xref: /wlan-dirver/qca-wifi-host-cmn/hif/src/ce/ce_main.c (revision 70a19e16789e308182f63b15c75decec7bf0b342)
1 /*
2  * Copyright (c) 2013-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "targcfg.h"
21 #include "qdf_lock.h"
22 #include "qdf_status.h"
23 #include "qdf_status.h"
24 #include <qdf_atomic.h>         /* qdf_atomic_read */
25 #include <targaddrs.h>
26 #include "hif_io32.h"
27 #include <hif.h>
28 #include <target_type.h>
29 #include "regtable.h"
30 #define ATH_MODULE_NAME hif
31 #include <a_debug.h>
32 #include "hif_main.h"
33 #include "ce_api.h"
34 #include "qdf_trace.h"
35 #include "pld_common.h"
36 #include "hif_debug.h"
37 #include "ce_internal.h"
38 #include "ce_reg.h"
39 #include "ce_assignment.h"
40 #include "ce_tasklet.h"
41 #include "qdf_module.h"
42 
43 #define CE_POLL_TIMEOUT 10      /* ms */
44 
45 #define AGC_DUMP         1
46 #define CHANINFO_DUMP    2
47 #define BB_WATCHDOG_DUMP 3
48 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
49 #define PCIE_ACCESS_DUMP 4
50 #endif
51 #include "mp_dev.h"
52 #ifdef HIF_CE_LOG_INFO
53 #include "qdf_hang_event_notifier.h"
54 #endif
55 
56 #if (defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6290) || \
57 	defined(QCA_WIFI_QCA6018) || defined(QCA_WIFI_QCA5018) || \
58 	defined(QCA_WIFI_KIWI) || defined(QCA_WIFI_QCA5332) || \
59 	defined(QCA_WIFI_QCA9574)) && !defined(QCA_WIFI_SUPPORT_SRNG)
60 #define QCA_WIFI_SUPPORT_SRNG
61 #endif
62 
63 #ifdef QCA_WIFI_SUPPORT_SRNG
64 #include <hal_api.h>
65 #endif
66 
67 /* Forward references */
68 QDF_STATUS hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info);
69 
70 /*
71  * Fix EV118783, poll to check whether a BMI response comes
72  * other than waiting for the interruption which may be lost.
73  */
74 /* #define BMI_RSP_POLLING */
75 #define BMI_RSP_TO_MILLISEC  1000
76 
77 #ifdef CONFIG_BYPASS_QMI
78 #define BYPASS_QMI 1
79 #else
80 #define BYPASS_QMI 0
81 #endif
82 
83 #ifdef ENABLE_10_4_FW_HDR
84 #if (ENABLE_10_4_FW_HDR == 1)
85 #define WDI_IPA_SERVICE_GROUP 5
86 #define WDI_IPA_TX_SVC MAKE_SERVICE_ID(WDI_IPA_SERVICE_GROUP, 0)
87 #define HTT_DATA2_MSG_SVC MAKE_SERVICE_ID(HTT_SERVICE_GROUP, 1)
88 #define HTT_DATA3_MSG_SVC MAKE_SERVICE_ID(HTT_SERVICE_GROUP, 2)
89 #endif /* ENABLE_10_4_FW_HDR == 1 */
90 #endif /* ENABLE_10_4_FW_HDR */
91 
92 static void hif_config_rri_on_ddr(struct hif_softc *scn);
93 
94 /**
95  * hif_target_access_log_dump() - dump access log
96  *
97  * dump access log
98  *
99  * Return: n/a
100  */
101 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
102 static void hif_target_access_log_dump(void)
103 {
104 	hif_target_dump_access_log();
105 }
106 #endif
107 
108 /*
109  * This structure contains the interrupt index for each Copy engine
110  * for various number of MSIs available in the system.
111  */
112 static struct ce_int_assignment ce_int_context[NUM_CE_CONTEXT] = {
113 	/* Default configuration */
114 	{{ CE_INTERRUPT_IDX(0),
115 	  CE_INTERRUPT_IDX(1),
116 	  CE_INTERRUPT_IDX(2),
117 	  CE_INTERRUPT_IDX(3),
118 	  CE_INTERRUPT_IDX(4),
119 	  CE_INTERRUPT_IDX(5),
120 	  CE_INTERRUPT_IDX(6),
121 	  CE_INTERRUPT_IDX(7),
122 	  CE_INTERRUPT_IDX(8),
123 	  CE_INTERRUPT_IDX(9),
124 	  CE_INTERRUPT_IDX(10),
125 	  CE_INTERRUPT_IDX(11),
126 #ifdef QCA_WIFI_QCN9224
127 	  CE_INTERRUPT_IDX(12),
128 	  CE_INTERRUPT_IDX(13),
129 	  CE_INTERRUPT_IDX(14),
130 	  CE_INTERRUPT_IDX(15),
131 #endif
132 	} },
133 	/* Interrupt assignment for 1 MSI combination */
134 	{{ CE_INTERRUPT_IDX(0),
135 	  CE_INTERRUPT_IDX(0),
136 	  CE_INTERRUPT_IDX(0),
137 	  CE_INTERRUPT_IDX(0),
138 	  CE_INTERRUPT_IDX(0),
139 	  CE_INTERRUPT_IDX(0),
140 	  CE_INTERRUPT_IDX(0),
141 	  CE_INTERRUPT_IDX(0),
142 	  CE_INTERRUPT_IDX(0),
143 	  CE_INTERRUPT_IDX(0),
144 	  CE_INTERRUPT_IDX(0),
145 	  CE_INTERRUPT_IDX(0),
146 #ifdef QCA_WIFI_QCN9224
147 	  CE_INTERRUPT_IDX(0),
148 	  CE_INTERRUPT_IDX(0),
149 	  CE_INTERRUPT_IDX(0),
150 	  CE_INTERRUPT_IDX(0),
151 #endif
152 	} },
153 	/* Interrupt assignment for 2 MSI combination */
154 	{{ CE_INTERRUPT_IDX(0),
155 	  CE_INTERRUPT_IDX(1),
156 	  CE_INTERRUPT_IDX(0),
157 	  CE_INTERRUPT_IDX(1),
158 	  CE_INTERRUPT_IDX(0),
159 	  CE_INTERRUPT_IDX(1),
160 	  CE_INTERRUPT_IDX(0),
161 	  CE_INTERRUPT_IDX(0),
162 	  CE_INTERRUPT_IDX(0),
163 	  CE_INTERRUPT_IDX(0),
164 	  CE_INTERRUPT_IDX(0),
165 	  CE_INTERRUPT_IDX(0),
166 #ifdef QCA_WIFI_QCN9224
167 	  CE_INTERRUPT_IDX(0),
168 	  CE_INTERRUPT_IDX(0),
169 	  CE_INTERRUPT_IDX(0),
170 	  CE_INTERRUPT_IDX(0),
171 #endif
172 	} },
173 	/* Interrupt assignment for 3 MSI combination */
174 	{{ CE_INTERRUPT_IDX(0),
175 	  CE_INTERRUPT_IDX(1),
176 	  CE_INTERRUPT_IDX(2),
177 	  CE_INTERRUPT_IDX(1),
178 	  CE_INTERRUPT_IDX(0),
179 	  CE_INTERRUPT_IDX(1),
180 	  CE_INTERRUPT_IDX(0),
181 	  CE_INTERRUPT_IDX(0),
182 	  CE_INTERRUPT_IDX(0),
183 	  CE_INTERRUPT_IDX(0),
184 	  CE_INTERRUPT_IDX(0),
185 	  CE_INTERRUPT_IDX(0),
186 #ifdef QCA_WIFI_QCN9224
187 	  CE_INTERRUPT_IDX(0),
188 	  CE_INTERRUPT_IDX(0),
189 	  CE_INTERRUPT_IDX(0),
190 	  CE_INTERRUPT_IDX(0),
191 #endif
192 	} },
193 	/* Interrupt assignment for 4 MSI combination */
194 	{{ CE_INTERRUPT_IDX(0),
195 	  CE_INTERRUPT_IDX(1),
196 	  CE_INTERRUPT_IDX(2),
197 	  CE_INTERRUPT_IDX(3),
198 	  CE_INTERRUPT_IDX(0),
199 	  CE_INTERRUPT_IDX(1),
200 	  CE_INTERRUPT_IDX(0),
201 	  CE_INTERRUPT_IDX(0),
202 	  CE_INTERRUPT_IDX(0),
203 	  CE_INTERRUPT_IDX(0),
204 	  CE_INTERRUPT_IDX(0),
205 	  CE_INTERRUPT_IDX(0),
206 #ifdef QCA_WIFI_QCN9224
207 	  CE_INTERRUPT_IDX(0),
208 	  CE_INTERRUPT_IDX(0),
209 	  CE_INTERRUPT_IDX(0),
210 	  CE_INTERRUPT_IDX(0),
211 #endif
212 	} },
213 	/* Interrupt assignment for 5 MSI combination */
214 	{{ CE_INTERRUPT_IDX(0),
215 	  CE_INTERRUPT_IDX(1),
216 	  CE_INTERRUPT_IDX(2),
217 	  CE_INTERRUPT_IDX(3),
218 	  CE_INTERRUPT_IDX(0),
219 	  CE_INTERRUPT_IDX(4),
220 	  CE_INTERRUPT_IDX(0),
221 	  CE_INTERRUPT_IDX(0),
222 	  CE_INTERRUPT_IDX(0),
223 	  CE_INTERRUPT_IDX(0),
224 	  CE_INTERRUPT_IDX(0),
225 	  CE_INTERRUPT_IDX(0),
226 #ifdef QCA_WIFI_QCN9224
227 	  CE_INTERRUPT_IDX(0),
228 	  CE_INTERRUPT_IDX(0),
229 	  CE_INTERRUPT_IDX(0),
230 	  CE_INTERRUPT_IDX(0),
231 #endif
232 	} },
233 	/* Interrupt assignment for 6 MSI combination */
234 	{{ CE_INTERRUPT_IDX(0),
235 	  CE_INTERRUPT_IDX(1),
236 	  CE_INTERRUPT_IDX(2),
237 	  CE_INTERRUPT_IDX(3),
238 	  CE_INTERRUPT_IDX(4),
239 	  CE_INTERRUPT_IDX(5),
240 	  CE_INTERRUPT_IDX(0),
241 	  CE_INTERRUPT_IDX(0),
242 	  CE_INTERRUPT_IDX(0),
243 	  CE_INTERRUPT_IDX(0),
244 	  CE_INTERRUPT_IDX(0),
245 	  CE_INTERRUPT_IDX(0),
246 #ifdef QCA_WIFI_QCN9224
247 	  CE_INTERRUPT_IDX(0),
248 	  CE_INTERRUPT_IDX(0),
249 	  CE_INTERRUPT_IDX(0),
250 	  CE_INTERRUPT_IDX(0),
251 #endif
252 	} },
253 	/* Interrupt assignment for 7 MSI combination */
254 	{{ CE_INTERRUPT_IDX(0),
255 	  CE_INTERRUPT_IDX(1),
256 	  CE_INTERRUPT_IDX(2),
257 	  CE_INTERRUPT_IDX(3),
258 	  CE_INTERRUPT_IDX(4),
259 	  CE_INTERRUPT_IDX(5),
260 	  CE_INTERRUPT_IDX(6),
261 	  CE_INTERRUPT_IDX(0),
262 	  CE_INTERRUPT_IDX(0),
263 	  CE_INTERRUPT_IDX(0),
264 	  CE_INTERRUPT_IDX(0),
265 	  CE_INTERRUPT_IDX(0),
266 #ifdef QCA_WIFI_QCN9224
267 	  CE_INTERRUPT_IDX(0),
268 	  CE_INTERRUPT_IDX(0),
269 	  CE_INTERRUPT_IDX(0),
270 	  CE_INTERRUPT_IDX(0),
271 #endif
272 	} },
273 	/* Interrupt assignment for 8 MSI combination */
274 	{{ CE_INTERRUPT_IDX(0),
275 	  CE_INTERRUPT_IDX(1),
276 	  CE_INTERRUPT_IDX(2),
277 	  CE_INTERRUPT_IDX(3),
278 	  CE_INTERRUPT_IDX(4),
279 	  CE_INTERRUPT_IDX(5),
280 	  CE_INTERRUPT_IDX(6),
281 	  CE_INTERRUPT_IDX(7),
282 	  CE_INTERRUPT_IDX(0),
283 	  CE_INTERRUPT_IDX(0),
284 	  CE_INTERRUPT_IDX(0),
285 	  CE_INTERRUPT_IDX(0),
286 #ifdef QCA_WIFI_QCN9224
287 	  CE_INTERRUPT_IDX(0),
288 	  CE_INTERRUPT_IDX(0),
289 	  CE_INTERRUPT_IDX(0),
290 	  CE_INTERRUPT_IDX(0),
291 #endif
292 	} },
293 	/* Interrupt assignment for 9 MSI combination */
294 	{{ CE_INTERRUPT_IDX(0),
295 	  CE_INTERRUPT_IDX(1),
296 	  CE_INTERRUPT_IDX(2),
297 	  CE_INTERRUPT_IDX(3),
298 	  CE_INTERRUPT_IDX(4),
299 	  CE_INTERRUPT_IDX(5),
300 	  CE_INTERRUPT_IDX(6),
301 	  CE_INTERRUPT_IDX(7),
302 	  CE_INTERRUPT_IDX(8),
303 	  CE_INTERRUPT_IDX(0),
304 	  CE_INTERRUPT_IDX(0),
305 	  CE_INTERRUPT_IDX(0),
306 #ifdef QCA_WIFI_QCN9224
307 	  CE_INTERRUPT_IDX(0),
308 	  CE_INTERRUPT_IDX(0),
309 	  CE_INTERRUPT_IDX(0),
310 	  CE_INTERRUPT_IDX(0),
311 #endif
312 	} },
313 	/* Interrupt assignment for 10 MSI combination */
314 	{{ CE_INTERRUPT_IDX(0),
315 	  CE_INTERRUPT_IDX(1),
316 	  CE_INTERRUPT_IDX(2),
317 	  CE_INTERRUPT_IDX(3),
318 	  CE_INTERRUPT_IDX(4),
319 	  CE_INTERRUPT_IDX(5),
320 	  CE_INTERRUPT_IDX(6),
321 	  CE_INTERRUPT_IDX(7),
322 	  CE_INTERRUPT_IDX(8),
323 	  CE_INTERRUPT_IDX(9),
324 	  CE_INTERRUPT_IDX(0),
325 	  CE_INTERRUPT_IDX(0),
326 #ifdef QCA_WIFI_QCN9224
327 	  CE_INTERRUPT_IDX(0),
328 	  CE_INTERRUPT_IDX(0),
329 	  CE_INTERRUPT_IDX(0),
330 	  CE_INTERRUPT_IDX(0),
331 #endif
332 	} },
333 	/* Interrupt assignment for 11 MSI combination */
334 	{{ CE_INTERRUPT_IDX(0),
335 	  CE_INTERRUPT_IDX(1),
336 	  CE_INTERRUPT_IDX(2),
337 	  CE_INTERRUPT_IDX(3),
338 	  CE_INTERRUPT_IDX(4),
339 	  CE_INTERRUPT_IDX(5),
340 	  CE_INTERRUPT_IDX(6),
341 	  CE_INTERRUPT_IDX(7),
342 	  CE_INTERRUPT_IDX(8),
343 	  CE_INTERRUPT_IDX(9),
344 	  CE_INTERRUPT_IDX(10),
345 	  CE_INTERRUPT_IDX(0),
346 #ifdef QCA_WIFI_QCN9224
347 	  CE_INTERRUPT_IDX(0),
348 	  CE_INTERRUPT_IDX(0),
349 	  CE_INTERRUPT_IDX(0),
350 	  CE_INTERRUPT_IDX(0),
351 #endif
352 	} },
353 	/* Interrupt assignment for 12 MSI combination */
354 	{{ CE_INTERRUPT_IDX(0),
355 	  CE_INTERRUPT_IDX(1),
356 	  CE_INTERRUPT_IDX(2),
357 	  CE_INTERRUPT_IDX(3),
358 	  CE_INTERRUPT_IDX(4),
359 	  CE_INTERRUPT_IDX(5),
360 	  CE_INTERRUPT_IDX(6),
361 	  CE_INTERRUPT_IDX(7),
362 	  CE_INTERRUPT_IDX(8),
363 	  CE_INTERRUPT_IDX(9),
364 	  CE_INTERRUPT_IDX(10),
365 	  CE_INTERRUPT_IDX(11),
366 #ifdef QCA_WIFI_QCN9224
367 	  CE_INTERRUPT_IDX(0),
368 	  CE_INTERRUPT_IDX(0),
369 	  CE_INTERRUPT_IDX(0),
370 	  CE_INTERRUPT_IDX(0),
371 #endif
372 	} },
373 #ifdef QCA_WIFI_QCN9224
374 	/* Interrupt assignment for 13 MSI combination */
375 	{{ CE_INTERRUPT_IDX(0),
376 	  CE_INTERRUPT_IDX(1),
377 	  CE_INTERRUPT_IDX(2),
378 	  CE_INTERRUPT_IDX(3),
379 	  CE_INTERRUPT_IDX(4),
380 	  CE_INTERRUPT_IDX(5),
381 	  CE_INTERRUPT_IDX(6),
382 	  CE_INTERRUPT_IDX(7),
383 	  CE_INTERRUPT_IDX(8),
384 	  CE_INTERRUPT_IDX(9),
385 	  CE_INTERRUPT_IDX(10),
386 	  CE_INTERRUPT_IDX(11),
387 	  CE_INTERRUPT_IDX(12),
388 	  CE_INTERRUPT_IDX(0),
389 	  CE_INTERRUPT_IDX(0),
390 	  CE_INTERRUPT_IDX(0),
391 	} },
392 	/* Interrupt assignment for 14 MSI combination */
393 	{{ CE_INTERRUPT_IDX(0),
394 	  CE_INTERRUPT_IDX(1),
395 	  CE_INTERRUPT_IDX(2),
396 	  CE_INTERRUPT_IDX(3),
397 	  CE_INTERRUPT_IDX(4),
398 	  CE_INTERRUPT_IDX(5),
399 	  CE_INTERRUPT_IDX(6),
400 	  CE_INTERRUPT_IDX(7),
401 	  CE_INTERRUPT_IDX(8),
402 	  CE_INTERRUPT_IDX(9),
403 	  CE_INTERRUPT_IDX(10),
404 	  CE_INTERRUPT_IDX(11),
405 	  CE_INTERRUPT_IDX(12),
406 	  CE_INTERRUPT_IDX(13),
407 	  CE_INTERRUPT_IDX(0),
408 	  CE_INTERRUPT_IDX(0),
409 	} },
410 	/* Interrupt assignment for 15 MSI combination */
411 	{{ CE_INTERRUPT_IDX(0),
412 	  CE_INTERRUPT_IDX(1),
413 	  CE_INTERRUPT_IDX(2),
414 	  CE_INTERRUPT_IDX(3),
415 	  CE_INTERRUPT_IDX(4),
416 	  CE_INTERRUPT_IDX(5),
417 	  CE_INTERRUPT_IDX(6),
418 	  CE_INTERRUPT_IDX(7),
419 	  CE_INTERRUPT_IDX(8),
420 	  CE_INTERRUPT_IDX(9),
421 	  CE_INTERRUPT_IDX(10),
422 	  CE_INTERRUPT_IDX(11),
423 	  CE_INTERRUPT_IDX(12),
424 	  CE_INTERRUPT_IDX(13),
425 	  CE_INTERRUPT_IDX(14),
426 	  CE_INTERRUPT_IDX(0),
427 	} },
428 	/* Interrupt assignment for 16 MSI combination */
429 	{{ CE_INTERRUPT_IDX(0),
430 	  CE_INTERRUPT_IDX(1),
431 	  CE_INTERRUPT_IDX(2),
432 	  CE_INTERRUPT_IDX(3),
433 	  CE_INTERRUPT_IDX(4),
434 	  CE_INTERRUPT_IDX(5),
435 	  CE_INTERRUPT_IDX(6),
436 	  CE_INTERRUPT_IDX(7),
437 	  CE_INTERRUPT_IDX(8),
438 	  CE_INTERRUPT_IDX(9),
439 	  CE_INTERRUPT_IDX(10),
440 	  CE_INTERRUPT_IDX(11),
441 	  CE_INTERRUPT_IDX(12),
442 	  CE_INTERRUPT_IDX(13),
443 	  CE_INTERRUPT_IDX(14),
444 	  CE_INTERRUPT_IDX(15),
445 	} },
446 #endif
447 };
448 
449 
450 void hif_trigger_dump(struct hif_opaque_softc *hif_ctx,
451 		      uint8_t cmd_id, bool start)
452 {
453 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
454 
455 	switch (cmd_id) {
456 	case AGC_DUMP:
457 		if (start)
458 			priv_start_agc(scn);
459 		else
460 			priv_dump_agc(scn);
461 		break;
462 	case CHANINFO_DUMP:
463 		if (start)
464 			priv_start_cap_chaninfo(scn);
465 		else
466 			priv_dump_chaninfo(scn);
467 		break;
468 	case BB_WATCHDOG_DUMP:
469 		priv_dump_bbwatchdog(scn);
470 		break;
471 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
472 	case PCIE_ACCESS_DUMP:
473 		hif_target_access_log_dump();
474 		break;
475 #endif
476 	default:
477 		hif_err("Invalid htc dump command: %d", cmd_id);
478 		break;
479 	}
480 }
481 
482 static void ce_poll_timeout(void *arg)
483 {
484 	struct CE_state *CE_state = (struct CE_state *)arg;
485 
486 	if (CE_state->timer_inited) {
487 		ce_per_engine_service(CE_state->scn, CE_state->id);
488 		qdf_timer_mod(&CE_state->poll_timer, CE_POLL_TIMEOUT);
489 	}
490 }
491 
492 static unsigned int roundup_pwr2(unsigned int n)
493 {
494 	int i;
495 	unsigned int test_pwr2;
496 
497 	if (!(n & (n - 1)))
498 		return n; /* already a power of 2 */
499 
500 	test_pwr2 = 4;
501 	for (i = 0; i < 29; i++) {
502 		if (test_pwr2 > n)
503 			return test_pwr2;
504 		test_pwr2 = test_pwr2 << 1;
505 	}
506 
507 	QDF_ASSERT(0); /* n too large */
508 	return 0;
509 }
510 
511 #define ADRASTEA_SRC_WR_INDEX_OFFSET 0x3C
512 #define ADRASTEA_DST_WR_INDEX_OFFSET 0x40
513 
514 static struct shadow_reg_cfg target_shadow_reg_cfg_map[] = {
515 	{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
516 	{ 3, ADRASTEA_SRC_WR_INDEX_OFFSET},
517 	{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
518 	{ 5, ADRASTEA_SRC_WR_INDEX_OFFSET},
519 	{ 7, ADRASTEA_SRC_WR_INDEX_OFFSET},
520 	{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
521 	{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
522 	{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
523 	{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
524 #ifdef QCA_WIFI_3_0_ADRASTEA
525 	{ 9, ADRASTEA_DST_WR_INDEX_OFFSET},
526 	{ 10, ADRASTEA_DST_WR_INDEX_OFFSET},
527 	{ 11, ADRASTEA_DST_WR_INDEX_OFFSET},
528 #endif
529 };
530 
531 #ifdef QCN7605_SUPPORT
532 static struct shadow_reg_cfg target_shadow_reg_cfg_map_qcn7605[] = {
533 	{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
534 	{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
535 	{ 5, ADRASTEA_SRC_WR_INDEX_OFFSET},
536 	{ 3, ADRASTEA_DST_WR_INDEX_OFFSET},
537 	{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
538 	{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
539 	{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
540 	{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
541 };
542 #endif
543 
544 #ifdef WLAN_FEATURE_EPPING
545 static struct shadow_reg_cfg target_shadow_reg_cfg_epping[] = {
546 	{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
547 	{ 3, ADRASTEA_SRC_WR_INDEX_OFFSET},
548 	{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
549 	{ 7, ADRASTEA_SRC_WR_INDEX_OFFSET},
550 	{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
551 	{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
552 	{ 5, ADRASTEA_DST_WR_INDEX_OFFSET},
553 	{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
554 	{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
555 };
556 #endif
557 
558 /* CE_PCI TABLE */
559 /*
560  * NOTE: the table below is out of date, though still a useful reference.
561  * Refer to target_service_to_ce_map and hif_map_service_to_pipe for the actual
562  * mapping of HTC services to HIF pipes.
563  */
564 /*
565  * This authoritative table defines Copy Engine configuration and the mapping
566  * of services/endpoints to CEs.  A subset of this information is passed to
567  * the Target during startup as a prerequisite to entering BMI phase.
568  * See:
569  *    target_service_to_ce_map - Target-side mapping
570  *    hif_map_service_to_pipe      - Host-side mapping
571  *    target_ce_config         - Target-side configuration
572  *    host_ce_config           - Host-side configuration
573    ============================================================================
574    Purpose    | Service / Endpoint   | CE   | Dire | Xfer     | Xfer
575  |                      |      | ctio | Size     | Frequency
576  |                      |      | n    |          |
577    ============================================================================
578    tx         | HTT_DATA (downlink)  | CE 0 | h->t | medium - | very frequent
579    descriptor |                      |      |      | O(100B)  | and regular
580    download   |                      |      |      |          |
581    ----------------------------------------------------------------------------
582    rx         | HTT_DATA (uplink)    | CE 1 | t->h | small -  | frequent and
583    indication |                      |      |      | O(10B)   | regular
584    upload     |                      |      |      |          |
585    ----------------------------------------------------------------------------
586    MSDU       | DATA_BK (uplink)     | CE 2 | t->h | large -  | rare
587    upload     |                      |      |      | O(1000B) | (frequent
588    e.g. noise |                      |      |      |          | during IP1.0
589    packets    |                      |      |      |          | testing)
590    ----------------------------------------------------------------------------
591    MSDU       | DATA_BK (downlink)   | CE 3 | h->t | large -  | very rare
592    download   |                      |      |      | O(1000B) | (frequent
593    e.g.       |                      |      |      |          | during IP1.0
594    misdirecte |                      |      |      |          | testing)
595    d EAPOL    |                      |      |      |          |
596    packets    |                      |      |      |          |
597    ----------------------------------------------------------------------------
598    n/a        | DATA_BE, DATA_VI     | CE 2 | t->h |          | never(?)
599  | DATA_VO (uplink)     |      |      |          |
600    ----------------------------------------------------------------------------
601    n/a        | DATA_BE, DATA_VI     | CE 3 | h->t |          | never(?)
602  | DATA_VO (downlink)   |      |      |          |
603    ----------------------------------------------------------------------------
604    WMI events | WMI_CONTROL (uplink) | CE 4 | t->h | medium - | infrequent
605  |                      |      |      | O(100B)  |
606    ----------------------------------------------------------------------------
607    WMI        | WMI_CONTROL          | CE 5 | h->t | medium - | infrequent
608    messages   | (downlink)           |      |      | O(100B)  |
609  |                      |      |      |          |
610    ----------------------------------------------------------------------------
611    n/a        | HTC_CTRL_RSVD,       | CE 1 | t->h |          | never(?)
