xref: /wlan-dirver/qca-wifi-host-cmn/hif/src/ce/ce_main.c (revision 8b3dca18206e1a0461492f082fa6e270b092c035)
1 /*
2  * Copyright (c) 2013-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "targcfg.h"
21 #include "qdf_lock.h"
22 #include "qdf_status.h"
23 #include "qdf_status.h"
24 #include <qdf_atomic.h>         /* qdf_atomic_read */
25 #include <targaddrs.h>
26 #include "hif_io32.h"
27 #include <hif.h>
28 #include <target_type.h>
29 #include "regtable.h"
30 #define ATH_MODULE_NAME hif
31 #include <a_debug.h>
32 #include "hif_main.h"
33 #include "ce_api.h"
34 #include "qdf_trace.h"
35 #include "pld_common.h"
36 #include "hif_debug.h"
37 #include "ce_internal.h"
38 #include "ce_reg.h"
39 #include "ce_assignment.h"
40 #include "ce_tasklet.h"
41 #include "qdf_module.h"
42 
43 #define CE_POLL_TIMEOUT 10      /* ms */
44 
45 #define AGC_DUMP         1
46 #define CHANINFO_DUMP    2
47 #define BB_WATCHDOG_DUMP 3
48 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
49 #define PCIE_ACCESS_DUMP 4
50 #endif
51 #include "mp_dev.h"
52 #ifdef HIF_CE_LOG_INFO
53 #include "qdf_hang_event_notifier.h"
54 #endif
55 
56 #if (defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6290) || \
57 	defined(QCA_WIFI_QCA6018) || defined(QCA_WIFI_QCA5018) || \
58 	defined(QCA_WIFI_KIWI) || defined(QCA_WIFI_QCA5332) || \
59 	defined(QCA_WIFI_QCA9574)) && !defined(QCA_WIFI_SUPPORT_SRNG)
60 #define QCA_WIFI_SUPPORT_SRNG
61 #endif
62 
63 #ifdef QCA_WIFI_SUPPORT_SRNG
64 #include <hal_api.h>
65 #endif
66 
67 /* Forward references */
68 QDF_STATUS hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info);
69 
70 /*
71  * Fix EV118783, poll to check whether a BMI response comes
72  * other than waiting for the interruption which may be lost.
73  */
74 /* #define BMI_RSP_POLLING */
75 #define BMI_RSP_TO_MILLISEC  1000
76 
77 #ifdef CONFIG_BYPASS_QMI
78 #define BYPASS_QMI 1
79 #else
80 #define BYPASS_QMI 0
81 #endif
82 
83 #ifdef ENABLE_10_4_FW_HDR
84 #if (ENABLE_10_4_FW_HDR == 1)
85 #define WDI_IPA_SERVICE_GROUP 5
86 #define WDI_IPA_TX_SVC MAKE_SERVICE_ID(WDI_IPA_SERVICE_GROUP, 0)
87 #define HTT_DATA2_MSG_SVC MAKE_SERVICE_ID(HTT_SERVICE_GROUP, 1)
88 #define HTT_DATA3_MSG_SVC MAKE_SERVICE_ID(HTT_SERVICE_GROUP, 2)
89 #endif /* ENABLE_10_4_FW_HDR == 1 */
90 #endif /* ENABLE_10_4_FW_HDR */
91 
92 static void hif_config_rri_on_ddr(struct hif_softc *scn);
93 
94 /**
95  * hif_target_access_log_dump() - dump access log
96  *
97  * dump access log
98  *
99  * Return: n/a
100  */
101 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
102 static void hif_target_access_log_dump(void)
103 {
104 	hif_target_dump_access_log();
105 }
106 #endif
107 
108 /*
109  * This structure contains the interrupt index for each Copy engine
110  * for various number of MSIs available in the system.
111  */
112 static struct ce_int_assignment ce_int_context[NUM_CE_CONTEXT] = {
113 	/* Default configuration */
114 	{{ CE_INTERRUPT_IDX(0),
115 	  CE_INTERRUPT_IDX(1),
116 	  CE_INTERRUPT_IDX(2),
117 	  CE_INTERRUPT_IDX(3),
118 	  CE_INTERRUPT_IDX(4),
119 	  CE_INTERRUPT_IDX(5),
120 	  CE_INTERRUPT_IDX(6),
121 	  CE_INTERRUPT_IDX(7),
122 	  CE_INTERRUPT_IDX(8),
123 	  CE_INTERRUPT_IDX(9),
124 	  CE_INTERRUPT_IDX(10),
125 	  CE_INTERRUPT_IDX(11),
126 #ifdef QCA_WIFI_QCN9224
127 	  CE_INTERRUPT_IDX(12),
128 	  CE_INTERRUPT_IDX(13),
129 	  CE_INTERRUPT_IDX(14),
130 	  CE_INTERRUPT_IDX(15),
131 #endif
132 	} },
133 	/* Interrupt assignment for 1 MSI combination */
134 	{{ CE_INTERRUPT_IDX(0),
135 	  CE_INTERRUPT_IDX(0),
136 	  CE_INTERRUPT_IDX(0),
137 	  CE_INTERRUPT_IDX(0),
138 	  CE_INTERRUPT_IDX(0),
139 	  CE_INTERRUPT_IDX(0),
140 	  CE_INTERRUPT_IDX(0),
141 	  CE_INTERRUPT_IDX(0),
142 	  CE_INTERRUPT_IDX(0),
143 	  CE_INTERRUPT_IDX(0),
144 	  CE_INTERRUPT_IDX(0),
145 	  CE_INTERRUPT_IDX(0),
146 #ifdef QCA_WIFI_QCN9224
147 	  CE_INTERRUPT_IDX(0),
148 	  CE_INTERRUPT_IDX(0),
149 	  CE_INTERRUPT_IDX(0),
150 	  CE_INTERRUPT_IDX(0),
151 #endif
152 	} },
153 	/* Interrupt assignment for 2 MSI combination */
154 	{{ CE_INTERRUPT_IDX(0),
155 	  CE_INTERRUPT_IDX(1),
156 	  CE_INTERRUPT_IDX(0),
157 	  CE_INTERRUPT_IDX(1),
158 	  CE_INTERRUPT_IDX(0),
159 	  CE_INTERRUPT_IDX(1),
160 	  CE_INTERRUPT_IDX(0),
161 	  CE_INTERRUPT_IDX(0),
162 	  CE_INTERRUPT_IDX(0),
163 	  CE_INTERRUPT_IDX(0),
164 	  CE_INTERRUPT_IDX(0),
165 	  CE_INTERRUPT_IDX(0),
166 #ifdef QCA_WIFI_QCN9224
167 	  CE_INTERRUPT_IDX(0),
168 	  CE_INTERRUPT_IDX(0),
169 	  CE_INTERRUPT_IDX(0),
170 	  CE_INTERRUPT_IDX(0),
171 #endif
172 	} },
173 	/* Interrupt assignment for 3 MSI combination */
174 	{{ CE_INTERRUPT_IDX(0),
175 	  CE_INTERRUPT_IDX(1),
176 	  CE_INTERRUPT_IDX(2),
177 	  CE_INTERRUPT_IDX(1),
178 	  CE_INTERRUPT_IDX(0),
179 	  CE_INTERRUPT_IDX(1),
180 	  CE_INTERRUPT_IDX(0),
181 	  CE_INTERRUPT_IDX(0),
182 	  CE_INTERRUPT_IDX(0),
183 	  CE_INTERRUPT_IDX(0),
184 	  CE_INTERRUPT_IDX(0),
185 	  CE_INTERRUPT_IDX(0),
186 #ifdef QCA_WIFI_QCN9224
187 	  CE_INTERRUPT_IDX(0),
188 	  CE_INTERRUPT_IDX(0),
189 	  CE_INTERRUPT_IDX(0),
190 	  CE_INTERRUPT_IDX(0),
191 #endif
192 	} },
193 	/* Interrupt assignment for 4 MSI combination */
194 	{{ CE_INTERRUPT_IDX(0),
195 	  CE_INTERRUPT_IDX(1),
196 	  CE_INTERRUPT_IDX(2),
197 	  CE_INTERRUPT_IDX(3),
198 	  CE_INTERRUPT_IDX(0),
199 	  CE_INTERRUPT_IDX(1),
200 	  CE_INTERRUPT_IDX(0),
201 	  CE_INTERRUPT_IDX(0),
202 	  CE_INTERRUPT_IDX(0),
203 	  CE_INTERRUPT_IDX(0),
204 	  CE_INTERRUPT_IDX(0),
205 	  CE_INTERRUPT_IDX(0),
206 #ifdef QCA_WIFI_QCN9224
207 	  CE_INTERRUPT_IDX(0),
208 	  CE_INTERRUPT_IDX(0),
209 	  CE_INTERRUPT_IDX(0),
210 	  CE_INTERRUPT_IDX(0),
211 #endif
212 	} },
213 	/* Interrupt assignment for 5 MSI combination */
214 	{{ CE_INTERRUPT_IDX(0),
215 	  CE_INTERRUPT_IDX(1),
216 	  CE_INTERRUPT_IDX(2),
217 	  CE_INTERRUPT_IDX(3),
218 	  CE_INTERRUPT_IDX(0),
219 	  CE_INTERRUPT_IDX(4),
220 	  CE_INTERRUPT_IDX(0),
221 	  CE_INTERRUPT_IDX(0),
222 	  CE_INTERRUPT_IDX(0),
223 	  CE_INTERRUPT_IDX(0),
224 	  CE_INTERRUPT_IDX(0),
225 	  CE_INTERRUPT_IDX(0),
226 #ifdef QCA_WIFI_QCN9224
227 	  CE_INTERRUPT_IDX(0),
228 	  CE_INTERRUPT_IDX(0),
229 	  CE_INTERRUPT_IDX(0),
230 	  CE_INTERRUPT_IDX(0),
231 #endif
232 	} },
233 	/* Interrupt assignment for 6 MSI combination */
234 	{{ CE_INTERRUPT_IDX(0),
235 	  CE_INTERRUPT_IDX(1),
236 	  CE_INTERRUPT_IDX(2),
237 	  CE_INTERRUPT_IDX(3),
238 	  CE_INTERRUPT_IDX(4),
239 	  CE_INTERRUPT_IDX(5),
240 	  CE_INTERRUPT_IDX(0),
241 	  CE_INTERRUPT_IDX(0),
242 	  CE_INTERRUPT_IDX(0),
243 	  CE_INTERRUPT_IDX(0),
244 	  CE_INTERRUPT_IDX(0),
245 	  CE_INTERRUPT_IDX(0),
246 #ifdef QCA_WIFI_QCN9224
247 	  CE_INTERRUPT_IDX(0),
248 	  CE_INTERRUPT_IDX(0),
249 	  CE_INTERRUPT_IDX(0),
250 	  CE_INTERRUPT_IDX(0),
251 #endif
252 	} },
253 	/* Interrupt assignment for 7 MSI combination */
254 	{{ CE_INTERRUPT_IDX(0),
255 	  CE_INTERRUPT_IDX(1),
256 	  CE_INTERRUPT_IDX(2),
257 	  CE_INTERRUPT_IDX(3),
258 	  CE_INTERRUPT_IDX(4),
259 	  CE_INTERRUPT_IDX(5),
260 	  CE_INTERRUPT_IDX(6),
261 	  CE_INTERRUPT_IDX(0),
262 	  CE_INTERRUPT_IDX(0),
263 	  CE_INTERRUPT_IDX(0),
264 	  CE_INTERRUPT_IDX(0),
265 	  CE_INTERRUPT_IDX(0),
266 #ifdef QCA_WIFI_QCN9224
267 	  CE_INTERRUPT_IDX(0),
268 	  CE_INTERRUPT_IDX(0),
269 	  CE_INTERRUPT_IDX(0),
270 	  CE_INTERRUPT_IDX(0),
271 #endif
272 	} },
273 	/* Interrupt assignment for 8 MSI combination */
274 	{{ CE_INTERRUPT_IDX(0),
275 	  CE_INTERRUPT_IDX(1),
276 	  CE_INTERRUPT_IDX(2),
277 	  CE_INTERRUPT_IDX(3),
278 	  CE_INTERRUPT_IDX(4),
279 	  CE_INTERRUPT_IDX(5),
280 	  CE_INTERRUPT_IDX(6),
281 	  CE_INTERRUPT_IDX(7),
282 	  CE_INTERRUPT_IDX(0),
283 	  CE_INTERRUPT_IDX(0),
284 	  CE_INTERRUPT_IDX(0),
285 	  CE_INTERRUPT_IDX(0),
286 #ifdef QCA_WIFI_QCN9224
287 	  CE_INTERRUPT_IDX(0),
288 	  CE_INTERRUPT_IDX(0),
289 	  CE_INTERRUPT_IDX(0),
290 	  CE_INTERRUPT_IDX(0),
291 #endif
292 	} },
293 	/* Interrupt assignment for 9 MSI combination */
294 	{{ CE_INTERRUPT_IDX(0),
295 	  CE_INTERRUPT_IDX(1),
296 	  CE_INTERRUPT_IDX(2),
297 	  CE_INTERRUPT_IDX(3),
298 	  CE_INTERRUPT_IDX(4),
299 	  CE_INTERRUPT_IDX(5),
300 	  CE_INTERRUPT_IDX(6),
301 	  CE_INTERRUPT_IDX(7),
302 	  CE_INTERRUPT_IDX(8),
303 	  CE_INTERRUPT_IDX(0),
304 	  CE_INTERRUPT_IDX(0),
305 	  CE_INTERRUPT_IDX(0),
306 #ifdef QCA_WIFI_QCN9224
307 	  CE_INTERRUPT_IDX(0),
308 	  CE_INTERRUPT_IDX(0),
309 	  CE_INTERRUPT_IDX(0),
310 	  CE_INTERRUPT_IDX(0),
311 #endif
312 	} },
313 	/* Interrupt assignment for 10 MSI combination */
314 	{{ CE_INTERRUPT_IDX(0),
315 	  CE_INTERRUPT_IDX(1),
316 	  CE_INTERRUPT_IDX(2),
317 	  CE_INTERRUPT_IDX(3),
318 	  CE_INTERRUPT_IDX(4),
319 	  CE_INTERRUPT_IDX(5),
320 	  CE_INTERRUPT_IDX(6),
321 	  CE_INTERRUPT_IDX(7),
322 	  CE_INTERRUPT_IDX(8),
323 	  CE_INTERRUPT_IDX(9),
324 	  CE_INTERRUPT_IDX(0),
325 	  CE_INTERRUPT_IDX(0),
326 #ifdef QCA_WIFI_QCN9224
327 	  CE_INTERRUPT_IDX(0),
328 	  CE_INTERRUPT_IDX(0),
329 	  CE_INTERRUPT_IDX(0),
330 	  CE_INTERRUPT_IDX(0),
331 #endif
332 	} },
333 	/* Interrupt assignment for 11 MSI combination */
334 	{{ CE_INTERRUPT_IDX(0),
335 	  CE_INTERRUPT_IDX(1),
336 	  CE_INTERRUPT_IDX(2),
337 	  CE_INTERRUPT_IDX(3),
338 	  CE_INTERRUPT_IDX(4),
339 	  CE_INTERRUPT_IDX(5),
340 	  CE_INTERRUPT_IDX(6),
341 	  CE_INTERRUPT_IDX(7),
342 	  CE_INTERRUPT_IDX(8),
343 	  CE_INTERRUPT_IDX(9),
344 	  CE_INTERRUPT_IDX(10),
345 	  CE_INTERRUPT_IDX(0),
346 #ifdef QCA_WIFI_QCN9224
347 	  CE_INTERRUPT_IDX(0),
348 	  CE_INTERRUPT_IDX(0),
349 	  CE_INTERRUPT_IDX(0),
350 	  CE_INTERRUPT_IDX(0),
351 #endif
352 	} },
353 	/* Interrupt assignment for 12 MSI combination */
354 	{{ CE_INTERRUPT_IDX(0),
355 	  CE_INTERRUPT_IDX(1),
356 	  CE_INTERRUPT_IDX(2),
357 	  CE_INTERRUPT_IDX(3),
358 	  CE_INTERRUPT_IDX(4),
359 	  CE_INTERRUPT_IDX(5),
360 	  CE_INTERRUPT_IDX(6),
361 	  CE_INTERRUPT_IDX(7),
362 	  CE_INTERRUPT_IDX(8),
363 	  CE_INTERRUPT_IDX(9),
364 	  CE_INTERRUPT_IDX(10),
365 	  CE_INTERRUPT_IDX(11),
366 #ifdef QCA_WIFI_QCN9224
367 	  CE_INTERRUPT_IDX(0),
368 	  CE_INTERRUPT_IDX(0),
369 	  CE_INTERRUPT_IDX(0),
370 	  CE_INTERRUPT_IDX(0),
371 #endif
372 	} },
373 #ifdef QCA_WIFI_QCN9224
374 	/* Interrupt assignment for 13 MSI combination */
375 	{{ CE_INTERRUPT_IDX(0),
376 	  CE_INTERRUPT_IDX(1),
377 	  CE_INTERRUPT_IDX(2),
378 	  CE_INTERRUPT_IDX(3),
379 	  CE_INTERRUPT_IDX(4),
380 	  CE_INTERRUPT_IDX(5),
381 	  CE_INTERRUPT_IDX(6),
382 	  CE_INTERRUPT_IDX(7),
383 	  CE_INTERRUPT_IDX(8),
384 	  CE_INTERRUPT_IDX(9),
385 	  CE_INTERRUPT_IDX(10),
386 	  CE_INTERRUPT_IDX(11),
387 	  CE_INTERRUPT_IDX(12),
388 	  CE_INTERRUPT_IDX(0),
389 	  CE_INTERRUPT_IDX(0),
390 	  CE_INTERRUPT_IDX(0),
391 	} },
392 	/* Interrupt assignment for 14 MSI combination */
393 	{{ CE_INTERRUPT_IDX(0),
394 	  CE_INTERRUPT_IDX(1),
395 	  CE_INTERRUPT_IDX(2),
396 	  CE_INTERRUPT_IDX(3),
397 	  CE_INTERRUPT_IDX(4),
398 	  CE_INTERRUPT_IDX(5),
399 	  CE_INTERRUPT_IDX(6),
400 	  CE_INTERRUPT_IDX(7),
401 	  CE_INTERRUPT_IDX(8),
402 	  CE_INTERRUPT_IDX(9),
403 	  CE_INTERRUPT_IDX(10),
404 	  CE_INTERRUPT_IDX(11),
405 	  CE_INTERRUPT_IDX(12),
406 	  CE_INTERRUPT_IDX(13),
407 	  CE_INTERRUPT_IDX(0),
408 	  CE_INTERRUPT_IDX(0),
409 	} },
410 	/* Interrupt assignment for 15 MSI combination */
411 	{{ CE_INTERRUPT_IDX(0),
412 	  CE_INTERRUPT_IDX(1),
413 	  CE_INTERRUPT_IDX(2),
414 	  CE_INTERRUPT_IDX(3),
415 	  CE_INTERRUPT_IDX(4),
416 	  CE_INTERRUPT_IDX(5),
417 	  CE_INTERRUPT_IDX(6),
418 	  CE_INTERRUPT_IDX(7),
419 	  CE_INTERRUPT_IDX(8),
420 	  CE_INTERRUPT_IDX(9),
421 	  CE_INTERRUPT_IDX(10),
422 	  CE_INTERRUPT_IDX(11),
423 	  CE_INTERRUPT_IDX(12),
424 	  CE_INTERRUPT_IDX(13),
425 	  CE_INTERRUPT_IDX(14),
426 	  CE_INTERRUPT_IDX(0),
427 	} },
428 	/* Interrupt assignment for 16 MSI combination */
429 	{{ CE_INTERRUPT_IDX(0),
430 	  CE_INTERRUPT_IDX(1),
431 	  CE_INTERRUPT_IDX(2),
432 	  CE_INTERRUPT_IDX(3),
433 	  CE_INTERRUPT_IDX(4),
434 	  CE_INTERRUPT_IDX(5),
435 	  CE_INTERRUPT_IDX(6),
436 	  CE_INTERRUPT_IDX(7),
437 	  CE_INTERRUPT_IDX(8),
438 	  CE_INTERRUPT_IDX(9),
439 	  CE_INTERRUPT_IDX(10),
440 	  CE_INTERRUPT_IDX(11),
441 	  CE_INTERRUPT_IDX(12),
442 	  CE_INTERRUPT_IDX(13),
443 	  CE_INTERRUPT_IDX(14),
444 	  CE_INTERRUPT_IDX(15),
445 	} },
446 #endif
447 };
448 
449 
450 void hif_trigger_dump(struct hif_opaque_softc *hif_ctx,
451 		      uint8_t cmd_id, bool start)
452 {
453 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
454 
455 	switch (cmd_id) {
456 	case AGC_DUMP:
457 		if (start)
458 			priv_start_agc(scn);
459 		else
460 			priv_dump_agc(scn);
461 		break;
462 	case CHANINFO_DUMP:
463 		if (start)
464 			priv_start_cap_chaninfo(scn);
465 		else
466 			priv_dump_chaninfo(scn);
467 		break;
468 	case BB_WATCHDOG_DUMP:
469 		priv_dump_bbwatchdog(scn);
470 		break;
471 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
472 	case PCIE_ACCESS_DUMP:
473 		hif_target_access_log_dump();
474 		break;
475 #endif
476 	default:
477 		hif_err("Invalid htc dump command: %d", cmd_id);
478 		break;
479 	}
480 }
481 
482 static void ce_poll_timeout(void *arg)
483 {
484 	struct CE_state *CE_state = (struct CE_state *)arg;
485 
486 	if (CE_state->timer_inited) {
487 		ce_per_engine_service(CE_state->scn, CE_state->id);
488 		qdf_timer_mod(&CE_state->poll_timer, CE_POLL_TIMEOUT);
489 	}
490 }
491 
492 static unsigned int roundup_pwr2(unsigned int n)
493 {
494 	int i;
495 	unsigned int test_pwr2;
496 
497 	if (!(n & (n - 1)))
498 		return n; /* already a power of 2 */
499 
500 	test_pwr2 = 4;
501 	for (i = 0; i < 29; i++) {
502 		if (test_pwr2 > n)
503 			return test_pwr2;
504 		test_pwr2 = test_pwr2 << 1;
505 	}
506 
507 	QDF_ASSERT(0); /* n too large */
508 	return 0;
509 }
510 
511 #define ADRASTEA_SRC_WR_INDEX_OFFSET 0x3C
512 #define ADRASTEA_DST_WR_INDEX_OFFSET 0x40
513 
514 static struct shadow_reg_cfg target_shadow_reg_cfg_map[] = {
515 	{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
516 	{ 3, ADRASTEA_SRC_WR_INDEX_OFFSET},
517 	{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
518 	{ 5, ADRASTEA_SRC_WR_INDEX_OFFSET},
519 	{ 7, ADRASTEA_SRC_WR_INDEX_OFFSET},
520 	{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
521 	{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
522 	{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
523 	{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
524 #ifdef QCA_WIFI_3_0_ADRASTEA
525 	{ 9, ADRASTEA_DST_WR_INDEX_OFFSET},
526 	{ 10, ADRASTEA_DST_WR_INDEX_OFFSET},
527 	{ 11, ADRASTEA_DST_WR_INDEX_OFFSET},
528 #endif
529 };
530 
531 #ifdef QCN7605_SUPPORT
532 static struct shadow_reg_cfg target_shadow_reg_cfg_map_qcn7605[] = {
533 	{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
534 	{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
535 	{ 5, ADRASTEA_SRC_WR_INDEX_OFFSET},
536 	{ 3, ADRASTEA_DST_WR_INDEX_OFFSET},
537 	{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
538 	{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
539 	{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
540 	{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
541 };
542 #endif
543 
544 #ifdef WLAN_FEATURE_EPPING
545 static struct shadow_reg_cfg target_shadow_reg_cfg_epping[] = {
546 	{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
547 	{ 3, ADRASTEA_SRC_WR_INDEX_OFFSET},
548 	{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
549 	{ 7, ADRASTEA_SRC_WR_INDEX_OFFSET},
550 	{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
551 	{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
552 	{ 5, ADRASTEA_DST_WR_INDEX_OFFSET},
553 	{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
554 	{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
555 };
556 #endif
557 
558 /* CE_PCI TABLE */
559 /*
560  * NOTE: the table below is out of date, though still a useful reference.
561  * Refer to target_service_to_ce_map and hif_map_service_to_pipe for the actual
562  * mapping of HTC services to HIF pipes.
563  */
564 /*
565  * This authoritative table defines Copy Engine configuration and the mapping
566  * of services/endpoints to CEs.  A subset of this information is passed to
567  * the Target during startup as a prerequisite to entering BMI phase.
568  * See:
569  *    target_service_to_ce_map - Target-side mapping
570  *    hif_map_service_to_pipe      - Host-side mapping
571  *    target_ce_config         - Target-side configuration
572  *    host_ce_config           - Host-side configuration
573    ============================================================================
574    Purpose    | Service / Endpoint   | CE   | Dire | Xfer     | Xfer
575  |                      |      | ctio | Size     | Frequency
576  |                      |      | n    |          |
577    ============================================================================
578    tx         | HTT_DATA (downlink)  | CE 0 | h->t | medium - | very frequent
579    descriptor |                      |      |      | O(100B)  | and regular
580    download   |                      |      |      |          |
581    ----------------------------------------------------------------------------
582    rx         | HTT_DATA (uplink)    | CE 1 | t->h | small -  | frequent and
583    indication |                      |      |      | O(10B)   | regular
584    upload     |                      |      |      |          |
585    ----------------------------------------------------------------------------
586    MSDU       | DATA_BK (uplink)     | CE 2 | t->h | large -  | rare
587    upload     |                      |      |      | O(1000B) | (frequent
588    e.g. noise |                      |      |      |          | during IP1.0
589    packets    |                      |      |      |          | testing)
590    ----------------------------------------------------------------------------
591    MSDU       | DATA_BK (downlink)   | CE 3 | h->t | large -  | very rare
592    download   |                      |      |      | O(1000B) | (frequent
593    e.g.       |                      |      |      |          | during IP1.0
594    misdirecte |                      |      |      |          | testing)
595    d EAPOL    |                      |      |      |          |
596    packets    |                      |      |      |          |
597    ----------------------------------------------------------------------------
598    n/a        | DATA_BE, DATA_VI     | CE 2 | t->h |          | never(?)
