xref: /wlan-dirver/qca-wifi-host-cmn/hal/wifi3.0/hal_srng.c (revision b80337cee1b59d5fa6f823a38d377ce0bc0a3ab3)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "hal_hw_headers.h"
21 #include "hal_api.h"
22 #include "hal_reo.h"
23 #include "target_type.h"
24 #include "qdf_module.h"
25 #include "wcss_version.h"
26 #include <qdf_tracepoint.h>
27 #include "qdf_ssr_driver_dump.h"
28 
29 struct tcl_data_cmd gtcl_data_symbol __attribute__((used));
30 
31 #ifdef QCA_WIFI_QCA8074
32 void hal_qca6290_attach(struct hal_soc *hal);
33 #endif
34 #ifdef QCA_WIFI_QCA8074
35 void hal_qca8074_attach(struct hal_soc *hal);
36 #endif
37 #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
38 	defined(QCA_WIFI_QCA9574)
39 void hal_qca8074v2_attach(struct hal_soc *hal);
40 #endif
41 #ifdef QCA_WIFI_QCA6390
42 void hal_qca6390_attach(struct hal_soc *hal);
43 #endif
44 #ifdef QCA_WIFI_QCA6490
45 void hal_qca6490_attach(struct hal_soc *hal);
46 #endif
47 #ifdef QCA_WIFI_QCN9000
48 void hal_qcn9000_attach(struct hal_soc *hal);
49 #endif
50 #ifdef QCA_WIFI_QCN9224
51 void hal_qcn9224v2_attach(struct hal_soc *hal);
52 #endif
53 #if defined(QCA_WIFI_QCN6122) || defined(QCA_WIFI_QCN9160)
54 void hal_qcn6122_attach(struct hal_soc *hal);
55 #endif
56 #ifdef QCA_WIFI_QCN6432
57 void hal_qcn6432_attach(struct hal_soc *hal);
58 #endif
59 #ifdef QCA_WIFI_QCA6750
60 void hal_qca6750_attach(struct hal_soc *hal);
61 #endif
62 #ifdef QCA_WIFI_QCA5018
63 void hal_qca5018_attach(struct hal_soc *hal);
64 #endif
65 #ifdef QCA_WIFI_QCA5332
66 void hal_qca5332_attach(struct hal_soc *hal);
67 #endif
68 #ifdef QCA_WIFI_KIWI
69 void hal_kiwi_attach(struct hal_soc *hal);
70 #endif
71 
72 #ifdef ENABLE_VERBOSE_DEBUG
73 bool is_hal_verbose_debug_enabled;
74 #endif
75 
76 #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x)	((x) + 0x4)
77 #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x)	((x) + 0x8)
78 #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x)	((x) + 0xc)
79 #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x)	((x) + 0x10)
80 
81 #ifdef ENABLE_HAL_REG_WR_HISTORY
82 struct hal_reg_write_fail_history hal_reg_wr_hist;
83 
84 void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
85 				 uint32_t offset,
86 				 uint32_t wr_val, uint32_t rd_val)
87 {
88 	struct hal_reg_write_fail_entry *record;
89 	int idx;
90 
91 	idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
92 					 HAL_REG_WRITE_HIST_SIZE);
93 
94 	record = &hal_soc->reg_wr_fail_hist->record[idx];
95 
96 	record->timestamp = qdf_get_log_timestamp();
97 	record->reg_offset = offset;
98 	record->write_val = wr_val;
99 	record->read_val = rd_val;
100 }
101 
102 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
103 {
104 	hal->reg_wr_fail_hist = &hal_reg_wr_hist;
105 
106 	qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
107 }
108 #else
109 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
110 {
111 }
112 #endif
113 
114 /**
115  * hal_get_srng_ring_id() - get the ring id of a described ring
116  * @hal: hal_soc data structure
117  * @ring_type: type enum describing the ring
118  * @ring_num: which ring of the ring type
119  * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
120  *
121  * Return: the ring id or -EINVAL if the ring does not exist.
122  */
123 static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
124 				int ring_num, int mac_id)
125 {
126 	struct hal_hw_srng_config *ring_config =
127 		HAL_SRNG_CONFIG(hal, ring_type);
128 	int ring_id;
129 
130 	if (ring_num >= ring_config->max_rings) {
131 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
132 			  "%s: ring_num exceeded maximum no. of supported rings",
133 			  __func__);
134 		/* TODO: This is a programming error. Assert if this happens */
135 		return -EINVAL;
136 	}
137 
138 	/*
139 	 * Some DMAC rings share a common source ring, hence don't provide them
140 	 * with separate ring IDs per LMAC.
141 	 */
142 	if (ring_config->lmac_ring && !ring_config->dmac_cmn_ring) {
143 		ring_id = (ring_config->start_ring_id + ring_num +
144 			   (mac_id * HAL_MAX_RINGS_PER_LMAC));
145 	} else {
146 		ring_id = ring_config->start_ring_id + ring_num;
147 	}
148 
149 	return ring_id;
150 }
151 
152 static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
153 {
154 	/* TODO: Should we allocate srng structures dynamically? */
155 	return &(hal->srng_list[ring_id]);
156 }
157 
158 #ifndef SHADOW_REG_CONFIG_DISABLED
159 #define HP_OFFSET_IN_REG_START 1
160 #define OFFSET_FROM_HP_TO_TP 4
161 static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
162 					  int shadow_config_index,
163 					  int ring_type,
164 					  int ring_num)
165 {
166 	struct hal_srng *srng;
167 	int ring_id;
168 	struct hal_hw_srng_config *ring_config =
169 		HAL_SRNG_CONFIG(hal_soc, ring_type);
170 
171 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
172 	if (ring_id < 0)
173 		return;
174 
175 	srng = hal_get_srng(hal_soc, ring_id);
176 
177 	if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
178 		srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
179 			+ hal_soc->dev_base_addr;
180 		hal_debug("tp_addr=%pK dev base addr %pK index %u",
181 			  srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
182 			  shadow_config_index);
183 	} else {
184 		srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
185 			+ hal_soc->dev_base_addr;
186 		hal_debug("hp_addr=%pK dev base addr %pK index %u",
187 			  srng->u.src_ring.hp_addr,
188 			  hal_soc->dev_base_addr, shadow_config_index);
189 	}
190 
191 }
192 #endif
193 
194 #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
195 void hal_set_one_target_reg_config(struct hal_soc *hal,
196 				   uint32_t target_reg_offset,
197 				   int list_index)
198 {
199 	int i = list_index;
200 
201 	qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
202 	hal->list_shadow_reg_config[i].target_register =
203 		target_reg_offset;
204 	hal->num_generic_shadow_regs_configured++;
205 }
206 
207 qdf_export_symbol(hal_set_one_target_reg_config);
208 
209 #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
210 #define MAX_REO_REMAP_SHADOW_REGS 4
211 QDF_STATUS hal_set_shadow_regs(void *hal_soc)
212 {
213 	uint32_t target_reg_offset;
214 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
215 	int i;
216 	struct hal_hw_srng_config *srng_config =
217 		&hal->hw_srng_table[WBM2SW_RELEASE];
218 	uint32_t reo_reg_base;
219 
220 	reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
221 
222 	target_reg_offset =
223 		HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
224 
225 	for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
226 		hal_set_one_target_reg_config(hal, target_reg_offset, i);
227 		target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
228 	}
229 
230 	target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
231 	target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
232 			      * HAL_IPA_TX_COMP_RING_IDX);
233 
234 	hal_set_one_target_reg_config(hal, target_reg_offset, i);
235 	return QDF_STATUS_SUCCESS;
236 }
237 
238 qdf_export_symbol(hal_set_shadow_regs);
239 
240 QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
241 {
242 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
243 	int shadow_config_index = hal->num_shadow_registers_configured;
244 	int i;
245 	int num_regs = hal->num_generic_shadow_regs_configured;
246 
247 	for (i = 0; i < num_regs; i++) {
248 		qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
249 		hal->shadow_config[shadow_config_index].addr =
250 			hal->list_shadow_reg_config[i].target_register;
251 		hal->list_shadow_reg_config[i].shadow_config_index =
252 			shadow_config_index;
253 		hal->list_shadow_reg_config[i].va =
254 			SHADOW_REGISTER(shadow_config_index) +
255 			(uintptr_t)hal->dev_base_addr;
256 		hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