612  | HTC_RAW_STREAMS      |      |      |          |
613  | (uplink)             |      |      |          |
614    ----------------------------------------------------------------------------
615    n/a        | HTC_CTRL_RSVD,       | CE 0 | h->t |          | never(?)
616  | HTC_RAW_STREAMS      |      |      |          |
617  | (downlink)           |      |      |          |
618    ----------------------------------------------------------------------------
619    diag       | none (raw CE)        | CE 7 | t<>h |    4     | Diag Window
620  |                      |      |      |          | infrequent
621    ============================================================================
622  */
623 
624 /*
625  * Map from service/endpoint to Copy Engine.
626  * This table is derived from the CE_PCI TABLE, above.
627  * It is passed to the Target at startup for use by firmware.
628  */
629 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
630 	{
631 		WMI_DATA_VO_SVC,
632 		PIPEDIR_OUT,    /* out = UL = host -> target */
633 		3,
634 	},
635 	{
636 		WMI_DATA_VO_SVC,
637 		PIPEDIR_IN,     /* in = DL = target -> host */
638 		2,
639 	},
640 	{
641 		WMI_DATA_BK_SVC,
642 		PIPEDIR_OUT,    /* out = UL = host -> target */
643 		3,
644 	},
645 	{
646 		WMI_DATA_BK_SVC,
647 		PIPEDIR_IN,     /* in = DL = target -> host */
648 		2,
649 	},
650 	{
651 		WMI_DATA_BE_SVC,
652 		PIPEDIR_OUT,    /* out = UL = host -> target */
653 		3,
654 	},
655 	{
656 		WMI_DATA_BE_SVC,
657 		PIPEDIR_IN,     /* in = DL = target -> host */
658 		2,
659 	},
660 	{
661 		WMI_DATA_VI_SVC,
662 		PIPEDIR_OUT,    /* out = UL = host -> target */
663 		3,
664 	},
665 	{
666 		WMI_DATA_VI_SVC,
667 		PIPEDIR_IN,     /* in = DL = target -> host */
668 		2,
669 	},
670 	{
671 		WMI_CONTROL_SVC,
672 		PIPEDIR_OUT,    /* out = UL = host -> target */
673 		3,
674 	},
675 	{
676 		WMI_CONTROL_SVC,
677 		PIPEDIR_IN,     /* in = DL = target -> host */
678 		2,
679 	},
680 	{
681 		HTC_CTRL_RSVD_SVC,
682 		PIPEDIR_OUT,    /* out = UL = host -> target */
683 		0,              /* could be moved to 3 (share with WMI) */
684 	},
685 	{
686 		HTC_CTRL_RSVD_SVC,
687 		PIPEDIR_IN,     /* in = DL = target -> host */
688 		2,
689 	},
690 	{
691 		HTC_RAW_STREAMS_SVC, /* not currently used */
692 		PIPEDIR_OUT,    /* out = UL = host -> target */
693 		0,
694 	},
695 	{
696 		HTC_RAW_STREAMS_SVC, /* not currently used */
697 		PIPEDIR_IN,     /* in = DL = target -> host */
698 		2,
699 	},
700 	{
701 		HTT_DATA_MSG_SVC,
702 		PIPEDIR_OUT,    /* out = UL = host -> target */
703 		4,
704 	},
705 	{
706 		HTT_DATA_MSG_SVC,
707 		PIPEDIR_IN,     /* in = DL = target -> host */
708 		1,
709 	},
710 	{
711 		WDI_IPA_TX_SVC,
712 		PIPEDIR_OUT,    /* in = DL = target -> host */
713 		5,
714 	},
715 #if defined(QCA_WIFI_3_0_ADRASTEA)
716 	{
717 		HTT_DATA2_MSG_SVC,
718 		PIPEDIR_IN,    /* in = DL = target -> host */
719 		9,
720 	},
721 	{
722 		HTT_DATA3_MSG_SVC,
723 		PIPEDIR_IN,    /* in = DL = target -> host */
724 		10,
725 	},
726 	{
727 		PACKET_LOG_SVC,
728 		PIPEDIR_IN,    /* in = DL = target -> host */
729 		11,
730 	},
731 #endif
732 	/* (Additions here) */
733 
734 	{                       /* Must be last */
735 		0,
736 		0,
737 		0,
738 	},
739 };
740 
741 /* PIPEDIR_OUT = HOST to Target */
742 /* PIPEDIR_IN  = TARGET to HOST */
743 #if (defined(QCA_WIFI_QCA8074))
744 static struct service_to_pipe target_service_to_ce_map_qca8074[] = {
745 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
746 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
747 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
748 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
749 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
750 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
751 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
752 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
753 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
754 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
755 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
756 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
757 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
758 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
759 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
760 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
761 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
762 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
763 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
764 	/* (Additions here) */
765 	{ 0, 0, 0, },
766 };
767 #else
768 static struct service_to_pipe target_service_to_ce_map_qca8074[] = {
769 };
770 #endif
771 
772 #if (defined(QCA_WIFI_QCA9574))
773 static struct service_to_pipe target_service_to_ce_map_qca9574[] = {
774 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
775 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
776 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
777 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
778 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
779 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
780 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
781 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
782 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
783 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
784 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
785 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
786 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
787 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
788 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
789 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
790 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
791 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
792 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
793 	/* (Additions here) */
794 	{ 0, 0, 0, },
795 };
796 #else
797 static struct service_to_pipe target_service_to_ce_map_qca9574[] = {
798 };
799 #endif
800 
801 #if (defined(QCA_WIFI_QCA8074V2))
802 static struct service_to_pipe target_service_to_ce_map_qca8074_v2[] = {
803 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
804 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
805 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
806 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
807 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
808 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
809 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
810 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
811 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
812 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
813 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
814 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
815 	{ WMI_CONTROL_SVC_WMAC2, PIPEDIR_OUT, 9},
816 	{ WMI_CONTROL_SVC_WMAC2, PIPEDIR_IN, 2},
817 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
818 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
819 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
820 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
821 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
822 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
823 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
824 	/* (Additions here) */
825 	{ 0, 0, 0, },
826 };
827 #else
828 static struct service_to_pipe target_service_to_ce_map_qca8074_v2[] = {
829 };
830 #endif
831 
832 #if (defined(QCA_WIFI_QCA6018))
833 static struct service_to_pipe target_service_to_ce_map_qca6018[] = {
834 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
835 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
836 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
837 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
838 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
839 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
840 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
841 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
842 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
843 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
844 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
845 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
846 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
847 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
848 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
849 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
850 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
851 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
852 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
853 	/* (Additions here) */
854 	{ 0, 0, 0, },
855 };
856 #else
857 static struct service_to_pipe target_service_to_ce_map_qca6018[] = {
858 };
859 #endif
860 
861 #if (defined(QCA_WIFI_QCN9000))
862 static struct service_to_pipe target_service_to_ce_map_qcn9000[] = {
863 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
864 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
865 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
866 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
867 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
868 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
869 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
870 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
871 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
872 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
873 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
874 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
875 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
876 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
877 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
878 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
879 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
880 	/* (Additions here) */
881 	{ 0, 0, 0, },
882 };
883 #else
884 static struct service_to_pipe target_service_to_ce_map_qcn9000[] = {
885 };
886 #endif
887 
888 #if (defined(QCA_WIFI_QCA5332))
889 static struct service_to_pipe target_service_to_ce_map_qca5332[] = {
890 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
891 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
892 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
893 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
894 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
895 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
896 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
897 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
898 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
899 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
900 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
901 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
902 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
903 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
904 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
905 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
906 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
907 #ifdef WLAN_DIAG_AND_DBR_OVER_SEPARATE_CE
908 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 9, },
909 	{ WMI_CONTROL_DBR_SVC, PIPEDIR_IN, 9, },
910 #endif
911 	/* (Additions here) */
912 	{ 0, 0, 0, },
913 };
914 #else
915 static struct service_to_pipe target_service_to_ce_map_qca5332[] = {
916 };
917 #endif
918 
919 #if (defined(QCA_WIFI_QCN9224))
920 static struct service_to_pipe target_service_to_ce_map_qcn9224[] = {
921 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
922 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
923 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
924 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
925 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
926 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
927 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
928 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
929 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
930 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
931 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
932 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
933 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
934 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
935 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
936 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
937 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7, },
938 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2, },
939 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
940 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 14, },
941 	{ WMI_CONTROL_DBR_SVC, PIPEDIR_IN, 14, },
942 	/* (Additions here) */
943 	{ 0, 0, 0, },
944 };
945 #endif
946 
947 #if defined(QCA_WIFI_QCA5018) || defined(QCA_WIFI_QCN9160)
948 static struct service_to_pipe target_service_to_ce_map_qca5018[] = {
949 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
950 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
951 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
952 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
953 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
954 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
955 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
956 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
957 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
958 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
959 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
960 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
961 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
962 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
963 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
964 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
965 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
966 	/* (Additions here) */
967 	{ 0, 0, 0, },
968 };
969 #else
970 static struct service_to_pipe target_service_to_ce_map_qca5018[] = {
971 };
972 #endif
973 
974 /* PIPEDIR_OUT = HOST to Target */
975 /* PIPEDIR_IN  = TARGET to HOST */
976 #ifdef QCN7605_SUPPORT
977 static struct service_to_pipe target_service_to_ce_map_qcn7605[] = {
978 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 0, },
979 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
980 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 0, },
981 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
982 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 0, },
983 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
984 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 0, },
985 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
986 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 0, },
987 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
988 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
989 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
990 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0, },
991 	{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 2, },
992 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
993 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
994 	{ HTT_DATA2_MSG_SVC, PIPEDIR_IN, 3, },
995 #ifdef IPA_OFFLOAD
996 	{ WDI_IPA_TX_SVC, PIPEDIR_OUT, 5, },
997 #else
998 	{ HTT_DATA3_MSG_SVC, PIPEDIR_IN, 8, },
999 #endif
1000 	{ PACKET_LOG_SVC, PIPEDIR_IN, 7, },
1001 	/* (Additions here) */
1002 	{ 0, 0, 0, },
1003 };
1004 #endif
1005 
1006 #if (defined(QCA_WIFI_QCA6290))
1007 #ifdef QCA_6290_AP_MODE
1008 static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
1009 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1010 	{ WMI_DATA_VO_SVC, PIPEDIR_IN , 2, },
1011 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1012 	{ WMI_DATA_BK_SVC, PIPEDIR_IN , 2, },
1013 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1014 	{ WMI_DATA_BE_SVC, PIPEDIR_IN , 2, },
1015 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1016 	{ WMI_DATA_VI_SVC, PIPEDIR_IN , 2, },
1017 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1018 	{ WMI_CONTROL_SVC, PIPEDIR_IN , 2, },
1019 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1020 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN , 2, },
1021 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1022 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN , 1, },
1023 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
1024 	{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
1025 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
1026 	/* (Additions here) */
1027 	{ 0, 0, 0, },
1028 };
1029 #else
1030 static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
1031 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1032 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1033 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1034 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1035 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1036 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1037 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1038 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1039 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1040 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1041 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1042 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1043 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1044 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1045 	/* (Additions here) */
1046 	{ 0, 0, 0, },
1047 };
1048 #endif
1049 #else
1050 static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
1051 };
1052 #endif
1053 
1054 #if (defined(QCA_WIFI_QCA6390))
1055 static struct service_to_pipe target_service_to_ce_map_qca6390[] = {
1056 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1057 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1058 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1059 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1060 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1061 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1062 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1063 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1064 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1065 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1066 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1067 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1068 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1069 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1070 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
1071 	/* (Additions here) */
1072 	{ 0, 0, 0, },
1073 };
1074 #else
1075 static struct service_to_pipe target_service_to_ce_map_qca6390[] = {
1076 };
1077 #endif
1078 
1079 static struct service_to_pipe target_service_to_ce_map_qca6490[] = {
1080 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1081 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1082 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1083 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1084 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1085 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1086 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1087 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1088 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1089 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1090 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1091 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1092 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1093 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1094 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
1095 	/* (Additions here) */
1096 	{ 0, 0, 0, },
1097 };
1098 
1099 #if (defined(QCA_WIFI_QCA6750))
1100 static struct service_to_pipe target_service_to_ce_map_qca6750[] = {
1101 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1102 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1103 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1104 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1105 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1106 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1107 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1108 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1109 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1110 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1111 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1112 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1113 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1114 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1115 	{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
1116 #ifdef WLAN_FEATURE_WMI_DIAG_OVER_CE7
1117 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 7, },
1118 #endif
1119 	/* (Additions here) */
1120 	{ 0, 0, 0, },
1121 };
1122 #else
1123 static struct service_to_pipe target_service_to_ce_map_qca6750[] = {
1124 };
1125 #endif
1126 
1127 #if (defined(QCA_WIFI_KIWI))
1128 #ifdef FEATURE_DIRECT_LINK
1129 static struct service_to_pipe target_service_to_ce_map_kiwi_direct_link[] = {
1130 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1131 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1132 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1133 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1134 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1135 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1136 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1137 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1138 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1139 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1140 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 4, },
1141 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1142 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1143 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1144 #ifdef WLAN_FEATURE_WMI_DIAG_OVER_CE7
1145 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 7, },
1146 #endif
1147 	{ LPASS_DATA_MSG_SVC, PIPEDIR_OUT, 0, },
1148 	{ LPASS_DATA_MSG_SVC, PIPEDIR_IN, 5, },
1149 	/* (Additions here) */
1150 	{ 0, 0, 0, },
1151 };
1152 #endif
1153 
1154 static struct service_to_pipe target_service_to_ce_map_kiwi[] = {
1155 	{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
1156 	{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
1157 	{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
1158 	{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
1159 	{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
1160 	{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
1161 	{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
1162 	{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
1163 	{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
1164 	{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
1165 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
1166 	{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
1167 	{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
1168 	{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
1169 #ifdef WLAN_FEATURE_WMI_DIAG_OVER_CE7
1170 	{ WMI_CONTROL_DIAG_SVC, PIPEDIR_IN, 7, },
1171 #endif
1172 	/* (Additions here) */
1173 	{ 0, 0, 0, },
1174 };
1175 #else
1176 static struct service_to_pipe target_service_to_ce_map_kiwi[] = {
1177 };
1178 #endif
1179 
1180 static struct service_to_pipe target_service_to_ce_map_ar900b[] = {
1181 	{
1182 		WMI_DATA_VO_SVC,
1183 		PIPEDIR_OUT,    /* out = UL = host -> target */
1184 		3,
1185 	},
1186 	{
1187 		WMI_DATA_VO_SVC,
1188 		PIPEDIR_IN,     /* in = DL = target -> host */
1189 		2,
1190 	},
1191 	{
1192 		WMI_DATA_BK_SVC,
1193 		PIPEDIR_OUT,    /* out = UL = host -> target */
1194 		3,
1195 	},
1196 	{
1197 		WMI_DATA_BK_SVC,
1198 		PIPEDIR_IN,     /* in = DL = target -> host */
1199 		2,
1200 	},
1201 	{
1202 		WMI_DATA_BE_SVC,
1203 		PIPEDIR_OUT,    /* out = UL = host -> target */
1204 		3,
1205 	},
1206 	{
1207 		WMI_DATA_BE_SVC,
1208 		PIPEDIR_IN,     /* in = DL = target -> host */
1209 		2,
1210 	},
1211 	{
1212 		WMI_DATA_VI_SVC,
1213 		PIPEDIR_OUT,    /* out = UL = host -> target */
1214 		3,
1215 	},
1216 	{
1217 		WMI_DATA_VI_SVC,
1218 		PIPEDIR_IN,     /* in = DL = target -> host */
1219 		2,
1220 	},
1221 	{
1222 		WMI_CONTROL_SVC,
1223 		PIPEDIR_OUT,    /* out = UL = host -> target */
1224 		3,
1225 	},
1226 	{
1227 		WMI_CONTROL_SVC,
1228 		PIPEDIR_IN,     /* in = DL = target -> host */
1229 		2,
1230 	},
1231 	{
1232 		HTC_CTRL_RSVD_SVC,
1233 		PIPEDIR_OUT,    /* out = UL = host -> target */
1234 		0,              /* could be moved to 3 (share with WMI) */
1235 	},
1236 	{
1237 		HTC_CTRL_RSVD_SVC,
1238 		PIPEDIR_IN,     /* in = DL = target -> host */
1239 		1,
1240 	},
1241 	{
1242 		HTC_RAW_STREAMS_SVC, /* not currently used */
1243 		PIPEDIR_OUT,    /* out = UL = host -> target */
1244 		0,
1245 	},
1246 	{
1247 		HTC_RAW_STREAMS_SVC, /* not currently used */
1248 		PIPEDIR_IN,     /* in = DL = target -> host */
1249 		1,
1250 	},
1251 	{
1252 		HTT_DATA_MSG_SVC,
1253 		PIPEDIR_OUT,    /* out = UL = host -> target */
1254 		4,
1255 	},
1256 #ifdef WLAN_FEATURE_FASTPATH
1257 	{
1258 		HTT_DATA_MSG_SVC,
1259 		PIPEDIR_IN,     /* in = DL = target -> host */
1260 		5,
1261 	},
1262 #else /* WLAN_FEATURE_FASTPATH */
1263 	{
1264 		HTT_DATA_MSG_SVC,
1265 		PIPEDIR_IN,  /* in = DL = target -> host */
1266 		1,
1267 	},
1268 #endif /* WLAN_FEATURE_FASTPATH */
1269 
1270 	/* (Additions here) */
1271 
1272 	{                       /* Must be last */
1273 		0,
1274 		0,
1275 		0,
1276 	},
1277 };
1278 
1279 static struct shadow_reg_cfg *target_shadow_reg_cfg = target_shadow_reg_cfg_map;
1280 static int shadow_cfg_sz = sizeof(target_shadow_reg_cfg_map);
1281 
1282 #ifdef WLAN_FEATURE_EPPING
1283 static struct service_to_pipe target_service_to_ce_map_wlan_epping[] = {
1284 	{WMI_DATA_VO_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
1285 	{WMI_DATA_VO_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
1286 	{WMI_DATA_BK_SVC, PIPEDIR_OUT, 4,},     /* out = UL = host -> target */
1287 	{WMI_DATA_BK_SVC, PIPEDIR_IN, 1,},      /* in = DL = target -> host */
1288 	{WMI_DATA_BE_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
1289 	{WMI_DATA_BE_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
1290 	{WMI_DATA_VI_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
1291 	{WMI_DATA_VI_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
1292 	{WMI_CONTROL_SVC, PIPEDIR_OUT, 3,},     /* out = UL = host -> target */
1293 	{WMI_CONTROL_SVC, PIPEDIR_IN, 2,},      /* in = DL = target -> host */
1294 	{HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0,},   /* out = UL = host -> target */
1295 	{HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2,},    /* in = DL = target -> host */
1296 	{HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0,}, /* out = UL = host -> target */
1297 	{HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 2,},  /* in = DL = target -> host */
1298 	{HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4,},    /* out = UL = host -> target */
1299 	{HTT_DATA_MSG_SVC, PIPEDIR_IN, 1,},     /* in = DL = target -> host */
1300 	{0, 0, 0,},             /* Must be last */
1301 };
1302 
1303 void hif_select_epping_service_to_pipe_map(struct service_to_pipe
1304 					   **tgt_svc_map_to_use,
1305 					   uint32_t *sz_tgt_svc_map_to_use)
1306 {
1307 	*tgt_svc_map_to_use = target_service_to_ce_map_wlan_epping;
1308 	*sz_tgt_svc_map_to_use =
1309 			sizeof(target_service_to_ce_map_wlan_epping);
1310 }
1311 #endif
1312 
1313 #ifdef QCN7605_SUPPORT
1314 static inline
1315 void hif_select_ce_map_qcn7605(struct service_to_pipe **tgt_svc_map_to_use,
1316 			       uint32_t *sz_tgt_svc_map_to_use)
1317 {
1318 	*tgt_svc_map_to_use = target_service_to_ce_map_qcn7605;
1319 	*sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_qcn7605);
1320 }
1321 #else
1322 static inline
1323 void hif_select_ce_map_qcn7605(struct service_to_pipe **tgt_svc_map_to_use,
1324 			       uint32_t *sz_tgt_svc_map_to_use)
1325 {
1326 	hif_err("QCN7605 not supported");
1327 }
1328 #endif
1329 
1330 #ifdef QCA_WIFI_QCN9224
1331 static
1332 void hif_set_ce_config_qcn9224(struct hif_softc *scn,
1333 			       struct HIF_CE_state *hif_state)
1334 {
1335 	hif_state->host_ce_config = host_ce_config_wlan_qcn9224;
1336 	hif_state->target_ce_config = target_ce_config_wlan_qcn9224;
1337 	hif_state->target_ce_config_sz =
1338 				 sizeof(target_ce_config_wlan_qcn9224);
1339 	scn->ce_count = QCN_9224_CE_COUNT;
1340 	scn->ini_cfg.disable_wake_irq = 1;
1341 }
1342 
1343 static
1344 void hif_select_ce_map_qcn9224(struct service_to_pipe **tgt_svc_map_to_use,
1345 			       uint32_t *sz_tgt_svc_map_to_use)
1346 {
1347 	*tgt_svc_map_to_use = target_service_to_ce_map_qcn9224;
1348 	*sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_qcn9224);
1349 }
1350 #else
1351 static inline
1352 void hif_set_ce_config_qcn9224(struct hif_softc *scn,
1353 			       struct HIF_CE_state *hif_state)
1354 {
1355 	hif_err("QCN9224 not supported");
1356 }
1357 
1358 static inline
1359 void hif_select_ce_map_qcn9224(struct service_to_pipe **tgt_svc_map_to_use,
1360 			       uint32_t *sz_tgt_svc_map_to_use)
1361 {
1362 	hif_err("QCN9224 not supported");
1363 }
1364 #endif
1365 
1366 #ifdef FEATURE_DIRECT_LINK
1367 /**
1368  * hif_select_service_to_pipe_map_kiwi() - Select service to CE map
1369  *  configuration for Kiwi
1370  * @scn: HIF context
1371  * @tgt_svc_map_to_use: returned service map
1372  * @sz_tgt_svc_map_to_use: returned length of the service map
1373  *
1374  * Return: None
1375  */
1376 static inline void
1377 hif_select_service_to_pipe_map_kiwi(struct hif_softc *scn,
1378 				    struct service_to_pipe **tgt_svc_map_to_use,
1379 				    uint32_t *sz_tgt_svc_map_to_use)
1380 {
1381 	if (pld_is_direct_link_supported(scn->qdf_dev->dev)) {
1382 		*tgt_svc_map_to_use = target_service_to_ce_map_kiwi_direct_link;
1383 		*sz_tgt_svc_map_to_use =
1384 			sizeof(target_service_to_ce_map_kiwi_direct_link);
1385 	} else {
1386 		*tgt_svc_map_to_use = target_service_to_ce_map_kiwi;
1387 		*sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_kiwi);
1388 	}
1389 }
1390 #else
1391 static inline void
1392 hif_select_service_to_pipe_map_kiwi(struct hif_softc *scn,
1393 				    struct service_to_pipe **tgt_svc_map_to_use,
1394 				    uint32_t *sz_tgt_svc_map_to_use)
1395 {
1396 	*tgt_svc_map_to_use = target_service_to_ce_map_kiwi;
1397 	*sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_kiwi);
1398 }
1399 #endif
1400 
1401 static void hif_select_service_to_pipe_map(struct hif_softc *scn,
1402 				    struct service_to_pipe **tgt_svc_map_to_use,
1403 				    uint32_t *sz_tgt_svc_map_to_use)
1404 {
1405 	uint32_t mode = hif_get_conparam(scn);
1406 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1407 	struct hif_target_info *tgt_info = &scn->target_info;
1408 
1409 	if (QDF_IS_EPPING_ENABLED(mode)) {
1410 		hif_select_epping_service_to_pipe_map(tgt_svc_map_to_use,
1411 						      sz_tgt_svc_map_to_use);
1412 	} else {
1413 		switch (tgt_info->target_type) {
1414 		default:
1415 			*tgt_svc_map_to_use = target_service_to_ce_map_wlan;
1416 			*sz_tgt_svc_map_to_use =
1417 				sizeof(target_service_to_ce_map_wlan);
1418 			break;
1419 		case TARGET_TYPE_QCN7605:
1420 			hif_select_ce_map_qcn7605(tgt_svc_map_to_use,
1421 						  sz_tgt_svc_map_to_use);
1422 			break;
1423 		case TARGET_TYPE_AR900B:
1424 		case TARGET_TYPE_QCA9984:
1425 		case TARGET_TYPE_QCA9888:
1426 		case TARGET_TYPE_AR9888:
1427 		case TARGET_TYPE_AR9888V2:
1428 			*tgt_svc_map_to_use = target_service_to_ce_map_ar900b;
1429 			*sz_tgt_svc_map_to_use =
1430 				sizeof(target_service_to_ce_map_ar900b);
1431 			break;
1432 		case TARGET_TYPE_QCA6290:
1433 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6290;
1434 			*sz_tgt_svc_map_to_use =
1435 				sizeof(target_service_to_ce_map_qca6290);
1436 			break;
1437 		case TARGET_TYPE_QCA6390:
1438 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6390;
1439 			*sz_tgt_svc_map_to_use =
1440 				sizeof(target_service_to_ce_map_qca6390);
1441 			break;
1442 		case TARGET_TYPE_QCA6490:
1443 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6490;
1444 			*sz_tgt_svc_map_to_use =
1445 				sizeof(target_service_to_ce_map_qca6490);
1446 			break;
1447 		case TARGET_TYPE_QCA6750:
1448 			*tgt_svc_map_to_use = target_service_to_ce_map_qca6750;
1449 			*sz_tgt_svc_map_to_use =
1450 				sizeof(target_service_to_ce_map_qca6750);
1451 			break;
1452 		case TARGET_TYPE_KIWI:
1453 		case TARGET_TYPE_MANGO:
1454 			hif_select_service_to_pipe_map_kiwi(scn,
1455 							 tgt_svc_map_to_use,
1456 							 sz_tgt_svc_map_to_use);
1457 			break;
1458 		case TARGET_TYPE_QCA8074:
1459 			*tgt_svc_map_to_use = target_service_to_ce_map_qca8074;
1460 			*sz_tgt_svc_map_to_use =
1461 				sizeof(target_service_to_ce_map_qca8074);
1462 			break;
1463 		case TARGET_TYPE_QCA8074V2:
1464 			*tgt_svc_map_to_use =
1465 				target_service_to_ce_map_qca8074_v2;
1466 			*sz_tgt_svc_map_to_use =
1467 				sizeof(target_service_to_ce_map_qca8074_v2);
1468 			break;
1469 		case TARGET_TYPE_QCA9574:
1470 			*tgt_svc_map_to_use =
1471 				target_service_to_ce_map_qca9574;
1472 			*sz_tgt_svc_map_to_use =
1473 				sizeof(target_service_to_ce_map_qca9574);
1474 			break;
1475 		case TARGET_TYPE_QCA6018:
1476 			*tgt_svc_map_to_use =
1477 				target_service_to_ce_map_qca6018;
1478 			*sz_tgt_svc_map_to_use =
1479 				sizeof(target_service_to_ce_map_qca6018);
1480 			break;
1481 		case TARGET_TYPE_QCN9000:
1482 			*tgt_svc_map_to_use =
1483 				target_service_to_ce_map_qcn9000;
1484 			*sz_tgt_svc_map_to_use =
1485 				sizeof(target_service_to_ce_map_qcn9000);
1486 			break;
1487 		case TARGET_TYPE_QCN9224:
1488 			hif_select_ce_map_qcn9224(tgt_svc_map_to_use,
1489 						  sz_tgt_svc_map_to_use);
1490 			break;
1491 		case TARGET_TYPE_QCA5332:
1492 			*tgt_svc_map_to_use = target_service_to_ce_map_qca5332;
1493 			*sz_tgt_svc_map_to_use =
1494 				sizeof(target_service_to_ce_map_qca5332);
1495 			break;
1496 		case TARGET_TYPE_QCA5018:
1497 		case TARGET_TYPE_QCN6122:
1498 		case TARGET_TYPE_QCN9160:
1499 			*tgt_svc_map_to_use =
1500 				target_service_to_ce_map_qca5018;
1501 			*sz_tgt_svc_map_to_use =
1502 				sizeof(target_service_to_ce_map_qca5018);
1503 			break;
1504 		}
1505 	}
1506 	hif_state->tgt_svc_map = *tgt_svc_map_to_use;
1507 	hif_state->sz_tgt_svc_map = *sz_tgt_svc_map_to_use /
1508 					sizeof(struct service_to_pipe);
1509 }
1510 
1511 /**
1512  * ce_mark_datapath() - marks the ce_state->htt_rx_data accordingly
1513  * @ce_state : pointer to the state context of the CE
1514  *
1515  * Description:
1516  *   Sets htt_rx_data attribute of the state structure if the
1517  *   CE serves one of the HTT DATA services.