599  | DATA_VO (uplink)     |      |      |          |
600    ----------------------------------------------------------------------------
601    n/a        | DATA_BE, DATA_VI     | CE 3 | h->t |          | never(?)
602  | DATA_VO (downlink)   |      |      |          |
603    ----------------------------------------------------------------------------
604    WMI events | WMI_CONTROL (uplink) | CE 4 | t->h | medium - | infrequent
605  |                      |      |      | O(100B)  |
606    ----------------------------------------------------------------------------
607    WMI        | WMI_CONTROL          | CE 5 | h->t | medium - | infrequent
608    messages   | (downlink)           |      |      | O(100B)  |
609  |                      |      |      |          |
610    ----------------------------------------------------------------------------
611    n/a        | HTC_CTRL_RSVD,       | CE 1 | t->h |          | never(?)
612  | HTC_RAW_STREAMS      |      |      |          |
613  | (uplink)             |      |      |          |
614    ----------------------------------------------------------------------------
615    n/a        | HTC_CTRL_RSVD,       | CE 0 | h->t |          | never(?)
616  | HTC_RAW_STREAMS      |      |      |          |
617  | (downlink)           |      |      |          |
618    ----------------------------------------------------------------------------
619    diag       | none (raw CE)        | CE 7 | t<>h |    4     | Diag Window
620  |                      |      |      |          | infrequent
621    ============================================================================
622  */
623 
624 /*
625  * Map from service/endpoint to Copy Engine.
626  * This table is derived from the CE_PCI TABLE, above.
627  * It is passed to the Target at startup for use by firmware.
628  */
629 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
630 	{
631 		WMI_DATA_VO_SVC,
632 		PIPEDIR_OUT,    /* out = UL = host -> target */
633 		3,
634 	},
635 	{
636 		WMI_DATA_VO_SVC,
637 		PIPEDIR_IN,     /* in = DL = target -> host */
638 		2,
639 	},
640 	{
641 		WMI_DATA_BK_SVC,
642 		PIPEDIR_OUT,    /* out = UL = host -> target */
643 		3,
644 	},
645 	{
646 		WMI_DATA_BK_SVC,
647 		PIPEDIR_IN,     /* in = DL = target -> host */
648 		2,
649 	},
650 	{
651 		WMI_DATA_BE_SVC,
652 		PIPEDIR_OUT,    /* out = UL = host -> target */
653 		3,
654 	},
655 	{
656 		WMI_DATA_BE_SVC,
657 		PIPEDIR_IN,     /* in = DL = target -> host */
658 		2,
659 	},
660 	{
661 		WMI_DATA_VI_SVC,
662 		PIPEDIR_OUT,    /* out = UL = host -> target */
663 		3,
664 	},
665 	{
666 		WMI_DATA_VI_SVC,
667 		PIPEDIR_IN,     /* in = DL = target -> host */
668 		2,
669 	},
670 	{
671 		WMI_CONTROL_SVC,
672 		PIPEDIR_OUT,    /* out = UL = host -> target */
673 		3,
674 	},
675 	{
676 		WMI_CONTROL_SVC,
677 		PIPEDIR_IN,     /* in = DL = target -> host */
678 		2,
679 	},
680 	{
681 		HTC_CTRL_RSVD_SVC,
682 		PIPEDIR_OUT,    /* out = UL = host -> target */
683 		0,              /* could be moved to 3 (share with WMI) */
684 	},
685 	{
686 		HTC_CTRL_RSVD_SVC,
687 		PIPEDIR_IN,     /* in = DL = target -> host */
688 		2,
689 	},
690 	{
691 		HTC_RAW_STREAMS_SVC, /* not currently used */
692 		PIPEDIR_OUT,    /* out = UL = host -> target */
693 		0,
694 	},
695 	{
696 		HTC_RAW_STREAMS_SVC, /* not currently used */
697 		PIPEDIR_IN,     /* in = DL = target -> host */
698 		2,
699 	},
700 	{
701 		HTT_DATA_MSG_SVC,
702 		PIPEDIR_OUT,    /* out = UL = host -> target */
703 		4,
704 	},
705 	{
706 		HTT_DATA_MSG_SVC,
707 		PIPEDIR_IN,     /* in = DL = target -> host */
708 		1,
709 	},
710 	{
711 		WDI_IPA_TX_SVC,
712 		PIPEDIR_OUT,    /* in = DL = target -> host */
713 		5,
714 	},
715 #if defined(QCA_WIFI_3_0_ADRASTEA)
716 	{
717 		HTT_DATA2_MSG_SVC,
718 		PIPEDIR_IN,    /* in = DL = target -> host */
719 		9,
720 	},
721 	{
722 		HTT_DATA3_MSG_SVC,
723 		PIPEDIR_IN,    /* in = DL = target -> host */
724 		10,
725 	},
726 	{
727 		PACKET_LOG_SVC,
728 		PIPEDIR_IN,    /* in = DL = target -> host */
729 		11,
730 	},
731 #endif
732 	/* (Additions here) */
733 
734 	{                       /* Must be last */
735 		0,
736 		0,
737 		0,
738 	},
739 };
740 
741 /* PIPEDIR_OUT = HOST to Target */
742 /* PIPEDIR_IN  = TARGET to HOST */
743 #if (defined(QCA_WIFI_QCA8074))
744 static struct service_to_pipe target_service_to_ce_map_qca8074[] = {
745 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
746 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
747 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
748 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
749 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
750 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
751 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
752 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
753 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
754 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
755 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
756 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
757 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
758 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
759 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
760 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
761 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
762 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
763 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
764 	/* (Additions here) */
765 	{ 0, 0, 0, },
766 };
767 #else
768 static struct service_to_pipe target_service_to_ce_map_qca8074[] = {
769 };
770 #endif
771 
772 #if (defined(QCA_WIFI_QCA9574))
773 static struct service_to_pipe target_service_to_ce_map_qca9574[] = {
774 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
775 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
776 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
777 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
778 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
779 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
780 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
781 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
782 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
783 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
784 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
785 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
786 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
787 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
788 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
789 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
790 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
791 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
792 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
793 	/* (Additions here) */
794 	{ 0, 0, 0, },
795 };
796 #else
797 static struct service_to_pipe target_service_to_ce_map_qca9574[] = {
798 };
799 #endif
800 
801 #if (defined(QCA_WIFI_QCA8074V2))
802 static struct service_to_pipe target_service_to_ce_map_qca8074_v2[] = {
803 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
804 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
805 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
806 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
807 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
808 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
809 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
810 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
811 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
812 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
813 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
814 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
815 	{ WMI_CONTROL_SVC_WMAC2, PIPEDIR_OUT, 9},
816 	{ WMI_CONTROL_SVC_WMAC2, PIPEDIR_IN, 2},
817 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
818 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
819 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
820 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
821 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
822 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
823 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
824 	/* (Additions here) */
825 	{ 0, 0, 0, },
826 };
827 #else
828 static struct service_to_pipe target_service_to_ce_map_qca8074_v2[] = {
829 };
830 #endif
831 
832 #if (defined(QCA_WIFI_QCA6018))
833 static struct service_to_pipe target_service_to_ce_map_qca6018[] = {
834 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
835 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
836 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
837 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
838 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
839 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
840 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
841 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
842 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
843 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
844 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
845 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
846 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
847 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
848 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
849 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
850 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
851 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
852 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
853 	/* (Additions here) */
854 	{ 0, 0, 0, },
855 };
856 #else
857 static struct service_to_pipe target_service_to_ce_map_qca6018[] = {
858 };
859 #endif
860 
861 #if (defined(QCA_WIFI_QCN9000))
862 static struct service_to_pipe target_service_to_ce_map_qcn9000[] = {
863 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
864 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
865 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
866 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
867 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
868 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
869 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
870 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
871 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
872 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
873 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
874 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
875 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
876 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
877 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
878 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
879 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
880 	/* (Additions here) */
881 	{ 0, 0, 0, },
882 };
883 #else
884 static struct service_to_pipe target_service_to_ce_map_qcn9000[] = {
885 };
886 #endif
887 
888 #if (defined(QCA_WIFI_QCA5332))
889 static struct service_to_pipe target_service_to_ce_map_qca5332[] = {
890 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
891 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
892 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
893 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
894 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
895 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
896 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
897 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
898 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
899 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
900 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
901 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
902 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
903 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
904 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
905 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
906 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
907 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 9, },
908 	/* (Additions here) */
909 	{ 0, 0, 0, },
910 };
911 #else
912 static struct service_to_pipe target_service_to_ce_map_qca5332[] = {
913 };
914 #endif
915 
916 #if (defined(QCA_WIFI_QCN9224))
917 static struct service_to_pipe target_service_to_ce_map_qcn9224[] = {
918 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
919 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
920 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
921 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
922 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
923 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
924 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
925 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
926 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
927 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
928 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
929 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
930 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
931 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
932 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
933 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
934 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7, },
935 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2, },
936 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
937 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 14, },
938 	{ WMI_CONTROL_DBR_SVC, PIPEDIR_IN, 14, },
939 	/* (Additions here) */
940 	{ 0, 0, 0, },
941 };
942 #endif
943 
944 #if (defined(QCA_WIFI_QCA5018))
945 static struct service_to_pipe target_service_to_ce_map_qca5018[] = {
946 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
947 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
948 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
949 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
950 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
951 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
952 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
953 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
954 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
955 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
956 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
957 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
958 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
959 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
960 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
961 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
962 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
963 	/* (Additions here) */
964 	{ 0, 0, 0, },
965 };
966 #else
967 static struct service_to_pipe target_service_to_ce_map_qca5018[] = {
968 };
969 #endif
970 
971 /* PIPEDIR_OUT = HOST to Target */
972 /* PIPEDIR_IN  = TARGET to HOST */
973 #ifdef QCN7605_SUPPORT
974 static struct service_to_pipe target_service_to_ce_map_qcn7605[] = {
975 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 0, },
976 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
977 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 0, },
978 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
979 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 0, },
980 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
981 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 0, },
982 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
983 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 0, },
984 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
985 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
986 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
987 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0, },
988 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 2, },
989 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
990 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
991 	{ HTT_DATA2_MSG_SVC, PIPEDIR_IN, 3, },
992 #ifdef IPA_OFFLOAD
993 	{ WDI_IPA_TX_SVC, PIPEDIR_OUT, 5, },
994 #else
995 	{ HTT_DATA3_MSG_SVC, PIPEDIR_IN, 8, },
996 #endif
997 	{ PACKET_LOG_SVC, PIPEDIR_IN, 7, },
998 	/* (Additions here) */
999 	{ 0, 0, 0, },
1000 };
1001 #endif
1002 
1003 #if (defined(QCA_WIFI_QCA6290))
1004 #ifdef QCA_6290_AP_MODE
1005 static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
1006 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1007 	{ WMI_DATA_VO_SVC, PIPEDIR_IN , 2, },
1008 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1009 	{ WMI_DATA_BK_SVC, PIPEDIR_IN , 2, },
1010 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1011 	{ WMI_DATA_BE_SVC, PIPEDIR_IN , 2, },
1012 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1013 	{ WMI_DATA_VI_SVC, PIPEDIR_IN , 2, },
1014 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1015 	{ WMI_CONTROL_SVC, PIPEDIR_IN , 2, },
1016 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1017 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN , 2, },
1018 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1019 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN , 1, },
1020 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
1021 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
1022 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
1023 	/* (Additions here) */
1024 	{ 0, 0, 0, },
1025 };
1026 #else
1027 static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
1028 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1029 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1030 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1031 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1032 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1033 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1034 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1035 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1036 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1037 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1038 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1039 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1040 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1041 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1042 	/* (Additions here) */
1043 	{ 0, 0, 0, },
1044 };
1045 #endif
1046 #else
1047 static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
1048 };
1049 #endif
1050 
1051 #if (defined(QCA_WIFI_QCA6390))
1052 static struct service_to_pipe target_service_to_ce_map_qca6390[] = {
1053 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1054 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1055 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1056 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1057 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1058 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1059 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1060 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1061 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1062 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1063 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1064 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1065 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1066 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1067 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
1068 	/* (Additions here) */
1069 	{ 0, 0, 0, },
1070 };
1071 #else
1072 static struct service_to_pipe target_service_to_ce_map_qca6390[] = {
1073 };
1074 #endif
1075 
1076 static struct service_to_pipe target_service_to_ce_map_qca6490[] = {
1077 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1078 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1079 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1080 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1081 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1082 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1083 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1084 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1085 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1086 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1087 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1088 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1089 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1090 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1091 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
1092 	/* (Additions here) */
1093 	{ 0, 0, 0, },
1094 };
1095 
1096 #if (defined(QCA_WIFI_QCA6750))
1097 static struct service_to_pipe target_service_to_ce_map_qca6750[] = {
1098 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1099 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1100 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1101 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1102 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1103 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1104 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1105 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1106 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1107 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1108 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1109 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1110 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1111 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1112 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
1113 #ifdef WLAN_FEATURE_WMI_DIAG_OVER_CE7
1114 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 7, },
1115 #endif
1116 	/* (Additions here) */
1117 	{ 0, 0, 0, },
1118 };
1119 #else
1120 static struct service_to_pipe target_service_to_ce_map_qca6750[] = {
1121 };
1122 #endif
1123 
1124 #if (defined(QCA_WIFI_KIWI))
1125 static struct service_to_pipe target_service_to_ce_map_kiwi[] = {
1126 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1127 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1128 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1129 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1130 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1131 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1132 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1133 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1134 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1135 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1136 #ifdef FEATURE_XPAN
1137 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 4, },
1138 #else
1139 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1140 #endif
1141 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1142 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1143 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1144 #ifdef WLAN_FEATURE_WMI_DIAG_OVER_CE7
1145 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 7, },
1146 #endif
1147 #ifdef FEATURE_XPAN
1148 	{ LPASS_DATA_MSG_SVC, PIPEDIR_OUT, 0, },
1149 	{ LPASS_DATA_MSG_SVC, PIPEDIR_IN, 5, },
1150 #endif
1151 	/* (Additions here) */
1152 	{ 0, 0, 0, },
1153 };
1154 #else
1155 static struct service_to_pipe target_service_to_ce_map_kiwi[] = {
1156 };
1157 #endif
1158 
1159 static struct service_to_pipe target_service_to_ce_map_ar900b[] = {
1160 	{
1161 		WMI_DATA_VO_SVC,
1162 		PIPEDIR_OUT,    /* out = UL = host -> target */
1163 		3,
1164 	},
1165 	{
1166 		WMI_DATA_VO_SVC,
1167 		PIPEDIR_IN,     /* in = DL = target -> host */
1168 		2,
1169 	},
1170 	{
1171 		WMI_DATA_BK_SVC,
1172 		PIPEDIR_OUT,    /* out = UL = host -> target */
1173 		3,
1174 	},
1175 	{
1176 		WMI_DATA_BK_SVC,
1177 		PIPEDIR_IN,     /* in = DL = target -> host */
1178 		2,
1179 	},
1180 	{
1181 		WMI_DATA_BE_SVC,
1182 		PIPEDIR_OUT,    /* out = UL = host -> target */
1183 		3,
1184 	},
1185 	{
1186 		WMI_DATA_BE_SVC,
1187 		PIPEDIR_IN,     /* in = DL = target -> host */
1188 		2,
1189 	},
1190 	{
1191 		WMI_DATA_VI_SVC,
1192 		PIPEDIR_OUT,    /* out = UL = host -> target */
1193 		3,
1194 	},
1195 	{
1196 		WMI_DATA_VI_SVC,
1197 		PIPEDIR_IN,     /* in = DL = target -> host */
1198 		2,
1199 	},
1200 	{
1201 		WMI_CONTROL_SVC,
1202 		PIPEDIR_OUT,    /* out = UL = host -> target */
1203 		3,
1204 	},
1205 	{
1206 		WMI_CONTROL_SVC,
1207 		PIPEDIR_IN,     /* in = DL = target -> host */
1208 		2,
1209 	},
1210 	{
1211 		HTC_CTRL_RSVD_SVC,
1212 		PIPEDIR_OUT,    /* out = UL = host -> target */
1213 		0,              /* could be moved to 3 (share with WMI) */
1214 	},
1215 	{
1216 		HTC_CTRL_RSVD_SVC,
1217 		PIPEDIR_IN,     /* in = DL = target -> host */
1218 		1,
1219 	},
1220 	{
1221 		HTC_RAW_STREAMS_SVC, /* not currently used */
1222 		PIPEDIR_OUT,    /* out = UL = host -> target */
1223 		0,
1224 	},
1225 	{
1226 		HTC_RAW_STREAMS_SVC, /* not currently used */
1227 		PIPEDIR_IN,     /* in = DL = target -> host */
1228 		1,
1229 	},
1230 	{
1231 		HTT_DATA_MSG_SVC,
1232 		PIPEDIR_OUT,    /* out = UL = host -> target */
1233 		4,
1234 	},
1235 #ifdef WLAN_FEATURE_FASTPATH
1236 	{
1237 		HTT_DATA_MSG_SVC,
1238 		PIPEDIR_IN,     /* in = DL = target -> host */
1239 		5,
1240 	},
1241 #else /* WLAN_FEATURE_FASTPATH */
1242 	{
1243 		HTT_DATA_MSG_SVC,
1244 		PIPEDIR_IN,  /* in = DL = target -> host */
1245 		1,
1246 	},
1247 #endif /* WLAN_FEATURE_FASTPATH */
1248 
1249 	/* (Additions here) */
1250 
1251 	{                       /* Must be last */
1252 		0,
1253 		0,
1254 		0,
1255 	},
1256 };
1257 
1258 static struct shadow_reg_cfg *target_shadow_reg_cfg = target_shadow_reg_cfg_map;
1259 static int shadow_cfg_sz = sizeof(target_shadow_reg_cfg_map);
1260 
1261 #ifdef WLAN_FEATURE_EPPING
1262 static struct service_to_pipe target_service_to_ce_map_wlan_epping[] = {
1263 	{WMI_DATA_VO_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
1264 	{WMI_DATA_VO_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
1265 	{WMI_DATA_BK_SVC, PIPEDIR_OUT, 4,},     /* out = UL = host -> target */
1266 	{WMI_DATA_BK_SVC, PIPEDIR_IN, 1,},      /* in = DL = target -> host */
1267 	{WMI_DATA_BE_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
1268 	{WMI_DATA_BE_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
1269 	{WMI_DATA_VI_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
1270 	{WMI_DATA_VI_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
1271 	{WMI_CONTROL_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
1272 	{WMI_CONTROL_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
1273 	{HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0,},   /* out = UL = host -> target */
1274 	{HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2,},    /* in = DL = target -> host */
1275 	{HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0,}, /* out = UL = host -> target */
1276 	{HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 2,},  /* in = DL = target -> host */
1277 	{HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4,},    /* out = UL = host -> target */
1278 	{HTT_DATA_MSG_SVC, PIPEDIR_IN, 1,},     /* in = DL = target -> host */
1279 	{0, 0, 0,},             /* Must be last */
1280 };
1281 
1282 void hif_select_epping_service_to_pipe_map(struct service_to_pipe
1283 					   **tgt_svc_map_to_use,
1284 					   uint32_t *sz_tgt_svc_map_to_use)
1285 {
1286 	*tgt_svc_map_to_use = target_service_to_ce_map_wlan_epping;
1287 	*sz_tgt_svc_map_to_use =
1288 			sizeof(target_service_to_ce_map_wlan_epping);
1289 }
1290 #endif
1291 
1292 #ifdef QCN7605_SUPPORT
1293 static inline
1294 void hif_select_ce_map_qcn7605(struct service_to_pipe **tgt_svc_map_to_use,
1295 			       uint32_t *sz_tgt_svc_map_to_use)
1296 {
1297 	*tgt_svc_map_to_use = target_service_to_ce_map_qcn7605;
1298 	*sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_qcn7605);
1299 }
1300 #else
1301 static inline
1302 void hif_select_ce_map_qcn7605(struct service_to_pipe **tgt_svc_map_to_use,
1303 			       uint32_t *sz_tgt_svc_map_to_use)
1304 {
1305 	hif_err("QCN7605 not supported");
1306 }
1307 #endif
1308 
1309 #ifdef QCA_WIFI_QCN9224
1310 static
1311 void hif_set_ce_config_qcn9224(struct hif_softc *scn,
1312 			       struct HIF_CE_state *hif_state)
1313 {
1314 	hif_state->host_ce_config = host_ce_config_wlan_qcn9224;
1315 	hif_state->target_ce_config = target_ce_config_wlan_qcn9224;
1316 	hif_state->target_ce_config_sz =
1317 				 sizeof(target_ce_config_wlan_qcn9224);
1318 	scn->ce_count = QCN_9224_CE_COUNT;
1319 	scn->disable_wake_irq = 1;
1320 }
1321 
1322 static
1323 void hif_select_ce_map_qcn9224(struct service_to_pipe **tgt_svc_map_to_use,
1324 			       uint32_t *sz_tgt_svc_map_to_use)
1325 {
1326 	*tgt_svc_map_to_use = target_service_to_ce_map_qcn9224;
1327 	*sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_qcn9224);
1328 }
1329 #else
1330 static inline
1331 void hif_set_ce_config_qcn9224(struct hif_softc *scn,
1332 			       struct HIF_CE_state *hif_state)
1333 {
1334 	hif_err("QCN9224 not supported");
1335 }
1336 
1337 static inline
1338 void hif_select_ce_map_qcn9224(struct service_to_pipe **tgt_svc_map_to_use,
1339 			       uint32_t *sz_tgt_svc_map_to_use)
1340 {
1341 	hif_err("QCN9224 not supported");
1342 }
1343 #endif
1344 
1345 static void hif_select_service_to_pipe_map(struct hif_softc *scn,
1346 				    struct service_to_pipe **tgt_svc_map_to_use,
1347 				    uint32_t *sz_tgt_svc_map_to_use)
1348 {
1349 	uint32_t mode = hif_get_conparam(scn);
1350 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1351 	struct hif_target_info *tgt_info = &scn->target_info;
1352 
1353 	if (QDF_IS_EPPING_ENABLED(mode)) {
1354 		hif_select_epping_service_to_pipe_map(tgt_svc_map_to_use,
1355 						      sz_tgt_svc_map_to_use);
1356 	} else {
1357 		switch (tgt_info->target_type) {
1358 		default:
1359 			*tgt_svc_map_to_use = target_service_to_ce_map_wlan;
1360 			*sz_tgt_svc_map_to_use =
1361 				sizeof(target_service_to_ce_map_wlan);
1362 			break;
1363 		case TARGET_TYPE_QCN7605:
1364 			hif_select_ce_map_qcn7605(tgt_svc_map_to_use,
1365 						  sz_tgt_svc_map_to_use);
1366 			break;
1367 		case TARGET_TYPE_AR900B:
1368 		case TARGET_TYPE_QCA9984:
1369 		case TARGET_TYPE_QCA9888:
1370 		case TARGET_TYPE_AR9888:
1371 		case TARGET_TYPE_AR9888V2:
1372 			*tgt_svc_map_to_use = target_service_to_ce_map_ar900b;
1373 			*sz_tgt_svc_map_to_use =
1374 				sizeof(target_service_to_ce_map_ar900b);
1375 			break;
1376 		case TARGET_TYPE_QCA6290:
1377 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6290;
1378 			*sz_tgt_svc_map_to_use =
1379 				sizeof(target_service_to_ce_map_qca6290);
1380 			break;
1381 		case TARGET_TYPE_QCA6390:
1382 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6390;
1383 			*sz_tgt_svc_map_to_use =
1384 				sizeof(target_service_to_ce_map_qca6390);
1385 			break;
1386 		case TARGET_TYPE_QCA6490:
1387 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6490;
1388 			*sz_tgt_svc_map_to_use =
1389 				sizeof(target_service_to_ce_map_qca6490);
1390 			break;
1391 		case TARGET_TYPE_QCA6750:
1392 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6750;
1393 			*sz_tgt_svc_map_to_use =
1394 				sizeof(target_service_to_ce_map_qca6750);
1395 			break;
1396 		case TARGET_TYPE_KIWI:
1397 		case TARGET_TYPE_MANGO:
1398 			*tgt_svc_map_to_use = target_service_to_ce_map_kiwi;
1399 			*sz_tgt_svc_map_to_use =
1400 				sizeof(target_service_to_ce_map_kiwi);
1401 			break;
1402 		case TARGET_TYPE_QCA8074:
1403 			*tgt_svc_map_to_use = target_service_to_ce_map_qca8074;
1404 			*sz_tgt_svc_map_to_use =
1405 				sizeof(target_service_to_ce_map_qca8074);
1406 			break;
1407 		case TARGET_TYPE_QCA8074V2:
1408 			*tgt_svc_map_to_use =
1409 				target_service_to_ce_map_qca8074_v2;
1410 			*sz_tgt_svc_map_to_use =
1411 				sizeof(target_service_to_ce_map_qca8074_v2);
1412 			break;
1413 		case TARGET_TYPE_QCA9574:
1414 			*tgt_svc_map_to_use =
1415 				target_service_to_ce_map_qca9574;
1416 			*sz_tgt_svc_map_to_use =
1417 				sizeof(target_service_to_ce_map_qca9574);
1418 			break;
1419 		case TARGET_TYPE_QCA6018:
1420 			*tgt_svc_map_to_use =
1421 				target_service_to_ce_map_qca6018;
1422 			*sz_tgt_svc_map_to_use =
1423 				sizeof(target_service_to_ce_map_qca6018);
1424 			break;
1425 		case TARGET_TYPE_QCN9000:
1426 			*tgt_svc_map_to_use =
1427 				target_service_to_ce_map_qcn9000;
1428 			*sz_tgt_svc_map_to_use =
1429 				sizeof(target_service_to_ce_map_qcn9000);
1430 			break;
1431 		case TARGET_TYPE_QCN9224:
1432 			hif_select_ce_map_qcn9224(tgt_svc_map_to_use,
1433 						  sz_tgt_svc_map_to_use);
1434 			break;
1435 		case TARGET_TYPE_QCA5332:
1436 			*tgt_svc_map_to_use = target_service_to_ce_map_qca5332;
1437 			*sz_tgt_svc_map_to_use =
1438 				sizeof(target_service_to_ce_map_qca5332);
1439 			break;
1440 		case TARGET_TYPE_QCA5018:
1441 		case TARGET_TYPE_QCN6122:
1442 			*tgt_svc_map_to_use =
1443 				target_service_to_ce_map_qca5018;
1444 			*sz_tgt_svc_map_to_use =
1445 				sizeof(target_service_to_ce_map_qca5018);
1446 			break;
1447 		}
1448 	}
1449 	hif_state->tgt_svc_map = *tgt_svc_map_to_use;
1450 	hif_state->sz_tgt_svc_map = *sz_tgt_svc_map_to_use /
1451 					sizeof(struct service_to_pipe);
1452 }
1453 
1454 /**
1455  * ce_mark_datapath() - marks the ce_state->htt_rx_data accordingly
1456  * @ce_state : pointer to the state context of the CE
1457  *
1458  * Description:
1459  *   Sets htt_rx_data attribute of the state structure if the
1460  *   CE serves one of the HTT DATA services.
