xref: /wlan-dirver/qca-wifi-host-cmn/hal/wifi3.0/hal_srng.c (revision 6f3a375902d676398fbb5b8710604e6236bff43f)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "hal_hw_headers.h"
21 #include "hal_api.h"
22 #include "hal_reo.h"
23 #include "target_type.h"
24 #include "qdf_module.h"
25 #include "wcss_version.h"
26 #include <qdf_tracepoint.h>
27 #include "qdf_ssr_driver_dump.h"
28 
29 struct tcl_data_cmd gtcl_data_symbol __attribute__((used));
30 
31 #ifdef QCA_WIFI_QCA8074
32 void hal_qca6290_attach(struct hal_soc *hal);
33 #endif
34 #ifdef QCA_WIFI_QCA8074
35 void hal_qca8074_attach(struct hal_soc *hal);
36 #endif
37 #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
38 	defined(QCA_WIFI_QCA9574)
39 void hal_qca8074v2_attach(struct hal_soc *hal);
40 #endif
41 #ifdef QCA_WIFI_QCA6390
42 void hal_qca6390_attach(struct hal_soc *hal);
43 #endif
44 #ifdef QCA_WIFI_QCA6490
45 void hal_qca6490_attach(struct hal_soc *hal);
46 #endif
47 #ifdef QCA_WIFI_QCN9000
48 void hal_qcn9000_attach(struct hal_soc *hal);
49 #endif
50 #ifdef QCA_WIFI_QCN9224
51 void hal_qcn9224v1_attach(struct hal_soc *hal);
52 void hal_qcn9224v2_attach(struct hal_soc *hal);
53 #endif
54 #if defined(QCA_WIFI_QCN6122) || defined(QCA_WIFI_QCN9160)
55 void hal_qcn6122_attach(struct hal_soc *hal);
56 #endif
57 #ifdef QCA_WIFI_QCA6750
58 void hal_qca6750_attach(struct hal_soc *hal);
59 #endif
60 #ifdef QCA_WIFI_QCA5018
61 void hal_qca5018_attach(struct hal_soc *hal);
62 #endif
63 #ifdef QCA_WIFI_QCA5332
64 void hal_qca5332_attach(struct hal_soc *hal);
65 #endif
66 #ifdef QCA_WIFI_KIWI
67 void hal_kiwi_attach(struct hal_soc *hal);
68 #endif
69 
70 #ifdef ENABLE_VERBOSE_DEBUG
71 bool is_hal_verbose_debug_enabled;
72 #endif
73 
74 #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x)	((x) + 0x4)
75 #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x)	((x) + 0x8)
76 #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x)	((x) + 0xc)
77 #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x)	((x) + 0x10)
78 
79 #ifdef ENABLE_HAL_REG_WR_HISTORY
80 struct hal_reg_write_fail_history hal_reg_wr_hist;
81 
82 void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
83 				 uint32_t offset,
84 				 uint32_t wr_val, uint32_t rd_val)
85 {
86 	struct hal_reg_write_fail_entry *record;
87 	int idx;
88 
89 	idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
90 					 HAL_REG_WRITE_HIST_SIZE);
91 
92 	record = &hal_soc->reg_wr_fail_hist->record[idx];
93 
94 	record->timestamp = qdf_get_log_timestamp();
95 	record->reg_offset = offset;
96 	record->write_val = wr_val;
97 	record->read_val = rd_val;
98 }
99 
100 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
101 {
102 	hal->reg_wr_fail_hist = &hal_reg_wr_hist;
103 
104 	qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
105 }
106 #else
107 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
108 {
109 }
110 #endif
111 
112 /**
113  * hal_get_srng_ring_id() - get the ring id of a described ring
114  * @hal: hal_soc data structure
115  * @ring_type: type enum describing the ring
116  * @ring_num: which ring of the ring type
117  * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
118  *
119  * Return: the ring id or -EINVAL if the ring does not exist.
120  */
121 static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
122 				int ring_num, int mac_id)
123 {
124 	struct hal_hw_srng_config *ring_config =
125 		HAL_SRNG_CONFIG(hal, ring_type);
126 	int ring_id;
127 
128 	if (ring_num >= ring_config->max_rings) {
129 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
130 			  "%s: ring_num exceeded maximum no. of supported rings",
131 			  __func__);
132 		/* TODO: This is a programming error. Assert if this happens */
133 		return -EINVAL;
134 	}
135 
136 	/*
137 	 * Some DMAC rings share a common source ring, hence don't provide them
138 	 * with separate ring IDs per LMAC.
139 	 */
140 	if (ring_config->lmac_ring && !ring_config->dmac_cmn_ring) {
141 		ring_id = (ring_config->start_ring_id + ring_num +
142 			   (mac_id * HAL_MAX_RINGS_PER_LMAC));
143 	} else {
144 		ring_id = ring_config->start_ring_id + ring_num;
145 	}
146 
147 	return ring_id;
148 }
149 
150 static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
151 {
152 	/* TODO: Should we allocate srng structures dynamically? */
153 	return &(hal->srng_list[ring_id]);
154 }
155 
156 #ifndef SHADOW_REG_CONFIG_DISABLED
157 #define HP_OFFSET_IN_REG_START 1
158 #define OFFSET_FROM_HP_TO_TP 4
159 static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
160 					  int shadow_config_index,
161 					  int ring_type,
162 					  int ring_num)
163 {
164 	struct hal_srng *srng;
165 	int ring_id;
166 	struct hal_hw_srng_config *ring_config =
167 		HAL_SRNG_CONFIG(hal_soc, ring_type);
168 
169 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
170 	if (ring_id < 0)
171 		return;
172 
173 	srng = hal_get_srng(hal_soc, ring_id);
174 
175 	if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
176 		srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
177 			+ hal_soc->dev_base_addr;
178 		hal_debug("tp_addr=%pK dev base addr %pK index %u",
179 			  srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
180 			  shadow_config_index);
181 	} else {
182 		srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
183 			+ hal_soc->dev_base_addr;
184 		hal_debug("hp_addr=%pK dev base addr %pK index %u",
185 			  srng->u.src_ring.hp_addr,
186 			  hal_soc->dev_base_addr, shadow_config_index);
187 	}
188 
189 }
190 #endif
191 
192 #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
193 void hal_set_one_target_reg_config(struct hal_soc *hal,
194 				   uint32_t target_reg_offset,
195 				   int list_index)
196 {
197 	int i = list_index;
198 
199 	qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
200 	hal->list_shadow_reg_config[i].target_register =
201 		target_reg_offset;
202 	hal->num_generic_shadow_regs_configured++;
203 }
204 
205 qdf_export_symbol(hal_set_one_target_reg_config);
206 
207 #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
208 #define MAX_REO_REMAP_SHADOW_REGS 4
209 QDF_STATUS hal_set_shadow_regs(void *hal_soc)
210 {
211 	uint32_t target_reg_offset;
212 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
213 	int i;
214 	struct hal_hw_srng_config *srng_config =
215 		&hal->hw_srng_table[WBM2SW_RELEASE];
216 	uint32_t reo_reg_base;
217 
218 	reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
219 
220 	target_reg_offset =
221 		HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
222 
223 	for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
224 		hal_set_one_target_reg_config(hal, target_reg_offset, i);
225 		target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
226 	}
227 
228 	target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
229 	target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
230 			      * HAL_IPA_TX_COMP_RING_IDX);
231 
232 	hal_set_one_target_reg_config(hal, target_reg_offset, i);
233 	return QDF_STATUS_SUCCESS;
234 }
235 
236 qdf_export_symbol(hal_set_shadow_regs);
237 
238 QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
239 {
240 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
241 	int shadow_config_index = hal->num_shadow_registers_configured;
242 	int i;