1518  *
1519  * Return:
1520  *  false (attribute set to false)
1521  *  true  (attribute set to true);
1522  */
1523 static bool ce_mark_datapath(struct CE_state *ce_state)
1524 {
1525 	struct service_to_pipe *svc_map;
1526 	uint32_t map_sz, map_len;
1527 	int    i;
1528 	bool   rc = false;
1529 
1530 	if (ce_state) {
1531 		hif_select_service_to_pipe_map(ce_state->scn, &svc_map,
1532 					       &map_sz);
1533 
1534 		map_len = map_sz / sizeof(struct service_to_pipe);
1535 		for (i = 0; i < map_len; i++) {
1536 			if ((svc_map[i].pipenum == ce_state->id) &&
1537 			    ((svc_map[i].service_id == HTT_DATA_MSG_SVC)  ||
1538 			     (svc_map[i].service_id == HTT_DATA2_MSG_SVC) ||
1539 			     (svc_map[i].service_id == HTT_DATA3_MSG_SVC))) {
1540 				/* HTT CEs are unidirectional */
1541 				if (svc_map[i].pipedir == PIPEDIR_IN)
1542 					ce_state->htt_rx_data = true;
1543 				else
1544 					ce_state->htt_tx_data = true;
1545 				rc = true;
1546 			}
1547 		}
1548 	}
1549 	return rc;
1550 }
1551 
1552 /**
1553  * hif_get_max_wmi_ep() - Get max WMI EPs configured in target svc map
1554  * @hif_ctx: hif opaque handle
1555  *
1556  * Description:
1557  *   Gets number of WMI EPs configured in target svc map. Since EP map
1558  *   include IN and OUT direction pipes, count only OUT pipes to get EPs
1559  *   configured for WMI service.
1560  *
1561  * Return:
1562  *  uint8_t: count for WMI eps in target svc map
1563  */
1564 uint8_t hif_get_max_wmi_ep(struct hif_opaque_softc *hif_ctx)
1565 {
1566 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
1567 	struct service_to_pipe *svc_map;
1568 	uint32_t map_sz, map_len;
1569 	int    i;
1570 	uint8_t   wmi_ep_count = 0;
1571 
1572 	hif_select_service_to_pipe_map(scn, &svc_map,
1573 				       &map_sz);
1574 	map_len = map_sz / sizeof(struct service_to_pipe);
1575 
1576 	for (i = 0; i < map_len; i++) {
1577 		/* Count number of WMI EPs based on out direction */
1578 		if ((svc_map[i].pipedir == PIPEDIR_OUT) &&
1579 		    ((svc_map[i].service_id == WMI_CONTROL_SVC)  ||
1580 		    (svc_map[i].service_id == WMI_CONTROL_SVC_WMAC1) ||
1581 		    (svc_map[i].service_id == WMI_CONTROL_SVC_WMAC2))) {
1582 			wmi_ep_count++;
1583 		}
1584 	}
1585 
1586 	return wmi_ep_count;
1587 }
1588 
1589 /**
1590  * ce_ring_test_initial_indexes() - tests the initial ce ring indexes
1591  * @ce_id: ce in question
1592  * @ring: ring state being examined
1593  * @type: "src_ring" or "dest_ring" string for identifying the ring
1594  *
1595  * Warns on non-zero index values.
1596  * Causes a kernel panic if the ring is not empty during initialization.
1597  */
1598 static void ce_ring_test_initial_indexes(int ce_id, struct CE_ring_state *ring,
1599 					 char *type)
1600 {
1601 	if (ring->write_index != 0 || ring->sw_index != 0)
1602 		hif_err("ce %d, %s, initial sw_index = %d, initial write_index =%d",
1603 			  ce_id, type, ring->sw_index, ring->write_index);
1604 	if (ring->write_index != ring->sw_index)
1605 		QDF_BUG(0);
1606 }
1607 
1608 #ifdef IPA_OFFLOAD
1609 /**
1610  * ce_alloc_desc_ring() - Allocate copyengine descriptor ring
1611  * @scn: softc instance
1612  * @CE_id: ce in question
1613  * @base_addr: pointer to copyengine ring base address
1614  * @ce_ring: copyengine instance
1615  * @nentries: number of entries should be allocated
1616  * @desc_size: ce desc size
1617  *
1618  * Return: QDF_STATUS_SUCCESS - for success
1619  */
1620 static QDF_STATUS ce_alloc_desc_ring(struct hif_softc *scn, unsigned int CE_id,
1621 				     qdf_dma_addr_t *base_addr,
1622 				     struct CE_ring_state *ce_ring,
1623 				     unsigned int nentries, uint32_t desc_size)
1624 {
1625 	if ((CE_id == HIF_PCI_IPA_UC_ASSIGNED_CE) &&
1626 	    !ce_srng_based(scn)) {
1627 		if (!scn->ipa_ce_ring) {
1628 			scn->ipa_ce_ring = qdf_mem_shared_mem_alloc(
1629 				scn->qdf_dev,
1630 				nentries * desc_size + CE_DESC_RING_ALIGN);
1631 			if (!scn->ipa_ce_ring) {
1632 				hif_err(
1633 				"Failed to allocate memory for IPA ce ring");
1634 				return QDF_STATUS_E_NOMEM;
1635 			}
1636 		}
1637 		*base_addr = qdf_mem_get_dma_addr(scn->qdf_dev,
1638 						&scn->ipa_ce_ring->mem_info);
1639 		ce_ring->base_addr_owner_space_unaligned =
1640 						scn->ipa_ce_ring->vaddr;
1641 	} else {
1642 		ce_ring->base_addr_owner_space_unaligned =
1643 			hif_mem_alloc_consistent_unaligned
1644 					(scn,
1645 					 (nentries * desc_size +
1646 					  CE_DESC_RING_ALIGN),
1647 					 base_addr,
1648 					 ce_ring->hal_ring_type,
1649 					 &ce_ring->is_ring_prealloc);
1650 
1651 		if (!ce_ring->base_addr_owner_space_unaligned) {
1652 			hif_err("Failed to allocate DMA memory for ce ring id: %u",
1653 			       CE_id);
1654 			return QDF_STATUS_E_NOMEM;
1655 		}
1656 	}
1657 	return QDF_STATUS_SUCCESS;
1658 }
1659 
1660 /**
1661  * ce_free_desc_ring() - Frees copyengine descriptor ring
1662  * @scn: softc instance
1663  * @CE_id: ce in question
1664  * @ce_ring: copyengine instance
1665  * @desc_size: ce desc size
1666  *
1667  * Return: None
1668  */
1669 static void ce_free_desc_ring(struct hif_softc *scn, unsigned int CE_id,
1670 			      struct CE_ring_state *ce_ring, uint32_t desc_size)
1671 {
1672 	if ((CE_id == HIF_PCI_IPA_UC_ASSIGNED_CE) &&
1673 	    !ce_srng_based(scn)) {
1674 		if (scn->ipa_ce_ring) {
1675 			qdf_mem_shared_mem_free(scn->qdf_dev,
1676 						scn->ipa_ce_ring);
1677 			scn->ipa_ce_ring = NULL;
1678 		}
1679 		ce_ring->base_addr_owner_space_unaligned = NULL;
1680 	} else {
1681 		hif_mem_free_consistent_unaligned
1682 			(scn,
1683 			 ce_ring->nentries * desc_size + CE_DESC_RING_ALIGN,
1684 			 ce_ring->base_addr_owner_space_unaligned,
1685 			 ce_ring->base_addr_CE_space, 0,
1686 			 ce_ring->is_ring_prealloc);
1687 		ce_ring->base_addr_owner_space_unaligned = NULL;
1688 	}
1689 }
1690 #else
1691 static QDF_STATUS ce_alloc_desc_ring(struct hif_softc *scn, unsigned int CE_id,
1692 				     qdf_dma_addr_t *base_addr,
1693 				     struct CE_ring_state *ce_ring,
1694 				     unsigned int nentries, uint32_t desc_size)
1695 {
1696 	ce_ring->base_addr_owner_space_unaligned =
1697 			hif_mem_alloc_consistent_unaligned
1698 					(scn,
1699 					 (nentries * desc_size +
1700 					  CE_DESC_RING_ALIGN),
1701 					 base_addr,
1702 					 ce_ring->hal_ring_type,
1703 					 &ce_ring->is_ring_prealloc);
1704 
1705 	if (!ce_ring->base_addr_owner_space_unaligned) {
1706 		hif_err("Failed to allocate DMA memory for ce ring id: %u",
1707 		       CE_id);
1708 		return QDF_STATUS_E_NOMEM;
1709 	}
1710 	return QDF_STATUS_SUCCESS;
1711 }
1712 
1713 static void ce_free_desc_ring(struct hif_softc *scn, unsigned int CE_id,
1714 			      struct CE_ring_state *ce_ring, uint32_t desc_size)
1715 {
1716 	hif_mem_free_consistent_unaligned
1717 		(scn,
1718 		 ce_ring->nentries * desc_size + CE_DESC_RING_ALIGN,
1719 		 ce_ring->base_addr_owner_space_unaligned,
1720 		 ce_ring->base_addr_CE_space, 0,
1721 		 ce_ring->is_ring_prealloc);
1722 	ce_ring->base_addr_owner_space_unaligned = NULL;
1723 }
1724 #endif /* IPA_OFFLOAD */
1725 
1726 /*
1727  * TODO: Need to explore the possibility of having this as part of a
1728  * target context instead of a global array.
1729  */
1730 static struct ce_ops* (*ce_attach_register[CE_MAX_TARGET_TYPE])(void);
1731 
1732 void ce_service_register_module(enum ce_target_type target_type,
1733 				struct ce_ops* (*ce_attach)(void))
1734 {
1735 	if (target_type < CE_MAX_TARGET_TYPE)
1736 		ce_attach_register[target_type] = ce_attach;
1737 }
1738 
1739 qdf_export_symbol(ce_service_register_module);
1740 
1741 /**
1742  * ce_srng_based() - Does this target use srng
1743  * @scn: pointer to the state context of the CE
1744  *
1745  * Description:
1746  *   returns true if the target is SRNG based
1747  *
1748  * Return:
1749  *  false (attribute set to false)
1750  *  true  (attribute set to true);
1751  */
1752 bool ce_srng_based(struct hif_softc *scn)
1753 {
1754 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
1755 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
1756 
1757 	switch (tgt_info->target_type) {
1758 	case TARGET_TYPE_QCA8074:
1759 	case TARGET_TYPE_QCA8074V2:
1760 	case TARGET_TYPE_QCA6290:
1761 	case TARGET_TYPE_QCA6390:
1762 	case TARGET_TYPE_QCA6490:
1763 	case TARGET_TYPE_QCA6750:
1764 	case TARGET_TYPE_QCA6018:
1765 	case TARGET_TYPE_QCN9000:
1766 	case TARGET_TYPE_QCN6122:
1767 	case TARGET_TYPE_QCN9160:
1768 	case TARGET_TYPE_QCA5018:
1769 	case TARGET_TYPE_KIWI:
1770 	case TARGET_TYPE_MANGO:
1771 	case TARGET_TYPE_QCN9224:
1772 	case TARGET_TYPE_QCA9574:
1773 	case TARGET_TYPE_QCA5332:
1774 		return true;
1775 	default:
1776 		return false;
1777 	}
1778 	return false;
1779 }
1780 qdf_export_symbol(ce_srng_based);
1781 
1782 #ifdef QCA_WIFI_SUPPORT_SRNG
1783 static struct ce_ops *ce_services_attach(struct hif_softc *scn)
1784 {
1785 	struct ce_ops *ops = NULL;
1786 
1787 	if (ce_srng_based(scn)) {
1788 		if (ce_attach_register[CE_SVC_SRNG])
1789 			ops = ce_attach_register[CE_SVC_SRNG]();
1790 	} else if (ce_attach_register[CE_SVC_LEGACY]) {
1791 		ops = ce_attach_register[CE_SVC_LEGACY]();
1792 	}
1793 
1794 	return ops;
1795 }
1796 
1797 
1798 #else	/* QCA_LITHIUM */
1799 static struct ce_ops *ce_services_attach(struct hif_softc *scn)
1800 {
1801 	if (ce_attach_register[CE_SVC_LEGACY])
1802 		return ce_attach_register[CE_SVC_LEGACY]();
1803 
1804 	return NULL;
1805 }
1806 #endif /* QCA_LITHIUM */
1807 
1808 static void hif_prepare_hal_shadow_register_cfg(struct hif_softc *scn,
1809 		struct pld_shadow_reg_v2_cfg **shadow_config,
1810 		int *num_shadow_registers_configured) {
1811 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1812 
1813 	hif_state->ce_services->ce_prepare_shadow_register_v2_cfg(
1814 			scn, shadow_config, num_shadow_registers_configured);
1815 
1816 	return;
1817 }
1818 
1819 #ifdef CONFIG_SHADOW_V3
1820 static inline void
1821 hif_prepare_hal_shadow_reg_cfg_v3(struct hif_softc *scn,
1822 				  struct pld_wlan_enable_cfg *cfg)
1823 {
1824 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1825 
1826 	if (!hif_state->ce_services->ce_prepare_shadow_register_v3_cfg)
1827 		return;
1828 
1829 	hif_state->ce_services->ce_prepare_shadow_register_v3_cfg(
1830 			scn, &cfg->shadow_reg_v3_cfg,
1831 			&cfg->num_shadow_reg_v3_cfg);
1832 }
1833 #else
1834 static inline void
1835 hif_prepare_hal_shadow_reg_cfg_v3(struct hif_softc *scn,
1836 				  struct pld_wlan_enable_cfg *cfg)
1837 {
1838 }
1839 #endif
1840 
1841 static inline uint32_t ce_get_desc_size(struct hif_softc *scn,
1842 						uint8_t ring_type)
1843 {
1844 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1845 
1846 	return hif_state->ce_services->ce_get_desc_size(ring_type);
1847 }
1848 
1849 #ifdef QCA_WIFI_SUPPORT_SRNG
1850 static inline int32_t ce_ring_type_to_hal_ring_type(uint32_t ce_ring_type)
1851 {
1852 	switch (ce_ring_type) {
1853 	case CE_RING_SRC:
1854 		return CE_SRC;
1855 	case CE_RING_DEST:
1856 		return CE_DST;
1857 	case CE_RING_STATUS:
1858 		return CE_DST_STATUS;
1859 	default:
1860 		return -EINVAL;
1861 	}
1862 }
1863 #else
1864 static int32_t ce_ring_type_to_hal_ring_type(uint32_t ce_ring_type)
1865 {
1866 	return 0;
1867 }
1868 #endif
1869 static struct CE_ring_state *ce_alloc_ring_state(struct CE_state *CE_state,
1870 		uint8_t ring_type, uint32_t nentries)
1871 {
1872 	uint32_t ce_nbytes;
1873 	char *ptr;
1874 	qdf_dma_addr_t base_addr;
1875 	struct CE_ring_state *ce_ring;
1876 	uint32_t desc_size;
1877 	struct hif_softc *scn = CE_state->scn;
1878 
1879 	ce_nbytes = sizeof(struct CE_ring_state)
1880 		+ (nentries * sizeof(void *));
1881 	ptr = qdf_mem_malloc(ce_nbytes);
1882 	if (!ptr)
1883 		return NULL;
1884 
1885 	ce_ring = (struct CE_ring_state *)ptr;
1886 	ptr += sizeof(struct CE_ring_state);
1887 	ce_ring->nentries = nentries;
1888 	ce_ring->nentries_mask = nentries - 1;
1889 
1890 	ce_ring->low_water_mark_nentries = 0;
1891 	ce_ring->high_water_mark_nentries = nentries;
1892 	ce_ring->per_transfer_context = (void **)ptr;
1893 	ce_ring->hal_ring_type = ce_ring_type_to_hal_ring_type(ring_type);
1894 
1895 	desc_size = ce_get_desc_size(scn, ring_type);
1896 
1897 	/* Legacy platforms that do not support cache
1898 	 * coherent DMA are unsupported
1899 	 */
1900 	if (ce_alloc_desc_ring(scn, CE_state->id, &base_addr,
1901 			       ce_ring, nentries,
1902 			       desc_size) !=
1903 	    QDF_STATUS_SUCCESS) {
1904 		hif_err("ring has no DMA mem");
1905 		qdf_mem_free(ce_ring);
1906 		return NULL;
1907 	}
1908 	ce_ring->base_addr_CE_space_unaligned = base_addr;
1909 
1910 	/* Correctly initialize memory to 0 to
1911 	 * prevent garbage data crashing system
1912 	 * when download firmware
1913 	 */
1914 	qdf_mem_zero(ce_ring->base_addr_owner_space_unaligned,
1915 			nentries * desc_size +
1916 			CE_DESC_RING_ALIGN);
1917 
1918 	if (ce_ring->base_addr_CE_space_unaligned & (CE_DESC_RING_ALIGN - 1)) {
1919 
1920 		ce_ring->base_addr_CE_space =
1921 			(ce_ring->base_addr_CE_space_unaligned +
1922 			 CE_DESC_RING_ALIGN - 1) & ~(CE_DESC_RING_ALIGN - 1);
1923 
1924 		ce_ring->base_addr_owner_space = (void *)
1925 			(((size_t) ce_ring->base_addr_owner_space_unaligned +
1926 			 CE_DESC_RING_ALIGN - 1) & ~(CE_DESC_RING_ALIGN - 1));
1927 	} else {
1928 		ce_ring->base_addr_CE_space =
1929 				ce_ring->base_addr_CE_space_unaligned;
1930 		ce_ring->base_addr_owner_space =
1931 				ce_ring->base_addr_owner_space_unaligned;
1932 	}
1933 
1934 	return ce_ring;
1935 }
1936 
1937 static int ce_ring_setup(struct hif_softc *scn, uint8_t ring_type,
1938 			uint32_t ce_id, struct CE_ring_state *ring,
1939 			struct CE_attr *attr)
1940 {
1941 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1942 
1943 	return hif_state->ce_services->ce_ring_setup(scn, ring_type, ce_id,
1944 					      ring, attr);
1945 }
1946 
1947 static void ce_srng_cleanup(struct hif_softc *scn, struct CE_state *CE_state,
1948 			    uint8_t ring_type)
1949 {
1950 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
1951 
1952 	if (hif_state->ce_services->ce_srng_cleanup)
1953 		hif_state->ce_services->ce_srng_cleanup(scn,
1954 					CE_state, ring_type);
1955 }
1956 
1957 int hif_ce_bus_early_suspend(struct hif_softc *scn)
1958 {
1959 	uint8_t ul_pipe, dl_pipe;
1960 	int ce_id, status, ul_is_polled, dl_is_polled;
1961 	struct CE_state *ce_state;
1962 
1963 	status = hif_map_service_to_pipe(&scn->osc, WMI_CONTROL_SVC,
1964 					 &ul_pipe, &dl_pipe,
1965 					 &ul_is_polled, &dl_is_polled);
1966 	if (status) {
1967 		hif_err("pipe_mapping failure");
1968 		return status;
1969 	}
1970 
1971 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
1972 		if (ce_id == ul_pipe)
1973 			continue;
1974 		if (ce_id == dl_pipe)
1975 			continue;
1976 
1977 		ce_state = scn->ce_id_to_state[ce_id];
1978 		qdf_spin_lock_bh(&ce_state->ce_index_lock);
1979 		if (ce_state->state == CE_RUNNING)
1980 			ce_state->state = CE_PAUSED;
1981 		qdf_spin_unlock_bh(&ce_state->ce_index_lock);
1982 	}
1983 
1984 	return status;
1985 }
1986 
1987 int hif_ce_bus_late_resume(struct hif_softc *scn)
1988 {
1989 	int ce_id;
1990 	struct CE_state *ce_state;
1991 	int write_index = 0;
1992 	bool index_updated;
1993 
1994 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
1995 		ce_state = scn->ce_id_to_state[ce_id];
1996 		qdf_spin_lock_bh(&ce_state->ce_index_lock);
1997 		if (ce_state->state == CE_PENDING) {
1998 			write_index = ce_state->src_ring->write_index;
1999 			CE_SRC_RING_WRITE_IDX_SET(scn, ce_state->ctrl_addr,
2000 					write_index);
2001 			ce_state->state = CE_RUNNING;
2002 			index_updated = true;
2003 		} else {
2004 			index_updated = false;
2005 		}
2006 
2007 		if (ce_state->state == CE_PAUSED)
2008 			ce_state->state = CE_RUNNING;
2009 		qdf_spin_unlock_bh(&ce_state->ce_index_lock);
2010 
2011 		if (index_updated)
2012 			hif_record_ce_desc_event(scn, ce_id,
2013 				RESUME_WRITE_INDEX_UPDATE,
2014 				NULL, NULL, write_index, 0);
2015 	}
2016 
2017 	return 0;
2018 }
2019 
2020 /**
2021  * ce_oom_recovery() - try to recover rx ce from oom condition
2022  * @context: CE_state of the CE with oom rx ring
2023  *
2024  * the executing work Will continue to be rescheduled until
2025  * at least 1 descriptor is successfully posted to the rx ring.
2026  *
2027  * return: none
2028  */
2029 static void ce_oom_recovery(void *context)
2030 {
2031 	struct CE_state *ce_state = context;
2032 	struct hif_softc *scn = ce_state->scn;
2033 	struct HIF_CE_state *ce_softc = HIF_GET_CE_STATE(scn);
2034 	struct HIF_CE_pipe_info *pipe_info =
2035 		&ce_softc->pipe_info[ce_state->id];
2036 
2037 	hif_post_recv_buffers_for_pipe(pipe_info);
2038 }
2039 
2040 #ifdef HIF_CE_DEBUG_DATA_BUF
2041 /**
2042  * alloc_mem_ce_debug_hist_data() - Allocate mem for the data pointed by
2043  * the CE descriptors.
2044  * Allocate HIF_CE_HISTORY_MAX records by CE_DEBUG_MAX_DATA_BUF_SIZE
2045  * @scn: hif scn handle
2046  * @ce_id: Copy Engine Id
2047  *
2048  * Return: QDF_STATUS
2049  */
2050 QDF_STATUS alloc_mem_ce_debug_hist_data(struct hif_softc *scn, uint32_t ce_id)
2051 {
2052 	struct hif_ce_desc_event *event = NULL;
2053 	struct hif_ce_desc_event *hist_ev = NULL;
2054 	uint32_t index = 0;
2055 
2056 	hist_ev =
2057 	(struct hif_ce_desc_event *)scn->hif_ce_desc_hist.hist_ev[ce_id];
2058 
2059 	if (!hist_ev)
2060 		return QDF_STATUS_E_NOMEM;
2061 
2062 	scn->hif_ce_desc_hist.data_enable[ce_id] = true;
2063 	for (index = 0; index < HIF_CE_HISTORY_MAX; index++) {
2064 		event = &hist_ev[index];
2065 		event->data =
2066 			(uint8_t *)qdf_mem_malloc(CE_DEBUG_MAX_DATA_BUF_SIZE);
2067 		if (!event->data) {
2068 			hif_err_rl("ce debug data alloc failed");
2069 			scn->hif_ce_desc_hist.data_enable[ce_id] = false;
2070 			return QDF_STATUS_E_NOMEM;
2071 		}
2072 	}
2073 	return QDF_STATUS_SUCCESS;
2074 }
2075 
2076 /**
2077  * free_mem_ce_debug_hist_data() - Free mem of the data pointed by
2078  * the CE descriptors.
2079  * @scn: hif scn handle
2080  * @ce_id: Copy Engine Id
2081  *
2082  * Return:
2083  */
2084 void free_mem_ce_debug_hist_data(struct hif_softc *scn, uint32_t ce_id)
2085 {
2086 	struct hif_ce_desc_event *event = NULL;
2087 	struct hif_ce_desc_event *hist_ev = NULL;
2088 	uint32_t index = 0;
2089 
2090 	hist_ev =
2091 	(struct hif_ce_desc_event *)scn->hif_ce_desc_hist.hist_ev[ce_id];
2092 
2093 	if (!hist_ev)
2094 		return;
2095 
2096 	for (index = 0; index < HIF_CE_HISTORY_MAX; index++) {
2097 		event = &hist_ev[index];
2098 		if (event->data)
2099 			qdf_mem_free(event->data);
2100 		event->data = NULL;
2101 		event = NULL;
2102 	}
2103 
2104 }
2105 #endif /* HIF_CE_DEBUG_DATA_BUF */
2106 
2107 #ifndef HIF_CE_DEBUG_DATA_DYNAMIC_BUF
2108 #if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
2109 
2110 /* define below variables for crashscope parse */
2111 struct hif_ce_desc_event *hif_ce_desc_history[CE_COUNT_MAX];
2112 uint32_t hif_ce_history_max = HIF_CE_HISTORY_MAX;
2113 
2114 /*
2115  * for debug build, it will enable ce history for all ce, but for
2116  * perf build(if CONFIG_SLUB_DEBUG_ON is N), it only enable for
2117  * ce2(wmi event) & ce3(wmi cmd) history.