257 			  hal->shadow_config[shadow_config_index].addr,
258 			  SHADOW_REGISTER(shadow_config_index),
259 			  shadow_config_index);
260 		shadow_config_index++;
261 		hal->num_shadow_registers_configured++;
262 	}
263 	return QDF_STATUS_SUCCESS;
264 }
265 
266 qdf_export_symbol(hal_construct_shadow_regs);
267 #endif
268 
269 #ifndef SHADOW_REG_CONFIG_DISABLED
270 
271 QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
272 				     int ring_type,
273 				     int ring_num)
274 {
275 	uint32_t target_register;
276 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
277 	struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
278 	int shadow_config_index = hal->num_shadow_registers_configured;
279 
280 	if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
281 		QDF_ASSERT(0);
282 		return QDF_STATUS_E_RESOURCES;
283 	}
284 
285 	hal->num_shadow_registers_configured++;
286 
287 	target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
288 	target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
289 			    *ring_num);
290 
291 	/* if the ring is a dst ring, we need to shadow the tail pointer */
292 	if (srng_config->ring_dir == HAL_SRNG_DST_RING)
293 		target_register += OFFSET_FROM_HP_TO_TP;
294 
295 	hal->shadow_config[shadow_config_index].addr = target_register;
296 
297 	/* update hp/tp addr in the hal_soc structure*/
298 	hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
299 				      ring_num);
300 
301 	hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
302 		  target_register,
303 		  SHADOW_REGISTER(shadow_config_index),
304 		  shadow_config_index,
305 		  ring_type, ring_num);
306 
307 	return QDF_STATUS_SUCCESS;
308 }
309 
310 qdf_export_symbol(hal_set_one_shadow_config);
311 
312 QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
313 {
314 	int ring_type, ring_num;
315 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
316 
317 	for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
318 		struct hal_hw_srng_config *srng_config =
319 			&hal->hw_srng_table[ring_type];
320 
321 		if (ring_type == CE_SRC ||
322 		    ring_type == CE_DST ||
323 		    ring_type == CE_DST_STATUS)
324 			continue;
325 
326 		if (srng_config->lmac_ring)
327 			continue;
328 
329 		for (ring_num = 0; ring_num < srng_config->max_rings;
330 		     ring_num++)
331 			hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
332 	}
333 
334 	return QDF_STATUS_SUCCESS;
335 }
336 
337 qdf_export_symbol(hal_construct_srng_shadow_regs);
338 #else
339 
340 QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
341 {
342 	return QDF_STATUS_SUCCESS;
343 }
344 
345 qdf_export_symbol(hal_construct_srng_shadow_regs);
346 
347 QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
348 				     int ring_num)
349 {
350 	return QDF_STATUS_SUCCESS;
351 }
352 qdf_export_symbol(hal_set_one_shadow_config);
353 #endif
354 
355 void hal_get_shadow_config(void *hal_soc,
356 	struct pld_shadow_reg_v2_cfg **shadow_config,
357 	int *num_shadow_registers_configured)
358 {
359 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
360 
361 	*shadow_config = &hal->shadow_config[0].v2;
362 	*num_shadow_registers_configured =
363 		hal->num_shadow_registers_configured;
364 }
365 qdf_export_symbol(hal_get_shadow_config);
366 
367 #ifdef CONFIG_SHADOW_V3
368 void hal_get_shadow_v3_config(void *hal_soc,
369 			      struct pld_shadow_reg_v3_cfg **shadow_config,
370 			      int *num_shadow_registers_configured)
371 {
372 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
373 
374 	*shadow_config = &hal->shadow_config[0].v3;
375 	*num_shadow_registers_configured =
376 		hal->num_shadow_registers_configured;
377 }
378 qdf_export_symbol(hal_get_shadow_v3_config);
379 #endif
380 
381 static bool hal_validate_shadow_register(struct hal_soc *hal,
382 					 uint32_t *destination,
383 					 uint32_t *shadow_address)
384 {
385 	unsigned int index;
386 	uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
387 	int destination_ba_offset =
388 		((char *)destination) - (char *)hal->dev_base_addr;
389 
390 	index =	shadow_address - shadow_0_offset;
391 
392 	if (index >= MAX_SHADOW_REGISTERS) {
393 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
394 			"%s: index %x out of bounds", __func__, index);
395 		goto error;
396 	} else if (hal->shadow_config[index].addr != destination_ba_offset) {
397 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
398 			"%s: sanity check failure, expected %x, found %x",
399 			__func__, destination_ba_offset,
400 			hal->shadow_config[index].addr);
401 		goto error;
402 	}
403 	return true;
404 error:
405 	qdf_print("baddr %pK, destination %pK, shadow_address %pK s0offset %pK index %x",
406 		  hal->dev_base_addr, destination, shadow_address,
407 		  shadow_0_offset, index);
408 	QDF_BUG(0);
409 	return false;
410 }
411 
412 static void hal_target_based_configure(struct hal_soc *hal)
413 {
414 	/*
415 	 * Indicate Initialization of srngs to avoid force wake
416 	 * as umac power collapse is not enabled yet
417 	 */
418 	hal->init_phase = true;
419 
420 	switch (hal->target_type) {
421 #ifdef QCA_WIFI_QCA6290
422 	case TARGET_TYPE_QCA6290:
423 		hal->use_register_windowing = true;
424 		hal_qca6290_attach(hal);
425 	break;
426 #endif
427 #ifdef QCA_WIFI_QCA6390
428 	case TARGET_TYPE_QCA6390:
429 		hal->use_register_windowing = true;
430 		hal_qca6390_attach(hal);
431 	break;
432 #endif
433 #ifdef QCA_WIFI_QCA6490
434 	case TARGET_TYPE_QCA6490:
435 		hal->use_register_windowing = true;
436 		hal_qca6490_attach(hal);
437 	break;
438 #endif
439 #ifdef QCA_WIFI_QCA6750
440 		case TARGET_TYPE_QCA6750:
441 			hal->use_register_windowing = true;
442 			hal->static_window_map = true;
443 			hal_qca6750_attach(hal);
444 		break;
445 #endif
446 #ifdef QCA_WIFI_KIWI
447 	case TARGET_TYPE_KIWI:
448 	case TARGET_TYPE_MANGO:
449 	case TARGET_TYPE_PEACH:
450 		hal->use_register_windowing = true;
451 		hal_kiwi_attach(hal);
452 		break;
453 #endif
454 #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
455 	case TARGET_TYPE_QCA8074:
456 		hal_qca8074_attach(hal);
457 	break;
458 #endif
459 
460 #if defined(QCA_WIFI_QCA8074V2)
461 	case TARGET_TYPE_QCA8074V2:
462 		hal_qca8074v2_attach(hal);
463 	break;
464 #endif
465 
466 #if defined(QCA_WIFI_QCA6018)
467 	case TARGET_TYPE_QCA6018:
468 		hal_qca8074v2_attach(hal);
469 	break;
470 #endif
471 
472 #if defined(QCA_WIFI_QCA9574)
473 	case TARGET_TYPE_QCA9574:
474 		hal_qca8074v2_attach(hal);
475 	break;
476 #endif
477 
478 #if defined(QCA_WIFI_QCN6122)
479 	case TARGET_TYPE_QCN6122:
480 		hal->use_register_windowing = true;
481 		/*
482 		 * Static window map  is enabled for qcn9000 to use 2mb bar
483 		 * size and use multiple windows to write into registers.
484 		 */
485 		hal->static_window_map = true;
486 		hal_qcn6122_attach(hal);
487 		break;
488 #endif
489 
490 #if defined(QCA_WIFI_QCN9160)
491 	case TARGET_TYPE_QCN9160:
492 		hal->use_register_windowing = true;
493 		/*
494 		 * Static window map  is enabled for qcn9160 to use 2mb bar
495 		 * size and use multiple windows to write into registers.
496 		 */
497 		hal->static_window_map = true;
498 		hal_qcn6122_attach(hal);
499 		break;
500 #endif
501 
502 #if defined(QCA_WIFI_QCN6432)
503 	case TARGET_TYPE_QCN6432:
504 		hal->use_register_windowing = true;
505 		/*
506 		 * Static window map  is enabled for qcn6432 to use 2mb bar
507 		 * size and use multiple windows to write into registers.
508 		 */
509 		hal->static_window_map = true;
510 		hal_qcn6432_attach(hal);
511 		break;
512 #endif
513 
514 #ifdef QCA_WIFI_QCN9000
515 	case TARGET_TYPE_QCN9000:
516 		hal->use_register_windowing = true;
517 		/*
518 		 * Static window map  is enabled for qcn9000 to use 2mb bar
519 		 * size and use multiple windows to write into registers.
