 #if defined(FEATURE_IRQ_AFFINITY) || defined(HIF_CPU_PERF_AFFINE_MASK)
3165 void hif_pci_irq_set_affinity_hint(struct hif_exec_context *hif_ext_group,
3166 				   bool perf)
3167 {
3168 	int i, ret;
3169 	unsigned int cpus;
3170 	bool mask_set = false;
3171 	int cpu_cluster = perf ? CPU_CLUSTER_TYPE_PERF :
3172 						CPU_CLUSTER_TYPE_LITTLE;
3173 
3174 	for (i = 0; i < hif_ext_group->numirq; i++)
3175 		qdf_cpumask_clear(&hif_ext_group->new_cpu_mask[i]);
3176 
3177 	for (i = 0; i < hif_ext_group->numirq; i++) {
3178 		qdf_for_each_online_cpu(cpus) {
3179 			if (qdf_topology_physical_package_id(cpus) ==
3180 			    cpu_cluster) {
3181 				qdf_cpumask_set_cpu(cpus,
3182 						    &hif_ext_group->
3183 						    new_cpu_mask[i]);
3184 				mask_set = true;
3185 			}
3186 		}
3187 	}
3188 	for (i = 0; i < hif_ext_group->numirq; i++) {
3189 		if (mask_set) {
3190 			qdf_dev_modify_irq_status(hif_ext_group->os_irq[i],
3191 						  IRQ_NO_BALANCING, 0);
3192 			ret = qdf_dev_set_irq_affinity(hif_ext_group->os_irq[i],
3193 						       (struct qdf_cpu_mask *)
3194 						       &hif_ext_group->
3195 						       new_cpu_mask[i]);
3196 			qdf_dev_modify_irq_status(hif_ext_group->os_irq[i],
3197 						  0, IRQ_NO_BALANCING);
3198 			if (ret)
3199 				qdf_debug("Set affinity %*pbl fails for IRQ %d ",
3200 					  qdf_cpumask_pr_args(&hif_ext_group->
3201 							      new_cpu_mask[i]),
3202 					  hif_ext_group->os_irq[i]);
3203 		} else {
3204 			qdf_debug("Offline CPU: Set affinity fails for IRQ: %d",
3205 				  hif_ext_group->os_irq[i]);
3206 		}
3207 	}
3208 }
3209 #endif
3210 
3211 #ifdef HIF_CPU_PERF_AFFINE_MASK
3212 void hif_pci_ce_irq_set_affinity_hint(
3213 	struct hif_softc *scn)
3214 {
3215 	int ret;
3216 	unsigned int cpus;
3217 	struct HIF_CE_state *ce_sc = HIF_GET_CE_STATE(scn);
3218 	struct hif_pci_softc *pci_sc = HIF_GET_PCI_SOFTC(scn);
3219 	struct CE_attr *host_ce_conf;
3220 	int ce_id;
3221 	qdf_cpu_mask ce_cpu_mask;
3222 
3223 	host_ce_conf = ce_sc->host_ce_config;
3224 	qdf_cpumask_clear(&ce_cpu_mask);
3225 
3226 	qdf_for_each_online_cpu(cpus) {
3227 		if (qdf_topology_physical_package_id(cpus) ==
3228 			CPU_CLUSTER_TYPE_PERF) {
3229 			qdf_cpumask_set_cpu(cpus,
3230 					    &ce_cpu_mask);
3231 		} else {
3232 			hif_err_rl("Unable to set cpu mask for offline CPU %d"
3233 				   , cpus);
3234 		}
3235 	}
3236 	if (qdf_cpumask_empty(&ce_cpu_mask)) {
3237 		hif_err_rl("Empty cpu_mask, unable to set CE IRQ affinity");
3238 		return;
3239 	}
3240 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
3241 		if (host_ce_conf[ce_id].flags & CE_ATTR_DISABLE_INTR)
3242 			continue;
3243 		qdf_cpumask_clear(&pci_sc->ce_irq_cpu_mask[ce_id]);
3244 		qdf_cpumask_copy(&pci_sc->ce_irq_cpu_mask[ce_id],
3245 				 &ce_cpu_mask);
3246 		qdf_dev_modify_irq_status(pci_sc->ce_irq_num[ce_id],
3247 					  IRQ_NO_BALANCING, 0);
3248 		ret = qdf_dev_set_irq_affinity(
3249 			pci_sc->ce_irq_num[ce_id],
3250 			(struct qdf_cpu_mask *)&pci_sc->ce_irq_cpu_mask[ce_id]);
3251 		qdf_dev_modify_irq_status(pci_sc->ce_irq_num[ce_id],
3252 					  0, IRQ_NO_BALANCING);
3253 		if (ret)
3254 			hif_err_rl("Set affinity %*pbl fails for CE IRQ %d",
3255 				   qdf_cpumask_pr_args(
3256 					&pci_sc->ce_irq_cpu_mask[ce_id]),
3257 				   pci_sc->ce_irq_num[ce_id]);
3258 		else
3259 			hif_debug_rl("Set affinity %*pbl for CE IRQ: %d",
3260 				     qdf_cpumask_pr_args(
3261 					&pci_sc->ce_irq_cpu_mask[ce_id]),
3262 				     pci_sc->ce_irq_num[ce_id]);
3263 	}
3264 }
3265 #endif /* #ifdef HIF_CPU_PERF_AFFINE_MASK */
3266 
3267 #ifdef HIF_CPU_CLEAR_AFFINITY
3268 void hif_pci_config_irq_clear_cpu_affinity(struct hif_softc *scn,
3269 					   int intr_ctxt_id, int cpu)
3270 {
3271 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3272 	struct hif_exec_context *hif_ext_group;
3273 	int i, ret;
3274 
3275 	if (intr_ctxt_id < hif_state->hif_num_extgroup) {
3276 		hif_ext_group = hif_state->hif_ext_group[intr_ctxt_id];
3277 
3278 		for (i = 0; i < hif_ext_group->numirq; i++) {
3279 			qdf_cpumask_setall(&hif_ext_group->new_cpu_mask[i]);