1461  *
1462  * Return:
1463  *  false (attribute set to false)
1464  *  true  (attribute set to true);
1465  */
1466 static bool ce_mark_datapath(struct CE_state *ce_state)
1467 {
1468 	struct service_to_pipe *svc_map;
1469 	uint32_t map_sz, map_len;
1470 	int    i;
1471 	bool   rc = false;
1472 
1473 	if (ce_state) {
1474 		hif_select_service_to_pipe_map(ce_state->scn, &svc_map,
1475 					       &map_sz);
1476 
1477 		map_len = map_sz / sizeof(struct service_to_pipe);
1478 		for (i = 0; i < map_len; i++) {
1479 			if ((svc_map[i].pipenum == ce_state->id) &&
1480 			    ((svc_map[i].service_id == HTT_DATA_MSG_SVC)  ||
1481 			     (svc_map[i].service_id == HTT_DATA2_MSG_SVC) ||
1482 			     (svc_map[i].service_id == HTT_DATA3_MSG_SVC))) {
1483 				/* HTT CEs are unidirectional */
1484 				if (svc_map[i].pipedir == PIPEDIR_IN)
1485 					ce_state->htt_rx_data = true;
1486 				else
1487 					ce_state->htt_tx_data = true;
1488 				rc = true;
1489 			}
1490 		}
1491 	}
1492 	return rc;
1493 }
1494 
1495 /**
1496  * hif_get_max_wmi_ep() - Get max WMI EPs configured in target svc map
1497  * @hif_ctx: hif opaque handle
1498  *
1499  * Description:
1500  *   Gets number of WMI EPs configured in target svc map. Since EP map
1501  *   include IN and OUT direction pipes, count only OUT pipes to get EPs
1502  *   configured for WMI service.
1503  *
1504  * Return:
1505  *  uint8_t: count for WMI eps in target svc map
1506  */
1507 uint8_t hif_get_max_wmi_ep(struct hif_opaque_softc *hif_ctx)
1508 {
1509 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
1510 	struct service_to_pipe *svc_map;
1511 	uint32_t map_sz, map_len;
1512 	int    i;
1513 	uint8_t   wmi_ep_count = 0;
1514 
1515 	hif_select_service_to_pipe_map(scn, &svc_map,
1516 				       &map_sz);
1517 	map_len = map_sz / sizeof(struct service_to_pipe);
1518 
1519 	for (i = 0; i < map_len; i++) {
1520 		/* Count number of WMI EPs based on out direction */
1521 		if ((svc_map[i].pipedir == PIPEDIR_OUT) &&
1522 		    ((svc_map[i].service_id == WMI_CONTROL_SVC)  ||
1523 		    (svc_map[i].service_id == WMI_CONTROL_SVC_WMAC1) ||
1524 		    (svc_map[i].service_id == WMI_CONTROL_SVC_WMAC2))) {
1525 			wmi_ep_count++;
1526 		}
1527 	}
1528 
1529 	return wmi_ep_count;
1530 }
1531 
1532 /**
1533  * ce_ring_test_initial_indexes() - tests the initial ce ring indexes
1534  * @ce_id: ce in question
1535  * @ring: ring state being examined
1536  * @type: "src_ring" or "dest_ring" string for identifying the ring
1537  *
1538  * Warns on non-zero index values.
1539  * Causes a kernel panic if the ring is not empty durring initialization.
1540  */
1541 static void ce_ring_test_initial_indexes(int ce_id, struct CE_ring_state *ring,
1542 					 char *type)
1543 {
1544 	if (ring->write_index != 0 || ring->sw_index != 0)
1545 		hif_err("ce %d, %s, initial sw_index = %d, initial write_index =%d",
1546 			  ce_id, type, ring->sw_index, ring->write_index);
1547 	if (ring->write_index != ring->sw_index)
1548 		QDF_BUG(0);
1549 }
1550 
1551 #ifdef IPA_OFFLOAD
1552 /**
1553  * ce_alloc_desc_ring() - Allocate copyengine descriptor ring
1554  * @scn: softc instance
1555  * @ce_id: ce in question
1556  * @base_addr: pointer to copyengine ring base address
1557  * @ce_ring: copyengine instance
1558  * @nentries: number of entries should be allocated
1559  * @desc_size: ce desc size
1560  *
1561  * Return: QDF_STATUS_SUCCESS - for success
1562  */
1563 static QDF_STATUS ce_alloc_desc_ring(struct hif_softc *scn, unsigned int CE_id,
1564 				     qdf_dma_addr_t *base_addr,
1565 				     struct CE_ring_state *ce_ring,
1566 				     unsigned int nentries, uint32_t desc_size)
1567 {
1568 	if ((CE_id == HIF_PCI_IPA_UC_ASSIGNED_CE) &&
1569 	    !ce_srng_based(scn)) {
1570 		if (!scn->ipa_ce_ring) {
1571 			scn->ipa_ce_ring = qdf_mem_shared_mem_alloc(
1572 				scn->qdf_dev,
1573 				nentries * desc_size + CE_DESC_RING_ALIGN);
1574 			if (!scn->ipa_ce_ring) {
1575 				hif_err(
1576 				"Failed to allocate memory for IPA ce ring");
1577 				return QDF_STATUS_E_NOMEM;
1578 			}
1579 		}
1580 		*base_addr = qdf_mem_get_dma_addr(scn->qdf_dev,
1581 						&scn->ipa_ce_ring->mem_info);
1582 		ce_ring->base_addr_owner_space_unaligned =
1583 						scn->ipa_ce_ring->vaddr;
1584 	} else {
1585 		ce_ring->base_addr_owner_space_unaligned =
1586 			hif_mem_alloc_consistent_unaligned
1587 					(scn,
1588 					 (nentries * desc_size +
1589 					  CE_DESC_RING_ALIGN),
1590 					 base_addr,
1591 					 ce_ring->hal_ring_type,
1592 					 &ce_ring->is_ring_prealloc);
1593 
1594 		if (!ce_ring->base_addr_owner_space_unaligned) {
1595 			hif_err("Failed to allocate DMA memory for ce ring id: %u",
1596 			       CE_id);
1597 			return QDF_STATUS_E_NOMEM;
1598 		}
1599 	}
1600 	return QDF_STATUS_SUCCESS;
1601 }
1602 
1603 /**
1604  * ce_free_desc_ring() - Frees copyengine descriptor ring
1605  * @scn: softc instance
1606  * @ce_id: ce in question
1607  * @ce_ring: copyengine instance
1608  * @desc_size: ce desc size
1609  *
1610  * Return: None
1611  */
1612 static void ce_free_desc_ring(struct hif_softc *scn, unsigned int CE_id,
1613 			      struct CE_ring_state *ce_ring, uint32_t desc_size)
1614 {
1615 	if ((CE_id == HIF_PCI_IPA_UC_ASSIGNED_CE) &&
1616 	    !ce_srng_based(scn)) {
1617 		if (scn->ipa_ce_ring) {
1618 			qdf_mem_shared_mem_free(scn->qdf_dev,
1619 						scn->ipa_ce_ring);
1620 			scn->ipa_ce_ring = NULL;
1621 		}
1622 		ce_ring->base_addr_owner_space_unaligned = NULL;
1623 	} else {
1624 		hif_mem_free_consistent_unaligned
1625 			(scn,
1626 			 ce_ring->nentries * desc_size + CE_DESC_RING_ALIGN,
1627 			 ce_ring->base_addr_owner_space_unaligned,
1628 			 ce_ring->base_addr_CE_space, 0,
1629 			 ce_ring->is_ring_prealloc);
1630 		ce_ring->base_addr_owner_space_unaligned = NULL;
1631 	}
1632 }
1633 #else
1634 static QDF_STATUS ce_alloc_desc_ring(struct hif_softc *scn, unsigned int CE_id,
1635 				     qdf_dma_addr_t *base_addr,
1636 				     struct CE_ring_state *ce_ring,
1637 				     unsigned int nentries, uint32_t desc_size)
1638 {
1639 	ce_ring->base_addr_owner_space_unaligned =
1640 			hif_mem_alloc_consistent_unaligned
1641 					(scn,
1642 					 (nentries * desc_size +
1643 					  CE_DESC_RING_ALIGN),
1644 					 base_addr,
1645 					 ce_ring->hal_ring_type,
1646 					 &ce_ring->is_ring_prealloc);
1647 
1648 	if (!ce_ring->base_addr_owner_space_unaligned) {
1649 		hif_err("Failed to allocate DMA memory for ce ring id: %u",
1650 		       CE_id);
1651 		return QDF_STATUS_E_NOMEM;
1652 	}
1653 	return QDF_STATUS_SUCCESS;
1654 }
1655 
1656 static void ce_free_desc_ring(struct hif_softc *scn, unsigned int CE_id,
1657 			      struct CE_ring_state *ce_ring, uint32_t desc_size)
1658 {
1659 	hif_mem_free_consistent_unaligned
1660 		(scn,
1661 		 ce_ring->nentries * desc_size + CE_DESC_RING_ALIGN,
1662 		 ce_ring->base_addr_owner_space_unaligned,
1663 		 ce_ring->base_addr_CE_space, 0,
1664 		 ce_ring->is_ring_prealloc);
1665 	ce_ring->base_addr_owner_space_unaligned = NULL;
1666 }
1667 #endif /* IPA_OFFLOAD */
1668 
1669 /*
1670  * TODO: Need to explore the possibility of having this as part of a
1671  * target context instead of a global array.
1672  */
1673 static struct ce_ops* (*ce_attach_register[CE_MAX_TARGET_TYPE])(void);
1674 
1675 void ce_service_register_module(enum ce_target_type target_type,
1676 				struct ce_ops* (*ce_attach)(void))
1677 {
1678 	if (target_type < CE_MAX_TARGET_TYPE)
1679 		ce_attach_register[target_type] = ce_attach;
1680 }
1681 
1682 qdf_export_symbol(ce_service_register_module);
1683 
1684 /**
1685  * ce_srng_based() - Does this target use srng
1686  * @ce_state : pointer to the state context of the CE
1687  *
1688  * Description:
1689  *   returns true if the target is SRNG based
1690  *
1691  * Return:
1692  *  false (attribute set to false)
1693  *  true  (attribute set to true);
1694  */
1695 bool ce_srng_based(struct hif_softc *scn)
1696 {
1697 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
1698 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
1699 
1700 	switch (tgt_info->target_type) {
1701 	case TARGET_TYPE_QCA8074:
1702 	case TARGET_TYPE_QCA8074V2:
1703 	case TARGET_TYPE_QCA6290:
1704 	case TARGET_TYPE_QCA6390:
1705 	case TARGET_TYPE_QCA6490:
1706 	case TARGET_TYPE_QCA6750:
1707 	case TARGET_TYPE_QCA6018:
1708 	case TARGET_TYPE_QCN9000:
1709 	case TARGET_TYPE_QCN6122:
1710 	case TARGET_TYPE_QCA5018:
1711 	case TARGET_TYPE_KIWI:
1712 	case TARGET_TYPE_MANGO:
1713 	case TARGET_TYPE_QCN9224:
1714 	case TARGET_TYPE_QCA9574:
1715 	case TARGET_TYPE_QCA5332:
1716 		return true;
1717 	default:
1718 		return false;
1719 	}
1720 	return false;
1721 }
1722 qdf_export_symbol(ce_srng_based);
1723 
1724 #ifdef QCA_WIFI_SUPPORT_SRNG
1725 static struct ce_ops *ce_services_attach(struct hif_softc *scn)
1726 {
1727 	struct ce_ops *ops = NULL;
1728 
1729 	if (ce_srng_based(scn)) {
1730 		if (ce_attach_register[CE_SVC_SRNG])
1731 			ops = ce_attach_register[CE_SVC_SRNG]();
1732 	} else if (ce_attach_register[CE_SVC_LEGACY]) {
1733 		ops = ce_attach_register[CE_SVC_LEGACY]();
1734 	}
1735 
1736 	return ops;
1737 }
1738 
1739 
1740 #else	/* QCA_LITHIUM */
1741 static struct ce_ops *ce_services_attach(struct hif_softc *scn)
1742 {
1743 	if (ce_attach_register[CE_SVC_LEGACY])
1744 		return ce_attach_register[CE_SVC_LEGACY]();
1745 
1746 	return NULL;
1747 }
1748 #endif /* QCA_LITHIUM */
1749 
1750 static void hif_prepare_hal_shadow_register_cfg(struct hif_softc *scn,
1751 		struct pld_shadow_reg_v2_cfg **shadow_config,
1752 		int *num_shadow_registers_configured) {
1753 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1754 
1755 	hif_state->ce_services->ce_prepare_shadow_register_v2_cfg(
1756 			scn, shadow_config, num_shadow_registers_configured);
1757 
1758 	return;
1759 }
1760 
1761 #ifdef CONFIG_SHADOW_V3
1762 static inline void
1763 hif_prepare_hal_shadow_reg_cfg_v3(struct hif_softc *scn,
1764 				  struct pld_wlan_enable_cfg *cfg)
1765 {
1766 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1767 
1768 	if (!hif_state->ce_services->ce_prepare_shadow_register_v3_cfg)
1769 		return;
1770 
1771 	hif_state->ce_services->ce_prepare_shadow_register_v3_cfg(
1772 			scn, &cfg->shadow_reg_v3_cfg,
1773 			&cfg->num_shadow_reg_v3_cfg);
1774 }
1775 #else
1776 static inline void
1777 hif_prepare_hal_shadow_reg_cfg_v3(struct hif_softc *scn,
1778 				  struct pld_wlan_enable_cfg *cfg)
1779 {
1780 }
1781 #endif
1782 
1783 static inline uint32_t ce_get_desc_size(struct hif_softc *scn,
1784 						uint8_t ring_type)
1785 {
1786 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1787 
1788 	return hif_state->ce_services->ce_get_desc_size(ring_type);
1789 }
1790 
1791 #ifdef QCA_WIFI_SUPPORT_SRNG
1792 static inline int32_t ce_ring_type_to_hal_ring_type(uint32_t ce_ring_type)
1793 {
1794 	switch (ce_ring_type) {
1795 	case CE_RING_SRC:
1796 		return CE_SRC;
1797 	case CE_RING_DEST:
1798 		return CE_DST;
1799 	case CE_RING_STATUS:
1800 		return CE_DST_STATUS;
1801 	default:
1802 		return -EINVAL;
1803 	}
1804 }
1805 #else
1806 static int32_t ce_ring_type_to_hal_ring_type(uint32_t ce_ring_type)
1807 {
1808 	return 0;
1809 }
1810 #endif
1811 static struct CE_ring_state *ce_alloc_ring_state(struct CE_state *CE_state,
1812 		uint8_t ring_type, uint32_t nentries)
1813 {
1814 	uint32_t ce_nbytes;
1815 	char *ptr;
1816 	qdf_dma_addr_t base_addr;
1817 	struct CE_ring_state *ce_ring;
1818 	uint32_t desc_size;
1819 	struct hif_softc *scn = CE_state->scn;
1820 
1821 	ce_nbytes = sizeof(struct CE_ring_state)
1822 		+ (nentries * sizeof(void *));
1823 	ptr = qdf_mem_malloc(ce_nbytes);
1824 	if (!ptr)
1825 		return NULL;
1826 
1827 	ce_ring = (struct CE_ring_state *)ptr;
1828 	ptr += sizeof(struct CE_ring_state);
1829 	ce_ring->nentries = nentries;
1830 	ce_ring->nentries_mask = nentries - 1;
1831 
1832 	ce_ring->low_water_mark_nentries = 0;
1833 	ce_ring->high_water_mark_nentries = nentries;
1834 	ce_ring->per_transfer_context = (void **)ptr;
1835 	ce_ring->hal_ring_type = ce_ring_type_to_hal_ring_type(ring_type);
1836 
1837 	desc_size = ce_get_desc_size(scn, ring_type);
1838 
1839 	/* Legacy platforms that do not support cache
1840 	 * coherent DMA are unsupported
1841 	 */
1842 	if (ce_alloc_desc_ring(scn, CE_state->id, &base_addr,
1843 			       ce_ring, nentries,
1844 			       desc_size) !=
1845 	    QDF_STATUS_SUCCESS) {
1846 		hif_err("ring has no DMA mem");
1847 		qdf_mem_free(ce_ring);
1848 		return NULL;
1849 	}
1850 	ce_ring->base_addr_CE_space_unaligned = base_addr;
1851 
1852 	/* Correctly initialize memory to 0 to
1853 	 * prevent garbage data crashing system
1854 	 * when download firmware
1855 	 */
1856 	qdf_mem_zero(ce_ring->base_addr_owner_space_unaligned,
1857 			nentries * desc_size +
1858 			CE_DESC_RING_ALIGN);
1859 
1860 	if (ce_ring->base_addr_CE_space_unaligned & (CE_DESC_RING_ALIGN - 1)) {
1861 
1862 		ce_ring->base_addr_CE_space =
1863 			(ce_ring->base_addr_CE_space_unaligned +
1864 			 CE_DESC_RING_ALIGN - 1) & ~(CE_DESC_RING_ALIGN - 1);
1865 
1866 		ce_ring->base_addr_owner_space = (void *)
1867 			(((size_t) ce_ring->base_addr_owner_space_unaligned +
1868 			 CE_DESC_RING_ALIGN - 1) & ~(CE_DESC_RING_ALIGN - 1));
1869 	} else {
1870 		ce_ring->base_addr_CE_space =
1871 				ce_ring->base_addr_CE_space_unaligned;
1872 		ce_ring->base_addr_owner_space =
1873 				ce_ring->base_addr_owner_space_unaligned;
1874 	}
1875 
1876 	return ce_ring;
1877 }
1878 
1879 static int ce_ring_setup(struct hif_softc *scn, uint8_t ring_type,
1880 			uint32_t ce_id, struct CE_ring_state *ring,
1881 			struct CE_attr *attr)
1882 {
1883 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1884 
1885 	return hif_state->ce_services->ce_ring_setup(scn, ring_type, ce_id,
1886 					      ring, attr);
1887 }
1888 
1889 static void ce_srng_cleanup(struct hif_softc *scn, struct CE_state *CE_state,
1890 			    uint8_t ring_type)
1891 {
1892 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1893 
1894 	if (hif_state->ce_services->ce_srng_cleanup)
1895 		hif_state->ce_services->ce_srng_cleanup(scn,
1896 					CE_state, ring_type);
1897 }
1898 
1899 int hif_ce_bus_early_suspend(struct hif_softc *scn)
1900 {
1901 	uint8_t ul_pipe, dl_pipe;
1902 	int ce_id, status, ul_is_polled, dl_is_polled;
1903 	struct CE_state *ce_state;
1904 
1905 	status = hif_map_service_to_pipe(&scn->osc, WMI_CONTROL_SVC,
1906 					 &ul_pipe, &dl_pipe,
1907 					 &ul_is_polled, &dl_is_polled);
1908 	if (status) {
1909 		hif_err("pipe_mapping failure");
1910 		return status;
1911 	}
1912 
1913 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
1914 		if (ce_id == ul_pipe)
1915 			continue;
1916 		if (ce_id == dl_pipe)
1917 			continue;
1918 
1919 		ce_state = scn->ce_id_to_state[ce_id];
1920 		qdf_spin_lock_bh(&ce_state->ce_index_lock);
1921 		if (ce_state->state == CE_RUNNING)
1922 			ce_state->state = CE_PAUSED;
1923 		qdf_spin_unlock_bh(&ce_state->ce_index_lock);
1924 	}
1925 
1926 	return status;
1927 }
1928 
1929 int hif_ce_bus_late_resume(struct hif_softc *scn)
1930 {
1931 	int ce_id;
1932 	struct CE_state *ce_state;
1933 	int write_index = 0;
1934 	bool index_updated;
1935 
1936 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
1937 		ce_state = scn->ce_id_to_state[ce_id];
1938 		qdf_spin_lock_bh(&ce_state->ce_index_lock);
1939 		if (ce_state->state == CE_PENDING) {
1940 			write_index = ce_state->src_ring->write_index;
1941 			CE_SRC_RING_WRITE_IDX_SET(scn, ce_state->ctrl_addr,
1942 					write_index);
1943 			ce_state->state = CE_RUNNING;
1944 			index_updated = true;
1945 		} else {
1946 			index_updated = false;
1947 		}
1948 
1949 		if (ce_state->state == CE_PAUSED)
1950 			ce_state->state = CE_RUNNING;
1951 		qdf_spin_unlock_bh(&ce_state->ce_index_lock);
1952 
1953 		if (index_updated)
1954 			hif_record_ce_desc_event(scn, ce_id,
1955 				RESUME_WRITE_INDEX_UPDATE,
1956 				NULL, NULL, write_index, 0);
1957 	}
1958 
1959 	return 0;
1960 }
1961 
1962 /**
1963  * ce_oom_recovery() - try to recover rx ce from oom condition
1964  * @context: CE_state of the CE with oom rx ring
1965  *
1966  * the executing work Will continue to be rescheduled until
1967  * at least 1 descriptor is successfully posted to the rx ring.
1968  *
1969  * return: none
1970  */
1971 static void ce_oom_recovery(void *context)
1972 {
1973 	struct CE_state *ce_state = context;
1974 	struct hif_softc *scn = ce_state->scn;
1975 	struct HIF_CE_state *ce_softc = HIF_GET_CE_STATE(scn);
1976 	struct HIF_CE_pipe_info *pipe_info =
1977 		&ce_softc->pipe_info[ce_state->id];
1978 
1979 	hif_post_recv_buffers_for_pipe(pipe_info);
1980 }
1981 
1982 #ifdef HIF_CE_DEBUG_DATA_BUF
1983 /**
1984  * alloc_mem_ce_debug_hist_data() - Allocate mem for the data pointed by
1985  * the CE descriptors.
1986  * Allocate HIF_CE_HISTORY_MAX records by CE_DEBUG_MAX_DATA_BUF_SIZE
1987  * @scn: hif scn handle
1988  * ce_id: Copy Engine Id
1989  *
1990  * Return: QDF_STATUS
1991  */
1992 QDF_STATUS alloc_mem_ce_debug_hist_data(struct hif_softc *scn, uint32_t ce_id)
1993 {
1994 	struct hif_ce_desc_event *event = NULL;
1995 	struct hif_ce_desc_event *hist_ev = NULL;
1996 	uint32_t index = 0;
1997 
1998 	hist_ev =
1999 	(struct hif_ce_desc_event *)scn->hif_ce_desc_hist.hist_ev[ce_id];
2000 
2001 	if (!hist_ev)
2002 		return QDF_STATUS_E_NOMEM;
2003 
2004 	scn->hif_ce_desc_hist.data_enable[ce_id] = true;
2005 	for (index = 0; index < HIF_CE_HISTORY_MAX; index++) {
2006 		event = &hist_ev[index];
2007 		event->data =
2008 			(uint8_t *)qdf_mem_malloc(CE_DEBUG_MAX_DATA_BUF_SIZE);
2009 		if (!event->data) {
2010 			hif_err_rl("ce debug data alloc failed");
2011 			scn->hif_ce_desc_hist.data_enable[ce_id] = false;
2012 			return QDF_STATUS_E_NOMEM;
2013 		}
2014 	}
2015 	return QDF_STATUS_SUCCESS;
2016 }
2017 
2018 /**
2019  * free_mem_ce_debug_hist_data() - Free mem of the data pointed by
2020  * the CE descriptors.
2021  * @scn: hif scn handle
2022  * ce_id: Copy Engine Id
2023  *
2024  * Return:
2025  */
2026 void free_mem_ce_debug_hist_data(struct hif_softc *scn, uint32_t ce_id)
2027 {
2028 	struct hif_ce_desc_event *event = NULL;
2029 	struct hif_ce_desc_event *hist_ev = NULL;
2030 	uint32_t index = 0;
2031 
2032 	hist_ev =
2033 	(struct hif_ce_desc_event *)scn->hif_ce_desc_hist.hist_ev[ce_id];
2034 
2035 	if (!hist_ev)
2036 		return;
2037 
2038 	for (index = 0; index < HIF_CE_HISTORY_MAX; index++) {
2039 		event = &hist_ev[index];
2040 		if (event->data)
2041 			qdf_mem_free(event->data);
2042 		event->data = NULL;
2043 		event = NULL;
2044 	}
2045 
2046 }
2047 #endif /* HIF_CE_DEBUG_DATA_BUF */
2048 
2049 #ifndef HIF_CE_DEBUG_DATA_DYNAMIC_BUF
2050 #if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
2051 
2052 /* define below variables for crashscope parse */
2053 struct hif_ce_desc_event *hif_ce_desc_history[CE_COUNT_MAX];
2054 uint32_t hif_ce_history_max = HIF_CE_HISTORY_MAX;
2055 
2056 /**
2057  * for debug build, it will enable ce history for all ce, but for
2058  * perf build(if CONFIG_SLUB_DEBUG_ON is N), it only enable for
2059  * ce2(wmi event) & ce3(wmi cmd) history.