520 		 */
521 		hal->static_window_map = true;
522 		hal_qcn9000_attach(hal);
523 	break;
524 #endif
525 #ifdef QCA_WIFI_QCA5018
526 	case TARGET_TYPE_QCA5018:
527 		hal->use_register_windowing = true;
528 		hal->static_window_map = true;
529 		hal_qca5018_attach(hal);
530 	break;
531 #endif
532 #ifdef QCA_WIFI_QCN9224
533 	case TARGET_TYPE_QCN9224:
534 		hal->use_register_windowing = true;
535 		hal->static_window_map = true;
536 		if (hal->version == 1)
537 			qdf_assert_always(0);
538 		else
539 			hal_qcn9224v2_attach(hal);
540 	break;
541 #endif
542 #ifdef QCA_WIFI_QCA5332
543 	case TARGET_TYPE_QCA5332:
544 		hal->use_register_windowing = true;
545 		hal->static_window_map = true;
546 		hal_qca5332_attach(hal);
547 	break;
548 #endif
549 #ifdef QCA_WIFI_WCN6450
550 	case TARGET_TYPE_WCN6450:
551 		hal->use_register_windowing = true;
552 		hal->static_window_map = true;
553 		hal_wcn6450_attach(hal);
554 	break;
555 #endif
556 	default:
557 	break;
558 	}
559 }
560 
561 uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
562 {
563 	struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
564 	struct hif_target_info *tgt_info =
565 		hif_get_target_info_handle(hal_soc->hif_handle);
566 
567 	return tgt_info->target_type;
568 }
569 
570 qdf_export_symbol(hal_get_target_type);
571 
572 #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
573 /**
574  * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
575  * @hal: hal_soc pointer
576  *
577  * Return: true if throughput is high, else false.
578  */
579 static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
580 {
581 	int bw_level = hif_get_bandwidth_level(hal->hif_handle);
582 
583 	return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
584 }
585 
586 static inline
587 char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
588 				    char *buf, qdf_size_t size)
589 {
590 	qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
591 		      srng->wstats.enqueues, srng->wstats.dequeues,
592 		      srng->wstats.coalesces, srng->wstats.direct);
593 	return buf;
594 }
595 
596 /* bytes for local buffer */
597 #define HAL_REG_WRITE_SRNG_STATS_LEN 100
598 
599 #ifndef WLAN_SOFTUMAC_SUPPORT
600 void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
601 {
602 	struct hal_srng *srng;
603 	char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
604 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
605 
606 	srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
607 	hal_debug("SW2TCL1: %s",
608 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
609 
610 	srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
611 	hal_debug("WBM2SW0: %s",
612 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
613 
614 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
615 	hal_debug("REO2SW1: %s",
616 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
617 
618 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
619 	hal_debug("REO2SW2: %s",
620 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
621 
622 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
623 	hal_debug("REO2SW3: %s",
624 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
625 }
626 
627 void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
628 {
629 	uint32_t *hist;
630 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
631 
632 	hist = hal->stats.wstats.sched_delay;
633 	hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
634 		  qdf_atomic_read(&hal->stats.wstats.enqueues),
635 		  hal->stats.wstats.dequeues,
636 		  qdf_atomic_read(&hal->stats.wstats.coalesces),
637 		  qdf_atomic_read(&hal->stats.wstats.direct),
638 		  qdf_atomic_read(&hal->stats.wstats.q_depth),
639 		  hal->stats.wstats.max_q_depth,
640 		  hist[REG_WRITE_SCHED_DELAY_SUB_100us],
641 		  hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
642 		  hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
643 		  hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
644 }
645 #else
646 void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
647 {
648 }
649 
650 /* TODO: Need separate logic for Evros */
651 void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
652 {
653 }
654 #endif
655 
656 int hal_get_reg_write_pending_work(void *hal_soc)
657 {
658 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
659 
660 	return qdf_atomic_read(&hal->active_work_cnt);
661 }
662 
663 #endif
664 
665 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
666 #ifdef MEMORY_DEBUG
667 /*
668  * Length of the queue(array) used to hold delayed register writes.
669  * Must be a multiple of 2.
670  */
671 #define HAL_REG_WRITE_QUEUE_LEN 128
672 #else
673 #define HAL_REG_WRITE_QUEUE_LEN 32
674 #endif
675 
676 /**
677  * hal_process_reg_write_q_elem() - process a register write queue element
678  * @hal: hal_soc pointer
679  * @q_elem: pointer to hal register write queue element
680  *
681  * Return: The value which was written to the address
682  */
683 static uint32_t
684 hal_process_reg_write_q_elem(struct hal_soc *hal,
685 			     struct hal_reg_write_q_elem *q_elem)
686 {
687 	struct hal_srng *srng = q_elem->srng;
688 	uint32_t write_val;
689 
690 	SRNG_LOCK(&srng->lock);
691 
692 	srng->reg_write_in_progress = false;
693 	srng->wstats.dequeues++;
694 
695 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
696 		q_elem->dequeue_val = srng->u.src_ring.hp;
697 		hal_write_address_32_mb(hal,
698 					srng->u.src_ring.hp_addr,
699 					srng->u.src_ring.hp, false);
700 		write_val = srng->u.src_ring.hp;
701 	} else {
702 		q_elem->dequeue_val = srng->u.dst_ring.tp;
703 		hal_write_address_32_mb(hal,
704 					srng->u.dst_ring.tp_addr,
705 					srng->u.dst_ring.tp, false);
706 		write_val = srng->u.dst_ring.tp;
707 	}
708 	hal_srng_reg_his_add(srng, write_val);
709 
710 	q_elem->valid = 0;
711 	srng->last_dequeue_time = q_elem->dequeue_time;
712 	SRNG_UNLOCK(&srng->lock);
713 
714 	return write_val;
715 }
716 
717 /**
718  * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
719  * @hal: hal_soc pointer
720  * @delay_us: delay in us
721  *
722  * Return: None
723  */
724 static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
725 						       uint64_t delay_us)
726 {
727 	uint32_t *hist;
728 
729 	hist = hal->stats.wstats.sched_delay;
730 
731 	if (delay_us < 100)
732 		hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
733 	else if (delay_us < 1000)
734 		hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
735 	else if (delay_us < 5000)
736 		hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
737 	else
738 		hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
739 }
740 
741 #ifdef SHADOW_WRITE_DELAY
742 
743 #define SHADOW_WRITE_MIN_DELTA_US	5
744 #define SHADOW_WRITE_DELAY_US		50
745 
746 /*
747  * Never add those srngs which are performance relate.
748  * The delay itself will hit performance heavily.