3280 			qdf_cpumask_clear_cpu(cpu,
3281 					      &hif_ext_group->new_cpu_mask[i]);
3282 			qdf_dev_modify_irq_status(hif_ext_group->os_irq[i],
3283 						  IRQ_NO_BALANCING, 0);
3284 			ret = qdf_dev_set_irq_affinity(hif_ext_group->os_irq[i],
3285 						       (struct qdf_cpu_mask *)
3286 						       &hif_ext_group->
3287 						       new_cpu_mask[i]);
3288 			qdf_dev_modify_irq_status(hif_ext_group->os_irq[i],
3289 						  0, IRQ_NO_BALANCING);
3290 			if (ret)
3291 				hif_err("Set affinity %*pbl fails for IRQ %d ",
3292 					qdf_cpumask_pr_args(&hif_ext_group->
3293 							    new_cpu_mask[i]),
3294 					hif_ext_group->os_irq[i]);
3295 			else
3296 				hif_debug("Set affinity %*pbl for IRQ: %d",
3297 					  qdf_cpumask_pr_args(&hif_ext_group->
3298 							      new_cpu_mask[i]),
3299 					  hif_ext_group->os_irq[i]);
3300 		}
3301 	}
3302 }
3303 #endif
3304 
3305 void hif_pci_config_irq_affinity(struct hif_softc *scn)
3306 {
3307 	int i;
3308 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3309 	struct hif_exec_context *hif_ext_group;
3310 
3311 	hif_core_ctl_set_boost(true);
3312 	/* Set IRQ affinity for WLAN DP interrupts*/
3313 	for (i = 0; i < hif_state->hif_num_extgroup; i++) {
3314 		hif_ext_group = hif_state->hif_ext_group[i];
3315 		hif_pci_irq_set_affinity_hint(hif_ext_group, true);
3316 	}
3317 	/* Set IRQ affinity for CE interrupts*/
3318 	hif_pci_ce_irq_set_affinity_hint(scn);
3319 }
3320 
3321 #ifdef QCA_SUPPORT_LEGACY_INTERRUPTS
3322 /**
3323  * hif_grp_configure_legacyirq() - Configure DP interrupts
3324  * @scn: hif_softc pointer
3325  * @hif_ext_group: hif extended group pointer
3326  *
3327  * Configure DP legacy interrupts
3328  *
3329  * Return: int
3330  */
3331 static int hif_grp_configure_legacyirq(struct hif_softc *scn,
3332 				       struct hif_exec_context *hif_ext_group)
3333 {
3334 	int ret = 0;
3335 	int irq = 0;
3336 	int j;
3337 	int pci_slot;
3338 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
3339 	struct pci_dev *pdev = sc->pdev;
3340 	qdf_device_t qdf_dev = scn->qdf_dev;
3341 
3342 	for (j = 0; j < hif_ext_group->numirq; j++) {
3343 		ret = pfrm_get_irq(&pdev->dev,
3344 				   (struct qdf_pfm_hndl *)qdf_dev->cnss_pdev,
3345 				   legacy_ic_irqname[hif_ext_group->irq[j]],
3346 				   hif_ext_group->irq[j], &irq);
3347 		if (ret) {
3348 			dev_err(&pdev->dev, "get irq failed\n");
3349 			return -EFAULT;
3350 		}
3351 		hif_ext_group->os_irq[j] = irq;
3352 	}
3353 
3354 	hif_ext_group->irq_enable = &hif_exec_grp_irq_enable;
3355 	hif_ext_group->irq_disable = &hif_exec_grp_irq_disable;
3356 	hif_ext_group->irq_name = &hif_pci_get_irq_name;
3357 	hif_ext_group->work_complete = &hif_dummy_grp_done;
3358 
3359 	pci_slot = hif_get_pci_slot(scn);
3360 	for (j = 0; j < hif_ext_group->numirq; j++) {
3361 		irq = hif_ext_group->os_irq[j];
3362 		if (scn->irq_unlazy_disable)
3363 			qdf_dev_set_irq_status_flags(irq,
3364 						     QDF_IRQ_DISABLE_UNLAZY);
3365 
3366 		hif_debug("request_irq = %d for grp %d",
3367 			  irq, hif_ext_group->grp_id);
3368 
3369 		ret = pfrm_request_irq(scn->qdf_dev->dev, irq,
3370 				       hif_ext_group_interrupt_handler,
3371 				       IRQF_SHARED | IRQF_NO_SUSPEND,
3372 				       legacy_ic_irqname[hif_ext_group->irq[j]],
3373 				       hif_ext_group);
3374 		if (ret) {
3375 			hif_err("request_irq failed ret = %d", ret);
3376 			return -EFAULT;
3377 		}
3378 		hif_ext_group->os_irq[j] = irq;
3379 	}
3380 	hif_ext_group->irq_requested = true;
3381 	return 0;
3382 }
3383 #else
3384 /**
3385  * hif_grp_configure_legacyirq() - Configure DP interrupts
3386  * @scn: hif_softc pointer
3387  * @hif_ext_group: hif extended group pointer
3388  *
3389  * Configure DP legacy interrupts
3390  *
3391  * Return: int
3392  */
3393 static int hif_grp_configure_legacyirq(struct hif_softc *scn,
3394 				       struct hif_exec_context *hif_ext_group)
3395 {
3396 	return 0;
3397 }
3398 #endif
3399 
3400 int hif_pci_configure_grp_irq(struct hif_softc *scn,
3401 			      struct hif_exec_context *hif_ext_group)
3402 {
