xref: /wlan-dirver/qca-wifi-host-cmn/hif/src/ce/ce_main.c (revision d97a5912d37f3ed3ec22e5ea3d41a9537ae60ae6)
1 /*
2  * Copyright (c) 2013-2019 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "targcfg.h"
20 #include "qdf_lock.h"
21 #include "qdf_status.h"
22 #include "qdf_status.h"
23 #include <qdf_atomic.h>         /* qdf_atomic_read */
24 #include <targaddrs.h>
25 #include "hif_io32.h"
26 #include <hif.h>
27 #include <target_type.h>
28 #include "regtable.h"
29 #define ATH_MODULE_NAME hif
30 #include <a_debug.h>
31 #include "hif_main.h"
32 #include "ce_api.h"
33 #include "qdf_trace.h"
34 #include "pld_common.h"
35 #include "hif_debug.h"
36 #include "ce_internal.h"
37 #include "ce_reg.h"
38 #include "ce_assignment.h"
39 #include "ce_tasklet.h"
40 #ifndef CONFIG_WIN
41 #include "qwlan_version.h"
42 #endif
43 #include "qdf_module.h"
44 
45 #define CE_POLL_TIMEOUT 10      /* ms */
46 
47 #define AGC_DUMP         1
48 #define CHANINFO_DUMP    2
49 #define BB_WATCHDOG_DUMP 3
50 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
51 #define PCIE_ACCESS_DUMP 4
52 #endif
53 #include "mp_dev.h"
54 
55 #if (defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6290)) && \
56 	!defined(QCA_WIFI_SUPPORT_SRNG)
57 #define QCA_WIFI_SUPPORT_SRNG
58 #endif
59 
60 /* Forward references */
61 QDF_STATUS hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info);
62 
63 /*
64  * Fix EV118783, poll to check whether a BMI response comes
65  * other than waiting for the interruption which may be lost.
66  */
67 /* #define BMI_RSP_POLLING */
68 #define BMI_RSP_TO_MILLISEC  1000
69 
70 #ifdef CONFIG_BYPASS_QMI
71 #define BYPASS_QMI 1
72 #else
73 #define BYPASS_QMI 0
74 #endif
75 
76 #ifdef ENABLE_10_4_FW_HDR
77 #if (ENABLE_10_4_FW_HDR == 1)
78 #define WDI_IPA_SERVICE_GROUP 5
79 #define WDI_IPA_TX_SVC MAKE_SERVICE_ID(WDI_IPA_SERVICE_GROUP, 0)
80 #define HTT_DATA2_MSG_SVC MAKE_SERVICE_ID(HTT_SERVICE_GROUP, 1)
81 #define HTT_DATA3_MSG_SVC MAKE_SERVICE_ID(HTT_SERVICE_GROUP, 2)
82 #endif /* ENABLE_10_4_FW_HDR == 1 */
83 #endif /* ENABLE_10_4_FW_HDR */
84 
85 QDF_STATUS hif_post_recv_buffers(struct hif_softc *scn);
86 static void hif_config_rri_on_ddr(struct hif_softc *scn);
87 
88 /**
89  * hif_target_access_log_dump() - dump access log
90  *
91  * dump access log
92  *
93  * Return: n/a
94  */
95 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
96 static void hif_target_access_log_dump(void)
97 {
98 	hif_target_dump_access_log();
99 }
100 #endif
101 
102 
103 void hif_trigger_dump(struct hif_opaque_softc *hif_ctx,
104 		      uint8_t cmd_id, bool start)
105 {
106 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
107 
108 	switch (cmd_id) {
109 	case AGC_DUMP:
110 		if (start)
111 			priv_start_agc(scn);
112 		else
113 			priv_dump_agc(scn);
114 		break;
115 	case CHANINFO_DUMP:
116 		if (start)
117 			priv_start_cap_chaninfo(scn);
118 		else
119 			priv_dump_chaninfo(scn);
120 		break;
121 	case BB_WATCHDOG_DUMP:
122 		priv_dump_bbwatchdog(scn);
123 		break;
124 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
125 	case PCIE_ACCESS_DUMP:
126 		hif_target_access_log_dump();
127 		break;
128 #endif
129 	default:
130 		HIF_ERROR("%s: Invalid htc dump command", __func__);
131 		break;
132 	}
133 }
134 
135 static void ce_poll_timeout(void *arg)
136 {
137 	struct CE_state *CE_state = (struct CE_state *)arg;
138 
139 	if (CE_state->timer_inited) {
140 		ce_per_engine_service(CE_state->scn, CE_state->id);
141 		qdf_timer_mod(&CE_state->poll_timer, CE_POLL_TIMEOUT);
142 	}
143 }
144 
145 static unsigned int roundup_pwr2(unsigned int n)
146 {
147 	int i;
148 	unsigned int test_pwr2;
149 
150 	if (!(n & (n - 1)))
151 		return n; /* already a power of 2 */
152 
153 	test_pwr2 = 4;
154 	for (i = 0; i < 29; i++) {
155 		if (test_pwr2 > n)
156 			return test_pwr2;
157 		test_pwr2 = test_pwr2 << 1;
158 	}
159 
160 	QDF_ASSERT(0); /* n too large */
161 	return 0;
162 }
163 
164 #define ADRASTEA_SRC_WR_INDEX_OFFSET 0x3C
165 #define ADRASTEA_DST_WR_INDEX_OFFSET 0x40
166 
167 static struct shadow_reg_cfg target_shadow_reg_cfg_map[] = {
168 	{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
169 	{ 3, ADRASTEA_SRC_WR_INDEX_OFFSET},
170 	{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
171 	{ 5, ADRASTEA_SRC_WR_INDEX_OFFSET},
172 	{ 7, ADRASTEA_SRC_WR_INDEX_OFFSET},
173 	{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
174 	{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
175 	{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
176 	{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
177 #ifdef QCA_WIFI_3_0_ADRASTEA
178 	{ 9, ADRASTEA_DST_WR_INDEX_OFFSET},
179 	{ 10, ADRASTEA_DST_WR_INDEX_OFFSET},
180 	{ 11, ADRASTEA_DST_WR_INDEX_OFFSET},
181 #endif
182 };
183 
184 #ifdef QCN7605_SUPPORT
185 static struct shadow_reg_cfg target_shadow_reg_cfg_map_qcn7605[] = {
186 	{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
187 	{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
188 	{ 5, ADRASTEA_SRC_WR_INDEX_OFFSET},
189 	{ 3, ADRASTEA_DST_WR_INDEX_OFFSET},
190 	{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
191 	{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
192 	{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
193 	{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
194 };
195 #endif
196 
197 #ifdef WLAN_FEATURE_EPPING
198 static struct shadow_reg_cfg target_shadow_reg_cfg_epping[] = {
199 	{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
200 	{ 3, ADRASTEA_SRC_WR_INDEX_OFFSET},
201 	{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
202 	{ 7, ADRASTEA_SRC_WR_INDEX_OFFSET},
203 	{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
204 	{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
205 	{ 5, ADRASTEA_DST_WR_INDEX_OFFSET},
206 	{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
207 	{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
208 };
209 #endif
210 
211 /* CE_PCI TABLE */
212 /*
213  * NOTE: the table below is out of date, though still a useful reference.
214  * Refer to target_service_to_ce_map and hif_map_service_to_pipe for the actual
215  * mapping of HTC services to HIF pipes.
216  */
217 /*
218  * This authoritative table defines Copy Engine configuration and the mapping
219  * of services/endpoints to CEs.  A subset of this information is passed to
220  * the Target during startup as a prerequisite to entering BMI phase.
221  * See:
222  *    target_service_to_ce_map - Target-side mapping
223  *    hif_map_service_to_pipe      - Host-side mapping
224  *    target_ce_config         - Target-side configuration
225  *    host_ce_config           - Host-side configuration
226    ============================================================================
227    Purpose    | Service / Endpoint   | CE   | Dire | Xfer     | Xfer
228  |                      |      | ctio | Size     | Frequency
229  |                      |      | n    |          |
230    ============================================================================
231    tx         | HTT_DATA (downlink)  | CE 0 | h->t | medium - | very frequent
232    descriptor |                      |      |      | O(100B)  | and regular
233    download   |                      |      |      |          |
234    ----------------------------------------------------------------------------
235    rx         | HTT_DATA (uplink)    | CE 1 | t->h | small -  | frequent and
236    indication |                      |      |      | O(10B)   | regular
237    upload     |                      |      |      |          |
238    ----------------------------------------------------------------------------
239    MSDU       | DATA_BK (uplink)     | CE 2 | t->h | large -  | rare
240    upload     |                      |      |      | O(1000B) | (frequent
241    e.g. noise |                      |      |      |          | during IP1.0
242    packets    |                      |      |      |          | testing)
243    ----------------------------------------------------------------------------
244    MSDU       | DATA_BK (downlink)   | CE 3 | h->t | large -  | very rare
245    download   |                      |      |      | O(1000B) | (frequent
246    e.g.       |                      |      |      |          | during IP1.0
247    misdirecte |                      |      |      |          | testing)
248    d EAPOL    |                      |      |      |          |
249    packets    |                      |      |      |          |
250    ----------------------------------------------------------------------------
251    n/a        | DATA_BE, DATA_VI     | CE 2 | t->h |          | never(?)
252  | DATA_VO (uplink)     |      |      |          |
253    ----------------------------------------------------------------------------
254    n/a        | DATA_BE, DATA_VI     | CE 3 | h->t |          | never(?)
255  | DATA_VO (downlink)   |      |      |          |
256    ----------------------------------------------------------------------------
257    WMI events | WMI_CONTROL (uplink) | CE 4 | t->h | medium - | infrequent
258  |                      |      |      | O(100B)  |
259    ----------------------------------------------------------------------------
260    WMI        | WMI_CONTROL          | CE 5 | h->t | medium - | infrequent
261    messages   | (downlink)           |      |      | O(100B)  |
262  |                      |      |      |          |
263    ----------------------------------------------------------------------------
264    n/a        | HTC_CTRL_RSVD,       | CE 1 | t->h |          | never(?)
265  | HTC_RAW_STREAMS      |      |      |          |
266  | (uplink)             |      |      |          |
267    ----------------------------------------------------------------------------
268    n/a        | HTC_CTRL_RSVD,       | CE 0 | h->t |          | never(?)
269  | HTC_RAW_STREAMS      |      |      |          |
270  | (downlink)           |      |      |          |
271    ----------------------------------------------------------------------------
272    diag       | none (raw CE)        | CE 7 | t<>h |    4     | Diag Window
273  |                      |      |      |          | infrequent
274    ============================================================================
275  */
276 
277 /*
278  * Map from service/endpoint to Copy Engine.
279  * This table is derived from the CE_PCI TABLE, above.
280  * It is passed to the Target at startup for use by firmware.
281  */
282 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
283 	{
284 		WMI_DATA_VO_SVC,
285 		PIPEDIR_OUT,    /* out = UL = host -> target */
286 		3,
287 	},
288 	{
289 		WMI_DATA_VO_SVC,
290 		PIPEDIR_IN,     /* in = DL = target -> host */
291 		2,
292 	},
293 	{
294 		WMI_DATA_BK_SVC,
295 		PIPEDIR_OUT,    /* out = UL = host -> target */
296 		3,
297 	},
298 	{
299 		WMI_DATA_BK_SVC,
300 		PIPEDIR_IN,     /* in = DL = target -> host */
301 		2,
302 	},
303 	{
304 		WMI_DATA_BE_SVC,
305 		PIPEDIR_OUT,    /* out = UL = host -> target */
306 		3,
307 	},
308 	{
309 		WMI_DATA_BE_SVC,
310 		PIPEDIR_IN,     /* in = DL = target -> host */
311 		2,
312 	},
313 	{
314 		WMI_DATA_VI_SVC,
315 		PIPEDIR_OUT,    /* out = UL = host -> target */
316 		3,
317 	},
318 	{
319 		WMI_DATA_VI_SVC,
320 		PIPEDIR_IN,     /* in = DL = target -> host */
321 		2,
322 	},
323 	{
324 		WMI_CONTROL_SVC,
325 		PIPEDIR_OUT,    /* out = UL = host -> target */
326 		3,
327 	},
328 	{
329 		WMI_CONTROL_SVC,
330 		PIPEDIR_IN,     /* in = DL = target -> host */
331 		2,
332 	},
333 	{
334 		HTC_CTRL_RSVD_SVC,
335 		PIPEDIR_OUT,    /* out = UL = host -> target */
336 		0,              /* could be moved to 3 (share with WMI) */
337 	},
338 	{
339 		HTC_CTRL_RSVD_SVC,
340 		PIPEDIR_IN,     /* in = DL = target -> host */
341 		2,
342 	},
343 	{
344 		HTC_RAW_STREAMS_SVC, /* not currently used */
345 		PIPEDIR_OUT,    /* out = UL = host -> target */
346 		0,
347 	},
348 	{
349 		HTC_RAW_STREAMS_SVC, /* not currently used */
350 		PIPEDIR_IN,     /* in = DL = target -> host */
351 		2,
352 	},
353 	{
354 		HTT_DATA_MSG_SVC,
355 		PIPEDIR_OUT,    /* out = UL = host -> target */
356 		4,
357 	},
358 	{
359 		HTT_DATA_MSG_SVC,
360 		PIPEDIR_IN,     /* in = DL = target -> host */
361 		1,
362 	},
363 	{
364 		WDI_IPA_TX_SVC,
365 		PIPEDIR_OUT,    /* in = DL = target -> host */
366 		5,
367 	},
368 #if defined(QCA_WIFI_3_0_ADRASTEA)
369 	{
370 		HTT_DATA2_MSG_SVC,
371 		PIPEDIR_IN,    /* in = DL = target -> host */
372 		9,
373 	},
374 	{
375 		HTT_DATA3_MSG_SVC,
376 		PIPEDIR_IN,    /* in = DL = target -> host */
377 		10,
378 	},
379 	{
380 		PACKET_LOG_SVC,
381 		PIPEDIR_IN,    /* in = DL = target -> host */
382 		11,
383 	},
384 #endif
385 	/* (Additions here) */
386 
387 	{                       /* Must be last */
388 		0,
389 		0,
390 		0,
391 	},
392 };
393 
394 /* PIPEDIR_OUT = HOST to Target */
395 /* PIPEDIR_IN  = TARGET to HOST */
396 #if (defined(QCA_WIFI_QCA8074))
397 static struct service_to_pipe target_service_to_ce_map_qca8074[] = {
398 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
399 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
400 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
401 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
402 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
403 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
404 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
405 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
406 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
407 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
408 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
409 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
410 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
411 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
412 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
413 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
414 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
415 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
416 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
417 	/* (Additions here) */
418 	{ 0, 0, 0, },
419 };
420 #else
421 static struct service_to_pipe target_service_to_ce_map_qca8074[] = {
422 };
423 #endif
424 
425 #if (defined(QCA_WIFI_QCA8074V2))
426 static struct service_to_pipe target_service_to_ce_map_qca8074_v2[] = {
427 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
428 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
429 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
430 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
431 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
432 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
433 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
434 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
435 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
436 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
437 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
438 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
439 	{ WMI_CONTROL_SVC_WMAC2, PIPEDIR_OUT, 9},
440 	{ WMI_CONTROL_SVC_WMAC2, PIPEDIR_IN, 2},
441 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
442 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
443 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
444 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
445 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
446 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
447 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
448 	/* (Additions here) */
449 	{ 0, 0, 0, },
450 };
451 #else
452 static struct service_to_pipe target_service_to_ce_map_qca8074_v2[] = {
453 };
454 #endif
455 
456 #if (defined(QCA_WIFI_QCA6018))
457 static struct service_to_pipe target_service_to_ce_map_qca6018[] = {
458 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
459 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
460 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
461 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
462 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
463 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
464 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
465 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
466 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
467 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
468 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
469 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
470 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
471 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
472 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
473 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
474 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
475 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
476 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
477 	/* (Additions here) */
478 	{ 0, 0, 0, },
479 };
480 #else
481 static struct service_to_pipe target_service_to_ce_map_qca6018[] = {
482 };
483 #endif
484 
485 /* PIPEDIR_OUT = HOST to Target */
486 /* PIPEDIR_IN  = TARGET to HOST */
487 #ifdef QCN7605_SUPPORT
488 static struct service_to_pipe target_service_to_ce_map_qcn7605[] = {
489 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 0, },
490 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
491 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 0, },
492 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
493 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 0, },
494 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
495 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 0, },
496 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
497 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 0, },
498 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
499 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
500 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
501 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0, },
502 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 2, },
503 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
504 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
505 	{ HTT_DATA2_MSG_SVC, PIPEDIR_IN, 3, },
506 #ifdef IPA_OFFLOAD
507 	{ WDI_IPA_TX_SVC, PIPEDIR_OUT, 5, },
508 #else
509 	{ HTT_DATA3_MSG_SVC, PIPEDIR_IN, 8, },
510 #endif
511 	{ PACKET_LOG_SVC, PIPEDIR_IN, 7, },
512 	/* (Additions here) */
513 	{ 0, 0, 0, },
514 };
515 #endif
516 
517 #if (defined(QCA_WIFI_QCA6290))
518 #ifdef QCA_6290_AP_MODE
519 static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
520 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
521 	{ WMI_DATA_VO_SVC, PIPEDIR_IN , 2, },
522 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
523 	{ WMI_DATA_BK_SVC, PIPEDIR_IN , 2, },
524 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
525 	{ WMI_DATA_BE_SVC, PIPEDIR_IN , 2, },
526 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
527 	{ WMI_DATA_VI_SVC, PIPEDIR_IN , 2, },
528 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
529 	{ WMI_CONTROL_SVC, PIPEDIR_IN , 2, },
530 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
531 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN , 2, },
532 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
533 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN , 1, },
534 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
535 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
536 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
537 	/* (Additions here) */
538 	{ 0, 0, 0, },
539 };
540 #else
541 static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
542 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
543 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
544 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
545 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
546 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
547 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
548 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
549 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
550 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
551 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
552 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
553 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
554 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
555 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
556 	/* (Additions here) */
557 	{ 0, 0, 0, },
558 };
559 #endif
560 #else
561 static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
562 };
563 #endif
564 
565 #if (defined(QCA_WIFI_QCA6390))
566 static struct service_to_pipe target_service_to_ce_map_qca6390[] = {
567 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