2118  */
2119 #if defined(CONFIG_SLUB_DEBUG_ON)
2120 #define CE_DESC_HISTORY_BUFF_CNT  CE_COUNT_MAX
2121 #define IS_CE_DEBUG_ONLY_FOR_CRIT_CE  0
2122 #else
2123 /* CE2, CE3, CE7 */
2124 #define CE_DESC_HISTORY_BUFF_CNT  3
2125 #define IS_CE_DEBUG_ONLY_FOR_CRIT_CE (BIT(2) | BIT(3) | BIT(7))
2126 #endif
2127 struct hif_ce_desc_event
2128 	hif_ce_desc_history_buff[CE_DESC_HISTORY_BUFF_CNT][HIF_CE_HISTORY_MAX];
2129 
2130 static struct hif_ce_desc_event *
2131 	hif_ce_debug_history_buf_get(struct hif_softc *scn, unsigned int ce_id)
2132 {
2133 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2134 
2135 	hif_debug("get ce debug buffer ce_id %u, only_ce2/ce3=0x%x, idx=%u",
2136 		  ce_id, IS_CE_DEBUG_ONLY_FOR_CRIT_CE,
2137 		  ce_hist->ce_id_hist_map[ce_id]);
2138 	if (IS_CE_DEBUG_ONLY_FOR_CRIT_CE &&
2139 	    (ce_id == CE_ID_2 || ce_id == CE_ID_3 || ce_id == CE_ID_7)) {
2140 		uint8_t idx = ce_hist->ce_id_hist_map[ce_id];
2141 
2142 		hif_ce_desc_history[ce_id] = hif_ce_desc_history_buff[idx];
2143 	} else {
2144 		hif_ce_desc_history[ce_id] =
2145 			hif_ce_desc_history_buff[ce_id];
2146 	}
2147 
2148 	return hif_ce_desc_history[ce_id];
2149 }
2150 
2151 /**
2152  * alloc_mem_ce_debug_history() - Allocate CE descriptor history
2153  * @scn: hif scn handle
2154  * @ce_id: Copy Engine Id
2155  * @src_nentries: source ce ring entries
2156  * Return: QDF_STATUS
2157  */
2158 static QDF_STATUS
2159 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int ce_id,
2160 			   uint32_t src_nentries)
2161 {
2162 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2163 	QDF_STATUS status = QDF_STATUS_SUCCESS;
2164 
2165 	/* For perf build, return directly for non ce2/ce3 */
2166 	if (IS_CE_DEBUG_ONLY_FOR_CRIT_CE &&
2167 	    ce_id != CE_ID_2 &&
2168 	    ce_id != CE_ID_3 &&
2169 	    ce_id != CE_ID_7) {
2170 		ce_hist->enable[ce_id] = false;
2171 		ce_hist->data_enable[ce_id] = false;
2172 		return QDF_STATUS_SUCCESS;
2173 	}
2174 
2175 	ce_hist->hist_ev[ce_id] = hif_ce_debug_history_buf_get(scn, ce_id);
2176 	ce_hist->enable[ce_id] = true;
2177 
2178 	if (src_nentries) {
2179 		status = alloc_mem_ce_debug_hist_data(scn, ce_id);
2180 		if (status != QDF_STATUS_SUCCESS) {
2181 			ce_hist->enable[ce_id] = false;
2182 			ce_hist->hist_ev[ce_id] = NULL;
2183 			return status;
2184 		}
2185 	} else {
2186 		ce_hist->data_enable[ce_id] = false;
2187 	}
2188 
2189 	return QDF_STATUS_SUCCESS;
2190 }
2191 
2192 /**
2193  * free_mem_ce_debug_history() - Free CE descriptor history
2194  * @scn: hif scn handle
2195  * @ce_id: Copy Engine Id
2196  *
2197  * Return: None
2198  */
2199 static void free_mem_ce_debug_history(struct hif_softc *scn, unsigned int ce_id)
2200 {
2201 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2202 
2203 	if (!ce_hist->enable[ce_id])
2204 		return;
2205 
2206 	ce_hist->enable[ce_id] = false;
2207 	if (ce_hist->data_enable[ce_id]) {
2208 		ce_hist->data_enable[ce_id] = false;
2209 		free_mem_ce_debug_hist_data(scn, ce_id);
2210 	}
2211 	ce_hist->hist_ev[ce_id] = NULL;
2212 }
2213 #else
2214 static inline QDF_STATUS
2215 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id,
2216 			   uint32_t src_nentries)
2217 {
2218 	return QDF_STATUS_SUCCESS;
2219 }
2220 
2221 static inline void
2222 free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id) { }
2223 #endif /* (HIF_CONFIG_SLUB_DEBUG_ON) || (HIF_CE_DEBUG_DATA_BUF) */
2224 #else
2225 #if defined(HIF_CE_DEBUG_DATA_BUF)
2226 
2227 static QDF_STATUS
2228 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id,
2229 			   uint32_t src_nentries)
2230 {
2231 	scn->hif_ce_desc_hist.hist_ev[CE_id] = (struct hif_ce_desc_event *)
2232 	qdf_mem_malloc(HIF_CE_HISTORY_MAX * sizeof(struct hif_ce_desc_event));
2233 
2234 	if (!scn->hif_ce_desc_hist.hist_ev[CE_id]) {
2235 		scn->hif_ce_desc_hist.enable[CE_id] = 0;
2236 		return QDF_STATUS_E_NOMEM;
2237 	} else {
2238 		scn->hif_ce_desc_hist.enable[CE_id] = 1;
2239 		return QDF_STATUS_SUCCESS;
2240 	}
2241 }
2242 
2243 static void free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id)
2244 {
2245 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2246 	struct hif_ce_desc_event *hist_ev = ce_hist->hist_ev[CE_id];
2247 
2248 	if (!hist_ev)
2249 		return;
2250 
2251 	if (ce_hist->data_enable[CE_id]) {
2252 		ce_hist->data_enable[CE_id] = false;
2253 		free_mem_ce_debug_hist_data(scn, CE_id);
2254 	}
2255 
2256 	ce_hist->enable[CE_id] = false;
2257 	qdf_mem_free(ce_hist->hist_ev[CE_id]);
2258 	ce_hist->hist_ev[CE_id] = NULL;
2259 }
2260 
2261 #else
2262 
2263 static inline QDF_STATUS
2264 alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id,
2265 			   uint32_t src_nentries)
2266 {
2267 	return QDF_STATUS_SUCCESS;
2268 }
2269 
2270 static inline void
2271 free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id) { }
2272 #endif /* HIF_CE_DEBUG_DATA_BUF */
2273 #endif /* HIF_CE_DEBUG_DATA_DYNAMIC_BUF */
2274 
2275 #if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
2276 /**
2277  * reset_ce_debug_history() - reset the index and ce id used for dumping the
2278  * CE records on the console using sysfs.
2279  * @scn: hif scn handle
2280  *
2281  * Return:
2282  */
2283 static inline void reset_ce_debug_history(struct hif_softc *scn)
2284 {
2285 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
2286 	/* Initialise the CE debug history sysfs interface inputs ce_id and
2287 	 * index. Disable data storing
2288 	 */
2289 	ce_hist->hist_index = 0;
2290 	ce_hist->hist_id = 0;
2291 }
2292 #else /* defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF) */
2293 static inline void reset_ce_debug_history(struct hif_softc *scn) { }
2294 #endif /*defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF) */
2295 
2296 void ce_enable_polling(void *cestate)
2297 {
2298 	struct CE_state *CE_state = (struct CE_state *)cestate;
2299 
2300 	if (CE_state && CE_state->attr_flags & CE_ATTR_ENABLE_POLL)
2301 		CE_state->timer_inited = true;
2302 }
2303 
2304 void ce_disable_polling(void *cestate)
2305 {
2306 	struct CE_state *CE_state = (struct CE_state *)cestate;
2307 
2308 	if (CE_state && CE_state->attr_flags & CE_ATTR_ENABLE_POLL)
2309 		CE_state->timer_inited = false;
2310 }
2311 
2312 /*
2313  * Initialize a Copy Engine based on caller-supplied attributes.
2314  * This may be called once to initialize both source and destination
2315  * rings or it may be called twice for separate source and destination
2316  * initialization. It may be that only one side or the other is
2317  * initialized by software/firmware.
2318  *
2319  * This should be called during the initialization sequence before
2320  * interrupts are enabled, so we don't have to worry about thread safety.
2321  */
2322 struct CE_handle *ce_init(struct hif_softc *scn,
2323 			  unsigned int CE_id, struct CE_attr *attr)
2324 {
2325 	struct CE_state *CE_state;
2326 	uint32_t ctrl_addr;
2327 	unsigned int nentries;
2328 	bool malloc_CE_state = false;
2329 	bool malloc_src_ring = false;
2330 	int status;
2331 	QDF_STATUS mem_status = QDF_STATUS_SUCCESS;
2332 
2333 	QDF_ASSERT(CE_id < scn->ce_count);
2334 	ctrl_addr = CE_BASE_ADDRESS(CE_id);
2335 	CE_state = scn->ce_id_to_state[CE_id];
2336 
2337 	if (!CE_state) {
2338 		CE_state =
2339 		    (struct CE_state *)qdf_mem_malloc(sizeof(*CE_state));
2340 		if (!CE_state)
2341 			return NULL;
2342 
2343 		malloc_CE_state = true;
2344 		qdf_spinlock_create(&CE_state->ce_index_lock);
2345 #ifdef CE_TASKLET_SCHEDULE_ON_FULL
2346 		qdf_spinlock_create(&CE_state->ce_interrupt_lock);
2347 #endif
2348 
2349 		CE_state->id = CE_id;
2350 		CE_state->ctrl_addr = ctrl_addr;
2351 		CE_state->state = CE_RUNNING;
2352 		CE_state->attr_flags = attr->flags;
2353 	}
2354 	CE_state->scn = scn;
2355 	CE_state->service = ce_engine_service_reg;
2356 
2357 	qdf_atomic_init(&CE_state->rx_pending);
2358 	if (!attr) {
2359 		/* Already initialized; caller wants the handle */
2360 		return (struct CE_handle *)CE_state;
2361 	}
2362 
2363 	if (CE_state->src_sz_max)
2364 		QDF_ASSERT(CE_state->src_sz_max == attr->src_sz_max);
2365 	else
2366 		CE_state->src_sz_max = attr->src_sz_max;
2367 
2368 	ce_init_ce_desc_event_log(scn, CE_id,
2369 				  attr->src_nentries + attr->dest_nentries);
2370 
2371 	/* source ring setup */
2372 	nentries = attr->src_nentries;
2373 	if (nentries) {
2374 		struct CE_ring_state *src_ring;
2375 
2376 		nentries = roundup_pwr2(nentries);
2377 		if (CE_state->src_ring) {
2378 			QDF_ASSERT(CE_state->src_ring->nentries == nentries);
2379 		} else {
2380 			src_ring = CE_state->src_ring =
2381 				ce_alloc_ring_state(CE_state,
2382 						CE_RING_SRC,
2383 						nentries);
2384 			if (!src_ring) {
2385 				/* cannot allocate src ring. If the
2386 				 * CE_state is allocated locally free
2387 				 * CE_State and return error.
2388 				 */
2389 				hif_err("src ring has no mem");
2390 				if (malloc_CE_state) {
2391 					/* allocated CE_state locally */
2392 					qdf_mem_free(CE_state);
2393 					malloc_CE_state = false;
2394 				}
2395 				return NULL;
2396 			}
2397 			/* we can allocate src ring. Mark that the src ring is
2398 			 * allocated locally
2399 			 */
2400 			malloc_src_ring = true;
2401 
2402 			/*
2403 			 * Also allocate a shadow src ring in
2404 			 * regular mem to use for faster access.
2405 			 */
2406 			src_ring->shadow_base_unaligned =
2407 				qdf_mem_malloc(nentries *
2408 					       sizeof(struct CE_src_desc) +
2409 					       CE_DESC_RING_ALIGN);
2410 			if (!src_ring->shadow_base_unaligned)
2411 				goto error_no_dma_mem;
2412 
2413 			src_ring->shadow_base = (struct CE_src_desc *)
2414 				(((size_t) src_ring->shadow_base_unaligned +
2415 				CE_DESC_RING_ALIGN - 1) &
2416 				 ~(CE_DESC_RING_ALIGN - 1));
2417 
2418 			status = ce_ring_setup(scn, CE_RING_SRC, CE_id,
2419 					       src_ring, attr);
2420 			if (status < 0)
2421 				goto error_target_access;
2422 			ce_ring_test_initial_indexes(CE_id, src_ring,
2423 						     "src_ring");
2424 		}
2425 	}
2426 
2427 	/* destination ring setup */
2428 	nentries = attr->dest_nentries;
2429 	if (nentries) {
2430 		struct CE_ring_state *dest_ring;
2431 
2432 		nentries = roundup_pwr2(nentries);
2433 		if (CE_state->dest_ring) {
2434 			QDF_ASSERT(CE_state->dest_ring->nentries == nentries);
2435 		} else {
2436 			dest_ring = CE_state->dest_ring =
2437 				ce_alloc_ring_state(CE_state,
2438 						CE_RING_DEST,
2439 						nentries);
2440 			if (!dest_ring) {
2441 				/* cannot allocate dst ring. If the CE_state
2442 				 * or src ring is allocated locally free
2443 				 * CE_State and src ring and return error.
2444 				 */
2445 				hif_err("dest ring has no mem");
2446 				goto error_no_dma_mem;
2447 			}
2448 
2449 			status = ce_ring_setup(scn, CE_RING_DEST, CE_id,
2450 				      dest_ring, attr);
2451 			if (status < 0)
2452 				goto error_target_access;
2453 
2454 			ce_ring_test_initial_indexes(CE_id, dest_ring,
2455 						     "dest_ring");
2456 
2457 			/* For srng based target, init status ring here */
2458 			if (ce_srng_based(CE_state->scn)) {
2459 				CE_state->status_ring =
2460 					ce_alloc_ring_state(CE_state,
2461 							CE_RING_STATUS,
2462 							nentries);
2463 				if (!CE_state->status_ring) {
2464 					/*Allocation failed. Cleanup*/
2465 					qdf_mem_free(CE_state->dest_ring);
2466 					if (malloc_src_ring) {
2467 						qdf_mem_free
2468 							(CE_state->src_ring);
2469 						CE_state->src_ring = NULL;
2470 						malloc_src_ring = false;
2471 					}
2472 					if (malloc_CE_state) {
2473 						/* allocated CE_state locally */
2474 						scn->ce_id_to_state[CE_id] =
2475 							NULL;
2476 						qdf_mem_free(CE_state);
2477 						malloc_CE_state = false;
2478 					}
2479 
2480 					return NULL;
2481 				}
2482 
2483 				status = ce_ring_setup(scn, CE_RING_STATUS,
2484 					       CE_id, CE_state->status_ring,
2485 					       attr);
2486 				if (status < 0)
2487 					goto error_target_access;
2488 
2489 			}
2490 
2491 			/* epping */
2492 			/* poll timer */
2493 			if (CE_state->attr_flags & CE_ATTR_ENABLE_POLL) {
2494 				qdf_timer_init(scn->qdf_dev,
2495 						&CE_state->poll_timer,
2496 						ce_poll_timeout,
2497 						CE_state,
2498 						QDF_TIMER_TYPE_WAKE_APPS);
2499 				ce_enable_polling(CE_state);
2500 				qdf_timer_mod(&CE_state->poll_timer,
2501 						      CE_POLL_TIMEOUT);
2502 			}
2503 		}
2504 	}
2505 
2506 	if (!ce_srng_based(scn)) {
2507 		/* Enable CE error interrupts */
2508 		if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
2509 			goto error_target_access;
2510 		CE_ERROR_INTR_ENABLE(scn, ctrl_addr);
2511 		if (Q_TARGET_ACCESS_END(scn) < 0)
2512 			goto error_target_access;
2513 	}
2514 
2515 	qdf_create_work(scn->qdf_dev, &CE_state->oom_allocation_work,
2516 			ce_oom_recovery, CE_state);
2517 
2518 	/* update the htt_data attribute */
2519 	ce_mark_datapath(CE_state);
2520 	scn->ce_id_to_state[CE_id] = CE_state;
2521 
2522 	mem_status = alloc_mem_ce_debug_history(scn, CE_id, attr->src_nentries);
2523 	if (mem_status != QDF_STATUS_SUCCESS)
2524 		goto error_target_access;
2525 
2526 	return (struct CE_handle *)CE_state;
2527 
2528 error_target_access:
2529 error_no_dma_mem:
2530 	ce_fini((struct CE_handle *)CE_state);
2531 	return NULL;
2532 }
2533 
2534 /**
2535  * hif_is_polled_mode_enabled - API to query if polling is enabled on all CEs
2536  * @hif_ctx: HIF Context
2537  *
2538  * API to check if polling is enabled on all CEs. Returns true when polling
2539  * is enabled on all CEs.
2540  *
2541  * Return: bool
2542  */
2543 bool hif_is_polled_mode_enabled(struct hif_opaque_softc *hif_ctx)
2544 {
2545 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2546 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2547 	struct CE_attr *attr;
2548 	int id;
2549 
2550 	for (id = 0; id < scn->ce_count; id++) {
2551 		attr = &hif_state->host_ce_config[id];
2552 		if (attr && (attr->dest_nentries) &&
2553 		    !(attr->flags & CE_ATTR_ENABLE_POLL))
2554 			return false;
2555 	}
2556 	return true;
2557 }
2558 qdf_export_symbol(hif_is_polled_mode_enabled);
2559 
2560 static int hif_get_pktlog_ce_num(struct hif_softc *scn)
2561 {
2562 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2563 	int id;
2564 
2565 	for (id = 0; id < hif_state->sz_tgt_svc_map; id++) {
2566 		if (hif_state->tgt_svc_map[id].service_id ==  PACKET_LOG_SVC)
2567 			return hif_state->tgt_svc_map[id].pipenum;
2568 	}
2569 	return -EINVAL;
2570 }
2571 
2572 #ifdef WLAN_FEATURE_FASTPATH
2573 /**
2574  * hif_enable_fastpath() - Update that we have enabled fastpath mode
2575  * @hif_ctx: HIF context
2576  *
2577  * For use in data path
2578  *
2579  * Return: void
2580  */
2581 void hif_enable_fastpath(struct hif_opaque_softc *hif_ctx)
2582 {
2583 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2584 
2585 	if (ce_srng_based(scn)) {
2586 		hif_warn("srng rings do not support fastpath");
2587 		return;
2588 	}
2589 	hif_debug("Enabling fastpath mode");
2590 	scn->fastpath_mode_on = true;
2591 }
2592 
2593 /**
2594  * hif_is_fastpath_mode_enabled - API to query if fasthpath mode is enabled
2595  * @hif_ctx: HIF Context
2596  *
2597  * For use in data path to skip HTC
2598  *
2599  * Return: bool
2600  */
2601 bool hif_is_fastpath_mode_enabled(struct hif_opaque_softc *hif_ctx)
2602 {
2603 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2604 
2605 	return scn->fastpath_mode_on;
2606 }
2607 
2608 /**
2609  * hif_get_ce_handle - API to get CE handle for FastPath mode
2610  * @hif_ctx: HIF Context
2611  * @id: CopyEngine Id
2612  *
2613  * API to return CE handle for fastpath mode
2614  *
2615  * Return: void
2616  */
2617 void *hif_get_ce_handle(struct hif_opaque_softc *hif_ctx, int id)
2618 {
2619 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2620 
2621 	return scn->ce_id_to_state[id];
2622 }
2623 qdf_export_symbol(hif_get_ce_handle);
2624 
2625 /**
2626  * ce_h2t_tx_ce_cleanup() - Place holder function for H2T CE cleanup.
2627  * No processing is required inside this function.
2628  * @ce_hdl: Cope engine handle
2629  * Using an assert, this function makes sure that,
2630  * the TX CE has been processed completely.
2631  *
2632  * This is called while dismantling CE structures. No other thread
2633  * should be using these structures while dismantling is occurring
2634  * therefore no locking is needed.
2635  *
2636  * Return: none
2637  */
2638 void ce_h2t_tx_ce_cleanup(struct CE_handle *ce_hdl)
2639 {
2640 	struct CE_state *ce_state = (struct CE_state *)ce_hdl;
2641 	struct CE_ring_state *src_ring = ce_state->src_ring;
2642 	struct hif_softc *sc = ce_state->scn;
2643 	uint32_t sw_index, write_index;
2644 
2645 	if (hif_is_nss_wifi_enabled(sc))
2646 		return;
2647 
2648 	if (sc->fastpath_mode_on && ce_state->htt_tx_data) {
2649 		hif_debug("Fastpath mode ON, Cleaning up HTT Tx CE");
2650 		sw_index = src_ring->sw_index;
2651 		write_index = src_ring->sw_index;
2652 
2653 		/* At this point Tx CE should be clean */
2654 		qdf_assert_always(sw_index == write_index);
2655 	}
2656 }
2657 
2658 /**
2659  * ce_t2h_msg_ce_cleanup() - Cleanup buffers on the t2h datapath msg queue.
2660  * @ce_hdl: Handle to CE
2661  *
2662  * These buffers are never allocated on the fly, but
2663  * are allocated only once during HIF start and freed
2664  * only once during HIF stop.
2665  * NOTE:
2666  * The assumption here is there is no in-flight DMA in progress
2667  * currently, so that buffers can be freed up safely.
2668  *
2669  * Return: NONE
2670  */
2671 void ce_t2h_msg_ce_cleanup(struct CE_handle *ce_hdl)
2672 {
2673 	struct CE_state *ce_state = (struct CE_state *)ce_hdl;
2674 	struct CE_ring_state *dst_ring = ce_state->dest_ring;
2675 	qdf_nbuf_t nbuf;
2676 	int i;
2677 
2678 	if (ce_state->scn->fastpath_mode_on == false)
2679 		return;
2680 
2681 	if (!ce_state->htt_rx_data)
2682 		return;
2683 
2684 	/*
2685 	 * when fastpath_mode is on and for datapath CEs. Unlike other CE's,
2686 	 * this CE is completely full: does not leave one blank space, to
2687 	 * distinguish between empty queue & full queue. So free all the
2688 	 * entries.
2689 	 */
2690 	for (i = 0; i < dst_ring->nentries; i++) {
2691 		nbuf = dst_ring->per_transfer_context[i];
2692 
2693 		/*
2694 		 * The reasons for doing this check are:
2695 		 * 1) Protect against calling cleanup before allocating buffers
2696 		 * 2) In a corner case, FASTPATH_mode_on may be set, but we
2697 		 *    could have a partially filled ring, because of a memory
2698 		 *    allocation failure in the middle of allocating ring.
2699 		 *    This check accounts for that case, checking
2700 		 *    fastpath_mode_on flag or started flag would not have
2701 		 *    covered that case. This is not in performance path,
2702 		 *    so OK to do this.
2703 		 */
2704 		if (nbuf) {
2705 			qdf_nbuf_unmap_single(ce_state->scn->qdf_dev, nbuf,
2706 					      QDF_DMA_FROM_DEVICE);
2707 			qdf_nbuf_free(nbuf);
2708 		}
2709 	}
2710 }
2711 
2712 /**
2713  * hif_update_fastpath_recv_bufs_cnt() - Increments the Rx buf count by 1
2714  * @scn: HIF handle
2715  *
2716  * Datapath Rx CEs are special case, where we reuse all the message buffers.
2717  * Hence we have to post all the entries in the pipe, even, in the beginning
2718  * unlike for other CE pipes where one less than dest_nentries are filled in
2719  * the beginning.
2720  *
2721  * Return: None
2722  */
2723 static void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn)
2724 {
2725 	int pipe_num;
2726 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
2727 
2728 	if (scn->fastpath_mode_on == false)
2729 		return;
2730 
2731 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
2732 		struct HIF_CE_pipe_info *pipe_info =
2733 			&hif_state->pipe_info[pipe_num];
2734 		struct CE_state *ce_state =
2735 			scn->ce_id_to_state[pipe_info->pipe_num];
2736 
2737 		if (ce_state->htt_rx_data)
2738 			atomic_inc(&pipe_info->recv_bufs_needed);
2739 	}
2740 }
2741 #else
2742 static inline void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn)
2743 {
2744 }
2745 
2746 static inline bool ce_is_fastpath_enabled(struct hif_softc *scn)
2747 {
2748 	return false;
2749 }
2750 #endif /* WLAN_FEATURE_FASTPATH */
2751 
2752 void ce_fini(struct CE_handle *copyeng)
2753 {
2754 	struct CE_state *CE_state = (struct CE_state *)copyeng;
2755 	unsigned int CE_id = CE_state->id;
2756 	struct hif_softc *scn = CE_state->scn;
2757 	uint32_t desc_size;
2758 
2759 	bool inited = CE_state->timer_inited;
2760 	CE_state->state = CE_UNUSED;
2761 	scn->ce_id_to_state[CE_id] = NULL;
2762 	/* Set the flag to false first to stop processing in ce_poll_timeout */
2763 	ce_disable_polling(CE_state);
2764 
2765 	qdf_lro_deinit(CE_state->lro_data);
2766 
2767 	if (CE_state->src_ring) {
2768 		/* Cleanup the datapath Tx ring */
2769 		ce_h2t_tx_ce_cleanup(copyeng);
2770 
2771 		desc_size = ce_get_desc_size(scn, CE_RING_SRC);
2772 		if (CE_state->src_ring->shadow_base_unaligned)
2773 			qdf_mem_free(CE_state->src_ring->shadow_base_unaligned);
2774 		if (CE_state->src_ring->base_addr_owner_space_unaligned)
2775 			ce_free_desc_ring(scn, CE_state->id,
2776 					  CE_state->src_ring,
2777 					  desc_size);
2778 		ce_srng_cleanup(scn, CE_state, CE_RING_SRC);
2779 		qdf_mem_free(CE_state->src_ring);
2780 	}
2781 	if (CE_state->dest_ring) {
2782 		/* Cleanup the datapath Rx ring */
2783 		ce_t2h_msg_ce_cleanup(copyeng);
2784 
2785 		desc_size = ce_get_desc_size(scn, CE_RING_DEST);
2786 		if (CE_state->dest_ring->base_addr_owner_space_unaligned)
2787 			ce_free_desc_ring(scn, CE_state->id,
2788 					  CE_state->dest_ring,
2789 					  desc_size);
2790 		ce_srng_cleanup(scn, CE_state, CE_RING_DEST);
2791 		qdf_mem_free(CE_state->dest_ring);
2792 
2793 		/* epping */
2794 		if (inited) {
2795 			qdf_timer_free(&CE_state->poll_timer);
2796 		}
2797 	}
2798 	if ((ce_srng_based(CE_state->scn)) && (CE_state->status_ring)) {
2799 		/* Cleanup the datapath Tx ring */
2800 		ce_h2t_tx_ce_cleanup(copyeng);
2801 
2802 		if (CE_state->status_ring->shadow_base_unaligned)
2803 			qdf_mem_free(
2804 				CE_state->status_ring->shadow_base_unaligned);
2805 
2806 		desc_size = ce_get_desc_size(scn, CE_RING_STATUS);
2807 		if (CE_state->status_ring->base_addr_owner_space_unaligned)
2808 			ce_free_desc_ring(scn, CE_state->id,
2809 					  CE_state->status_ring,
2810 					  desc_size);
2811 		ce_srng_cleanup(scn, CE_state, CE_RING_STATUS);
2812 		qdf_mem_free(CE_state->status_ring);
2813 	}
2814 
2815 	free_mem_ce_debug_history(scn, CE_id);
2816 	reset_ce_debug_history(scn);
2817 	ce_deinit_ce_desc_event_log(scn, CE_id);
2818 
2819 	qdf_spinlock_destroy(&CE_state->ce_index_lock);
2820 #ifdef CE_TASKLET_SCHEDULE_ON_FULL
2821 	qdf_spinlock_destroy(&CE_state->ce_interrupt_lock);
2822 #endif
2823 	qdf_mem_free(CE_state);
2824 }
2825 
2826 void hif_detach_htc(struct hif_opaque_softc *hif_ctx)
2827 {
2828 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
2829 
2830 	qdf_mem_zero(&hif_state->msg_callbacks_pending,
2831 		  sizeof(hif_state->msg_callbacks_pending));
2832 	qdf_mem_zero(&hif_state->msg_callbacks_current,
2833 		  sizeof(hif_state->msg_callbacks_current));
2834 }
2835 
2836 /* Send the first nbytes bytes of the buffer */
2837 QDF_STATUS
2838 hif_send_head(struct hif_opaque_softc *hif_ctx,
2839 	      uint8_t pipe, unsigned int transfer_id, unsigned int nbytes,
2840 	      qdf_nbuf_t nbuf, unsigned int data_attr)
2841 {
2842 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2843 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
2844 	struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
2845 	struct CE_handle *ce_hdl = pipe_info->ce_hdl;
2846 	int bytes = nbytes, nfrags = 0;
2847 	struct ce_sendlist sendlist;
2848 	int i = 0;
2849 	QDF_STATUS status;
2850 	unsigned int mux_id = 0;
2851 
2852 	if (nbytes > qdf_nbuf_len(nbuf)) {
2853 		hif_err("nbytes: %d nbuf_len: %d", nbytes,
2854 		       (uint32_t)qdf_nbuf_len(nbuf));
2855 		QDF_ASSERT(0);
2856 	}
2857 
2858 	transfer_id =
2859 		(mux_id & MUX_ID_MASK) |
2860 		(transfer_id & TRANSACTION_ID_MASK);
2861 	data_attr &= DESC_DATA_FLAG_MASK;
2862 	/*
2863 	 * The common case involves sending multiple fragments within a
2864 	 * single download (the tx descriptor and the tx frame header).