3403 	int ret = 0;
3404 	int irq = 0;
3405 	int j;
3406 	int pci_slot;
3407 
3408 	if (pld_get_enable_intx(scn->qdf_dev->dev))
3409 		return hif_grp_configure_legacyirq(scn, hif_ext_group);
3410 
3411 	hif_ext_group->irq_enable = &hif_exec_grp_irq_enable;
3412 	hif_ext_group->irq_disable = &hif_exec_grp_irq_disable;
3413 	hif_ext_group->irq_name = &hif_pci_get_irq_name;
3414 	hif_ext_group->work_complete = &hif_dummy_grp_done;
3415 
3416 	pci_slot = hif_get_pci_slot(scn);
3417 	for (j = 0; j < hif_ext_group->numirq; j++) {
3418 		irq = hif_ext_group->irq[j];
3419 		if (scn->irq_unlazy_disable)
3420 			qdf_dev_set_irq_status_flags(irq,
3421 						     QDF_IRQ_DISABLE_UNLAZY);
3422 
3423 		hif_debug("request_irq = %d for grp %d",
3424 			  irq, hif_ext_group->grp_id);
3425 
3426 		qdf_scnprintf(dp_irqname[pci_slot][hif_ext_group->grp_id],
3427 			      DP_IRQ_NAME_LEN, "pci%u_wlan_grp_dp_%u",
3428 			      pci_slot, hif_ext_group->grp_id);
3429 		ret = pfrm_request_irq(
3430 				scn->qdf_dev->dev, irq,
3431 				hif_ext_group_interrupt_handler,
3432 				IRQF_SHARED | IRQF_NO_SUSPEND,
3433 				dp_irqname[pci_slot][hif_ext_group->grp_id],
3434 				hif_ext_group);
3435 		if (ret) {
3436 			hif_err("request_irq failed ret = %d", ret);
3437 			return -EFAULT;
3438 		}
3439 		hif_ext_group->os_irq[j] = irq;
3440 	}
3441 	hif_ext_group->irq_requested = true;
3442 	return 0;
3443 }
3444 
3445 #ifdef FEATURE_IRQ_AFFINITY
3446 void hif_pci_set_grp_intr_affinity(struct hif_softc *scn,
3447 				   uint32_t grp_intr_bitmask, bool perf)
3448 {
3449 	int i;
3450 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3451 	struct hif_exec_context *hif_ext_group;
3452 
3453 	for (i = 0; i < hif_state->hif_num_extgroup; i++) {
3454 		if (!(grp_intr_bitmask & BIT(i)))
3455 			continue;
3456 
3457 		hif_ext_group = hif_state->hif_ext_group[i];
3458 		hif_pci_irq_set_affinity_hint(hif_ext_group, perf);
3459 		qdf_atomic_set(&hif_ext_group->force_napi_complete, -1);
3460 	}
3461 }
3462 #endif
3463 
3464 #if (defined(QCA_WIFI_QCA6390) || defined(QCA_WIFI_QCA6490) || \
3465 	defined(QCA_WIFI_KIWI))
3466 uint32_t hif_pci_reg_read32(struct hif_softc *hif_sc,
3467 			    uint32_t offset)
3468 {
3469 	return hal_read32_mb(hif_sc->hal_soc, offset);
3470 }
3471 
3472 void hif_pci_reg_write32(struct hif_softc *hif_sc,
3473 			 uint32_t offset,
3474 			 uint32_t value)
3475 {
3476 	hal_write32_mb(hif_sc->hal_soc, offset, value);
3477 }
3478 #else
3479 /* TODO: Need to implement other chips carefully */
3480 uint32_t hif_pci_reg_read32(struct hif_softc *hif_sc,
3481 			    uint32_t offset)
3482 {
3483 	return 0;
3484 }
3485 
3486 void hif_pci_reg_write32(struct hif_softc *hif_sc,
3487 			 uint32_t offset,
3488 			 uint32_t value)
3489 {
3490 }
3491 #endif
3492 
3493 /**
3494  * hif_configure_irq() - configure interrupt
3495  *
3496  * This function configures interrupt(s)
3497  *
3498  * @sc: PCIe control struct
3499  * @hif_hdl: struct HIF_CE_state
3500  *
3501  * Return: 0 - for success
3502  */
3503 int hif_configure_irq(struct hif_softc *scn)
3504 {
3505 	int ret = 0;
3506 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
3507 
3508 	hif_info("E");
3509 
3510 	if (hif_is_polled_mode_enabled(GET_HIF_OPAQUE_HDL(scn))) {
3511 		scn->request_irq_done = false;
3512 		return 0;
3513 	}
3514 
3515 	hif_init_reschedule_tasklet_work(sc);
3516 
3517 	ret = hif_ce_msi_configure_irq(scn);
3518 	if (ret == 0) {
3519 		goto end;
3520 	}
3521 
3522 	switch (scn->target_info.target_type) {
3523 	case TARGET_TYPE_QCA8074:
3524 	case TARGET_TYPE_QCA8074V2:
3525 	case TARGET_TYPE_QCA6018:
3526 	case TARGET_TYPE_QCA5018:
3527 	case TARGET_TYPE_QCA5332:
3528 	case TARGET_TYPE_QCA9574:
3529 		ret = hif_ahb_configure_irq(sc);
3530 		break;
3531 	case TARGET_TYPE_QCN9224:
3532 		ret = hif_ce_configure_legacyirq(scn);
3533 		break;
3534 	default:
3535 		ret = hif_pci_configure_legacy_irq(sc);
3536 		break;
3537 	}
3538 	if (ret < 0) {
3539 		hif_err("error = %d", ret);
3540 		return ret;
3541 	}
3542 end:
3543 	scn->request_irq_done = true;