568 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
569 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
570 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
571 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
572 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
573 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
574 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
575 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
576 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
577 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
578 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
579 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
580 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
581 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
582 	/* (Additions here) */
583 	{ 0, 0, 0, },
584 };
585 #else
586 static struct service_to_pipe target_service_to_ce_map_qca6390[] = {
587 };
588 #endif
589 
590 static struct service_to_pipe target_service_to_ce_map_ar900b[] = {
591 	{
592 		WMI_DATA_VO_SVC,
593 		PIPEDIR_OUT,    /* out = UL = host -> target */
594 		3,
595 	},
596 	{
597 		WMI_DATA_VO_SVC,
598 		PIPEDIR_IN,     /* in = DL = target -> host */
599 		2,
600 	},
601 	{
602 		WMI_DATA_BK_SVC,
603 		PIPEDIR_OUT,    /* out = UL = host -> target */
604 		3,
605 	},
606 	{
607 		WMI_DATA_BK_SVC,
608 		PIPEDIR_IN,     /* in = DL = target -> host */
609 		2,
610 	},
611 	{
612 		WMI_DATA_BE_SVC,
613 		PIPEDIR_OUT,    /* out = UL = host -> target */
614 		3,
615 	},
616 	{
617 		WMI_DATA_BE_SVC,
618 		PIPEDIR_IN,     /* in = DL = target -> host */
619 		2,
620 	},
621 	{
622 		WMI_DATA_VI_SVC,
623 		PIPEDIR_OUT,    /* out = UL = host -> target */
624 		3,
625 	},
626 	{
627 		WMI_DATA_VI_SVC,
628 		PIPEDIR_IN,     /* in = DL = target -> host */
629 		2,
630 	},
631 	{
632 		WMI_CONTROL_SVC,
633 		PIPEDIR_OUT,    /* out = UL = host -> target */
634 		3,
635 	},
636 	{
637 		WMI_CONTROL_SVC,
638 		PIPEDIR_IN,     /* in = DL = target -> host */
639 		2,
640 	},
641 	{
642 		HTC_CTRL_RSVD_SVC,
643 		PIPEDIR_OUT,    /* out = UL = host -> target */
644 		0,              /* could be moved to 3 (share with WMI) */
645 	},
646 	{
647 		HTC_CTRL_RSVD_SVC,
648 		PIPEDIR_IN,     /* in = DL = target -> host */
649 		1,
650 	},
651 	{
652 		HTC_RAW_STREAMS_SVC, /* not currently used */
653 		PIPEDIR_OUT,    /* out = UL = host -> target */
654 		0,
655 	},
656 	{
657 		HTC_RAW_STREAMS_SVC, /* not currently used */
658 		PIPEDIR_IN,     /* in = DL = target -> host */
659 		1,
660 	},
661 	{
662 		HTT_DATA_MSG_SVC,
663 		PIPEDIR_OUT,    /* out = UL = host -> target */
664 		4,
665 	},
666 #ifdef WLAN_FEATURE_FASTPATH
667 	{
668 		HTT_DATA_MSG_SVC,
669 		PIPEDIR_IN,     /* in = DL = target -> host */
670 		5,
671 	},
672 #else /* WLAN_FEATURE_FASTPATH */
673 	{
674 		HTT_DATA_MSG_SVC,
675 		PIPEDIR_IN,  /* in = DL = target -> host */
676 		1,
677 	},
678 #endif /* WLAN_FEATURE_FASTPATH */
679 
680 	/* (Additions here) */
681 
682 	{                       /* Must be last */
683 		0,
684 		0,
685 		0,
686 	},
687 };
688 
689 static struct shadow_reg_cfg *target_shadow_reg_cfg = target_shadow_reg_cfg_map;
690 static int shadow_cfg_sz = sizeof(target_shadow_reg_cfg_map);
691 
692 #ifdef WLAN_FEATURE_EPPING
693 static struct service_to_pipe target_service_to_ce_map_wlan_epping[] = {
694 	{WMI_DATA_VO_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
695 	{WMI_DATA_VO_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
696 	{WMI_DATA_BK_SVC, PIPEDIR_OUT, 4,},     /* out = UL = host -> target */
697 	{WMI_DATA_BK_SVC, PIPEDIR_IN, 1,},      /* in = DL = target -> host */
698 	{WMI_DATA_BE_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
699 	{WMI_DATA_BE_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
700 	{WMI_DATA_VI_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
701 	{WMI_DATA_VI_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
702 	{WMI_CONTROL_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
703 	{WMI_CONTROL_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
704 	{HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0,},   /* out = UL = host -> target */
705 	{HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2,},    /* in = DL = target -> host */
706 	{HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0,}, /* out = UL = host -> target */
707 	{HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 2,},  /* in = DL = target -> host */
708 	{HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4,},    /* out = UL = host -> target */
709 	{HTT_DATA_MSG_SVC, PIPEDIR_IN, 1,},     /* in = DL = target -> host */
710 	{0, 0, 0,},             /* Must be last */
711 };
712 
713 void hif_select_epping_service_to_pipe_map(struct service_to_pipe
714 					   **tgt_svc_map_to_use,
715 					   uint32_t *sz_tgt_svc_map_to_use)
716 {
717 	*tgt_svc_map_to_use = target_service_to_ce_map_wlan_epping;
718 	*sz_tgt_svc_map_to_use =
719 			sizeof(target_service_to_ce_map_wlan_epping);
720 }
721 #endif
722 
723 #ifdef QCN7605_SUPPORT
724 static inline
725 void hif_select_ce_map_qcn7605(struct service_to_pipe **tgt_svc_map_to_use,
726 			       uint32_t *sz_tgt_svc_map_to_use)
727 {
728 	*tgt_svc_map_to_use = target_service_to_ce_map_qcn7605;
729 	*sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_qcn7605);
730 }
731 #else
732 static inline
733 void hif_select_ce_map_qcn7605(struct service_to_pipe **tgt_svc_map_to_use,
734 			       uint32_t *sz_tgt_svc_map_to_use)
735 {
736 	HIF_ERROR("%s: QCN7605 not supported", __func__);
737 }
738 #endif
739 
740 static void hif_select_service_to_pipe_map(struct hif_softc *scn,
741 				    struct service_to_pipe **tgt_svc_map_to_use,
742 				    uint32_t *sz_tgt_svc_map_to_use)
743 {
744 	uint32_t mode = hif_get_conparam(scn);
745 	struct hif_target_info *tgt_info = &scn->target_info;
746 
747 	if (QDF_IS_EPPING_ENABLED(mode)) {
748 		hif_select_epping_service_to_pipe_map(tgt_svc_map_to_use,
749 						      sz_tgt_svc_map_to_use);
750 	} else {
751 		switch (tgt_info->target_type) {
752 		default:
753 			*tgt_svc_map_to_use = target_service_to_ce_map_wlan;
754 			*sz_tgt_svc_map_to_use =
755 				sizeof(target_service_to_ce_map_wlan);
756 			break;
757 		case TARGET_TYPE_QCN7605:
758 			hif_select_ce_map_qcn7605(tgt_svc_map_to_use,
759 						  sz_tgt_svc_map_to_use);
760 			break;
761 		case TARGET_TYPE_AR900B:
762 		case TARGET_TYPE_QCA9984:
763 		case TARGET_TYPE_IPQ4019:
764 		case TARGET_TYPE_QCA9888:
765 		case TARGET_TYPE_AR9888:
766 		case TARGET_TYPE_AR9888V2:
767 			*tgt_svc_map_to_use = target_service_to_ce_map_ar900b;
768 			*sz_tgt_svc_map_to_use =
769 				sizeof(target_service_to_ce_map_ar900b);
770 			break;
771 		case TARGET_TYPE_QCA6290:
772 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6290;
773 			*sz_tgt_svc_map_to_use =
774 				sizeof(target_service_to_ce_map_qca6290);
775 			break;
776 		case TARGET_TYPE_QCA6390:
777 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6390;
778 			*sz_tgt_svc_map_to_use =
779 				sizeof(target_service_to_ce_map_qca6390);
780 			break;
781 		case TARGET_TYPE_QCA8074:
782 			*tgt_svc_map_to_use = target_service_to_ce_map_qca8074;
783 			*sz_tgt_svc_map_to_use =
784 				sizeof(target_service_to_ce_map_qca8074);
785 			break;
786 		case TARGET_TYPE_QCA8074V2:
787 			*tgt_svc_map_to_use =
788 				target_service_to_ce_map_qca8074_v2;
789 			*sz_tgt_svc_map_to_use =
790 				sizeof(target_service_to_ce_map_qca8074_v2);
791 			break;
792 		case TARGET_TYPE_QCA6018:
793 			*tgt_svc_map_to_use =
794 				target_service_to_ce_map_qca6018;
795 			*sz_tgt_svc_map_to_use =
796 				sizeof(target_service_to_ce_map_qca6018);
797 			break;
798 		}
799 	}
800 }
801 
802 /**
803  * ce_mark_datapath() - marks the ce_state->htt_rx_data accordingly
804  * @ce_state : pointer to the state context of the CE
805  *
806  * Description:
807  *   Sets htt_rx_data attribute of the state structure if the
808  *   CE serves one of the HTT DATA services.
809  *
810  * Return:
811  *  false (attribute set to false)
812  *  true  (attribute set to true);
813  */
814 static bool ce_mark_datapath(struct CE_state *ce_state)
815 {
816 	struct service_to_pipe *svc_map;
817 	uint32_t map_sz, map_len;
818 	int    i;
819 	bool   rc = false;
820 
821 	if (ce_state != NULL) {
822 		hif_select_service_to_pipe_map(ce_state->scn, &svc_map,
823 					       &map_sz);
824 
825 		map_len = map_sz / sizeof(struct service_to_pipe);
826 		for (i = 0; i < map_len; i++) {
827 			if ((svc_map[i].pipenum == ce_state->id) &&
828 			    ((svc_map[i].service_id == HTT_DATA_MSG_SVC)  ||
829 			     (svc_map[i].service_id == HTT_DATA2_MSG_SVC) ||
830 			     (svc_map[i].service_id == HTT_DATA3_MSG_SVC))) {
831 				/* HTT CEs are unidirectional */
832 				if (svc_map[i].pipedir == PIPEDIR_IN)
833 					ce_state->htt_rx_data = true;
834 				else
835 					ce_state->htt_tx_data = true;
836 				rc = true;
837 			}
838 		}
839 	}
840 	return rc;
841 }
842 
843 /**
844  * ce_ring_test_initial_indexes() - tests the initial ce ring indexes
845  * @ce_id: ce in question
846  * @ring: ring state being examined
847  * @type: "src_ring" or "dest_ring" string for identifying the ring
848  *
849  * Warns on non-zero index values.
850  * Causes a kernel panic if the ring is not empty durring initialization.
851  */
852 static void ce_ring_test_initial_indexes(int ce_id, struct CE_ring_state *ring,
853 					 char *type)
854 {
855 	if (ring->write_index != 0 || ring->sw_index != 0)
856 		HIF_ERROR("ce %d, %s, initial sw_index = %d, initial write_index =%d",
857 			  ce_id, type, ring->sw_index, ring->write_index);
858 	if (ring->write_index != ring->sw_index)
859 		QDF_BUG(0);
860 }
861 
862 #ifdef IPA_OFFLOAD
863 /**
864  * ce_alloc_desc_ring() - Allocate copyengine descriptor ring
865  * @scn: softc instance
866  * @ce_id: ce in question
867  * @base_addr: pointer to copyengine ring base address
868  * @ce_ring: copyengine instance
869  * @nentries: number of entries should be allocated
870  * @desc_size: ce desc size
871  *
872  * Return: QDF_STATUS_SUCCESS - for success
873  */
874 static QDF_STATUS ce_alloc_desc_ring(struct hif_softc *scn, unsigned int CE_id,
875 				     qdf_dma_addr_t *base_addr,
876 				     struct CE_ring_state *ce_ring,
877 				     unsigned int nentries, uint32_t desc_size)
878 {
879 	if ((CE_id == HIF_PCI_IPA_UC_ASSIGNED_CE) &&
880 	    !ce_srng_based(scn)) {
881 		if (!scn->ipa_ce_ring) {
882 			scn->ipa_ce_ring = qdf_mem_shared_mem_alloc(
883 				scn->qdf_dev,
884 				nentries * desc_size + CE_DESC_RING_ALIGN);
885 			if (!scn->ipa_ce_ring) {
886 				HIF_ERROR(
887 				"%s: Failed to allocate memory for IPA ce ring",
888 				__func__);
889 				return QDF_STATUS_E_NOMEM;
890 			}
891 		}
892 		*base_addr = qdf_mem_get_dma_addr(scn->qdf_dev,
893 						&scn->ipa_ce_ring->mem_info);
894 		ce_ring->base_addr_owner_space_unaligned =
895 						scn->ipa_ce_ring->vaddr;
896 	} else {
897 		ce_ring->base_addr_owner_space_unaligned =
898 			qdf_mem_alloc_consistent(scn->qdf_dev,
899 						 scn->qdf_dev->dev,
900 						 (nentries * desc_size +
901 						 CE_DESC_RING_ALIGN),
902 						 base_addr);
903 		if (!ce_ring->base_addr_owner_space_unaligned) {
904 			HIF_ERROR("%s: Failed to allocate DMA memory for ce ring id : %u",
905 				  __func__, CE_id);
906 			return QDF_STATUS_E_NOMEM;
907 		}
908 	}
909 	return QDF_STATUS_SUCCESS;
910 }
911 
912 /**
913  * ce_free_desc_ring() - Frees copyengine descriptor ring
914  * @scn: softc instance
915  * @ce_id: ce in question
916  * @ce_ring: copyengine instance
917  * @desc_size: ce desc size
918  *
919  * Return: None
920  */
921 static void ce_free_desc_ring(struct hif_softc *scn, unsigned int CE_id,
922 			      struct CE_ring_state *ce_ring, uint32_t desc_size)
923 {
924 	if ((CE_id == HIF_PCI_IPA_UC_ASSIGNED_CE) &&
925 	    !ce_srng_based(scn)) {
926 		if (scn->ipa_ce_ring) {
927 			qdf_mem_shared_mem_free(scn->qdf_dev,
928 						scn->ipa_ce_ring);
929 			scn->ipa_ce_ring = NULL;
930 		}
931 		ce_ring->base_addr_owner_space_unaligned = NULL;
932 	} else {
933 		qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
934 			ce_ring->nentries * desc_size + CE_DESC_RING_ALIGN,
935 			ce_ring->base_addr_owner_space_unaligned,
936 			ce_ring->base_addr_CE_space, 0);
937 		ce_ring->base_addr_owner_space_unaligned = NULL;
938 	}
939 }
940 #else
941 static QDF_STATUS ce_alloc_desc_ring(struct hif_softc *scn, unsigned int CE_id,
942 				     qdf_dma_addr_t *base_addr,
943 				     struct CE_ring_state *ce_ring,
944 				     unsigned int nentries, uint32_t desc_size)
945 {
946 	ce_ring->base_addr_owner_space_unaligned =
947 		qdf_mem_alloc_consistent(scn->qdf_dev, scn->qdf_dev->dev,
948 					 (nentries * desc_size +
949 					 CE_DESC_RING_ALIGN), base_addr);
950 	if (!ce_ring->base_addr_owner_space_unaligned) {
951 		HIF_ERROR("%s: Failed to allocate DMA memory for ce ring id : %u",
952 			  __func__, CE_id);
953 		return QDF_STATUS_E_NOMEM;
954 	}
955 	return QDF_STATUS_SUCCESS;
956 }
957 
958 static void ce_free_desc_ring(struct hif_softc *scn, unsigned int CE_id,
959 			      struct CE_ring_state *ce_ring, uint32_t desc_size)
960 {
961 	qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
962 		ce_ring->nentries * desc_size + CE_DESC_RING_ALIGN,
963 		ce_ring->base_addr_owner_space_unaligned,
964 		ce_ring->base_addr_CE_space, 0);
965 	ce_ring->base_addr_owner_space_unaligned = NULL;
966 }
967 #endif /* IPA_OFFLOAD */
968 
969 /*
970  * TODO: Need to explore the possibility of having this as part of a
971  * target context instead of a global array.
972  */
973 static struct ce_ops* (*ce_attach_register[CE_MAX_TARGET_TYPE])(void);
974 
975 void ce_service_register_module(enum ce_target_type target_type,
976 				struct ce_ops* (*ce_attach)(void))
977 {
978 	if (target_type < CE_MAX_TARGET_TYPE)
979 		ce_attach_register[target_type] = ce_attach;
980 }
981 
982 qdf_export_symbol(ce_service_register_module);
983 
984 /**
985  * ce_srng_based() - Does this target use srng
986  * @ce_state : pointer to the state context of the CE
987  *
988  * Description:
989  *   returns true if the target is SRNG based
990  *
991  * Return:
992  *  false (attribute set to false)
993  *  true  (attribute set to true);
994  */
995 bool ce_srng_based(struct hif_softc *scn)
996 {
997 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
998 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
999 
1000 	switch (tgt_info->target_type) {
1001 	case TARGET_TYPE_QCA8074:
1002 	case TARGET_TYPE_QCA8074V2:
1003 	case TARGET_TYPE_QCA6290:
1004 	case TARGET_TYPE_QCA6390:
1005 	case TARGET_TYPE_QCA6018:
1006 		return true;
1007 	default:
1008 		return false;
1009 	}
1010 	return false;
1011 }
1012 qdf_export_symbol(ce_srng_based);
1013 
1014 #ifdef QCA_WIFI_SUPPORT_SRNG
1015 static struct ce_ops *ce_services_attach(struct hif_softc *scn)
1016 {
1017 	struct ce_ops *ops = NULL;
1018 
1019 	if (ce_srng_based(scn)) {
1020 		if (ce_attach_register[CE_SVC_SRNG])
1021 			ops = ce_attach_register[CE_SVC_SRNG]();
1022 	} else if (ce_attach_register[CE_SVC_LEGACY]) {
1023 		ops = ce_attach_register[CE_SVC_LEGACY]();
1024 	}
1025 
1026 	return ops;
1027 }
1028 
1029 
1030 #else	/* QCA_LITHIUM */
1031 static struct ce_ops *ce_services_attach(struct hif_softc *scn)
1032 {
1033 	if (ce_attach_register[CE_SVC_LEGACY])
1034 		return ce_attach_register[CE_SVC_LEGACY]();
1035 
1036 	return NULL;
1037 }
1038 #endif /* QCA_LITHIUM */
1039 
1040 static void hif_prepare_hal_shadow_register_cfg(struct hif_softc *scn,
1041 		struct pld_shadow_reg_v2_cfg **shadow_config,
1042 		int *num_shadow_registers_configured) {
1043 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1044 
1045 	return hif_state->ce_services->ce_prepare_shadow_register_v2_cfg(
1046 			scn, shadow_config, num_shadow_registers_configured);
1047 }
1048 
1049 static inline uint32_t ce_get_desc_size(struct hif_softc *scn,
1050 						uint8_t ring_type)
1051 {
1052 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1053 
1054 	return hif_state->ce_services->ce_get_desc_size(ring_type);
1055 }
1056 
1057 
1058 static struct CE_ring_state *ce_alloc_ring_state(struct CE_state *CE_state,
1059 		uint8_t ring_type, uint32_t nentries)
1060 {
1061 	uint32_t ce_nbytes;
1062 	char *ptr;
1063 	qdf_dma_addr_t base_addr;
1064 	struct CE_ring_state *ce_ring;
1065 	uint32_t desc_size;
1066 	struct hif_softc *scn = CE_state->scn;
1067 
1068 	ce_nbytes = sizeof(struct CE_ring_state)
1069 		+ (nentries * sizeof(void *));
1070 	ptr = qdf_mem_malloc(ce_nbytes);
1071 	if (!ptr)
1072 		return NULL;
1073 
1074 	ce_ring = (struct CE_ring_state *)ptr;
1075 	ptr += sizeof(struct CE_ring_state);
1076 	ce_ring->nentries = nentries;
1077 	ce_ring->nentries_mask = nentries - 1;
1078 
1079 	ce_ring->low_water_mark_nentries = 0;
1080 	ce_ring->high_water_mark_nentries = nentries;
1081 	ce_ring->per_transfer_context = (void **)ptr;
1082 
1083 	desc_size = ce_get_desc_size(scn, ring_type);
1084 
1085 	/* Legacy platforms that do not support cache
1086 	 * coherent DMA are unsupported
1087 	 */
1088 	if (ce_alloc_desc_ring(scn, CE_state->id, &base_addr,
1089 			       ce_ring, nentries,
1090 			       desc_size) !=
1091 	    QDF_STATUS_SUCCESS) {
1092 		HIF_ERROR("%s: ring has no DMA mem",
1093 				__func__);
1094 		qdf_mem_free(ce_ring);
1095 		return NULL;
1096 	}
1097 	ce_ring->base_addr_CE_space_unaligned = base_addr;
1098 
1099 	/* Correctly initialize memory to 0 to
1100 	 * prevent garbage data crashing system
1101 	 * when download firmware
1102 	 */
1103 	qdf_mem_zero(ce_ring->base_addr_owner_space_unaligned,
1104 			nentries * desc_size +
1105 			CE_DESC_RING_ALIGN);
1106 
1107 	if (ce_ring->base_addr_CE_space_unaligned & (CE_DESC_RING_ALIGN - 1)) {
1108 
1109 		ce_ring->base_addr_CE_space =
1110 			(ce_ring->base_addr_CE_space_unaligned +
1111 			 CE_DESC_RING_ALIGN - 1) & ~(CE_DESC_RING_ALIGN - 1);
1112 
1113 		ce_ring->base_addr_owner_space = (void *)
1114 			(((size_t) ce_ring->base_addr_owner_space_unaligned +
1115 			 CE_DESC_RING_ALIGN - 1) & ~(CE_DESC_RING_ALIGN - 1));
1116 	} else {
1117 		ce_ring->base_addr_CE_space =
1118 				ce_ring->base_addr_CE_space_unaligned;
1119 		ce_ring->base_addr_owner_space =
1120 				ce_ring->base_addr_owner_space_unaligned;
1121 	}
1122 
1123 	return ce_ring;
1124 }
1125 
1126 static int ce_ring_setup(struct hif_softc *scn, uint8_t ring_type,
1127 			uint32_t ce_id, struct CE_ring_state *ring,
1128 			struct CE_attr *attr)
1129 {
1130 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1131 
1132 	return hif_state->ce_services->ce_ring_setup(scn, ring_type, ce_id,
1133 					      ring, attr);
1134 }
1135 
1136 int hif_ce_bus_early_suspend(struct hif_softc *scn)
1137 {
1138 	uint8_t ul_pipe, dl_pipe;
1139 	int ce_id, status, ul_is_polled, dl_is_polled;
1140 	struct CE_state *ce_state;
1141 
1142 	status = hif_map_service_to_pipe(&scn->osc, WMI_CONTROL_SVC,
1143 					 &ul_pipe, &dl_pipe,
1144 					 &ul_is_polled, &dl_is_polled);
1145 	if (status) {
1146 		HIF_ERROR("%s: pipe_mapping failure", __func__);
1147 		return status;
1148 	}
1149 
1150 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
1151 		if (ce_id == ul_pipe)
1152 			continue;
1153 		if (ce_id == dl_pipe)
1154 			continue;
1155 
1156 		ce_state = scn->ce_id_to_state[ce_id];
1157 		qdf_spin_lock_bh(&ce_state->ce_index_lock);
1158 		if (ce_state->state == CE_RUNNING)
1159 			ce_state->state = CE_PAUSED;
1160 		qdf_spin_unlock_bh(&ce_state->ce_index_lock);
1161 	}
1162 
1163 	return status;
1164 }
1165 
1166 int hif_ce_bus_late_resume(struct hif_softc *scn)
1167 {
1168 	int ce_id;
1169 	struct CE_state *ce_state;
1170 	int write_index = 0;
1171 	bool index_updated;
1172 
1173 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
1174 		ce_state = scn->ce_id_to_state[ce_id];
1175 		qdf_spin_lock_bh(&ce_state->ce_index_lock);
1176 		if (ce_state->state == CE_PENDING) {
1177 			write_index = ce_state->src_ring->write_index;
1178 			CE_SRC_RING_WRITE_IDX_SET(scn, ce_state->ctrl_addr,
1179 					write_index);
1180 			ce_state->state = CE_RUNNING;
1181 			index_updated = true;
1182 		} else {
1183 			index_updated = false;
1184 		}
1185 
1186 		if (ce_state->state == CE_PAUSED)
1187 			ce_state->state = CE_RUNNING;
1188 		qdf_spin_unlock_bh(&ce_state->ce_index_lock);
1189 
1190 		if (index_updated)
1191 			hif_record_ce_desc_event(scn, ce_id,
1192 				RESUME_WRITE_INDEX_UPDATE,
1193 				NULL, NULL, write_index, 0);
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 /**
1200  * ce_oom_recovery() - try to recover rx ce from oom condition
1201  * @context: CE_state of the CE with oom rx ring
1202  *
1203  * the executing work Will continue to be rescheduled until
1204  * at least 1 descriptor is successfully posted to the rx ring.