2865 	 * So, optimize for the case of multiple fragments by not even
2866 	 * checking whether it's necessary to use a sendlist.
2867 	 * The overhead of using a sendlist for a single buffer download
2868 	 * is not a big deal, since it happens rarely (for WMI messages).
2869 	 */
2870 	ce_sendlist_init(&sendlist);
2871 	do {
2872 		qdf_dma_addr_t frag_paddr;
2873 		int frag_bytes;
2874 
2875 		frag_paddr = qdf_nbuf_get_frag_paddr(nbuf, nfrags);
2876 		frag_bytes = qdf_nbuf_get_frag_len(nbuf, nfrags);
2877 		/*
2878 		 * Clear the packet offset for all but the first CE desc.
2879 		 */
2880 		if (i++ > 0)
2881 			data_attr &= ~QDF_CE_TX_PKT_OFFSET_BIT_M;
2882 
2883 		status = ce_sendlist_buf_add(&sendlist, frag_paddr,
2884 				    frag_bytes >
2885 				    bytes ? bytes : frag_bytes,
2886 				    qdf_nbuf_get_frag_is_wordstream
2887 				    (nbuf,
2888 				    nfrags) ? 0 :
2889 				    CE_SEND_FLAG_SWAP_DISABLE,
2890 				    data_attr);
2891 		if (status != QDF_STATUS_SUCCESS) {
2892 			hif_err("frag_num: %d larger than limit (status=%d)",
2893 			       nfrags, status);
2894 			return status;
2895 		}
2896 		bytes -= frag_bytes;
2897 		nfrags++;
2898 	} while (bytes > 0);
2899 
2900 	/* Make sure we have resources to handle this request */
2901 	qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
2902 	if (pipe_info->num_sends_allowed < nfrags) {
2903 		qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
2904 		ce_pkt_error_count_incr(hif_state, HIF_PIPE_NO_RESOURCE);
2905 		return QDF_STATUS_E_RESOURCES;
2906 	}
2907 	pipe_info->num_sends_allowed -= nfrags;
2908 	qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
2909 
2910 	if (qdf_unlikely(!ce_hdl)) {
2911 		hif_err("CE handle is null");
2912 		return A_ERROR;
2913 	}
2914 
2915 	QDF_NBUF_UPDATE_TX_PKT_COUNT(nbuf, QDF_NBUF_TX_PKT_HIF);
2916 	DPTRACE(qdf_dp_trace(nbuf, QDF_DP_TRACE_HIF_PACKET_PTR_RECORD,
2917 		QDF_TRACE_DEFAULT_PDEV_ID, qdf_nbuf_data_addr(nbuf),
2918 		sizeof(qdf_nbuf_data(nbuf)), QDF_TX));
2919 	status = ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id);
2920 	QDF_ASSERT(status == QDF_STATUS_SUCCESS);
2921 
2922 	return status;
2923 }
2924 
2925 void hif_send_complete_check(struct hif_opaque_softc *hif_ctx, uint8_t pipe,
2926 								int force)
2927 {
2928 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
2929 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
2930 
2931 	if (!force) {
2932 		int resources;
2933 		/*
2934 		 * Decide whether to actually poll for completions, or just
2935 		 * wait for a later chance. If there seem to be plenty of
2936 		 * resources left, then just wait, since checking involves
2937 		 * reading a CE register, which is a relatively expensive
2938 		 * operation.
2939 		 */
2940 		resources = hif_get_free_queue_number(hif_ctx, pipe);
2941 		/*
2942 		 * If at least 50% of the total resources are still available,
2943 		 * don't bother checking again yet.
2944 		 */
2945 		if (resources > (hif_state->host_ce_config[pipe].src_nentries >>
2946 									 1))
2947 			return;
2948 	}
2949 #ifdef ATH_11AC_TXCOMPACT
2950 	ce_per_engine_servicereap(scn, pipe);
2951 #else
2952 	ce_per_engine_service(scn, pipe);
2953 #endif
2954 }
2955 
2956 #if defined(CE_TASKLET_SCHEDULE_ON_FULL) && defined(CE_TASKLET_DEBUG_ENABLE)
2957 #define CE_RING_FULL_THRESHOLD_TIME 3000000
2958 #define CE_RING_FULL_THRESHOLD 1024
2959 /* This function is called from htc_send path. If there is no resourse to send
2960  * packet via HTC, then check if interrupts are not processed from that
2961  * CE for last 3 seconds. If so, schedule a tasklet to reap available entries.
2962  * Also if Queue has reached 1024 entries within 3 seconds, then also schedule
2963  * tasklet.
2964  */
2965 void hif_schedule_ce_tasklet(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
2966 {
2967 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
2968 	int64_t diff_time = qdf_get_log_timestamp_usecs() -
2969 			hif_state->stats.tasklet_sched_entry_ts[pipe];
2970 
2971 	hif_state->stats.ce_ring_full_count[pipe]++;
2972 
2973 	if (diff_time >= CE_RING_FULL_THRESHOLD_TIME ||
2974 	    hif_state->stats.ce_ring_full_count[pipe] >=
2975 	    CE_RING_FULL_THRESHOLD) {
2976 		hif_state->stats.ce_ring_full_count[pipe] = 0;
2977 		hif_state->stats.ce_manual_tasklet_schedule_count[pipe]++;
2978 		hif_state->stats.ce_last_manual_tasklet_schedule_ts[pipe] =
2979 			qdf_get_log_timestamp_usecs();
2980 		ce_dispatch_interrupt(pipe, &hif_state->tasklets[pipe]);
2981 	}
2982 }
2983 #else
2984 void hif_schedule_ce_tasklet(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
2985 {
2986 }
2987 #endif
2988 
2989 uint16_t
2990 hif_get_free_queue_number(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
2991 {
2992 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
2993 	struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
2994 	uint16_t rv;
2995 
2996 	qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
2997 	rv = pipe_info->num_sends_allowed;
2998 	qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
2999 	return rv;
3000 }
3001 
3002 /* Called by lower (CE) layer when a send to Target completes. */
3003 static void
3004 hif_pci_ce_send_done(struct CE_handle *copyeng, void *ce_context,
3005 		     void *transfer_context, qdf_dma_addr_t CE_data,
3006 		     unsigned int nbytes, unsigned int transfer_id,
3007 		     unsigned int sw_index, unsigned int hw_index,
3008 		     unsigned int toeplitz_hash_result)
3009 {
3010 	struct HIF_CE_pipe_info *pipe_info =
3011 		(struct HIF_CE_pipe_info *)ce_context;
3012 	unsigned int sw_idx = sw_index, hw_idx = hw_index;
3013 	struct hif_msg_callbacks *msg_callbacks =
3014 		&pipe_info->pipe_callbacks;
3015 
3016 	do {
3017 		/*
3018 		 * The upper layer callback will be triggered
3019 		 * when last fragment is complteted.
3020 		 */
3021 		if (transfer_context != CE_SENDLIST_ITEM_CTXT)
3022 			msg_callbacks->txCompletionHandler(
3023 				msg_callbacks->Context,
3024 				transfer_context, transfer_id,
3025 				toeplitz_hash_result);
3026 
3027 		qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
3028 		pipe_info->num_sends_allowed++;
3029 		qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
3030 	} while (ce_completed_send_next(copyeng,
3031 			&ce_context, &transfer_context,
3032 			&CE_data, &nbytes, &transfer_id,
3033 			&sw_idx, &hw_idx,
3034 			&toeplitz_hash_result) == QDF_STATUS_SUCCESS);
3035 }
3036 
3037 /**
3038  * hif_ce_do_recv(): send message from copy engine to upper layers
3039  * @msg_callbacks: structure containing callback and callback context
3040  * @netbuf: skb containing message
3041  * @nbytes: number of bytes in the message
3042  * @pipe_info: used for the pipe_number info
3043  *
3044  * Checks the packet length, configures the length in the netbuff,
3045  * and calls the upper layer callback.
3046  *
3047  * return: None
3048  */
3049 static inline void hif_ce_do_recv(struct hif_msg_callbacks *msg_callbacks,
3050 		qdf_nbuf_t netbuf, int nbytes,
3051 		struct HIF_CE_pipe_info *pipe_info) {
3052 	if (nbytes <= pipe_info->buf_sz) {
3053 		qdf_nbuf_set_pktlen(netbuf, nbytes);
3054 		msg_callbacks->
3055 			rxCompletionHandler(msg_callbacks->Context,
3056 					netbuf, pipe_info->pipe_num);
3057 	} else {
3058 		hif_err("Invalid Rx msg buf: %pK nbytes: %d", netbuf, nbytes);
3059 		qdf_nbuf_free(netbuf);
3060 	}
3061 }
3062 
3063 /* Called by lower (CE) layer when data is received from the Target. */
3064 static void
3065 hif_pci_ce_recv_data(struct CE_handle *copyeng, void *ce_context,
3066 		     void *transfer_context, qdf_dma_addr_t CE_data,
3067 		     unsigned int nbytes, unsigned int transfer_id,
3068 		     unsigned int flags)
3069 {
3070 	struct HIF_CE_pipe_info *pipe_info =
3071 		(struct HIF_CE_pipe_info *)ce_context;
3072 	struct HIF_CE_state *hif_state = pipe_info->HIF_CE_state;
3073 	struct CE_state *ce_state = (struct CE_state *) copyeng;
3074 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
3075 	struct hif_msg_callbacks *msg_callbacks = &pipe_info->pipe_callbacks;
3076 
3077 	do {
3078 		hif_rtpm_record_ce_last_busy_evt(scn, ce_state->id);
3079 		hif_rtpm_mark_last_busy(HIF_RTPM_ID_CE);
3080 		qdf_nbuf_unmap_single(scn->qdf_dev,
3081 				      (qdf_nbuf_t) transfer_context,
3082 				      QDF_DMA_FROM_DEVICE);
3083 
3084 		atomic_inc(&pipe_info->recv_bufs_needed);
3085 		hif_post_recv_buffers_for_pipe(pipe_info);
3086 		if (scn->target_status == TARGET_STATUS_RESET)
3087 			qdf_nbuf_free(transfer_context);
3088 		else
3089 			hif_ce_do_recv(msg_callbacks, transfer_context,
3090 				nbytes, pipe_info);
3091 
3092 		/* Set up force_break flag if num of receices reaches
3093 		 * MAX_NUM_OF_RECEIVES
3094 		 */
3095 		ce_state->receive_count++;
3096 		if (qdf_unlikely(hif_ce_service_should_yield(scn, ce_state))) {
3097 			ce_state->force_break = 1;
3098 			break;
3099 		}
3100 	} while (ce_completed_recv_next(copyeng, &ce_context, &transfer_context,
3101 					&CE_data, &nbytes, &transfer_id,
3102 					&flags) == QDF_STATUS_SUCCESS);
3103 
3104 }
3105 
3106 /* TBDXXX: Set CE High Watermark; invoke txResourceAvailHandler in response */
3107 
3108 void
3109 hif_post_init(struct hif_opaque_softc *hif_ctx, void *unused,
3110 	      struct hif_msg_callbacks *callbacks)
3111 {
3112 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
3113 
3114 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
3115 	spin_lock_init(&pcie_access_log_lock);
3116 #endif
3117 	/* Save callbacks for later installation */
3118 	qdf_mem_copy(&hif_state->msg_callbacks_pending, callbacks,
3119 		 sizeof(hif_state->msg_callbacks_pending));
3120 
3121 }
3122 
3123 static int hif_completion_thread_startup_by_ceid(struct HIF_CE_state *hif_state,
3124 						 int pipe_num)
3125 {
3126 	struct CE_attr attr;
3127 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
3128 	struct hif_msg_callbacks *hif_msg_callbacks =
3129 		&hif_state->msg_callbacks_current;
3130 	struct HIF_CE_pipe_info *pipe_info;
3131 	struct CE_state *ce_state;
3132 
3133 	if (pipe_num >= CE_COUNT_MAX)
3134 		return -EINVAL;
3135 
3136 	pipe_info = &hif_state->pipe_info[pipe_num];
3137 	ce_state = scn->ce_id_to_state[pipe_num];
3138 
3139 	if (!hif_msg_callbacks ||
3140 	    !hif_msg_callbacks->rxCompletionHandler ||
3141 	    !hif_msg_callbacks->txCompletionHandler) {
3142 		hif_err("%s: no completion handler registered", __func__);
3143 		return -EFAULT;
3144 	}
3145 
3146 	attr = hif_state->host_ce_config[pipe_num];
3147 	if (attr.src_nentries) {
3148 		/* pipe used to send to target */
3149 		hif_debug("%s: pipe_num:%d pipe_info:0x%pK\n",
3150 			  __func__, pipe_num, pipe_info);
3151 		ce_send_cb_register(pipe_info->ce_hdl,
3152 				    hif_pci_ce_send_done, pipe_info,
3153 				    attr.flags & CE_ATTR_DISABLE_INTR);
3154 		pipe_info->num_sends_allowed = attr.src_nentries - 1;
3155 	}
3156 	if (attr.dest_nentries) {
3157 		hif_debug("%s: pipe_num:%d pipe_info:0x%pK\n",
3158 			  __func__, pipe_num, pipe_info);
3159 		/* pipe used to receive from target */
3160 		ce_recv_cb_register(pipe_info->ce_hdl,
3161 				    hif_pci_ce_recv_data, pipe_info,
3162 				    attr.flags & CE_ATTR_DISABLE_INTR);
3163 	}
3164 
3165 	if (attr.src_nentries)
3166 		qdf_spinlock_create(&pipe_info->completion_freeq_lock);
3167 
3168 	if (!(ce_state->attr_flags & CE_ATTR_INIT_ON_DEMAND))
3169 		qdf_mem_copy(&pipe_info->pipe_callbacks, hif_msg_callbacks,
3170 			     sizeof(pipe_info->pipe_callbacks));
3171 
3172 	return 0;
3173 }
3174 
3175 static int hif_completion_thread_startup(struct HIF_CE_state *hif_state)
3176 {
3177 	struct CE_handle *ce_diag = hif_state->ce_diag;
3178 	int pipe_num, ret;
3179 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
3180 
3181 	/* daemonize("hif_compl_thread"); */
3182 
3183 	if (scn->ce_count == 0) {
3184 		hif_err("ce_count is 0");
3185 		return -EINVAL;
3186 	}
3187 
3188 
3189 	A_TARGET_ACCESS_LIKELY(scn);
3190 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3191 		struct HIF_CE_pipe_info *pipe_info;
3192 
3193 		pipe_info = &hif_state->pipe_info[pipe_num];
3194 		if (pipe_info->ce_hdl == ce_diag)
3195 			continue;       /* Handle Diagnostic CE specially */
3196 
3197 		ret = hif_completion_thread_startup_by_ceid(hif_state,
3198 							    pipe_num);
3199 		if (ret < 0)
3200 			return ret;
3201 
3202 	}
3203 
3204 	A_TARGET_ACCESS_UNLIKELY(scn);
3205 	return 0;
3206 }
3207 
3208 /*
3209  * Install pending msg callbacks.
3210  *
3211  * TBDXXX: This hack is needed because upper layers install msg callbacks
3212  * for use with HTC before BMI is done; yet this HIF implementation
3213  * needs to continue to use BMI msg callbacks. Really, upper layers
3214  * should not register HTC callbacks until AFTER BMI phase.
3215  */
3216 static void hif_msg_callbacks_install(struct hif_softc *scn)
3217 {
3218 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3219 
3220 	qdf_mem_copy(&hif_state->msg_callbacks_current,
3221 		 &hif_state->msg_callbacks_pending,
3222 		 sizeof(hif_state->msg_callbacks_pending));
3223 }
3224 
3225 void hif_get_default_pipe(struct hif_opaque_softc *hif_hdl, uint8_t *ULPipe,
3226 							uint8_t *DLPipe)
3227 {
3228 	int ul_is_polled, dl_is_polled;
3229 
3230 	(void)hif_map_service_to_pipe(hif_hdl, HTC_CTRL_RSVD_SVC,
3231 		ULPipe, DLPipe, &ul_is_polled, &dl_is_polled);
3232 }
3233 
3234 /**
3235  * hif_dump_pipe_debug_count() - Log error count
3236  * @scn: hif_softc pointer.
3237  *
3238  * Output the pipe error counts of each pipe to log file
3239  *
3240  * Return: N/A
3241  */
3242 void hif_dump_pipe_debug_count(struct hif_softc *scn)
3243 {
3244 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3245 	int pipe_num;
3246 
3247 	if (!hif_state) {
3248 		hif_err("hif_state is NULL");
3249 		return;
3250 	}
3251 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3252 		struct HIF_CE_pipe_info *pipe_info;
3253 
3254 	pipe_info = &hif_state->pipe_info[pipe_num];
3255 
3256 	if (pipe_info->nbuf_alloc_err_count > 0 ||
3257 			pipe_info->nbuf_dma_err_count > 0 ||
3258 			pipe_info->nbuf_ce_enqueue_err_count)
3259 		hif_err(
3260 			"pipe_id = %d, recv_bufs_needed = %d, nbuf_alloc_err_count = %u, nbuf_dma_err_count = %u, nbuf_ce_enqueue_err_count = %u",
3261 			pipe_info->pipe_num,
3262 			atomic_read(&pipe_info->recv_bufs_needed),
3263 			pipe_info->nbuf_alloc_err_count,
3264 			pipe_info->nbuf_dma_err_count,
3265 			pipe_info->nbuf_ce_enqueue_err_count);
3266 	}
3267 }
3268 
3269 static void hif_post_recv_buffers_failure(struct HIF_CE_pipe_info *pipe_info,
3270 					  void *nbuf, uint32_t *error_cnt,
3271 					  enum hif_ce_event_type failure_type,
3272 					  const char *failure_type_string)
3273 {
3274 	int bufs_needed_tmp = atomic_inc_return(&pipe_info->recv_bufs_needed);
3275 	struct CE_state *CE_state = (struct CE_state *)pipe_info->ce_hdl;
3276 	struct hif_softc *scn = HIF_GET_SOFTC(pipe_info->HIF_CE_state);
3277 	int ce_id = CE_state->id;
3278 	uint32_t error_cnt_tmp;
3279 
3280 	qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
3281 	error_cnt_tmp = ++(*error_cnt);
3282 	qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
3283 	hif_debug("pipe_num: %d, needed: %d, err_cnt: %u, fail_type: %s",
3284 		  pipe_info->pipe_num, bufs_needed_tmp, error_cnt_tmp,
3285 		  failure_type_string);
3286 	hif_record_ce_desc_event(scn, ce_id, failure_type,
3287 				 NULL, nbuf, bufs_needed_tmp, 0);
3288 	/* if we fail to allocate the last buffer for an rx pipe,
3289 	 *	there is no trigger to refill the ce and we will
3290 	 *	eventually crash
3291 	 */
3292 	if (bufs_needed_tmp == CE_state->dest_ring->nentries - 1 ||
3293 	    (ce_srng_based(scn) &&
3294 	     bufs_needed_tmp == CE_state->dest_ring->nentries - 2))
3295 		qdf_sched_work(scn->qdf_dev, &CE_state->oom_allocation_work);
3296 
3297 }
3298 
3299 
3300 
3301 
3302 QDF_STATUS hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info)
3303 {
3304 	struct CE_handle *ce_hdl;
3305 	qdf_size_t buf_sz;
3306 	struct hif_softc *scn = HIF_GET_SOFTC(pipe_info->HIF_CE_state);
3307 	QDF_STATUS status;
3308 	uint32_t bufs_posted = 0;
3309 	unsigned int ce_id;
3310 
3311 	buf_sz = pipe_info->buf_sz;
3312 	if (buf_sz == 0) {
3313 		/* Unused Copy Engine */
3314 		return QDF_STATUS_SUCCESS;
3315 	}
3316 
3317 	ce_hdl = pipe_info->ce_hdl;
3318 	ce_id = ((struct CE_state *)ce_hdl)->id;
3319 
3320 	qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
3321 	while (atomic_read(&pipe_info->recv_bufs_needed) > 0) {
3322 		qdf_dma_addr_t CE_data;      /* CE space buffer address */
3323 		qdf_nbuf_t nbuf;
3324 
3325 		atomic_dec(&pipe_info->recv_bufs_needed);
3326 		qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
3327 
3328 		hif_record_ce_desc_event(scn, ce_id,
3329 					 HIF_RX_DESC_PRE_NBUF_ALLOC, NULL, NULL,
3330 					 0, 0);
3331 		nbuf = qdf_nbuf_alloc(scn->qdf_dev, buf_sz, 0, 4, false);
3332 		if (!nbuf) {
3333 			hif_post_recv_buffers_failure(pipe_info, nbuf,
3334 					&pipe_info->nbuf_alloc_err_count,
3335 					 HIF_RX_NBUF_ALLOC_FAILURE,
3336 					"HIF_RX_NBUF_ALLOC_FAILURE");
3337 			return QDF_STATUS_E_NOMEM;
3338 		}
3339 
3340 		hif_record_ce_desc_event(scn, ce_id,
3341 					 HIF_RX_DESC_PRE_NBUF_MAP, NULL, nbuf,
3342 					 0, 0);
3343 		/*
3344 		 * qdf_nbuf_peek_header(nbuf, &data, &unused);
3345 		 * CE_data = dma_map_single(dev, data, buf_sz, );
3346 		 * DMA_FROM_DEVICE);
3347 		 */
3348 		status = qdf_nbuf_map_single(scn->qdf_dev, nbuf,
3349 					    QDF_DMA_FROM_DEVICE);
3350 
3351 		if (qdf_unlikely(status != QDF_STATUS_SUCCESS)) {
3352 			hif_post_recv_buffers_failure(pipe_info, nbuf,
3353 					&pipe_info->nbuf_dma_err_count,
3354 					 HIF_RX_NBUF_MAP_FAILURE,
3355 					"HIF_RX_NBUF_MAP_FAILURE");
3356 			qdf_nbuf_free(nbuf);
3357 			return status;
3358 		}
3359 
3360 		CE_data = qdf_nbuf_get_frag_paddr(nbuf, 0);
3361 		hif_record_ce_desc_event(scn, ce_id,
3362 					 HIF_RX_DESC_POST_NBUF_MAP, NULL, nbuf,
3363 					 0, 0);
3364 		qdf_mem_dma_sync_single_for_device(scn->qdf_dev, CE_data,
3365 					       buf_sz, DMA_FROM_DEVICE);
3366 		status = ce_recv_buf_enqueue(ce_hdl, (void *)nbuf, CE_data);
3367 		if (qdf_unlikely(status != QDF_STATUS_SUCCESS)) {
3368 			hif_post_recv_buffers_failure(pipe_info, nbuf,
3369 					&pipe_info->nbuf_ce_enqueue_err_count,
3370 					 HIF_RX_NBUF_ENQUEUE_FAILURE,
3371 					"HIF_RX_NBUF_ENQUEUE_FAILURE");
3372 
3373 			qdf_nbuf_unmap_single(scn->qdf_dev, nbuf,
3374 						QDF_DMA_FROM_DEVICE);
3375 			qdf_nbuf_free(nbuf);
3376 			return status;
3377 		}
3378 
3379 		qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
3380 		bufs_posted++;
3381 	}
3382 	pipe_info->nbuf_alloc_err_count =
3383 		(pipe_info->nbuf_alloc_err_count > bufs_posted) ?
3384 		pipe_info->nbuf_alloc_err_count - bufs_posted : 0;
3385 	pipe_info->nbuf_dma_err_count =
3386 		(pipe_info->nbuf_dma_err_count > bufs_posted) ?
3387 		pipe_info->nbuf_dma_err_count - bufs_posted : 0;
3388 	pipe_info->nbuf_ce_enqueue_err_count =
3389 		(pipe_info->nbuf_ce_enqueue_err_count > bufs_posted) ?
3390 	pipe_info->nbuf_ce_enqueue_err_count - bufs_posted : 0;
3391 
3392 	qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
3393 
3394 	return QDF_STATUS_SUCCESS;
3395 }
3396 
3397 /*
3398  * Try to post all desired receive buffers for all pipes.
3399  * Returns 0 for non fastpath rx copy engine as
3400  * oom_allocation_work will be scheduled to recover any
3401  * failures, non-zero if unable to completely replenish
3402  * receive buffers for fastpath rx Copy engine.