3544 	return 0;
3545 }
3546 
3547 /**
3548  * hif_trigger_timer_irq() : Triggers interrupt on LF_Timer 0
3549  * @scn: hif control structure
3550  *
3551  * Sets IRQ bit in LF Timer Status Address to awake peregrine/swift
3552  * stuck at a polling loop in pcie_address_config in FW
3553  *
3554  * Return: none
3555  */
3556 static void hif_trigger_timer_irq(struct hif_softc *scn)
3557 {
3558 	int tmp;
3559 	/* Trigger IRQ on Peregrine/Swift by setting
3560 	 * IRQ Bit of LF_TIMER 0
3561 	 */
3562 	tmp = hif_read32_mb(scn, scn->mem + (RTC_SOC_BASE_ADDRESS +
3563 						SOC_LF_TIMER_STATUS0_ADDRESS));
3564 	/* Set Raw IRQ Bit */
3565 	tmp |= 1;
3566 	/* SOC_LF_TIMER_STATUS0 */
3567 	hif_write32_mb(scn, scn->mem + (RTC_SOC_BASE_ADDRESS +
3568 		       SOC_LF_TIMER_STATUS0_ADDRESS), tmp);
3569 }
3570 
3571 /**
3572  * hif_target_sync() : ensure the target is ready
3573  * @scn: hif control structure
3574  *
3575  * Informs fw that we plan to use legacy interupts so that
3576  * it can begin booting. Ensures that the fw finishes booting
3577  * before continuing. Should be called before trying to write
3578  * to the targets other registers for the first time.
3579  *
3580  * Return: none
3581  */
3582 static void hif_target_sync(struct hif_softc *scn)
3583 {
3584 	hif_write32_mb(scn, scn->mem + (SOC_CORE_BASE_ADDRESS |
3585 			    PCIE_INTR_ENABLE_ADDRESS),
3586 			    PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3587 	/* read to flush pcie write */
3588 	(void)hif_read32_mb(scn, scn->mem + (SOC_CORE_BASE_ADDRESS |
3589 			PCIE_INTR_ENABLE_ADDRESS));
3590 
3591 	hif_write32_mb(scn, scn->mem + PCIE_LOCAL_BASE_ADDRESS +
3592 			PCIE_SOC_WAKE_ADDRESS,
3593 			PCIE_SOC_WAKE_V_MASK);
3594 	while (!hif_targ_is_awake(scn, scn->mem))
3595 		;
3596 
3597 	if (HAS_FW_INDICATOR) {
3598 		int wait_limit = 500;
3599 		int fw_ind = 0;
3600 		int retry_count = 0;
3601 		uint32_t target_type = scn->target_info.target_type;
3602 fw_retry:
3603 		hif_info("Loop checking FW signal");
3604 		while (1) {
3605 			fw_ind = hif_read32_mb(scn, scn->mem +
3606 					FW_INDICATOR_ADDRESS);
3607 			if (fw_ind & FW_IND_INITIALIZED)
3608 				break;
3609 			if (wait_limit-- < 0)
3610 				break;
3611 			hif_write32_mb(scn, scn->mem + (SOC_CORE_BASE_ADDRESS |
3612 			    PCIE_INTR_ENABLE_ADDRESS),
3613 			    PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3614 			    /* read to flush pcie write */
3615 			(void)hif_read32_mb(scn, scn->mem +
3616 			    (SOC_CORE_BASE_ADDRESS | PCIE_INTR_ENABLE_ADDRESS));
3617 
3618 			qdf_mdelay(10);
3619 		}
3620 		if (wait_limit < 0) {
3621 			if (target_type == TARGET_TYPE_AR9888 &&
3622 			    retry_count++ < 2) {
3623 				hif_trigger_timer_irq(scn);
3624 				wait_limit = 500;
3625 				goto fw_retry;
3626 			}
3627 			hif_info("FW signal timed out");
3628 			qdf_assert_always(0);
3629 		} else {
3630 			hif_info("Got FW signal, retries = %x", 500-wait_limit);
3631 		}
3632 	}
3633 	hif_write32_mb(scn, scn->mem + PCIE_LOCAL_BASE_ADDRESS +
3634 			PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_RESET);
3635 }
3636 
3637 static void hif_pci_get_soc_info_pld(struct hif_pci_softc *sc,
3638 				     struct device *dev)
3639 {
3640 	struct pld_soc_info info;
3641 	struct hif_softc *scn = HIF_GET_SOFTC(sc);
3642 
3643 	pld_get_soc_info(dev, &info);
3644 	sc->mem = info.v_addr;
3645 	sc->ce_sc.ol_sc.mem    = info.v_addr;
3646 	sc->ce_sc.ol_sc.mem_pa = info.p_addr;
3647 	sc->device_version.family_number = info.device_version.family_number;
3648 	sc->device_version.device_number = info.device_version.device_number;
3649 	sc->device_version.major_version = info.device_version.major_version;
3650 	sc->device_version.minor_version = info.device_version.minor_version;
3651 
3652 	hif_info("%s: fam num %u dev ver %u maj ver %u min ver %u\n", __func__,
3653 		 sc->device_version.family_number,
3654 		 sc->device_version.device_number,
3655 		 sc->device_version.major_version,
3656 		 sc->device_version.minor_version);
3657 
3658 	/* dev_mem_info[0] is for CMEM */