1205  *
1206  * return: none
1207  */
1208 static void ce_oom_recovery(void *context)
1209 {
1210 	struct CE_state *ce_state = context;
1211 	struct hif_softc *scn = ce_state->scn;
1212 	struct HIF_CE_state *ce_softc = HIF_GET_CE_STATE(scn);
1213 	struct HIF_CE_pipe_info *pipe_info =
1214 		&ce_softc->pipe_info[ce_state->id];
1215 
1216 	hif_post_recv_buffers_for_pipe(pipe_info);
1217 }
1218 
1219 #ifdef HIF_CE_DEBUG_DATA_BUF
1220 /**
1221  * alloc_mem_ce_debug_hist_data() - Allocate mem for the data pointed by
1222  * the CE descriptors.
1223  * Allocate HIF_CE_HISTORY_MAX records by CE_DEBUG_MAX_DATA_BUF_SIZE
1224  * @scn: hif scn handle
1225  * ce_id: Copy Engine Id
1226  *
1227  * Return: QDF_STATUS
1228  */
1229 QDF_STATUS alloc_mem_ce_debug_hist_data(struct hif_softc *scn, uint32_t ce_id)
1230 {
1231 	struct hif_ce_desc_event *event = NULL;
1232 	struct hif_ce_desc_event *hist_ev = NULL;
1233 	uint32_t index = 0;
1234 
1235 	hist_ev =
1236 	(struct hif_ce_desc_event *)scn->hif_ce_desc_hist.hist_ev[ce_id];
1237 
1238 	if (!hist_ev)
1239 		return QDF_STATUS_E_NOMEM;
1240 
1241 	for (index = 0; index < HIF_CE_HISTORY_MAX; index++) {
1242 		event = &hist_ev[index];
1243 		event->data =
1244 			(uint8_t *)qdf_mem_malloc(CE_DEBUG_MAX_DATA_BUF_SIZE);
1245 		if (event->data == NULL)
1246 			return QDF_STATUS_E_NOMEM;
1247 	}
1248 	return QDF_STATUS_SUCCESS;
1249 }
1250 
1251 /**
1252  * free_mem_ce_debug_hist_data() - Free mem of the data pointed by
1253  * the CE descriptors.
1254  * @scn: hif scn handle
1255  * ce_id: Copy Engine Id
1256  *
1257  * Return:
1258  */
1259 void free_mem_ce_debug_hist_data(struct hif_softc *scn, uint32_t ce_id)
1260 {
1261 	struct hif_ce_desc_event *event = NULL;
1262 	struct hif_ce_desc_event *hist_ev = NULL;
1263 	uint32_t index = 0;
1264 
1265 	hist_ev =
1266 	(struct hif_ce_desc_event *)scn->hif_ce_desc_hist.hist_ev[ce_id];
1267 
1268 	if (!hist_ev)
1269 		return;
1270 
1271 	for (index = 0; index < HIF_CE_HISTORY_MAX; index++) {
1272 		event = &hist_ev[index];
1273 		if (event->data != NULL)
1274 			qdf_mem_free(event->data);
1275 		event->data = NULL;
1276 		event = NULL;
1277 	}
1278 }
1279 #endif /* HIF_CE_DEBUG_DATA_BUF */
1280 
1281 #if defined(HIF_CONFIG_SLUB_DEBUG_ON) /* MCL */
1282 struct hif_ce_desc_event hif_ce_desc_history[CE_COUNT_MAX][HIF_CE_HISTORY_MAX];
1283 
1284 /**
1285  * alloc_mem_ce_debug_history() - Allocate CE descriptor history
1286  * @scn: hif scn handle
1287  * @ce_id: Copy Engine Id
1288  *
1289  * Return: QDF_STATUS
1290  */
1291 static QDF_STATUS
1292 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int ce_id)
1293 {
1294 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
1295 
1296 	ce_hist->hist_ev[ce_id] = hif_ce_desc_history[ce_id];
1297 	ce_hist->enable[ce_id] = 1;
1298 
1299 	return QDF_STATUS_SUCCESS;
1300 }
1301 
1302 /**
1303  * free_mem_ce_debug_history() - Free CE descriptor history
1304  * @scn: hif scn handle
1305  * @ce_id: Copy Engine Id
1306  *
1307  * Return: None
1308  */
1309 static void free_mem_ce_debug_history(struct hif_softc *scn, unsigned int ce_id)
1310 {
1311 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
1312 
1313 	ce_hist->enable[ce_id] = 0;
1314 	ce_hist->hist_ev[ce_id] = NULL;
1315 }
1316 
1317 #elif defined(HIF_CE_DEBUG_DATA_BUF) /* WIN */
1318 
1319 static QDF_STATUS
1320 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id)
1321 {
1322 	scn->hif_ce_desc_hist.hist_ev[CE_id] = (struct hif_ce_desc_event *)
1323 	qdf_mem_malloc(HIF_CE_HISTORY_MAX * sizeof(struct hif_ce_desc_event));
1324 
1325 	if (scn->hif_ce_desc_hist.hist_ev[CE_id] == NULL) {
1326 		scn->hif_ce_desc_hist.enable[CE_id] = 0;
1327 		return QDF_STATUS_E_NOMEM;
1328 	} else {
1329 		scn->hif_ce_desc_hist.enable[CE_id] = 1;
1330 		return QDF_STATUS_SUCCESS;
1331 	}
1332 }
1333 
1334 static void free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id)
1335 {
1336 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
1337 	struct hif_ce_desc_event *hist_ev = ce_hist->hist_ev[CE_id];
1338 
1339 	if (!hist_ev)
1340 		return;
1341 
1342 	if (ce_hist->data_enable[CE_id] == 1) {
1343 		ce_hist->data_enable[CE_id] = 0;
1344 		free_mem_ce_debug_hist_data(scn, CE_id);
1345 	}
1346 
1347 	ce_hist->enable[CE_id] = 0;
1348 	qdf_mem_free(ce_hist->hist_ev[CE_id]);
1349 	ce_hist->hist_ev[CE_id] = NULL;
1350 }
1351 
1352 #else /* Disabled */
1353 
1354 static inline QDF_STATUS
1355 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id)
1356 {
1357 	return QDF_STATUS_SUCCESS;
1358 }
1359 
1360 static inline void
1361 free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id) { }
1362 #endif
1363 
1364 #if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
1365 /**
1366  * reset_ce_debug_history() - reset the index and ce id used for dumping the
1367  * CE records on the console using sysfs.
1368  * @scn: hif scn handle
1369  *
1370  * Return:
1371  */
1372 static inline void reset_ce_debug_history(struct hif_softc *scn)
1373 {
1374 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
1375 	/* Initialise the CE debug history sysfs interface inputs ce_id and
1376 	 * index. Disable data storing
1377 	 */
1378 	ce_hist->hist_index = 0;
1379 	ce_hist->hist_id = 0;
1380 }
1381 #else /* defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF) */
1382 static inline void reset_ce_debug_history(struct hif_softc *scn) { }
1383 #endif /*defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF) */
1384 
1385 void ce_enable_polling(void *cestate)
1386 {
1387 	struct CE_state *CE_state = (struct CE_state *)cestate;
1388 
1389 	if (CE_state && CE_state->attr_flags & CE_ATTR_ENABLE_POLL)
1390 		CE_state->timer_inited = true;
1391 }
1392 
1393 void ce_disable_polling(void *cestate)
1394 {
1395 	struct CE_state *CE_state = (struct CE_state *)cestate;
1396 
1397 	if (CE_state && CE_state->attr_flags & CE_ATTR_ENABLE_POLL)
1398 		CE_state->timer_inited = false;
1399 }
1400 
1401 /*
1402  * Initialize a Copy Engine based on caller-supplied attributes.
1403  * This may be called once to initialize both source and destination
1404  * rings or it may be called twice for separate source and destination
1405  * initialization. It may be that only one side or the other is
1406  * initialized by software/firmware.
1407  *
1408  * This should be called durring the initialization sequence before
1409  * interupts are enabled, so we don't have to worry about thread safety.
1410  */
1411 struct CE_handle *ce_init(struct hif_softc *scn,
1412 			  unsigned int CE_id, struct CE_attr *attr)
1413 {
1414 	struct CE_state *CE_state;
1415 	uint32_t ctrl_addr;
1416 	unsigned int nentries;
1417 	bool malloc_CE_state = false;
1418 	bool malloc_src_ring = false;
1419 	int status;
1420 
1421 	QDF_ASSERT(CE_id < scn->ce_count);
1422 	ctrl_addr = CE_BASE_ADDRESS(CE_id);
1423 	CE_state = scn->ce_id_to_state[CE_id];
1424 
1425 	if (!CE_state) {
1426 		CE_state =
1427 		    (struct CE_state *)qdf_mem_malloc(sizeof(*CE_state));
1428 		if (!CE_state)
1429 			return NULL;
1430 
1431 		malloc_CE_state = true;
1432 		qdf_spinlock_create(&CE_state->ce_index_lock);
1433 
1434 		CE_state->id = CE_id;
1435 		CE_state->ctrl_addr = ctrl_addr;
1436 		CE_state->state = CE_RUNNING;
1437 		CE_state->attr_flags = attr->flags;
1438 	}
1439 	CE_state->scn = scn;
1440 	CE_state->service = ce_engine_service_reg;
1441 
1442 	qdf_atomic_init(&CE_state->rx_pending);
1443 	if (attr == NULL) {
1444 		/* Already initialized; caller wants the handle */
1445 		return (struct CE_handle *)CE_state;
1446 	}
1447 
1448 	if (CE_state->src_sz_max)
1449 		QDF_ASSERT(CE_state->src_sz_max == attr->src_sz_max);
1450 	else
1451 		CE_state->src_sz_max = attr->src_sz_max;
1452 
1453 	ce_init_ce_desc_event_log(scn, CE_id,
1454 				  attr->src_nentries + attr->dest_nentries);
1455 
1456 	/* source ring setup */
1457 	nentries = attr->src_nentries;
1458 	if (nentries) {
1459 		struct CE_ring_state *src_ring;
1460 
1461 		nentries = roundup_pwr2(nentries);
1462 		if (CE_state->src_ring) {
1463 			QDF_ASSERT(CE_state->src_ring->nentries == nentries);
1464 		} else {
1465 			src_ring = CE_state->src_ring =
1466 				ce_alloc_ring_state(CE_state,
1467 						CE_RING_SRC,
1468 						nentries);
1469 			if (!src_ring) {
1470 				/* cannot allocate src ring. If the
1471 				 * CE_state is allocated locally free
1472 				 * CE_State and return error.
1473 				 */
1474 				HIF_ERROR("%s: src ring has no mem", __func__);
1475 				if (malloc_CE_state) {
1476 					/* allocated CE_state locally */
1477 					qdf_mem_free(CE_state);
1478 					malloc_CE_state = false;
1479 				}
1480 				return NULL;
1481 			}
1482 			/* we can allocate src ring. Mark that the src ring is
1483 			 * allocated locally
1484 			 */
1485 			malloc_src_ring = true;
1486 
1487 			/*
1488 			 * Also allocate a shadow src ring in
1489 			 * regular mem to use for faster access.
1490 			 */
1491 			src_ring->shadow_base_unaligned =
1492 				qdf_mem_malloc(nentries *
1493 					       sizeof(struct CE_src_desc) +
1494 					       CE_DESC_RING_ALIGN);
1495 			if (!src_ring->shadow_base_unaligned)
1496 				goto error_no_dma_mem;
1497 
1498 			src_ring->shadow_base = (struct CE_src_desc *)
1499 				(((size_t) src_ring->shadow_base_unaligned +
1500 				CE_DESC_RING_ALIGN - 1) &
1501 				 ~(CE_DESC_RING_ALIGN - 1));
1502 
1503 			status = ce_ring_setup(scn, CE_RING_SRC, CE_id,
1504 					       src_ring, attr);
1505 			if (status < 0)
1506 				goto error_target_access;
1507 
1508 			ce_ring_test_initial_indexes(CE_id, src_ring,
1509 						     "src_ring");
1510 		}
1511 	}
1512 
1513 	/* destination ring setup */
1514 	nentries = attr->dest_nentries;
1515 	if (nentries) {
1516 		struct CE_ring_state *dest_ring;
1517 
1518 		nentries = roundup_pwr2(nentries);
1519 		if (CE_state->dest_ring) {
1520 			QDF_ASSERT(CE_state->dest_ring->nentries == nentries);
1521 		} else {
1522 			dest_ring = CE_state->dest_ring =
1523 				ce_alloc_ring_state(CE_state,
1524 						CE_RING_DEST,
1525 						nentries);
1526 			if (!dest_ring) {
1527 				/* cannot allocate dst ring. If the CE_state
1528 				 * or src ring is allocated locally free
1529 				 * CE_State and src ring and return error.
1530 				 */
1531 				HIF_ERROR("%s: dest ring has no mem",
1532 					  __func__);
1533 				goto error_no_dma_mem;
1534 			}
1535 
1536 			status = ce_ring_setup(scn, CE_RING_DEST, CE_id,
1537 				      dest_ring, attr);
1538 			if (status < 0)
1539 				goto error_target_access;
1540 
1541 			ce_ring_test_initial_indexes(CE_id, dest_ring,
1542 						     "dest_ring");
1543 
1544 			/* For srng based target, init status ring here */
1545 			if (ce_srng_based(CE_state->scn)) {
1546 				CE_state->status_ring =
1547 					ce_alloc_ring_state(CE_state,
1548 							CE_RING_STATUS,
1549 							nentries);
1550 				if (CE_state->status_ring == NULL) {
1551 					/*Allocation failed. Cleanup*/
1552 					qdf_mem_free(CE_state->dest_ring);
1553 					if (malloc_src_ring) {
1554 						qdf_mem_free
1555 							(CE_state->src_ring);
1556 						CE_state->src_ring = NULL;
1557 						malloc_src_ring = false;
1558 					}
1559 					if (malloc_CE_state) {
1560 						/* allocated CE_state locally */
1561 						scn->ce_id_to_state[CE_id] =
1562 							NULL;
1563 						qdf_mem_free(CE_state);
1564 						malloc_CE_state = false;
1565 					}
1566 
1567 					return NULL;
1568 				}
1569 
1570 				status = ce_ring_setup(scn, CE_RING_STATUS,
1571 					       CE_id, CE_state->status_ring,
1572 					       attr);
1573 				if (status < 0)
1574 					goto error_target_access;
1575 
1576 			}
1577 
1578 			/* epping */
1579 			/* poll timer */
1580 			if (CE_state->attr_flags & CE_ATTR_ENABLE_POLL) {
1581 				qdf_timer_init(scn->qdf_dev,
1582 						&CE_state->poll_timer,
1583 						ce_poll_timeout,
1584 						CE_state,
1585 						QDF_TIMER_TYPE_WAKE_APPS);
1586 				ce_enable_polling(CE_state);
1587 				qdf_timer_mod(&CE_state->poll_timer,
1588 						      CE_POLL_TIMEOUT);
1589 			}
1590 		}
1591 	}
1592 
1593 	if (!ce_srng_based(scn)) {
1594 		/* Enable CE error interrupts */
1595 		if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
1596 			goto error_target_access;
1597 		CE_ERROR_INTR_ENABLE(scn, ctrl_addr);
1598 		if (Q_TARGET_ACCESS_END(scn) < 0)
1599 			goto error_target_access;
1600 	}
1601 
1602 	qdf_create_work(scn->qdf_dev, &CE_state->oom_allocation_work,
1603 			ce_oom_recovery, CE_state);
1604 
1605 	/* update the htt_data attribute */
1606 	ce_mark_datapath(CE_state);
1607 	scn->ce_id_to_state[CE_id] = CE_state;
1608 
1609 	alloc_mem_ce_debug_history(scn, CE_id);
1610 
1611 	return (struct CE_handle *)CE_state;
1612 
1613 error_target_access:
1614 error_no_dma_mem:
1615 	ce_fini((struct CE_handle *)CE_state);
1616 	return NULL;
1617 }
1618 
1619 /**
1620  * hif_is_polled_mode_enabled - API to query if polling is enabled on all CEs
1621  * @hif_ctx: HIF Context
1622  *
1623  * API to check if polling is enabled on all CEs. Returns true when polling
1624  * is enabled on all CEs.