243 	int num_regs = hal->num_generic_shadow_regs_configured;
244 
245 	for (i = 0; i < num_regs; i++) {
246 		qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
247 		hal->shadow_config[shadow_config_index].addr =
248 			hal->list_shadow_reg_config[i].target_register;
249 		hal->list_shadow_reg_config[i].shadow_config_index =
250 			shadow_config_index;
251 		hal->list_shadow_reg_config[i].va =
252 			SHADOW_REGISTER(shadow_config_index) +
253 			(uintptr_t)hal->dev_base_addr;
254 		hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
255 			  hal->shadow_config[shadow_config_index].addr,
256 			  SHADOW_REGISTER(shadow_config_index),
257 			  shadow_config_index);
258 		shadow_config_index++;
259 		hal->num_shadow_registers_configured++;
260 	}
261 	return QDF_STATUS_SUCCESS;
262 }
263 
264 qdf_export_symbol(hal_construct_shadow_regs);
265 #endif
266 
267 #ifndef SHADOW_REG_CONFIG_DISABLED
268 
269 QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
270 				     int ring_type,
271 				     int ring_num)
272 {
273 	uint32_t target_register;
274 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
275 	struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
276 	int shadow_config_index = hal->num_shadow_registers_configured;
277 
278 	if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
279 		QDF_ASSERT(0);
280 		return QDF_STATUS_E_RESOURCES;
281 	}
282 
283 	hal->num_shadow_registers_configured++;
284 
285 	target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
286 	target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
287 			    *ring_num);
288 
289 	/* if the ring is a dst ring, we need to shadow the tail pointer */
290 	if (srng_config->ring_dir == HAL_SRNG_DST_RING)
291 		target_register += OFFSET_FROM_HP_TO_TP;
292 
293 	hal->shadow_config[shadow_config_index].addr = target_register;
294 
295 	/* update hp/tp addr in the hal_soc structure*/
296 	hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
297 				      ring_num);
298 
299 	hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
300 		  target_register,
301 		  SHADOW_REGISTER(shadow_config_index),
302 		  shadow_config_index,
303 		  ring_type, ring_num);
304 
305 	return QDF_STATUS_SUCCESS;
306 }
307 
308 qdf_export_symbol(hal_set_one_shadow_config);
309 
310 QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
311 {
312 	int ring_type, ring_num;
313 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
314 
315 	for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
316 		struct hal_hw_srng_config *srng_config =
317 			&hal->hw_srng_table[ring_type];
318 
319 		if (ring_type == CE_SRC ||
320 		    ring_type == CE_DST ||
321 		    ring_type == CE_DST_STATUS)
322 			continue;
323 
324 		if (srng_config->lmac_ring)
325 			continue;
326 
327 		for (ring_num = 0; ring_num < srng_config->max_rings;
328 		     ring_num++)
329 			hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
330 	}
331 
332 	return QDF_STATUS_SUCCESS;
333 }
334 
335 qdf_export_symbol(hal_construct_srng_shadow_regs);
336 #else
337 
338 QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
339 {
340 	return QDF_STATUS_SUCCESS;
341 }
342 
343 qdf_export_symbol(hal_construct_srng_shadow_regs);
344 
345 QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
346 				     int ring_num)
347 {
348 	return QDF_STATUS_SUCCESS;
349 }
350 qdf_export_symbol(hal_set_one_shadow_config);
351 #endif
352 
353 void hal_get_shadow_config(void *hal_soc,
354 	struct pld_shadow_reg_v2_cfg **shadow_config,
355 	int *num_shadow_registers_configured)
356 {
357 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
358 
359 	*shadow_config = &hal->shadow_config[0].v2;
360 	*num_shadow_registers_configured =
361 		hal->num_shadow_registers_configured;
362 }
363 qdf_export_symbol(hal_get_shadow_config);
364 
365 #ifdef CONFIG_SHADOW_V3
366 void hal_get_shadow_v3_config(void *hal_soc,
367 			      struct pld_shadow_reg_v3_cfg **shadow_config,
368 			      int *num_shadow_registers_configured)
369 {
370 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
371 
372 	*shadow_config = &hal->shadow_config[0].v3;
373 	*num_shadow_registers_configured =
374 		hal->num_shadow_registers_configured;
375 }
376 qdf_export_symbol(hal_get_shadow_v3_config);
377 #endif
378 
379 static bool hal_validate_shadow_register(struct hal_soc *hal,
380 					 uint32_t *destination,
381 					 uint32_t *shadow_address)
382 {
383 	unsigned int index;
384 	uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
385 	int destination_ba_offset =
386 		((char *)destination) - (char *)hal->dev_base_addr;
387 
388 	index =	shadow_address - shadow_0_offset;
389 
390 	if (index >= MAX_SHADOW_REGISTERS) {
391 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
392 			"%s: index %x out of bounds", __func__, index);
393 		goto error;
394 	} else if (hal->shadow_config[index].addr != destination_ba_offset) {
395 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
396 			"%s: sanity check failure, expected %x, found %x",
397 			__func__, destination_ba_offset,
398 			hal->shadow_config[index].addr);
399 		goto error;
400 	}
401 	return true;
402 error:
403 	qdf_print("baddr %pK, destination %pK, shadow_address %pK s0offset %pK index %x",
404 		  hal->dev_base_addr, destination, shadow_address,
405 		  shadow_0_offset, index);
406 	QDF_BUG(0);
407 	return false;
408 }
409 
410 static void hal_target_based_configure(struct hal_soc *hal)
411 {
412 	/*
413 	 * Indicate Initialization of srngs to avoid force wake
414 	 * as umac power collapse is not enabled yet
415 	 */
416 	hal->init_phase = true;
417 
418 	switch (hal->target_type) {
419 #ifdef QCA_WIFI_QCA6290
420 	case TARGET_TYPE_QCA6290:
421 		hal->use_register_windowing = true;
422 		hal_qca6290_attach(hal);
423 	break;
424 #endif
425 #ifdef QCA_WIFI_QCA6390
426 	case TARGET_TYPE_QCA6390:
427 		hal->use_register_windowing = true;
428 		hal_qca6390_attach(hal);
429 	break;
430 #endif
431 #ifdef QCA_WIFI_QCA6490
432 	case TARGET_TYPE_QCA6490:
433 		hal->use_register_windowing = true;
434 		hal_qca6490_attach(hal);
435 	break;
436 #endif
437 #ifdef QCA_WIFI_QCA6750
438 		case TARGET_TYPE_QCA6750:
439 			hal->use_register_windowing = true;
440 			hal->static_window_map = true;
441 			hal_qca6750_attach(hal);
442 		break;
443 #endif
444 #ifdef QCA_WIFI_KIWI
445 	case TARGET_TYPE_KIWI:
446 	case TARGET_TYPE_MANGO:
447 	case TARGET_TYPE_PEACH:
448 		hal->use_register_windowing = true;
449 		hal_kiwi_attach(hal);
450 		break;
451 #endif
452 #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
453 	case TARGET_TYPE_QCA8074:
454 		hal_qca8074_attach(hal);
455 	break;
456 #endif
457 
458 #if defined(QCA_WIFI_QCA8074V2)
459 	case TARGET_TYPE_QCA8074V2:
460 		hal_qca8074v2_attach(hal);
461 	break;
462 #endif
463 
464 #if defined(QCA_WIFI_QCA6018)
465 	case TARGET_TYPE_QCA6018:
466 		hal_qca8074v2_attach(hal);
467 	break;
468 #endif
469 
470 #if defined(QCA_WIFI_QCA9574)
471 	case TARGET_TYPE_QCA9574:
472 		hal_qca8074v2_attach(hal);
473 	break;
474 #endif
475 
476 #if defined(QCA_WIFI_QCN6122)
477 	case TARGET_TYPE_QCN6122:
478 		hal->use_register_windowing = true;
479 		/*
480 		 * Static window map  is enabled for qcn9000 to use 2mb bar
481 		 * size and use multiple windows to write into registers.