3659 	scn->cmem_start = info.dev_mem_info[0].start;
3660 	scn->cmem_size = info.dev_mem_info[0].size;
3661 	scn->target_info.target_version = info.soc_id;
3662 	scn->target_info.target_revision = 0;
3663 	scn->target_info.soc_version = info.device_version.major_version;
3664 }
3665 
3666 static void hif_pci_get_soc_info_nopld(struct hif_pci_softc *sc,
3667 				       struct device *dev)
3668 {}
3669 
3670 static bool hif_is_pld_based_target(struct hif_pci_softc *sc,
3671 				    int device_id)
3672 {
3673 	if (!pld_have_platform_driver_support(sc->dev))
3674 		return false;
3675 
3676 	switch (device_id) {
3677 	case QCA6290_DEVICE_ID:
3678 	case QCN9000_DEVICE_ID:
3679 	case QCN9224_DEVICE_ID:
3680 	case QCA6290_EMULATION_DEVICE_ID:
3681 	case QCA6390_DEVICE_ID:
3682 	case QCA6490_DEVICE_ID:
3683 	case AR6320_DEVICE_ID:
3684 	case QCN7605_DEVICE_ID:
3685 	case KIWI_DEVICE_ID:
3686 	case MANGO_DEVICE_ID:
3687 		return true;
3688 	}
3689 	return false;
3690 }
3691 
3692 static void hif_pci_init_deinit_ops_attach(struct hif_pci_softc *sc,
3693 					   int device_id)
3694 {
3695 	if (hif_is_pld_based_target(sc, device_id)) {
3696 		sc->hif_enable_pci = hif_enable_pci_pld;
3697 		sc->hif_pci_deinit = hif_pci_deinit_pld;
3698 		sc->hif_pci_get_soc_info = hif_pci_get_soc_info_pld;
3699 	} else {
3700 		sc->hif_enable_pci = hif_enable_pci_nopld;
3701 		sc->hif_pci_deinit = hif_pci_deinit_nopld;
3702 		sc->hif_pci_get_soc_info = hif_pci_get_soc_info_nopld;
3703 	}
3704 }
3705 
3706 #ifdef HIF_REG_WINDOW_SUPPORT
3707 static void hif_pci_init_reg_windowing_support(struct hif_pci_softc *sc,
3708 					       u32 target_type)
3709 {
3710 	switch (target_type) {
3711 	case TARGET_TYPE_QCN7605:
3712 	case TARGET_TYPE_QCA6490:
3713 	case TARGET_TYPE_QCA6390:
3714 	case TARGET_TYPE_KIWI:
3715 	case TARGET_TYPE_MANGO:
3716 		sc->use_register_windowing = true;
3717 		qdf_spinlock_create(&sc->register_access_lock);
3718 		sc->register_window = 0;
3719 		break;
3720 	default:
3721 		sc->use_register_windowing = false;
3722 	}
3723 }
3724 #else
3725 static void hif_pci_init_reg_windowing_support(struct hif_pci_softc *sc,
3726 					       u32 target_type)
3727 {
3728 	sc->use_register_windowing = false;
3729 }
3730 #endif
3731 
3732 /**
3733  * hif_enable_bus(): enable bus
3734  *
3735  * This function enables the bus
3736  *
3737  * @ol_sc: soft_sc struct
3738  * @dev: device pointer
3739  * @bdev: bus dev pointer
3740  * bid: bus id pointer
3741  * type: enum hif_enable_type such as HIF_ENABLE_TYPE_PROBE
3742  * Return: QDF_STATUS
3743  */
3744 QDF_STATUS hif_pci_enable_bus(struct hif_softc *ol_sc,
3745 			  struct device *dev, void *bdev,
3746 			  const struct hif_bus_id *bid,
3747 			  enum hif_enable_type type)
3748 {
3749 	int ret = 0;
3750 	uint32_t hif_type;
3751 	uint32_t target_type = TARGET_TYPE_UNKNOWN;
3752 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(ol_sc);
3753 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(ol_sc);
3754 	uint16_t revision_id = 0;
3755 	int probe_again = 0;
3756 	struct pci_dev *pdev = bdev;
3757 	const struct pci_device_id *id = (const struct pci_device_id *)bid;
3758 	struct hif_target_info *tgt_info;
3759 
3760 	if (!ol_sc) {
3761 		hif_err("hif_ctx is NULL");
3762 		return QDF_STATUS_E_NOMEM;
3763 	}
3764 	/* Following print is used by various tools to identify
3765 	 * WLAN SOC (e.g. crash dump analysis and reporting tool).
3766 	 */
3767 	hif_info("con_mode = 0x%x, WLAN_SOC_device_id = 0x%x",
3768 		 hif_get_conparam(ol_sc), id->device);
3769 
3770 	sc->pdev = pdev;
3771 	sc->dev = &pdev->dev;
3772 	sc->devid = id->device;
3773 	sc->cacheline_sz = dma_get_cache_alignment();
3774 	tgt_info = hif_get_target_info_handle(hif_hdl);
3775 	hif_pci_init_deinit_ops_attach(sc, id->device);
3776 	sc->hif_pci_get_soc_info(sc, dev);
3777 again:
3778 	ret = sc->hif_enable_pci(sc, pdev, id);
3779 	if (ret < 0) {
3780 		hif_err("hif_enable_pci error = %d", ret);
3781 		goto err_enable_pci;
3782 	}
3783 	hif_info("hif_enable_pci done");
3784 
3785 	/* Temporary FIX: disable ASPM on peregrine.