2060  */
2061 #if defined(CONFIG_SLUB_DEBUG_ON)
2062 #define CE_DESC_HISTORY_BUFF_CNT  CE_COUNT_MAX
2063 #define IS_CE_DEBUG_ONLY_FOR_CRIT_CE  0
2064 #else
2065 /* CE2, CE3, CE7 */
2066 #define CE_DESC_HISTORY_BUFF_CNT  3
2067 #define IS_CE_DEBUG_ONLY_FOR_CRIT_CE (BIT(2) | BIT(3) | BIT(7))
2068 #endif
2069 struct hif_ce_desc_event
2070 	hif_ce_desc_history_buff[CE_DESC_HISTORY_BUFF_CNT][HIF_CE_HISTORY_MAX];
2071 
2072 static struct hif_ce_desc_event *
2073 	hif_ce_debug_history_buf_get(struct hif_softc *scn, unsigned int ce_id)
2074 {
2075 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2076 
2077 	hif_debug("get ce debug buffer ce_id %u, only_ce2/ce3=0x%x, idx=%u",
2078 		  ce_id, IS_CE_DEBUG_ONLY_FOR_CRIT_CE,
2079 		  ce_hist->ce_id_hist_map[ce_id]);
2080 	if (IS_CE_DEBUG_ONLY_FOR_CRIT_CE &&
2081 	    (ce_id == CE_ID_2 || ce_id == CE_ID_3 || ce_id == CE_ID_7)) {
2082 		uint8_t idx = ce_hist->ce_id_hist_map[ce_id];
2083 
2084 		hif_ce_desc_history[ce_id] = hif_ce_desc_history_buff[idx];
2085 	} else {
2086 		hif_ce_desc_history[ce_id] =
2087 			hif_ce_desc_history_buff[ce_id];
2088 	}
2089 
2090 	return hif_ce_desc_history[ce_id];
2091 }
2092 
2093 /**
2094  * alloc_mem_ce_debug_history() - Allocate CE descriptor history
2095  * @scn: hif scn handle
2096  * @ce_id: Copy Engine Id
2097  * @src_nentries: source ce ring entries
2098  * Return: QDF_STATUS
2099  */
2100 static QDF_STATUS
2101 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int ce_id,
2102 			   uint32_t src_nentries)
2103 {
2104 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2105 	QDF_STATUS status = QDF_STATUS_SUCCESS;
2106 
2107 	/* For perf build, return directly for non ce2/ce3 */
2108 	if (IS_CE_DEBUG_ONLY_FOR_CRIT_CE &&
2109 	    ce_id != CE_ID_2 &&
2110 	    ce_id != CE_ID_3 &&
2111 	    ce_id != CE_ID_7) {
2112 		ce_hist->enable[ce_id] = false;
2113 		ce_hist->data_enable[ce_id] = false;
2114 		return QDF_STATUS_SUCCESS;
2115 	}
2116 
2117 	ce_hist->hist_ev[ce_id] = hif_ce_debug_history_buf_get(scn, ce_id);
2118 	ce_hist->enable[ce_id] = true;
2119 
2120 	if (src_nentries) {
2121 		status = alloc_mem_ce_debug_hist_data(scn, ce_id);
2122 		if (status != QDF_STATUS_SUCCESS) {
2123 			ce_hist->enable[ce_id] = false;
2124 			ce_hist->hist_ev[ce_id] = NULL;
2125 			return status;
2126 		}
2127 	} else {
2128 		ce_hist->data_enable[ce_id] = false;
2129 	}
2130 
2131 	return QDF_STATUS_SUCCESS;
2132 }
2133 
2134 /**
2135  * free_mem_ce_debug_history() - Free CE descriptor history
2136  * @scn: hif scn handle
2137  * @ce_id: Copy Engine Id
2138  *
2139  * Return: None
2140  */
2141 static void free_mem_ce_debug_history(struct hif_softc *scn, unsigned int ce_id)
2142 {
2143 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2144 
2145 	if (!ce_hist->enable[ce_id])
2146 		return;
2147 
2148 	ce_hist->enable[ce_id] = false;
2149 	if (ce_hist->data_enable[ce_id]) {
2150 		ce_hist->data_enable[ce_id] = false;
2151 		free_mem_ce_debug_hist_data(scn, ce_id);
2152 	}
2153 	ce_hist->hist_ev[ce_id] = NULL;
2154 }
2155 #else
2156 static inline QDF_STATUS
2157 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id,
2158 			   uint32_t src_nentries)
2159 {
2160 	return QDF_STATUS_SUCCESS;
2161 }
2162 
2163 static inline void
2164 free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id) { }
2165 #endif /* (HIF_CONFIG_SLUB_DEBUG_ON) || (HIF_CE_DEBUG_DATA_BUF) */
2166 #else
2167 #if defined(HIF_CE_DEBUG_DATA_BUF)
2168 
2169 static QDF_STATUS
2170 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id,
2171 			   uint32_t src_nentries)
2172 {
2173 	scn->hif_ce_desc_hist.hist_ev[CE_id] = (struct hif_ce_desc_event *)
2174 	qdf_mem_malloc(HIF_CE_HISTORY_MAX * sizeof(struct hif_ce_desc_event));
2175 
2176 	if (!scn->hif_ce_desc_hist.hist_ev[CE_id]) {
2177 		scn->hif_ce_desc_hist.enable[CE_id] = 0;
2178 		return QDF_STATUS_E_NOMEM;
2179 	} else {
2180 		scn->hif_ce_desc_hist.enable[CE_id] = 1;
2181 		return QDF_STATUS_SUCCESS;
2182 	}
2183 }
2184 
2185 static void free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id)
2186 {
2187 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2188 	struct hif_ce_desc_event *hist_ev = ce_hist->hist_ev[CE_id];
2189 
2190 	if (!hist_ev)
2191 		return;
2192 
2193 	if (ce_hist->data_enable[CE_id]) {
2194 		ce_hist->data_enable[CE_id] = false;
2195 		free_mem_ce_debug_hist_data(scn, CE_id);
2196 	}
2197 
2198 	ce_hist->enable[CE_id] = false;
2199 	qdf_mem_free(ce_hist->hist_ev[CE_id]);
2200 	ce_hist->hist_ev[CE_id] = NULL;
2201 }
2202 
2203 #else
2204 
2205 static inline QDF_STATUS
2206 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id,
2207 			   uint32_t src_nentries)
2208 {
2209 	return QDF_STATUS_SUCCESS;
2210 }
2211 
2212 static inline void
2213 free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id) { }
2214 #endif /* HIF_CE_DEBUG_DATA_BUF */
2215 #endif /* HIF_CE_DEBUG_DATA_DYNAMIC_BUF */
2216 
2217 #if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
2218 /**
2219  * reset_ce_debug_history() - reset the index and ce id used for dumping the
2220  * CE records on the console using sysfs.
2221  * @scn: hif scn handle
2222  *
2223  * Return:
2224  */
2225 static inline void reset_ce_debug_history(struct hif_softc *scn)
2226 {
2227 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2228 	/* Initialise the CE debug history sysfs interface inputs ce_id and
2229 	 * index. Disable data storing
2230 	 */
2231 	ce_hist->hist_index = 0;
2232 	ce_hist->hist_id = 0;
2233 }
2234 #else /* defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF) */
2235 static inline void reset_ce_debug_history(struct hif_softc *scn) { }
2236 #endif /*defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF) */
2237 
2238 void ce_enable_polling(void *cestate)
2239 {
2240 	struct CE_state *CE_state = (struct CE_state *)cestate;
2241 
2242 	if (CE_state && CE_state->attr_flags & CE_ATTR_ENABLE_POLL)
2243 		CE_state->timer_inited = true;
2244 }
2245 
2246 void ce_disable_polling(void *cestate)
2247 {
2248 	struct CE_state *CE_state = (struct CE_state *)cestate;
2249 
2250 	if (CE_state && CE_state->attr_flags & CE_ATTR_ENABLE_POLL)
2251 		CE_state->timer_inited = false;
2252 }
2253 
2254 /*
2255  * Initialize a Copy Engine based on caller-supplied attributes.
2256  * This may be called once to initialize both source and destination
2257  * rings or it may be called twice for separate source and destination
2258  * initialization. It may be that only one side or the other is
2259  * initialized by software/firmware.
2260  *
2261  * This should be called durring the initialization sequence before
2262  * interupts are enabled, so we don't have to worry about thread safety.
2263  */
2264 struct CE_handle *ce_init(struct hif_softc *scn,
2265 			  unsigned int CE_id, struct CE_attr *attr)
2266 {
2267 	struct CE_state *CE_state;
2268 	uint32_t ctrl_addr;
2269 	unsigned int nentries;
2270 	bool malloc_CE_state = false;
2271 	bool malloc_src_ring = false;
2272 	int status;
2273 	QDF_STATUS mem_status = QDF_STATUS_SUCCESS;
2274 
2275 	QDF_ASSERT(CE_id < scn->ce_count);
2276 	ctrl_addr = CE_BASE_ADDRESS(CE_id);
2277 	CE_state = scn->ce_id_to_state[CE_id];
2278 
2279 	if (!CE_state) {
2280 		CE_state =
2281 		    (struct CE_state *)qdf_mem_malloc(sizeof(*CE_state));
2282 		if (!CE_state)
2283 			return NULL;
2284 
2285 		malloc_CE_state = true;
2286 		qdf_spinlock_create(&CE_state->ce_index_lock);
2287 #ifdef CE_TASKLET_SCHEDULE_ON_FULL
2288 		qdf_spinlock_create(&CE_state->ce_interrupt_lock);
2289 #endif
2290 
2291 		CE_state->id = CE_id;
2292 		CE_state->ctrl_addr = ctrl_addr;
2293 		CE_state->state = CE_RUNNING;
2294 		CE_state->attr_flags = attr->flags;
2295 	}
2296 	CE_state->scn = scn;
2297 	CE_state->service = ce_engine_service_reg;
2298 
2299 	qdf_atomic_init(&CE_state->rx_pending);
2300 	if (!attr) {
2301 		/* Already initialized; caller wants the handle */
2302 		return (struct CE_handle *)CE_state;
2303 	}
2304 
2305 	if (CE_state->src_sz_max)
2306 		QDF_ASSERT(CE_state->src_sz_max == attr->src_sz_max);
2307 	else
2308 		CE_state->src_sz_max = attr->src_sz_max;
2309 
2310 	ce_init_ce_desc_event_log(scn, CE_id,
2311 				  attr->src_nentries + attr->dest_nentries);
2312 
2313 	/* source ring setup */
2314 	nentries = attr->src_nentries;
2315 	if (nentries) {
2316 		struct CE_ring_state *src_ring;
2317 
2318 		nentries = roundup_pwr2(nentries);
2319 		if (CE_state->src_ring) {
2320 			QDF_ASSERT(CE_state->src_ring->nentries == nentries);
2321 		} else {
2322 			src_ring = CE_state->src_ring =
2323 				ce_alloc_ring_state(CE_state,
2324 						CE_RING_SRC,
2325 						nentries);
2326 			if (!src_ring) {
2327 				/* cannot allocate src ring. If the
2328 				 * CE_state is allocated locally free
2329 				 * CE_State and return error.
2330 				 */
2331 				hif_err("src ring has no mem");
2332 				if (malloc_CE_state) {
2333 					/* allocated CE_state locally */
2334 					qdf_mem_free(CE_state);
2335 					malloc_CE_state = false;
2336 				}
2337 				return NULL;
2338 			}
2339 			/* we can allocate src ring. Mark that the src ring is
2340 			 * allocated locally
2341 			 */
2342 			malloc_src_ring = true;
2343 
2344 			/*
2345 			 * Also allocate a shadow src ring in
2346 			 * regular mem to use for faster access.
2347 			 */
2348 			src_ring->shadow_base_unaligned =
2349 				qdf_mem_malloc(nentries *
2350 					       sizeof(struct CE_src_desc) +
2351 					       CE_DESC_RING_ALIGN);
2352 			if (!src_ring->shadow_base_unaligned)
2353 				goto error_no_dma_mem;
2354 
2355 			src_ring->shadow_base = (struct CE_src_desc *)
2356 				(((size_t) src_ring->shadow_base_unaligned +
2357 				CE_DESC_RING_ALIGN - 1) &
2358 				 ~(CE_DESC_RING_ALIGN - 1));
2359 
2360 			status = ce_ring_setup(scn, CE_RING_SRC, CE_id,
2361 					       src_ring, attr);
2362 			if (status < 0)
2363 				goto error_target_access;
2364 
2365 			ce_ring_test_initial_indexes(CE_id, src_ring,
2366 						     "src_ring");
2367 		}
2368 	}
2369 
2370 	/* destination ring setup */
2371 	nentries = attr->dest_nentries;
2372 	if (nentries) {
2373 		struct CE_ring_state *dest_ring;
2374 
2375 		nentries = roundup_pwr2(nentries);
2376 		if (CE_state->dest_ring) {
2377 			QDF_ASSERT(CE_state->dest_ring->nentries == nentries);
2378 		} else {
2379 			dest_ring = CE_state->dest_ring =
2380 				ce_alloc_ring_state(CE_state,
2381 						CE_RING_DEST,
2382 						nentries);
2383 			if (!dest_ring) {
2384 				/* cannot allocate dst ring. If the CE_state
2385 				 * or src ring is allocated locally free
2386 				 * CE_State and src ring and return error.
2387 				 */
2388 				hif_err("dest ring has no mem");
2389 				goto error_no_dma_mem;
2390 			}
2391 
2392 			status = ce_ring_setup(scn, CE_RING_DEST, CE_id,
2393 				      dest_ring, attr);
2394 			if (status < 0)
2395 				goto error_target_access;
2396 
2397 			ce_ring_test_initial_indexes(CE_id, dest_ring,
2398 						     "dest_ring");
2399 
2400 			/* For srng based target, init status ring here */
2401 			if (ce_srng_based(CE_state->scn)) {
2402 				CE_state->status_ring =
2403 					ce_alloc_ring_state(CE_state,
2404 							CE_RING_STATUS,
2405 							nentries);
2406 				if (!CE_state->status_ring) {
2407 					/*Allocation failed. Cleanup*/
2408 					qdf_mem_free(CE_state->dest_ring);
2409 					if (malloc_src_ring) {
2410 						qdf_mem_free
2411 							(CE_state->src_ring);
2412 						CE_state->src_ring = NULL;
2413 						malloc_src_ring = false;
2414 					}
2415 					if (malloc_CE_state) {
2416 						/* allocated CE_state locally */
2417 						scn->ce_id_to_state[CE_id] =
2418 							NULL;
2419 						qdf_mem_free(CE_state);
2420 						malloc_CE_state = false;
2421 					}
2422 
2423 					return NULL;
2424 				}
2425 
2426 				status = ce_ring_setup(scn, CE_RING_STATUS,
2427 					       CE_id, CE_state->status_ring,
2428 					       attr);
2429 				if (status < 0)
2430 					goto error_target_access;
2431 
2432 			}
2433 
2434 			/* epping */
2435 			/* poll timer */
2436 			if (CE_state->attr_flags & CE_ATTR_ENABLE_POLL) {
2437 				qdf_timer_init(scn->qdf_dev,
2438 						&CE_state->poll_timer,
2439 						ce_poll_timeout,
2440 						CE_state,
2441 						QDF_TIMER_TYPE_WAKE_APPS);
2442 				ce_enable_polling(CE_state);
2443 				qdf_timer_mod(&CE_state->poll_timer,
2444 						      CE_POLL_TIMEOUT);
2445 			}
2446 		}
2447 	}
2448 
2449 	if (!ce_srng_based(scn)) {
2450 		/* Enable CE error interrupts */
2451 		if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
2452 			goto error_target_access;
2453 		CE_ERROR_INTR_ENABLE(scn, ctrl_addr);
2454 		if (Q_TARGET_ACCESS_END(scn) < 0)
2455 			goto error_target_access;
2456 	}
2457 
2458 	qdf_create_work(scn->qdf_dev, &CE_state->oom_allocation_work,
2459 			ce_oom_recovery, CE_state);
2460 
2461 	/* update the htt_data attribute */
2462 	ce_mark_datapath(CE_state);
2463 	scn->ce_id_to_state[CE_id] = CE_state;
2464 
2465 	mem_status = alloc_mem_ce_debug_history(scn, CE_id, attr->src_nentries);
2466 	if (mem_status != QDF_STATUS_SUCCESS)
2467 		goto error_target_access;
2468 
2469 	return (struct CE_handle *)CE_state;
2470 
2471 error_target_access:
2472 error_no_dma_mem:
2473 	ce_fini((struct CE_handle *)CE_state);
2474 	return NULL;
2475 }
2476 
2477 /**
2478  * hif_is_polled_mode_enabled - API to query if polling is enabled on all CEs
2479  * @hif_ctx: HIF Context
2480  *
2481  * API to check if polling is enabled on all CEs. Returns true when polling
2482  * is enabled on all CEs.
2483  *
2484  * Return: bool
2485  */
2486 bool hif_is_polled_mode_enabled(struct hif_opaque_softc *hif_ctx)
2487 {
2488 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2489 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2490 	struct CE_attr *attr;
2491 	int id;
2492 
2493 	for (id = 0; id < scn->ce_count; id++) {
2494 		attr = &hif_state->host_ce_config[id];
2495 		if (attr && (attr->dest_nentries) &&
2496 		    !(attr->flags & CE_ATTR_ENABLE_POLL))
2497 			return false;
2498 	}
2499 	return true;
2500 }
2501 qdf_export_symbol(hif_is_polled_mode_enabled);
2502 
2503 static int hif_get_pktlog_ce_num(struct hif_softc *scn)
2504 {
2505 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2506 	int id;
2507 
2508 	for (id = 0; id < hif_state->sz_tgt_svc_map; id++) {
2509 		if (hif_state->tgt_svc_map[id].service_id ==  PACKET_LOG_SVC)
2510 			return hif_state->tgt_svc_map[id].pipenum;
2511 	}
2512 	return -EINVAL;
2513 }
2514 
2515 #ifdef WLAN_FEATURE_FASTPATH
2516 /**
2517  * hif_enable_fastpath() Update that we have enabled fastpath mode
2518  * @hif_ctx: HIF context
2519  *
2520  * For use in data path
2521  *
2522  * Retrun: void
2523  */
2524 void hif_enable_fastpath(struct hif_opaque_softc *hif_ctx)
2525 {
2526 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2527 
2528 	if (ce_srng_based(scn)) {
2529 		hif_warn("srng rings do not support fastpath");
2530 		return;
2531 	}
2532 	hif_debug("Enabling fastpath mode");
2533 	scn->fastpath_mode_on = true;
2534 }
2535 
2536 /**
2537  * hif_is_fastpath_mode_enabled - API to query if fasthpath mode is enabled
2538  * @hif_ctx: HIF Context
2539  *
2540  * For use in data path to skip HTC
2541  *
2542  * Return: bool
2543  */
2544 bool hif_is_fastpath_mode_enabled(struct hif_opaque_softc *hif_ctx)
2545 {
2546 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2547 
2548 	return scn->fastpath_mode_on;
2549 }
2550 
2551 /**
2552  * hif_get_ce_handle - API to get CE handle for FastPath mode
2553  * @hif_ctx: HIF Context
2554  * @id: CopyEngine Id
2555  *
2556  * API to return CE handle for fastpath mode
2557  *
2558  * Return: void
2559  */
2560 void *hif_get_ce_handle(struct hif_opaque_softc *hif_ctx, int id)
2561 {
2562 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2563 
2564 	return scn->ce_id_to_state[id];
2565 }
2566 qdf_export_symbol(hif_get_ce_handle);
2567 
2568 /**
2569  * ce_h2t_tx_ce_cleanup() Place holder function for H2T CE cleanup.
2570  * No processing is required inside this function.
2571  * @ce_hdl: Cope engine handle
2572  * Using an assert, this function makes sure that,
2573  * the TX CE has been processed completely.
2574  *
2575  * This is called while dismantling CE structures. No other thread
2576  * should be using these structures while dismantling is occurring
2577  * therfore no locking is needed.
2578  *
2579  * Return: none
2580  */
2581 void ce_h2t_tx_ce_cleanup(struct CE_handle *ce_hdl)
2582 {
2583 	struct CE_state *ce_state = (struct CE_state *)ce_hdl;
2584 	struct CE_ring_state *src_ring = ce_state->src_ring;
2585 	struct hif_softc *sc = ce_state->scn;
2586 	uint32_t sw_index, write_index;
2587 
2588 	if (hif_is_nss_wifi_enabled(sc))
2589 		return;
2590 
2591 	if (sc->fastpath_mode_on && ce_state->htt_tx_data) {
2592 		hif_debug("Fastpath mode ON, Cleaning up HTT Tx CE");
2593 		sw_index = src_ring->sw_index;
2594 		write_index = src_ring->sw_index;
2595 
2596 		/* At this point Tx CE should be clean */
2597 		qdf_assert_always(sw_index == write_index);
2598 	}
2599 }
2600 
2601 /**
2602  * ce_t2h_msg_ce_cleanup() - Cleanup buffers on the t2h datapath msg queue.
2603  * @ce_hdl: Handle to CE
2604  *
2605  * These buffers are never allocated on the fly, but
2606  * are allocated only once during HIF start and freed
2607  * only once during HIF stop.
2608  * NOTE:
2609  * The assumption here is there is no in-flight DMA in progress
2610  * currently, so that buffers can be freed up safely.
2611  *
2612  * Return: NONE
2613  */
2614 void ce_t2h_msg_ce_cleanup(struct CE_handle *ce_hdl)
2615 {
2616 	struct CE_state *ce_state = (struct CE_state *)ce_hdl;
2617 	struct CE_ring_state *dst_ring = ce_state->dest_ring;
2618 	qdf_nbuf_t nbuf;
2619 	int i;
2620 
2621 	if (ce_state->scn->fastpath_mode_on == false)
2622 		return;
2623 
2624 	if (!ce_state->htt_rx_data)
2625 		return;
2626 
2627 	/*
2628 	 * when fastpath_mode is on and for datapath CEs. Unlike other CE's,
2629 	 * this CE is completely full: does not leave one blank space, to
2630 	 * distinguish between empty queue & full queue. So free all the
2631 	 * entries.
2632 	 */
2633 	for (i = 0; i < dst_ring->nentries; i++) {
2634 		nbuf = dst_ring->per_transfer_context[i];
2635 
2636 		/*
2637 		 * The reasons for doing this check are:
2638 		 * 1) Protect against calling cleanup before allocating buffers
2639 		 * 2) In a corner case, FASTPATH_mode_on may be set, but we
2640 		 *    could have a partially filled ring, because of a memory
2641 		 *    allocation failure in the middle of allocating ring.
2642 		 *    This check accounts for that case, checking
2643 		 *    fastpath_mode_on flag or started flag would not have
2644 		 *    covered that case. This is not in performance path,
2645 		 *    so OK to do this.
2646 		 */
2647 		if (nbuf) {
2648 			qdf_nbuf_unmap_single(ce_state->scn->qdf_dev, nbuf,
2649 					      QDF_DMA_FROM_DEVICE);
2650 			qdf_nbuf_free(nbuf);
2651 		}
2652 	}
2653 }
2654 
2655 /**
2656  * hif_update_fastpath_recv_bufs_cnt() - Increments the Rx buf count by 1
2657  * @scn: HIF handle
2658  *
2659  * Datapath Rx CEs are special case, where we reuse all the message buffers.
2660  * Hence we have to post all the entries in the pipe, even, in the beginning
2661  * unlike for other CE pipes where one less than dest_nentries are filled in
2662  * the beginning.
2663  *
2664  * Return: None
2665  */
2666 static void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn)
2667 {
2668 	int pipe_num;
2669 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2670 
2671 	if (scn->fastpath_mode_on == false)
2672 		return;
2673 
2674 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
2675 		struct HIF_CE_pipe_info *pipe_info =
2676 			&hif_state->pipe_info[pipe_num];
2677 		struct CE_state *ce_state =
2678 			scn->ce_id_to_state[pipe_info->pipe_num];
2679 
2680 		if (ce_state->htt_rx_data)
2681 			atomic_inc(&pipe_info->recv_bufs_needed);
2682 	}
2683 }
2684 #else
2685 static inline void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn)
2686 {
2687 }
2688 
2689 static inline bool ce_is_fastpath_enabled(struct hif_softc *scn)
2690 {
2691 	return false;
2692 }
2693 #endif /* WLAN_FEATURE_FASTPATH */
2694 
2695 void ce_fini(struct CE_handle *copyeng)
2696 {
2697 	struct CE_state *CE_state = (struct CE_state *)copyeng;
2698 	unsigned int CE_id = CE_state->id;
2699 	struct hif_softc *scn = CE_state->scn;
2700 	uint32_t desc_size;
2701 
2702 	bool inited = CE_state->timer_inited;
2703 	CE_state->state = CE_UNUSED;
2704 	scn->ce_id_to_state[CE_id] = NULL;
2705 	/* Set the flag to false first to stop processing in ce_poll_timeout */
2706 	ce_disable_polling(CE_state);
2707 
2708 	qdf_lro_deinit(CE_state->lro_data);
2709 
2710 	if (CE_state->src_ring) {
2711 		/* Cleanup the datapath Tx ring */
2712 		ce_h2t_tx_ce_cleanup(copyeng);
2713 
2714 		desc_size = ce_get_desc_size(scn, CE_RING_SRC);
2715 		if (CE_state->src_ring->shadow_base_unaligned)
2716 			qdf_mem_free(CE_state->src_ring->shadow_base_unaligned);
2717 		if (CE_state->src_ring->base_addr_owner_space_unaligned)
2718 			ce_free_desc_ring(scn, CE_state->id,
2719 					  CE_state->src_ring,
2720 					  desc_size);
2721 		ce_srng_cleanup(scn, CE_state, CE_RING_SRC);
2722 		qdf_mem_free(CE_state->src_ring);
2723 	}
2724 	if (CE_state->dest_ring) {
2725 		/* Cleanup the datapath Rx ring */
2726 		ce_t2h_msg_ce_cleanup(copyeng);
2727 
2728 		desc_size = ce_get_desc_size(scn, CE_RING_DEST);
2729 		if (CE_state->dest_ring->base_addr_owner_space_unaligned)
2730 			ce_free_desc_ring(scn, CE_state->id,
2731 					  CE_state->dest_ring,
2732 					  desc_size);
2733 		ce_srng_cleanup(scn, CE_state, CE_RING_DEST);
2734 		qdf_mem_free(CE_state->dest_ring);
2735 
2736 		/* epping */
2737 		if (inited) {
2738 			qdf_timer_free(&CE_state->poll_timer);
2739 		}
2740 	}
2741 	if ((ce_srng_based(CE_state->scn)) && (CE_state->status_ring)) {
2742 		/* Cleanup the datapath Tx ring */
2743 		ce_h2t_tx_ce_cleanup(copyeng);
2744 
2745 		if (CE_state->status_ring->shadow_base_unaligned)
2746 			qdf_mem_free(
2747 				CE_state->status_ring->shadow_base_unaligned);
2748 
2749 		desc_size = ce_get_desc_size(scn, CE_RING_STATUS);
2750 		if (CE_state->status_ring->base_addr_owner_space_unaligned)
2751 			ce_free_desc_ring(scn, CE_state->id,
2752 					  CE_state->status_ring,
2753 					  desc_size);
2754 		ce_srng_cleanup(scn, CE_state, CE_RING_STATUS);
2755 		qdf_mem_free(CE_state->status_ring);
2756 	}
2757 
2758 	free_mem_ce_debug_history(scn, CE_id);
2759 	reset_ce_debug_history(scn);
2760 	ce_deinit_ce_desc_event_log(scn, CE_id);
2761 
2762 	qdf_spinlock_destroy(&CE_state->ce_index_lock);
2763 #ifdef CE_TASKLET_SCHEDULE_ON_FULL
2764 	qdf_spinlock_destroy(&CE_state->ce_interrupt_lock);
2765 #endif
2766 	qdf_mem_free(CE_state);
2767 }
2768 
2769 void hif_detach_htc(struct hif_opaque_softc *hif_ctx)
2770 {
2771 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
2772 
2773 	qdf_mem_zero(&hif_state->msg_callbacks_pending,
2774 		  sizeof(hif_state->msg_callbacks_pending));
2775 	qdf_mem_zero(&hif_state->msg_callbacks_current,
2776 		  sizeof(hif_state->msg_callbacks_current));
2777 }
2778 
2779 /* Send the first nbytes bytes of the buffer */
2780 QDF_STATUS
2781 hif_send_head(struct hif_opaque_softc *hif_ctx,
2782 	      uint8_t pipe, unsigned int transfer_id, unsigned int nbytes,
2783 	      qdf_nbuf_t nbuf, unsigned int data_attr)
2784 {
2785 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2786 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
2787 	struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
2788 	struct CE_handle *ce_hdl = pipe_info->ce_hdl;
2789 	int bytes = nbytes, nfrags = 0;
2790 	struct ce_sendlist sendlist;
2791 	int i = 0;
2792 	QDF_STATUS status;
2793 	unsigned int mux_id = 0;
2794 
2795 	if (nbytes > qdf_nbuf_len(nbuf)) {
2796 		hif_err("nbytes: %d nbuf_len: %d", nbytes,
2797 		       (uint32_t)qdf_nbuf_len(nbuf));
2798 		QDF_ASSERT(0);
2799 	}
2800 
2801 	transfer_id =
2802 		(mux_id & MUX_ID_MASK) |
2803 		(transfer_id & TRANSACTION_ID_MASK);
2804 	data_attr &= DESC_DATA_FLAG_MASK;
2805 	/*
2806 	 * The common case involves sending multiple fragments within a
2807 	 * single download (the tx descriptor and the tx frame header).