3403  */
3404 static QDF_STATUS hif_post_recv_buffers(struct hif_softc *scn)
3405 {
3406 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3407 	int pipe_num;
3408 	struct CE_state *ce_state = NULL;
3409 	QDF_STATUS qdf_status;
3410 
3411 	A_TARGET_ACCESS_LIKELY(scn);
3412 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3413 		struct HIF_CE_pipe_info *pipe_info;
3414 
3415 		ce_state = scn->ce_id_to_state[pipe_num];
3416 		pipe_info = &hif_state->pipe_info[pipe_num];
3417 
3418 		if (!ce_state)
3419 			continue;
3420 
3421 		/* Do not init dynamic CEs, during initial load */
3422 		if (ce_state->attr_flags & CE_ATTR_INIT_ON_DEMAND)
3423 			continue;
3424 
3425 		if (hif_is_nss_wifi_enabled(scn) &&
3426 		    ce_state && (ce_state->htt_rx_data))
3427 			continue;
3428 
3429 		qdf_status = hif_post_recv_buffers_for_pipe(pipe_info);
3430 		if (!QDF_IS_STATUS_SUCCESS(qdf_status) && ce_state &&
3431 			ce_state->htt_rx_data &&
3432 			scn->fastpath_mode_on) {
3433 			A_TARGET_ACCESS_UNLIKELY(scn);
3434 			return qdf_status;
3435 		}
3436 	}
3437 
3438 	A_TARGET_ACCESS_UNLIKELY(scn);
3439 
3440 	return QDF_STATUS_SUCCESS;
3441 }
3442 
3443 QDF_STATUS hif_start(struct hif_opaque_softc *hif_ctx)
3444 {
3445 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
3446 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3447 	QDF_STATUS qdf_status = QDF_STATUS_SUCCESS;
3448 
3449 	hif_update_fastpath_recv_bufs_cnt(scn);
3450 
3451 	hif_msg_callbacks_install(scn);
3452 
3453 	if (hif_completion_thread_startup(hif_state))
3454 		return QDF_STATUS_E_FAILURE;
3455 
3456 	/* enable buffer cleanup */
3457 	hif_state->started = true;
3458 
3459 	/* Post buffers once to start things off. */
3460 	qdf_status = hif_post_recv_buffers(scn);
3461 	if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
3462 		/* cleanup is done in hif_ce_disable */
3463 		hif_err("Failed to post buffers");
3464 		return qdf_status;
3465 	}
3466 
3467 	return qdf_status;
3468 }
3469 
3470 static void hif_recv_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info)
3471 {
3472 	struct hif_softc *scn;
3473 	struct CE_handle *ce_hdl;
3474 	uint32_t buf_sz;
3475 	struct HIF_CE_state *hif_state;
3476 	qdf_nbuf_t netbuf;
3477 	qdf_dma_addr_t CE_data;
3478 	void *per_CE_context;
3479 
3480 	buf_sz = pipe_info->buf_sz;
3481 	/* Unused Copy Engine */
3482 	if (buf_sz == 0)
3483 		return;
3484 
3485 
3486 	hif_state = pipe_info->HIF_CE_state;
3487 	if (!hif_state->started)
3488 		return;
3489 
3490 	scn = HIF_GET_SOFTC(hif_state);
3491 	ce_hdl = pipe_info->ce_hdl;
3492 
3493 	if (!scn->qdf_dev)
3494 		return;
3495 	while (ce_revoke_recv_next
3496 		       (ce_hdl, &per_CE_context, (void **)&netbuf,
3497 			&CE_data) == QDF_STATUS_SUCCESS) {
3498 		if (netbuf) {
3499 			qdf_nbuf_unmap_single(scn->qdf_dev, netbuf,
3500 					      QDF_DMA_FROM_DEVICE);
3501 			qdf_nbuf_free(netbuf);
3502 		}
3503 	}
3504 }
3505 
3506 static void hif_send_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info)
3507 {
3508 	struct CE_handle *ce_hdl;
3509 	struct HIF_CE_state *hif_state;
3510 	struct hif_softc *scn;
3511 	qdf_nbuf_t netbuf;
3512 	void *per_CE_context;
3513 	qdf_dma_addr_t CE_data;
3514 	unsigned int nbytes;
3515 	unsigned int id;
3516 	uint32_t buf_sz;
3517 	uint32_t toeplitz_hash_result;
3518 
3519 	buf_sz = pipe_info->buf_sz;
3520 	if (buf_sz == 0) {
3521 		/* Unused Copy Engine */
3522 		return;
3523 	}
3524 
3525 	hif_state = pipe_info->HIF_CE_state;
3526 	if (!hif_state->started) {
3527 		return;
3528 	}
3529 
3530 	scn = HIF_GET_SOFTC(hif_state);
3531 
3532 	ce_hdl = pipe_info->ce_hdl;
3533 
3534 	while (ce_cancel_send_next
3535 		       (ce_hdl, &per_CE_context,
3536 		       (void **)&netbuf, &CE_data, &nbytes,
3537 		       &id, &toeplitz_hash_result) == QDF_STATUS_SUCCESS) {
3538 		if (netbuf != CE_SENDLIST_ITEM_CTXT) {
3539 			/*
3540 			 * Packets enqueued by htt_h2t_ver_req_msg() and
3541 			 * htt_h2t_rx_ring_cfg_msg_ll() have already been
3542 			 * freed in htt_htc_misc_pkt_pool_free() in
3543 			 * wlantl_close(), so do not free them here again
3544 			 * by checking whether it's the endpoint
3545 			 * which they are queued in.
3546 			 */
3547 			if (id == scn->htc_htt_tx_endpoint)
3548 				return;
3549 			/* Indicate the completion to higher
3550 			 * layer to free the buffer
3551 			 */
3552 			if (pipe_info->pipe_callbacks.txCompletionHandler)
3553 				pipe_info->pipe_callbacks.
3554 				    txCompletionHandler(pipe_info->
3555 					    pipe_callbacks.Context,
3556 					    netbuf, id, toeplitz_hash_result);
3557 		}
3558 	}
3559 }
3560 
3561 /*
3562  * Cleanup residual buffers for device shutdown:
3563  *    buffers that were enqueued for receive
3564  *    buffers that were to be sent
3565  * Note: Buffers that had completed but which were
3566  * not yet processed are on a completion queue. They
3567  * are handled when the completion thread shuts down.
3568  */
3569 static void hif_buffer_cleanup(struct HIF_CE_state *hif_state)
3570 {
3571 	int pipe_num;
3572 	struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
3573 	struct CE_state *ce_state;
3574 
3575 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3576 		struct HIF_CE_pipe_info *pipe_info;
3577 
3578 		ce_state = scn->ce_id_to_state[pipe_num];
3579 		if (hif_is_nss_wifi_enabled(scn) && ce_state &&
3580 				((ce_state->htt_tx_data) ||
3581 				 (ce_state->htt_rx_data))) {
3582 			continue;
3583 		}
3584 
3585 		pipe_info = &hif_state->pipe_info[pipe_num];
3586 		hif_recv_buffer_cleanup_on_pipe(pipe_info);
3587 		hif_send_buffer_cleanup_on_pipe(pipe_info);
3588 	}
3589 }
3590 
3591 void hif_flush_surprise_remove(struct hif_opaque_softc *hif_ctx)
3592 {
3593 	struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
3594 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3595 
3596 	hif_buffer_cleanup(hif_state);
3597 }
3598 
3599 static void hif_destroy_oom_work(struct hif_softc *scn)
3600 {
3601 	struct CE_state *ce_state;
3602 	int ce_id;
3603 
3604 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
3605 		ce_state = scn->ce_id_to_state[ce_id];
3606 		if (ce_state)
3607 			qdf_destroy_work(scn->qdf_dev,
3608 					 &ce_state->oom_allocation_work);
3609 	}
3610 }
3611 
3612 void hif_ce_stop(struct hif_softc *scn)
3613 {
3614 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3615 	int pipe_num;
3616 
3617 	/*
3618 	 * before cleaning up any memory, ensure irq &
3619 	 * bottom half contexts will not be re-entered
3620 	 */
3621 	hif_disable_isr(&scn->osc);
3622 	hif_destroy_oom_work(scn);
3623 	scn->hif_init_done = false;
3624 
3625 	/*
3626 	 * At this point, asynchronous threads are stopped,
3627 	 * The Target should not DMA nor interrupt, Host code may
3628 	 * not initiate anything more.  So we just need to clean
3629 	 * up Host-side state.
3630 	 */
3631 
3632 	if (scn->athdiag_procfs_inited) {
3633 		athdiag_procfs_remove();
3634 		scn->athdiag_procfs_inited = false;
3635 	}
3636 
3637 	hif_buffer_cleanup(hif_state);
3638 
3639 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
3640 		struct HIF_CE_pipe_info *pipe_info;
3641 		struct CE_attr attr;
3642 		struct CE_handle *ce_diag = hif_state->ce_diag;
3643 
3644 		pipe_info = &hif_state->pipe_info[pipe_num];
3645 		if (pipe_info->ce_hdl) {
3646 			if (pipe_info->ce_hdl != ce_diag &&
3647 			    hif_state->started) {
3648 				attr = hif_state->host_ce_config[pipe_num];
3649 				if (attr.src_nentries)
3650 					qdf_spinlock_destroy(&pipe_info->
3651 							completion_freeq_lock);
3652 			}
3653 			ce_fini(pipe_info->ce_hdl);
3654 			pipe_info->ce_hdl = NULL;
3655 			pipe_info->buf_sz = 0;
3656 			qdf_spinlock_destroy(&pipe_info->recv_bufs_needed_lock);
3657 		}
3658 	}
3659 
3660 	if (hif_state->sleep_timer_init) {
3661 		qdf_timer_stop(&hif_state->sleep_timer);
3662 		qdf_timer_free(&hif_state->sleep_timer);
3663 		hif_state->sleep_timer_init = false;
3664 	}
3665 
3666 	hif_state->started = false;
3667 }
3668 
3669 static void hif_get_shadow_reg_cfg(struct hif_softc *scn,
3670 				   struct shadow_reg_cfg
3671 				   **target_shadow_reg_cfg_ret,
3672 				   uint32_t *shadow_cfg_sz_ret)
3673 {
3674 	if (target_shadow_reg_cfg_ret)
3675 		*target_shadow_reg_cfg_ret = target_shadow_reg_cfg;
3676 	if (shadow_cfg_sz_ret)
3677 		*shadow_cfg_sz_ret = shadow_cfg_sz;
3678 }
3679 
3680 /**
3681  * hif_get_target_ce_config() - get copy engine configuration
3682  * @scn: HIF context
3683  * @target_ce_config_ret: basic copy engine configuration
3684  * @target_ce_config_sz_ret: size of the basic configuration in bytes
3685  * @target_service_to_ce_map_ret: service mapping for the copy engines
3686  * @target_service_to_ce_map_sz_ret: size of the mapping in bytes
3687  * @target_shadow_reg_cfg_ret: shadow register configuration
3688  * @shadow_cfg_sz_ret: size of the shadow register configuration in bytes
3689  *
3690  * providing accessor to these values outside of this file.
3691  * currently these are stored in static pointers to const sections.
3692  * there are multiple configurations that are selected from at compile time.
3693  * Runtime selection would need to consider mode, target type and bus type.
3694  *
3695  * Return: return by parameter.
3696  */
3697 void hif_get_target_ce_config(struct hif_softc *scn,
3698 		struct CE_pipe_config **target_ce_config_ret,
3699 		uint32_t *target_ce_config_sz_ret,
3700 		struct service_to_pipe **target_service_to_ce_map_ret,
3701 		uint32_t *target_service_to_ce_map_sz_ret,
3702 		struct shadow_reg_cfg **target_shadow_reg_cfg_ret,
3703 		uint32_t *shadow_cfg_sz_ret)
3704 {
3705 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3706 
3707 	*target_ce_config_ret = hif_state->target_ce_config;
3708 	*target_ce_config_sz_ret = hif_state->target_ce_config_sz;
3709 
3710 	hif_select_service_to_pipe_map(scn, target_service_to_ce_map_ret,
3711 				       target_service_to_ce_map_sz_ret);
3712 	hif_get_shadow_reg_cfg(scn, target_shadow_reg_cfg_ret,
3713 			       shadow_cfg_sz_ret);
3714 }
3715 
3716 #ifdef CONFIG_SHADOW_V3
3717 static void hif_print_hal_shadow_register_cfg(struct pld_wlan_enable_cfg *cfg)
3718 {
3719 	int i;
3720 
3721 	hif_err("v3: num_config %d", cfg->num_shadow_reg_v3_cfg);
3722 
3723 	for (i = 0; i < cfg->num_shadow_reg_v3_cfg; i++) {
3724 		hif_err("i %d, val %x", i, cfg->shadow_reg_v3_cfg[i].addr);
3725 	}
3726 }
3727 
3728 #elif defined(CONFIG_SHADOW_V2)
3729 static void hif_print_hal_shadow_register_cfg(struct pld_wlan_enable_cfg *cfg)
3730 {
3731 	int i;
3732 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
3733 		  "%s: num_config %d", __func__, cfg->num_shadow_reg_v2_cfg);
3734 
3735 	for (i = 0; i < cfg->num_shadow_reg_v2_cfg; i++) {
3736 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
3737 		     "%s: i %d, val %x", __func__, i,
3738 		     cfg->shadow_reg_v2_cfg[i].addr);
3739 	}
3740 }
3741 
3742 #else
3743 static void hif_print_hal_shadow_register_cfg(struct pld_wlan_enable_cfg *cfg)
3744 {
3745 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
3746 		  "%s: CONFIG_SHADOW V2/V3 not defined", __func__);
3747 }
3748 #endif
3749 
3750 #ifdef ADRASTEA_RRI_ON_DDR
3751 /**
3752  * hif_get_src_ring_read_index(): Called to get the SRRI
3753  *
3754  * @scn: hif_softc pointer
3755  * @CE_ctrl_addr: base address of the CE whose RRI is to be read
3756  *
3757  * This function returns the SRRI to the caller. For CEs that
3758  * dont have interrupts enabled, we look at the DDR based SRRI
3759  *
3760  * Return: SRRI
3761  */
3762 inline unsigned int hif_get_src_ring_read_index(struct hif_softc *scn,
3763 		uint32_t CE_ctrl_addr)
3764 {
3765 	struct CE_attr attr;
3766 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3767 
3768 	attr = hif_state->host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)];
3769 	if (attr.flags & CE_ATTR_DISABLE_INTR) {
3770 		return CE_SRC_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr);
3771 	} else {
3772 		if (TARGET_REGISTER_ACCESS_ALLOWED(scn))
3773 			return A_TARGET_READ(scn,
3774 					(CE_ctrl_addr) + CURRENT_SRRI_ADDRESS);
3775 		else
3776 			return CE_SRC_RING_READ_IDX_GET_FROM_DDR(scn,
3777 					CE_ctrl_addr);
3778 	}
3779 }
3780 
3781 /**
3782  * hif_get_dst_ring_read_index(): Called to get the DRRI
3783  *
3784  * @scn: hif_softc pointer
3785  * @CE_ctrl_addr: base address of the CE whose RRI is to be read
3786  *
3787  * This function returns the DRRI to the caller. For CEs that
3788  * dont have interrupts enabled, we look at the DDR based DRRI
3789  *
3790  * Return: DRRI
3791  */
3792 inline unsigned int hif_get_dst_ring_read_index(struct hif_softc *scn,
3793 		uint32_t CE_ctrl_addr)
3794 {
3795 	struct CE_attr attr;
3796 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
3797 
3798 	attr = hif_state->host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)];
3799 
3800 	if (attr.flags & CE_ATTR_DISABLE_INTR) {
3801 		return CE_DEST_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr);
3802 	} else {
3803 		if (TARGET_REGISTER_ACCESS_ALLOWED(scn))
3804 			return A_TARGET_READ(scn,
3805 					(CE_ctrl_addr) + CURRENT_DRRI_ADDRESS);
3806 		else
3807 			return CE_DEST_RING_READ_IDX_GET_FROM_DDR(scn,
3808 					CE_ctrl_addr);
3809 	}
3810 }
3811 
3812 /**
3813  * hif_alloc_rri_on_ddr() - Allocate memory for rri on ddr
3814  * @scn: hif_softc pointer
3815  *
3816  * Return: qdf status
3817  */
3818 static inline QDF_STATUS hif_alloc_rri_on_ddr(struct hif_softc *scn)
3819 {
3820 	qdf_dma_addr_t paddr_rri_on_ddr = 0;
3821 
3822 	scn->vaddr_rri_on_ddr =
3823 		(uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev,
3824 		scn->qdf_dev->dev, (CE_COUNT * sizeof(uint32_t)),
3825 		&paddr_rri_on_ddr);
3826 
3827 	if (!scn->vaddr_rri_on_ddr) {
3828 		hif_err("dmaable page alloc fail");
3829 		return QDF_STATUS_E_NOMEM;
3830 	}
3831 
3832 	scn->paddr_rri_on_ddr = paddr_rri_on_ddr;
3833 
3834 	qdf_mem_zero(scn->vaddr_rri_on_ddr, CE_COUNT * sizeof(uint32_t));
3835 
3836 	return QDF_STATUS_SUCCESS;
3837 }
3838 #endif
3839 
3840 #if (!defined(QCN7605_SUPPORT)) && defined(ADRASTEA_RRI_ON_DDR)
3841 /**
3842  * hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism
3843  *
3844  * @scn: hif_softc pointer
3845  *
3846  * This function allocates non cached memory on ddr and sends
3847  * the physical address of this memory to the CE hardware. The
3848  * hardware updates the RRI on this particular location.
3849  *
3850  * Return: None
3851  */
3852 static inline void hif_config_rri_on_ddr(struct hif_softc *scn)
3853 {
3854 	unsigned int i;
3855 	uint32_t high_paddr, low_paddr;
3856 
3857 	if (hif_alloc_rri_on_ddr(scn) != QDF_STATUS_SUCCESS)
3858 		return;
3859 
3860 	low_paddr  = BITS0_TO_31(scn->paddr_rri_on_ddr);
3861 	high_paddr = BITS32_TO_35(scn->paddr_rri_on_ddr);
3862 
3863 	hif_debug("using srri and drri from DDR");
3864 
3865 	WRITE_CE_DDR_ADDRESS_FOR_RRI_LOW(scn, low_paddr);
3866 	WRITE_CE_DDR_ADDRESS_FOR_RRI_HIGH(scn, high_paddr);
3867 
3868 	for (i = 0; i < CE_COUNT; i++)
3869 		CE_IDX_UPD_EN_SET(scn, CE_BASE_ADDRESS(i));
3870 }
3871 #else
3872 /**
3873  * hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism
3874  *
3875  * @scn: hif_softc pointer
3876  *
3877  * This is a dummy implementation for platforms that don't
3878  * support this functionality.
3879  *
3880  * Return: None
3881  */
3882 static inline void hif_config_rri_on_ddr(struct hif_softc *scn)
3883 {
3884 }
3885 #endif
3886 
3887 /**
3888  * hif_update_rri_over_ddr_config() - update rri_over_ddr config for
3889  *                                    QMI command
3890  * @scn: hif context
3891  * @cfg: wlan enable config
3892  *
3893  * In case of Genoa, rri_over_ddr memory configuration is passed
3894  * to firmware through QMI configure command.
3895  */
3896 #if defined(QCN7605_SUPPORT) && defined(ADRASTEA_RRI_ON_DDR)
3897 static void hif_update_rri_over_ddr_config(struct hif_softc *scn,
3898 					   struct pld_wlan_enable_cfg *cfg)
3899 {
3900 	if (hif_alloc_rri_on_ddr(scn) != QDF_STATUS_SUCCESS)
3901 		return;
3902 
3903 	cfg->rri_over_ddr_cfg_valid = true;
3904 	cfg->rri_over_ddr_cfg.base_addr_low =
3905 		 BITS0_TO_31(scn->paddr_rri_on_ddr);
3906 	cfg->rri_over_ddr_cfg.base_addr_high =
3907 		 BITS32_TO_35(scn->paddr_rri_on_ddr);
3908 }
3909 #else
3910 static void hif_update_rri_over_ddr_config(struct hif_softc *scn,
3911 					   struct pld_wlan_enable_cfg *cfg)
3912 {
3913 }
3914 #endif
3915 
3916 /**
3917  * hif_wlan_enable(): call the platform driver to enable wlan
3918  * @scn: HIF Context
3919  *
3920  * This function passes the con_mode and CE configuration to
3921  * platform driver to enable wlan.
3922  *
3923  * Return: linux error code
3924  */
3925 int hif_wlan_enable(struct hif_softc *scn)
3926 {
3927 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
3928 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
3929 	struct pld_wlan_enable_cfg cfg = { 0 };
3930 	enum pld_driver_mode mode;
3931 	uint32_t con_mode = hif_get_conparam(scn);
3932 
3933 	hif_get_target_ce_config(scn,
3934 			(struct CE_pipe_config **)&cfg.ce_tgt_cfg,
3935 			&cfg.num_ce_tgt_cfg,
3936 			(struct service_to_pipe **)&cfg.ce_svc_cfg,
3937 			&cfg.num_ce_svc_pipe_cfg,
3938 			(struct shadow_reg_cfg **)&cfg.shadow_reg_cfg,
3939 			&cfg.num_shadow_reg_cfg);
3940 
3941 	/* translate from structure size to array size */
3942 	cfg.num_ce_tgt_cfg /= sizeof(struct CE_pipe_config);
3943 	cfg.num_ce_svc_pipe_cfg /= sizeof(struct service_to_pipe);
3944 	cfg.num_shadow_reg_cfg /= sizeof(struct shadow_reg_cfg);
3945 
3946 	switch (tgt_info->target_type) {
3947 	case TARGET_TYPE_KIWI:
3948 	case TARGET_TYPE_MANGO:
3949 		hif_prepare_hal_shadow_reg_cfg_v3(scn, &cfg);
3950 		break;
3951 	default:
3952 		hif_prepare_hal_shadow_register_cfg(scn,
3953 						    &cfg.shadow_reg_v2_cfg,
3954 						    &cfg.num_shadow_reg_v2_cfg);
3955 		break;
3956 	}
3957 
3958 	hif_print_hal_shadow_register_cfg(&cfg);
3959 
3960 	hif_update_rri_over_ddr_config(scn, &cfg);
3961 
3962 	if (QDF_GLOBAL_FTM_MODE == con_mode)
3963 		mode = PLD_FTM;
3964 	else if (QDF_GLOBAL_COLDBOOT_CALIB_MODE == con_mode)
3965 		mode = PLD_COLDBOOT_CALIBRATION;
3966 	else if (QDF_GLOBAL_FTM_COLDBOOT_CALIB_MODE == con_mode)
3967 		mode = PLD_FTM_COLDBOOT_CALIBRATION;
3968 	else if (QDF_IS_EPPING_ENABLED(con_mode))
3969 		mode = PLD_EPPING;
3970 	else
3971 		mode = PLD_MISSION;
3972 
3973 	if (BYPASS_QMI)
3974 		return 0;
3975 	else
3976 		return pld_wlan_enable(scn->qdf_dev->dev, &cfg, mode);
3977 }
3978 
3979 #ifdef WLAN_FEATURE_EPPING
3980 
3981 #define CE_EPPING_USES_IRQ true
3982 
3983 void hif_ce_prepare_epping_config(struct hif_softc *scn,
3984 				  struct HIF_CE_state *hif_state)
3985 {
3986 	if (CE_EPPING_USES_IRQ)
3987 		hif_state->host_ce_config = host_ce_config_wlan_epping_irq;
3988 	else
3989 		hif_state->host_ce_config = host_ce_config_wlan_epping_poll;
3990 	hif_state->target_ce_config = target_ce_config_wlan_epping;
3991 	hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan_epping);
3992 	target_shadow_reg_cfg = target_shadow_reg_cfg_epping;
3993 	shadow_cfg_sz = sizeof(target_shadow_reg_cfg_epping);
3994 	scn->ce_count = EPPING_HOST_CE_COUNT;
3995 }
3996 #endif
3997 
3998 #ifdef QCN7605_SUPPORT
3999 static inline
4000 void hif_set_ce_config_qcn7605(struct hif_softc *scn,
4001 			       struct HIF_CE_state *hif_state)
4002 {
4003 	hif_state->host_ce_config = host_ce_config_wlan_qcn7605;
4004 	hif_state->target_ce_config = target_ce_config_wlan_qcn7605;
4005 	hif_state->target_ce_config_sz =
4006 				 sizeof(target_ce_config_wlan_qcn7605);
4007 	target_shadow_reg_cfg = target_shadow_reg_cfg_map_qcn7605;
4008 	shadow_cfg_sz = sizeof(target_shadow_reg_cfg_map_qcn7605);
4009 	scn->ce_count = QCN7605_CE_COUNT;
4010 }
4011 #else
4012 static inline
4013 void hif_set_ce_config_qcn7605(struct hif_softc *scn,
4014 			       struct HIF_CE_state *hif_state)
4015 {
4016 	hif_err("QCN7605 not supported");
4017 }
4018 #endif
4019 
4020 #ifdef CE_SVC_CMN_INIT
4021 #ifdef QCA_WIFI_SUPPORT_SRNG
4022 static inline void hif_ce_service_init(void)
4023 {
4024 	ce_service_srng_init();
4025 }
4026 #else
4027 static inline void hif_ce_service_init(void)
4028 {
4029 	ce_service_legacy_init();
4030 }
4031 #endif
4032 #else
4033 static inline void hif_ce_service_init(void)
4034 {
4035 }
4036 #endif
4037 
4038 #ifdef FEATURE_DIRECT_LINK
4039 /**
4040  * hif_ce_select_config_kiwi() - Select the host and target CE
4041  *  configuration for Kiwi
4042  * @hif_state: HIF CE context
4043  *
4044  * Return: None
4045  */
4046 static inline
4047 void hif_ce_select_config_kiwi(struct HIF_CE_state *hif_state)
4048 {
4049 	struct hif_softc *hif_ctx = HIF_GET_SOFTC(hif_state);
4050 
4051 	if (pld_is_direct_link_supported(hif_ctx->qdf_dev->dev)) {
4052 		hif_state->host_ce_config =
4053 				host_ce_config_wlan_kiwi_direct_link;
4054 		hif_state->target_ce_config =
4055 				target_ce_config_wlan_kiwi_direct_link;
4056 		hif_state->target_ce_config_sz =
4057 				sizeof(target_ce_config_wlan_kiwi_direct_link);
4058 	} else {
4059 		hif_state->host_ce_config = host_ce_config_wlan_kiwi;
4060 		hif_state->target_ce_config = target_ce_config_wlan_kiwi;
4061 		hif_state->target_ce_config_sz =
4062 				sizeof(target_ce_config_wlan_kiwi);
4063 	}
4064 }
4065 #else
4066 static inline
4067 void hif_ce_select_config_kiwi(struct HIF_CE_state *hif_state)
4068 {
4069 	hif_state->host_ce_config = host_ce_config_wlan_kiwi;
4070 	hif_state->target_ce_config = target_ce_config_wlan_kiwi;
4071 	hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan_kiwi);
4072 }
4073 #endif
4074 
4075 /**
4076  * hif_ce_prepare_config() - load the correct static tables.
4077  * @scn: hif context
4078  *
4079  * Epping uses different static attribute tables than mission mode.