749  */
750 #define IS_SRNG_MATCH(s)	((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
751 				 (s)->ring_id == HAL_SRNG_CE_1_DST)
752 
753 static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
754 {
755 	struct hal_srng *srng = elem->srng;
756 	struct hal_soc *hal;
757 	qdf_time_t now;
758 	qdf_iomem_t real_addr;
759 
760 	if (qdf_unlikely(!srng))
761 		return false;
762 
763 	hal = srng->hal_soc;
764 	if (qdf_unlikely(!hal))
765 		return false;
766 
767 	/* Check if it is target srng, and valid shadow reg */
768 	if (qdf_likely(!IS_SRNG_MATCH(srng)))
769 		return false;
770 
771 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
772 		real_addr = SRNG_SRC_ADDR(srng, HP);
773 	else
774 		real_addr = SRNG_DST_ADDR(srng, TP);
775 	if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
776 		return false;
777 
778 	/* Check the time delta from last write of same srng */
779 	now = qdf_get_log_timestamp();
780 	if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
781 		SHADOW_WRITE_MIN_DELTA_US)
782 		return false;
783 
784 	/* Delay dequeue, and record */
785 	qdf_udelay(SHADOW_WRITE_DELAY_US);
786 
787 	srng->wstats.dequeue_delay++;
788 	hal->stats.wstats.dequeue_delay++;
789 
790 	return true;
791 }
792 #else
793 static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
794 {
795 	return false;
796 }
797 #endif
798 
799 /**
800  * hal_reg_write_work() - Worker to process delayed writes
801  * @arg: hal_soc pointer
802  *
803  * Return: None
804  */
805 static void hal_reg_write_work(void *arg)
806 {
807 	int32_t q_depth, write_val;
808 	struct hal_soc *hal = arg;
809 	struct hal_reg_write_q_elem *q_elem;
810 	uint64_t delta_us;
811 	uint8_t ring_id;
812 	uint32_t *addr;
813 	uint32_t num_processed = 0;
814 
815 	q_elem = &hal->reg_write_queue[(hal->read_idx)];
816 	q_elem->work_scheduled_time = qdf_get_log_timestamp();
817 	q_elem->cpu_id = qdf_get_cpu();
818 
819 	/* Make sure q_elem consistent in the memory for multi-cores */
820 	qdf_rmb();
821 	if (!q_elem->valid)
822 		return;
823 
824 	q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
825 	if (q_depth > hal->stats.wstats.max_q_depth)
826 		hal->stats.wstats.max_q_depth =  q_depth;
827 
828 	if (hif_prevent_link_low_power_states(hal->hif_handle)) {
829 		hal->stats.wstats.prevent_l1_fails++;
830 		return;
831 	}
832 
833 	while (true) {
834 		qdf_rmb();
835 		if (!q_elem->valid)
836 			break;
837 
838 		qdf_rmb();
839 		/* buy some more time to make sure all fields
840 		 * in q_elem is updated per different CPUs, in
841 		 * case wmb/rmb is not taken effect
842 		 */
843 		if (qdf_unlikely(!q_elem->srng ||
844 				 (qdf_atomic_read(&q_elem->ring_id) !=
845 				 q_elem->srng->ring_id))) {
846 			hal_err_rl("q_elem fields not up to date %d %d",
847 				   q_elem->srng->ring_id,
848 				   qdf_atomic_read(&q_elem->ring_id));
849 			qdf_assert_always(0);
850 		}
851 
852 		q_elem->dequeue_time = qdf_get_log_timestamp();
853 		ring_id = q_elem->srng->ring_id;
854 		addr = q_elem->addr;
855 		delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
856 						      q_elem->enqueue_time);
857 		hal_reg_write_fill_sched_delay_hist(hal, delta_us);
858 
859 		hal->stats.wstats.dequeues++;
860 		qdf_atomic_dec(&hal->stats.wstats.q_depth);
861 
862 		if (hal_reg_write_need_delay(q_elem))
863 			hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
864 					  q_elem->srng->ring_id, q_elem->addr);
865 
866 		write_val = hal_process_reg_write_q_elem(hal, q_elem);
867 		hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
868 				  hal->read_idx, ring_id, addr, write_val, delta_us);
869 
870 		qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
871 					   q_elem->dequeue_val,
872 					   q_elem->enqueue_time,
873 					   q_elem->dequeue_time);
874 
875 		num_processed++;
876 		hal->read_idx = (hal->read_idx + 1) &
877 					(HAL_REG_WRITE_QUEUE_LEN - 1);
878 		q_elem = &hal->reg_write_queue[(hal->read_idx)];
879 	}
880 
881 	hif_allow_link_low_power_states(hal->hif_handle);
882 	/*
883 	 * Decrement active_work_cnt by the number of elements dequeued after
884 	 * hif_allow_link_low_power_states.
885 	 * This makes sure that hif_try_complete_tasks will wait till we make
886 	 * the bus access in hif_allow_link_low_power_states. This will avoid
887 	 * race condition between delayed register worker and bus suspend
888 	 * (system suspend or runtime suspend).
889 	 *
890 	 * The following decrement should be done at the end!
891 	 */
892 	qdf_atomic_sub(num_processed, &hal->active_work_cnt);
893 }
894 
895 static void __hal_flush_reg_write_work(struct hal_soc *hal)
896 {
897 	qdf_flush_work(&hal->reg_write_work);
898 	qdf_disable_work(&hal->reg_write_work);
899 }
900 
901 void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
902 {	__hal_flush_reg_write_work((struct hal_soc *)hal_handle);
903 }
904 
905 /**
906  * hal_reg_write_enqueue() - enqueue register writes into kworker
907  * @hal_soc: hal_soc pointer
908  * @srng: srng pointer
909  * @addr: iomem address of register
910  * @value: value to be written to iomem address
911  *
912  * This function executes from within the SRNG LOCK
913  *
914  * Return: None
915  */
916 static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
917 				  struct hal_srng *srng,
918 				  void __iomem *addr,
919 				  uint32_t value)
920 {
921 	struct hal_reg_write_q_elem *q_elem;
922 	uint32_t write_idx;
923 
924 	if (srng->reg_write_in_progress) {
925 		hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
926 				  srng->ring_id, addr, value);
927 		qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
928 		srng->wstats.coalesces++;
929 		return;
930 	}
931 
932 	write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
933 
934 	write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
935 
936 	q_elem = &hal_soc->reg_write_queue[write_idx];
937 
938 	if (q_elem->valid) {
939 		hal_err("queue full");
940 		QDF_BUG(0);
941 		return;
942 	}
943 
944 	qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
945 	srng->wstats.enqueues++;
946 
947 	qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
948 
949 	q_elem->srng = srng;
950 	q_elem->addr = addr;
951 	qdf_atomic_set(&q_elem->ring_id, srng->ring_id);
952 	q_elem->enqueue_val = value;
953 	q_elem->enqueue_time = qdf_get_log_timestamp();
954 
955 	/*
956 	 * Before the valid flag is set to true, all the other
957 	 * fields in the q_elem needs to be updated in memory.
958 	 * Else there is a chance that the dequeuing worker thread
959 	 * might read stale entries and process incorrect srng.
960 	 */
961 	qdf_wmb();
962 	q_elem->valid = true;
963 
964 	/*
965 	 * After all other fields in the q_elem has been updated
966 	 * in memory successfully, the valid flag needs to be updated
967 	 * in memory in time too.
968 	 * Else there is a chance that the dequeuing worker thread
969 	 * might read stale valid flag and the work will be bypassed
970 	 * for this round. And if there is no other work scheduled
971 	 * later, this hal register writing won't be updated any more.
972 	 */
973 	qdf_wmb();
974 
975 	srng->reg_write_in_progress  = true;
976 	qdf_atomic_inc(&hal_soc->active_work_cnt);
977 
978 	hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
979 			  write_idx, srng->ring_id, addr, value);
980 
981 	qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
982 		       &hal_soc->reg_write_work);
983 }
984 
985 /**
986  * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
987  * @hal: hal_soc pointer
988  *
989  * Initialize main data structures to process register writes in a delayed
990  * workqueue.
991  *
992  * Return: QDF_STATUS_SUCCESS on success else a QDF error.
993  */
994 static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
995 {
996 	hal->reg_write_wq =
997 		qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
998 	qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
999 	hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
1000 					      sizeof(*hal->reg_write_queue));
1001 	if (!hal->reg_write_queue) {
1002 		hal_err("unable to allocate memory");
1003 		QDF_BUG(0);
1004 		return QDF_STATUS_E_NOMEM;
1005 	}
1006 
1007 	/* Initial value of indices */
1008 	hal->read_idx = 0;
1009 	qdf_atomic_set(&hal->write_idx, -1);
1010 	return QDF_STATUS_SUCCESS;
1011 }
1012 
1013 /**
1014  * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
1015  * @hal: hal_soc pointer
1016  *
1017  * De-initialize main data structures to process register writes in a delayed
1018  * workqueue.