3786 	 * Will be removed after the OTP is programmed
3787 	 */
3788 	hif_disable_power_gating(hif_hdl);
3789 
3790 	device_disable_async_suspend(&pdev->dev);
3791 	pfrm_read_config_word(pdev, 0x08, &revision_id);
3792 
3793 	ret = hif_get_device_type(id->device, revision_id,
3794 						&hif_type, &target_type);
3795 	if (ret < 0) {
3796 		hif_err("Invalid device id/revision_id");
3797 		goto err_tgtstate;
3798 	}
3799 	hif_info("hif_type = 0x%x, target_type = 0x%x",
3800 		hif_type, target_type);
3801 
3802 	hif_register_tbl_attach(ol_sc, hif_type);
3803 	hif_target_register_tbl_attach(ol_sc, target_type);
3804 
3805 	hif_pci_init_reg_windowing_support(sc, target_type);
3806 
3807 	tgt_info->target_type = target_type;
3808 
3809 	/*
3810 	 * Disable unlzay interrupt registration for QCN9000
3811 	 */
3812 	if (target_type == TARGET_TYPE_QCN9000 ||
3813 	    target_type == TARGET_TYPE_QCN9224)
3814 		ol_sc->irq_unlazy_disable = 1;
3815 
3816 	if (ce_srng_based(ol_sc)) {
3817 		hif_info("Skip tgt_wake up for srng devices");
3818 	} else {
3819 		ret = hif_pci_probe_tgt_wakeup(sc);
3820 		if (ret < 0) {
3821 			hif_err("hif_pci_prob_wakeup error = %d", ret);
3822 			if (ret == -EAGAIN)
3823 				probe_again++;
3824 			goto err_tgtstate;
3825 		}
3826 		hif_info("hif_pci_probe_tgt_wakeup done");
3827 	}
3828 
3829 	if (!ol_sc->mem_pa) {
3830 		hif_err("BAR0 uninitialized");
3831 		ret = -EIO;
3832 		goto err_tgtstate;
3833 	}
3834 
3835 	if (!ce_srng_based(ol_sc)) {
3836 		hif_target_sync(ol_sc);
3837 
3838 		if (hif_pci_default_link_up(tgt_info))
3839 			hif_vote_link_up(hif_hdl);
3840 	}
3841 
3842 	return QDF_STATUS_SUCCESS;
3843 
3844 err_tgtstate:
3845 	hif_disable_pci(sc);
3846 	sc->pci_enabled = false;
3847 	hif_err("hif_disable_pci done");
3848 	return QDF_STATUS_E_ABORTED;
3849 
3850 err_enable_pci:
3851 	if (probe_again && (probe_again <= ATH_PCI_PROBE_RETRY_MAX)) {
3852 		int delay_time;
3853 
3854 		hif_info("pci reprobe");
3855 		/* 10, 40, 90, 100, 100, ... */
3856 		delay_time = max(100, 10 * (probe_again * probe_again));
3857 		qdf_mdelay(delay_time);
3858 		goto again;
3859 	}
3860 	return qdf_status_from_os_return(ret);
3861 }
3862 
3863 /**
3864  * hif_pci_irq_enable() - ce_irq_enable
3865  * @scn: hif_softc
3866  * @ce_id: ce_id
3867  *
3868  * Return: void
3869  */
3870 void hif_pci_irq_enable(struct hif_softc *scn, int ce_id)
3871 {
3872 	uint32_t tmp = 1 << ce_id;
3873 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
3874 
3875 	qdf_spin_lock_irqsave(&sc->irq_lock);
3876 	scn->ce_irq_summary &= ~tmp;
3877 	if (scn->ce_irq_summary == 0) {
3878 		/* Enable Legacy PCI line interrupts */
3879 		if (LEGACY_INTERRUPTS(sc) &&
3880 			(scn->target_status != TARGET_STATUS_RESET) &&
3881 			(!qdf_atomic_read(&scn->link_suspended))) {
3882 
3883 			hif_write32_mb(scn, scn->mem +
3884 				(SOC_CORE_BASE_ADDRESS |
3885 				PCIE_INTR_ENABLE_ADDRESS),
3886 				HOST_GROUP0_MASK);
3887 
3888 			hif_read32_mb(scn, scn->mem +
3889 					(SOC_CORE_BASE_ADDRESS |
3890 					PCIE_INTR_ENABLE_ADDRESS));
3891 		}
3892 	}
3893 	if (scn->hif_init_done == true)
3894 		Q_TARGET_ACCESS_END(scn);
3895 	qdf_spin_unlock_irqrestore(&sc->irq_lock);
3896 
3897 	/* check for missed firmware crash */
3898 	hif_fw_interrupt_handler(0, scn);
3899 }
3900 
3901 /**
3902  * hif_pci_irq_disable() - ce_irq_disable
3903  * @scn: hif_softc
3904  * @ce_id: ce_id
3905  *
3906  * only applicable to legacy copy engine...
3907  *
3908  * Return: void
3909  */
3910 void hif_pci_irq_disable(struct hif_softc *scn, int ce_id)
3911 {
3912 	/* For Rome only need to wake up target */
3913 	/* target access is maintained until interrupts are re-enabled */
3914 	Q_TARGET_ACCESS_BEGIN(scn);
3915 }
3916 
3917 int hif_pci_legacy_map_ce_to_irq(struct hif_softc *scn, int ce_id)
3918 {
3919 	struct hif_pci_softc *pci_scn = HIF_GET_PCI_SOFTC(scn);
3920 
3921 	/* legacy case only has one irq */
3922 	return pci_scn->irq;
3923 }
3924 
3925 int hif_pci_addr_in_boundary(struct hif_softc *scn, uint32_t offset)
3926 {
3927 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
3928 	struct hif_target_info *tgt_info;
3929 
3930 	tgt_info = hif_get_target_info_handle(GET_HIF_OPAQUE_HDL(scn));
3931 
3932 	if (tgt_info->target_type == TARGET_TYPE_QCA6290 ||
3933 	    tgt_info->target_type == TARGET_TYPE_QCA6390 ||
3934 	    tgt_info->target_type == TARGET_TYPE_QCA6490 ||
3935 	    tgt_info->target_type == TARGET_TYPE_QCN7605 ||
3936 	    tgt_info->target_type == TARGET_TYPE_QCA8074 ||
3937 	    tgt_info->target_type == TARGET_TYPE_KIWI ||
3938 	    tgt_info->target_type == TARGET_TYPE_MANGO) {
3939 		/*
3940 		 * Need to consider offset's memtype for QCA6290/QCA8074,
3941 		 * also mem_len and DRAM_BASE_ADDRESS/DRAM_SIZE need to be
3942 		 * well initialized/defined.