482 		 */
483 		hal->static_window_map = true;
484 		hal_qcn6122_attach(hal);
485 		break;
486 #endif
487 
488 #if defined(QCA_WIFI_QCN9160)
489 	case TARGET_TYPE_QCN9160:
490 		hal->use_register_windowing = true;
491 		/*
492 		 * Static window map  is enabled for qcn9160 to use 2mb bar
493 		 * size and use multiple windows to write into registers.
494 		 */
495 		hal->static_window_map = true;
496 		hal_qcn6122_attach(hal);
497 		break;
498 #endif
499 
500 #ifdef QCA_WIFI_QCN9000
501 	case TARGET_TYPE_QCN9000:
502 		hal->use_register_windowing = true;
503 		/*
504 		 * Static window map  is enabled for qcn9000 to use 2mb bar
505 		 * size and use multiple windows to write into registers.
506 		 */
507 		hal->static_window_map = true;
508 		hal_qcn9000_attach(hal);
509 	break;
510 #endif
511 #ifdef QCA_WIFI_QCA5018
512 	case TARGET_TYPE_QCA5018:
513 		hal->use_register_windowing = true;
514 		hal->static_window_map = true;
515 		hal_qca5018_attach(hal);
516 	break;
517 #endif
518 #ifdef QCA_WIFI_QCN9224
519 	case TARGET_TYPE_QCN9224:
520 		hal->use_register_windowing = true;
521 		hal->static_window_map = true;
522 		if (hal->version == 1)
523 			hal_qcn9224v1_attach(hal);
524 		else
525 			hal_qcn9224v2_attach(hal);
526 	break;
527 #endif
528 #ifdef QCA_WIFI_QCA5332
529 	case TARGET_TYPE_QCA5332:
530 		hal->use_register_windowing = true;
531 		hal->static_window_map = true;
532 		hal_qca5332_attach(hal);
533 	break;
534 #endif
535 #ifdef QCA_WIFI_WCN6450
536 	case TARGET_TYPE_WCN6450:
537 		hal->use_register_windowing = true;
538 		hal->static_window_map = true;
539 		hal_wcn6450_attach(hal);
540 	break;
541 #endif
542 	default:
543 	break;
544 	}
545 }
546 
547 uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
548 {
549 	struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
550 	struct hif_target_info *tgt_info =
551 		hif_get_target_info_handle(hal_soc->hif_handle);
552 
553 	return tgt_info->target_type;
554 }
555 
556 qdf_export_symbol(hal_get_target_type);
557 
558 #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
559 /**
560  * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
561  * @hal: hal_soc pointer
562  *
563  * Return: true if throughput is high, else false.
564  */
565 static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
566 {
567 	int bw_level = hif_get_bandwidth_level(hal->hif_handle);
568 
569 	return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
570 }
571 
572 static inline
573 char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
574 				    char *buf, qdf_size_t size)
575 {
576 	qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
577 		      srng->wstats.enqueues, srng->wstats.dequeues,
578 		      srng->wstats.coalesces, srng->wstats.direct);
579 	return buf;
580 }
581 
582 /* bytes for local buffer */
583 #define HAL_REG_WRITE_SRNG_STATS_LEN 100
584 
585 #ifndef WLAN_SOFTUMAC_SUPPORT
586 void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
587 {
588 	struct hal_srng *srng;
589 	char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
590 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
591 
592 	srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
593 	hal_debug("SW2TCL1: %s",
594 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
595 
596 	srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
597 	hal_debug("WBM2SW0: %s",
598 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
599 
600 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
601 	hal_debug("REO2SW1: %s",
602 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
603 
604 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
605 	hal_debug("REO2SW2: %s",
606 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
607 
608 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
609 	hal_debug("REO2SW3: %s",
610 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
611 }
612 #else
613 void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
614 {
615 }
616 #endif
617 
618 void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
619 {
620 	uint32_t *hist;
621 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
622 
623 	hist = hal->stats.wstats.sched_delay;
624 	hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
625 		  qdf_atomic_read(&hal->stats.wstats.enqueues),
626 		  hal->stats.wstats.dequeues,
627 		  qdf_atomic_read(&hal->stats.wstats.coalesces),
628 		  qdf_atomic_read(&hal->stats.wstats.direct),
629 		  qdf_atomic_read(&hal->stats.wstats.q_depth),
630 		  hal->stats.wstats.max_q_depth,
631 		  hist[REG_WRITE_SCHED_DELAY_SUB_100us],
632 		  hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
633 		  hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
634 		  hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
635 }
636 
637 int hal_get_reg_write_pending_work(void *hal_soc)
638 {
639 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
640 
641 	return qdf_atomic_read(&hal->active_work_cnt);
642 }
643 
644 #endif
645 
646 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
647 #ifdef MEMORY_DEBUG
648 /*
649  * Length of the queue(array) used to hold delayed register writes.
650  * Must be a multiple of 2.
651  */
652 #define HAL_REG_WRITE_QUEUE_LEN 128
653 #else
654 #define HAL_REG_WRITE_QUEUE_LEN 32
655 #endif
656 
657 /**
658  * hal_process_reg_write_q_elem() - process a register write queue element
659  * @hal: hal_soc pointer
660  * @q_elem: pointer to hal register write queue element
661  *
662  * Return: The value which was written to the address
663  */
664 static uint32_t
665 hal_process_reg_write_q_elem(struct hal_soc *hal,
666 			     struct hal_reg_write_q_elem *q_elem)
667 {
668 	struct hal_srng *srng = q_elem->srng;
669 	uint32_t write_val;
670 
671 	SRNG_LOCK(&srng->lock);
672 
673 	srng->reg_write_in_progress = false;
674 	srng->wstats.dequeues++;
675 
676 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
677 		q_elem->dequeue_val = srng->u.src_ring.hp;
678 		hal_write_address_32_mb(hal,
679 					srng->u.src_ring.hp_addr,
680 					srng->u.src_ring.hp, false);
681 		write_val = srng->u.src_ring.hp;
682 	} else {
683 		q_elem->dequeue_val = srng->u.dst_ring.tp;
684 		hal_write_address_32_mb(hal,
685 					srng->u.dst_ring.tp_addr,
686 					srng->u.dst_ring.tp, false);
687 		write_val = srng->u.dst_ring.tp;
688 	}
689 
690 	q_elem->valid = 0;
691 	srng->last_dequeue_time = q_elem->dequeue_time;
692 	SRNG_UNLOCK(&srng->lock);
693 
694 	return write_val;
695 }
696 
697 /**
698  * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
699  * @hal: hal_soc pointer
700  * @delay_us: delay in us
701  *
702  * Return: None
703  */
704 static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
705 						       uint64_t delay_us)
706 {
707 	uint32_t *hist;
708 
709 	hist = hal->stats.wstats.sched_delay;
710 
711 	if (delay_us < 100)
712 		hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
713 	else if (delay_us < 1000)
714 		hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
715 	else if (delay_us < 5000)
716 		hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
717 	else
718 		hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
719 }
720 
721 #ifdef SHADOW_WRITE_DELAY
722 
723 #define SHADOW_WRITE_MIN_DELTA_US	5
724 #define SHADOW_WRITE_DELAY_US		50
725 
726 /*
727  * Never add those srngs which are performance relate.
728  * The delay itself will hit performance heavily.