2808 	 * So, optimize for the case of multiple fragments by not even
2809 	 * checking whether it's necessary to use a sendlist.
2810 	 * The overhead of using a sendlist for a single buffer download
2811 	 * is not a big deal, since it happens rarely (for WMI messages).
2812 	 */
2813 	ce_sendlist_init(&sendlist);
2814 	do {
2815 		qdf_dma_addr_t frag_paddr;
2816 		int frag_bytes;
2817 
2818 		frag_paddr = qdf_nbuf_get_frag_paddr(nbuf, nfrags);
2819 		frag_bytes = qdf_nbuf_get_frag_len(nbuf, nfrags);
2820 		/*
2821 		 * Clear the packet offset for all but the first CE desc.
2822 		 */
2823 		if (i++ > 0)
2824 			data_attr &= ~QDF_CE_TX_PKT_OFFSET_BIT_M;
2825 
2826 		status = ce_sendlist_buf_add(&sendlist, frag_paddr,
2827 				    frag_bytes >
2828 				    bytes ? bytes : frag_bytes,
2829 				    qdf_nbuf_get_frag_is_wordstream
2830 				    (nbuf,
2831 				    nfrags) ? 0 :
2832 				    CE_SEND_FLAG_SWAP_DISABLE,
2833 				    data_attr);
2834 		if (status != QDF_STATUS_SUCCESS) {
2835 			hif_err("frag_num: %d larger than limit (status=%d)",
2836 			       nfrags, status);
2837 			return status;
2838 		}
2839 		bytes -= frag_bytes;
2840 		nfrags++;
2841 	} while (bytes > 0);
2842 
2843 	/* Make sure we have resources to handle this request */
2844 	qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
2845 	if (pipe_info->num_sends_allowed < nfrags) {
2846 		qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
2847 		ce_pkt_error_count_incr(hif_state, HIF_PIPE_NO_RESOURCE);
2848 		return QDF_STATUS_E_RESOURCES;
2849 	}
2850 	pipe_info->num_sends_allowed -= nfrags;
2851 	qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
2852 
2853 	if (qdf_unlikely(!ce_hdl)) {
2854 		hif_err("CE handle is null");
2855 		return A_ERROR;
2856 	}
2857 
2858 	QDF_NBUF_UPDATE_TX_PKT_COUNT(nbuf, QDF_NBUF_TX_PKT_HIF);
2859 	DPTRACE(qdf_dp_trace(nbuf, QDF_DP_TRACE_HIF_PACKET_PTR_RECORD,
2860 		QDF_TRACE_DEFAULT_PDEV_ID, qdf_nbuf_data_addr(nbuf),
2861 		sizeof(qdf_nbuf_data(nbuf)), QDF_TX));
2862 	status = ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id);
2863 	QDF_ASSERT(status == QDF_STATUS_SUCCESS);
2864 
2865 	return status;
2866 }
2867 
2868 void hif_send_complete_check(struct hif_opaque_softc *hif_ctx, uint8_t pipe,
2869 								int force)
2870 {
2871 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2872 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
2873 
2874 	if (!force) {
2875 		int resources;
2876 		/*
2877 		 * Decide whether to actually poll for completions, or just
2878 		 * wait for a later chance. If there seem to be plenty of
2879 		 * resources left, then just wait, since checking involves
2880 		 * reading a CE register, which is a relatively expensive
2881 		 * operation.
2882 		 */
2883 		resources = hif_get_free_queue_number(hif_ctx, pipe);
2884 		/*
2885 		 * If at least 50% of the total resources are still available,
2886 		 * don't bother checking again yet.
2887 		 */
2888 		if (resources > (hif_state->host_ce_config[pipe].src_nentries >>
2889 									 1))
2890 			return;
2891 	}
2892 #ifdef ATH_11AC_TXCOMPACT
2893 	ce_per_engine_servicereap(scn, pipe);
2894 #else
2895 	ce_per_engine_service(scn, pipe);
2896 #endif
2897 }
2898 
2899 #if defined(CE_TASKLET_SCHEDULE_ON_FULL) && defined(CE_TASKLET_DEBUG_ENABLE)
2900 #define CE_RING_FULL_THRESHOLD_TIME 3000000
2901 #define CE_RING_FULL_THRESHOLD 1024
2902 /* Ths function is called from htc_send path. If there is no resourse to send
2903  * packet via HTC, then check if interrupts are not processed from that
2904  * CE for last 3 seconds. If so, schedule a tasklet to reap available entries.
2905  * Also if Queue has reached 1024 entries within 3 seconds, then also schedule
2906  * tasklet.
2907  */
2908 void hif_schedule_ce_tasklet(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
2909 {
2910 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
2911 	int64_t diff_time = qdf_get_log_timestamp_usecs() -
2912 			hif_state->stats.tasklet_sched_entry_ts[pipe];
2913 
2914 	hif_state->stats.ce_ring_full_count[pipe]++;
2915 
2916 	if (diff_time >= CE_RING_FULL_THRESHOLD_TIME ||
2917 	    hif_state->stats.ce_ring_full_count[pipe] >=
2918 	    CE_RING_FULL_THRESHOLD) {
2919 		hif_state->stats.ce_ring_full_count[pipe] = 0;
2920 		hif_state->stats.ce_manual_tasklet_schedule_count[pipe]++;
2921 		hif_state->stats.ce_last_manual_tasklet_schedule_ts[pipe] =
2922 			qdf_get_log_timestamp_usecs();
2923 		ce_dispatch_interrupt(pipe, &hif_state->tasklets[pipe]);
2924 	}
2925 }
2926 #else
2927 void hif_schedule_ce_tasklet(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
2928 {
2929 }
2930 #endif
2931 
2932 uint16_t
2933 hif_get_free_queue_number(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
2934 {
2935 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
2936 	struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
2937 	uint16_t rv;
2938 
2939 	qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
2940 	rv = pipe_info->num_sends_allowed;
2941 	qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
2942 	return rv;
2943 }
2944 
2945 /* Called by lower (CE) layer when a send to Target completes. */
2946 static void
2947 hif_pci_ce_send_done(struct CE_handle *copyeng, void *ce_context,
2948 		     void *transfer_context, qdf_dma_addr_t CE_data,
2949 		     unsigned int nbytes, unsigned int transfer_id,
2950 		     unsigned int sw_index, unsigned int hw_index,
2951 		     unsigned int toeplitz_hash_result)
2952 {
2953 	struct HIF_CE_pipe_info *pipe_info =
2954 		(struct HIF_CE_pipe_info *)ce_context;
2955 	unsigned int sw_idx = sw_index, hw_idx = hw_index;
2956 	struct hif_msg_callbacks *msg_callbacks =
2957 		&pipe_info->pipe_callbacks;
2958 
2959 	do {
2960 		/*
2961 		 * The upper layer callback will be triggered
2962 		 * when last fragment is complteted.
2963 		 */
2964 		if (transfer_context != CE_SENDLIST_ITEM_CTXT)
2965 			msg_callbacks->txCompletionHandler(
2966 				msg_callbacks->Context,
2967 				transfer_context, transfer_id,
2968 				toeplitz_hash_result);
2969 
2970 		qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
2971 		pipe_info->num_sends_allowed++;
2972 		qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
2973 	} while (ce_completed_send_next(copyeng,
2974 			&ce_context, &transfer_context,
2975 			&CE_data, &nbytes, &transfer_id,
2976 			&sw_idx, &hw_idx,
2977 			&toeplitz_hash_result) == QDF_STATUS_SUCCESS);
2978 }
2979 
2980 /**
2981  * hif_ce_do_recv(): send message from copy engine to upper layers
2982  * @msg_callbacks: structure containing callback and callback context
2983  * @netbuff: skb containing message
2984  * @nbytes: number of bytes in the message
2985  * @pipe_info: used for the pipe_number info
2986  *
2987  * Checks the packet length, configures the length in the netbuff,
2988  * and calls the upper layer callback.
2989  *
2990  * return: None
2991  */
2992 static inline void hif_ce_do_recv(struct hif_msg_callbacks *msg_callbacks,
2993 		qdf_nbuf_t netbuf, int nbytes,
2994 		struct HIF_CE_pipe_info *pipe_info) {
2995 	if (nbytes <= pipe_info->buf_sz) {
2996 		qdf_nbuf_set_pktlen(netbuf, nbytes);
2997 		msg_callbacks->
2998 			rxCompletionHandler(msg_callbacks->Context,
2999 					netbuf, pipe_info->pipe_num);
3000 	} else {
3001 		hif_err("Invalid Rx msg buf: %pK nbytes: %d", netbuf, nbytes);
3002 		qdf_nbuf_free(netbuf);
3003 	}
3004 }
3005 
3006 /* Called by lower (CE) layer when data is received from the Target. */
3007 static void
3008 hif_pci_ce_recv_data(struct CE_handle *copyeng, void *ce_context,
3009 		     void *transfer_context, qdf_dma_addr_t CE_data,
3010 		     unsigned int nbytes, unsigned int transfer_id,
3011 		     unsigned int flags)
3012 {
3013 	struct HIF_CE_pipe_info *pipe_info =
3014 		(struct HIF_CE_pipe_info *)ce_context;
3015 	struct HIF_CE_state *hif_state = pipe_info->HIF_CE_state;
3016 	struct CE_state *ce_state = (struct CE_state *) copyeng;
3017 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
3018 	struct hif_msg_callbacks *msg_callbacks = &pipe_info->pipe_callbacks;
3019 
3020 	do {
3021 		hif_rtpm_mark_last_busy(HIF_RTPM_ID_CE);
3022 		qdf_nbuf_unmap_single(scn->qdf_dev,
3023 				      (qdf_nbuf_t) transfer_context,
3024 				      QDF_DMA_FROM_DEVICE);
3025 
3026 		atomic_inc(&pipe_info->recv_bufs_needed);
3027 		hif_post_recv_buffers_for_pipe(pipe_info);
3028 		if (scn->target_status == TARGET_STATUS_RESET)
3029 			qdf_nbuf_free(transfer_context);
3030 		else
3031 			hif_ce_do_recv(msg_callbacks, transfer_context,
3032 				nbytes, pipe_info);
3033 
3034 		/* Set up force_break flag if num of receices reaches
3035 		 * MAX_NUM_OF_RECEIVES
3036 		 */
3037 		ce_state->receive_count++;
3038 		if (qdf_unlikely(hif_ce_service_should_yield(scn, ce_state))) {
3039 			ce_state->force_break = 1;
3040 			break;
3041 		}
3042 	} while (ce_completed_recv_next(copyeng, &ce_context, &transfer_context,
3043 					&CE_data, &nbytes, &transfer_id,
3044 					&flags) == QDF_STATUS_SUCCESS);
3045 
3046 }
3047 
3048 /* TBDXXX: Set CE High Watermark; invoke txResourceAvailHandler in response */
3049 
3050 void
3051 hif_post_init(struct hif_opaque_softc *hif_ctx, void *unused,
3052 	      struct hif_msg_callbacks *callbacks)
3053 {
3054 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
3055 
3056 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
3057 	spin_lock_init(&pcie_access_log_lock);
3058 #endif
3059 	/* Save callbacks for later installation */
3060 	qdf_mem_copy(&hif_state->msg_callbacks_pending, callbacks,
3061 		 sizeof(hif_state->msg_callbacks_pending));
3062 
3063 }
3064 
3065 static int hif_completion_thread_startup_by_ceid(struct HIF_CE_state *hif_state,
3066 						 int pipe_num)
3067 {
3068 	struct CE_attr attr;
3069 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
3070 	struct hif_msg_callbacks *hif_msg_callbacks =
3071 		&hif_state->msg_callbacks_current;
3072 	struct HIF_CE_pipe_info *pipe_info;
3073 	struct CE_state *ce_state;
3074 
3075 	if (pipe_num >= CE_COUNT_MAX)
3076 		return -EINVAL;
3077 
3078 	pipe_info = &hif_state->pipe_info[pipe_num];
3079 	ce_state = scn->ce_id_to_state[pipe_num];
3080 
3081 	if (!hif_msg_callbacks ||
3082 	    !hif_msg_callbacks->rxCompletionHandler ||
3083 	    !hif_msg_callbacks->txCompletionHandler) {
3084 		hif_err("%s: no completion handler registered", __func__);
3085 		return -EFAULT;
3086 	}
3087 
3088 	attr = hif_state->host_ce_config[pipe_num];
3089 	if (attr.src_nentries) {
3090 		/* pipe used to send to target */
3091 		hif_debug("%s: pipe_num:%d pipe_info:0x%pK\n",
3092 			  __func__, pipe_num, pipe_info);
3093 		ce_send_cb_register(pipe_info->ce_hdl,
3094 				    hif_pci_ce_send_done, pipe_info,
3095 				    attr.flags & CE_ATTR_DISABLE_INTR);
3096 		pipe_info->num_sends_allowed = attr.src_nentries - 1;
3097 	}
3098 	if (attr.dest_nentries) {
3099 		hif_debug("%s: pipe_num:%d pipe_info:0x%pK\n",
3100 			  __func__, pipe_num, pipe_info);
3101 		/* pipe used to receive from target */
3102 		ce_recv_cb_register(pipe_info->ce_hdl,
3103 				    hif_pci_ce_recv_data, pipe_info,
3104 				    attr.flags & CE_ATTR_DISABLE_INTR);
3105 	}
3106 
3107 	if (attr.src_nentries)
3108 		qdf_spinlock_create(&pipe_info->completion_freeq_lock);
3109 
3110 	if (!(ce_state->attr_flags & CE_ATTR_INIT_ON_DEMAND))
3111 		qdf_mem_copy(&pipe_info->pipe_callbacks, hif_msg_callbacks,
3112 			     sizeof(pipe_info->pipe_callbacks));
3113 
3114 	return 0;
3115 }
3116 
3117 static int hif_completion_thread_startup(struct HIF_CE_state *hif_state)
3118 {
3119 	struct CE_handle *ce_diag = hif_state->ce_diag;
3120 	int pipe_num, ret;
3121 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
3122 
3123 	/* daemonize("hif_compl_thread"); */
3124 
3125 	if (scn->ce_count == 0) {
3126 		hif_err("ce_count is 0");
3127 		return -EINVAL;
3128 	}
3129 
3130 
3131 	A_TARGET_ACCESS_LIKELY(scn);
3132 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3133 		struct HIF_CE_pipe_info *pipe_info;
3134 
3135 		pipe_info = &hif_state->pipe_info[pipe_num];
3136 		if (pipe_info->ce_hdl == ce_diag)
3137 			continue;       /* Handle Diagnostic CE specially */
3138 
3139 		ret = hif_completion_thread_startup_by_ceid(hif_state,
3140 							    pipe_num);
3141 		if (ret < 0)
3142 			return ret;
3143 
3144 	}
3145 
3146 	A_TARGET_ACCESS_UNLIKELY(scn);
3147 	return 0;
3148 }
3149 
3150 /*
3151  * Install pending msg callbacks.
3152  *
3153  * TBDXXX: This hack is needed because upper layers install msg callbacks
3154  * for use with HTC before BMI is done; yet this HIF implementation
3155  * needs to continue to use BMI msg callbacks. Really, upper layers
3156  * should not register HTC callbacks until AFTER BMI phase.
3157  */
3158 static void hif_msg_callbacks_install(struct hif_softc *scn)
3159 {
3160 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3161 
3162 	qdf_mem_copy(&hif_state->msg_callbacks_current,
3163 		 &hif_state->msg_callbacks_pending,
3164 		 sizeof(hif_state->msg_callbacks_pending));
3165 }
3166 
3167 void hif_get_default_pipe(struct hif_opaque_softc *hif_hdl, uint8_t *ULPipe,
3168 							uint8_t *DLPipe)
3169 {
3170 	int ul_is_polled, dl_is_polled;
3171 
3172 	(void)hif_map_service_to_pipe(hif_hdl, HTC_CTRL_RSVD_SVC,
3173 		ULPipe, DLPipe, &ul_is_polled, &dl_is_polled);
3174 }
3175 
3176 /**
3177  * hif_dump_pipe_debug_count() - Log error count
3178  * @scn: hif_softc pointer.
3179  *
3180  * Output the pipe error counts of each pipe to log file
3181  *
3182  * Return: N/A
3183  */
3184 void hif_dump_pipe_debug_count(struct hif_softc *scn)
3185 {
3186 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3187 	int pipe_num;
3188 
3189 	if (!hif_state) {
3190 		hif_err("hif_state is NULL");
3191 		return;
3192 	}
3193 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3194 		struct HIF_CE_pipe_info *pipe_info;
3195 
3196 	pipe_info = &hif_state->pipe_info[pipe_num];
3197 
3198 	if (pipe_info->nbuf_alloc_err_count > 0 ||
3199 			pipe_info->nbuf_dma_err_count > 0 ||
3200 			pipe_info->nbuf_ce_enqueue_err_count)
3201 		hif_err(
3202 			"pipe_id = %d, recv_bufs_needed = %d, nbuf_alloc_err_count = %u, nbuf_dma_err_count = %u, nbuf_ce_enqueue_err_count = %u",
3203 			pipe_info->pipe_num,
3204 			atomic_read(&pipe_info->recv_bufs_needed),
3205 			pipe_info->nbuf_alloc_err_count,
3206 			pipe_info->nbuf_dma_err_count,
3207 			pipe_info->nbuf_ce_enqueue_err_count);
3208 	}
3209 }
3210 
3211 static void hif_post_recv_buffers_failure(struct HIF_CE_pipe_info *pipe_info,
3212 					  void *nbuf, uint32_t *error_cnt,
3213 					  enum hif_ce_event_type failure_type,
3214 					  const char *failure_type_string)
3215 {
3216 	int bufs_needed_tmp = atomic_inc_return(&pipe_info->recv_bufs_needed);
3217 	struct CE_state *CE_state = (struct CE_state *)pipe_info->ce_hdl;
3218 	struct hif_softc *scn = HIF_GET_SOFTC(pipe_info->HIF_CE_state);
3219 	int ce_id = CE_state->id;
3220 	uint32_t error_cnt_tmp;
3221 
3222 	qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
3223 	error_cnt_tmp = ++(*error_cnt);
3224 	qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
3225 	hif_debug("pipe_num: %d, needed: %d, err_cnt: %u, fail_type: %s",
3226 		  pipe_info->pipe_num, bufs_needed_tmp, error_cnt_tmp,
3227 		  failure_type_string);
3228 	hif_record_ce_desc_event(scn, ce_id, failure_type,
3229 				 NULL, nbuf, bufs_needed_tmp, 0);
3230 	/* if we fail to allocate the last buffer for an rx pipe,
3231 	 *	there is no trigger to refill the ce and we will
3232 	 *	eventually crash
3233 	 */
3234 	if (bufs_needed_tmp == CE_state->dest_ring->nentries - 1 ||
3235 	    (ce_srng_based(scn) &&
3236 	     bufs_needed_tmp == CE_state->dest_ring->nentries - 2))
3237 		qdf_sched_work(scn->qdf_dev, &CE_state->oom_allocation_work);
3238 
3239 }
3240 
3241 
3242 
3243 
3244 QDF_STATUS hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info)
3245 {
3246 	struct CE_handle *ce_hdl;
3247 	qdf_size_t buf_sz;
3248 	struct hif_softc *scn = HIF_GET_SOFTC(pipe_info->HIF_CE_state);
3249 	QDF_STATUS status;
3250 	uint32_t bufs_posted = 0;
3251 	unsigned int ce_id;
3252 
3253 	buf_sz = pipe_info->buf_sz;
3254 	if (buf_sz == 0) {
3255 		/* Unused Copy Engine */
3256 		return QDF_STATUS_SUCCESS;
3257 	}
3258 
3259 	ce_hdl = pipe_info->ce_hdl;
3260 	ce_id = ((struct CE_state *)ce_hdl)->id;
3261 
3262 	qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
3263 	while (atomic_read(&pipe_info->recv_bufs_needed) > 0) {
3264 		qdf_dma_addr_t CE_data;      /* CE space buffer address */
3265 		qdf_nbuf_t nbuf;
3266 
3267 		atomic_dec(&pipe_info->recv_bufs_needed);
3268 		qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
3269 
3270 		hif_record_ce_desc_event(scn, ce_id,
3271 					 HIF_RX_DESC_PRE_NBUF_ALLOC, NULL, NULL,
3272 					 0, 0);
3273 		nbuf = qdf_nbuf_alloc(scn->qdf_dev, buf_sz, 0, 4, false);
3274 		if (!nbuf) {
3275 			hif_post_recv_buffers_failure(pipe_info, nbuf,
3276 					&pipe_info->nbuf_alloc_err_count,
3277 					 HIF_RX_NBUF_ALLOC_FAILURE,
3278 					"HIF_RX_NBUF_ALLOC_FAILURE");
3279 			return QDF_STATUS_E_NOMEM;
3280 		}
3281 
3282 		hif_record_ce_desc_event(scn, ce_id,
3283 					 HIF_RX_DESC_PRE_NBUF_MAP, NULL, nbuf,
3284 					 0, 0);
3285 		/*
3286 		 * qdf_nbuf_peek_header(nbuf, &data, &unused);
3287 		 * CE_data = dma_map_single(dev, data, buf_sz, );
3288 		 * DMA_FROM_DEVICE);
3289 		 */
3290 		status = qdf_nbuf_map_single(scn->qdf_dev, nbuf,
3291 					    QDF_DMA_FROM_DEVICE);
3292 
3293 		if (qdf_unlikely(status != QDF_STATUS_SUCCESS)) {
3294 			hif_post_recv_buffers_failure(pipe_info, nbuf,
3295 					&pipe_info->nbuf_dma_err_count,
3296 					 HIF_RX_NBUF_MAP_FAILURE,
3297 					"HIF_RX_NBUF_MAP_FAILURE");
3298 			qdf_nbuf_free(nbuf);
3299 			return status;
3300 		}
3301 
3302 		CE_data = qdf_nbuf_get_frag_paddr(nbuf, 0);
3303 		hif_record_ce_desc_event(scn, ce_id,
3304 					 HIF_RX_DESC_POST_NBUF_MAP, NULL, nbuf,
3305 					 0, 0);
3306 		qdf_mem_dma_sync_single_for_device(scn->qdf_dev, CE_data,
3307 					       buf_sz, DMA_FROM_DEVICE);
3308 		status = ce_recv_buf_enqueue(ce_hdl, (void *)nbuf, CE_data);
3309 		if (qdf_unlikely(status != QDF_STATUS_SUCCESS)) {
3310 			hif_post_recv_buffers_failure(pipe_info, nbuf,
3311 					&pipe_info->nbuf_ce_enqueue_err_count,
3312 					 HIF_RX_NBUF_ENQUEUE_FAILURE,
3313 					"HIF_RX_NBUF_ENQUEUE_FAILURE");
3314 
3315 			qdf_nbuf_unmap_single(scn->qdf_dev, nbuf,
3316 						QDF_DMA_FROM_DEVICE);
3317 			qdf_nbuf_free(nbuf);
3318 			return status;
3319 		}
3320 
3321 		qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
3322 		bufs_posted++;
3323 	}
3324 	pipe_info->nbuf_alloc_err_count =
3325 		(pipe_info->nbuf_alloc_err_count > bufs_posted) ?
3326 		pipe_info->nbuf_alloc_err_count - bufs_posted : 0;
3327 	pipe_info->nbuf_dma_err_count =
3328 		(pipe_info->nbuf_dma_err_count > bufs_posted) ?
3329 		pipe_info->nbuf_dma_err_count - bufs_posted : 0;
3330 	pipe_info->nbuf_ce_enqueue_err_count =
3331 		(pipe_info->nbuf_ce_enqueue_err_count > bufs_posted) ?