3943 		 */
3944 		return 0;
3945 	}
3946 
3947 	if ((offset >= DRAM_BASE_ADDRESS && offset <= DRAM_BASE_ADDRESS + DRAM_SIZE)
3948 		 || (offset + sizeof(unsigned int) <= sc->mem_len)) {
3949 		return 0;
3950 	}
3951 
3952 	hif_info("Refusing to read memory at 0x%x - 0x%x (max 0x%zx)",
3953 		offset, (uint32_t)(offset + sizeof(unsigned int)),
3954 		sc->mem_len);
3955 
3956 	return -EINVAL;
3957 }
3958 
3959 /**
3960  * hif_pci_needs_bmi() - return true if the soc needs bmi through the driver
3961  * @scn: hif context
3962  *
3963  * Return: true if soc needs driver bmi otherwise false
3964  */
3965 bool hif_pci_needs_bmi(struct hif_softc *scn)
3966 {
3967 	return !ce_srng_based(scn);
3968 }
3969 
3970 #ifdef FORCE_WAKE
3971 #if defined(DEVICE_FORCE_WAKE_ENABLE) && !defined(CONFIG_PLD_PCIE_FW_SIM)
3972 
3973 /**
3974  * HIF_POLL_UMAC_WAKE poll value to indicate if UMAC is powered up
3975  * Update the below macro with FW defined one.
3976  */
3977 #define HIF_POLL_UMAC_WAKE 0x2
3978 
3979 /**
3980  * hif_force_wake_request(): Enable the force wake recipe
3981  * @hif_handle: HIF handle
3982  *
3983  * Bring MHI to M0 state and force wake the UMAC by asserting the
3984  * soc wake reg. Poll the scratch reg to check if its set to
3985  * HIF_POLL_UMAC_WAKE. The polled value may return 0x1 in case UMAC
3986  * is powered down.
3987  *
3988  * Return: 0 if handshake is successful or ETIMEDOUT in case of failure
3989  */
3990 int hif_force_wake_request(struct hif_opaque_softc *hif_handle)
3991 {
3992 	uint32_t timeout, value;
3993 	struct hif_softc *scn = (struct hif_softc *)hif_handle;
3994 	struct hif_pci_softc *pci_scn = HIF_GET_PCI_SOFTC(scn);
3995 
3996 	/* Prevent runtime PM or trigger resume firstly */
3997 	if (hif_rtpm_get(HIF_RTPM_GET_SYNC, HIF_RTPM_ID_FORCE_WAKE)) {
3998 		hif_err("runtime pm get failed");
3999 		return -EINVAL;
4000 	}
4001 
4002 	HIF_STATS_INC(pci_scn, mhi_force_wake_request_vote, 1);
4003 	if (qdf_in_interrupt())
4004 		timeout = FORCE_WAKE_DELAY_TIMEOUT_MS * 1000;
4005 	else
4006 		timeout = 0;
4007 
4008 	if (pld_force_wake_request_sync(scn->qdf_dev->dev, timeout)) {
4009 		hif_err("force wake request send failed");
4010 		HIF_STATS_INC(pci_scn, mhi_force_wake_failure, 1);
4011 		return -EINVAL;
4012 	}
4013 
4014 	/* If device's M1 state-change event races here, it can be ignored,
4015 	 * as the device is expected to immediately move from M2 to M0
4016 	 * without entering low power state.