1019  *
1020  * Return: None
1021  */
1022 static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
1023 {
1024 	__hal_flush_reg_write_work(hal);
1025 
1026 	qdf_flush_workqueue(0, hal->reg_write_wq);
1027 	qdf_destroy_workqueue(0, hal->reg_write_wq);
1028 	qdf_mem_free(hal->reg_write_queue);
1029 }
1030 
1031 #else
1032 static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
1033 {
1034 	return QDF_STATUS_SUCCESS;
1035 }
1036 
1037 static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
1038 {
1039 }
1040 #endif
1041 
1042 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
1043 #ifdef HAL_RECORD_SUSPEND_WRITE
1044 static struct hal_suspend_write_history
1045 		g_hal_suspend_write_history[HAL_SUSPEND_WRITE_HISTORY_MAX];
1046 
1047 static
1048 void hal_event_suspend_record(uint8_t ring_id, uint32_t value, uint32_t count)
1049 {
1050 	uint32_t index = qdf_atomic_read(g_hal_suspend_write_history.index) &
1051 					(HAL_SUSPEND_WRITE_HISTORY_MAX - 1);
1052 	struct hal_suspend_write_record *cur_event =
1053 					&hal_suspend_write_event.record[index];
1054 
1055 	cur_event->ts = qdf_get_log_timestamp();
1056 	cur_event->ring_id = ring_id;
1057 	cur_event->value = value;
1058 	cur_event->direct_wcount = count;
1059 	qdf_atomic_inc(g_hal_suspend_write_history.index);
1060 }
1061 
1062 static inline
1063 void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
1064 {
1065 	if (hif_rtpm_get_state() >= HIF_RTPM_STATE_SUSPENDING)
1066 		hal_event_suspend_record(ring_id, value, count);
1067 }
1068 #else
1069 static inline
1070 void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
1071 {
1072 }
1073 #endif
1074 
1075 #ifdef QCA_WIFI_QCA6750
1076 void hal_delayed_reg_write(struct hal_soc *hal_soc,
1077 			   struct hal_srng *srng,
1078 			   void __iomem *addr,
1079 			   uint32_t value)
1080 {
1081 	uint8_t vote_access;
1082 
1083 	switch (srng->ring_type) {
1084 	case CE_SRC:
1085 	case CE_DST:
1086 	case CE_DST_STATUS:
1087 		vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
1088 						     HIF_EP_VOTE_NONDP_ACCESS);
1089 		if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
1090 		    (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
1091 		     PLD_MHI_STATE_L0 ==
1092 		     pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
1093 			hal_write_address_32_mb(hal_soc, addr, value, false);
1094 			hal_srng_reg_his_add(srng, value);
1095 			qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1096 			srng->wstats.direct++;
1097 		} else {
1098 			hal_reg_write_enqueue(hal_soc, srng, addr, value);
1099 		}
1100 		break;
1101 	default:
1102 		if (hif_get_ep_vote_access(hal_soc->hif_handle,
1103 		    HIF_EP_VOTE_DP_ACCESS) ==
1104 		    HIF_EP_VOTE_ACCESS_DISABLE ||
1105 		    hal_is_reg_write_tput_level_high(hal_soc) ||
1106 		    PLD_MHI_STATE_L0 ==
1107 		    pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
1108 			hal_write_address_32_mb(hal_soc, addr, value, false);
1109 			hal_srng_reg_his_add(srng, value);
1110 			qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1111 			srng->wstats.direct++;
1112 		} else {
1113 			hal_reg_write_enqueue(hal_soc, srng, addr, value);
1114 		}
1115 
1116 		break;
1117 	}
1118 }
1119 #else
1120 void hal_delayed_reg_write(struct hal_soc *hal_soc,
1121 			   struct hal_srng *srng,
1122 			   void __iomem *addr,
1123 			   uint32_t value)
1124 {
1125 	if (hal_is_reg_write_tput_level_high(hal_soc) ||
1126 	    pld_is_device_awake(hal_soc->qdf_dev->dev)) {
1127 		qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1128 		srng->wstats.direct++;
1129 		hal_write_address_32_mb(hal_soc, addr, value, false);
1130 		hal_srng_reg_his_add(srng, value);
1131 	} else {
1132 		hal_reg_write_enqueue(hal_soc, srng, addr, value);
1133 	}
1134 
1135 	hal_record_suspend_write(srng->ring_id, value, srng->wstats.direct);
1136 }
1137 #endif
1138 #endif
1139 
1140 #ifdef HAL_SRNG_REG_HIS_DEBUG
1141 inline void hal_free_srng_history(struct hal_soc *hal)
1142 {
1143 	int i;
1144 
1145 	for (i = 0; i < HAL_SRNG_ID_MAX; i++)
1146 		qdf_mem_free(hal->srng_list[i].reg_his_ctx);
1147 }
1148 
1149 inline bool hal_alloc_srng_history(struct hal_soc *hal)
1150 {
1151 	int i;
1152 
1153 	for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
1154 		hal->srng_list[i].reg_his_ctx =
1155 			qdf_mem_malloc(sizeof(struct hal_srng_reg_his_ctx));
1156 		if (!hal->srng_list[i].reg_his_ctx) {
1157 			hal_err("srng_hist alloc failed");
1158 			hal_free_srng_history(hal);
1159 			return false;
1160 		}
1161 	}
1162 
1163 	return true;
1164 }
1165 #else
1166 inline void hal_free_srng_history(struct hal_soc *hal)
1167 {
1168 }
1169 
1170 inline bool hal_alloc_srng_history(struct hal_soc *hal)
1171 {
1172 	return true;
1173 }
1174 #endif
1175 
1176 void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
1177 {
1178 	struct hal_soc *hal;
1179 	int i;
1180 
1181 	hal = qdf_mem_common_alloc(sizeof(*hal));
1182 
1183 	if (!hal) {
1184 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1185 			"%s: hal_soc allocation failed", __func__);
1186 		goto fail0;
1187 	}
1188 	hal->hif_handle = hif_handle;
1189 	hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
1190 	hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
1191 	hal->dev_base_addr_cmem = hif_get_dev_ba_cmem(hif_handle); /* CMEM */
1192 	hal->dev_base_addr_pmm = hif_get_dev_ba_pmm(hif_handle); /* PMM */
1193 	hal->qdf_dev = qdf_dev;
1194 	hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
1195 		qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
1196 		HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
1197 	if (!hal->shadow_rdptr_mem_paddr) {
1198 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1199 			"%s: hal->shadow_rdptr_mem_paddr allocation failed",
1200 			__func__);
1201 		goto fail1;
1202 	}
1203 	qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
1204 		     sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
1205 
1206 	hal->shadow_wrptr_mem_vaddr =
1207 		(uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
1208 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
1209 		&(hal->shadow_wrptr_mem_paddr));
1210 	if (!hal->shadow_wrptr_mem_vaddr) {
1211 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1212 			"%s: hal->shadow_wrptr_mem_vaddr allocation failed",
1213 			__func__);
1214 		goto fail2;
1215 	}
1216 	qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
1217 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
1218 
1219 	if (!hal_alloc_srng_history(hal))
1220 		goto fail2;
1221 
1222 	for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
1223 		hal->srng_list[i].initialized = 0;
1224 		hal->srng_list[i].ring_id = i;
1225 	}
1226 
1227 	qdf_spinlock_create(&hal->register_access_lock);
1228 	hal->register_window = 0;
1229 	hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
1230 	hal->version = hif_get_soc_version(hif_handle);
1231 	hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
1232 
1233 	if (!hal->ops) {
1234 		hal_err("unable to allocable memory for HAL ops");
1235 		goto fail3;
1236 	}
1237 
1238 	hal_target_based_configure(hal);
1239 
1240 	hal_reg_write_fail_history_init(hal);
1241 
1242 	qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
1243 
1244 	qdf_ssr_driver_dump_register_region("hal_soc", hal, sizeof(*hal));
1245 
1246 	qdf_atomic_init(&hal->active_work_cnt);
1247 	if (hal_delayed_reg_write_init(hal) != QDF_STATUS_SUCCESS) {
1248 		hal_err("unable to initialize delayed reg write");
1249 		goto fail4;
1250 	}
1251 
1252 	hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL);
1253 
1254 	return (void *)hal;
1255 fail4:
1256 	qdf_ssr_driver_dump_unregister_region("hal_soc");
1257 	qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
1258 	qdf_mem_free(hal->ops);
1259 fail3:
1260 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
1261 				sizeof(*hal->shadow_wrptr_mem_vaddr) *
1262 				HAL_MAX_LMAC_RINGS,
1263 				hal->shadow_wrptr_mem_vaddr,
1264 				hal->shadow_wrptr_mem_paddr, 0);
1265 fail2:
1266 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
1267 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
1268 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
1269 fail1:
1270 	qdf_mem_common_free(hal);
1271 fail0:
1272 	return NULL;
1273 }
1274 qdf_export_symbol(hal_attach);
1275 
1276 void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
1277 {
1278 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
1279 	mem->dev_base_addr = (void *)hal->dev_base_addr;
1280         mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
1281 	mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
1282         mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
1283 	mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
1284 	hif_read_phy_mem_base((void *)hal->hif_handle,
1285 			      (qdf_dma_addr_t *)&mem->dev_base_paddr);
1286 	mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