3332 	pipe_info->nbuf_ce_enqueue_err_count - bufs_posted : 0;
3333 
3334 	qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
3335 
3336 	return QDF_STATUS_SUCCESS;
3337 }
3338 
3339 /*
3340  * Try to post all desired receive buffers for all pipes.
3341  * Returns 0 for non fastpath rx copy engine as
3342  * oom_allocation_work will be scheduled to recover any
3343  * failures, non-zero if unable to completely replenish
3344  * receive buffers for fastpath rx Copy engine.
3345  */
3346 static QDF_STATUS hif_post_recv_buffers(struct hif_softc *scn)
3347 {
3348 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3349 	int pipe_num;
3350 	struct CE_state *ce_state = NULL;
3351 	QDF_STATUS qdf_status;
3352 
3353 	A_TARGET_ACCESS_LIKELY(scn);
3354 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3355 		struct HIF_CE_pipe_info *pipe_info;
3356 
3357 		ce_state = scn->ce_id_to_state[pipe_num];
3358 		pipe_info = &hif_state->pipe_info[pipe_num];
3359 
3360 		if (!ce_state)
3361 			continue;
3362 
3363 		/* Do not init dynamic CEs, during initial load */
3364 		if (ce_state->attr_flags & CE_ATTR_INIT_ON_DEMAND)
3365 			continue;
3366 
3367 		if (hif_is_nss_wifi_enabled(scn) &&
3368 		    ce_state && (ce_state->htt_rx_data))
3369 			continue;
3370 
3371 		qdf_status = hif_post_recv_buffers_for_pipe(pipe_info);
3372 		if (!QDF_IS_STATUS_SUCCESS(qdf_status) && ce_state &&
3373 			ce_state->htt_rx_data &&
3374 			scn->fastpath_mode_on) {
3375 			A_TARGET_ACCESS_UNLIKELY(scn);
3376 			return qdf_status;
3377 		}
3378 	}
3379 
3380 	A_TARGET_ACCESS_UNLIKELY(scn);
3381 
3382 	return QDF_STATUS_SUCCESS;
3383 }
3384 
3385 QDF_STATUS hif_start(struct hif_opaque_softc *hif_ctx)
3386 {
3387 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
3388 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3389 	QDF_STATUS qdf_status = QDF_STATUS_SUCCESS;
3390 
3391 	hif_update_fastpath_recv_bufs_cnt(scn);
3392 
3393 	hif_msg_callbacks_install(scn);
3394 
3395 	if (hif_completion_thread_startup(hif_state))
3396 		return QDF_STATUS_E_FAILURE;
3397 
3398 	/* enable buffer cleanup */
3399 	hif_state->started = true;
3400 
3401 	/* Post buffers once to start things off. */
3402 	qdf_status = hif_post_recv_buffers(scn);
3403 	if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
3404 		/* cleanup is done in hif_ce_disable */
3405 		hif_err("Failed to post buffers");
3406 		return qdf_status;
3407 	}
3408 
3409 	return qdf_status;
3410 }
3411 
3412 static void hif_recv_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info)
3413 {
3414 	struct hif_softc *scn;
3415 	struct CE_handle *ce_hdl;
3416 	uint32_t buf_sz;
3417 	struct HIF_CE_state *hif_state;
3418 	qdf_nbuf_t netbuf;
3419 	qdf_dma_addr_t CE_data;
3420 	void *per_CE_context;
3421 
3422 	buf_sz = pipe_info->buf_sz;
3423 	/* Unused Copy Engine */
3424 	if (buf_sz == 0)
3425 		return;
3426 
3427 
3428 	hif_state = pipe_info->HIF_CE_state;
3429 	if (!hif_state->started)
3430 		return;
3431 
3432 	scn = HIF_GET_SOFTC(hif_state);
3433 	ce_hdl = pipe_info->ce_hdl;
3434 
3435 	if (!scn->qdf_dev)
3436 		return;
3437 	while (ce_revoke_recv_next
3438 		       (ce_hdl, &per_CE_context, (void **)&netbuf,
3439 			&CE_data) == QDF_STATUS_SUCCESS) {
3440 		if (netbuf) {
3441 			qdf_nbuf_unmap_single(scn->qdf_dev, netbuf,
3442 					      QDF_DMA_FROM_DEVICE);
3443 			qdf_nbuf_free(netbuf);
3444 		}
3445 	}
3446 }
3447 
3448 static void hif_send_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info)
3449 {
3450 	struct CE_handle *ce_hdl;
3451 	struct HIF_CE_state *hif_state;
3452 	struct hif_softc *scn;
3453 	qdf_nbuf_t netbuf;
3454 	void *per_CE_context;
3455 	qdf_dma_addr_t CE_data;
3456 	unsigned int nbytes;
3457 	unsigned int id;
3458 	uint32_t buf_sz;
3459 	uint32_t toeplitz_hash_result;
3460 
3461 	buf_sz = pipe_info->buf_sz;
3462 	if (buf_sz == 0) {
3463 		/* Unused Copy Engine */
3464 		return;
3465 	}
3466 
3467 	hif_state = pipe_info->HIF_CE_state;
3468 	if (!hif_state->started) {
3469 		return;
3470 	}
3471 
3472 	scn = HIF_GET_SOFTC(hif_state);
3473 
3474 	ce_hdl = pipe_info->ce_hdl;
3475 
3476 	while (ce_cancel_send_next
3477 		       (ce_hdl, &per_CE_context,
3478 		       (void **)&netbuf, &CE_data, &nbytes,
3479 		       &id, &toeplitz_hash_result) == QDF_STATUS_SUCCESS) {
3480 		if (netbuf != CE_SENDLIST_ITEM_CTXT) {
3481 			/*
3482 			 * Packets enqueued by htt_h2t_ver_req_msg() and
3483 			 * htt_h2t_rx_ring_cfg_msg_ll() have already been
3484 			 * freed in htt_htc_misc_pkt_pool_free() in
3485 			 * wlantl_close(), so do not free them here again
3486 			 * by checking whether it's the endpoint
3487 			 * which they are queued in.
3488 			 */
3489 			if (id == scn->htc_htt_tx_endpoint)
3490 				return;
3491 			/* Indicate the completion to higher
3492 			 * layer to free the buffer
3493 			 */
3494 			if (pipe_info->pipe_callbacks.txCompletionHandler)
3495 				pipe_info->pipe_callbacks.
3496 				    txCompletionHandler(pipe_info->
3497 					    pipe_callbacks.Context,
3498 					    netbuf, id, toeplitz_hash_result);
3499 		}
3500 	}
3501 }
3502 
3503 /*
3504  * Cleanup residual buffers for device shutdown:
3505  *    buffers that were enqueued for receive
3506  *    buffers that were to be sent
3507  * Note: Buffers that had completed but which were
3508  * not yet processed are on a completion queue. They
3509  * are handled when the completion thread shuts down.
3510  */
3511 static void hif_buffer_cleanup(struct HIF_CE_state *hif_state)
3512 {
3513 	int pipe_num;
3514 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
3515 	struct CE_state *ce_state;
3516 
3517 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3518 		struct HIF_CE_pipe_info *pipe_info;
3519 
3520 		ce_state = scn->ce_id_to_state[pipe_num];
3521 		if (hif_is_nss_wifi_enabled(scn) && ce_state &&
3522 				((ce_state->htt_tx_data) ||
3523 				 (ce_state->htt_rx_data))) {
3524 			continue;
3525 		}
3526 
3527 		pipe_info = &hif_state->pipe_info[pipe_num];
3528 		hif_recv_buffer_cleanup_on_pipe(pipe_info);
3529 		hif_send_buffer_cleanup_on_pipe(pipe_info);
3530 	}
3531 }
3532 
3533 void hif_flush_surprise_remove(struct hif_opaque_softc *hif_ctx)
3534 {
3535 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
3536 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3537 
3538 	hif_buffer_cleanup(hif_state);
3539 }
3540 
3541 static void hif_destroy_oom_work(struct hif_softc *scn)
3542 {
3543 	struct CE_state *ce_state;
3544 	int ce_id;
3545 
3546 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
3547 		ce_state = scn->ce_id_to_state[ce_id];
3548 		if (ce_state)
3549 			qdf_destroy_work(scn->qdf_dev,
3550 					 &ce_state->oom_allocation_work);
3551 	}
3552 }
3553 
3554 void hif_ce_stop(struct hif_softc *scn)
3555 {
3556 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3557 	int pipe_num;
3558 
3559 	/*
3560 	 * before cleaning up any memory, ensure irq &
3561 	 * bottom half contexts will not be re-entered
3562 	 */
3563 	hif_disable_isr(&scn->osc);
3564 	hif_destroy_oom_work(scn);
3565 	scn->hif_init_done = false;
3566 
3567 	/*
3568 	 * At this point, asynchronous threads are stopped,
3569 	 * The Target should not DMA nor interrupt, Host code may
3570 	 * not initiate anything more.  So we just need to clean
3571 	 * up Host-side state.
3572 	 */
3573 
3574 	if (scn->athdiag_procfs_inited) {
3575 		athdiag_procfs_remove();
3576 		scn->athdiag_procfs_inited = false;
3577 	}
3578 
3579 	hif_buffer_cleanup(hif_state);
3580 
3581 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3582 		struct HIF_CE_pipe_info *pipe_info;
3583 		struct CE_attr attr;
3584 		struct CE_handle *ce_diag = hif_state->ce_diag;
3585 
3586 		pipe_info = &hif_state->pipe_info[pipe_num];
3587 		if (pipe_info->ce_hdl) {
3588 			if (pipe_info->ce_hdl != ce_diag &&
3589 			    hif_state->started) {
3590 				attr = hif_state->host_ce_config[pipe_num];
3591 				if (attr.src_nentries)
3592 					qdf_spinlock_destroy(&pipe_info->
3593 							completion_freeq_lock);
3594 			}
3595 			ce_fini(pipe_info->ce_hdl);
3596 			pipe_info->ce_hdl = NULL;
3597 			pipe_info->buf_sz = 0;
3598 			qdf_spinlock_destroy(&pipe_info->recv_bufs_needed_lock);
3599 		}
3600 	}
3601 
3602 	if (hif_state->sleep_timer_init) {
3603 		qdf_timer_stop(&hif_state->sleep_timer);
3604 		qdf_timer_free(&hif_state->sleep_timer);
3605 		hif_state->sleep_timer_init = false;
3606 	}
3607 
3608 	hif_state->started = false;
3609 }
3610 
3611 static void hif_get_shadow_reg_cfg(struct hif_softc *scn,
3612 				   struct shadow_reg_cfg
3613 				   **target_shadow_reg_cfg_ret,
3614 				   uint32_t *shadow_cfg_sz_ret)
3615 {
3616 	if (target_shadow_reg_cfg_ret)
3617 		*target_shadow_reg_cfg_ret = target_shadow_reg_cfg;
3618 	if (shadow_cfg_sz_ret)
3619 		*shadow_cfg_sz_ret = shadow_cfg_sz;
3620 }
3621 
3622 /**
3623  * hif_get_target_ce_config() - get copy engine configuration
3624  * @target_ce_config_ret: basic copy engine configuration
3625  * @target_ce_config_sz_ret: size of the basic configuration in bytes
3626  * @target_service_to_ce_map_ret: service mapping for the copy engines
3627  * @target_service_to_ce_map_sz_ret: size of the mapping in bytes
3628  * @target_shadow_reg_cfg_ret: shadow register configuration
3629  * @shadow_cfg_sz_ret: size of the shadow register configuration in bytes
3630  *
3631  * providing accessor to these values outside of this file.
3632  * currently these are stored in static pointers to const sections.
3633  * there are multiple configurations that are selected from at compile time.
3634  * Runtime selection would need to consider mode, target type and bus type.
3635  *
3636  * Return: return by parameter.
3637  */
3638 void hif_get_target_ce_config(struct hif_softc *scn,
3639 		struct CE_pipe_config **target_ce_config_ret,
3640 		uint32_t *target_ce_config_sz_ret,
3641 		struct service_to_pipe **target_service_to_ce_map_ret,
3642 		uint32_t *target_service_to_ce_map_sz_ret,
3643 		struct shadow_reg_cfg **target_shadow_reg_cfg_ret,
3644 		uint32_t *shadow_cfg_sz_ret)
3645 {
3646 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3647 
3648 	*target_ce_config_ret = hif_state->target_ce_config;
3649 	*target_ce_config_sz_ret = hif_state->target_ce_config_sz;
3650 
3651 	hif_select_service_to_pipe_map(scn, target_service_to_ce_map_ret,
3652 				       target_service_to_ce_map_sz_ret);
3653 	hif_get_shadow_reg_cfg(scn, target_shadow_reg_cfg_ret,
3654 			       shadow_cfg_sz_ret);
3655 }
3656 
3657 #ifdef CONFIG_SHADOW_V3
3658 static void hif_print_hal_shadow_register_cfg(struct pld_wlan_enable_cfg *cfg)
3659 {
3660 	int i;
3661 
3662 	hif_err("v3: num_config %d", cfg->num_shadow_reg_v3_cfg);
3663 
3664 	for (i = 0; i < cfg->num_shadow_reg_v3_cfg; i++) {
3665 		hif_err("i %d, val %x", i, cfg->shadow_reg_v3_cfg[i].addr);
3666 	}
3667 }
3668 
3669 #elif defined(CONFIG_SHADOW_V2)
3670 static void hif_print_hal_shadow_register_cfg(struct pld_wlan_enable_cfg *cfg)
3671 {
3672 	int i;
3673 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
3674 		  "%s: num_config %d", __func__, cfg->num_shadow_reg_v2_cfg);
3675 
3676 	for (i = 0; i < cfg->num_shadow_reg_v2_cfg; i++) {
3677 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
3678 		     "%s: i %d, val %x", __func__, i,
3679 		     cfg->shadow_reg_v2_cfg[i].addr);
3680 	}
3681 }
3682 
3683 #else
3684 static void hif_print_hal_shadow_register_cfg(struct pld_wlan_enable_cfg *cfg)
3685 {
3686 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
3687 		  "%s: CONFIG_SHADOW V2/V3 not defined", __func__);
3688 }
3689 #endif
3690 
3691 #ifdef ADRASTEA_RRI_ON_DDR
3692 /**
3693  * hif_get_src_ring_read_index(): Called to get the SRRI
3694  *
3695  * @scn: hif_softc pointer
3696  * @CE_ctrl_addr: base address of the CE whose RRI is to be read
3697  *
3698  * This function returns the SRRI to the caller. For CEs that
3699  * dont have interrupts enabled, we look at the DDR based SRRI
3700  *
3701  * Return: SRRI
3702  */
3703 inline unsigned int hif_get_src_ring_read_index(struct hif_softc *scn,
3704 		uint32_t CE_ctrl_addr)
3705 {
3706 	struct CE_attr attr;
3707 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3708 
3709 	attr = hif_state->host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)];
3710 	if (attr.flags & CE_ATTR_DISABLE_INTR) {
3711 		return CE_SRC_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr);
3712 	} else {
3713 		if (TARGET_REGISTER_ACCESS_ALLOWED(scn))
3714 			return A_TARGET_READ(scn,
3715 					(CE_ctrl_addr) + CURRENT_SRRI_ADDRESS);
3716 		else
3717 			return CE_SRC_RING_READ_IDX_GET_FROM_DDR(scn,
3718 					CE_ctrl_addr);
3719 	}
3720 }
3721 
3722 /**
3723  * hif_get_dst_ring_read_index(): Called to get the DRRI
3724  *
3725  * @scn: hif_softc pointer
3726  * @CE_ctrl_addr: base address of the CE whose RRI is to be read
3727  *
3728  * This function returns the DRRI to the caller. For CEs that
3729  * dont have interrupts enabled, we look at the DDR based DRRI
3730  *
3731  * Return: DRRI
3732  */
3733 inline unsigned int hif_get_dst_ring_read_index(struct hif_softc *scn,
3734 		uint32_t CE_ctrl_addr)
3735 {
3736 	struct CE_attr attr;
3737 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3738 
3739 	attr = hif_state->host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)];
3740 
3741 	if (attr.flags & CE_ATTR_DISABLE_INTR) {
3742 		return CE_DEST_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr);
3743 	} else {
3744 		if (TARGET_REGISTER_ACCESS_ALLOWED(scn))
3745 			return A_TARGET_READ(scn,
3746 					(CE_ctrl_addr) + CURRENT_DRRI_ADDRESS);
3747 		else
3748 			return CE_DEST_RING_READ_IDX_GET_FROM_DDR(scn,
3749 					CE_ctrl_addr);
3750 	}
3751 }
3752 
3753 /**
3754  * hif_alloc_rri_on_ddr() - Allocate memory for rri on ddr
3755  * @scn: hif_softc pointer
3756  *
3757  * Return: qdf status
3758  */
3759 static inline QDF_STATUS hif_alloc_rri_on_ddr(struct hif_softc *scn)
3760 {
3761 	qdf_dma_addr_t paddr_rri_on_ddr = 0;
3762 
3763 	scn->vaddr_rri_on_ddr =
3764 		(uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev,
3765 		scn->qdf_dev->dev, (CE_COUNT * sizeof(uint32_t)),
3766 		&paddr_rri_on_ddr);
3767 
3768 	if (!scn->vaddr_rri_on_ddr) {
3769 		hif_err("dmaable page alloc fail");
3770 		return QDF_STATUS_E_NOMEM;
3771 	}
3772 
3773 	scn->paddr_rri_on_ddr = paddr_rri_on_ddr;
3774 
3775 	qdf_mem_zero(scn->vaddr_rri_on_ddr, CE_COUNT * sizeof(uint32_t));
3776 
3777 	return QDF_STATUS_SUCCESS;
3778 }
3779 #endif
3780 
3781 #if (!defined(QCN7605_SUPPORT)) && defined(ADRASTEA_RRI_ON_DDR)
3782 /**
3783  * hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism
3784  *
3785  * @scn: hif_softc pointer
3786  *
3787  * This function allocates non cached memory on ddr and sends
3788  * the physical address of this memory to the CE hardware. The
3789  * hardware updates the RRI on this particular location.
3790  *
3791  * Return: None
3792  */
3793 static inline void hif_config_rri_on_ddr(struct hif_softc *scn)
3794 {
3795 	unsigned int i;
3796 	uint32_t high_paddr, low_paddr;
3797 
3798 	if (hif_alloc_rri_on_ddr(scn) != QDF_STATUS_SUCCESS)
3799 		return;
3800 
3801 	low_paddr  = BITS0_TO_31(scn->paddr_rri_on_ddr);
3802 	high_paddr = BITS32_TO_35(scn->paddr_rri_on_ddr);
3803 
3804 	hif_debug("using srri and drri from DDR");
3805 
3806 	WRITE_CE_DDR_ADDRESS_FOR_RRI_LOW(scn, low_paddr);
3807 	WRITE_CE_DDR_ADDRESS_FOR_RRI_HIGH(scn, high_paddr);
3808 
3809 	for (i = 0; i < CE_COUNT; i++)
3810 		CE_IDX_UPD_EN_SET(scn, CE_BASE_ADDRESS(i));
3811 }
3812 #else
3813 /**
3814  * hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism
3815  *
3816  * @scn: hif_softc pointer
3817  *
3818  * This is a dummy implementation for platforms that don't
3819  * support this functionality.
3820  *
3821  * Return: None
3822  */
3823 static inline void hif_config_rri_on_ddr(struct hif_softc *scn)
3824 {
3825 }
3826 #endif
3827 
3828 /**
3829  * hif_update_rri_over_ddr_config() - update rri_over_ddr config for
3830  *                                    QMI command
3831  * @scn: hif context
3832  * @cfg: wlan enable config
3833  *
3834  * In case of Genoa, rri_over_ddr memory configuration is passed
3835  * to firmware through QMI configure command.
3836  */
3837 #if defined(QCN7605_SUPPORT) && defined(ADRASTEA_RRI_ON_DDR)
3838 static void hif_update_rri_over_ddr_config(struct hif_softc *scn,
3839 					   struct pld_wlan_enable_cfg *cfg)
3840 {
3841 	if (hif_alloc_rri_on_ddr(scn) != QDF_STATUS_SUCCESS)
3842 		return;
3843 
3844 	cfg->rri_over_ddr_cfg_valid = true;
3845 	cfg->rri_over_ddr_cfg.base_addr_low =
3846 		 BITS0_TO_31(scn->paddr_rri_on_ddr);
3847 	cfg->rri_over_ddr_cfg.base_addr_high =
3848 		 BITS32_TO_35(scn->paddr_rri_on_ddr);
3849 }
3850 #else
3851 static void hif_update_rri_over_ddr_config(struct hif_softc *scn,
3852 					   struct pld_wlan_enable_cfg *cfg)
3853 {
3854 }
3855 #endif
3856 
3857 /**
3858  * hif_wlan_enable(): call the platform driver to enable wlan
3859  * @scn: HIF Context
3860  *
3861  * This function passes the con_mode and CE configuration to
3862  * platform driver to enable wlan.
3863  *
3864  * Return: linux error code
3865  */
3866 int hif_wlan_enable(struct hif_softc *scn)
3867 {
3868 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
3869 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
3870 	struct pld_wlan_enable_cfg cfg = { 0 };
3871 	enum pld_driver_mode mode;
3872 	uint32_t con_mode = hif_get_conparam(scn);
3873 
3874 	hif_get_target_ce_config(scn,
3875 			(struct CE_pipe_config **)&cfg.ce_tgt_cfg,
3876 			&cfg.num_ce_tgt_cfg,
3877 			(struct service_to_pipe **)&cfg.ce_svc_cfg,
3878 			&cfg.num_ce_svc_pipe_cfg,
3879 			(struct shadow_reg_cfg **)&cfg.shadow_reg_cfg,
3880 			&cfg.num_shadow_reg_cfg);
3881 
3882 	/* translate from structure size to array size */
3883 	cfg.num_ce_tgt_cfg /= sizeof(struct CE_pipe_config);
3884 	cfg.num_ce_svc_pipe_cfg /= sizeof(struct service_to_pipe);
3885 	cfg.num_shadow_reg_cfg /= sizeof(struct shadow_reg_cfg);
3886 
3887 	switch (tgt_info->target_type) {
3888 	case TARGET_TYPE_KIWI:
3889 	case TARGET_TYPE_MANGO:
3890 		hif_prepare_hal_shadow_reg_cfg_v3(scn, &cfg);
3891 		break;
3892 	default:
3893 		hif_prepare_hal_shadow_register_cfg(scn,
3894 						    &cfg.shadow_reg_v2_cfg,
3895 						    &cfg.num_shadow_reg_v2_cfg);
3896 		break;
3897 	}
3898 
3899 	hif_print_hal_shadow_register_cfg(&cfg);
3900 
3901 	hif_update_rri_over_ddr_config(scn, &cfg);
3902 
3903 	if (QDF_GLOBAL_FTM_MODE == con_mode)
3904 		mode = PLD_FTM;
3905 	else if (QDF_GLOBAL_COLDBOOT_CALIB_MODE == con_mode)
3906 		mode = PLD_COLDBOOT_CALIBRATION;
3907 	else if (QDF_GLOBAL_FTM_COLDBOOT_CALIB_MODE == con_mode)
3908 		mode = PLD_FTM_COLDBOOT_CALIBRATION;
3909 	else if (QDF_IS_EPPING_ENABLED(con_mode))
3910 		mode = PLD_EPPING;
3911 	else
3912 		mode = PLD_MISSION;
3913 
3914 	if (BYPASS_QMI)
3915 		return 0;
3916 	else
3917 		return pld_wlan_enable(scn->qdf_dev->dev, &cfg, mode);
3918 }
3919 
3920 #ifdef WLAN_FEATURE_EPPING
3921 
3922 #define CE_EPPING_USES_IRQ true
3923 
3924 void hif_ce_prepare_epping_config(struct hif_softc *scn,
3925 				  struct HIF_CE_state *hif_state)
3926 {
3927 	if (CE_EPPING_USES_IRQ)
3928 		hif_state->host_ce_config = host_ce_config_wlan_epping_irq;
3929 	else
3930 		hif_state->host_ce_config = host_ce_config_wlan_epping_poll;
3931 	hif_state->target_ce_config = target_ce_config_wlan_epping;
3932 	hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan_epping);
3933 	target_shadow_reg_cfg = target_shadow_reg_cfg_epping;
3934 	shadow_cfg_sz = sizeof(target_shadow_reg_cfg_epping);
3935 	scn->ce_count = EPPING_HOST_CE_COUNT;
3936 }
3937 #endif
3938 
3939 #ifdef QCN7605_SUPPORT
3940 static inline
3941 void hif_set_ce_config_qcn7605(struct hif_softc *scn,
3942 			       struct HIF_CE_state *hif_state)
3943 {
3944 	hif_state->host_ce_config = host_ce_config_wlan_qcn7605;
3945 	hif_state->target_ce_config = target_ce_config_wlan_qcn7605;
3946 	hif_state->target_ce_config_sz =
3947 				 sizeof(target_ce_config_wlan_qcn7605);
3948 	target_shadow_reg_cfg = target_shadow_reg_cfg_map_qcn7605;
3949 	shadow_cfg_sz = sizeof(target_shadow_reg_cfg_map_qcn7605);
3950 	scn->ce_count = QCN7605_CE_COUNT;
3951 }
3952 #else
3953 static inline
3954 void hif_set_ce_config_qcn7605(struct hif_softc *scn,
3955 			       struct HIF_CE_state *hif_state)
3956 {
3957 	hif_err("QCN7605 not supported");
3958 }
3959 #endif
3960 
3961 #ifdef CE_SVC_CMN_INIT
3962 #ifdef QCA_WIFI_SUPPORT_SRNG
3963 static inline void hif_ce_service_init(void)
3964 {
3965 	ce_service_srng_init();
3966 }
3967 #else
3968 static inline void hif_ce_service_init(void)
3969 {
3970 	ce_service_legacy_init();
3971 }
3972 #endif
3973 #else
3974 static inline void hif_ce_service_init(void)
3975 {
3976 }
3977 #endif
3978 
3979 
3980 /**
3981  * hif_ce_prepare_config() - load the correct static tables.
3982  * @scn: hif context
3983  *
3984  * Epping uses different static attribute tables than mission mode.