4080  */
4081 void hif_ce_prepare_config(struct hif_softc *scn)
4082 {
4083 	uint32_t mode = hif_get_conparam(scn);
4084 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
4085 	struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
4086 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4087 	int ret;
4088 	int msi_data_count = 0;
4089 	int msi_data_start = 0;
4090 	int msi_irq_start = 0;
4091 
4092 	hif_ce_service_init();
4093 	hif_state->ce_services = ce_services_attach(scn);
4094 
4095 	ret = pld_get_user_msi_assignment(scn->qdf_dev->dev, "CE",
4096 					  &msi_data_count, &msi_data_start,
4097 					  &msi_irq_start);
4098 
4099 	scn->ce_count = HOST_CE_COUNT;
4100 	scn->int_assignment = &ce_int_context[msi_data_count];
4101 	scn->free_irq_done = false;
4102 	/* if epping is enabled we need to use the epping configuration. */
4103 	if (QDF_IS_EPPING_ENABLED(mode)) {
4104 		hif_ce_prepare_epping_config(scn, hif_state);
4105 		return;
4106 	}
4107 
4108 	switch (tgt_info->target_type) {
4109 	default:
4110 		hif_state->host_ce_config = host_ce_config_wlan;
4111 		hif_state->target_ce_config = target_ce_config_wlan;
4112 		hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan);
4113 		break;
4114 	case TARGET_TYPE_QCN7605:
4115 		hif_set_ce_config_qcn7605(scn, hif_state);
4116 		break;
4117 	case TARGET_TYPE_AR900B:
4118 	case TARGET_TYPE_QCA9984:
4119 	case TARGET_TYPE_QCA9888:
4120 		if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_NO_PKTLOG_CFG)) {
4121 			hif_state->host_ce_config =
4122 				host_lowdesc_ce_cfg_wlan_ar900b_nopktlog;
4123 		} else if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_CFG)) {
4124 			hif_state->host_ce_config =
4125 				host_lowdesc_ce_cfg_wlan_ar900b;
4126 		} else {
4127 			hif_state->host_ce_config = host_ce_config_wlan_ar900b;
4128 		}
4129 
4130 		hif_state->target_ce_config = target_ce_config_wlan_ar900b;
4131 		hif_state->target_ce_config_sz =
4132 				sizeof(target_ce_config_wlan_ar900b);
4133 
4134 		break;
4135 
4136 	case TARGET_TYPE_AR9888:
4137 	case TARGET_TYPE_AR9888V2:
4138 		if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_CFG)) {
4139 			hif_state->host_ce_config = host_lowdesc_ce_cfg_wlan_ar9888;
4140 		} else {
4141 			hif_state->host_ce_config = host_ce_config_wlan_ar9888;
4142 		}
4143 
4144 		hif_state->target_ce_config = target_ce_config_wlan_ar9888;
4145 		hif_state->target_ce_config_sz =
4146 					sizeof(target_ce_config_wlan_ar9888);
4147 
4148 		break;
4149 
4150 	case TARGET_TYPE_QCA8074:
4151 	case TARGET_TYPE_QCA8074V2:
4152 	case TARGET_TYPE_QCA6018:
4153 		if (scn->bus_type == QDF_BUS_TYPE_PCI) {
4154 			hif_state->host_ce_config =
4155 					host_ce_config_wlan_qca8074_pci;
4156 			hif_state->target_ce_config =
4157 				target_ce_config_wlan_qca8074_pci;
4158 			hif_state->target_ce_config_sz =
4159 				sizeof(target_ce_config_wlan_qca8074_pci);
4160 		} else {
4161 			hif_state->host_ce_config = host_ce_config_wlan_qca8074;
4162 			hif_state->target_ce_config =
4163 					target_ce_config_wlan_qca8074;
4164 			hif_state->target_ce_config_sz =
4165 				sizeof(target_ce_config_wlan_qca8074);
4166 		}
4167 		break;
4168 	case TARGET_TYPE_QCA6290:
4169 		hif_state->host_ce_config = host_ce_config_wlan_qca6290;
4170 		hif_state->target_ce_config = target_ce_config_wlan_qca6290;
4171 		hif_state->target_ce_config_sz =
4172 					sizeof(target_ce_config_wlan_qca6290);
4173 
4174 		scn->ce_count = QCA_6290_CE_COUNT;
4175 		break;
4176 	case TARGET_TYPE_QCN9000:
4177 		hif_state->host_ce_config = host_ce_config_wlan_qcn9000;
4178 		hif_state->target_ce_config = target_ce_config_wlan_qcn9000;
4179 		hif_state->target_ce_config_sz =
4180 					sizeof(target_ce_config_wlan_qcn9000);
4181 		scn->ce_count = QCN_9000_CE_COUNT;
4182 		scn->ini_cfg.disable_wake_irq = 1;
4183 		break;
4184 	case TARGET_TYPE_QCN9224:
4185 		hif_set_ce_config_qcn9224(scn, hif_state);
4186 		break;
4187 	case TARGET_TYPE_QCA5332:
4188 		hif_state->host_ce_config = host_ce_config_wlan_qca5332;
4189 		hif_state->target_ce_config = target_ce_config_wlan_qca5332;
4190 		hif_state->target_ce_config_sz =
4191 					 sizeof(target_ce_config_wlan_qca5332);
4192 		scn->ce_count = QCA_5332_CE_COUNT;
4193 		break;
4194 	case TARGET_TYPE_QCN6122:
4195 		hif_state->host_ce_config = host_ce_config_wlan_qcn6122;
4196 		hif_state->target_ce_config = target_ce_config_wlan_qcn6122;
4197 		hif_state->target_ce_config_sz =
4198 					sizeof(target_ce_config_wlan_qcn6122);
4199 		scn->ce_count = QCN_6122_CE_COUNT;
4200 		scn->ini_cfg.disable_wake_irq = 1;
4201 		break;
4202 	case TARGET_TYPE_QCN9160:
4203 		hif_state->host_ce_config = host_ce_config_wlan_qcn9160;
4204 		hif_state->target_ce_config = target_ce_config_wlan_qcn9160;
4205 		hif_state->target_ce_config_sz =
4206 					sizeof(target_ce_config_wlan_qcn9160);
4207 		scn->ce_count = QCN_9160_CE_COUNT;
4208 		scn->ini_cfg.disable_wake_irq = 1;
4209 		break;
4210 	case TARGET_TYPE_QCA5018:
4211 		hif_state->host_ce_config = host_ce_config_wlan_qca5018;
4212 		hif_state->target_ce_config = target_ce_config_wlan_qca5018;
4213 		hif_state->target_ce_config_sz =
4214 					sizeof(target_ce_config_wlan_qca5018);
4215 		scn->ce_count = QCA_5018_CE_COUNT;
4216 		break;
4217 	case TARGET_TYPE_QCA9574:
4218 		hif_state->host_ce_config = host_ce_config_wlan_qca9574;
4219 		hif_state->target_ce_config = target_ce_config_wlan_qca9574;
4220 		hif_state->target_ce_config_sz =
4221 					sizeof(target_ce_config_wlan_qca9574);
4222 		break;
4223 	case TARGET_TYPE_QCA6390:
4224 		hif_state->host_ce_config = host_ce_config_wlan_qca6390;
4225 		hif_state->target_ce_config = target_ce_config_wlan_qca6390;
4226 		hif_state->target_ce_config_sz =
4227 					sizeof(target_ce_config_wlan_qca6390);
4228 
4229 		scn->ce_count = QCA_6390_CE_COUNT;
4230 		break;
4231 	case TARGET_TYPE_QCA6490:
4232 		hif_state->host_ce_config = host_ce_config_wlan_qca6490;
4233 		hif_state->target_ce_config = target_ce_config_wlan_qca6490;
4234 		hif_state->target_ce_config_sz =
4235 					sizeof(target_ce_config_wlan_qca6490);
4236 
4237 		scn->ce_count = QCA_6490_CE_COUNT;
4238 		break;
4239 	case TARGET_TYPE_QCA6750:
4240 		hif_state->host_ce_config = host_ce_config_wlan_qca6750;
4241 		hif_state->target_ce_config = target_ce_config_wlan_qca6750;
4242 		hif_state->target_ce_config_sz =
4243 					sizeof(target_ce_config_wlan_qca6750);
4244 
4245 		scn->ce_count = QCA_6750_CE_COUNT;
4246 		break;
4247 	case TARGET_TYPE_KIWI:
4248 	case TARGET_TYPE_MANGO:
4249 		hif_ce_select_config_kiwi(hif_state);
4250 		scn->ce_count = KIWI_CE_COUNT;
4251 		break;
4252 	case TARGET_TYPE_ADRASTEA:
4253 		if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_NO_PKTLOG_CFG)) {
4254 			hif_state->host_ce_config =
4255 				host_lowdesc_ce_config_wlan_adrastea_nopktlog;
4256 			hif_state->target_ce_config =
4257 			       target_lowdesc_ce_config_wlan_adrastea_nopktlog;
4258 			hif_state->target_ce_config_sz =
4259 			sizeof(target_lowdesc_ce_config_wlan_adrastea_nopktlog);
4260 		} else {
4261 			hif_state->host_ce_config =
4262 				host_ce_config_wlan_adrastea;
4263 			hif_state->target_ce_config =
4264 					target_ce_config_wlan_adrastea;
4265 			hif_state->target_ce_config_sz =
4266 					sizeof(target_ce_config_wlan_adrastea);
4267 		}
4268 		break;
4269 
4270 	}
4271 	QDF_BUG(scn->ce_count <= CE_COUNT_MAX);
4272 }
4273 
4274 /**
4275  * hif_ce_open() - do ce specific allocations
4276  * @hif_sc: pointer to hif context
4277  *
4278  * return: 0 for success or QDF_STATUS_E_NOMEM
4279  */
4280 QDF_STATUS hif_ce_open(struct hif_softc *hif_sc)
4281 {
4282 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
4283 
4284 	qdf_spinlock_create(&hif_state->irq_reg_lock);
4285 	qdf_spinlock_create(&hif_state->keep_awake_lock);
4286 	return QDF_STATUS_SUCCESS;
4287 }
4288 
4289 /**
4290  * hif_ce_close() - do ce specific free
4291  * @hif_sc: pointer to hif context
4292  */
4293 void hif_ce_close(struct hif_softc *hif_sc)
4294 {
4295 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
4296 
4297 	qdf_spinlock_destroy(&hif_state->irq_reg_lock);
4298 	qdf_spinlock_destroy(&hif_state->keep_awake_lock);
4299 }
4300 
4301 /**
4302  * hif_unconfig_ce() - ensure resources from hif_config_ce are freed
4303  * @hif_sc: hif context
4304  *
4305  * uses state variables to support cleaning up when hif_config_ce fails.
4306  */
4307 void hif_unconfig_ce(struct hif_softc *hif_sc)
4308 {
4309 	int pipe_num;
4310 	struct HIF_CE_pipe_info *pipe_info;
4311 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
4312 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(hif_sc);
4313 
4314 	for (pipe_num = 0; pipe_num < hif_sc->ce_count; pipe_num++) {
4315 		pipe_info = &hif_state->pipe_info[pipe_num];
4316 		if (pipe_info->ce_hdl) {
4317 			ce_unregister_irq(hif_state, (1 << pipe_num));
4318 		}
4319 	}
4320 	deinit_tasklet_workers(hif_hdl);
4321 	for (pipe_num = 0; pipe_num < hif_sc->ce_count; pipe_num++) {
4322 		pipe_info = &hif_state->pipe_info[pipe_num];
4323 		if (pipe_info->ce_hdl) {
4324 			ce_fini(pipe_info->ce_hdl);
4325 			pipe_info->ce_hdl = NULL;
4326 			pipe_info->buf_sz = 0;
4327 			qdf_spinlock_destroy(&pipe_info->recv_bufs_needed_lock);
4328 		}
4329 	}
4330 	if (hif_sc->athdiag_procfs_inited) {
4331 		athdiag_procfs_remove();
4332 		hif_sc->athdiag_procfs_inited = false;
4333 	}
4334 }
4335 
4336 #ifdef CONFIG_BYPASS_QMI
4337 #ifdef QCN7605_SUPPORT
4338 /**
4339  * hif_post_static_buf_to_target() - post static buffer to WLAN FW
4340  * @scn: pointer to HIF structure
4341  *
4342  * WLAN FW needs 2MB memory from DDR when QMI is disabled.
4343  *
4344  * Return: void
4345  */
4346 static void hif_post_static_buf_to_target(struct hif_softc *scn)
4347 {
4348 	phys_addr_t target_pa;
4349 	struct ce_info *ce_info_ptr;
4350 	uint32_t msi_data_start;
4351 	uint32_t msi_data_count;
4352 	uint32_t msi_irq_start;
4353 	uint32_t i = 0;
4354 	int ret;
4355 
4356 	scn->vaddr_qmi_bypass =
4357 			(uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev,
4358 							     scn->qdf_dev->dev,
4359 							     FW_SHARED_MEM,
4360 							     &target_pa);
4361 	if (!scn->vaddr_qmi_bypass) {
4362 		hif_err("Memory allocation failed could not post target buf");
4363 		return;
4364 	}
4365 
4366 	scn->paddr_qmi_bypass = target_pa;
4367 
4368 	ce_info_ptr = (struct ce_info *)scn->vaddr_qmi_bypass;
4369 
4370 	if (scn->vaddr_rri_on_ddr) {
4371 		ce_info_ptr->rri_over_ddr_low_paddr  =
4372 			 BITS0_TO_31(scn->paddr_rri_on_ddr);
4373 		ce_info_ptr->rri_over_ddr_high_paddr =
4374 			 BITS32_TO_35(scn->paddr_rri_on_ddr);
4375 	}
4376 
4377 	ret = pld_get_user_msi_assignment(scn->qdf_dev->dev, "CE",
4378 					  &msi_data_count, &msi_data_start,
4379 					  &msi_irq_start);
4380 	if (ret) {
4381 		hif_err("Failed to get CE msi config");
4382 		return;
4383 	}
4384 
4385 	for (i = 0; i < CE_COUNT_MAX; i++) {
4386 		ce_info_ptr->cfg[i].ce_id = i;
4387 		ce_info_ptr->cfg[i].msi_vector =
4388 			 (i % msi_data_count) + msi_irq_start;
4389 	}
4390 
4391 	hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, target_pa);
4392 	hif_info("target va %pK target pa %pa", scn->vaddr_qmi_bypass,
4393 		 &target_pa);
4394 }
4395 
4396 /**
4397  * hif_cleanup_static_buf_to_target() -  clean up static buffer to WLAN FW
4398  * @scn: pointer to HIF structure
4399  *
4400  *
4401  * Return: void
4402  */
4403 void hif_cleanup_static_buf_to_target(struct hif_softc *scn)
4404 {
4405 	void *target_va = scn->vaddr_qmi_bypass;
4406 	phys_addr_t target_pa = scn->paddr_qmi_bypass;
4407 
4408 	qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
4409 				FW_SHARED_MEM, target_va,
4410 				target_pa, 0);
4411 	hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, 0);
4412 }
4413 #else
4414 /**
4415  * hif_post_static_buf_to_target() - post static buffer to WLAN FW
4416  * @scn: pointer to HIF structure
4417  *
4418  * WLAN FW needs 2MB memory from DDR when QMI is disabled.
4419  *
4420  * Return: void
4421  */
4422 static void hif_post_static_buf_to_target(struct hif_softc *scn)
4423 {
4424 	qdf_dma_addr_t target_pa;
4425 
4426 	scn->vaddr_qmi_bypass =
4427 			(uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev,
4428 							     scn->qdf_dev->dev,
4429 							     FW_SHARED_MEM,
4430 							     &target_pa);
4431 	if (!scn->vaddr_qmi_bypass) {
4432 		hif_err("Memory allocation failed could not post target buf");
4433 		return;
4434 	}
4435 
4436 	scn->paddr_qmi_bypass = target_pa;
4437 	hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, target_pa);
4438 }
4439 
4440 /**
4441  * hif_cleanup_static_buf_to_target() -  clean up static buffer to WLAN FW
4442  * @scn: pointer to HIF structure
4443  *
4444  *
4445  * Return: void
4446  */
4447 void hif_cleanup_static_buf_to_target(struct hif_softc *scn)
4448 {
4449 	void *target_va = scn->vaddr_qmi_bypass;
4450 	phys_addr_t target_pa = scn->paddr_qmi_bypass;
4451 
4452 	qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
4453 				FW_SHARED_MEM, target_va,
4454 				target_pa, 0);
4455 	hif_write32_mb(snc, scn->mem + BYPASS_QMI_TEMP_REGISTER, 0);
4456 }
4457 #endif
4458 
4459 #else
4460 static inline void hif_post_static_buf_to_target(struct hif_softc *scn)
4461 {
4462 }
4463 
4464 void hif_cleanup_static_buf_to_target(struct hif_softc *scn)
4465 {
4466 }
4467 #endif
4468 
4469 static int hif_srng_sleep_state_adjust(struct hif_softc *scn, bool sleep_ok,
4470 				bool wait_for_it)
4471 {
4472 	/* todo */
4473 	return 0;
4474 }
4475 
4476 int hif_config_ce_by_id(struct hif_softc *scn, int pipe_num)
4477 {
4478 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4479 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
4480 	struct HIF_CE_pipe_info *pipe_info;
4481 	struct CE_state *ce_state = NULL;
4482 	struct CE_attr *attr;
4483 	int rv = 0;
4484 
4485 	if (pipe_num >= CE_COUNT_MAX)
4486 		return -EINVAL;
4487 
4488 	pipe_info = &hif_state->pipe_info[pipe_num];
4489 	pipe_info->pipe_num = pipe_num;
4490 	pipe_info->HIF_CE_state = hif_state;
4491 	attr = &hif_state->host_ce_config[pipe_num];
4492 	ce_state = scn->ce_id_to_state[pipe_num];
4493 
4494 	if (ce_state) {
4495 		/* Do not reinitialize the CE if its done already */
4496 		rv = QDF_STATUS_E_BUSY;
4497 		goto err;
4498 	}
4499 
4500 	pipe_info->ce_hdl = ce_init(scn, pipe_num, attr);
4501 	ce_state = scn->ce_id_to_state[pipe_num];
4502 	if (!ce_state) {
4503 		A_TARGET_ACCESS_UNLIKELY(scn);
4504 		rv = QDF_STATUS_E_FAILURE;
4505 		goto err;
4506 	}
4507 	qdf_spinlock_create(&pipe_info->recv_bufs_needed_lock);
4508 	QDF_ASSERT(pipe_info->ce_hdl);
4509 	if (!pipe_info->ce_hdl) {
4510 		rv = QDF_STATUS_E_FAILURE;
4511 		A_TARGET_ACCESS_UNLIKELY(scn);
4512 		goto err;
4513 	}
4514 
4515 	ce_state->lro_data = qdf_lro_init();
4516 
4517 	if (attr->flags & CE_ATTR_DIAG) {
4518 		/* Reserve the ultimate CE for
4519 		 * Diagnostic Window support
4520 		 */
4521 		hif_state->ce_diag = pipe_info->ce_hdl;
4522 		goto skip;
4523 	}
4524 
4525 	if (hif_is_nss_wifi_enabled(scn) && ce_state &&
4526 	    (ce_state->htt_rx_data)) {
4527 		goto skip;
4528 	}
4529 
4530 	pipe_info->buf_sz = (qdf_size_t)(attr->src_sz_max);
4531 	if (attr->dest_nentries > 0) {
4532 		atomic_set(&pipe_info->recv_bufs_needed,
4533 			   init_buffer_count(attr->dest_nentries - 1));
4534 		/*SRNG based CE has one entry less */
4535 		if (ce_srng_based(scn))
4536 			atomic_dec(&pipe_info->recv_bufs_needed);
4537 	} else {
4538 		atomic_set(&pipe_info->recv_bufs_needed, 0);
4539 	}
4540 	ce_tasklet_init(hif_state, (1 << pipe_num));
4541 	ce_register_irq(hif_state, (1 << pipe_num));
4542 
4543 	init_tasklet_worker_by_ceid(hif_hdl, pipe_num);
4544 skip:
4545 	return 0;
4546 err:
4547 	return rv;
4548 }
4549 
4550 #if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
4551 static inline void hif_gen_ce_id_history_idx_mapping(struct hif_softc *scn)
4552 {
4553 	struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
4554 	uint8_t ce_id, hist_idx = 0;
4555 
4556 	for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
4557 		if (IS_CE_DEBUG_ONLY_FOR_CRIT_CE & (1 << ce_id))
4558 			ce_hist->ce_id_hist_map[ce_id] = hist_idx++;
4559 		else
4560 			ce_hist->ce_id_hist_map[ce_id] = -1;
4561 	}
4562 }
4563 #else
4564 static inline void hif_gen_ce_id_history_idx_mapping(struct hif_softc *scn)
4565 {
4566 }
4567 #endif
4568 
4569 /**
4570  * hif_config_ce() - configure copy engines
4571  * @scn: hif context
4572  *
4573  * Prepares fw, copy engine hardware and host sw according
4574  * to the attributes selected by hif_ce_prepare_config.
4575  *
4576  * also calls athdiag_procfs_init
4577  *
4578  * return: 0 for success nonzero for failure.
4579  */
4580 int hif_config_ce(struct hif_softc *scn)
4581 {
4582 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4583 	struct HIF_CE_pipe_info *pipe_info;
4584 	int pipe_num;
4585 
4586 #ifdef ADRASTEA_SHADOW_REGISTERS
4587 	int i;
4588 #endif
4589 	QDF_STATUS rv = QDF_STATUS_SUCCESS;
4590 
4591 	scn->notice_send = true;
4592 	scn->ce_service_max_rx_ind_flush = MSG_FLUSH_NUM;
4593 
4594 	hif_post_static_buf_to_target(scn);
4595 
4596 	hif_state->fw_indicator_address = FW_INDICATOR_ADDRESS;
4597 
4598 	hif_config_rri_on_ddr(scn);
4599 
4600 	if (ce_srng_based(scn))
4601 		scn->bus_ops.hif_target_sleep_state_adjust =
4602 			&hif_srng_sleep_state_adjust;
4603 
4604 	/* Initialise the CE debug history sysfs interface inputs ce_id and
4605 	 * index. Disable data storing
4606 	 */
4607 	reset_ce_debug_history(scn);
4608 	hif_gen_ce_id_history_idx_mapping(scn);
4609 
4610 	for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
4611 		struct CE_attr *attr;
4612 
4613 		pipe_info = &hif_state->pipe_info[pipe_num];
4614 		attr = &hif_state->host_ce_config[pipe_num];
4615 
4616 		if (attr->flags & CE_ATTR_INIT_ON_DEMAND)
4617 			continue;
4618 
4619 		if (hif_config_ce_by_id(scn, pipe_num))
4620 			goto err;
4621 	}
4622 
4623 	if (athdiag_procfs_init(scn) != 0) {
4624 		A_TARGET_ACCESS_UNLIKELY(scn);
4625 		goto err;
4626 	}
4627 	scn->athdiag_procfs_inited = true;
4628 
4629 	hif_debug("ce_init done");
4630 	hif_debug("%s: X, ret = %d", __func__, rv);
4631 
4632 #ifdef ADRASTEA_SHADOW_REGISTERS
4633 	hif_debug("Using Shadow Registers instead of CE Registers");
4634 	for (i = 0; i < NUM_SHADOW_REGISTERS; i++) {
4635 		hif_debug("Shadow Register%d is mapped to address %x",
4636 			  i,
4637 			  (A_TARGET_READ(scn, (SHADOW_ADDRESS(i))) << 2));
4638 	}
4639 #endif
4640 
4641 	return rv != QDF_STATUS_SUCCESS;
4642 err:
4643 	/* Failure, so clean up */
4644 	hif_unconfig_ce(scn);
4645 	hif_info("X, ret = %d", rv);
4646 	return QDF_STATUS_SUCCESS != QDF_STATUS_E_FAILURE;
4647 }
4648 
4649 /**
4650  * hif_config_ce_pktlog() - configure copy engines
4651  * @hif_hdl: hif context
4652  *
4653  * Prepares fw, copy engine hardware and host sw according
4654  * to the attributes selected by hif_ce_prepare_config.
4655  *
4656  * also calls athdiag_procfs_init
4657  *
4658  * return: 0 for success nonzero for failure.
4659  */
4660 int hif_config_ce_pktlog(struct hif_opaque_softc *hif_hdl)
4661 {
4662 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
4663 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4664 	int pipe_num;
4665 	QDF_STATUS qdf_status = QDF_STATUS_E_FAILURE;
4666 	struct HIF_CE_pipe_info *pipe_info;
4667 
4668 	if (!scn)
4669 		goto err;
4670 
4671 	if (scn->pktlog_init)
4672 		return QDF_STATUS_SUCCESS;
4673 
4674 	pipe_num =  hif_get_pktlog_ce_num(scn);
4675 	if (pipe_num < 0) {
4676 		qdf_status = QDF_STATUS_E_FAILURE;
4677 		goto err;
4678 	}
4679 
4680 	pipe_info = &hif_state->pipe_info[pipe_num];
4681 
4682 	qdf_status = hif_config_ce_by_id(scn, pipe_num);
4683 	/* CE Already initialized. Do not try to reinitialized again */
4684 	if (qdf_status == QDF_STATUS_E_BUSY)
4685 		return QDF_STATUS_SUCCESS;
4686 
4687 	qdf_status = hif_config_irq_by_ceid(scn, pipe_num);
4688 	if (qdf_status < 0)
4689 		goto err;
4690 
4691 	qdf_status = hif_completion_thread_startup_by_ceid(hif_state, pipe_num);
4692 	if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
4693 		hif_err("%s:failed to start hif thread", __func__);
4694 		goto err;
4695 	}
4696 
4697 	/* Post buffers for pktlog copy engine. */
4698 	qdf_status = hif_post_recv_buffers_for_pipe(pipe_info);
4699 	if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
4700 		/* cleanup is done in hif_ce_disable */
4701 		hif_err("%s:failed to post buffers", __func__);
4702 		return qdf_status;
4703 	}
4704 	scn->pktlog_init = true;
4705 	return qdf_status != QDF_STATUS_SUCCESS;
4706 
4707 err:
4708 	hif_debug("%s: X, ret = %d", __func__, qdf_status);
4709 	return QDF_STATUS_SUCCESS != QDF_STATUS_E_FAILURE;
4710 }
4711 
4712 #ifdef IPA_OFFLOAD
4713 /**
4714  * hif_ce_ipa_get_ce_resource() - get uc resource on hif
4715  * @scn: bus context
4716  * @ce_sr: copyengine source ring base physical address
4717  * @ce_sr_ring_size: copyengine source ring size
4718  * @ce_reg_paddr: copyengine register physical address
4719  *
4720  * IPA micro controller data path offload feature enabled,
4721  * HIF should release copy engine related resource information to IPA UC
4722  * IPA UC will access hardware resource with released information
4723  *
4724  * Return: None
4725  */
4726 void hif_ce_ipa_get_ce_resource(struct hif_softc *scn,
4727 			     qdf_shared_mem_t **ce_sr,
4728 			     uint32_t *ce_sr_ring_size,
4729 			     qdf_dma_addr_t *ce_reg_paddr)
4730 {
4731 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4732 	struct HIF_CE_pipe_info *pipe_info =
4733 		&(hif_state->pipe_info[HIF_PCI_IPA_UC_ASSIGNED_CE]);
4734 	struct CE_handle *ce_hdl = pipe_info->ce_hdl;
4735 
4736 	ce_ipa_get_resource(ce_hdl, ce_sr, ce_sr_ring_size,
4737 			    ce_reg_paddr);
4738 }
4739 #endif /* IPA_OFFLOAD */
4740 
4741 
4742 #ifdef ADRASTEA_SHADOW_REGISTERS
4743 
4744 /*
4745  * Current shadow register config
4746  *
4747  * -----------------------------------------------------------
4748  * Shadow Register      |     CE   |    src/dst write index
4749  * -----------------------------------------------------------
4750  *         0            |     0    |           src
4751  *         1     No Config - Doesn't point to anything
4752  *         2     No Config - Doesn't point to anything
4753  *         3            |     3    |           src
4754  *         4            |     4    |           src
4755  *         5            |     5    |           src
4756  *         6     No Config - Doesn't point to anything
4757  *         7            |     7    |           src
4758  *         8     No Config - Doesn't point to anything
4759  *         9     No Config - Doesn't point to anything
4760  *         10    No Config - Doesn't point to anything
4761  *         11    No Config - Doesn't point to anything
4762  * -----------------------------------------------------------
4763  *         12    No Config - Doesn't point to anything
4764  *         13           |     1    |           dst
4765  *         14           |     2    |           dst
4766  *         15    No Config - Doesn't point to anything
4767  *         16    No Config - Doesn't point to anything
4768  *         17    No Config - Doesn't point to anything
4769  *         18    No Config - Doesn't point to anything
4770  *         19           |     7    |           dst
4771  *         20           |     8    |           dst
4772  *         21    No Config - Doesn't point to anything
4773  *         22    No Config - Doesn't point to anything
4774  *         23    No Config - Doesn't point to anything
4775  * -----------------------------------------------------------
4776  *
4777  *
4778  * ToDo - Move shadow register config to following in the future
4779  * This helps free up a block of shadow registers towards the end.