1287 	return;
1288 }
1289 qdf_export_symbol(hal_get_meminfo);
1290 
1291 void hal_detach(void *hal_soc)
1292 {
1293 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1294 
1295 	hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD);
1296 	hal_delayed_reg_write_deinit(hal);
1297 	hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
1298 	qdf_ssr_driver_dump_unregister_region("hal_soc");
1299 	qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
1300 	qdf_mem_free(hal->ops);
1301 
1302 	hal_free_srng_history(hal);
1303 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
1304 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
1305 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
1306 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
1307 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
1308 		hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
1309 	qdf_mem_common_free(hal);
1310 
1311 	return;
1312 }
1313 qdf_export_symbol(hal_detach);
1314 
1315 #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x)		((x) + 0x000000b0)
1316 #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK	0x0000ffff
1317 #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x)	((x) + 0x00000040)
1318 #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK	0x00000007
1319 
1320 /**
1321  * hal_ce_dst_setup() - Initialize CE destination ring registers
1322  * @hal: HAL SOC handle
1323  * @srng: SRNG ring pointer
1324  * @ring_num: ring number
1325  */
1326 static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
1327 				    int ring_num)
1328 {
1329 	uint32_t reg_val = 0;
1330 	uint32_t reg_addr;
1331 	struct hal_hw_srng_config *ring_config =
1332 		HAL_SRNG_CONFIG(hal, CE_DST);
1333 
1334 	/* set DEST_MAX_LENGTH according to ce assignment */
1335 	reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
1336 			ring_config->reg_start[R0_INDEX] +
1337 			(ring_num * ring_config->reg_size[R0_INDEX]));
1338 
1339 	reg_val = HAL_REG_READ(hal, reg_addr);
1340 	reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
1341 	reg_val |= srng->u.dst_ring.max_buffer_length &
1342 		HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
1343 	HAL_REG_WRITE(hal, reg_addr, reg_val);
1344 
1345 	if (srng->prefetch_timer) {
1346 		reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
1347 				ring_config->reg_start[R0_INDEX] +
1348 				(ring_num * ring_config->reg_size[R0_INDEX]));
1349 
1350 		reg_val = HAL_REG_READ(hal, reg_addr);
1351 		reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
1352 		reg_val |= srng->prefetch_timer;
1353 		HAL_REG_WRITE(hal, reg_addr, reg_val);
1354 		reg_val = HAL_REG_READ(hal, reg_addr);
1355 	}
1356 
1357 }
1358 
1359 void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
1360 				uint32_t *ix0, uint32_t *ix1,
1361 				uint32_t *ix2, uint32_t *ix3)
1362 {
1363 	uint32_t reg_offset;
1364 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
1365 	uint32_t reo_reg_base;
1366 
1367 	reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
1368 
1369 	if (read) {
1370 		if (ix0) {
1371 			reg_offset =
1372 				HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
1373 						reo_reg_base);
1374 			*ix0 = HAL_REG_READ(hal, reg_offset);
1375 		}
1376 
1377 		if (ix1) {
1378 			reg_offset =
1379 				HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
1380 						reo_reg_base);
1381 			*ix1 = HAL_REG_READ(hal, reg_offset);
1382 		}
1383 
1384 		if (ix2) {
1385 			reg_offset =
1386 				HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
1387 						reo_reg_base);
1388 			*ix2 = HAL_REG_READ(hal, reg_offset);
1389 		}
1390 
1391 		if (ix3) {
1392 			reg_offset =
1393 				HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
1394 						reo_reg_base);
1395 			*ix3 = HAL_REG_READ(hal, reg_offset);
1396 		}
1397 	} else {
1398 		if (ix0) {
1399 			reg_offset =
1400 				HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
1401 						reo_reg_base);
1402 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1403 						    *ix0, true);
1404 		}
1405 
1406 		if (ix1) {
1407 			reg_offset =
1408 				HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
1409 						reo_reg_base);
1410 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1411 						    *ix1, true);
1412 		}
1413 
1414 		if (ix2) {
1415 			reg_offset =
1416 				HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
1417 						reo_reg_base);
1418 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1419 						    *ix2, true);
1420 		}
1421 
1422 		if (ix3) {
1423 			reg_offset =
1424 				HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
1425 						reo_reg_base);
1426 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1427 						    *ix3, true);
1428 		}
1429 	}
1430 }
1431 
1432 qdf_export_symbol(hal_reo_read_write_ctrl_ix);
1433 
1434 void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
1435 {
1436 	SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
1437 	SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
1438 }
1439 
1440 qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
1441 
1442 void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
1443 			  struct hal_srng *srng,
1444 			  uint32_t *vaddr)
1445 {
1446 	uint32_t reg_offset;
1447 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1448 
1449 	if (!srng)
1450 		return;
1451 
1452 	srng->u.dst_ring.hp_addr = vaddr;
1453 	reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
1454 	HAL_REG_WRITE_CONFIRM_RETRY(
1455 		hal, reg_offset, srng->u.dst_ring.cached_hp, true);
1456 
1457 	if (vaddr) {
1458 		*srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
1459 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1460 			  "hp_addr=%pK, cached_hp=%d",
1461 			  (void *)srng->u.dst_ring.hp_addr,
1462 			  srng->u.dst_ring.cached_hp);
1463 	}
1464 }
1465 
1466 qdf_export_symbol(hal_srng_dst_init_hp);
1467 
1468 void hal_srng_dst_update_hp_addr(struct hal_soc_handle *hal_soc,
1469 				 hal_ring_handle_t hal_ring_hdl)
1470 {
1471 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1472 	int32_t hw_hp;
1473 	int32_t hw_tp;
1474 
1475 	if (!srng)
1476 		return;
1477 
1478 	if (srng->u.dst_ring.hp_addr) {
1479 		hal_get_hw_hptp(hal_soc, hal_ring_hdl, &hw_hp, &hw_tp,
1480 				WBM2SW_RELEASE);
1481 		*srng->u.dst_ring.hp_addr = hw_hp;
1482 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1483 			  "hw_hp=%d", hw_hp);
1484 	}
1485 }
1486 
1487 qdf_export_symbol(hal_srng_dst_update_hp_addr);
1488 
1489 /**
1490  * hal_srng_hw_init - Private function to initialize SRNG HW
1491  * @hal: HAL SOC handle
1492  * @srng: SRNG ring pointer
1493  * @idle_check: Check if ring is idle
1494  * @idx: ring index
1495  */
1496 static inline void hal_srng_hw_init(struct hal_soc *hal,
1497 	struct hal_srng *srng, bool idle_check, uint32_t idx)
1498 {
1499 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
1500 		hal_srng_src_hw_init(hal, srng, idle_check, idx);
1501 	else
1502 		hal_srng_dst_hw_init(hal, srng, idle_check, idx);
1503 }
1504 
1505 #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
1506 bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
1507 					 int ring_type, int ring_num)
1508 {
1509 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1510 	struct hal_hw_srng_config *ring_config =
1511 		HAL_SRNG_CONFIG(hal, ring_type);
1512 
1513 	return ring_config->nf_irq_support;
1514 }
1515 
1516 /**
1517  * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
1518  *				ring params
1519  * @srng: SRNG handle
1520  * @ring_params: ring params for this SRNG
1521  *
1522  * Return: None
1523  */
1524 static inline void
1525 hal_srng_set_msi2_params(struct hal_srng *srng,
1526 			 struct hal_srng_params *ring_params)
1527 {
1528 	srng->msi2_addr = ring_params->msi2_addr;
1529 	srng->msi2_data = ring_params->msi2_data;
1530 }
1531 
1532 /**
1533  * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
1534  * @srng: SRNG handle
1535  * @ring_params: ring params for this SRNG
1536  *
1537  * Return: None
1538  */
1539 static inline void
1540 hal_srng_get_nf_params(struct hal_srng *srng,
1541 		       struct hal_srng_params *ring_params)
1542 {
1543 	ring_params->msi2_addr = srng->msi2_addr;
1544 	ring_params->msi2_data = srng->msi2_data;
1545 }
1546 
1547 /**
1548  * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
1549  * @srng: SRNG handle where the params are to be set
1550  * @ring_params: ring params, from where threshold is to be fetched
1551  *
1552  * Return: None
1553  */
1554 static inline void
1555 hal_srng_set_nf_thresholds(struct hal_srng *srng,
1556 			   struct hal_srng_params *ring_params)
1557 {
1558 	srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
1559 	srng->u.dst_ring.high_thresh = ring_params->high_thresh;
1560 }
1561 #else
1562 static inline void
1563 hal_srng_set_msi2_params(struct hal_srng *srng,
1564 			 struct hal_srng_params *ring_params)
1565 {
1566 }
1567 
1568 static inline void