1625  *
1626  * Return: bool
1627  */
1628 bool hif_is_polled_mode_enabled(struct hif_opaque_softc *hif_ctx)
1629 {
1630 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
1631 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1632 	struct CE_attr *attr;
1633 	int id;
1634 
1635 	for (id = 0; id < scn->ce_count; id++) {
1636 		attr = &hif_state->host_ce_config[id];
1637 		if (attr && (attr->dest_nentries) &&
1638 		    !(attr->flags & CE_ATTR_ENABLE_POLL))
1639 			return false;
1640 	}
1641 	return true;
1642 }
1643 qdf_export_symbol(hif_is_polled_mode_enabled);
1644 
1645 #ifdef WLAN_FEATURE_FASTPATH
1646 /**
1647  * hif_enable_fastpath() Update that we have enabled fastpath mode
1648  * @hif_ctx: HIF context
1649  *
1650  * For use in data path
1651  *
1652  * Retrun: void
1653  */
1654 void hif_enable_fastpath(struct hif_opaque_softc *hif_ctx)
1655 {
1656 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
1657 
1658 	if (ce_srng_based(scn)) {
1659 		HIF_INFO("%s, srng rings do not support fastpath", __func__);
1660 		return;
1661 	}
1662 	HIF_DBG("%s, Enabling fastpath mode", __func__);
1663 	scn->fastpath_mode_on = true;
1664 }
1665 
1666 /**
1667  * hif_is_fastpath_mode_enabled - API to query if fasthpath mode is enabled
1668  * @hif_ctx: HIF Context
1669  *
1670  * For use in data path to skip HTC
1671  *
1672  * Return: bool
1673  */
1674 bool hif_is_fastpath_mode_enabled(struct hif_opaque_softc *hif_ctx)
1675 {
1676 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
1677 
1678 	return scn->fastpath_mode_on;
1679 }
1680 
1681 /**
1682  * hif_get_ce_handle - API to get CE handle for FastPath mode
1683  * @hif_ctx: HIF Context
1684  * @id: CopyEngine Id
1685  *
1686  * API to return CE handle for fastpath mode
1687  *
1688  * Return: void
1689  */
1690 void *hif_get_ce_handle(struct hif_opaque_softc *hif_ctx, int id)
1691 {
1692 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
1693 
1694 	return scn->ce_id_to_state[id];
1695 }
1696 qdf_export_symbol(hif_get_ce_handle);
1697 
1698 /**
1699  * ce_h2t_tx_ce_cleanup() Place holder function for H2T CE cleanup.
1700  * No processing is required inside this function.
1701  * @ce_hdl: Cope engine handle
1702  * Using an assert, this function makes sure that,
1703  * the TX CE has been processed completely.
1704  *
1705  * This is called while dismantling CE structures. No other thread
1706  * should be using these structures while dismantling is occurring
1707  * therfore no locking is needed.
1708  *
1709  * Return: none
1710  */
1711 void ce_h2t_tx_ce_cleanup(struct CE_handle *ce_hdl)
1712 {
1713 	struct CE_state *ce_state = (struct CE_state *)ce_hdl;
1714 	struct CE_ring_state *src_ring = ce_state->src_ring;
1715 	struct hif_softc *sc = ce_state->scn;
1716 	uint32_t sw_index, write_index;
1717 
1718 	if (hif_is_nss_wifi_enabled(sc))
1719 		return;
1720 
1721 	if (sc->fastpath_mode_on && ce_state->htt_tx_data) {
1722 		HIF_DBG("%s %d Fastpath mode ON, Cleaning up HTT Tx CE",
1723 			 __func__, __LINE__);
1724 		sw_index = src_ring->sw_index;
1725 		write_index = src_ring->sw_index;
1726 
1727 		/* At this point Tx CE should be clean */
1728 		qdf_assert_always(sw_index == write_index);
1729 	}
1730 }
1731 
1732 /**
1733  * ce_t2h_msg_ce_cleanup() - Cleanup buffers on the t2h datapath msg queue.
1734  * @ce_hdl: Handle to CE
1735  *
1736  * These buffers are never allocated on the fly, but
1737  * are allocated only once during HIF start and freed
1738  * only once during HIF stop.
1739  * NOTE:
1740  * The assumption here is there is no in-flight DMA in progress
1741  * currently, so that buffers can be freed up safely.
1742  *
1743  * Return: NONE
1744  */
1745 void ce_t2h_msg_ce_cleanup(struct CE_handle *ce_hdl)
1746 {
1747 	struct CE_state *ce_state = (struct CE_state *)ce_hdl;
1748 	struct CE_ring_state *dst_ring = ce_state->dest_ring;
1749 	qdf_nbuf_t nbuf;
1750 	int i;
1751 
1752 	if (ce_state->scn->fastpath_mode_on == false)
1753 		return;
1754 
1755 	if (!ce_state->htt_rx_data)
1756 		return;
1757 
1758 	/*
1759 	 * when fastpath_mode is on and for datapath CEs. Unlike other CE's,
1760 	 * this CE is completely full: does not leave one blank space, to
1761 	 * distinguish between empty queue & full queue. So free all the
1762 	 * entries.
1763 	 */
1764 	for (i = 0; i < dst_ring->nentries; i++) {
1765 		nbuf = dst_ring->per_transfer_context[i];
1766 
1767 		/*
1768 		 * The reasons for doing this check are:
1769 		 * 1) Protect against calling cleanup before allocating buffers
1770 		 * 2) In a corner case, FASTPATH_mode_on may be set, but we
1771 		 *    could have a partially filled ring, because of a memory
1772 		 *    allocation failure in the middle of allocating ring.
1773 		 *    This check accounts for that case, checking
1774 		 *    fastpath_mode_on flag or started flag would not have
1775 		 *    covered that case. This is not in performance path,
1776 		 *    so OK to do this.
1777 		 */
1778 		if (nbuf) {
1779 			qdf_nbuf_unmap_single(ce_state->scn->qdf_dev, nbuf,
1780 					      QDF_DMA_FROM_DEVICE);
1781 			qdf_nbuf_free(nbuf);
1782 		}
1783 	}
1784 }
1785 
1786 /**
1787  * hif_update_fastpath_recv_bufs_cnt() - Increments the Rx buf count by 1
1788  * @scn: HIF handle
1789  *
1790  * Datapath Rx CEs are special case, where we reuse all the message buffers.
1791  * Hence we have to post all the entries in the pipe, even, in the beginning
1792  * unlike for other CE pipes where one less than dest_nentries are filled in
1793  * the beginning.
1794  *
1795  * Return: None
1796  */
1797 static void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn)
1798 {
1799 	int pipe_num;
1800 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1801 
1802 	if (scn->fastpath_mode_on == false)
1803 		return;
1804 
1805 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
1806 		struct HIF_CE_pipe_info *pipe_info =
1807 			&hif_state->pipe_info[pipe_num];
1808 		struct CE_state *ce_state =
1809 			scn->ce_id_to_state[pipe_info->pipe_num];
1810 
1811 		if (ce_state->htt_rx_data)
1812 			atomic_inc(&pipe_info->recv_bufs_needed);
1813 	}
1814 }
1815 #else
1816 static inline void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn)
1817 {
1818 }
1819 
1820 static inline bool ce_is_fastpath_enabled(struct hif_softc *scn)
1821 {
1822 	return false;
1823 }
1824 #endif /* WLAN_FEATURE_FASTPATH */
1825 
1826 void ce_fini(struct CE_handle *copyeng)
1827 {
1828 	struct CE_state *CE_state = (struct CE_state *)copyeng;
1829 	unsigned int CE_id = CE_state->id;
1830 	struct hif_softc *scn = CE_state->scn;
1831 	uint32_t desc_size;
1832 
1833 	bool inited = CE_state->timer_inited;
1834 	CE_state->state = CE_UNUSED;
1835 	scn->ce_id_to_state[CE_id] = NULL;
1836 	/* Set the flag to false first to stop processing in ce_poll_timeout */
1837 	ce_disable_polling(CE_state);
1838 
1839 	qdf_lro_deinit(CE_state->lro_data);
1840 
1841 	if (CE_state->src_ring) {
1842 		/* Cleanup the datapath Tx ring */
1843 		ce_h2t_tx_ce_cleanup(copyeng);
1844 
1845 		desc_size = ce_get_desc_size(scn, CE_RING_SRC);
1846 		if (CE_state->src_ring->shadow_base_unaligned)
1847 			qdf_mem_free(CE_state->src_ring->shadow_base_unaligned);
1848 		if (CE_state->src_ring->base_addr_owner_space_unaligned)
1849 			ce_free_desc_ring(scn, CE_state->id,
1850 					  CE_state->src_ring,
1851 					  desc_size);
1852 		qdf_mem_free(CE_state->src_ring);
1853 	}
1854 	if (CE_state->dest_ring) {
1855 		/* Cleanup the datapath Rx ring */
1856 		ce_t2h_msg_ce_cleanup(copyeng);
1857 
1858 		desc_size = ce_get_desc_size(scn, CE_RING_DEST);
1859 		if (CE_state->dest_ring->base_addr_owner_space_unaligned)
1860 			ce_free_desc_ring(scn, CE_state->id,
1861 					  CE_state->dest_ring,
1862 					  desc_size);
1863 		qdf_mem_free(CE_state->dest_ring);
1864 
1865 		/* epping */
1866 		if (inited) {
1867 			qdf_timer_free(&CE_state->poll_timer);
1868 		}
1869 	}
1870 	if ((ce_srng_based(CE_state->scn)) && (CE_state->status_ring)) {
1871 		/* Cleanup the datapath Tx ring */
1872 		ce_h2t_tx_ce_cleanup(copyeng);
1873 
1874 		if (CE_state->status_ring->shadow_base_unaligned)
1875 			qdf_mem_free(
1876 				CE_state->status_ring->shadow_base_unaligned);
1877 
1878 		desc_size = ce_get_desc_size(scn, CE_RING_STATUS);
1879 		if (CE_state->status_ring->base_addr_owner_space_unaligned)
1880 			ce_free_desc_ring(scn, CE_state->id,
1881 					  CE_state->status_ring,
1882 					  desc_size);
1883 		qdf_mem_free(CE_state->status_ring);
1884 	}
1885 
1886 	free_mem_ce_debug_history(scn, CE_id);
1887 	reset_ce_debug_history(scn);
1888 	ce_deinit_ce_desc_event_log(scn, CE_id);
1889 
1890 	qdf_spinlock_destroy(&CE_state->ce_index_lock);
1891 	qdf_mem_free(CE_state);
1892 }
1893 
1894 void hif_detach_htc(struct hif_opaque_softc *hif_ctx)
1895 {
1896 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
1897 
1898 	qdf_mem_zero(&hif_state->msg_callbacks_pending,
1899 		  sizeof(hif_state->msg_callbacks_pending));
1900 	qdf_mem_zero(&hif_state->msg_callbacks_current,
1901 		  sizeof(hif_state->msg_callbacks_current));
1902 }
1903 
1904 /* Send the first nbytes bytes of the buffer */
1905 QDF_STATUS
1906 hif_send_head(struct hif_opaque_softc *hif_ctx,
1907 	      uint8_t pipe, unsigned int transfer_id, unsigned int nbytes,
1908 	      qdf_nbuf_t nbuf, unsigned int data_attr)
1909 {
1910 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
1911 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
1912 	struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
1913 	struct CE_handle *ce_hdl = pipe_info->ce_hdl;
1914 	int bytes = nbytes, nfrags = 0;
1915 	struct ce_sendlist sendlist;
1916 	int status, i = 0;
1917 	unsigned int mux_id = 0;
1918 
1919 	if (nbytes > qdf_nbuf_len(nbuf)) {
1920 		HIF_ERROR("%s: nbytes:%d nbuf_len:%d", __func__, nbytes,
1921 			  (uint32_t)qdf_nbuf_len(nbuf));
1922 		QDF_ASSERT(0);
1923 	}
1924 
1925 	transfer_id =
1926 		(mux_id & MUX_ID_MASK) |
1927 		(transfer_id & TRANSACTION_ID_MASK);
1928 	data_attr &= DESC_DATA_FLAG_MASK;
1929 	/*
1930 	 * The common case involves sending multiple fragments within a
1931 	 * single download (the tx descriptor and the tx frame header).
1932 	 * So, optimize for the case of multiple fragments by not even
1933 	 * checking whether it's necessary to use a sendlist.
1934 	 * The overhead of using a sendlist for a single buffer download
1935 	 * is not a big deal, since it happens rarely (for WMI messages).
1936 	 */
1937 	ce_sendlist_init(&sendlist);
1938 	do {
1939 		qdf_dma_addr_t frag_paddr;
1940 		int frag_bytes;
1941 
1942 		frag_paddr = qdf_nbuf_get_frag_paddr(nbuf, nfrags);
1943 		frag_bytes = qdf_nbuf_get_frag_len(nbuf, nfrags);
1944 		/*
1945 		 * Clear the packet offset for all but the first CE desc.
1946 		 */
1947 		if (i++ > 0)
1948 			data_attr &= ~QDF_CE_TX_PKT_OFFSET_BIT_M;
1949 
1950 		status = ce_sendlist_buf_add(&sendlist, frag_paddr,
1951 				    frag_bytes >
1952 				    bytes ? bytes : frag_bytes,
1953 				    qdf_nbuf_get_frag_is_wordstream
1954 				    (nbuf,
1955 				    nfrags) ? 0 :
1956 				    CE_SEND_FLAG_SWAP_DISABLE,
1957 				    data_attr);
1958 		if (status != QDF_STATUS_SUCCESS) {
1959 			HIF_ERROR("%s: error, frag_num %d larger than limit",
1960 				__func__, nfrags);
1961 			return status;
1962 		}
1963 		bytes -= frag_bytes;
1964 		nfrags++;
1965 	} while (bytes > 0);
1966 
1967 	/* Make sure we have resources to handle this request */
1968 	qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
1969 	if (pipe_info->num_sends_allowed < nfrags) {
1970 		qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
1971 		ce_pkt_error_count_incr(hif_state, HIF_PIPE_NO_RESOURCE);
1972 		return QDF_STATUS_E_RESOURCES;
1973 	}
1974 	pipe_info->num_sends_allowed -= nfrags;
1975 	qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
1976 
1977 	if (qdf_unlikely(ce_hdl == NULL)) {
1978 		HIF_ERROR("%s: error CE handle is null", __func__);
1979 		return A_ERROR;
1980 	}
1981 
1982 	QDF_NBUF_UPDATE_TX_PKT_COUNT(nbuf, QDF_NBUF_TX_PKT_HIF);
1983 	DPTRACE(qdf_dp_trace(nbuf, QDF_DP_TRACE_HIF_PACKET_PTR_RECORD,
1984 		QDF_TRACE_DEFAULT_PDEV_ID, qdf_nbuf_data_addr(nbuf),
1985 		sizeof(qdf_nbuf_data(nbuf)), QDF_TX));
1986 	status = ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id);
1987 	QDF_ASSERT(status == QDF_STATUS_SUCCESS);
1988 
1989 	return status;
1990 }
1991 
1992 void hif_send_complete_check(struct hif_opaque_softc *hif_ctx, uint8_t pipe,
1993 								int force)
1994 {
1995 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
1996 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
1997 
1998 	if (!force) {
1999 		int resources;
2000 		/*
2001 		 * Decide whether to actually poll for completions, or just
2002 		 * wait for a later chance. If there seem to be plenty of
2003 		 * resources left, then just wait, since checking involves
2004 		 * reading a CE register, which is a relatively expensive
2005 		 * operation.
2006 		 */
2007 		resources = hif_get_free_queue_number(hif_ctx, pipe);
2008 		/*
2009 		 * If at least 50% of the total resources are still available,
2010 		 * don't bother checking again yet.
2011 		 */
2012 		if (resources > (hif_state->host_ce_config[pipe].src_nentries >>
2013 									 1))
2014 			return;
2015 	}
2016 #if ATH_11AC_TXCOMPACT
2017 	ce_per_engine_servicereap(scn, pipe);
2018 #else
2019 	ce_per_engine_service(scn, pipe);
2020 #endif
2021 }
2022 
2023 uint16_t
2024 hif_get_free_queue_number(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
2025 {
2026 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
2027 	struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
2028 	uint16_t rv;
2029 
2030 	qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
2031 	rv = pipe_info->num_sends_allowed;
2032 	qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
2033 	return rv;
2034 }
2035 
2036 /* Called by lower (CE) layer when a send to Target completes. */
2037 static void
2038 hif_pci_ce_send_done(struct CE_handle *copyeng, void *ce_context,
2039 		     void *transfer_context, qdf_dma_addr_t CE_data,
2040 		     unsigned int nbytes, unsigned int transfer_id,
2041 		     unsigned int sw_index, unsigned int hw_index,
2042 		     unsigned int toeplitz_hash_result)
2043 {
2044 	struct HIF_CE_pipe_info *pipe_info =
2045 		(struct HIF_CE_pipe_info *)ce_context;
2046 	struct HIF_CE_state *hif_state = pipe_info->HIF_CE_state;
2047 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
2048 	unsigned int sw_idx = sw_index, hw_idx = hw_index;
2049 	struct hif_msg_callbacks *msg_callbacks =
2050 		&pipe_info->pipe_callbacks;
2051 
2052 	do {
2053 		/*
2054 		 * The upper layer callback will be triggered
2055 		 * when last fragment is complteted.
2056 		 */
2057 		if (transfer_context != CE_SENDLIST_ITEM_CTXT) {
2058 			if (scn->target_status == TARGET_STATUS_RESET) {
2059 
2060 				qdf_nbuf_unmap_single(scn->qdf_dev,
2061 						      transfer_context,
2062 						      QDF_DMA_TO_DEVICE);
2063 				qdf_nbuf_free(transfer_context);
2064 			} else
2065 				msg_callbacks->txCompletionHandler(
2066 					msg_callbacks->Context,
2067 					transfer_context, transfer_id,
2068 					toeplitz_hash_result);
2069 		}
2070 
2071 		qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
2072 		pipe_info->num_sends_allowed++;
2073 		qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
2074 	} while (ce_completed_send_next(copyeng,
2075 			&ce_context, &transfer_context,
2076 			&CE_data, &nbytes, &transfer_id,
2077 			&sw_idx, &hw_idx,
2078 			&toeplitz_hash_result) == QDF_STATUS_SUCCESS);
2079 }
2080 
2081 /**
2082  * hif_ce_do_recv(): send message from copy engine to upper layers
2083  * @msg_callbacks: structure containing callback and callback context
2084  * @netbuff: skb containing message
2085  * @nbytes: number of bytes in the message
2086  * @pipe_info: used for the pipe_number info
2087  *
2088  * Checks the packet length, configures the length in the netbuff,
2089  * and calls the upper layer callback.