729  */
730 #define IS_SRNG_MATCH(s)	((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
731 				 (s)->ring_id == HAL_SRNG_CE_1_DST)
732 
733 static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
734 {
735 	struct hal_srng *srng = elem->srng;
736 	struct hal_soc *hal;
737 	qdf_time_t now;
738 	qdf_iomem_t real_addr;
739 
740 	if (qdf_unlikely(!srng))
741 		return false;
742 
743 	hal = srng->hal_soc;
744 	if (qdf_unlikely(!hal))
745 		return false;
746 
747 	/* Check if it is target srng, and valid shadow reg */
748 	if (qdf_likely(!IS_SRNG_MATCH(srng)))
749 		return false;
750 
751 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
752 		real_addr = SRNG_SRC_ADDR(srng, HP);
753 	else
754 		real_addr = SRNG_DST_ADDR(srng, TP);
755 	if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
756 		return false;
757 
758 	/* Check the time delta from last write of same srng */
759 	now = qdf_get_log_timestamp();
760 	if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
761 		SHADOW_WRITE_MIN_DELTA_US)
762 		return false;
763 
764 	/* Delay dequeue, and record */
765 	qdf_udelay(SHADOW_WRITE_DELAY_US);
766 
767 	srng->wstats.dequeue_delay++;
768 	hal->stats.wstats.dequeue_delay++;
769 
770 	return true;
771 }
772 #else
773 static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
774 {
775 	return false;
776 }
777 #endif
778 
779 /**
780  * hal_reg_write_work() - Worker to process delayed writes
781  * @arg: hal_soc pointer
782  *
783  * Return: None
784  */
785 static void hal_reg_write_work(void *arg)
786 {
787 	int32_t q_depth, write_val;
788 	struct hal_soc *hal = arg;
789 	struct hal_reg_write_q_elem *q_elem;
790 	uint64_t delta_us;
791 	uint8_t ring_id;
792 	uint32_t *addr;
793 	uint32_t num_processed = 0;
794 
795 	q_elem = &hal->reg_write_queue[(hal->read_idx)];
796 	q_elem->work_scheduled_time = qdf_get_log_timestamp();
797 	q_elem->cpu_id = qdf_get_cpu();
798 
799 	/* Make sure q_elem consistent in the memory for multi-cores */
800 	qdf_rmb();
801 	if (!q_elem->valid)
802 		return;
803 
804 	q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
805 	if (q_depth > hal->stats.wstats.max_q_depth)
806 		hal->stats.wstats.max_q_depth =  q_depth;
807 
808 	if (hif_prevent_link_low_power_states(hal->hif_handle)) {
809 		hal->stats.wstats.prevent_l1_fails++;
810 		return;
811 	}
812 
813 	while (true) {
814 		qdf_rmb();
815 		if (!q_elem->valid)
816 			break;
817 
818 		q_elem->dequeue_time = qdf_get_log_timestamp();
819 		ring_id = q_elem->srng->ring_id;
820 		addr = q_elem->addr;
821 		delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
822 						      q_elem->enqueue_time);
823 		hal_reg_write_fill_sched_delay_hist(hal, delta_us);
824 
825 		hal->stats.wstats.dequeues++;
826 		qdf_atomic_dec(&hal->stats.wstats.q_depth);
827 
828 		if (hal_reg_write_need_delay(q_elem))
829 			hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
830 					  q_elem->srng->ring_id, q_elem->addr);
831 
832 		write_val = hal_process_reg_write_q_elem(hal, q_elem);
833 		hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
834 				  hal->read_idx, ring_id, addr, write_val, delta_us);
835 
836 		qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
837 					   q_elem->dequeue_val,
838 					   q_elem->enqueue_time,
839 					   q_elem->dequeue_time);
840 
841 		num_processed++;
842 		hal->read_idx = (hal->read_idx + 1) &
843 					(HAL_REG_WRITE_QUEUE_LEN - 1);
844 		q_elem = &hal->reg_write_queue[(hal->read_idx)];
845 	}
846 
847 	hif_allow_link_low_power_states(hal->hif_handle);
848 	/*
849 	 * Decrement active_work_cnt by the number of elements dequeued after
850 	 * hif_allow_link_low_power_states.
851 	 * This makes sure that hif_try_complete_tasks will wait till we make
852 	 * the bus access in hif_allow_link_low_power_states. This will avoid
853 	 * race condition between delayed register worker and bus suspend
854 	 * (system suspend or runtime suspend).
855 	 *
856 	 * The following decrement should be done at the end!
857 	 */
858 	qdf_atomic_sub(num_processed, &hal->active_work_cnt);
859 }
860 
861 static void __hal_flush_reg_write_work(struct hal_soc *hal)
862 {
863 	qdf_flush_work(&hal->reg_write_work);
864 	qdf_disable_work(&hal->reg_write_work);
865 }
866 
867 void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
868 {	__hal_flush_reg_write_work((struct hal_soc *)hal_handle);
869 }
870 
871 /**
872  * hal_reg_write_enqueue() - enqueue register writes into kworker
873  * @hal_soc: hal_soc pointer
874  * @srng: srng pointer
875  * @addr: iomem address of register
876  * @value: value to be written to iomem address
877  *
878  * This function executes from within the SRNG LOCK
879  *
880  * Return: None
881  */
882 static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
883 				  struct hal_srng *srng,
884 				  void __iomem *addr,
885 				  uint32_t value)
886 {
887 	struct hal_reg_write_q_elem *q_elem;
888 	uint32_t write_idx;
889 
890 	if (srng->reg_write_in_progress) {
891 		hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
892 				  srng->ring_id, addr, value);
893 		qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
894 		srng->wstats.coalesces++;
895 		return;
896 	}
897 
898 	write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
899 
900 	write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
901 
902 	q_elem = &hal_soc->reg_write_queue[write_idx];
903 
904 	if (q_elem->valid) {
905 		hal_err("queue full");
906 		QDF_BUG(0);
907 		return;
908 	}
909 
910 	qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
911 	srng->wstats.enqueues++;
912 
913 	qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
914 
915 	q_elem->srng = srng;
916 	q_elem->addr = addr;
917 	q_elem->enqueue_val = value;
918 	q_elem->enqueue_time = qdf_get_log_timestamp();
919 
920 	/*
921 	 * Before the valid flag is set to true, all the other
922 	 * fields in the q_elem needs to be updated in memory.
923 	 * Else there is a chance that the dequeuing worker thread
924 	 * might read stale entries and process incorrect srng.
925 	 */
926 	qdf_wmb();
927 	q_elem->valid = true;
928 
929 	/*
930 	 * After all other fields in the q_elem has been updated
931 	 * in memory successfully, the valid flag needs to be updated
932 	 * in memory in time too.
933 	 * Else there is a chance that the dequeuing worker thread
934 	 * might read stale valid flag and the work will be bypassed
935 	 * for this round. And if there is no other work scheduled
936 	 * later, this hal register writing won't be updated any more.
937 	 */
938 	qdf_wmb();
939 
940 	srng->reg_write_in_progress  = true;
941 	qdf_atomic_inc(&hal_soc->active_work_cnt);
942 
943 	hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
944 			  write_idx, srng->ring_id, addr, value);
945 
946 	qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
947 		       &hal_soc->reg_write_work);
948 }
949 
950 /**
951  * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
952  * @hal: hal_soc pointer
953  *
954  * Initialize main data structures to process register writes in a delayed
955  * workqueue.
956  *
957  * Return: QDF_STATUS_SUCCESS on success else a QDF error.
958  */
959 static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
960 {
961 	hal->reg_write_wq =
962 		qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
963 	qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
964 	hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
965 					      sizeof(*hal->reg_write_queue));
966 	if (!hal->reg_write_queue) {
967 		hal_err("unable to allocate memory");
968 		QDF_BUG(0);
969 		return QDF_STATUS_E_NOMEM;
970 	}
971 
972 	/* Initial value of indices */
973 	hal->read_idx = 0;
974 	qdf_atomic_set(&hal->write_idx, -1);
975 	return QDF_STATUS_SUCCESS;
976 }
977 
978 /**
979  * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
980  * @hal: hal_soc pointer
981  *
982  * De-initialize main data structures to process register writes in a delayed
983  * workqueue.