1569 hal_srng_get_nf_params(struct hal_srng *srng,
1570 		       struct hal_srng_params *ring_params)
1571 {
1572 }
1573 
1574 static inline void
1575 hal_srng_set_nf_thresholds(struct hal_srng *srng,
1576 			   struct hal_srng_params *ring_params)
1577 {
1578 }
1579 #endif
1580 
1581 #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
1582 /**
1583  * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
1584  * @srng: Source ring pointer
1585  *
1586  * Return: None
1587  */
1588 static inline
1589 void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
1590 {
1591 	srng->last_desc_cleared = srng->ring_size - srng->entry_size;
1592 }
1593 
1594 #else
1595 static inline
1596 void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
1597 {
1598 }
1599 #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
1600 
1601 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
1602 static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
1603 {
1604 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100] =
1605 			((srng->num_entries * 90) / 100);
1606 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90] =
1607 			((srng->num_entries * 80) / 100);
1608 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80] =
1609 			((srng->num_entries * 70) / 100);
1610 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70] =
1611 			((srng->num_entries * 60) / 100);
1612 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60] =
1613 			((srng->num_entries * 50) / 100);
1614 	/* Below 50% threshold is not needed */
1615 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT] = 0;
1616 
1617 	hal_info("ring_id: %u, wm_thresh- <50:%u, 50-60:%u, 60-70:%u, 70-80:%u, 80-90:%u, 90-100:%u",
1618 		 srng->ring_id,
1619 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT],
1620 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60],
1621 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70],
1622 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80],
1623 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90],
1624 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100]);
1625 }
1626 #else
1627 static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
1628 {
1629 }
1630 #endif
1631 
1632 void *hal_srng_setup_idx(void *hal_soc, int ring_type, int ring_num, int mac_id,
1633 			 struct hal_srng_params *ring_params, bool idle_check,
1634 			 uint32_t idx)
1635 {
1636 	int ring_id;
1637 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1638 	hal_soc_handle_t hal_hdl = (hal_soc_handle_t)hal;
1639 	struct hal_srng *srng;
1640 	struct hal_hw_srng_config *ring_config =
1641 		HAL_SRNG_CONFIG(hal, ring_type);
1642 	void *dev_base_addr;
1643 	int i;
1644 
1645 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
1646 	if (ring_id < 0)
1647 		return NULL;
1648 
1649 	hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
1650 
1651 	srng = hal_get_srng(hal_soc, ring_id);
1652 
1653 	if (srng->initialized) {
1654 		hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
1655 		return NULL;
1656 	}
1657 
1658 	hal_srng_reg_his_init(srng);
1659 	dev_base_addr = hal->dev_base_addr;
1660 	srng->ring_id = ring_id;
1661 	srng->ring_type = ring_type;
1662 	srng->ring_dir = ring_config->ring_dir;
1663 	srng->ring_base_paddr = ring_params->ring_base_paddr;
1664 	srng->ring_base_vaddr = ring_params->ring_base_vaddr;
1665 	srng->entry_size = ring_config->entry_size;
1666 	srng->num_entries = ring_params->num_entries;
1667 	srng->ring_size = srng->num_entries * srng->entry_size;
1668 	srng->ring_size_mask = srng->ring_size - 1;
1669 	srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
1670 	srng->msi_addr = ring_params->msi_addr;
1671 	srng->msi_data = ring_params->msi_data;
1672 	srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
1673 	srng->intr_batch_cntr_thres_entries =
1674 		ring_params->intr_batch_cntr_thres_entries;
1675 	srng->pointer_timer_threshold =
1676 		ring_params->pointer_timer_threshold;
1677 	srng->pointer_num_threshold =
1678 		ring_params->pointer_num_threshold;
1679 
1680 	if (!idle_check)
1681 		srng->prefetch_timer = ring_params->prefetch_timer;
1682 	srng->hal_soc = hal_soc;
1683 	hal_srng_set_msi2_params(srng, ring_params);
1684 	hal_srng_update_high_wm_thresholds(srng);
1685 
1686 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
1687 		srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
1688 			+ (ring_num * ring_config->reg_size[i]);
1689 	}
1690 
1691 	/* Zero out the entire ring memory */
1692 	qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
1693 		srng->num_entries) << 2);
1694 
1695 	srng->flags = ring_params->flags;
1696 
1697 	/* For cached descriptors flush and invalidate the memory*/
1698 	if (srng->flags & HAL_SRNG_CACHED_DESC) {
1699 		qdf_nbuf_dma_clean_range(
1700 				srng->ring_base_vaddr,
1701 				srng->ring_base_vaddr +
1702 				((srng->entry_size * srng->num_entries)));
1703 		qdf_nbuf_dma_inv_range(
1704 				srng->ring_base_vaddr,
1705 				srng->ring_base_vaddr +
1706 				((srng->entry_size * srng->num_entries)));
1707 	}
1708 #ifdef BIG_ENDIAN_HOST
1709 		/* TODO: See if we should we get these flags from caller */
1710 	srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
1711 	srng->flags |= HAL_SRNG_MSI_SWAP;
1712 	srng->flags |= HAL_SRNG_RING_PTR_SWAP;
1713 #endif
1714 
1715 	hal_srng_last_desc_cleared_init(srng);
1716 
1717 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1718 		srng->u.src_ring.hp = 0;
1719 		srng->u.src_ring.reap_hp = srng->ring_size -
1720 			srng->entry_size;
1721 		srng->u.src_ring.tp_addr =
1722 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1723 		srng->u.src_ring.low_threshold =
1724 			ring_params->low_threshold * srng->entry_size;
1725 
1726 		if (srng->u.src_ring.tp_addr)
1727 			qdf_mem_zero(srng->u.src_ring.tp_addr,
1728 				     sizeof(*hal->shadow_rdptr_mem_vaddr));
1729 
1730 		if (ring_config->lmac_ring) {
1731 			/* For LMAC rings, head pointer updates will be done
1732 			 * through FW by writing to a shared memory location
1733 			 */
1734 			srng->u.src_ring.hp_addr =
1735 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1736 					HAL_SRNG_LMAC1_ID_START]);
1737 			srng->flags |= HAL_SRNG_LMAC_RING;
1738 
1739 			if (srng->u.src_ring.hp_addr)
1740 				qdf_mem_zero(srng->u.src_ring.hp_addr,
1741 					sizeof(*hal->shadow_wrptr_mem_vaddr));
1742 
1743 		} else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
1744 			srng->u.src_ring.hp_addr =
1745 				hal_get_window_address(hal,
1746 						SRNG_SRC_ADDR(srng, HP));
1747 
1748 			if (CHECK_SHADOW_REGISTERS) {
1749 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1750 				    QDF_TRACE_LEVEL_ERROR,
1751 				    "%s: Ring (%d, %d) missing shadow config",
1752 				    __func__, ring_type, ring_num);
1753 			}
1754 		} else {
1755 			hal_validate_shadow_register(hal,
1756 						     SRNG_SRC_ADDR(srng, HP),
1757 						     srng->u.src_ring.hp_addr);
1758 		}
1759 	} else {
1760 		/* During initialization loop count in all the descriptors
1761 		 * will be set to zero, and HW will set it to 1 on completing
1762 		 * descriptor update in first loop, and increments it by 1 on
1763 		 * subsequent loops (loop count wraps around after reaching
1764 		 * 0xffff). The 'loop_cnt' in SW ring state is the expected
1765 		 * loop count in descriptors updated by HW (to be processed
1766 		 * by SW).
1767 		 */
1768 		hal_srng_set_nf_thresholds(srng, ring_params);
1769 		srng->u.dst_ring.loop_cnt = 1;
1770 		srng->u.dst_ring.tp = 0;
1771 		srng->u.dst_ring.hp_addr =
1772 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1773 
1774 		if (srng->u.dst_ring.hp_addr)
1775 			qdf_mem_zero(srng->u.dst_ring.hp_addr,
1776 				     sizeof(*hal->shadow_rdptr_mem_vaddr));
1777 
1778 		if (ring_config->lmac_ring) {
1779 			/* For LMAC rings, tail pointer updates will be done
1780 			 * through FW by writing to a shared memory location
1781 			 */
1782 			srng->u.dst_ring.tp_addr =
1783 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1784 				HAL_SRNG_LMAC1_ID_START]);
1785 			srng->flags |= HAL_SRNG_LMAC_RING;
1786 
1787 			if (srng->u.dst_ring.tp_addr)
1788 				qdf_mem_zero(srng->u.dst_ring.tp_addr,
1789 					sizeof(*hal->shadow_wrptr_mem_vaddr));
1790 
1791 		} else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
1792 			srng->u.dst_ring.tp_addr =
1793 				hal_get_window_address(hal,
1794 						SRNG_DST_ADDR(srng, TP));
1795 
1796 			if (CHECK_SHADOW_REGISTERS) {
1797 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1798 				    QDF_TRACE_LEVEL_ERROR,
1799 				    "%s: Ring (%d, %d) missing shadow config",
1800 				    __func__, ring_type, ring_num);
1801 			}
1802 		} else {
1803 			hal_validate_shadow_register(hal,
1804 						     SRNG_DST_ADDR(srng, TP),
1805 						     srng->u.dst_ring.tp_addr);
1806 		}
1807 	}
1808 
1809 	if (!(ring_config->lmac_ring)) {
1810 		/*
1811 		 * UMAC reset has idle check enabled.