3985  */
3986 void hif_ce_prepare_config(struct hif_softc *scn)
3987 {
3988 	uint32_t mode = hif_get_conparam(scn);
3989 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
3990 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
3991 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3992 	int ret;
3993 	int msi_data_count = 0;
3994 	int msi_data_start = 0;
3995 	int msi_irq_start = 0;
3996 
3997 	hif_ce_service_init();
3998 	hif_state->ce_services = ce_services_attach(scn);
3999 
4000 	ret = pld_get_user_msi_assignment(scn->qdf_dev->dev, "CE",
4001 					  &msi_data_count, &msi_data_start,
4002 					  &msi_irq_start);
4003 
4004 	scn->ce_count = HOST_CE_COUNT;
4005 	scn->int_assignment = &ce_int_context[msi_data_count];
4006 	scn->free_irq_done = false;
4007 	/* if epping is enabled we need to use the epping configuration. */
4008 	if (QDF_IS_EPPING_ENABLED(mode)) {
4009 		hif_ce_prepare_epping_config(scn, hif_state);
4010 		return;
4011 	}
4012 
4013 	switch (tgt_info->target_type) {
4014 	default:
4015 		hif_state->host_ce_config = host_ce_config_wlan;
4016 		hif_state->target_ce_config = target_ce_config_wlan;
4017 		hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan);
4018 		break;
4019 	case TARGET_TYPE_QCN7605:
4020 		hif_set_ce_config_qcn7605(scn, hif_state);
4021 		break;
4022 	case TARGET_TYPE_AR900B:
4023 	case TARGET_TYPE_QCA9984:
4024 	case TARGET_TYPE_QCA9888:
4025 		if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_NO_PKTLOG_CFG)) {
4026 			hif_state->host_ce_config =
4027 				host_lowdesc_ce_cfg_wlan_ar900b_nopktlog;
4028 		} else if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_CFG)) {
4029 			hif_state->host_ce_config =
4030 				host_lowdesc_ce_cfg_wlan_ar900b;
4031 		} else {
4032 			hif_state->host_ce_config = host_ce_config_wlan_ar900b;
4033 		}
4034 
4035 		hif_state->target_ce_config = target_ce_config_wlan_ar900b;
4036 		hif_state->target_ce_config_sz =
4037 				sizeof(target_ce_config_wlan_ar900b);
4038 
4039 		break;
4040 
4041 	case TARGET_TYPE_AR9888:
4042 	case TARGET_TYPE_AR9888V2:
4043 		if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_CFG)) {
4044 			hif_state->host_ce_config = host_lowdesc_ce_cfg_wlan_ar9888;
4045 		} else {
4046 			hif_state->host_ce_config = host_ce_config_wlan_ar9888;
4047 		}
4048 
4049 		hif_state->target_ce_config = target_ce_config_wlan_ar9888;
4050 		hif_state->target_ce_config_sz =
4051 					sizeof(target_ce_config_wlan_ar9888);
4052 
4053 		break;
4054 
4055 	case TARGET_TYPE_QCA8074:
4056 	case TARGET_TYPE_QCA8074V2:
4057 	case TARGET_TYPE_QCA6018:
4058 		if (scn->bus_type == QDF_BUS_TYPE_PCI) {
4059 			hif_state->host_ce_config =
4060 					host_ce_config_wlan_qca8074_pci;
4061 			hif_state->target_ce_config =
4062 				target_ce_config_wlan_qca8074_pci;
4063 			hif_state->target_ce_config_sz =
4064 				sizeof(target_ce_config_wlan_qca8074_pci);
4065 		} else {
4066 			hif_state->host_ce_config = host_ce_config_wlan_qca8074;
4067 			hif_state->target_ce_config =
4068 					target_ce_config_wlan_qca8074;
4069 			hif_state->target_ce_config_sz =
4070 				sizeof(target_ce_config_wlan_qca8074);
4071 		}
4072 		break;
4073 	case TARGET_TYPE_QCA6290:
4074 		hif_state->host_ce_config = host_ce_config_wlan_qca6290;
4075 		hif_state->target_ce_config = target_ce_config_wlan_qca6290;
4076 		hif_state->target_ce_config_sz =
4077 					sizeof(target_ce_config_wlan_qca6290);
4078 
4079 		scn->ce_count = QCA_6290_CE_COUNT;
4080 		break;
4081 	case TARGET_TYPE_QCN9000:
4082 		hif_state->host_ce_config = host_ce_config_wlan_qcn9000;
4083 		hif_state->target_ce_config = target_ce_config_wlan_qcn9000;
4084 		hif_state->target_ce_config_sz =
4085 					sizeof(target_ce_config_wlan_qcn9000);
4086 		scn->ce_count = QCN_9000_CE_COUNT;
4087 		scn->disable_wake_irq = 1;
4088 		break;
4089 	case TARGET_TYPE_QCN9224:
4090 		hif_set_ce_config_qcn9224(scn, hif_state);
4091 		break;
4092 	case TARGET_TYPE_QCA5332:
4093 		hif_state->host_ce_config = host_ce_config_wlan_qca5332;
4094 		hif_state->target_ce_config = target_ce_config_wlan_qca5332;
4095 		hif_state->target_ce_config_sz =
4096 					 sizeof(target_ce_config_wlan_qca5332);
4097 		scn->ce_count = QCA_5332_CE_COUNT;
4098 		break;
4099 	case TARGET_TYPE_QCN6122:
4100 		hif_state->host_ce_config = host_ce_config_wlan_qcn6122;
4101 		hif_state->target_ce_config = target_ce_config_wlan_qcn6122;
4102 		hif_state->target_ce_config_sz =
4103 					sizeof(target_ce_config_wlan_qcn6122);
4104 		scn->ce_count = QCN_6122_CE_COUNT;
4105 		scn->disable_wake_irq = 1;
4106 		break;
4107 	case TARGET_TYPE_QCA5018:
4108 		hif_state->host_ce_config = host_ce_config_wlan_qca5018;
4109 		hif_state->target_ce_config = target_ce_config_wlan_qca5018;
4110 		hif_state->target_ce_config_sz =
4111 					sizeof(target_ce_config_wlan_qca5018);
4112 		scn->ce_count = QCA_5018_CE_COUNT;
4113 		break;
4114 	case TARGET_TYPE_QCA9574:
4115 		hif_state->host_ce_config = host_ce_config_wlan_qca9574;
4116 		hif_state->target_ce_config = target_ce_config_wlan_qca9574;
4117 		hif_state->target_ce_config_sz =
4118 					sizeof(target_ce_config_wlan_qca9574);
4119 		break;
4120 	case TARGET_TYPE_QCA6390:
4121 		hif_state->host_ce_config = host_ce_config_wlan_qca6390;
4122 		hif_state->target_ce_config = target_ce_config_wlan_qca6390;
4123 		hif_state->target_ce_config_sz =
4124 					sizeof(target_ce_config_wlan_qca6390);
4125 
4126 		scn->ce_count = QCA_6390_CE_COUNT;
4127 		break;
4128 	case TARGET_TYPE_QCA6490:
4129 		hif_state->host_ce_config = host_ce_config_wlan_qca6490;
4130 		hif_state->target_ce_config = target_ce_config_wlan_qca6490;
4131 		hif_state->target_ce_config_sz =
4132 					sizeof(target_ce_config_wlan_qca6490);
4133 
4134 		scn->ce_count = QCA_6490_CE_COUNT;
4135 		break;
4136 	case TARGET_TYPE_QCA6750:
4137 		hif_state->host_ce_config = host_ce_config_wlan_qca6750;
4138 		hif_state->target_ce_config = target_ce_config_wlan_qca6750;
4139 		hif_state->target_ce_config_sz =
4140 					sizeof(target_ce_config_wlan_qca6750);
4141 
4142 		scn->ce_count = QCA_6750_CE_COUNT;
4143 		break;
4144 	case TARGET_TYPE_KIWI:
4145 	case TARGET_TYPE_MANGO:
4146 		hif_state->host_ce_config = host_ce_config_wlan_kiwi;
4147 		hif_state->target_ce_config = target_ce_config_wlan_kiwi;
4148 		hif_state->target_ce_config_sz =
4149 					sizeof(target_ce_config_wlan_kiwi);
4150 		scn->ce_count = KIWI_CE_COUNT;
4151 		break;
4152 	case TARGET_TYPE_ADRASTEA:
4153 		if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_NO_PKTLOG_CFG)) {
4154 			hif_state->host_ce_config =
4155 				host_lowdesc_ce_config_wlan_adrastea_nopktlog;
4156 			hif_state->target_ce_config =
4157 			       target_lowdesc_ce_config_wlan_adrastea_nopktlog;
4158 			hif_state->target_ce_config_sz =
4159 			sizeof(target_lowdesc_ce_config_wlan_adrastea_nopktlog);
4160 		} else {
4161 			hif_state->host_ce_config =
4162 				host_ce_config_wlan_adrastea;
4163 			hif_state->target_ce_config =
4164 					target_ce_config_wlan_adrastea;
4165 			hif_state->target_ce_config_sz =
4166 					sizeof(target_ce_config_wlan_adrastea);
4167 		}
4168 		break;
4169 
4170 	}
4171 	QDF_BUG(scn->ce_count <= CE_COUNT_MAX);
4172 }
4173 
4174 /**
4175  * hif_ce_open() - do ce specific allocations
4176  * @hif_sc: pointer to hif context
4177  *
4178  * return: 0 for success or QDF_STATUS_E_NOMEM
4179  */
4180 QDF_STATUS hif_ce_open(struct hif_softc *hif_sc)
4181 {
4182 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
4183 
4184 	qdf_spinlock_create(&hif_state->irq_reg_lock);
4185 	qdf_spinlock_create(&hif_state->keep_awake_lock);
4186 	return QDF_STATUS_SUCCESS;
4187 }
4188 
4189 /**
4190  * hif_ce_close() - do ce specific free
4191  * @hif_sc: pointer to hif context
4192  */
4193 void hif_ce_close(struct hif_softc *hif_sc)
4194 {
4195 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
4196 
4197 	qdf_spinlock_destroy(&hif_state->irq_reg_lock);
4198 	qdf_spinlock_destroy(&hif_state->keep_awake_lock);
4199 }
4200 
4201 /**
4202  * hif_unconfig_ce() - ensure resources from hif_config_ce are freed
4203  * @hif_sc: hif context
4204  *
4205  * uses state variables to support cleaning up when hif_config_ce fails.
4206  */
4207 void hif_unconfig_ce(struct hif_softc *hif_sc)
4208 {
4209 	int pipe_num;
4210 	struct HIF_CE_pipe_info *pipe_info;
4211 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
4212 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(hif_sc);
4213 
4214 	for (pipe_num = 0; pipe_num < hif_sc->ce_count; pipe_num++) {
4215 		pipe_info = &hif_state->pipe_info[pipe_num];
4216 		if (pipe_info->ce_hdl) {
4217 			ce_unregister_irq(hif_state, (1 << pipe_num));
4218 		}
4219 	}
4220 	deinit_tasklet_workers(hif_hdl);
4221 	for (pipe_num = 0; pipe_num < hif_sc->ce_count; pipe_num++) {
4222 		pipe_info = &hif_state->pipe_info[pipe_num];
4223 		if (pipe_info->ce_hdl) {
4224 			ce_fini(pipe_info->ce_hdl);
4225 			pipe_info->ce_hdl = NULL;
4226 			pipe_info->buf_sz = 0;
4227 			qdf_spinlock_destroy(&pipe_info->recv_bufs_needed_lock);
4228 		}
4229 	}
4230 	if (hif_sc->athdiag_procfs_inited) {
4231 		athdiag_procfs_remove();
4232 		hif_sc->athdiag_procfs_inited = false;
4233 	}
4234 }
4235 
4236 #ifdef CONFIG_BYPASS_QMI
4237 #ifdef QCN7605_SUPPORT
4238 /**
4239  * hif_post_static_buf_to_target() - post static buffer to WLAN FW
4240  * @scn: pointer to HIF structure
4241  *
4242  * WLAN FW needs 2MB memory from DDR when QMI is disabled.
4243  *
4244  * Return: void
4245  */
4246 static void hif_post_static_buf_to_target(struct hif_softc *scn)
4247 {
4248 	phys_addr_t target_pa;
4249 	struct ce_info *ce_info_ptr;
4250 	uint32_t msi_data_start;
4251 	uint32_t msi_data_count;
4252 	uint32_t msi_irq_start;
4253 	uint32_t i = 0;
4254 	int ret;
4255 
4256 	scn->vaddr_qmi_bypass =
4257 			(uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev,
4258 							     scn->qdf_dev->dev,
4259 							     FW_SHARED_MEM,
4260 							     &target_pa);
4261 	if (!scn->vaddr_qmi_bypass) {
4262 		hif_err("Memory allocation failed could not post target buf");
4263 		return;
4264 	}
4265 
4266 	scn->paddr_qmi_bypass = target_pa;
4267 
4268 	ce_info_ptr = (struct ce_info *)scn->vaddr_qmi_bypass;
4269 
4270 	if (scn->vaddr_rri_on_ddr) {
4271 		ce_info_ptr->rri_over_ddr_low_paddr  =
4272 			 BITS0_TO_31(scn->paddr_rri_on_ddr);
4273 		ce_info_ptr->rri_over_ddr_high_paddr =
4274 			 BITS32_TO_35(scn->paddr_rri_on_ddr);
4275 	}
4276 
4277 	ret = pld_get_user_msi_assignment(scn->qdf_dev->dev, "CE",
4278 					  &msi_data_count, &msi_data_start,
4279 					  &msi_irq_start);
4280 	if (ret) {
4281 		hif_err("Failed to get CE msi config");
4282 		return;
4283 	}
4284 
4285 	for (i = 0; i < CE_COUNT_MAX; i++) {
4286 		ce_info_ptr->cfg[i].ce_id = i;
4287 		ce_info_ptr->cfg[i].msi_vector =
4288 			 (i % msi_data_count) + msi_irq_start;
4289 	}
4290 
4291 	hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, target_pa);
4292 	hif_info("target va %pK target pa %pa", scn->vaddr_qmi_bypass,
4293 		 &target_pa);
4294 }
4295 
4296 /**
4297  * hif_cleanup_static_buf_to_target() -  clean up static buffer to WLAN FW
4298  * @scn: pointer to HIF structure
4299  *
4300  *
4301  * Return: void
4302  */
4303 void hif_cleanup_static_buf_to_target(struct hif_softc *scn)
4304 {
4305 	void *target_va = scn->vaddr_qmi_bypass;
4306 	phys_addr_t target_pa = scn->paddr_qmi_bypass;
4307 
4308 	qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
4309 				FW_SHARED_MEM, target_va,
4310 				target_pa, 0);
4311 	hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, 0);
4312 }
4313 #else
4314 /**
4315  * hif_post_static_buf_to_target() - post static buffer to WLAN FW
4316  * @scn: pointer to HIF structure
4317  *
4318  * WLAN FW needs 2MB memory from DDR when QMI is disabled.
4319  *
4320  * Return: void
4321  */
4322 static void hif_post_static_buf_to_target(struct hif_softc *scn)
4323 {
4324 	qdf_dma_addr_t target_pa;
4325 
4326 	scn->vaddr_qmi_bypass =
4327 			(uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev,
4328 							     scn->qdf_dev->dev,
4329 							     FW_SHARED_MEM,
4330 							     &target_pa);
4331 	if (!scn->vaddr_qmi_bypass) {
4332 		hif_err("Memory allocation failed could not post target buf");
4333 		return;
4334 	}
4335 
4336 	scn->paddr_qmi_bypass = target_pa;
4337 	hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, target_pa);
4338 }
4339 
4340 /**
4341  * hif_cleanup_static_buf_to_target() -  clean up static buffer to WLAN FW
4342  * @scn: pointer to HIF structure
4343  *
4344  *
4345  * Return: void
4346  */
4347 void hif_cleanup_static_buf_to_target(struct hif_softc *scn)
4348 {
4349 	void *target_va = scn->vaddr_qmi_bypass;
4350 	phys_addr_t target_pa = scn->paddr_qmi_bypass;
4351 
4352 	qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
4353 				FW_SHARED_MEM, target_va,
4354 				target_pa, 0);
4355 	hif_write32_mb(snc, scn->mem + BYPASS_QMI_TEMP_REGISTER, 0);
4356 }
4357 #endif
4358 
4359 #else
4360 static inline void hif_post_static_buf_to_target(struct hif_softc *scn)
4361 {
4362 }
4363 
4364 void hif_cleanup_static_buf_to_target(struct hif_softc *scn)
4365 {
4366 }
4367 #endif
4368 
4369 static int hif_srng_sleep_state_adjust(struct hif_softc *scn, bool sleep_ok,
4370 				bool wait_for_it)
4371 {
4372 	/* todo */
4373 	return 0;
4374 }
4375 
4376 int hif_config_ce_by_id(struct hif_softc *scn, int pipe_num)
4377 {
4378 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4379 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
4380 	struct HIF_CE_pipe_info *pipe_info;
4381 	struct CE_state *ce_state = NULL;
4382 	struct CE_attr *attr;
4383 	int rv = 0;
4384 
4385 	if (pipe_num >= CE_COUNT_MAX)
4386 		return -EINVAL;
4387 
4388 	pipe_info = &hif_state->pipe_info[pipe_num];
4389 	pipe_info->pipe_num = pipe_num;
4390 	pipe_info->HIF_CE_state = hif_state;
4391 	attr = &hif_state->host_ce_config[pipe_num];
4392 	ce_state = scn->ce_id_to_state[pipe_num];
4393 
4394 	if (ce_state) {
4395 		/* Do not reinitialize the CE if its done already */
4396 		rv = QDF_STATUS_E_BUSY;
4397 		goto err;
4398 	}
4399 
4400 	pipe_info->ce_hdl = ce_init(scn, pipe_num, attr);
4401 	ce_state = scn->ce_id_to_state[pipe_num];
4402 	if (!ce_state) {
4403 		A_TARGET_ACCESS_UNLIKELY(scn);
4404 		rv = QDF_STATUS_E_FAILURE;
4405 		goto err;
4406 	}
4407 	qdf_spinlock_create(&pipe_info->recv_bufs_needed_lock);
4408 	QDF_ASSERT(pipe_info->ce_hdl);
4409 	if (!pipe_info->ce_hdl) {
4410 		rv = QDF_STATUS_E_FAILURE;
4411 		A_TARGET_ACCESS_UNLIKELY(scn);
4412 		goto err;
4413 	}
4414 
4415 	ce_state->lro_data = qdf_lro_init();
4416 
4417 	if (attr->flags & CE_ATTR_DIAG) {
4418 		/* Reserve the ultimate CE for
4419 		 * Diagnostic Window support
4420 		 */
4421 		hif_state->ce_diag = pipe_info->ce_hdl;
4422 		goto skip;
4423 	}
4424 
4425 	if (hif_is_nss_wifi_enabled(scn) && ce_state &&
4426 	    (ce_state->htt_rx_data)) {
4427 		goto skip;
4428 	}
4429 
4430 	pipe_info->buf_sz = (qdf_size_t)(attr->src_sz_max);
4431 	if (attr->dest_nentries > 0) {
4432 		atomic_set(&pipe_info->recv_bufs_needed,
4433 			   init_buffer_count(attr->dest_nentries - 1));
4434 		/*SRNG based CE has one entry less */
4435 		if (ce_srng_based(scn))
4436 			atomic_dec(&pipe_info->recv_bufs_needed);
4437 	} else {
4438 		atomic_set(&pipe_info->recv_bufs_needed, 0);
4439 	}
4440 	ce_tasklet_init(hif_state, (1 << pipe_num));
4441 	ce_register_irq(hif_state, (1 << pipe_num));
4442 
4443 	init_tasklet_worker_by_ceid(hif_hdl, pipe_num);
4444 skip:
4445 	return 0;
4446 err:
4447 	return rv;
4448 }
4449 
4450 #if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
4451 static inline void hif_gen_ce_id_history_idx_mapping(struct hif_softc *scn)
4452 {
4453 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
4454 	uint8_t ce_id, hist_idx = 0;
4455 
4456 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
4457 		if (IS_CE_DEBUG_ONLY_FOR_CRIT_CE & (1 << ce_id))
4458 			ce_hist->ce_id_hist_map[ce_id] = hist_idx++;
4459 		else
4460 			ce_hist->ce_id_hist_map[ce_id] = -1;
4461 	}
4462 }
4463 #else
4464 static inline void hif_gen_ce_id_history_idx_mapping(struct hif_softc *scn)
4465 {
4466 }
4467 #endif
4468 
4469 /**
4470  * hif_config_ce() - configure copy engines
4471  * @scn: hif context
4472  *
4473  * Prepares fw, copy engine hardware and host sw according
4474  * to the attributes selected by hif_ce_prepare_config.
4475  *
4476  * also calls athdiag_procfs_init
4477  *
4478  * return: 0 for success nonzero for failure.
4479  */
4480 int hif_config_ce(struct hif_softc *scn)
4481 {
4482 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4483 	struct HIF_CE_pipe_info *pipe_info;
4484 	int pipe_num;
4485 
4486 #ifdef ADRASTEA_SHADOW_REGISTERS
4487 	int i;
4488 #endif
4489 	QDF_STATUS rv = QDF_STATUS_SUCCESS;
4490 
4491 	scn->notice_send = true;
4492 	scn->ce_service_max_rx_ind_flush = MSG_FLUSH_NUM;
4493 
4494 	hif_post_static_buf_to_target(scn);
4495 
4496 	hif_state->fw_indicator_address = FW_INDICATOR_ADDRESS;
4497 
4498 	hif_config_rri_on_ddr(scn);
4499 
4500 	if (ce_srng_based(scn))
4501 		scn->bus_ops.hif_target_sleep_state_adjust =
4502 			&hif_srng_sleep_state_adjust;
4503 
4504 	/* Initialise the CE debug history sysfs interface inputs ce_id and
4505 	 * index. Disable data storing
4506 	 */
4507 	reset_ce_debug_history(scn);
4508 	hif_gen_ce_id_history_idx_mapping(scn);
4509 
4510 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
4511 		struct CE_attr *attr;
4512 
4513 		pipe_info = &hif_state->pipe_info[pipe_num];
4514 		attr = &hif_state->host_ce_config[pipe_num];
4515 
4516 		if (attr->flags & CE_ATTR_INIT_ON_DEMAND)
4517 			continue;
4518 
4519 		if (hif_config_ce_by_id(scn, pipe_num))
4520 			goto err;
4521 	}
4522 
4523 	if (athdiag_procfs_init(scn) != 0) {
4524 		A_TARGET_ACCESS_UNLIKELY(scn);
4525 		goto err;
4526 	}
4527 	scn->athdiag_procfs_inited = true;
4528 
4529 	hif_debug("ce_init done");
4530 	hif_debug("%s: X, ret = %d", __func__, rv);
4531 
4532 #ifdef ADRASTEA_SHADOW_REGISTERS
4533 	hif_debug("Using Shadow Registers instead of CE Registers");
4534 	for (i = 0; i < NUM_SHADOW_REGISTERS; i++) {
4535 		hif_debug("Shadow Register%d is mapped to address %x",
4536 			  i,
4537 			  (A_TARGET_READ(scn, (SHADOW_ADDRESS(i))) << 2));
4538 	}
4539 #endif
4540 
4541 	return rv != QDF_STATUS_SUCCESS;
4542 err:
4543 	/* Failure, so clean up */
4544 	hif_unconfig_ce(scn);
4545 	hif_info("X, ret = %d", rv);
4546 	return QDF_STATUS_SUCCESS != QDF_STATUS_E_FAILURE;
4547 }
4548 
4549 /**
4550  * hif_config_ce_pktlog() - configure copy engines
4551  * @scn: hif context
4552  *
4553  * Prepares fw, copy engine hardware and host sw according
4554  * to the attributes selected by hif_ce_prepare_config.
4555  *
4556  * also calls athdiag_procfs_init
4557  *
4558  * return: 0 for success nonzero for failure.
4559  */
4560 int hif_config_ce_pktlog(struct hif_opaque_softc *hif_hdl)
4561 {
4562 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
4563 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4564 	int pipe_num;
4565 	QDF_STATUS qdf_status = QDF_STATUS_E_FAILURE;
4566 	struct HIF_CE_pipe_info *pipe_info;
4567 
4568 	if (!scn)
4569 		goto err;
4570 
4571 	if (scn->pktlog_init)
4572 		return QDF_STATUS_SUCCESS;
4573 
4574 	pipe_num =  hif_get_pktlog_ce_num(scn);
4575 	if (pipe_num < 0) {
4576 		qdf_status = QDF_STATUS_E_FAILURE;
4577 		goto err;
4578 	}
4579 
4580 	pipe_info = &hif_state->pipe_info[pipe_num];
4581 
4582 	qdf_status = hif_config_ce_by_id(scn, pipe_num);
4583 	/* CE Already initialized. Do not try to reinitialized again */
4584 	if (qdf_status == QDF_STATUS_E_BUSY)
4585 		return QDF_STATUS_SUCCESS;
4586 
4587 	qdf_status = hif_config_irq_by_ceid(scn, pipe_num);
4588 	if (qdf_status < 0)
4589 		goto err;
4590 
4591 	qdf_status = hif_completion_thread_startup_by_ceid(hif_state, pipe_num);
4592 	if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
4593 		hif_err("%s:failed to start hif thread", __func__);
4594 		goto err;
4595 	}
4596 
4597 	/* Post buffers for pktlog copy engine. */
4598 	qdf_status = hif_post_recv_buffers_for_pipe(pipe_info);
4599 	if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
4600 		/* cleanup is done in hif_ce_disable */
4601 		hif_err("%s:failed to post buffers", __func__);
4602 		return qdf_status;
4603 	}
4604 	scn->pktlog_init = true;
4605 	return qdf_status != QDF_STATUS_SUCCESS;
4606 
4607 err:
4608 	hif_debug("%s: X, ret = %d", __func__, qdf_status);
4609 	return QDF_STATUS_SUCCESS != QDF_STATUS_E_FAILURE;
4610 }
4611 
4612 #ifdef IPA_OFFLOAD
4613 /**
4614  * hif_ce_ipa_get_ce_resource() - get uc resource on hif
4615  * @scn: bus context
4616  * @ce_sr_base_paddr: copyengine source ring base physical address
4617  * @ce_sr_ring_size: copyengine source ring size
4618  * @ce_reg_paddr: copyengine register physical address
4619  *
4620  * IPA micro controller data path offload feature enabled,
4621  * HIF should release copy engine related resource information to IPA UC
4622  * IPA UC will access hardware resource with released information
4623  *
4624  * Return: None
4625  */
4626 void hif_ce_ipa_get_ce_resource(struct hif_softc *scn,
4627 			     qdf_shared_mem_t **ce_sr,
4628 			     uint32_t *ce_sr_ring_size,
4629 			     qdf_dma_addr_t *ce_reg_paddr)
4630 {
4631 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4632 	struct HIF_CE_pipe_info *pipe_info =
4633 		&(hif_state->pipe_info[HIF_PCI_IPA_UC_ASSIGNED_CE]);
4634 	struct CE_handle *ce_hdl = pipe_info->ce_hdl;
4635 
4636 	ce_ipa_get_resource(ce_hdl, ce_sr, ce_sr_ring_size,
4637 			    ce_reg_paddr);
4638 }
4639 #endif /* IPA_OFFLOAD */
4640 
4641 
4642 #ifdef ADRASTEA_SHADOW_REGISTERS
4643 
4644 /*
4645  * Current shadow register config
4646  *
4647  * -----------------------------------------------------------
4648  * Shadow Register      |     CE   |    src/dst write index
4649  * -----------------------------------------------------------
4650  *         0            |     0    |           src
4651  *         1     No Config - Doesn't point to anything
4652  *         2     No Config - Doesn't point to anything
4653  *         3            |     3    |           src
4654  *         4            |     4    |           src
4655  *         5            |     5    |           src
4656  *         6     No Config - Doesn't point to anything
4657  *         7            |     7    |           src
4658  *         8     No Config - Doesn't point to anything
4659  *         9     No Config - Doesn't point to anything
4660  *         10    No Config - Doesn't point to anything
4661  *         11    No Config - Doesn't point to anything
4662  * -----------------------------------------------------------
4663  *         12    No Config - Doesn't point to anything
4664  *         13           |     1    |           dst
4665  *         14           |     2    |           dst
4666  *         15    No Config - Doesn't point to anything
4667  *         16    No Config - Doesn't point to anything
4668  *         17    No Config - Doesn't point to anything
4669  *         18    No Config - Doesn't point to anything
4670  *         19           |     7    |           dst
4671  *         20           |     8    |           dst
4672  *         21    No Config - Doesn't point to anything
4673  *         22    No Config - Doesn't point to anything
4674  *         23    No Config - Doesn't point to anything
4675  * -----------------------------------------------------------
4676  *
4677  *
4678  * ToDo - Move shadow register config to following in the future
4679  * This helps free up a block of shadow registers towards the end.