984  *
985  * Return: None
986  */
987 static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
988 {
989 	__hal_flush_reg_write_work(hal);
990 
991 	qdf_flush_workqueue(0, hal->reg_write_wq);
992 	qdf_destroy_workqueue(0, hal->reg_write_wq);
993 	qdf_mem_free(hal->reg_write_queue);
994 }
995 
996 #else
997 static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
998 {
999 	return QDF_STATUS_SUCCESS;
1000 }
1001 
1002 static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
1003 {
1004 }
1005 #endif
1006 
1007 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
1008 #ifdef HAL_RECORD_SUSPEND_WRITE
1009 static struct hal_suspend_write_history
1010 		g_hal_suspend_write_history[HAL_SUSPEND_WRITE_HISTORY_MAX];
1011 
1012 static
1013 void hal_event_suspend_record(uint8_t ring_id, uint32_t value, uint32_t count)
1014 {
1015 	uint32_t index = qdf_atomic_read(g_hal_suspend_write_history.index) &
1016 					(HAL_SUSPEND_WRITE_HISTORY_MAX - 1);
1017 	struct hal_suspend_write_record *cur_event =
1018 					&hal_suspend_write_event.record[index];
1019 
1020 	cur_event->ts = qdf_get_log_timestamp();
1021 	cur_event->ring_id = ring_id;
1022 	cur_event->value = value;
1023 	cur_event->direct_wcount = count;
1024 	qdf_atomic_inc(g_hal_suspend_write_history.index);
1025 }
1026 
1027 static inline
1028 void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
1029 {
1030 	if (hif_rtpm_get_state() >= HIF_RTPM_STATE_SUSPENDING)
1031 		hal_event_suspend_record(ring_id, value, count);
1032 }
1033 #else
1034 static inline
1035 void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
1036 {
1037 }
1038 #endif
1039 
1040 #ifdef QCA_WIFI_QCA6750
1041 void hal_delayed_reg_write(struct hal_soc *hal_soc,
1042 			   struct hal_srng *srng,
1043 			   void __iomem *addr,
1044 			   uint32_t value)
1045 {
1046 	uint8_t vote_access;
1047 
1048 	switch (srng->ring_type) {
1049 	case CE_SRC:
1050 	case CE_DST:
1051 	case CE_DST_STATUS:
1052 		vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
1053 						     HIF_EP_VOTE_NONDP_ACCESS);
1054 		if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
1055 		    (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
1056 		     PLD_MHI_STATE_L0 ==
1057 		     pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
1058 			hal_write_address_32_mb(hal_soc, addr, value, false);
1059 			qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1060 			srng->wstats.direct++;
1061 		} else {
1062 			hal_reg_write_enqueue(hal_soc, srng, addr, value);
1063 		}
1064 		break;
1065 	default:
1066 		if (hif_get_ep_vote_access(hal_soc->hif_handle,
1067 		    HIF_EP_VOTE_DP_ACCESS) ==
1068 		    HIF_EP_VOTE_ACCESS_DISABLE ||
1069 		    hal_is_reg_write_tput_level_high(hal_soc) ||
1070 		    PLD_MHI_STATE_L0 ==
1071 		    pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
1072 			hal_write_address_32_mb(hal_soc, addr, value, false);
1073 			qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1074 			srng->wstats.direct++;
1075 		} else {
1076 			hal_reg_write_enqueue(hal_soc, srng, addr, value);
1077 		}
1078 
1079 		break;
1080 	}
1081 }
1082 #else
1083 void hal_delayed_reg_write(struct hal_soc *hal_soc,
1084 			   struct hal_srng *srng,
1085 			   void __iomem *addr,
1086 			   uint32_t value)
1087 {
1088 	if (hal_is_reg_write_tput_level_high(hal_soc) ||
1089 	    pld_is_device_awake(hal_soc->qdf_dev->dev)) {
1090 		qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1091 		srng->wstats.direct++;
1092 		hal_write_address_32_mb(hal_soc, addr, value, false);
1093 	} else {
1094 		hal_reg_write_enqueue(hal_soc, srng, addr, value);
1095 	}
1096 
1097 	hal_record_suspend_write(srng->ring_id, value, srng->wstats.direct);
1098 }
1099 #endif
1100 #endif
1101 
1102 void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
1103 {
1104 	struct hal_soc *hal;
1105 	int i;
1106 
1107 	hal = qdf_mem_common_alloc(sizeof(*hal));
1108 
1109 	if (!hal) {
1110 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1111 			"%s: hal_soc allocation failed", __func__);
1112 		goto fail0;
1113 	}
1114 	hal->hif_handle = hif_handle;
1115 	hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
1116 	hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
1117 	hal->dev_base_addr_cmem = hif_get_dev_ba_cmem(hif_handle); /* CMEM */
1118 	hal->dev_base_addr_pmm = hif_get_dev_ba_pmm(hif_handle); /* PMM */
1119 	hal->qdf_dev = qdf_dev;
1120 	hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
1121 		qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
1122 		HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
1123 	if (!hal->shadow_rdptr_mem_paddr) {
1124 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1125 			"%s: hal->shadow_rdptr_mem_paddr allocation failed",
1126 			__func__);
1127 		goto fail1;
1128 	}
1129 	qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
1130 		     sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
1131 
1132 	hal->shadow_wrptr_mem_vaddr =
1133 		(uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
1134 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
1135 		&(hal->shadow_wrptr_mem_paddr));
1136 	if (!hal->shadow_wrptr_mem_vaddr) {
1137 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1138 			"%s: hal->shadow_wrptr_mem_vaddr allocation failed",
1139 			__func__);
1140 		goto fail2;
1141 	}
1142 	qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
1143 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
1144 
1145 	for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
1146 		hal->srng_list[i].initialized = 0;
1147 		hal->srng_list[i].ring_id = i;
1148 	}
1149 
1150 	qdf_spinlock_create(&hal->register_access_lock);
1151 	hal->register_window = 0;
1152 	hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
1153 	hal->version = hif_get_soc_version(hif_handle);
1154 	hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
1155 
1156 	if (!hal->ops) {
1157 		hal_err("unable to allocable memory for HAL ops");
1158 		goto fail3;
1159 	}
1160 
1161 	hal_target_based_configure(hal);
1162 
1163 	hal_reg_write_fail_history_init(hal);
1164 
1165 	qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
1166 
1167 	qdf_ssr_driver_dump_register_region("hal_soc", hal, sizeof(*hal));
1168 
1169 	qdf_atomic_init(&hal->active_work_cnt);
1170 	if (hal_delayed_reg_write_init(hal) != QDF_STATUS_SUCCESS) {
1171 		hal_err("unable to initialize delayed reg write");
1172 		goto fail4;
1173 	}
1174 
1175 	hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL);
1176 
1177 	return (void *)hal;
1178 fail4:
1179 	qdf_ssr_driver_dump_unregister_region("hal_soc");
1180 	qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
1181 	qdf_mem_free(hal->ops);
1182 fail3:
1183 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
1184 				sizeof(*hal->shadow_wrptr_mem_vaddr) *
1185 				HAL_MAX_LMAC_RINGS,
1186 				hal->shadow_wrptr_mem_vaddr,
1187 				hal->shadow_wrptr_mem_paddr, 0);
1188 fail2:
1189 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
1190 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
1191 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
1192 fail1:
1193 	qdf_mem_common_free(hal);
1194 fail0:
1195 	return NULL;
1196 }
1197 qdf_export_symbol(hal_attach);
1198 
1199 void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
1200 {
1201 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
1202 	mem->dev_base_addr = (void *)hal->dev_base_addr;
1203         mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
1204 	mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
1205         mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
1206 	mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
1207 	hif_read_phy_mem_base((void *)hal->hif_handle,
1208 			      (qdf_dma_addr_t *)&mem->dev_base_paddr);
1209 	mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