4017 	 */
4018 	if (!pld_is_device_awake(scn->qdf_dev->dev))
4019 		hif_info("state-change event races, ignore");
4020 
4021 	HIF_STATS_INC(pci_scn, mhi_force_wake_success, 1);
4022 	hif_write32_mb(scn, scn->mem + PCIE_REG_WAKE_UMAC_OFFSET, 1);
4023 	HIF_STATS_INC(pci_scn, soc_force_wake_register_write_success, 1);
4024 	/*
4025 	 * do not reset the timeout
4026 	 * total_wake_time = MHI_WAKE_TIME + PCI_WAKE_TIME < 50 ms
4027 	 */
4028 	timeout = 0;
4029 	do {
4030 		value = hif_read32_mb(
4031 				scn, scn->mem +
4032 				PCIE_SOC_PCIE_REG_PCIE_SCRATCH_0_SOC_PCIE_REG);
4033 		if (value == HIF_POLL_UMAC_WAKE)
4034 			break;
4035 		qdf_mdelay(FORCE_WAKE_DELAY_MS);
4036 		timeout += FORCE_WAKE_DELAY_MS;
4037 	} while (timeout <= FORCE_WAKE_DELAY_TIMEOUT_MS);
4038 
4039 	if (value != HIF_POLL_UMAC_WAKE) {
4040 		hif_err("force wake handshake failed, reg value = 0x%x",
4041 			value);
4042 		HIF_STATS_INC(pci_scn, soc_force_wake_failure, 1);
4043 		return -ETIMEDOUT;
4044 	}
4045 
4046 	HIF_STATS_INC(pci_scn, soc_force_wake_success, 1);
4047 	return 0;
4048 }
4049 
4050 int hif_force_wake_release(struct hif_opaque_softc *hif_handle)
4051 {
4052 	int ret;
4053 	struct hif_softc *scn = (struct hif_softc *)hif_handle;
4054 	struct hif_pci_softc *pci_scn = HIF_GET_PCI_SOFTC(scn);
4055 
4056 	/* Release umac force wake */
4057 	hif_write32_mb(scn, scn->mem + PCIE_REG_WAKE_UMAC_OFFSET, 0);
4058 
4059 	/* Release MHI force wake */
4060 	ret = pld_force_wake_release(scn->qdf_dev->dev);
4061 	if (ret) {
4062 		hif_err("pld force wake release failure");
4063 		HIF_STATS_INC(pci_scn, mhi_force_wake_release_failure, 1);
4064 		return ret;
4065 	}
4066 	HIF_STATS_INC(pci_scn, mhi_force_wake_release_success, 1);
4067 
4068 	/* Release runtime PM force wake */
4069 	ret = hif_rtpm_put(HIF_RTPM_PUT_ASYNC, HIF_RTPM_ID_FORCE_WAKE);
4070 	if (ret) {
4071 		hif_err("runtime pm put failure");
4072 		return ret;
4073 	}
4074 
4075 	HIF_STATS_INC(pci_scn, soc_force_wake_release_success, 1);
4076 	return 0;
4077 }
4078 
4079 #else /* DEVICE_FORCE_WAKE_ENABLE */
4080 /** hif_force_wake_request() - Disable the PCIE scratch register
4081  * write/read
4082  *
4083  * Return: 0
4084  */
4085 int hif_force_wake_request(struct hif_opaque_softc *hif_handle)
4086 {
4087 	struct hif_softc *scn = (struct hif_softc *)hif_handle;
4088 	struct hif_pci_softc *pci_scn = HIF_GET_PCI_SOFTC(scn);
4089 	uint32_t timeout;
4090 
4091 	HIF_STATS_INC(pci_scn, mhi_force_wake_request_vote, 1);
4092 
4093 	if (qdf_in_interrupt())
4094 		timeout = FORCE_WAKE_DELAY_TIMEOUT_MS * 1000;
4095 	else
4096 		timeout = 0;
4097 
4098 	if (pld_force_wake_request_sync(scn->qdf_dev->dev, timeout)) {
4099 		hif_err("force wake request send failed");
4100 		HIF_STATS_INC(pci_scn, mhi_force_wake_failure, 1);
4101 		return -EINVAL;
4102 	}
4103 
4104 	/* If device's M1 state-change event races here, it can be ignored,
4105 	 * as the device is expected to immediately move from M2 to M0
4106 	 * without entering low power state.
4107 	 */
4108 	if (!pld_is_device_awake(scn->qdf_dev->dev))
4109 		hif_info("state-change event races, ignore");
4110 
4111 	HIF_STATS_INC(pci_scn, mhi_force_wake_success, 1);
4112 
4113 	return 0;
4114 }
4115 
4116 int hif_force_wake_release(struct hif_opaque_softc *hif_handle)
4117 {
4118 	int ret;
4119 	struct hif_softc *scn = (struct hif_softc *)hif_handle;
4120 	struct hif_pci_softc *pci_scn = HIF_GET_PCI_SOFTC(scn);
4121 
4122 	ret = pld_force_wake_release(scn->qdf_dev->dev);
4123 	if (ret) {
4124 		hif_err("force wake release failure");
4125 		HIF_STATS_INC(pci_scn, mhi_force_wake_release_failure, 1);
4126 		return ret;
4127 	}
4128 
4129 	HIF_STATS_INC(pci_scn, mhi_force_wake_release_success, 1);
4130 	return 0;
4131 }
4132 #endif /* DEVICE_FORCE_WAKE_ENABLE */
4133 
4134 void hif_print_pci_stats(struct hif_pci_softc *pci_handle)
4135 {
4136 	hif_debug("mhi_force_wake_request_vote: %d",
4137 		  pci_handle->stats.mhi_force_wake_request_vote);
4138 	hif_debug("mhi_force_wake_failure: %d",
4139 		  pci_handle->stats.mhi_force_wake_failure);
4140 	hif_debug("mhi_force_wake_success: %d",
4141 		  pci_handle->stats.mhi_force_wake_success);
4142 	hif_debug("soc_force_wake_register_write_success: %d",
4143 		  pci_handle->stats.soc_force_wake_register_write_success);
4144 	hif_debug("soc_force_wake_failure: %d",
4145 		  pci_handle->stats.soc_force_wake_failure);
4146 	hif_debug("soc_force_wake_success: %d",
4147 		  pci_handle->stats.soc_force_wake_success);
4148 	hif_debug("mhi_force_wake_release_failure: %d",
4149 		  pci_handle->stats.mhi_force_wake_release_failure);
4150 	hif_debug("mhi_force_wake_release_success: %d",
4151 		  pci_handle->stats.mhi_force_wake_release_success);
4152 	hif_debug("oc_force_wake_release_success: %d",
4153 		  pci_handle->stats.soc_force_wake_release_success);
4154 }
4155 #endif /* FORCE_WAKE */
4156 
4157 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
4158 int hif_prevent_link_low_power_states(struct hif_opaque_softc *hif)
4159 {
4160 	return pld_prevent_l1(HIF_GET_SOFTC(hif)->qdf_dev->dev);
4161 }
4162 
4163 void hif_allow_link_low_power_states(struct hif_opaque_softc *hif)
4164 {
4165 	pld_allow_l1(HIF_GET_SOFTC(hif)->qdf_dev->dev);
4166 }
4167 #endif
4168