2090  *
2091  * return: None
2092  */
2093 static inline void hif_ce_do_recv(struct hif_msg_callbacks *msg_callbacks,
2094 		qdf_nbuf_t netbuf, int nbytes,
2095 		struct HIF_CE_pipe_info *pipe_info) {
2096 	if (nbytes <= pipe_info->buf_sz) {
2097 		qdf_nbuf_set_pktlen(netbuf, nbytes);
2098 		msg_callbacks->
2099 			rxCompletionHandler(msg_callbacks->Context,
2100 					netbuf, pipe_info->pipe_num);
2101 	} else {
2102 		HIF_ERROR("%s: Invalid Rx msg buf:%pK nbytes:%d",
2103 				__func__, netbuf, nbytes);
2104 
2105 		qdf_nbuf_free(netbuf);
2106 	}
2107 }
2108 
2109 /* Called by lower (CE) layer when data is received from the Target. */
2110 static void
2111 hif_pci_ce_recv_data(struct CE_handle *copyeng, void *ce_context,
2112 		     void *transfer_context, qdf_dma_addr_t CE_data,
2113 		     unsigned int nbytes, unsigned int transfer_id,
2114 		     unsigned int flags)
2115 {
2116 	struct HIF_CE_pipe_info *pipe_info =
2117 		(struct HIF_CE_pipe_info *)ce_context;
2118 	struct HIF_CE_state *hif_state = pipe_info->HIF_CE_state;
2119 	struct CE_state *ce_state = (struct CE_state *) copyeng;
2120 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
2121 #ifdef HIF_PCI
2122 	struct hif_pci_softc *hif_pci_sc = HIF_GET_PCI_SOFTC(hif_state);
2123 #endif
2124 	struct hif_msg_callbacks *msg_callbacks =
2125 		 &pipe_info->pipe_callbacks;
2126 
2127 	do {
2128 #ifdef HIF_PCI
2129 		hif_pm_runtime_mark_last_busy(hif_pci_sc->dev);
2130 #endif
2131 		qdf_nbuf_unmap_single(scn->qdf_dev,
2132 				      (qdf_nbuf_t) transfer_context,
2133 				      QDF_DMA_FROM_DEVICE);
2134 
2135 		atomic_inc(&pipe_info->recv_bufs_needed);
2136 		hif_post_recv_buffers_for_pipe(pipe_info);
2137 		if (scn->target_status == TARGET_STATUS_RESET)
2138 			qdf_nbuf_free(transfer_context);
2139 		else
2140 			hif_ce_do_recv(msg_callbacks, transfer_context,
2141 				nbytes, pipe_info);
2142 
2143 		/* Set up force_break flag if num of receices reaches
2144 		 * MAX_NUM_OF_RECEIVES
2145 		 */
2146 		ce_state->receive_count++;
2147 		if (qdf_unlikely(hif_ce_service_should_yield(scn, ce_state))) {
2148 			ce_state->force_break = 1;
2149 			break;
2150 		}
2151 	} while (ce_completed_recv_next(copyeng, &ce_context, &transfer_context,
2152 					&CE_data, &nbytes, &transfer_id,
2153 					&flags) == QDF_STATUS_SUCCESS);
2154 
2155 }
2156 
2157 /* TBDXXX: Set CE High Watermark; invoke txResourceAvailHandler in response */
2158 
2159 void
2160 hif_post_init(struct hif_opaque_softc *hif_ctx, void *unused,
2161 	      struct hif_msg_callbacks *callbacks)
2162 {
2163 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
2164 
2165 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
2166 	spin_lock_init(&pcie_access_log_lock);
2167 #endif
2168 	/* Save callbacks for later installation */
2169 	qdf_mem_copy(&hif_state->msg_callbacks_pending, callbacks,
2170 		 sizeof(hif_state->msg_callbacks_pending));
2171 
2172 }
2173 
2174 static int hif_completion_thread_startup(struct HIF_CE_state *hif_state)
2175 {
2176 	struct CE_handle *ce_diag = hif_state->ce_diag;
2177 	int pipe_num;
2178 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
2179 	struct hif_msg_callbacks *hif_msg_callbacks =
2180 		&hif_state->msg_callbacks_current;
2181 
2182 	/* daemonize("hif_compl_thread"); */
2183 
2184 	if (scn->ce_count == 0) {
2185 		HIF_ERROR("%s: Invalid ce_count", __func__);
2186 		return -EINVAL;
2187 	}
2188 
2189 	if (!hif_msg_callbacks ||
2190 			!hif_msg_callbacks->rxCompletionHandler ||
2191 			!hif_msg_callbacks->txCompletionHandler) {
2192 		HIF_ERROR("%s: no completion handler registered", __func__);
2193 		return -EFAULT;
2194 	}
2195 
2196 	A_TARGET_ACCESS_LIKELY(scn);
2197 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
2198 		struct CE_attr attr;
2199 		struct HIF_CE_pipe_info *pipe_info;
2200 
2201 		pipe_info = &hif_state->pipe_info[pipe_num];
2202 		if (pipe_info->ce_hdl == ce_diag)
2203 			continue;       /* Handle Diagnostic CE specially */
2204 		attr = hif_state->host_ce_config[pipe_num];
2205 		if (attr.src_nentries) {
2206 			/* pipe used to send to target */
2207 			HIF_DBG("%s: pipe_num:%d pipe_info:0x%pK",
2208 					 __func__, pipe_num, pipe_info);
2209 			ce_send_cb_register(pipe_info->ce_hdl,
2210 					    hif_pci_ce_send_done, pipe_info,
2211 					    attr.flags & CE_ATTR_DISABLE_INTR);
2212 			pipe_info->num_sends_allowed = attr.src_nentries - 1;
2213 		}
2214 		if (attr.dest_nentries) {
2215 			/* pipe used to receive from target */
2216 			ce_recv_cb_register(pipe_info->ce_hdl,
2217 					    hif_pci_ce_recv_data, pipe_info,
2218 					    attr.flags & CE_ATTR_DISABLE_INTR);
2219 		}
2220 
2221 		if (attr.src_nentries)
2222 			qdf_spinlock_create(&pipe_info->completion_freeq_lock);
2223 
2224 		qdf_mem_copy(&pipe_info->pipe_callbacks, hif_msg_callbacks,
2225 					sizeof(pipe_info->pipe_callbacks));
2226 	}
2227 
2228 	A_TARGET_ACCESS_UNLIKELY(scn);
2229 	return 0;
2230 }
2231 
2232 /*
2233  * Install pending msg callbacks.
2234  *
2235  * TBDXXX: This hack is needed because upper layers install msg callbacks
2236  * for use with HTC before BMI is done; yet this HIF implementation
2237  * needs to continue to use BMI msg callbacks. Really, upper layers
2238  * should not register HTC callbacks until AFTER BMI phase.
2239  */
2240 static void hif_msg_callbacks_install(struct hif_softc *scn)
2241 {
2242 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2243 
2244 	qdf_mem_copy(&hif_state->msg_callbacks_current,
2245 		 &hif_state->msg_callbacks_pending,
2246 		 sizeof(hif_state->msg_callbacks_pending));
2247 }
2248 
2249 void hif_get_default_pipe(struct hif_opaque_softc *hif_hdl, uint8_t *ULPipe,
2250 							uint8_t *DLPipe)
2251 {
2252 	int ul_is_polled, dl_is_polled;
2253 
2254 	(void)hif_map_service_to_pipe(hif_hdl, HTC_CTRL_RSVD_SVC,
2255 		ULPipe, DLPipe, &ul_is_polled, &dl_is_polled);
2256 }
2257 
2258 /**
2259  * hif_dump_pipe_debug_count() - Log error count
2260  * @scn: hif_softc pointer.
2261  *
2262  * Output the pipe error counts of each pipe to log file
2263  *
2264  * Return: N/A
2265  */
2266 void hif_dump_pipe_debug_count(struct hif_softc *scn)
2267 {
2268 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2269 	int pipe_num;
2270 
2271 	if (hif_state == NULL) {
2272 		HIF_ERROR("%s hif_state is NULL", __func__);
2273 		return;
2274 	}
2275 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
2276 		struct HIF_CE_pipe_info *pipe_info;
2277 
2278 	pipe_info = &hif_state->pipe_info[pipe_num];
2279 
2280 	if (pipe_info->nbuf_alloc_err_count > 0 ||
2281 			pipe_info->nbuf_dma_err_count > 0 ||
2282 			pipe_info->nbuf_ce_enqueue_err_count)
2283 		HIF_ERROR(
2284 			"%s: pipe_id = %d, recv_bufs_needed = %d, nbuf_alloc_err_count = %u, nbuf_dma_err_count = %u, nbuf_ce_enqueue_err_count = %u",
2285 			__func__, pipe_info->pipe_num,
2286 			atomic_read(&pipe_info->recv_bufs_needed),
2287 			pipe_info->nbuf_alloc_err_count,
2288 			pipe_info->nbuf_dma_err_count,
2289 			pipe_info->nbuf_ce_enqueue_err_count);
2290 	}
2291 }
2292 
2293 static void hif_post_recv_buffers_failure(struct HIF_CE_pipe_info *pipe_info,
2294 					  void *nbuf, uint32_t *error_cnt,
2295 					  enum hif_ce_event_type failure_type,
2296 					  const char *failure_type_string)
2297 {
2298 	int bufs_needed_tmp = atomic_inc_return(&pipe_info->recv_bufs_needed);
2299 	struct CE_state *CE_state = (struct CE_state *)pipe_info->ce_hdl;
2300 	struct hif_softc *scn = HIF_GET_SOFTC(pipe_info->HIF_CE_state);
2301 	int ce_id = CE_state->id;
2302 	uint32_t error_cnt_tmp;
2303 
2304 	qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
2305 	error_cnt_tmp = ++(*error_cnt);
2306 	qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
2307 	HIF_DBG("%s: pipe_num %d, needed %d, err_cnt = %u, fail_type = %s",
2308 		  __func__, pipe_info->pipe_num, bufs_needed_tmp, error_cnt_tmp,
2309 		  failure_type_string);
2310 	hif_record_ce_desc_event(scn, ce_id, failure_type,
2311 				 NULL, nbuf, bufs_needed_tmp, 0);
2312 	/* if we fail to allocate the last buffer for an rx pipe,
2313 	 *	there is no trigger to refill the ce and we will
2314 	 *	eventually crash
2315 	 */
2316 	if (bufs_needed_tmp == CE_state->dest_ring->nentries - 1)
2317 		qdf_sched_work(scn->qdf_dev, &CE_state->oom_allocation_work);
2318 
2319 }
2320 
2321 
2322 
2323 
2324 QDF_STATUS hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info)
2325 {
2326 	struct CE_handle *ce_hdl;
2327 	qdf_size_t buf_sz;
2328 	struct hif_softc *scn = HIF_GET_SOFTC(pipe_info->HIF_CE_state);
2329 	QDF_STATUS status;
2330 	uint32_t bufs_posted = 0;
2331 
2332 	buf_sz = pipe_info->buf_sz;
2333 	if (buf_sz == 0) {
2334 		/* Unused Copy Engine */
2335 		return QDF_STATUS_SUCCESS;
2336 	}
2337 
2338 	ce_hdl = pipe_info->ce_hdl;
2339 
2340 	qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
2341 	while (atomic_read(&pipe_info->recv_bufs_needed) > 0) {
2342 		qdf_dma_addr_t CE_data;      /* CE space buffer address */
2343 		qdf_nbuf_t nbuf;
2344 
2345 		atomic_dec(&pipe_info->recv_bufs_needed);
2346 		qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
2347 
2348 		nbuf = qdf_nbuf_alloc(scn->qdf_dev, buf_sz, 0, 4, false);
2349 		if (!nbuf) {
2350 			hif_post_recv_buffers_failure(pipe_info, nbuf,
2351 					&pipe_info->nbuf_alloc_err_count,
2352 					 HIF_RX_NBUF_ALLOC_FAILURE,
2353 					"HIF_RX_NBUF_ALLOC_FAILURE");
2354 			return QDF_STATUS_E_NOMEM;
2355 		}
2356 
2357 		/*
2358 		 * qdf_nbuf_peek_header(nbuf, &data, &unused);
2359 		 * CE_data = dma_map_single(dev, data, buf_sz, );
2360 		 * DMA_FROM_DEVICE);
2361 		 */
2362 		status = qdf_nbuf_map_single(scn->qdf_dev, nbuf,
2363 					    QDF_DMA_FROM_DEVICE);
2364 
2365 		if (qdf_unlikely(status != QDF_STATUS_SUCCESS)) {
2366 			hif_post_recv_buffers_failure(pipe_info, nbuf,
2367 					&pipe_info->nbuf_dma_err_count,
2368 					 HIF_RX_NBUF_MAP_FAILURE,
2369 					"HIF_RX_NBUF_MAP_FAILURE");
2370 			qdf_nbuf_free(nbuf);
2371 			return status;
2372 		}
2373 
2374 		CE_data = qdf_nbuf_get_frag_paddr(nbuf, 0);
2375 
2376 		qdf_mem_dma_sync_single_for_device(scn->qdf_dev, CE_data,
2377 					       buf_sz, DMA_FROM_DEVICE);
2378 		status = ce_recv_buf_enqueue(ce_hdl, (void *)nbuf, CE_data);
2379 		if (qdf_unlikely(status != QDF_STATUS_SUCCESS)) {
2380 			hif_post_recv_buffers_failure(pipe_info, nbuf,
2381 					&pipe_info->nbuf_ce_enqueue_err_count,
2382 					 HIF_RX_NBUF_ENQUEUE_FAILURE,
2383 					"HIF_RX_NBUF_ENQUEUE_FAILURE");
2384 
2385 			qdf_nbuf_unmap_single(scn->qdf_dev, nbuf,
2386 						QDF_DMA_FROM_DEVICE);
2387 			qdf_nbuf_free(nbuf);
2388 			return status;
2389 		}
2390 
2391 		qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
2392 		bufs_posted++;
2393 	}
2394 	pipe_info->nbuf_alloc_err_count =
2395 		(pipe_info->nbuf_alloc_err_count > bufs_posted) ?
2396 		pipe_info->nbuf_alloc_err_count - bufs_posted : 0;
2397 	pipe_info->nbuf_dma_err_count =
2398 		(pipe_info->nbuf_dma_err_count > bufs_posted) ?
2399 		pipe_info->nbuf_dma_err_count - bufs_posted : 0;
2400 	pipe_info->nbuf_ce_enqueue_err_count =
2401 		(pipe_info->nbuf_ce_enqueue_err_count > bufs_posted) ?
2402 	pipe_info->nbuf_ce_enqueue_err_count - bufs_posted : 0;
2403 
2404 	qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
2405 
2406 	return QDF_STATUS_SUCCESS;
2407 }
2408 
2409 /*
2410  * Try to post all desired receive buffers for all pipes.
2411  * Returns 0 for non fastpath rx copy engine as
2412  * oom_allocation_work will be scheduled to recover any
2413  * failures, non-zero if unable to completely replenish
2414  * receive buffers for fastpath rx Copy engine.
2415  */
2416 QDF_STATUS hif_post_recv_buffers(struct hif_softc *scn)
2417 {
2418 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2419 	int pipe_num;
2420 	struct CE_state *ce_state = NULL;
2421 	QDF_STATUS qdf_status;
2422 
2423 	A_TARGET_ACCESS_LIKELY(scn);
2424 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
2425 		struct HIF_CE_pipe_info *pipe_info;
2426 
2427 		ce_state = scn->ce_id_to_state[pipe_num];
2428 		pipe_info = &hif_state->pipe_info[pipe_num];
2429 
2430 		if (hif_is_nss_wifi_enabled(scn) &&
2431 		    ce_state && (ce_state->htt_rx_data))
2432 			continue;
2433 
2434 		qdf_status = hif_post_recv_buffers_for_pipe(pipe_info);
2435 		if (!QDF_IS_STATUS_SUCCESS(qdf_status) && ce_state &&
2436 			ce_state->htt_rx_data &&
2437 			scn->fastpath_mode_on) {
2438 			A_TARGET_ACCESS_UNLIKELY(scn);
2439 			return qdf_status;
2440 		}
2441 	}
2442 
2443 	A_TARGET_ACCESS_UNLIKELY(scn);
2444 
2445 	return QDF_STATUS_SUCCESS;
2446 }
2447 
2448 QDF_STATUS hif_start(struct hif_opaque_softc *hif_ctx)
2449 {
2450 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2451 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2452 	QDF_STATUS qdf_status = QDF_STATUS_SUCCESS;
2453 
2454 	hif_update_fastpath_recv_bufs_cnt(scn);
2455 
2456 	hif_msg_callbacks_install(scn);
2457 
2458 	if (hif_completion_thread_startup(hif_state))
2459 		return QDF_STATUS_E_FAILURE;
2460 
2461 	/* enable buffer cleanup */
2462 	hif_state->started = true;
2463 
2464 	/* Post buffers once to start things off. */
2465 	qdf_status = hif_post_recv_buffers(scn);
2466 	if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
2467 		/* cleanup is done in hif_ce_disable */
2468 		HIF_ERROR("%s:failed to post buffers", __func__);
2469 		return qdf_status;
2470 	}
2471 
2472 	return qdf_status;
2473 }
2474 
2475 static void hif_recv_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info)
2476 {
2477 	struct hif_softc *scn;
2478 	struct CE_handle *ce_hdl;
2479 	uint32_t buf_sz;
2480 	struct HIF_CE_state *hif_state;
2481 	qdf_nbuf_t netbuf;
2482 	qdf_dma_addr_t CE_data;
2483 	void *per_CE_context;
2484 
2485 	buf_sz = pipe_info->buf_sz;
2486 	/* Unused Copy Engine */
2487 	if (buf_sz == 0)
2488 		return;
2489 
2490 
2491 	hif_state = pipe_info->HIF_CE_state;
2492 	if (!hif_state->started)
2493 		return;
2494 
2495 	scn = HIF_GET_SOFTC(hif_state);
2496 	ce_hdl = pipe_info->ce_hdl;
2497 
2498 	if (scn->qdf_dev == NULL)
2499 		return;
2500 	while (ce_revoke_recv_next
2501 		       (ce_hdl, &per_CE_context, (void **)&netbuf,
2502 			&CE_data) == QDF_STATUS_SUCCESS) {
2503 		if (netbuf) {
2504 			qdf_nbuf_unmap_single(scn->qdf_dev, netbuf,
2505 					      QDF_DMA_FROM_DEVICE);
2506 			qdf_nbuf_free(netbuf);
2507 		}
2508 	}
2509 }
2510 
2511 static void hif_send_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info)
2512 {
2513 	struct CE_handle *ce_hdl;
2514 	struct HIF_CE_state *hif_state;
2515 	struct hif_softc *scn;
2516 	qdf_nbuf_t netbuf;
2517 	void *per_CE_context;
2518 	qdf_dma_addr_t CE_data;
2519 	unsigned int nbytes;
2520 	unsigned int id;
2521 	uint32_t buf_sz;
2522 	uint32_t toeplitz_hash_result;
2523 
2524 	buf_sz = pipe_info->buf_sz;
2525 	if (buf_sz == 0) {
2526 		/* Unused Copy Engine */
2527 		return;
2528 	}
2529 
2530 	hif_state = pipe_info->HIF_CE_state;
2531 	if (!hif_state->started) {
2532 		return;
2533 	}
2534 
2535 	scn = HIF_GET_SOFTC(hif_state);
2536 
2537 	ce_hdl = pipe_info->ce_hdl;
2538 
2539 	while (ce_cancel_send_next
2540 		       (ce_hdl, &per_CE_context,
2541 		       (void **)&netbuf, &CE_data, &nbytes,
2542 		       &id, &toeplitz_hash_result) == QDF_STATUS_SUCCESS) {
2543 		if (netbuf != CE_SENDLIST_ITEM_CTXT) {
2544 			/*
2545 			 * Packets enqueued by htt_h2t_ver_req_msg() and
2546 			 * htt_h2t_rx_ring_cfg_msg_ll() have already been
2547 			 * freed in htt_htc_misc_pkt_pool_free() in
2548 			 * wlantl_close(), so do not free them here again
2549 			 * by checking whether it's the endpoint
2550 			 * which they are queued in.