1210 	return;
1211 }
1212 qdf_export_symbol(hal_get_meminfo);
1213 
1214 void hal_detach(void *hal_soc)
1215 {
1216 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1217 
1218 	hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD);
1219 	hal_delayed_reg_write_deinit(hal);
1220 	hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
1221 	qdf_ssr_driver_dump_unregister_region("hal_soc");
1222 	qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
1223 	qdf_mem_free(hal->ops);
1224 
1225 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
1226 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
1227 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
1228 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
1229 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
1230 		hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
1231 	qdf_mem_common_free(hal);
1232 
1233 	return;
1234 }
1235 qdf_export_symbol(hal_detach);
1236 
1237 #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x)		((x) + 0x000000b0)
1238 #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK	0x0000ffff
1239 #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x)	((x) + 0x00000040)
1240 #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK	0x00000007
1241 
1242 /**
1243  * hal_ce_dst_setup() - Initialize CE destination ring registers
1244  * @hal: HAL SOC handle
1245  * @srng: SRNG ring pointer
1246  * @ring_num: ring number
1247  */
1248 static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
1249 				    int ring_num)
1250 {
1251 	uint32_t reg_val = 0;
1252 	uint32_t reg_addr;
1253 	struct hal_hw_srng_config *ring_config =
1254 		HAL_SRNG_CONFIG(hal, CE_DST);
1255 
1256 	/* set DEST_MAX_LENGTH according to ce assignment */
1257 	reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
1258 			ring_config->reg_start[R0_INDEX] +
1259 			(ring_num * ring_config->reg_size[R0_INDEX]));
1260 
1261 	reg_val = HAL_REG_READ(hal, reg_addr);
1262 	reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
1263 	reg_val |= srng->u.dst_ring.max_buffer_length &
1264 		HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
1265 	HAL_REG_WRITE(hal, reg_addr, reg_val);
1266 
1267 	if (srng->prefetch_timer) {
1268 		reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
1269 				ring_config->reg_start[R0_INDEX] +
1270 				(ring_num * ring_config->reg_size[R0_INDEX]));
1271 
1272 		reg_val = HAL_REG_READ(hal, reg_addr);
1273 		reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
1274 		reg_val |= srng->prefetch_timer;
1275 		HAL_REG_WRITE(hal, reg_addr, reg_val);
1276 		reg_val = HAL_REG_READ(hal, reg_addr);
1277 	}
1278 
1279 }
1280 
1281 void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
1282 				uint32_t *ix0, uint32_t *ix1,
1283 				uint32_t *ix2, uint32_t *ix3)
1284 {
1285 	uint32_t reg_offset;
1286 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
1287 	uint32_t reo_reg_base;
1288 
1289 	reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
1290 
1291 	if (read) {
1292 		if (ix0) {
1293 			reg_offset =
1294 				HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
1295 						reo_reg_base);
1296 			*ix0 = HAL_REG_READ(hal, reg_offset);
1297 		}
1298 
1299 		if (ix1) {
1300 			reg_offset =
1301 				HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
1302 						reo_reg_base);
1303 			*ix1 = HAL_REG_READ(hal, reg_offset);
1304 		}
1305 
1306 		if (ix2) {
1307 			reg_offset =
1308 				HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
1309 						reo_reg_base);
1310 			*ix2 = HAL_REG_READ(hal, reg_offset);
1311 		}
1312 
1313 		if (ix3) {
1314 			reg_offset =
1315 				HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
1316 						reo_reg_base);
1317 			*ix3 = HAL_REG_READ(hal, reg_offset);
1318 		}
1319 	} else {
1320 		if (ix0) {
1321 			reg_offset =
1322 				HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
1323 						reo_reg_base);
1324 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1325 						    *ix0, true);
1326 		}
1327 
1328 		if (ix1) {
1329 			reg_offset =
1330 				HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
1331 						reo_reg_base);
1332 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1333 						    *ix1, true);
1334 		}
1335 
1336 		if (ix2) {
1337 			reg_offset =
1338 				HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
1339 						reo_reg_base);
1340 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1341 						    *ix2, true);
1342 		}
1343 
1344 		if (ix3) {
1345 			reg_offset =
1346 				HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
1347 						reo_reg_base);
1348 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1349 						    *ix3, true);
1350 		}
1351 	}
1352 }
1353 
1354 qdf_export_symbol(hal_reo_read_write_ctrl_ix);
1355 
1356 void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
1357 {
1358 	SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
1359 	SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
1360 }
1361 
1362 qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
1363 
1364 void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
1365 			  struct hal_srng *srng,
1366 			  uint32_t *vaddr)
1367 {
1368 	uint32_t reg_offset;
1369 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1370 
1371 	if (!srng)
1372 		return;
1373 
1374 	srng->u.dst_ring.hp_addr = vaddr;
1375 	reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
1376 	HAL_REG_WRITE_CONFIRM_RETRY(
1377 		hal, reg_offset, srng->u.dst_ring.cached_hp, true);
1378 
1379 	if (vaddr) {
1380 		*srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
1381 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1382 			  "hp_addr=%pK, cached_hp=%d",
1383 			  (void *)srng->u.dst_ring.hp_addr,
1384 			  srng->u.dst_ring.cached_hp);
1385 	}
1386 }
1387 
1388 qdf_export_symbol(hal_srng_dst_init_hp);
1389 
1390 /**
1391  * hal_srng_hw_init - Private function to initialize SRNG HW
1392  * @hal: HAL SOC handle
1393  * @srng: SRNG ring pointer
1394  * @idle_check: Check if ring is idle
1395  * @idx: ring index
1396  */
1397 static inline void hal_srng_hw_init(struct hal_soc *hal,
1398 	struct hal_srng *srng, bool idle_check, uint32_t idx)
1399 {
1400 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
1401 		hal_srng_src_hw_init(hal, srng, idle_check, idx);
1402 	else
1403 		hal_srng_dst_hw_init(hal, srng, idle_check, idx);
1404 }
1405 
1406 #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
1407 bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
1408 					 int ring_type, int ring_num)
1409 {
1410 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1411 	struct hal_hw_srng_config *ring_config =
1412 		HAL_SRNG_CONFIG(hal, ring_type);
1413 
1414 	return ring_config->nf_irq_support;
1415 }
1416 
1417 /**
1418  * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
1419  *				ring params
1420  * @srng: SRNG handle
1421  * @ring_params: ring params for this SRNG
1422  *
1423  * Return: None
1424  */
1425 static inline void
1426 hal_srng_set_msi2_params(struct hal_srng *srng,
1427 			 struct hal_srng_params *ring_params)
1428 {
1429 	srng->msi2_addr = ring_params->msi2_addr;
1430 	srng->msi2_data = ring_params->msi2_data;
1431 }
1432 
1433 /**
1434  * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
1435  * @srng: SRNG handle
1436  * @ring_params: ring params for this SRNG
1437  *
1438  * Return: None
1439  */
1440 static inline void
1441 hal_srng_get_nf_params(struct hal_srng *srng,
1442 		       struct hal_srng_params *ring_params)
1443 {
1444 	ring_params->msi2_addr = srng->msi2_addr;
1445 	ring_params->msi2_data = srng->msi2_data;
1446 }
1447 
1448 /**
1449  * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
1450  * @srng: SRNG handle where the params are to be set
1451  * @ring_params: ring params, from where threshold is to be fetched