1812 		 * During UMAC reset Tx ring halt is set
1813 		 * by Wi-Fi FW during pre-reset stage,
1814 		 * avoid Tx ring halt again.
1815 		 */
1816 		if (idle_check && idx) {
1817 			if (!hal->ops->hal_tx_ring_halt_get(hal_hdl)) {
1818 				qdf_print("\nTx ring halt not set:Ring(%d, %d)",
1819 					  ring_type, ring_num);
1820 				qdf_assert_always(0);
1821 			}
1822 			hal_srng_hw_init(hal, srng, idle_check, idx);
1823 			goto ce_setup;
1824 		}
1825 
1826 		if (idx) {
1827 			hal->ops->hal_tx_ring_halt_set(hal_hdl);
1828 			do {
1829 				hal_info("Waiting for ring reset");
1830 			} while (!(hal->ops->hal_tx_ring_halt_poll(hal_hdl)));
1831 		}
1832 		hal_srng_hw_init(hal, srng, idle_check, idx);
1833 
1834 		if (idx) {
1835 			hal->ops->hal_tx_ring_halt_reset(hal_hdl);
1836 		}
1837 
1838 ce_setup:
1839 		if (ring_type == CE_DST) {
1840 			srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
1841 			hal_ce_dst_setup(hal, srng, ring_num);
1842 		}
1843 	}
1844 
1845 	SRNG_LOCK_INIT(&srng->lock);
1846 
1847 	srng->srng_event = 0;
1848 
1849 	srng->initialized = true;
1850 
1851 	return (void *)srng;
1852 }
1853 qdf_export_symbol(hal_srng_setup_idx);
1854 
1855 /**
1856  * hal_srng_setup - Initialize HW SRNG ring.
1857  * @hal_soc: Opaque HAL SOC handle
1858  * @ring_type: one of the types from hal_ring_type
1859  * @ring_num: Ring number if there are multiple rings of same type (staring
1860  * from 0)
1861  * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
1862  * @ring_params: SRNG ring params in hal_srng_params structure.
1863  * @idle_check: Check if ring is idle
1864  *
1865  * Callers are expected to allocate contiguous ring memory of size
1866  * 'num_entries * entry_size' bytes and pass the physical and virtual base
1867  * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
1868  * hal_srng_params structure. Ring base address should be 8 byte aligned
1869  * and size of each ring entry should be queried using the API
1870  * hal_srng_get_entrysize
1871  *
1872  * Return: Opaque pointer to ring on success
1873  *		 NULL on failure (if given ring is not available)
1874  */
1875 void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
1876 		     int mac_id, struct hal_srng_params *ring_params,
1877 		     bool idle_check)
1878 {
1879 	return hal_srng_setup_idx(hal_soc, ring_type, ring_num, mac_id,
1880 				  ring_params, idle_check, 0);
1881 }
1882 qdf_export_symbol(hal_srng_setup);
1883 
1884 void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl,
1885 		      bool umac_reset_inprogress)
1886 {
1887 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1888 	SRNG_LOCK_DESTROY(&srng->lock);
1889 	srng->initialized = 0;
1890 	if (umac_reset_inprogress)
1891 		hal_srng_hw_disable(hal_soc, srng);
1892 }
1893 qdf_export_symbol(hal_srng_cleanup);
1894 
1895 uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
1896 {
1897 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1898 	struct hal_hw_srng_config *ring_config =
1899 		HAL_SRNG_CONFIG(hal, ring_type);
1900 	return ring_config->entry_size << 2;
1901 }
1902 qdf_export_symbol(hal_srng_get_entrysize);
1903 
1904 uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
1905 {
1906 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1907 	struct hal_hw_srng_config *ring_config =
1908 		HAL_SRNG_CONFIG(hal, ring_type);
1909 
1910 	return ring_config->max_size / ring_config->entry_size;
1911 }
1912 qdf_export_symbol(hal_srng_max_entries);
1913 
1914 enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
1915 {
1916 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1917 	struct hal_hw_srng_config *ring_config =
1918 		HAL_SRNG_CONFIG(hal, ring_type);
1919 
1920 	return ring_config->ring_dir;
1921 }
1922 
1923 void hal_srng_dump(struct hal_srng *srng)
1924 {
1925 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1926 		hal_debug("=== SRC RING %d ===", srng->ring_id);
1927 		hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
1928 			  srng->u.src_ring.hp,
1929 			  srng->u.src_ring.reap_hp,
1930 			  *srng->u.src_ring.tp_addr,
1931 			  srng->u.src_ring.cached_tp);
1932 	} else {
1933 		hal_debug("=== DST RING %d ===", srng->ring_id);
1934 		hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
1935 			  srng->u.dst_ring.tp,
1936 			  *srng->u.dst_ring.hp_addr,
1937 			  srng->u.dst_ring.cached_hp,
1938 			  srng->u.dst_ring.loop_cnt);
1939 	}
1940 }
1941 
1942 void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
1943 			 hal_ring_handle_t hal_ring_hdl,
1944 			 struct hal_srng_params *ring_params)
1945 {
1946 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1947 	int i =0;
1948 	ring_params->ring_id = srng->ring_id;
1949 	ring_params->ring_dir = srng->ring_dir;
1950 	ring_params->entry_size = srng->entry_size;
1951 
1952 	ring_params->ring_base_paddr = srng->ring_base_paddr;
1953 	ring_params->ring_base_vaddr = srng->ring_base_vaddr;
1954 	ring_params->num_entries = srng->num_entries;
1955 	ring_params->msi_addr = srng->msi_addr;
1956 	ring_params->msi_data = srng->msi_data;
1957 	ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
1958 	ring_params->intr_batch_cntr_thres_entries =
1959 		srng->intr_batch_cntr_thres_entries;
1960 	ring_params->low_threshold = srng->u.src_ring.low_threshold;
1961 	ring_params->flags = srng->flags;
1962 	ring_params->ring_id = srng->ring_id;
1963 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
1964 		ring_params->hwreg_base[i] = srng->hwreg_base[i];
1965 
1966 	hal_srng_get_nf_params(srng, ring_params);
1967 }
1968 qdf_export_symbol(hal_get_srng_params);
1969 
1970 void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
1971 				 uint32_t low_threshold)
1972 {
1973 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1974 	srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
1975 }
1976 qdf_export_symbol(hal_set_low_threshold);
1977 
1978 #ifdef FEATURE_RUNTIME_PM
1979 void
1980 hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
1981 			 hal_ring_handle_t hal_ring_hdl,
1982 			 uint32_t rtpm_id)
1983 {
1984 	struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
1985 
1986 	if (qdf_unlikely(!hal_ring_hdl)) {
1987 		qdf_print("Error: Invalid hal_ring\n");
1988 		return;
1989 	}
1990 
1991 	if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) {
1992 		if (hif_system_pm_state_check(hal_soc->hif_handle)) {
1993 			hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
1994 			hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
1995 			hal_srng_inc_flush_cnt(hal_ring_hdl);
1996 		} else {
1997 			hal_srng_access_end(hal_soc_hdl, hal_ring_hdl);
1998 		}
1999 
2000 		hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id);
2001 	} else {
2002 		hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
2003 		hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
2004 		hal_srng_inc_flush_cnt(hal_ring_hdl);
2005 	}
2006 }
2007 
2008 qdf_export_symbol(hal_srng_rtpm_access_end);
2009 #endif /* FEATURE_RUNTIME_PM */
2010 
2011 #ifdef FORCE_WAKE
2012 void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
2013 {
2014 	struct hal_soc *hal_soc = (struct hal_soc *)soc;
2015 	hal_soc->init_phase = init_phase;
2016 }
2017 #endif /* FORCE_WAKE */
2018