2551 			 */
2552 			if (id == scn->htc_htt_tx_endpoint)
2553 				return;
2554 			/* Indicate the completion to higher
2555 			 * layer to free the buffer
2556 			 */
2557 			if (pipe_info->pipe_callbacks.txCompletionHandler)
2558 				pipe_info->pipe_callbacks.
2559 				    txCompletionHandler(pipe_info->
2560 					    pipe_callbacks.Context,
2561 					    netbuf, id, toeplitz_hash_result);
2562 		}
2563 	}
2564 }
2565 
2566 /*
2567  * Cleanup residual buffers for device shutdown:
2568  *    buffers that were enqueued for receive
2569  *    buffers that were to be sent
2570  * Note: Buffers that had completed but which were
2571  * not yet processed are on a completion queue. They
2572  * are handled when the completion thread shuts down.
2573  */
2574 static void hif_buffer_cleanup(struct HIF_CE_state *hif_state)
2575 {
2576 	int pipe_num;
2577 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
2578 	struct CE_state *ce_state;
2579 
2580 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
2581 		struct HIF_CE_pipe_info *pipe_info;
2582 
2583 		ce_state = scn->ce_id_to_state[pipe_num];
2584 		if (hif_is_nss_wifi_enabled(scn) && ce_state &&
2585 				((ce_state->htt_tx_data) ||
2586 				 (ce_state->htt_rx_data))) {
2587 			continue;
2588 		}
2589 
2590 		pipe_info = &hif_state->pipe_info[pipe_num];
2591 		hif_recv_buffer_cleanup_on_pipe(pipe_info);
2592 		hif_send_buffer_cleanup_on_pipe(pipe_info);
2593 	}
2594 }
2595 
2596 void hif_flush_surprise_remove(struct hif_opaque_softc *hif_ctx)
2597 {
2598 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2599 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2600 
2601 	hif_buffer_cleanup(hif_state);
2602 }
2603 
2604 static void hif_destroy_oom_work(struct hif_softc *scn)
2605 {
2606 	struct CE_state *ce_state;
2607 	int ce_id;
2608 
2609 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
2610 		ce_state = scn->ce_id_to_state[ce_id];
2611 		if (ce_state)
2612 			qdf_destroy_work(scn->qdf_dev,
2613 					 &ce_state->oom_allocation_work);
2614 	}
2615 }
2616 
2617 void hif_ce_stop(struct hif_softc *scn)
2618 {
2619 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2620 	int pipe_num;
2621 
2622 	/*
2623 	 * before cleaning up any memory, ensure irq &
2624 	 * bottom half contexts will not be re-entered
2625 	 */
2626 	hif_disable_isr(&scn->osc);
2627 	hif_destroy_oom_work(scn);
2628 	scn->hif_init_done = false;
2629 
2630 	/*
2631 	 * At this point, asynchronous threads are stopped,
2632 	 * The Target should not DMA nor interrupt, Host code may
2633 	 * not initiate anything more.  So we just need to clean
2634 	 * up Host-side state.
2635 	 */
2636 
2637 	if (scn->athdiag_procfs_inited) {
2638 		athdiag_procfs_remove();
2639 		scn->athdiag_procfs_inited = false;
2640 	}
2641 
2642 	hif_buffer_cleanup(hif_state);
2643 
2644 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
2645 		struct HIF_CE_pipe_info *pipe_info;
2646 		struct CE_attr attr;
2647 		struct CE_handle *ce_diag = hif_state->ce_diag;
2648 
2649 		pipe_info = &hif_state->pipe_info[pipe_num];
2650 		if (pipe_info->ce_hdl) {
2651 			if (pipe_info->ce_hdl != ce_diag) {
2652 				attr = hif_state->host_ce_config[pipe_num];
2653 				if (attr.src_nentries)
2654 					qdf_spinlock_destroy(&pipe_info->
2655 							completion_freeq_lock);
2656 			}
2657 			ce_fini(pipe_info->ce_hdl);
2658 			pipe_info->ce_hdl = NULL;
2659 			pipe_info->buf_sz = 0;
2660 			qdf_spinlock_destroy(&pipe_info->recv_bufs_needed_lock);
2661 		}
2662 	}
2663 
2664 	if (hif_state->sleep_timer_init) {
2665 		qdf_timer_stop(&hif_state->sleep_timer);
2666 		qdf_timer_free(&hif_state->sleep_timer);
2667 		hif_state->sleep_timer_init = false;
2668 	}
2669 
2670 	hif_state->started = false;
2671 }
2672 
2673 static void hif_get_shadow_reg_cfg(struct hif_softc *scn,
2674 				   struct shadow_reg_cfg
2675 				   **target_shadow_reg_cfg_ret,
2676 				   uint32_t *shadow_cfg_sz_ret)
2677 {
2678 	if (target_shadow_reg_cfg_ret)
2679 		*target_shadow_reg_cfg_ret = target_shadow_reg_cfg;
2680 	if (shadow_cfg_sz_ret)
2681 		*shadow_cfg_sz_ret = shadow_cfg_sz;
2682 }
2683 
2684 /**
2685  * hif_get_target_ce_config() - get copy engine configuration
2686  * @target_ce_config_ret: basic copy engine configuration
2687  * @target_ce_config_sz_ret: size of the basic configuration in bytes
2688  * @target_service_to_ce_map_ret: service mapping for the copy engines
2689  * @target_service_to_ce_map_sz_ret: size of the mapping in bytes
2690  * @target_shadow_reg_cfg_ret: shadow register configuration
2691  * @shadow_cfg_sz_ret: size of the shadow register configuration in bytes
2692  *
2693  * providing accessor to these values outside of this file.
2694  * currently these are stored in static pointers to const sections.
2695  * there are multiple configurations that are selected from at compile time.
2696  * Runtime selection would need to consider mode, target type and bus type.
2697  *
2698  * Return: return by parameter.
2699  */
2700 void hif_get_target_ce_config(struct hif_softc *scn,
2701 		struct CE_pipe_config **target_ce_config_ret,
2702 		uint32_t *target_ce_config_sz_ret,
2703 		struct service_to_pipe **target_service_to_ce_map_ret,
2704 		uint32_t *target_service_to_ce_map_sz_ret,
2705 		struct shadow_reg_cfg **target_shadow_reg_cfg_ret,
2706 		uint32_t *shadow_cfg_sz_ret)
2707 {
2708 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2709 
2710 	*target_ce_config_ret = hif_state->target_ce_config;
2711 	*target_ce_config_sz_ret = hif_state->target_ce_config_sz;
2712 
2713 	hif_select_service_to_pipe_map(scn, target_service_to_ce_map_ret,
2714 				       target_service_to_ce_map_sz_ret);
2715 	hif_get_shadow_reg_cfg(scn, target_shadow_reg_cfg_ret,
2716 			       shadow_cfg_sz_ret);
2717 }
2718 
2719 #ifdef CONFIG_SHADOW_V2
2720 static void hif_print_hal_shadow_register_cfg(struct pld_wlan_enable_cfg *cfg)
2721 {
2722 	int i;
2723 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2724 		  "%s: num_config %d", __func__, cfg->num_shadow_reg_v2_cfg);
2725 
2726 	for (i = 0; i < cfg->num_shadow_reg_v2_cfg; i++) {
2727 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
2728 		     "%s: i %d, val %x", __func__, i,
2729 		     cfg->shadow_reg_v2_cfg[i].addr);
2730 	}
2731 }
2732 
2733 #else
2734 static void hif_print_hal_shadow_register_cfg(struct pld_wlan_enable_cfg *cfg)
2735 {
2736 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2737 		  "%s: CONFIG_SHADOW_V2 not defined", __func__);
2738 }
2739 #endif
2740 
2741 #ifdef ADRASTEA_RRI_ON_DDR
2742 /**
2743  * hif_get_src_ring_read_index(): Called to get the SRRI
2744  *
2745  * @scn: hif_softc pointer
2746  * @CE_ctrl_addr: base address of the CE whose RRI is to be read
2747  *
2748  * This function returns the SRRI to the caller. For CEs that
2749  * dont have interrupts enabled, we look at the DDR based SRRI
2750  *
2751  * Return: SRRI
2752  */
2753 inline unsigned int hif_get_src_ring_read_index(struct hif_softc *scn,
2754 		uint32_t CE_ctrl_addr)
2755 {
2756 	struct CE_attr attr;
2757 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2758 
2759 	attr = hif_state->host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)];
2760 	if (attr.flags & CE_ATTR_DISABLE_INTR) {
2761 		return CE_SRC_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr);
2762 	} else {
2763 		if (TARGET_REGISTER_ACCESS_ALLOWED(scn))
2764 			return A_TARGET_READ(scn,
2765 					(CE_ctrl_addr) + CURRENT_SRRI_ADDRESS);
2766 		else
2767 			return CE_SRC_RING_READ_IDX_GET_FROM_DDR(scn,
2768 					CE_ctrl_addr);
2769 	}
2770 }
2771 
2772 /**
2773  * hif_get_dst_ring_read_index(): Called to get the DRRI
2774  *
2775  * @scn: hif_softc pointer
2776  * @CE_ctrl_addr: base address of the CE whose RRI is to be read
2777  *
2778  * This function returns the DRRI to the caller. For CEs that
2779  * dont have interrupts enabled, we look at the DDR based DRRI
2780  *
2781  * Return: DRRI
2782  */
2783 inline unsigned int hif_get_dst_ring_read_index(struct hif_softc *scn,
2784 		uint32_t CE_ctrl_addr)
2785 {
2786 	struct CE_attr attr;
2787 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2788 
2789 	attr = hif_state->host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)];
2790 
2791 	if (attr.flags & CE_ATTR_DISABLE_INTR) {
2792 		return CE_DEST_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr);
2793 	} else {
2794 		if (TARGET_REGISTER_ACCESS_ALLOWED(scn))
2795 			return A_TARGET_READ(scn,
2796 					(CE_ctrl_addr) + CURRENT_DRRI_ADDRESS);
2797 		else
2798 			return CE_DEST_RING_READ_IDX_GET_FROM_DDR(scn,
2799 					CE_ctrl_addr);
2800 	}
2801 }
2802 
2803 /**
2804  * hif_alloc_rri_on_ddr() - Allocate memory for rri on ddr
2805  * @scn: hif_softc pointer
2806  *
2807  * Return: qdf status
2808  */
2809 static inline QDF_STATUS hif_alloc_rri_on_ddr(struct hif_softc *scn)
2810 {
2811 	qdf_dma_addr_t paddr_rri_on_ddr = 0;
2812 
2813 	scn->vaddr_rri_on_ddr =
2814 		(uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev,
2815 		scn->qdf_dev->dev, (CE_COUNT * sizeof(uint32_t)),
2816 		&paddr_rri_on_ddr);
2817 
2818 	if (!scn->vaddr_rri_on_ddr) {
2819 		hif_err("dmaable page alloc fail");
2820 		return QDF_STATUS_E_NOMEM;
2821 	}
2822 
2823 	scn->paddr_rri_on_ddr = paddr_rri_on_ddr;
2824 
2825 	qdf_mem_zero(scn->vaddr_rri_on_ddr, CE_COUNT * sizeof(uint32_t));
2826 
2827 	return QDF_STATUS_SUCCESS;
2828 }
2829 #endif
2830 
2831 #if (!defined(QCN7605_SUPPORT)) && defined(ADRASTEA_RRI_ON_DDR)
2832 /**
2833  * hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism
2834  *
2835  * @scn: hif_softc pointer
2836  *
2837  * This function allocates non cached memory on ddr and sends
2838  * the physical address of this memory to the CE hardware. The
2839  * hardware updates the RRI on this particular location.
2840  *
2841  * Return: None
2842  */
2843 static inline void hif_config_rri_on_ddr(struct hif_softc *scn)
2844 {
2845 	unsigned int i;
2846 	uint32_t high_paddr, low_paddr;
2847 
2848 	if (hif_alloc_rri_on_ddr(scn) != QDF_STATUS_SUCCESS)
2849 		return;
2850 
2851 	low_paddr  = BITS0_TO_31(scn->paddr_rri_on_ddr);
2852 	high_paddr = BITS32_TO_35(scn->paddr_rri_on_ddr);
2853 
2854 	HIF_DBG("%s using srri and drri from DDR", __func__);
2855 
2856 	WRITE_CE_DDR_ADDRESS_FOR_RRI_LOW(scn, low_paddr);
2857 	WRITE_CE_DDR_ADDRESS_FOR_RRI_HIGH(scn, high_paddr);
2858 
2859 	for (i = 0; i < CE_COUNT; i++)
2860 		CE_IDX_UPD_EN_SET(scn, CE_BASE_ADDRESS(i));
2861 }
2862 #else
2863 /**
2864  * hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism
2865  *
2866  * @scn: hif_softc pointer
2867  *
2868  * This is a dummy implementation for platforms that don't
2869  * support this functionality.
2870  *
2871  * Return: None
2872  */
2873 static inline void hif_config_rri_on_ddr(struct hif_softc *scn)
2874 {
2875 }
2876 #endif
2877 
2878 /**
2879  * hif_update_rri_over_ddr_config() - update rri_over_ddr config for
2880  *                                    QMI command
2881  * @scn: hif context
2882  * @cfg: wlan enable config
2883  *
2884  * In case of Genoa, rri_over_ddr memory configuration is passed
2885  * to firmware through QMI configure command.
2886  */
2887 #if defined(QCN7605_SUPPORT) && defined(ADRASTEA_RRI_ON_DDR)
2888 static void hif_update_rri_over_ddr_config(struct hif_softc *scn,
2889 					   struct pld_wlan_enable_cfg *cfg)
2890 {
2891 	if (hif_alloc_rri_on_ddr(scn) != QDF_STATUS_SUCCESS)
2892 		return;
2893 
2894 	cfg->rri_over_ddr_cfg_valid = true;
2895 	cfg->rri_over_ddr_cfg.base_addr_low =
2896 		 BITS0_TO_31(scn->paddr_rri_on_ddr);
2897 	cfg->rri_over_ddr_cfg.base_addr_high =
2898 		 BITS32_TO_35(scn->paddr_rri_on_ddr);
2899 }
2900 #else
2901 static void hif_update_rri_over_ddr_config(struct hif_softc *scn,
2902 					   struct pld_wlan_enable_cfg *cfg)
2903 {
2904 }
2905 #endif
2906 
2907 /**
2908  * hif_wlan_enable(): call the platform driver to enable wlan
2909  * @scn: HIF Context
2910  *
2911  * This function passes the con_mode and CE configuration to
2912  * platform driver to enable wlan.
2913  *
2914  * Return: linux error code
2915  */
2916 int hif_wlan_enable(struct hif_softc *scn)
2917 {
2918 	struct pld_wlan_enable_cfg cfg;
2919 	enum pld_driver_mode mode;
2920 	uint32_t con_mode = hif_get_conparam(scn);
2921 
2922 	hif_get_target_ce_config(scn,
2923 			(struct CE_pipe_config **)&cfg.ce_tgt_cfg,
2924 			&cfg.num_ce_tgt_cfg,
2925 			(struct service_to_pipe **)&cfg.ce_svc_cfg,
2926 			&cfg.num_ce_svc_pipe_cfg,
2927 			(struct shadow_reg_cfg **)&cfg.shadow_reg_cfg,
2928 			&cfg.num_shadow_reg_cfg);
2929 
2930 	/* translate from structure size to array size */
2931 	cfg.num_ce_tgt_cfg /= sizeof(struct CE_pipe_config);
2932 	cfg.num_ce_svc_pipe_cfg /= sizeof(struct service_to_pipe);
2933 	cfg.num_shadow_reg_cfg /= sizeof(struct shadow_reg_cfg);
2934 
2935 	hif_prepare_hal_shadow_register_cfg(scn, &cfg.shadow_reg_v2_cfg,
2936 			      &cfg.num_shadow_reg_v2_cfg);
2937 
2938 	hif_print_hal_shadow_register_cfg(&cfg);
2939 
2940 	hif_update_rri_over_ddr_config(scn, &cfg);
2941 
2942 	if (QDF_GLOBAL_FTM_MODE == con_mode)
2943 		mode = PLD_FTM;
2944 	else if (QDF_GLOBAL_COLDBOOT_CALIB_MODE == con_mode)
2945 		mode = PLD_COLDBOOT_CALIBRATION;
2946 	else if (QDF_IS_EPPING_ENABLED(con_mode))
2947 		mode = PLD_EPPING;
2948 	else
2949 		mode = PLD_MISSION;
2950 
2951 	if (BYPASS_QMI)
2952 		return 0;
2953 	else
2954 		return pld_wlan_enable(scn->qdf_dev->dev, &cfg,
2955 				       mode, QWLAN_VERSIONSTR);
2956 }
2957 
2958 #ifdef WLAN_FEATURE_EPPING
2959 
2960 #define CE_EPPING_USES_IRQ true
2961 
2962 void hif_ce_prepare_epping_config(struct HIF_CE_state *hif_state)
2963 {
2964 	if (CE_EPPING_USES_IRQ)
2965 		hif_state->host_ce_config = host_ce_config_wlan_epping_irq;
2966 	else
2967 		hif_state->host_ce_config = host_ce_config_wlan_epping_poll;
2968 	hif_state->target_ce_config = target_ce_config_wlan_epping;
2969 	hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan_epping);
2970 	target_shadow_reg_cfg = target_shadow_reg_cfg_epping;
2971 	shadow_cfg_sz = sizeof(target_shadow_reg_cfg_epping);
2972 }
2973 #endif
2974 
2975 #ifdef QCN7605_SUPPORT
2976 static inline
2977 void hif_set_ce_config_qcn7605(struct hif_softc *scn,
2978 			       struct HIF_CE_state *hif_state)
2979 {
2980 	hif_state->host_ce_config = host_ce_config_wlan_qcn7605;
2981 	hif_state->target_ce_config = target_ce_config_wlan_qcn7605;
2982 	hif_state->target_ce_config_sz =
2983 				 sizeof(target_ce_config_wlan_qcn7605);
2984 	target_shadow_reg_cfg = target_shadow_reg_cfg_map_qcn7605;
2985 	shadow_cfg_sz = sizeof(target_shadow_reg_cfg_map_qcn7605);
2986 	scn->ce_count = QCN7605_CE_COUNT;
2987 }
2988 #else
2989 static inline
2990 void hif_set_ce_config_qcn7605(struct hif_softc *scn,
2991 			       struct HIF_CE_state *hif_state)
2992 {
2993 	HIF_ERROR("QCN7605 not supported");
2994 }
2995 #endif
2996 
2997 #ifdef CE_SVC_CMN_INIT
2998 #ifdef QCA_WIFI_SUPPORT_SRNG
2999 static inline void hif_ce_service_init(void)
3000 {
3001 	ce_service_srng_init();
3002 }
3003 #else
3004 static inline void hif_ce_service_init(void)
3005 {
3006 	ce_service_legacy_init();
3007 }
3008 #endif
3009 #else
3010 static inline void hif_ce_service_init(void)
3011 {
3012 }
3013 #endif
3014 
3015 
3016 /**
3017  * hif_ce_prepare_config() - load the correct static tables.
3018  * @scn: hif context
3019  *
3020  * Epping uses different static attribute tables than mission mode.