1452  *
1453  * Return: None
1454  */
1455 static inline void
1456 hal_srng_set_nf_thresholds(struct hal_srng *srng,
1457 			   struct hal_srng_params *ring_params)
1458 {
1459 	srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
1460 	srng->u.dst_ring.high_thresh = ring_params->high_thresh;
1461 }
1462 #else
1463 static inline void
1464 hal_srng_set_msi2_params(struct hal_srng *srng,
1465 			 struct hal_srng_params *ring_params)
1466 {
1467 }
1468 
1469 static inline void
1470 hal_srng_get_nf_params(struct hal_srng *srng,
1471 		       struct hal_srng_params *ring_params)
1472 {
1473 }
1474 
1475 static inline void
1476 hal_srng_set_nf_thresholds(struct hal_srng *srng,
1477 			   struct hal_srng_params *ring_params)
1478 {
1479 }
1480 #endif
1481 
1482 #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
1483 /**
1484  * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
1485  * @srng: Source ring pointer
1486  *
1487  * Return: None
1488  */
1489 static inline
1490 void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
1491 {
1492 	srng->last_desc_cleared = srng->ring_size - srng->entry_size;
1493 }
1494 
1495 #else
1496 static inline
1497 void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
1498 {
1499 }
1500 #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
1501 
1502 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
1503 static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
1504 {
1505 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100] =
1506 			((srng->num_entries * 90) / 100);
1507 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90] =
1508 			((srng->num_entries * 80) / 100);
1509 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80] =
1510 			((srng->num_entries * 70) / 100);
1511 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70] =
1512 			((srng->num_entries * 60) / 100);
1513 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60] =
1514 			((srng->num_entries * 50) / 100);
1515 	/* Below 50% threshold is not needed */
1516 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT] = 0;
1517 
1518 	hal_info("ring_id: %u, wm_thresh- <50:%u, 50-60:%u, 60-70:%u, 70-80:%u, 80-90:%u, 90-100:%u",
1519 		 srng->ring_id,
1520 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT],
1521 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60],
1522 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70],
1523 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80],
1524 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90],
1525 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100]);
1526 }
1527 #else
1528 static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
1529 {
1530 }
1531 #endif
1532 
1533 void *hal_srng_setup_idx(void *hal_soc, int ring_type, int ring_num, int mac_id,
1534 			 struct hal_srng_params *ring_params, bool idle_check,
1535 			 uint32_t idx)
1536 {
1537 	int ring_id;
1538 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1539 	hal_soc_handle_t hal_hdl = (hal_soc_handle_t)hal;
1540 	struct hal_srng *srng;
1541 	struct hal_hw_srng_config *ring_config =
1542 		HAL_SRNG_CONFIG(hal, ring_type);
1543 	void *dev_base_addr;
1544 	int i;
1545 
1546 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
1547 	if (ring_id < 0)
1548 		return NULL;
1549 
1550 	hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
1551 
1552 	srng = hal_get_srng(hal_soc, ring_id);
1553 
1554 	if (srng->initialized) {
1555 		hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
1556 		return NULL;
1557 	}
1558 
1559 	dev_base_addr = hal->dev_base_addr;
1560 	srng->ring_id = ring_id;
1561 	srng->ring_type = ring_type;
1562 	srng->ring_dir = ring_config->ring_dir;
1563 	srng->ring_base_paddr = ring_params->ring_base_paddr;
1564 	srng->ring_base_vaddr = ring_params->ring_base_vaddr;
1565 	srng->entry_size = ring_config->entry_size;
1566 	srng->num_entries = ring_params->num_entries;
1567 	srng->ring_size = srng->num_entries * srng->entry_size;
1568 	srng->ring_size_mask = srng->ring_size - 1;
1569 	srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
1570 	srng->msi_addr = ring_params->msi_addr;
1571 	srng->msi_data = ring_params->msi_data;
1572 	srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
1573 	srng->intr_batch_cntr_thres_entries =
1574 		ring_params->intr_batch_cntr_thres_entries;
1575 	srng->pointer_timer_threshold =
1576 		ring_params->pointer_timer_threshold;
1577 	srng->pointer_num_threshold =
1578 		ring_params->pointer_num_threshold;
1579 
1580 	if (!idle_check)
1581 		srng->prefetch_timer = ring_params->prefetch_timer;
1582 	srng->hal_soc = hal_soc;
1583 	hal_srng_set_msi2_params(srng, ring_params);
1584 	hal_srng_update_high_wm_thresholds(srng);
1585 
1586 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
1587 		srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
1588 			+ (ring_num * ring_config->reg_size[i]);
1589 	}
1590 
1591 	/* Zero out the entire ring memory */
1592 	qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
1593 		srng->num_entries) << 2);
1594 
1595 	srng->flags = ring_params->flags;
1596 
1597 	/* For cached descriptors flush and invalidate the memory*/
1598 	if (srng->flags & HAL_SRNG_CACHED_DESC) {
1599 		qdf_nbuf_dma_clean_range(
1600 				srng->ring_base_vaddr,
1601 				srng->ring_base_vaddr +
1602 				((srng->entry_size * srng->num_entries)));
1603 		qdf_nbuf_dma_inv_range(
1604 				srng->ring_base_vaddr,
1605 				srng->ring_base_vaddr +
1606 				((srng->entry_size * srng->num_entries)));
1607 	}
1608 #ifdef BIG_ENDIAN_HOST
1609 		/* TODO: See if we should we get these flags from caller */
1610 	srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
1611 	srng->flags |= HAL_SRNG_MSI_SWAP;
1612 	srng->flags |= HAL_SRNG_RING_PTR_SWAP;
1613 #endif
1614 
1615 	hal_srng_last_desc_cleared_init(srng);
1616 
1617 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1618 		srng->u.src_ring.hp = 0;
1619 		srng->u.src_ring.reap_hp = srng->ring_size -
1620 			srng->entry_size;
1621 		srng->u.src_ring.tp_addr =
1622 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1623 		srng->u.src_ring.low_threshold =
1624 			ring_params->low_threshold * srng->entry_size;
1625 
1626 		if (srng->u.src_ring.tp_addr)
1627 			qdf_mem_zero(srng->u.src_ring.tp_addr,
1628 				     sizeof(*hal->shadow_rdptr_mem_vaddr));
1629 
1630 		if (ring_config->lmac_ring) {
1631 			/* For LMAC rings, head pointer updates will be done
1632 			 * through FW by writing to a shared memory location
1633 			 */
1634 			srng->u.src_ring.hp_addr =
1635 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1636 					HAL_SRNG_LMAC1_ID_START]);
1637 			srng->flags |= HAL_SRNG_LMAC_RING;
1638 
1639 			if (srng->u.src_ring.hp_addr)
1640 				qdf_mem_zero(srng->u.src_ring.hp_addr,
1641 					sizeof(*hal->shadow_wrptr_mem_vaddr));
1642 
1643 		} else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
1644 			srng->u.src_ring.hp_addr =
1645 				hal_get_window_address(hal,
1646 						SRNG_SRC_ADDR(srng, HP));
1647 
1648 			if (CHECK_SHADOW_REGISTERS) {
1649 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1650 				    QDF_TRACE_LEVEL_ERROR,
1651 				    "%s: Ring (%d, %d) missing shadow config",
1652 				    __func__, ring_type, ring_num);
1653 			}
1654 		} else {
1655 			hal_validate_shadow_register(hal,
1656 						     SRNG_SRC_ADDR(srng, HP),
1657 						     srng->u.src_ring.hp_addr);
1658 		}
1659 	} else {
1660 		/* During initialization loop count in all the descriptors
1661 		 * will be set to zero, and HW will set it to 1 on completing
1662 		 * descriptor update in first loop, and increments it by 1 on
1663 		 * subsequent loops (loop count wraps around after reaching
1664 		 * 0xffff). The 'loop_cnt' in SW ring state is the expected
1665 		 * loop count in descriptors updated by HW (to be processed
1666 		 * by SW).