4780  * Can be used for other purposes
4781  *
4782  * -----------------------------------------------------------
4783  * Shadow Register      |     CE   |    src/dst write index
4784  * -----------------------------------------------------------
4785  *      0            |     0    |           src
4786  *      1            |     3    |           src
4787  *      2            |     4    |           src
4788  *      3            |     5    |           src
4789  *      4            |     7    |           src
4790  * -----------------------------------------------------------
4791  *      5            |     1    |           dst
4792  *      6            |     2    |           dst
4793  *      7            |     7    |           dst
4794  *      8            |     8    |           dst
4795  * -----------------------------------------------------------
4796  *      9     No Config - Doesn't point to anything
4797  *      12    No Config - Doesn't point to anything
4798  *      13    No Config - Doesn't point to anything
4799  *      14    No Config - Doesn't point to anything
4800  *      15    No Config - Doesn't point to anything
4801  *      16    No Config - Doesn't point to anything
4802  *      17    No Config - Doesn't point to anything
4803  *      18    No Config - Doesn't point to anything
4804  *      19    No Config - Doesn't point to anything
4805  *      20    No Config - Doesn't point to anything
4806  *      21    No Config - Doesn't point to anything
4807  *      22    No Config - Doesn't point to anything
4808  *      23    No Config - Doesn't point to anything
4809  * -----------------------------------------------------------
4810 */
4811 #ifndef QCN7605_SUPPORT
4812 u32 shadow_sr_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
4813 {
4814 	u32 addr = 0;
4815 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
4816 
4817 	switch (ce) {
4818 	case 0:
4819 		addr = SHADOW_VALUE0;
4820 		break;
4821 	case 3:
4822 		addr = SHADOW_VALUE3;
4823 		break;
4824 	case 4:
4825 		addr = SHADOW_VALUE4;
4826 		break;
4827 	case 5:
4828 		addr = SHADOW_VALUE5;
4829 		break;
4830 	case 7:
4831 		addr = SHADOW_VALUE7;
4832 		break;
4833 	default:
4834 		hif_err("Invalid CE ctrl_addr (CE=%d)", ce);
4835 		QDF_ASSERT(0);
4836 	}
4837 	return addr;
4838 
4839 }
4840 
4841 u32 shadow_dst_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
4842 {
4843 	u32 addr = 0;
4844 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
4845 
4846 	switch (ce) {
4847 	case 1:
4848 		addr = SHADOW_VALUE13;
4849 		break;
4850 	case 2:
4851 		addr = SHADOW_VALUE14;
4852 		break;
4853 	case 5:
4854 		addr = SHADOW_VALUE17;
4855 		break;
4856 	case 7:
4857 		addr = SHADOW_VALUE19;
4858 		break;
4859 	case 8:
4860 		addr = SHADOW_VALUE20;
4861 		break;
4862 	case 9:
4863 		addr = SHADOW_VALUE21;
4864 		break;
4865 	case 10:
4866 		addr = SHADOW_VALUE22;
4867 		break;
4868 	case 11:
4869 		addr = SHADOW_VALUE23;
4870 		break;
4871 	default:
4872 		hif_err("Invalid CE ctrl_addr (CE=%d)", ce);
4873 		QDF_ASSERT(0);
4874 	}
4875 
4876 	return addr;
4877 
4878 }
4879 #else
4880 u32 shadow_sr_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
4881 {
4882 	u32 addr = 0;
4883 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
4884 
4885 	switch (ce) {
4886 	case 0:
4887 		addr = SHADOW_VALUE0;
4888 		break;
4889 	case 3:
4890 		addr = SHADOW_VALUE3;
4891 		break;
4892 	case 4:
4893 		addr = SHADOW_VALUE4;
4894 		break;
4895 	case 5:
4896 		addr = SHADOW_VALUE5;
4897 		break;
4898 	default:
4899 		hif_err("Invalid CE ctrl_addr (CE=%d)", ce);
4900 		QDF_ASSERT(0);
4901 	}
4902 	return addr;
4903 }
4904 
4905 u32 shadow_dst_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
4906 {
4907 	u32 addr = 0;
4908 	u32 ce = COPY_ENGINE_ID(ctrl_addr);
4909 
4910 	switch (ce) {
4911 	case 1:
4912 		addr = SHADOW_VALUE13;
4913 		break;
4914 	case 2:
4915 		addr = SHADOW_VALUE14;
4916 		break;
4917 	case 3:
4918 		addr = SHADOW_VALUE15;
4919 		break;
4920 	case 5:
4921 		addr = SHADOW_VALUE17;
4922 		break;
4923 	case 7:
4924 		addr = SHADOW_VALUE19;
4925 		break;
4926 	case 8:
4927 		addr = SHADOW_VALUE20;
4928 		break;
4929 	case 9:
4930 		addr = SHADOW_VALUE21;
4931 		break;
4932 	case 10:
4933 		addr = SHADOW_VALUE22;
4934 		break;
4935 	case 11:
4936 		addr = SHADOW_VALUE23;
4937 		break;
4938 	default:
4939 		hif_err("Invalid CE ctrl_addr (CE=%d)", ce);
4940 		QDF_ASSERT(0);
4941 	}
4942 
4943 	return addr;
4944 }
4945 #endif
4946 #endif
4947 
4948 #if defined(FEATURE_LRO)
4949 void *hif_ce_get_lro_ctx(struct hif_opaque_softc *hif_hdl, int ctx_id)
4950 {
4951 	struct CE_state *ce_state;
4952 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
4953 
4954 	ce_state = scn->ce_id_to_state[ctx_id];
4955 
4956 	return ce_state->lro_data;
4957 }
4958 #endif
4959 
4960 /**
4961  * hif_map_service_to_pipe() - returns  the ce ids pertaining to
4962  * this service
4963  * @hif_hdl: hif_softc pointer.
4964  * @svc_id: Service ID for which the mapping is needed.
4965  * @ul_pipe: address of the container in which ul pipe is returned.
4966  * @dl_pipe: address of the container in which dl pipe is returned.
4967  * @ul_is_polled: address of the container in which a bool
4968  *			indicating if the UL CE for this service
4969  *			is polled is returned.
4970  * @dl_is_polled: address of the container in which a bool
4971  *			indicating if the DL CE for this service
4972  *			is polled is returned.
4973  *
4974  * Return: Indicates whether the service has been found in the table.
4975  *         Upon return, ul_is_polled is updated only if ul_pipe is updated.
4976  *         There will be warning logs if either leg has not been updated
4977  *         because it missed the entry in the table (but this is not an err).
4978  */
4979 int hif_map_service_to_pipe(struct hif_opaque_softc *hif_hdl, uint16_t svc_id,
4980 			uint8_t *ul_pipe, uint8_t *dl_pipe, int *ul_is_polled,
4981 			int *dl_is_polled)
4982 {
4983 	int status = -EINVAL;
4984 	unsigned int i;
4985 	struct service_to_pipe element;
4986 	struct service_to_pipe *tgt_svc_map_to_use;
4987 	uint32_t sz_tgt_svc_map_to_use;
4988 	struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
4989 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
4990 	bool dl_updated = false;
4991 	bool ul_updated = false;
4992 
4993 	hif_select_service_to_pipe_map(scn, &tgt_svc_map_to_use,
4994 				       &sz_tgt_svc_map_to_use);
4995 
4996 	*dl_is_polled = 0;  /* polling for received messages not supported */
4997 
4998 	for (i = 0; i < (sz_tgt_svc_map_to_use/sizeof(element)); i++) {
4999 
5000 		memcpy(&element, &tgt_svc_map_to_use[i], sizeof(element));
5001 		if (element.service_id == svc_id) {
5002 			if (element.pipedir == PIPEDIR_OUT) {
5003 				*ul_pipe = element.pipenum;
5004 				*ul_is_polled =
5005 					(hif_state->host_ce_config[*ul_pipe].flags &
5006 					 CE_ATTR_DISABLE_INTR) != 0;
5007 				ul_updated = true;
5008 			} else if (element.pipedir == PIPEDIR_IN) {
5009 				*dl_pipe = element.pipenum;
5010 				dl_updated = true;
5011 			}
5012 			status = 0;
5013 		}
5014 	}
5015 	if (ul_updated == false)
5016 		hif_debug("ul pipe is NOT updated for service %d", svc_id);
5017 	if (dl_updated == false)
5018 		hif_debug("dl pipe is NOT updated for service %d", svc_id);
5019 
5020 	return status;
5021 }
5022 
5023 #ifdef SHADOW_REG_DEBUG
5024 inline uint32_t DEBUG_CE_SRC_RING_READ_IDX_GET(struct hif_softc *scn,
5025 		uint32_t CE_ctrl_addr)
5026 {
5027 	uint32_t read_from_hw, srri_from_ddr = 0;
5028 
5029 	read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_SRRI_ADDRESS);
5030 
5031 	srri_from_ddr = SRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr));
5032 
5033 	if (read_from_hw != srri_from_ddr) {
5034 		hif_err("read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x",
5035 		       srri_from_ddr, read_from_hw,
5036 		       CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr));
5037 		QDF_ASSERT(0);
5038 	}
5039 	return srri_from_ddr;
5040 }
5041 
5042 
5043 inline uint32_t DEBUG_CE_DEST_RING_READ_IDX_GET(struct hif_softc *scn,
5044 		uint32_t CE_ctrl_addr)
5045 {
5046 	uint32_t read_from_hw, drri_from_ddr = 0;
5047 
5048 	read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_DRRI_ADDRESS);
5049 
5050 	drri_from_ddr = DRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr));
5051 
5052 	if (read_from_hw != drri_from_ddr) {
5053 		hif_err("read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x",
5054 		       drri_from_ddr, read_from_hw,
5055 		       CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr));
5056 		QDF_ASSERT(0);
5057 	}
5058 	return drri_from_ddr;
5059 }
5060 
5061 #endif
5062 
5063 /**
5064  * hif_dump_ce_registers() - dump ce registers
5065  * @scn: hif_opaque_softc pointer.
5066  *
5067  * Output the copy engine registers
5068  *
5069  * Return: 0 for success or error code
5070  */
5071 int hif_dump_ce_registers(struct hif_softc *scn)
5072 {
5073 	struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
5074 	uint32_t ce_reg_address = CE0_BASE_ADDRESS;
5075 	uint32_t ce_reg_values[CE_USEFUL_SIZE >> 2];
5076 	uint32_t ce_reg_word_size = CE_USEFUL_SIZE >> 2;
5077 	uint16_t i;
5078 	QDF_STATUS status;
5079 
5080 	for (i = 0; i < scn->ce_count; i++, ce_reg_address += CE_OFFSET) {
5081 		if (!scn->ce_id_to_state[i]) {
5082 			hif_debug("CE%d not used", i);
5083 			continue;
5084 		}
5085 
5086 		status = hif_diag_read_mem(hif_hdl, ce_reg_address,
5087 					   (uint8_t *) &ce_reg_values[0],
5088 					   ce_reg_word_size * sizeof(uint32_t));
5089 
5090 		if (status != QDF_STATUS_SUCCESS) {
5091 			hif_err("Dumping CE register failed!");
5092 			return -EACCES;
5093 		}
5094 		hif_debug("CE%d=>", i);
5095 		qdf_trace_hex_dump(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_DEBUG,
5096 				   (uint8_t *) &ce_reg_values[0],
5097 				   ce_reg_word_size * sizeof(uint32_t));
5098 		qdf_print("ADDR:[0x%08X], SR_WR_INDEX:%d", (ce_reg_address
5099 				+ SR_WR_INDEX_ADDRESS),
5100 				ce_reg_values[SR_WR_INDEX_ADDRESS/4]);
5101 		qdf_print("ADDR:[0x%08X], CURRENT_SRRI:%d", (ce_reg_address
5102 				+ CURRENT_SRRI_ADDRESS),
5103 				ce_reg_values[CURRENT_SRRI_ADDRESS/4]);
5104 		qdf_print("ADDR:[0x%08X], DST_WR_INDEX:%d", (ce_reg_address
5105 				+ DST_WR_INDEX_ADDRESS),
5106 				ce_reg_values[DST_WR_INDEX_ADDRESS/4]);
5107 		qdf_print("ADDR:[0x%08X], CURRENT_DRRI:%d", (ce_reg_address
5108 				+ CURRENT_DRRI_ADDRESS),
5109 				ce_reg_values[CURRENT_DRRI_ADDRESS/4]);
5110 		qdf_print("---");
5111 	}
5112 	return 0;
5113 }
5114 qdf_export_symbol(hif_dump_ce_registers);
5115 #ifdef QCA_NSS_WIFI_OFFLOAD_SUPPORT
5116 struct hif_pipe_addl_info *hif_get_addl_pipe_info(struct hif_opaque_softc *osc,
5117 		struct hif_pipe_addl_info *hif_info, uint32_t pipe)
5118 {
5119 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
5120 	struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
5121 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(osc);
5122 	struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
5123 	struct CE_handle *ce_hdl = pipe_info->ce_hdl;
5124 	struct CE_state *ce_state = (struct CE_state *)ce_hdl;
5125 	struct CE_ring_state *src_ring = ce_state->src_ring;
5126 	struct CE_ring_state *dest_ring = ce_state->dest_ring;
5127 
5128 	if (src_ring) {
5129 		hif_info->ul_pipe.nentries = src_ring->nentries;
5130 		hif_info->ul_pipe.nentries_mask = src_ring->nentries_mask;
5131 		hif_info->ul_pipe.sw_index = src_ring->sw_index;
5132 		hif_info->ul_pipe.write_index = src_ring->write_index;
5133 		hif_info->ul_pipe.hw_index = src_ring->hw_index;
5134 		hif_info->ul_pipe.base_addr_CE_space =
5135 			src_ring->base_addr_CE_space;
5136 		hif_info->ul_pipe.base_addr_owner_space =
5137 			src_ring->base_addr_owner_space;
5138 	}
5139 
5140 
5141 	if (dest_ring) {
5142 		hif_info->dl_pipe.nentries = dest_ring->nentries;
5143 		hif_info->dl_pipe.nentries_mask = dest_ring->nentries_mask;
5144 		hif_info->dl_pipe.sw_index = dest_ring->sw_index;
5145 		hif_info->dl_pipe.write_index = dest_ring->write_index;
5146 		hif_info->dl_pipe.hw_index = dest_ring->hw_index;
5147 		hif_info->dl_pipe.base_addr_CE_space =
5148 			dest_ring->base_addr_CE_space;
5149 		hif_info->dl_pipe.base_addr_owner_space =
5150 			dest_ring->base_addr_owner_space;
5151 	}
5152 
5153 	hif_info->pci_mem = pci_resource_start(sc->pdev, 0);
5154 	hif_info->ctrl_addr = ce_state->ctrl_addr;
5155 
5156 	return hif_info;
5157 }
5158 qdf_export_symbol(hif_get_addl_pipe_info);
5159 
5160 uint32_t hif_set_nss_wifiol_mode(struct hif_opaque_softc *osc, uint32_t mode)
5161 {
5162 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
5163 
5164 	scn->nss_wifi_ol_mode = mode;
5165 	return 0;
5166 }
5167 qdf_export_symbol(hif_set_nss_wifiol_mode);
5168 #endif
5169 
5170 void hif_set_attribute(struct hif_opaque_softc *osc, uint8_t hif_attrib)
5171 {
5172 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
5173 	scn->hif_attribute = hif_attrib;
5174 }
5175 
5176 
5177 /* disable interrupts (only applicable for legacy copy engine currently */
5178 void hif_disable_interrupt(struct hif_opaque_softc *osc, uint32_t pipe_num)
5179 {
5180 	struct hif_softc *scn = HIF_GET_SOFTC(osc);
5181 	struct CE_state *CE_state = scn->ce_id_to_state[pipe_num];
5182 	uint32_t ctrl_addr = CE_state->ctrl_addr;
5183 
5184 	Q_TARGET_ACCESS_BEGIN(scn);
5185 	CE_COPY_COMPLETE_INTR_DISABLE(scn, ctrl_addr);
5186 	Q_TARGET_ACCESS_END(scn);
5187 }
5188 qdf_export_symbol(hif_disable_interrupt);
5189 
5190 /**
5191  * hif_fw_event_handler() - hif fw event handler
5192  * @hif_state: pointer to hif ce state structure
5193  *
5194  * Process fw events and raise HTC callback to process fw events.
5195  *
5196  * Return: none
5197  */
5198 static inline void hif_fw_event_handler(struct HIF_CE_state *hif_state)
5199 {
5200 	struct hif_msg_callbacks *msg_callbacks =
5201 		&hif_state->msg_callbacks_current;
5202 
5203 	if (!msg_callbacks->fwEventHandler)
5204 		return;
5205 
5206 	msg_callbacks->fwEventHandler(msg_callbacks->Context,
5207 			QDF_STATUS_E_FAILURE);
5208 }
5209 
5210 #ifndef QCA_WIFI_3_0
5211 /**
5212  * hif_fw_interrupt_handler() - FW interrupt handler
5213  * @irq: irq number
5214  * @arg: the user pointer
5215  *
5216  * Called from the PCI interrupt handler when a
5217  * firmware-generated interrupt to the Host.
5218  *
5219  * only registered for legacy ce devices
5220  *
5221  * Return: status of handled irq
5222  */
5223 irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
5224 {
5225 	struct hif_softc *scn = arg;
5226 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
5227 	uint32_t fw_indicator_address, fw_indicator;
5228 
5229 	if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
5230 		return ATH_ISR_NOSCHED;
5231 
5232 	fw_indicator_address = hif_state->fw_indicator_address;
5233 	/* For sudden unplug this will return ~0 */
5234 	fw_indicator = A_TARGET_READ(scn, fw_indicator_address);
5235 
5236 	if ((fw_indicator != ~0) && (fw_indicator & FW_IND_EVENT_PENDING)) {
5237 		/* ACK: clear Target-side pending event */
5238 		A_TARGET_WRITE(scn, fw_indicator_address,
5239 			       fw_indicator & ~FW_IND_EVENT_PENDING);
5240 		if (Q_TARGET_ACCESS_END(scn) < 0)
5241 			return ATH_ISR_SCHED;
5242 
5243 		if (hif_state->started) {
5244 			hif_fw_event_handler(hif_state);
5245 		} else {
5246 			/*
5247 			 * Probable Target failure before we're prepared
5248 			 * to handle it.  Generally unexpected.
5249 			 * fw_indicator used as bitmap, and defined as below:
5250 			 *     FW_IND_EVENT_PENDING    0x1
5251 			 *     FW_IND_INITIALIZED      0x2
5252 			 *     FW_IND_NEEDRECOVER      0x4
5253 			 */
5254 			AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
5255 				("%s: Early firmware event indicated 0x%x\n",
5256 				 __func__, fw_indicator));
5257 		}
5258 	} else {
5259 		if (Q_TARGET_ACCESS_END(scn) < 0)
5260 			return ATH_ISR_SCHED;
5261 	}
5262 
5263 	return ATH_ISR_SCHED;
5264 }
5265 #else
5266 irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
5267 {
5268 	return ATH_ISR_SCHED;
5269 }
5270 #endif /* #ifdef QCA_WIFI_3_0 */
5271 
5272 
5273 /**
5274  * hif_wlan_disable(): call the platform driver to disable wlan
5275  * @scn: HIF Context
5276  *
5277  * This function passes the con_mode to platform driver to disable
5278  * wlan.
5279  *
5280  * Return: void
5281  */
5282 void hif_wlan_disable(struct hif_softc *scn)
5283 {
5284 	enum pld_driver_mode mode;
5285 	uint32_t con_mode = hif_get_conparam(scn);
5286 
5287 	if (scn->target_status == TARGET_STATUS_RESET)
5288 		return;
5289 
5290 	if (QDF_GLOBAL_FTM_MODE == con_mode)
5291 		mode = PLD_FTM;
5292 	else if (QDF_IS_EPPING_ENABLED(con_mode))
5293 		mode = PLD_EPPING;
5294 	else
5295 		mode = PLD_MISSION;
5296 
5297 	pld_wlan_disable(scn->qdf_dev->dev, mode);
5298 }
5299 
5300 int hif_get_wake_ce_id(struct hif_softc *scn, uint8_t *ce_id)
5301 {
5302 	int status;
5303 	uint8_t ul_pipe, dl_pipe;
5304 	int ul_is_polled, dl_is_polled;
5305 
5306 	/* DL pipe for HTC_CTRL_RSVD_SVC should map to the wake CE */
5307 	status = hif_map_service_to_pipe(GET_HIF_OPAQUE_HDL(scn),
5308 					 HTC_CTRL_RSVD_SVC,
5309 					 &ul_pipe, &dl_pipe,
5310 					 &ul_is_polled, &dl_is_polled);
5311 	if (status) {
5312 		hif_err("Failed to map pipe: %d", status);
5313 		return status;
5314 	}
5315 
5316 	*ce_id = dl_pipe;
5317 
5318 	return 0;
5319 }
5320 
5321 int hif_get_fw_diag_ce_id(struct hif_softc *scn, uint8_t *ce_id)
5322 {
5323 	int status;
5324 	uint8_t ul_pipe, dl_pipe;
5325 	int ul_is_polled, dl_is_polled;
5326 
5327 	/* DL pipe for WMI_CONTROL_DIAG_SVC should map to the FW DIAG CE_ID */
5328 	status = hif_map_service_to_pipe(GET_HIF_OPAQUE_HDL(scn),
5329 					 WMI_CONTROL_DIAG_SVC,
5330 					 &ul_pipe, &dl_pipe,
5331 					 &ul_is_polled, &dl_is_polled);
5332 	if (status) {
5333 		hif_err("Failed to map pipe: %d", status);
5334 		return status;
5335 	}
5336 
5337 	*ce_id = dl_pipe;
5338 
5339 	return 0;
5340 }
5341 
5342 #ifdef HIF_CE_LOG_INFO
5343 /**
5344  * ce_get_index_info(): Get CE index info
5345  * @scn: HIF Context
5346  * @ce_state: CE opaque handle
5347  * @info: CE info
5348  *
5349  * Return: 0 for success and non zero for failure
5350  */
5351 static
5352 int ce_get_index_info(struct hif_softc *scn, void *ce_state,
5353 		      struct ce_index *info)
5354 {
5355 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
5356 
5357 	return hif_state->ce_services->ce_get_index_info(scn, ce_state, info);
5358 }
5359 
5360 void hif_log_ce_info(struct hif_softc *scn, uint8_t *data,
5361 		     unsigned int *offset)
5362 {
5363 	struct hang_event_info info = {0};
5364 	static uint32_t tracked_ce = BIT(CE_ID_1) | BIT(CE_ID_2) |
5365 		BIT(CE_ID_3) | BIT(CE_ID_4) | BIT(CE_ID_9) | BIT(CE_ID_10);
5366 	uint8_t curr_index = 0;
5367 	uint8_t i;
5368 	uint16_t size;
5369 
5370 	info.active_tasklet_count = qdf_atomic_read(&scn->active_tasklet_cnt);
5371 	info.active_grp_tasklet_cnt =
5372 				qdf_atomic_read(&scn->active_grp_tasklet_cnt);
5373 
5374 	for (i = 0; i < scn->ce_count; i++) {
5375 		if (!(tracked_ce & BIT(i)) || !scn->ce_id_to_state[i])
5376 			continue;
5377 
5378 		if (ce_get_index_info(scn, scn->ce_id_to_state[i],
5379 				      &info.ce_info[curr_index]))
5380 			continue;
5381 
5382 		curr_index++;
5383 	}
5384 
5385 	info.ce_count = curr_index;
5386 	size = sizeof(info) -
5387 		(CE_COUNT_MAX - info.ce_count) * sizeof(struct ce_index);
5388 
5389 	if (*offset + size > QDF_WLAN_HANG_FW_OFFSET)
5390 		return;
5391 
5392 	QDF_HANG_EVT_SET_HDR(&info.tlv_header, HANG_EVT_TAG_CE_INFO,
5393 			     size - QDF_HANG_EVENT_TLV_HDR_SIZE);
5394 
5395 	qdf_mem_copy(data + *offset, &info, size);
5396 	*offset = *offset + size;
5397 }
5398 
5399 #ifdef FEATURE_DIRECT_LINK
5400 QDF_STATUS
5401 hif_set_irq_config_by_ceid(struct hif_opaque_softc *scn, uint8_t ce_id,
5402 			   uint64_t addr, uint32_t data)
5403 {
5404 	struct hif_softc *hif_ctx = HIF_GET_SOFTC(scn);
5405 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
5406 
5407 	if (hif_state->ce_services->ce_set_irq_config_by_ceid)
5408 		return hif_state->ce_services->ce_set_irq_config_by_ceid(
5409 									hif_ctx,
5410 									ce_id,
5411 									addr,
5412 									data);
5413 
5414 	return QDF_STATUS_E_NOSUPPORT;
5415 }
5416 
5417 uint16_t hif_get_direct_link_ce_dest_srng_buffers(struct hif_opaque_softc *scn,
5418 						  uint64_t **dma_addr,
5419 						  uint32_t *buf_size)
5420 {
5421 	struct hif_softc *hif_ctx = HIF_GET_SOFTC(scn);
5422 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
5423 	struct ce_ops *ce_services = hif_state->ce_services;
5424 
5425 	if (ce_services->ce_get_direct_link_dest_buffers)
5426 		return ce_services->ce_get_direct_link_dest_buffers(hif_ctx,
5427 								    dma_addr,
5428 								    buf_size);
5429 
5430 	return 0;
5431 }
5432 
5433 QDF_STATUS
5434 hif_get_direct_link_ce_srng_info(struct hif_opaque_softc *scn,
5435 				 struct hif_direct_link_ce_info *info,
5436 				 uint8_t max_ce_info_len)
5437 {
5438 	struct hif_softc *hif_ctx = HIF_GET_SOFTC(scn);
5439 	struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
5440 	struct ce_ops *ce_services = hif_state->ce_services;
5441 
5442 	if (ce_services->ce_get_direct_link_ring_info)
5443 		return ce_services->ce_get_direct_link_ring_info(hif_ctx,
5444 							       info,
5445 							       max_ce_info_len);
5446 
5447 	return QDF_STATUS_E_NOSUPPORT;
5448 }
5449 #endif
5450 #endif
5451