3021  */
3022 void hif_ce_prepare_config(struct hif_softc *scn)
3023 {
3024 	uint32_t mode = hif_get_conparam(scn);
3025 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
3026 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
3027 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3028 
3029 	hif_ce_service_init();
3030 	hif_state->ce_services = ce_services_attach(scn);
3031 
3032 	scn->ce_count = HOST_CE_COUNT;
3033 	/* if epping is enabled we need to use the epping configuration. */
3034 	if (QDF_IS_EPPING_ENABLED(mode)) {
3035 		hif_ce_prepare_epping_config(hif_state);
3036 		return;
3037 	}
3038 
3039 	switch (tgt_info->target_type) {
3040 	default:
3041 		hif_state->host_ce_config = host_ce_config_wlan;
3042 		hif_state->target_ce_config = target_ce_config_wlan;
3043 		hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan);
3044 		break;
3045 	case TARGET_TYPE_QCN7605:
3046 		hif_set_ce_config_qcn7605(scn, hif_state);
3047 		break;
3048 	case TARGET_TYPE_AR900B:
3049 	case TARGET_TYPE_QCA9984:
3050 	case TARGET_TYPE_IPQ4019:
3051 	case TARGET_TYPE_QCA9888:
3052 		if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_NO_PKTLOG_CFG)) {
3053 			hif_state->host_ce_config =
3054 				host_lowdesc_ce_cfg_wlan_ar900b_nopktlog;
3055 		} else if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_CFG)) {
3056 			hif_state->host_ce_config =
3057 				host_lowdesc_ce_cfg_wlan_ar900b;
3058 		} else {
3059 			hif_state->host_ce_config = host_ce_config_wlan_ar900b;
3060 		}
3061 
3062 		hif_state->target_ce_config = target_ce_config_wlan_ar900b;
3063 		hif_state->target_ce_config_sz =
3064 				sizeof(target_ce_config_wlan_ar900b);
3065 
3066 		break;
3067 
3068 	case TARGET_TYPE_AR9888:
3069 	case TARGET_TYPE_AR9888V2:
3070 		if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_CFG)) {
3071 			hif_state->host_ce_config = host_lowdesc_ce_cfg_wlan_ar9888;
3072 		} else {
3073 			hif_state->host_ce_config = host_ce_config_wlan_ar9888;
3074 		}
3075 
3076 		hif_state->target_ce_config = target_ce_config_wlan_ar9888;
3077 		hif_state->target_ce_config_sz =
3078 					sizeof(target_ce_config_wlan_ar9888);
3079 
3080 		break;
3081 
3082 	case TARGET_TYPE_QCA8074:
3083 	case TARGET_TYPE_QCA8074V2:
3084 	case TARGET_TYPE_QCA6018:
3085 		if (scn->bus_type == QDF_BUS_TYPE_PCI) {
3086 			hif_state->host_ce_config =
3087 					host_ce_config_wlan_qca8074_pci;
3088 			hif_state->target_ce_config =
3089 				target_ce_config_wlan_qca8074_pci;
3090 			hif_state->target_ce_config_sz =
3091 				sizeof(target_ce_config_wlan_qca8074_pci);
3092 		} else {
3093 			hif_state->host_ce_config = host_ce_config_wlan_qca8074;
3094 			hif_state->target_ce_config =
3095 					target_ce_config_wlan_qca8074;
3096 			hif_state->target_ce_config_sz =
3097 				sizeof(target_ce_config_wlan_qca8074);
3098 		}
3099 		break;
3100 	case TARGET_TYPE_QCA6290:
3101 		hif_state->host_ce_config = host_ce_config_wlan_qca6290;
3102 		hif_state->target_ce_config = target_ce_config_wlan_qca6290;
3103 		hif_state->target_ce_config_sz =
3104 					sizeof(target_ce_config_wlan_qca6290);
3105 
3106 		scn->ce_count = QCA_6290_CE_COUNT;
3107 		break;
3108 	case TARGET_TYPE_QCA6390:
3109 		hif_state->host_ce_config = host_ce_config_wlan_qca6390;
3110 		hif_state->target_ce_config = target_ce_config_wlan_qca6390;
3111 		hif_state->target_ce_config_sz =
3112 					sizeof(target_ce_config_wlan_qca6390);
3113 
3114 		scn->ce_count = QCA_6390_CE_COUNT;
3115 		break;
3116 	}
3117 	QDF_BUG(scn->ce_count <= CE_COUNT_MAX);
3118 }
3119 
3120 /**
3121  * hif_ce_open() - do ce specific allocations
3122  * @hif_sc: pointer to hif context
3123  *
3124  * return: 0 for success or QDF_STATUS_E_NOMEM
3125  */
3126 QDF_STATUS hif_ce_open(struct hif_softc *hif_sc)
3127 {
3128 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
3129 
3130 	qdf_spinlock_create(&hif_state->irq_reg_lock);
3131 	qdf_spinlock_create(&hif_state->keep_awake_lock);
3132 	return QDF_STATUS_SUCCESS;
3133 }
3134 
3135 /**
3136  * hif_ce_close() - do ce specific free
3137  * @hif_sc: pointer to hif context
3138  */
3139 void hif_ce_close(struct hif_softc *hif_sc)
3140 {
3141 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
3142 
3143 	qdf_spinlock_destroy(&hif_state->irq_reg_lock);
3144 	qdf_spinlock_destroy(&hif_state->keep_awake_lock);
3145 }
3146 
3147 /**
3148  * hif_unconfig_ce() - ensure resources from hif_config_ce are freed
3149  * @hif_sc: hif context
3150  *
3151  * uses state variables to support cleaning up when hif_config_ce fails.
3152  */
3153 void hif_unconfig_ce(struct hif_softc *hif_sc)
3154 {
3155 	int pipe_num;
3156 	struct HIF_CE_pipe_info *pipe_info;
3157 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
3158 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(hif_sc);
3159 
3160 	for (pipe_num = 0; pipe_num < hif_sc->ce_count; pipe_num++) {
3161 		pipe_info = &hif_state->pipe_info[pipe_num];
3162 		if (pipe_info->ce_hdl) {
3163 			ce_unregister_irq(hif_state, (1 << pipe_num));
3164 		}
3165 	}
3166 	deinit_tasklet_workers(hif_hdl);
3167 	for (pipe_num = 0; pipe_num < hif_sc->ce_count; pipe_num++) {
3168 		pipe_info = &hif_state->pipe_info[pipe_num];
3169 		if (pipe_info->ce_hdl) {
3170 			ce_fini(pipe_info->ce_hdl);
3171 			pipe_info->ce_hdl = NULL;
3172 			pipe_info->buf_sz = 0;
3173 			qdf_spinlock_destroy(&pipe_info->recv_bufs_needed_lock);
3174 		}
3175 	}
3176 	if (hif_sc->athdiag_procfs_inited) {
3177 		athdiag_procfs_remove();
3178 		hif_sc->athdiag_procfs_inited = false;
3179 	}
3180 }
3181 
3182 #ifdef CONFIG_BYPASS_QMI
3183 #ifdef QCN7605_SUPPORT
3184 /**
3185  * hif_post_static_buf_to_target() - post static buffer to WLAN FW
3186  * @scn: pointer to HIF structure
3187  *
3188  * WLAN FW needs 2MB memory from DDR when QMI is disabled.
3189  *
3190  * Return: void
3191  */
3192 static void hif_post_static_buf_to_target(struct hif_softc *scn)
3193 {
3194 	void *target_va;
3195 	phys_addr_t target_pa;
3196 	struct ce_info *ce_info_ptr;
3197 	uint32_t msi_data_start;
3198 	uint32_t msi_data_count;
3199 	uint32_t msi_irq_start;
3200 	uint32_t i = 0;
3201 	int ret;
3202 
3203 	target_va = qdf_mem_alloc_consistent(scn->qdf_dev,
3204 					     scn->qdf_dev->dev,
3205 					     FW_SHARED_MEM +
3206 					     sizeof(struct ce_info),
3207 					     &target_pa);
3208 	if (!target_va)
3209 		return;
3210 
3211 	ce_info_ptr = (struct ce_info *)target_va;
3212 
3213 	if (scn->vaddr_rri_on_ddr) {
3214 		ce_info_ptr->rri_over_ddr_low_paddr  =
3215 			 BITS0_TO_31(scn->paddr_rri_on_ddr);
3216 		ce_info_ptr->rri_over_ddr_high_paddr =
3217 			 BITS32_TO_35(scn->paddr_rri_on_ddr);
3218 	}
3219 
3220 	ret = pld_get_user_msi_assignment(scn->qdf_dev->dev, "CE",
3221 					  &msi_data_count, &msi_data_start,
3222 					  &msi_irq_start);
3223 	if (ret) {
3224 		hif_err("Failed to get CE msi config");
3225 		return;
3226 	}
3227 
3228 	for (i = 0; i < CE_COUNT_MAX; i++) {
3229 		ce_info_ptr->cfg[i].ce_id = i;
3230 		ce_info_ptr->cfg[i].msi_vector =
3231 			 (i % msi_data_count) + msi_irq_start;
3232 	}
3233 
3234 	hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, target_pa);
3235 	hif_info("target va %pK target pa %pa", target_va, &target_pa);
3236 }
3237 #else
3238 /**
3239  * hif_post_static_buf_to_target() - post static buffer to WLAN FW
3240  * @scn: pointer to HIF structure
3241  *
3242  * WLAN FW needs 2MB memory from DDR when QMI is disabled.
3243  *
3244  * Return: void
3245  */
3246 static void hif_post_static_buf_to_target(struct hif_softc *scn)
3247 {
3248 	void *target_va;
3249 	phys_addr_t target_pa;
3250 
3251 	target_va = qdf_mem_alloc_consistent(scn->qdf_dev, scn->qdf_dev->dev,
3252 				FW_SHARED_MEM, &target_pa);
3253 	if (NULL == target_va) {
3254 		HIF_TRACE("Memory allocation failed could not post target buf");
3255 		return;
3256 	}
3257 	hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, target_pa);
3258 	HIF_TRACE("target va %pK target pa %pa", target_va, &target_pa);
3259 }
3260 #endif
3261 
3262 #else
3263 static inline void hif_post_static_buf_to_target(struct hif_softc *scn)
3264 {
3265 }
3266 #endif
3267 
3268 static int hif_srng_sleep_state_adjust(struct hif_softc *scn, bool sleep_ok,
3269 				bool wait_for_it)
3270 {
3271 	/* todo */
3272 	return 0;
3273 }
3274 
3275 /**
3276  * hif_config_ce() - configure copy engines
3277  * @scn: hif context
3278  *
3279  * Prepares fw, copy engine hardware and host sw according
3280  * to the attributes selected by hif_ce_prepare_config.
3281  *
3282  * also calls athdiag_procfs_init
3283  *
3284  * return: 0 for success nonzero for failure.
3285  */
3286 int hif_config_ce(struct hif_softc *scn)
3287 {
3288 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3289 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
3290 	struct HIF_CE_pipe_info *pipe_info;
3291 	int pipe_num;
3292 	struct CE_state *ce_state = NULL;
3293 
3294 #ifdef ADRASTEA_SHADOW_REGISTERS
3295 	int i;
3296 #endif
3297 	QDF_STATUS rv = QDF_STATUS_SUCCESS;
3298 
3299 	scn->notice_send = true;
3300 	scn->ce_service_max_rx_ind_flush = MSG_FLUSH_NUM;
3301 
3302 	hif_post_static_buf_to_target(scn);
3303 
3304 	hif_state->fw_indicator_address = FW_INDICATOR_ADDRESS;
3305 
3306 	hif_config_rri_on_ddr(scn);
3307 
3308 	if (ce_srng_based(scn))
3309 		scn->bus_ops.hif_target_sleep_state_adjust =
3310 			&hif_srng_sleep_state_adjust;
3311 
3312 	/* Initialise the CE debug history sysfs interface inputs ce_id and
3313 	 * index. Disable data storing
3314 	 */
3315 	reset_ce_debug_history(scn);
3316 
3317 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3318 		struct CE_attr *attr;
3319 
3320 		pipe_info = &hif_state->pipe_info[pipe_num];
3321 		pipe_info->pipe_num = pipe_num;
3322 		pipe_info->HIF_CE_state = hif_state;
3323 		attr = &hif_state->host_ce_config[pipe_num];
3324 
3325 		pipe_info->ce_hdl = ce_init(scn, pipe_num, attr);
3326 		ce_state = scn->ce_id_to_state[pipe_num];
3327 		if (!ce_state) {
3328 			A_TARGET_ACCESS_UNLIKELY(scn);
3329 			goto err;
3330 		}
3331 		qdf_spinlock_create(&pipe_info->recv_bufs_needed_lock);
3332 		QDF_ASSERT(pipe_info->ce_hdl != NULL);
3333 		if (pipe_info->ce_hdl == NULL) {
3334 			rv = QDF_STATUS_E_FAILURE;
3335 			A_TARGET_ACCESS_UNLIKELY(scn);
3336 			goto err;
3337 		}
3338 
3339 		ce_state->lro_data = qdf_lro_init();
3340 
3341 		if (attr->flags & CE_ATTR_DIAG) {
3342 			/* Reserve the ultimate CE for
3343 			 * Diagnostic Window support
3344 			 */
3345 			hif_state->ce_diag = pipe_info->ce_hdl;
3346 			continue;
3347 		}
3348 
3349 		if (hif_is_nss_wifi_enabled(scn) && ce_state &&
3350 				(ce_state->htt_rx_data))
3351 			continue;
3352 
3353 		pipe_info->buf_sz = (qdf_size_t) (attr->src_sz_max);
3354 		if (attr->dest_nentries > 0) {
3355 			atomic_set(&pipe_info->recv_bufs_needed,
3356 				   init_buffer_count(attr->dest_nentries - 1));
3357 			/*SRNG based CE has one entry less */
3358 			if (ce_srng_based(scn))
3359 				atomic_dec(&pipe_info->recv_bufs_needed);
3360 		} else {
3361 			atomic_set(&pipe_info->recv_bufs_needed, 0);
3362 		}
3363 		ce_tasklet_init(hif_state, (1 << pipe_num));
3364 		ce_register_irq(hif_state, (1 << pipe_num));
3365 	}
3366 
3367 	if (athdiag_procfs_init(scn) != 0) {
3368 		A_TARGET_ACCESS_UNLIKELY(scn);
3369 		goto err;
3370 	}
3371 	scn->athdiag_procfs_inited = true;
3372 
3373 	HIF_DBG("%s: ce_init done", __func__);
3374 
3375 	init_tasklet_workers(hif_hdl);
3376 
3377 	HIF_DBG("%s: X, ret = %d", __func__, rv);
3378 
3379 #ifdef ADRASTEA_SHADOW_REGISTERS
3380 	HIF_DBG("%s, Using Shadow Registers instead of CE Registers", __func__);
3381 	for (i = 0; i < NUM_SHADOW_REGISTERS; i++) {
3382 		HIF_DBG("%s Shadow Register%d is mapped to address %x",
3383 			  __func__, i,
3384 			  (A_TARGET_READ(scn, (SHADOW_ADDRESS(i))) << 2));
3385 	}
3386 #endif
3387 
3388 	return rv != QDF_STATUS_SUCCESS;
3389 
3390 err:
3391 	/* Failure, so clean up */
3392 	hif_unconfig_ce(scn);
3393 	HIF_TRACE("%s: X, ret = %d", __func__, rv);
3394 	return QDF_STATUS_SUCCESS != QDF_STATUS_E_FAILURE;
3395 }
3396 
3397 #ifdef IPA_OFFLOAD
3398 /**
3399  * hif_ce_ipa_get_ce_resource() - get uc resource on hif
3400  * @scn: bus context
3401  * @ce_sr_base_paddr: copyengine source ring base physical address
3402  * @ce_sr_ring_size: copyengine source ring size
3403  * @ce_reg_paddr: copyengine register physical address
3404  *
3405  * IPA micro controller data path offload feature enabled,
3406  * HIF should release copy engine related resource information to IPA UC
3407  * IPA UC will access hardware resource with released information
3408  *
3409  * Return: None
3410  */
3411 void hif_ce_ipa_get_ce_resource(struct hif_softc *scn,
3412 			     qdf_shared_mem_t **ce_sr,
3413 			     uint32_t *ce_sr_ring_size,
3414 			     qdf_dma_addr_t *ce_reg_paddr)
3415 {
3416 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3417 	struct HIF_CE_pipe_info *pipe_info =
3418 		&(hif_state->pipe_info[HIF_PCI_IPA_UC_ASSIGNED_CE]);
3419 	struct CE_handle *ce_hdl = pipe_info->ce_hdl;
3420 
3421 	ce_ipa_get_resource(ce_hdl, ce_sr, ce_sr_ring_size,
3422 			    ce_reg_paddr);
3423 }
3424 #endif /* IPA_OFFLOAD */
3425 
3426 
3427 #ifdef ADRASTEA_SHADOW_REGISTERS
3428 
3429 /*
3430  * Current shadow register config
3431  *
3432  * -----------------------------------------------------------
3433  * Shadow Register      |     CE   |    src/dst write index
3434  * -----------------------------------------------------------
3435  *         0            |     0    |           src
3436  *         1     No Config - Doesn't point to anything
3437  *         2     No Config - Doesn't point to anything
3438  *         3            |     3    |           src
3439  *         4            |     4    |           src
3440  *         5            |     5    |           src
3441  *         6     No Config - Doesn't point to anything
3442  *         7            |     7    |           src
3443  *         8     No Config - Doesn't point to anything
3444  *         9     No Config - Doesn't point to anything
3445  *         10    No Config - Doesn't point to anything
3446  *         11    No Config - Doesn't point to anything
3447  * -----------------------------------------------------------
3448  *         12    No Config - Doesn't point to anything
3449  *         13           |     1    |           dst
3450  *         14           |     2    |           dst
3451  *         15    No Config - Doesn't point to anything
3452  *         16    No Config - Doesn't point to anything
3453  *         17    No Config - Doesn't point to anything
3454  *         18    No Config - Doesn't point to anything
3455  *         19           |     7    |           dst
3456  *         20           |     8    |           dst
3457  *         21    No Config - Doesn't point to anything
3458  *         22    No Config - Doesn't point to anything
3459  *         23    No Config - Doesn't point to anything
3460  * -----------------------------------------------------------
3461  *
3462  *
3463  * ToDo - Move shadow register config to following in the future
3464  * This helps free up a block of shadow registers towards the end.