1667 		 */
1668 		hal_srng_set_nf_thresholds(srng, ring_params);
1669 		srng->u.dst_ring.loop_cnt = 1;
1670 		srng->u.dst_ring.tp = 0;
1671 		srng->u.dst_ring.hp_addr =
1672 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1673 
1674 		if (srng->u.dst_ring.hp_addr)
1675 			qdf_mem_zero(srng->u.dst_ring.hp_addr,
1676 				     sizeof(*hal->shadow_rdptr_mem_vaddr));
1677 
1678 		if (ring_config->lmac_ring) {
1679 			/* For LMAC rings, tail pointer updates will be done
1680 			 * through FW by writing to a shared memory location
1681 			 */
1682 			srng->u.dst_ring.tp_addr =
1683 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1684 				HAL_SRNG_LMAC1_ID_START]);
1685 			srng->flags |= HAL_SRNG_LMAC_RING;
1686 
1687 			if (srng->u.dst_ring.tp_addr)
1688 				qdf_mem_zero(srng->u.dst_ring.tp_addr,
1689 					sizeof(*hal->shadow_wrptr_mem_vaddr));
1690 
1691 		} else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
1692 			srng->u.dst_ring.tp_addr =
1693 				hal_get_window_address(hal,
1694 						SRNG_DST_ADDR(srng, TP));
1695 
1696 			if (CHECK_SHADOW_REGISTERS) {
1697 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1698 				    QDF_TRACE_LEVEL_ERROR,
1699 				    "%s: Ring (%d, %d) missing shadow config",
1700 				    __func__, ring_type, ring_num);
1701 			}
1702 		} else {
1703 			hal_validate_shadow_register(hal,
1704 						     SRNG_DST_ADDR(srng, TP),
1705 						     srng->u.dst_ring.tp_addr);
1706 		}
1707 	}
1708 
1709 	if (!(ring_config->lmac_ring)) {
1710 		if (idx) {
1711 			hal->ops->hal_tx_ring_halt_set(hal_hdl);
1712 			do {
1713 				hal_info("Waiting for ring reset\n");
1714 			} while (!(hal->ops->hal_tx_ring_halt_poll(hal_hdl)));
1715 		}
1716 		hal_srng_hw_init(hal, srng, idle_check, idx);
1717 
1718 		if (idx) {
1719 			hal->ops->hal_tx_ring_halt_reset(hal_hdl);
1720 		}
1721 
1722 
1723 		if (ring_type == CE_DST) {
1724 			srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
1725 			hal_ce_dst_setup(hal, srng, ring_num);
1726 		}
1727 	}
1728 
1729 	SRNG_LOCK_INIT(&srng->lock);
1730 
1731 	srng->srng_event = 0;
1732 
1733 	srng->initialized = true;
1734 
1735 	return (void *)srng;
1736 }
1737 qdf_export_symbol(hal_srng_setup_idx);
1738 
1739 /**
1740  * hal_srng_setup - Initialize HW SRNG ring.
1741  * @hal_soc: Opaque HAL SOC handle
1742  * @ring_type: one of the types from hal_ring_type
1743  * @ring_num: Ring number if there are multiple rings of same type (staring
1744  * from 0)
1745  * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
1746  * @ring_params: SRNG ring params in hal_srng_params structure.
1747  * @idle_check: Check if ring is idle
1748  *
1749  * Callers are expected to allocate contiguous ring memory of size
1750  * 'num_entries * entry_size' bytes and pass the physical and virtual base
1751  * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
1752  * hal_srng_params structure. Ring base address should be 8 byte aligned
1753  * and size of each ring entry should be queried using the API
1754  * hal_srng_get_entrysize
1755  *
1756  * Return: Opaque pointer to ring on success
1757  *		 NULL on failure (if given ring is not available)
1758  */
1759 void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
1760 		     int mac_id, struct hal_srng_params *ring_params,
1761 		     bool idle_check)
1762 {
1763 	return hal_srng_setup_idx(hal_soc, ring_type, ring_num, mac_id,
1764 				  ring_params, idle_check, 0);
1765 }
1766 qdf_export_symbol(hal_srng_setup);
1767 
1768 void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
1769 {
1770 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1771 	SRNG_LOCK_DESTROY(&srng->lock);
1772 	srng->initialized = 0;
1773 	hal_srng_hw_disable(hal_soc, srng);
1774 }
1775 qdf_export_symbol(hal_srng_cleanup);
1776 
1777 uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
1778 {
1779 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1780 	struct hal_hw_srng_config *ring_config =
1781 		HAL_SRNG_CONFIG(hal, ring_type);
1782 	return ring_config->entry_size << 2;
1783 }
1784 qdf_export_symbol(hal_srng_get_entrysize);
1785 
1786 uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
1787 {
1788 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1789 	struct hal_hw_srng_config *ring_config =
1790 		HAL_SRNG_CONFIG(hal, ring_type);
1791 
1792 	return ring_config->max_size / ring_config->entry_size;
1793 }
1794 qdf_export_symbol(hal_srng_max_entries);
1795 
1796 enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
1797 {
1798 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1799 	struct hal_hw_srng_config *ring_config =
1800 		HAL_SRNG_CONFIG(hal, ring_type);
1801 
1802 	return ring_config->ring_dir;
1803 }
1804 
1805 void hal_srng_dump(struct hal_srng *srng)
1806 {
1807 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1808 		hal_debug("=== SRC RING %d ===", srng->ring_id);
1809 		hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
1810 			  srng->u.src_ring.hp,
1811 			  srng->u.src_ring.reap_hp,
1812 			  *srng->u.src_ring.tp_addr,
1813 			  srng->u.src_ring.cached_tp);
1814 	} else {
1815 		hal_debug("=== DST RING %d ===", srng->ring_id);
1816 		hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
1817 			  srng->u.dst_ring.tp,
1818 			  *srng->u.dst_ring.hp_addr,
1819 			  srng->u.dst_ring.cached_hp,
1820 			  srng->u.dst_ring.loop_cnt);
1821 	}
1822 }
1823 
1824 void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
1825 			 hal_ring_handle_t hal_ring_hdl,
1826 			 struct hal_srng_params *ring_params)
1827 {
1828 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1829 	int i =0;
1830 	ring_params->ring_id = srng->ring_id;
1831 	ring_params->ring_dir = srng->ring_dir;
1832 	ring_params->entry_size = srng->entry_size;
1833 
1834 	ring_params->ring_base_paddr = srng->ring_base_paddr;
1835 	ring_params->ring_base_vaddr = srng->ring_base_vaddr;
1836 	ring_params->num_entries = srng->num_entries;
1837 	ring_params->msi_addr = srng->msi_addr;
1838 	ring_params->msi_data = srng->msi_data;
1839 	ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
1840 	ring_params->intr_batch_cntr_thres_entries =
1841 		srng->intr_batch_cntr_thres_entries;
1842 	ring_params->low_threshold = srng->u.src_ring.low_threshold;
1843 	ring_params->flags = srng->flags;
1844 	ring_params->ring_id = srng->ring_id;
1845 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
1846 		ring_params->hwreg_base[i] = srng->hwreg_base[i];
1847 
1848 	hal_srng_get_nf_params(srng, ring_params);
1849 }
1850 qdf_export_symbol(hal_get_srng_params);
1851 
1852 void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
1853 				 uint32_t low_threshold)
1854 {
1855 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1856 	srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
1857 }
1858 qdf_export_symbol(hal_set_low_threshold);
1859 
1860 #ifdef FEATURE_RUNTIME_PM
1861 void
1862 hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
1863 			 hal_ring_handle_t hal_ring_hdl,
1864 			 uint32_t rtpm_id)
1865 {
1866 	struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
1867 
1868 	if (qdf_unlikely(!hal_ring_hdl)) {
1869 		qdf_print("Error: Invalid hal_ring\n");
1870 		return;
1871 	}
1872 
1873 	if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) {
1874 		if (hif_system_pm_state_check(hal_soc->hif_handle)) {
1875 			hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
1876 			hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
1877 			hal_srng_inc_flush_cnt(hal_ring_hdl);
1878 		} else {
1879 			hal_srng_access_end(hal_soc_hdl, hal_ring_hdl);
1880 		}
1881 
1882 		hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id);
1883 	} else {
1884 		hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
1885 		hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
1886 		hal_srng_inc_flush_cnt(hal_ring_hdl);
1887 	}
1888 }
1889 
1890 qdf_export_symbol(hal_srng_rtpm_access_end);
1891 #endif /* FEATURE_RUNTIME_PM */
1892 
1893 #ifdef FORCE_WAKE
1894 void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
1895 {
1896 	struct hal_soc *hal_soc = (struct hal_soc *)soc;
1897 	hal_soc->init_phase = init_phase;
1898 }
1899 #endif /* FORCE_WAKE */
1900