4680  * Can be used for other purposes
4681  *
4682  * -----------------------------------------------------------
4683  * Shadow Register      |     CE   |    src/dst write index
4684  * -----------------------------------------------------------
4685  *      0            |     0    |           src
4686  *      1            |     3    |           src
4687  *      2            |     4    |           src
4688  *      3            |     5    |           src
4689  *      4            |     7    |           src
4690  * -----------------------------------------------------------
4691  *      5            |     1    |           dst
4692  *      6            |     2    |           dst
4693  *      7            |     7    |           dst
4694  *      8            |     8    |           dst
4695  * -----------------------------------------------------------
4696  *      9     No Config - Doesn't point to anything
4697  *      12    No Config - Doesn't point to anything
4698  *      13    No Config - Doesn't point to anything
4699  *      14    No Config - Doesn't point to anything
4700  *      15    No Config - Doesn't point to anything
4701  *      16    No Config - Doesn't point to anything
4702  *      17    No Config - Doesn't point to anything
4703  *      18    No Config - Doesn't point to anything
4704  *      19    No Config - Doesn't point to anything
4705  *      20    No Config - Doesn't point to anything
4706  *      21    No Config - Doesn't point to anything
4707  *      22    No Config - Doesn't point to anything
4708  *      23    No Config - Doesn't point to anything
4709  * -----------------------------------------------------------
4710 */
4711 #ifndef QCN7605_SUPPORT
4712 u32 shadow_sr_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
4713 {
4714 	u32 addr = 0;
4715 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
4716 
4717 	switch (ce) {
4718 	case 0:
4719 		addr = SHADOW_VALUE0;
4720 		break;
4721 	case 3:
4722 		addr = SHADOW_VALUE3;
4723 		break;
4724 	case 4:
4725 		addr = SHADOW_VALUE4;
4726 		break;
4727 	case 5:
4728 		addr = SHADOW_VALUE5;
4729 		break;
4730 	case 7:
4731 		addr = SHADOW_VALUE7;
4732 		break;
4733 	default:
4734 		hif_err("Invalid CE ctrl_addr (CE=%d)", ce);
4735 		QDF_ASSERT(0);
4736 	}
4737 	return addr;
4738 
4739 }
4740 
4741 u32 shadow_dst_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
4742 {
4743 	u32 addr = 0;
4744 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
4745 
4746 	switch (ce) {
4747 	case 1:
4748 		addr = SHADOW_VALUE13;
4749 		break;
4750 	case 2:
4751 		addr = SHADOW_VALUE14;
4752 		break;
4753 	case 5:
4754 		addr = SHADOW_VALUE17;
4755 		break;
4756 	case 7:
4757 		addr = SHADOW_VALUE19;
4758 		break;
4759 	case 8:
4760 		addr = SHADOW_VALUE20;
4761 		break;
4762 	case 9:
4763 		addr = SHADOW_VALUE21;
4764 		break;
4765 	case 10:
4766 		addr = SHADOW_VALUE22;
4767 		break;
4768 	case 11:
4769 		addr = SHADOW_VALUE23;
4770 		break;
4771 	default:
4772 		hif_err("Invalid CE ctrl_addr (CE=%d)", ce);
4773 		QDF_ASSERT(0);
4774 	}
4775 
4776 	return addr;
4777 
4778 }
4779 #else
4780 u32 shadow_sr_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
4781 {
4782 	u32 addr = 0;
4783 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
4784 
4785 	switch (ce) {
4786 	case 0:
4787 		addr = SHADOW_VALUE0;
4788 		break;
4789 	case 3:
4790 		addr = SHADOW_VALUE3;
4791 		break;
4792 	case 4:
4793 		addr = SHADOW_VALUE4;
4794 		break;
4795 	case 5:
4796 		addr = SHADOW_VALUE5;
4797 		break;
4798 	default:
4799 		hif_err("Invalid CE ctrl_addr (CE=%d)", ce);
4800 		QDF_ASSERT(0);
4801 	}
4802 	return addr;
4803 }
4804 
4805 u32 shadow_dst_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
4806 {
4807 	u32 addr = 0;
4808 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
4809 
4810 	switch (ce) {
4811 	case 1:
4812 		addr = SHADOW_VALUE13;
4813 		break;
4814 	case 2:
4815 		addr = SHADOW_VALUE14;
4816 		break;
4817 	case 3:
4818 		addr = SHADOW_VALUE15;
4819 		break;
4820 	case 5:
4821 		addr = SHADOW_VALUE17;
4822 		break;
4823 	case 7:
4824 		addr = SHADOW_VALUE19;
4825 		break;
4826 	case 8:
4827 		addr = SHADOW_VALUE20;
4828 		break;
4829 	case 9:
4830 		addr = SHADOW_VALUE21;
4831 		break;
4832 	case 10:
4833 		addr = SHADOW_VALUE22;
4834 		break;
4835 	case 11:
4836 		addr = SHADOW_VALUE23;
4837 		break;
4838 	default:
4839 		hif_err("Invalid CE ctrl_addr (CE=%d)", ce);
4840 		QDF_ASSERT(0);
4841 	}
4842 
4843 	return addr;
4844 }
4845 #endif
4846 #endif
4847 
4848 #if defined(FEATURE_LRO)
4849 void *hif_ce_get_lro_ctx(struct hif_opaque_softc *hif_hdl, int ctx_id)
4850 {
4851 	struct CE_state *ce_state;
4852 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
4853 
4854 	ce_state = scn->ce_id_to_state[ctx_id];
4855 
4856 	return ce_state->lro_data;
4857 }
4858 #endif
4859 
4860 /**
4861  * hif_map_service_to_pipe() - returns  the ce ids pertaining to
4862  * this service
4863  * @scn: hif_softc pointer.
4864  * @svc_id: Service ID for which the mapping is needed.
4865  * @ul_pipe: address of the container in which ul pipe is returned.
4866  * @dl_pipe: address of the container in which dl pipe is returned.
4867  * @ul_is_polled: address of the container in which a bool
4868  *			indicating if the UL CE for this service
4869  *			is polled is returned.
4870  * @dl_is_polled: address of the container in which a bool
4871  *			indicating if the DL CE for this service
4872  *			is polled is returned.
4873  *
4874  * Return: Indicates whether the service has been found in the table.
4875  *         Upon return, ul_is_polled is updated only if ul_pipe is updated.
4876  *         There will be warning logs if either leg has not been updated
4877  *         because it missed the entry in the table (but this is not an err).
4878  */
4879 int hif_map_service_to_pipe(struct hif_opaque_softc *hif_hdl, uint16_t svc_id,
4880 			uint8_t *ul_pipe, uint8_t *dl_pipe, int *ul_is_polled,
4881 			int *dl_is_polled)
4882 {
4883 	int status = -EINVAL;
4884 	unsigned int i;
4885 	struct service_to_pipe element;
4886 	struct service_to_pipe *tgt_svc_map_to_use;
4887 	uint32_t sz_tgt_svc_map_to_use;
4888 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
4889 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4890 	bool dl_updated = false;
4891 	bool ul_updated = false;
4892 
4893 	hif_select_service_to_pipe_map(scn, &tgt_svc_map_to_use,
4894 				       &sz_tgt_svc_map_to_use);
4895 
4896 	*dl_is_polled = 0;  /* polling for received messages not supported */
4897 
4898 	for (i = 0; i < (sz_tgt_svc_map_to_use/sizeof(element)); i++) {
4899 
4900 		memcpy(&element, &tgt_svc_map_to_use[i], sizeof(element));
4901 		if (element.service_id == svc_id) {
4902 			if (element.pipedir == PIPEDIR_OUT) {
4903 				*ul_pipe = element.pipenum;
4904 				*ul_is_polled =
4905 					(hif_state->host_ce_config[*ul_pipe].flags &
4906 					 CE_ATTR_DISABLE_INTR) != 0;
4907 				ul_updated = true;
4908 			} else if (element.pipedir == PIPEDIR_IN) {
4909 				*dl_pipe = element.pipenum;
4910 				dl_updated = true;
4911 			}
4912 			status = 0;
4913 		}
4914 	}
4915 	if (ul_updated == false)
4916 		hif_debug("ul pipe is NOT updated for service %d", svc_id);
4917 	if (dl_updated == false)
4918 		hif_debug("dl pipe is NOT updated for service %d", svc_id);
4919 
4920 	return status;
4921 }
4922 
4923 #ifdef SHADOW_REG_DEBUG
4924 inline uint32_t DEBUG_CE_SRC_RING_READ_IDX_GET(struct hif_softc *scn,
4925 		uint32_t CE_ctrl_addr)
4926 {
4927 	uint32_t read_from_hw, srri_from_ddr = 0;
4928 
4929 	read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_SRRI_ADDRESS);
4930 
4931 	srri_from_ddr = SRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr));
4932 
4933 	if (read_from_hw != srri_from_ddr) {
4934 		hif_err("read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x",
4935 		       srri_from_ddr, read_from_hw,
4936 		       CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr));
4937 		QDF_ASSERT(0);
4938 	}
4939 	return srri_from_ddr;
4940 }
4941 
4942 
4943 inline uint32_t DEBUG_CE_DEST_RING_READ_IDX_GET(struct hif_softc *scn,
4944 		uint32_t CE_ctrl_addr)
4945 {
4946 	uint32_t read_from_hw, drri_from_ddr = 0;
4947 
4948 	read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_DRRI_ADDRESS);
4949 
4950 	drri_from_ddr = DRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr));
4951 
4952 	if (read_from_hw != drri_from_ddr) {
4953 		hif_err("read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x",
4954 		       drri_from_ddr, read_from_hw,
4955 		       CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr));
4956 		QDF_ASSERT(0);
4957 	}
4958 	return drri_from_ddr;
4959 }
4960 
4961 #endif
4962 
4963 /**
4964  * hif_dump_ce_registers() - dump ce registers
4965  * @scn: hif_opaque_softc pointer.
4966  *
4967  * Output the copy engine registers
4968  *
4969  * Return: 0 for success or error code
4970  */
4971 int hif_dump_ce_registers(struct hif_softc *scn)
4972 {
4973 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
4974 	uint32_t ce_reg_address = CE0_BASE_ADDRESS;
4975 	uint32_t ce_reg_values[CE_USEFUL_SIZE >> 2];
4976 	uint32_t ce_reg_word_size = CE_USEFUL_SIZE >> 2;
4977 	uint16_t i;
4978 	QDF_STATUS status;
4979 
4980 	for (i = 0; i < scn->ce_count; i++, ce_reg_address += CE_OFFSET) {
4981 		if (!scn->ce_id_to_state[i]) {
4982 			hif_debug("CE%d not used", i);
4983 			continue;
4984 		}
4985 
4986 		status = hif_diag_read_mem(hif_hdl, ce_reg_address,
4987 					   (uint8_t *) &ce_reg_values[0],
4988 					   ce_reg_word_size * sizeof(uint32_t));
4989 
4990 		if (status != QDF_STATUS_SUCCESS) {
4991 			hif_err("Dumping CE register failed!");
4992 			return -EACCES;
4993 		}
4994 		hif_debug("CE%d=>", i);
4995 		qdf_trace_hex_dump(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_DEBUG,
4996 				   (uint8_t *) &ce_reg_values[0],
4997 				   ce_reg_word_size * sizeof(uint32_t));
4998 		qdf_print("ADDR:[0x%08X], SR_WR_INDEX:%d", (ce_reg_address
4999 				+ SR_WR_INDEX_ADDRESS),
5000 				ce_reg_values[SR_WR_INDEX_ADDRESS/4]);
5001 		qdf_print("ADDR:[0x%08X], CURRENT_SRRI:%d", (ce_reg_address
5002 				+ CURRENT_SRRI_ADDRESS),
5003 				ce_reg_values[CURRENT_SRRI_ADDRESS/4]);
5004 		qdf_print("ADDR:[0x%08X], DST_WR_INDEX:%d", (ce_reg_address
5005 				+ DST_WR_INDEX_ADDRESS),
5006 				ce_reg_values[DST_WR_INDEX_ADDRESS/4]);
5007 		qdf_print("ADDR:[0x%08X], CURRENT_DRRI:%d", (ce_reg_address
5008 				+ CURRENT_DRRI_ADDRESS),
5009 				ce_reg_values[CURRENT_DRRI_ADDRESS/4]);
5010 		qdf_print("---");
5011 	}
5012 	return 0;
5013 }
5014 qdf_export_symbol(hif_dump_ce_registers);
5015 #ifdef QCA_NSS_WIFI_OFFLOAD_SUPPORT
5016 struct hif_pipe_addl_info *hif_get_addl_pipe_info(struct hif_opaque_softc *osc,
5017 		struct hif_pipe_addl_info *hif_info, uint32_t pipe)
5018 {
5019 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
5020 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
5021 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(osc);
5022 	struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
5023 	struct CE_handle *ce_hdl = pipe_info->ce_hdl;
5024 	struct CE_state *ce_state = (struct CE_state *)ce_hdl;
5025 	struct CE_ring_state *src_ring = ce_state->src_ring;
5026 	struct CE_ring_state *dest_ring = ce_state->dest_ring;
5027 
5028 	if (src_ring) {
5029 		hif_info->ul_pipe.nentries = src_ring->nentries;
5030 		hif_info->ul_pipe.nentries_mask = src_ring->nentries_mask;
5031 		hif_info->ul_pipe.sw_index = src_ring->sw_index;
5032 		hif_info->ul_pipe.write_index = src_ring->write_index;
5033 		hif_info->ul_pipe.hw_index = src_ring->hw_index;
5034 		hif_info->ul_pipe.base_addr_CE_space =
5035 			src_ring->base_addr_CE_space;
5036 		hif_info->ul_pipe.base_addr_owner_space =
5037 			src_ring->base_addr_owner_space;
5038 	}
5039 
5040 
5041 	if (dest_ring) {
5042 		hif_info->dl_pipe.nentries = dest_ring->nentries;
5043 		hif_info->dl_pipe.nentries_mask = dest_ring->nentries_mask;
5044 		hif_info->dl_pipe.sw_index = dest_ring->sw_index;
5045 		hif_info->dl_pipe.write_index = dest_ring->write_index;
5046 		hif_info->dl_pipe.hw_index = dest_ring->hw_index;
5047 		hif_info->dl_pipe.base_addr_CE_space =
5048 			dest_ring->base_addr_CE_space;
5049 		hif_info->dl_pipe.base_addr_owner_space =
5050 			dest_ring->base_addr_owner_space;
5051 	}
5052 
5053 	hif_info->pci_mem = pci_resource_start(sc->pdev, 0);
5054 	hif_info->ctrl_addr = ce_state->ctrl_addr;
5055 
5056 	return hif_info;
5057 }
5058 qdf_export_symbol(hif_get_addl_pipe_info);
5059 
5060 uint32_t hif_set_nss_wifiol_mode(struct hif_opaque_softc *osc, uint32_t mode)
5061 {
5062 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
5063 
5064 	scn->nss_wifi_ol_mode = mode;
5065 	return 0;
5066 }
5067 qdf_export_symbol(hif_set_nss_wifiol_mode);
5068 #endif
5069 
5070 void hif_set_attribute(struct hif_opaque_softc *osc, uint8_t hif_attrib)
5071 {
5072 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
5073 	scn->hif_attribute = hif_attrib;
5074 }
5075 
5076 
5077 /* disable interrupts (only applicable for legacy copy engine currently */
5078 void hif_disable_interrupt(struct hif_opaque_softc *osc, uint32_t pipe_num)
5079 {
5080 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
5081 	struct CE_state *CE_state = scn->ce_id_to_state[pipe_num];
5082 	uint32_t ctrl_addr = CE_state->ctrl_addr;
5083 
5084 	Q_TARGET_ACCESS_BEGIN(scn);
5085 	CE_COPY_COMPLETE_INTR_DISABLE(scn, ctrl_addr);
5086 	Q_TARGET_ACCESS_END(scn);
5087 }
5088 qdf_export_symbol(hif_disable_interrupt);
5089 
5090 /**
5091  * hif_fw_event_handler() - hif fw event handler
5092  * @hif_state: pointer to hif ce state structure
5093  *
5094  * Process fw events and raise HTC callback to process fw events.
5095  *
5096  * Return: none
5097  */
5098 static inline void hif_fw_event_handler(struct HIF_CE_state *hif_state)
5099 {
5100 	struct hif_msg_callbacks *msg_callbacks =
5101 		&hif_state->msg_callbacks_current;
5102 
5103 	if (!msg_callbacks->fwEventHandler)
5104 		return;
5105 
5106 	msg_callbacks->fwEventHandler(msg_callbacks->Context,
5107 			QDF_STATUS_E_FAILURE);
5108 }
5109 
5110 #ifndef QCA_WIFI_3_0
5111 /**
5112  * hif_fw_interrupt_handler() - FW interrupt handler
5113  * @irq: irq number
5114  * @arg: the user pointer
5115  *
5116  * Called from the PCI interrupt handler when a
5117  * firmware-generated interrupt to the Host.
5118  *
5119  * only registered for legacy ce devices
5120  *
5121  * Return: status of handled irq
5122  */
5123 irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
5124 {
5125 	struct hif_softc *scn = arg;
5126 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
5127 	uint32_t fw_indicator_address, fw_indicator;
5128 
5129 	if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
5130 		return ATH_ISR_NOSCHED;
5131 
5132 	fw_indicator_address = hif_state->fw_indicator_address;
5133 	/* For sudden unplug this will return ~0 */
5134 	fw_indicator = A_TARGET_READ(scn, fw_indicator_address);
5135 
5136 	if ((fw_indicator != ~0) && (fw_indicator & FW_IND_EVENT_PENDING)) {
5137 		/* ACK: clear Target-side pending event */
5138 		A_TARGET_WRITE(scn, fw_indicator_address,
5139 			       fw_indicator & ~FW_IND_EVENT_PENDING);
5140 		if (Q_TARGET_ACCESS_END(scn) < 0)
5141 			return ATH_ISR_SCHED;
5142 
5143 		if (hif_state->started) {
5144 			hif_fw_event_handler(hif_state);
5145 		} else {
5146 			/*
5147 			 * Probable Target failure before we're prepared
5148 			 * to handle it.  Generally unexpected.
5149 			 * fw_indicator used as bitmap, and defined as below:
5150 			 *     FW_IND_EVENT_PENDING    0x1
5151 			 *     FW_IND_INITIALIZED      0x2
5152 			 *     FW_IND_NEEDRECOVER      0x4
5153 			 */
5154 			AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
5155 				("%s: Early firmware event indicated 0x%x\n",
5156 				 __func__, fw_indicator));
5157 		}
5158 	} else {
5159 		if (Q_TARGET_ACCESS_END(scn) < 0)
5160 			return ATH_ISR_SCHED;
5161 	}
5162 
5163 	return ATH_ISR_SCHED;
5164 }
5165 #else
5166 irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
5167 {
5168 	return ATH_ISR_SCHED;
5169 }
5170 #endif /* #ifdef QCA_WIFI_3_0 */
5171 
5172 
5173 /**
5174  * hif_wlan_disable(): call the platform driver to disable wlan
5175  * @scn: HIF Context
5176  *
5177  * This function passes the con_mode to platform driver to disable
5178  * wlan.
5179  *
5180  * Return: void
5181  */
5182 void hif_wlan_disable(struct hif_softc *scn)
5183 {
5184 	enum pld_driver_mode mode;
5185 	uint32_t con_mode = hif_get_conparam(scn);
5186 
5187 	if (scn->target_status == TARGET_STATUS_RESET)
5188 		return;
5189 
5190 	if (QDF_GLOBAL_FTM_MODE == con_mode)
5191 		mode = PLD_FTM;
5192 	else if (QDF_IS_EPPING_ENABLED(con_mode))
5193 		mode = PLD_EPPING;
5194 	else
5195 		mode = PLD_MISSION;
5196 
5197 	pld_wlan_disable(scn->qdf_dev->dev, mode);
5198 }
5199 
5200 int hif_get_wake_ce_id(struct hif_softc *scn, uint8_t *ce_id)
5201 {
5202 	int status;
5203 	uint8_t ul_pipe, dl_pipe;
5204 	int ul_is_polled, dl_is_polled;
5205 
5206 	/* DL pipe for HTC_CTRL_RSVD_SVC should map to the wake CE */
5207 	status = hif_map_service_to_pipe(GET_HIF_OPAQUE_HDL(scn),
5208 					 HTC_CTRL_RSVD_SVC,
5209 					 &ul_pipe, &dl_pipe,
5210 					 &ul_is_polled, &dl_is_polled);
5211 	if (status) {
5212 		hif_err("Failed to map pipe: %d", status);
5213 		return status;
5214 	}
5215 
5216 	*ce_id = dl_pipe;
5217 
5218 	return 0;
5219 }
5220 
5221 int hif_get_fw_diag_ce_id(struct hif_softc *scn, uint8_t *ce_id)
5222 {
5223 	int status;
5224 	uint8_t ul_pipe, dl_pipe;
5225 	int ul_is_polled, dl_is_polled;
5226 
5227 	/* DL pipe for WMI_CONTROL_DIAG_SVC should map to the FW DIAG CE_ID */
5228 	status = hif_map_service_to_pipe(GET_HIF_OPAQUE_HDL(scn),
5229 					 WMI_CONTROL_DIAG_SVC,
5230 					 &ul_pipe, &dl_pipe,
5231 					 &ul_is_polled, &dl_is_polled);
5232 	if (status) {
5233 		hif_err("Failed to map pipe: %d", status);
5234 		return status;
5235 	}
5236 
5237 	*ce_id = dl_pipe;
5238 
5239 	return 0;
5240 }
5241 
5242 #ifdef HIF_CE_LOG_INFO
5243 /**
5244  * ce_get_index_info(): Get CE index info
5245  * @scn: HIF Context
5246  * @ce_state: CE opaque handle
5247  * @info: CE info
5248  *
5249  * Return: 0 for success and non zero for failure
5250  */
5251 static
5252 int ce_get_index_info(struct hif_softc *scn, void *ce_state,
5253 		      struct ce_index *info)
5254 {
5255 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
5256 
5257 	return hif_state->ce_services->ce_get_index_info(scn, ce_state, info);
5258 }
5259 
5260 void hif_log_ce_info(struct hif_softc *scn, uint8_t *data,
5261 		     unsigned int *offset)
5262 {
5263 	struct hang_event_info info = {0};
5264 	static uint32_t tracked_ce = BIT(CE_ID_1) | BIT(CE_ID_2) |
5265 		BIT(CE_ID_3) | BIT(CE_ID_4) | BIT(CE_ID_9) | BIT(CE_ID_10);
5266 	uint8_t curr_index = 0;
5267 	uint8_t i;
5268 	uint16_t size;
5269 
5270 	info.active_tasklet_count = qdf_atomic_read(&scn->active_tasklet_cnt);
5271 	info.active_grp_tasklet_cnt =
5272 				qdf_atomic_read(&scn->active_grp_tasklet_cnt);
5273 
5274 	for (i = 0; i < scn->ce_count; i++) {
5275 		if (!(tracked_ce & BIT(i)) || !scn->ce_id_to_state[i])
5276 			continue;
5277 
5278 		if (ce_get_index_info(scn, scn->ce_id_to_state[i],
5279 				      &info.ce_info[curr_index]))
5280 			continue;
5281 
5282 		curr_index++;
5283 	}
5284 
5285 	info.ce_count = curr_index;
5286 	size = sizeof(info) -
5287 		(CE_COUNT_MAX - info.ce_count) * sizeof(struct ce_index);
5288 
5289 	if (*offset + size > QDF_WLAN_HANG_FW_OFFSET)
5290 		return;
5291 
5292 	QDF_HANG_EVT_SET_HDR(&info.tlv_header, HANG_EVT_TAG_CE_INFO,
5293 			     size - QDF_HANG_EVENT_TLV_HDR_SIZE);
5294 
5295 	qdf_mem_copy(data + *offset, &info, size);
5296 	*offset = *offset + size;
5297 }
5298 #endif
5299