3465  * Can be used for other purposes
3466  *
3467  * -----------------------------------------------------------
3468  * Shadow Register      |     CE   |    src/dst write index
3469  * -----------------------------------------------------------
3470  *      0            |     0    |           src
3471  *      1            |     3    |           src
3472  *      2            |     4    |           src
3473  *      3            |     5    |           src
3474  *      4            |     7    |           src
3475  * -----------------------------------------------------------
3476  *      5            |     1    |           dst
3477  *      6            |     2    |           dst
3478  *      7            |     7    |           dst
3479  *      8            |     8    |           dst
3480  * -----------------------------------------------------------
3481  *      9     No Config - Doesn't point to anything
3482  *      12    No Config - Doesn't point to anything
3483  *      13    No Config - Doesn't point to anything
3484  *      14    No Config - Doesn't point to anything
3485  *      15    No Config - Doesn't point to anything
3486  *      16    No Config - Doesn't point to anything
3487  *      17    No Config - Doesn't point to anything
3488  *      18    No Config - Doesn't point to anything
3489  *      19    No Config - Doesn't point to anything
3490  *      20    No Config - Doesn't point to anything
3491  *      21    No Config - Doesn't point to anything
3492  *      22    No Config - Doesn't point to anything
3493  *      23    No Config - Doesn't point to anything
3494  * -----------------------------------------------------------
3495 */
3496 #ifndef QCN7605_SUPPORT
3497 u32 shadow_sr_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
3498 {
3499 	u32 addr = 0;
3500 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
3501 
3502 	switch (ce) {
3503 	case 0:
3504 		addr = SHADOW_VALUE0;
3505 		break;
3506 	case 3:
3507 		addr = SHADOW_VALUE3;
3508 		break;
3509 	case 4:
3510 		addr = SHADOW_VALUE4;
3511 		break;
3512 	case 5:
3513 		addr = SHADOW_VALUE5;
3514 		break;
3515 	case 7:
3516 		addr = SHADOW_VALUE7;
3517 		break;
3518 	default:
3519 		HIF_ERROR("invalid CE ctrl_addr (CE=%d)", ce);
3520 		QDF_ASSERT(0);
3521 	}
3522 	return addr;
3523 
3524 }
3525 
3526 u32 shadow_dst_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
3527 {
3528 	u32 addr = 0;
3529 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
3530 
3531 	switch (ce) {
3532 	case 1:
3533 		addr = SHADOW_VALUE13;
3534 		break;
3535 	case 2:
3536 		addr = SHADOW_VALUE14;
3537 		break;
3538 	case 5:
3539 		addr = SHADOW_VALUE17;
3540 		break;
3541 	case 7:
3542 		addr = SHADOW_VALUE19;
3543 		break;
3544 	case 8:
3545 		addr = SHADOW_VALUE20;
3546 		break;
3547 	case 9:
3548 		addr = SHADOW_VALUE21;
3549 		break;
3550 	case 10:
3551 		addr = SHADOW_VALUE22;
3552 		break;
3553 	case 11:
3554 		addr = SHADOW_VALUE23;
3555 		break;
3556 	default:
3557 		HIF_ERROR("invalid CE ctrl_addr (CE=%d)", ce);
3558 		QDF_ASSERT(0);
3559 	}
3560 
3561 	return addr;
3562 
3563 }
3564 #else
3565 u32 shadow_sr_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
3566 {
3567 	u32 addr = 0;
3568 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
3569 
3570 	switch (ce) {
3571 	case 0:
3572 		addr = SHADOW_VALUE0;
3573 		break;
3574 	case 4:
3575 		addr = SHADOW_VALUE4;
3576 		break;
3577 	case 5:
3578 		addr = SHADOW_VALUE5;
3579 		break;
3580 	default:
3581 		HIF_ERROR("invalid CE ctrl_addr (CE=%d)", ce);
3582 		QDF_ASSERT(0);
3583 	}
3584 	return addr;
3585 }
3586 
3587 u32 shadow_dst_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
3588 {
3589 	u32 addr = 0;
3590 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
3591 
3592 	switch (ce) {
3593 	case 1:
3594 		addr = SHADOW_VALUE13;
3595 		break;
3596 	case 2:
3597 		addr = SHADOW_VALUE14;
3598 		break;
3599 	case 3:
3600 		addr = SHADOW_VALUE15;
3601 		break;
3602 	case 5:
3603 		addr = SHADOW_VALUE17;
3604 		break;
3605 	case 7:
3606 		addr = SHADOW_VALUE19;
3607 		break;
3608 	case 8:
3609 		addr = SHADOW_VALUE20;
3610 		break;
3611 	case 9:
3612 		addr = SHADOW_VALUE21;
3613 		break;
3614 	case 10:
3615 		addr = SHADOW_VALUE22;
3616 		break;
3617 	case 11:
3618 		addr = SHADOW_VALUE23;
3619 		break;
3620 	default:
3621 		HIF_ERROR("invalid CE ctrl_addr (CE=%d)", ce);
3622 		QDF_ASSERT(0);
3623 	}
3624 
3625 	return addr;
3626 }
3627 #endif
3628 #endif
3629 
3630 #if defined(FEATURE_LRO)
3631 void *hif_ce_get_lro_ctx(struct hif_opaque_softc *hif_hdl, int ctx_id)
3632 {
3633 	struct CE_state *ce_state;
3634 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
3635 
3636 	ce_state = scn->ce_id_to_state[ctx_id];
3637 
3638 	return ce_state->lro_data;
3639 }
3640 #endif
3641 
3642 /**
3643  * hif_map_service_to_pipe() - returns  the ce ids pertaining to
3644  * this service
3645  * @scn: hif_softc pointer.
3646  * @svc_id: Service ID for which the mapping is needed.
3647  * @ul_pipe: address of the container in which ul pipe is returned.
3648  * @dl_pipe: address of the container in which dl pipe is returned.
3649  * @ul_is_polled: address of the container in which a bool
3650  *			indicating if the UL CE for this service
3651  *			is polled is returned.
3652  * @dl_is_polled: address of the container in which a bool
3653  *			indicating if the DL CE for this service
3654  *			is polled is returned.
3655  *
3656  * Return: Indicates whether the service has been found in the table.
3657  *         Upon return, ul_is_polled is updated only if ul_pipe is updated.
3658  *         There will be warning logs if either leg has not been updated
3659  *         because it missed the entry in the table (but this is not an err).
3660  */
3661 int hif_map_service_to_pipe(struct hif_opaque_softc *hif_hdl, uint16_t svc_id,
3662 			uint8_t *ul_pipe, uint8_t *dl_pipe, int *ul_is_polled,
3663 			int *dl_is_polled)
3664 {
3665 	int status = QDF_STATUS_E_INVAL;
3666 	unsigned int i;
3667 	struct service_to_pipe element;
3668 	struct service_to_pipe *tgt_svc_map_to_use;
3669 	uint32_t sz_tgt_svc_map_to_use;
3670 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
3671 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3672 	bool dl_updated = false;
3673 	bool ul_updated = false;
3674 
3675 	hif_select_service_to_pipe_map(scn, &tgt_svc_map_to_use,
3676 				       &sz_tgt_svc_map_to_use);
3677 
3678 	*dl_is_polled = 0;  /* polling for received messages not supported */
3679 
3680 	for (i = 0; i < (sz_tgt_svc_map_to_use/sizeof(element)); i++) {
3681 
3682 		memcpy(&element, &tgt_svc_map_to_use[i], sizeof(element));
3683 		if (element.service_id == svc_id) {
3684 			if (element.pipedir == PIPEDIR_OUT) {
3685 				*ul_pipe = element.pipenum;
3686 				*ul_is_polled =
3687 					(hif_state->host_ce_config[*ul_pipe].flags &
3688 					 CE_ATTR_DISABLE_INTR) != 0;
3689 				ul_updated = true;
3690 			} else if (element.pipedir == PIPEDIR_IN) {
3691 				*dl_pipe = element.pipenum;
3692 				dl_updated = true;
3693 			}
3694 			status = QDF_STATUS_SUCCESS;
3695 		}
3696 	}
3697 	if (ul_updated == false)
3698 		HIF_DBG("ul pipe is NOT updated for service %d", svc_id);
3699 	if (dl_updated == false)
3700 		HIF_DBG("dl pipe is NOT updated for service %d", svc_id);
3701 
3702 	return status;
3703 }
3704 
3705 #ifdef SHADOW_REG_DEBUG
3706 inline uint32_t DEBUG_CE_SRC_RING_READ_IDX_GET(struct hif_softc *scn,
3707 		uint32_t CE_ctrl_addr)
3708 {
3709 	uint32_t read_from_hw, srri_from_ddr = 0;
3710 
3711 	read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_SRRI_ADDRESS);
3712 
3713 	srri_from_ddr = SRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr));
3714 
3715 	if (read_from_hw != srri_from_ddr) {
3716 		HIF_ERROR("%s: error: read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x",
3717 		       __func__, srri_from_ddr, read_from_hw,
3718 		       CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr));
3719 		QDF_ASSERT(0);
3720 	}
3721 	return srri_from_ddr;
3722 }
3723 
3724 
3725 inline uint32_t DEBUG_CE_DEST_RING_READ_IDX_GET(struct hif_softc *scn,
3726 		uint32_t CE_ctrl_addr)
3727 {
3728 	uint32_t read_from_hw, drri_from_ddr = 0;
3729 
3730 	read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_DRRI_ADDRESS);
3731 
3732 	drri_from_ddr = DRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr));
3733 
3734 	if (read_from_hw != drri_from_ddr) {
3735 		HIF_ERROR("error: read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x",
3736 		       drri_from_ddr, read_from_hw,
3737 		       CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr));
3738 		QDF_ASSERT(0);
3739 	}
3740 	return drri_from_ddr;
3741 }
3742 
3743 #endif
3744 
3745 /**
3746  * hif_dump_ce_registers() - dump ce registers
3747  * @scn: hif_opaque_softc pointer.
3748  *
3749  * Output the copy engine registers
3750  *
3751  * Return: 0 for success or error code
3752  */
3753 int hif_dump_ce_registers(struct hif_softc *scn)
3754 {
3755 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
3756 	uint32_t ce_reg_address = CE0_BASE_ADDRESS;
3757 	uint32_t ce_reg_values[CE_USEFUL_SIZE >> 2];
3758 	uint32_t ce_reg_word_size = CE_USEFUL_SIZE >> 2;
3759 	uint16_t i;
3760 	QDF_STATUS status;
3761 
3762 	for (i = 0; i < scn->ce_count; i++, ce_reg_address += CE_OFFSET) {
3763 		if (scn->ce_id_to_state[i] == NULL) {
3764 			HIF_DBG("CE%d not used.", i);
3765 			continue;
3766 		}
3767 
3768 		status = hif_diag_read_mem(hif_hdl, ce_reg_address,
3769 					   (uint8_t *) &ce_reg_values[0],
3770 					   ce_reg_word_size * sizeof(uint32_t));
3771 
3772 		if (status != QDF_STATUS_SUCCESS) {
3773 			HIF_ERROR("Dumping CE register failed!");
3774 			return -EACCES;
3775 		}
3776 		HIF_ERROR("CE%d=>\n", i);
3777 		qdf_trace_hex_dump(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_DEBUG,
3778 				   (uint8_t *) &ce_reg_values[0],
3779 				   ce_reg_word_size * sizeof(uint32_t));
3780 		qdf_print("ADDR:[0x%08X], SR_WR_INDEX:%d", (ce_reg_address
3781 				+ SR_WR_INDEX_ADDRESS),
3782 				ce_reg_values[SR_WR_INDEX_ADDRESS/4]);
3783 		qdf_print("ADDR:[0x%08X], CURRENT_SRRI:%d", (ce_reg_address
3784 				+ CURRENT_SRRI_ADDRESS),
3785 				ce_reg_values[CURRENT_SRRI_ADDRESS/4]);
3786 		qdf_print("ADDR:[0x%08X], DST_WR_INDEX:%d", (ce_reg_address
3787 				+ DST_WR_INDEX_ADDRESS),
3788 				ce_reg_values[DST_WR_INDEX_ADDRESS/4]);
3789 		qdf_print("ADDR:[0x%08X], CURRENT_DRRI:%d", (ce_reg_address
3790 				+ CURRENT_DRRI_ADDRESS),
3791 				ce_reg_values[CURRENT_DRRI_ADDRESS/4]);
3792 		qdf_print("---");
3793 	}
3794 	return 0;
3795 }
3796 qdf_export_symbol(hif_dump_ce_registers);
3797 #ifdef QCA_NSS_WIFI_OFFLOAD_SUPPORT
3798 struct hif_pipe_addl_info *hif_get_addl_pipe_info(struct hif_opaque_softc *osc,
3799 		struct hif_pipe_addl_info *hif_info, uint32_t pipe)
3800 {
3801 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
3802 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
3803 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(osc);
3804 	struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
3805 	struct CE_handle *ce_hdl = pipe_info->ce_hdl;
3806 	struct CE_state *ce_state = (struct CE_state *)ce_hdl;
3807 	struct CE_ring_state *src_ring = ce_state->src_ring;
3808 	struct CE_ring_state *dest_ring = ce_state->dest_ring;
3809 
3810 	if (src_ring) {
3811 		hif_info->ul_pipe.nentries = src_ring->nentries;
3812 		hif_info->ul_pipe.nentries_mask = src_ring->nentries_mask;
3813 		hif_info->ul_pipe.sw_index = src_ring->sw_index;
3814 		hif_info->ul_pipe.write_index = src_ring->write_index;
3815 		hif_info->ul_pipe.hw_index = src_ring->hw_index;
3816 		hif_info->ul_pipe.base_addr_CE_space =
3817 			src_ring->base_addr_CE_space;
3818 		hif_info->ul_pipe.base_addr_owner_space =
3819 			src_ring->base_addr_owner_space;
3820 	}
3821 
3822 
3823 	if (dest_ring) {
3824 		hif_info->dl_pipe.nentries = dest_ring->nentries;
3825 		hif_info->dl_pipe.nentries_mask = dest_ring->nentries_mask;
3826 		hif_info->dl_pipe.sw_index = dest_ring->sw_index;
3827 		hif_info->dl_pipe.write_index = dest_ring->write_index;
3828 		hif_info->dl_pipe.hw_index = dest_ring->hw_index;
3829 		hif_info->dl_pipe.base_addr_CE_space =
3830 			dest_ring->base_addr_CE_space;
3831 		hif_info->dl_pipe.base_addr_owner_space =
3832 			dest_ring->base_addr_owner_space;
3833 	}
3834 
3835 	hif_info->pci_mem = pci_resource_start(sc->pdev, 0);
3836 	hif_info->ctrl_addr = ce_state->ctrl_addr;
3837 
3838 	return hif_info;
3839 }
3840 qdf_export_symbol(hif_get_addl_pipe_info);
3841 
3842 uint32_t hif_set_nss_wifiol_mode(struct hif_opaque_softc *osc, uint32_t mode)
3843 {
3844 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
3845 
3846 	scn->nss_wifi_ol_mode = mode;
3847 	return 0;
3848 }
3849 qdf_export_symbol(hif_set_nss_wifiol_mode);
3850 #endif
3851 
3852 void hif_set_attribute(struct hif_opaque_softc *osc, uint8_t hif_attrib)
3853 {
3854 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
3855 	scn->hif_attribute = hif_attrib;
3856 }
3857 
3858 
3859 /* disable interrupts (only applicable for legacy copy engine currently */
3860 void hif_disable_interrupt(struct hif_opaque_softc *osc, uint32_t pipe_num)
3861 {
3862 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
3863 	struct CE_state *CE_state = scn->ce_id_to_state[pipe_num];
3864 	uint32_t ctrl_addr = CE_state->ctrl_addr;
3865 
3866 	Q_TARGET_ACCESS_BEGIN(scn);
3867 	CE_COPY_COMPLETE_INTR_DISABLE(scn, ctrl_addr);
3868 	Q_TARGET_ACCESS_END(scn);
3869 }
3870 qdf_export_symbol(hif_disable_interrupt);
3871 
3872 /**
3873  * hif_fw_event_handler() - hif fw event handler
3874  * @hif_state: pointer to hif ce state structure
3875  *
3876  * Process fw events and raise HTC callback to process fw events.
3877  *
3878  * Return: none
3879  */
3880 static inline void hif_fw_event_handler(struct HIF_CE_state *hif_state)
3881 {
3882 	struct hif_msg_callbacks *msg_callbacks =
3883 		&hif_state->msg_callbacks_current;
3884 
3885 	if (!msg_callbacks->fwEventHandler)
3886 		return;
3887 
3888 	msg_callbacks->fwEventHandler(msg_callbacks->Context,
3889 			QDF_STATUS_E_FAILURE);
3890 }
3891 
3892 #ifndef QCA_WIFI_3_0
3893 /**
3894  * hif_fw_interrupt_handler() - FW interrupt handler
3895  * @irq: irq number
3896  * @arg: the user pointer
3897  *
3898  * Called from the PCI interrupt handler when a
3899  * firmware-generated interrupt to the Host.
3900  *
3901  * only registered for legacy ce devices
3902  *
3903  * Return: status of handled irq
3904  */
3905 irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
3906 {
3907 	struct hif_softc *scn = arg;
3908 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3909 	uint32_t fw_indicator_address, fw_indicator;
3910 
3911 	if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
3912 		return ATH_ISR_NOSCHED;
3913 
3914 	fw_indicator_address = hif_state->fw_indicator_address;
3915 	/* For sudden unplug this will return ~0 */
3916 	fw_indicator = A_TARGET_READ(scn, fw_indicator_address);
3917 
3918 	if ((fw_indicator != ~0) && (fw_indicator & FW_IND_EVENT_PENDING)) {
3919 		/* ACK: clear Target-side pending event */
3920 		A_TARGET_WRITE(scn, fw_indicator_address,
3921 			       fw_indicator & ~FW_IND_EVENT_PENDING);
3922 		if (Q_TARGET_ACCESS_END(scn) < 0)
3923 			return ATH_ISR_SCHED;
3924 
3925 		if (hif_state->started) {
3926 			hif_fw_event_handler(hif_state);
3927 		} else {
3928 			/*
3929 			 * Probable Target failure before we're prepared
3930 			 * to handle it.  Generally unexpected.
3931 			 * fw_indicator used as bitmap, and defined as below:
3932 			 *     FW_IND_EVENT_PENDING    0x1
3933 			 *     FW_IND_INITIALIZED      0x2
3934 			 *     FW_IND_NEEDRECOVER      0x4
3935 			 */
3936 			AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
3937 				("%s: Early firmware event indicated 0x%x\n",
3938 				 __func__, fw_indicator));
3939 		}
3940 	} else {
3941 		if (Q_TARGET_ACCESS_END(scn) < 0)
3942 			return ATH_ISR_SCHED;
3943 	}
3944 
3945 	return ATH_ISR_SCHED;
3946 }
3947 #else
3948 irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
3949 {
3950 	return ATH_ISR_SCHED;
3951 }
3952 #endif /* #ifdef QCA_WIFI_3_0 */
3953 
3954 
3955 /**
3956  * hif_wlan_disable(): call the platform driver to disable wlan
3957  * @scn: HIF Context
3958  *
3959  * This function passes the con_mode to platform driver to disable
3960  * wlan.
3961  *
3962  * Return: void
3963  */
3964 void hif_wlan_disable(struct hif_softc *scn)
3965 {
3966 	enum pld_driver_mode mode;
3967 	uint32_t con_mode = hif_get_conparam(scn);
3968 
3969 	if (scn->target_status == TARGET_STATUS_RESET)
3970 		return;
3971 
3972 	if (QDF_GLOBAL_FTM_MODE == con_mode)
3973 		mode = PLD_FTM;
3974 	else if (QDF_IS_EPPING_ENABLED(con_mode))
3975 		mode = PLD_EPPING;
3976 	else
3977 		mode = PLD_MISSION;
3978 
3979 	pld_wlan_disable(scn->qdf_dev->dev, mode);
3980 }
3981 
3982 int hif_get_wake_ce_id(struct hif_softc *scn, uint8_t *ce_id)
3983 {
3984 	QDF_STATUS status;
3985 	uint8_t ul_pipe, dl_pipe;
3986 	int ul_is_polled, dl_is_polled;
3987 
3988 	/* DL pipe for HTC_CTRL_RSVD_SVC should map to the wake CE */
3989 	status = hif_map_service_to_pipe(GET_HIF_OPAQUE_HDL(scn),
3990 					 HTC_CTRL_RSVD_SVC,
3991 					 &ul_pipe, &dl_pipe,
3992 					 &ul_is_polled, &dl_is_polled);
3993 	if (status) {
3994 		HIF_ERROR("%s: failed to map pipe: %d", __func__, status);
3995 		return qdf_status_to_os_return(status);
3996 	}
3997 
3998 	*ce_id = dl_pipe;
3999 
4000 	return 0;
4001 }
4002