xref: /wlan-dirver/qca-wifi-host-cmn/hal/wifi3.0/hal_srng.c (revision 6d768494e5ce14eb1603a695c86739d12ecc6ec2)
1 /*
2  * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "hal_api.h"
21 #include "target_type.h"
22 #include "wcss_version.h"
23 #include "qdf_module.h"
24 
25 #ifdef QCA_WIFI_QCA8074
26 void hal_qca6290_attach(struct hal_soc *hal);
27 #endif
28 #ifdef QCA_WIFI_QCA8074
29 void hal_qca8074_attach(struct hal_soc *hal);
30 #endif
31 #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
32 void hal_qca8074v2_attach(struct hal_soc *hal);
33 #endif
34 #ifdef QCA_WIFI_QCA6390
35 void hal_qca6390_attach(struct hal_soc *hal);
36 #endif
37 #ifdef QCA_WIFI_QCA6490
38 void hal_qca6490_attach(struct hal_soc *hal);
39 #endif
40 #ifdef QCA_WIFI_QCN9000
41 void hal_qcn9000_attach(struct hal_soc *hal);
42 #endif
43 #ifdef QCA_WIFI_QCA6750
44 void hal_qca6750_attach(struct hal_soc *hal);
45 #endif
46 #ifdef QCA_WIFI_QCA5018
47 void hal_qca5018_attach(struct hal_soc *hal);
48 #endif
49 
50 #ifdef ENABLE_VERBOSE_DEBUG
51 bool is_hal_verbose_debug_enabled;
52 #endif
53 
54 #ifdef ENABLE_HAL_REG_WR_HISTORY
55 struct hal_reg_write_fail_history hal_reg_wr_hist;
56 
57 void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
58 				 uint32_t offset,
59 				 uint32_t wr_val, uint32_t rd_val)
60 {
61 	struct hal_reg_write_fail_entry *record;
62 	int idx;
63 
64 	idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
65 					 HAL_REG_WRITE_HIST_SIZE);
66 
67 	record = &hal_soc->reg_wr_fail_hist->record[idx];
68 
69 	record->timestamp = qdf_get_log_timestamp();
70 	record->reg_offset = offset;
71 	record->write_val = wr_val;
72 	record->read_val = rd_val;
73 }
74 
75 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
76 {
77 	hal->reg_wr_fail_hist = &hal_reg_wr_hist;
78 
79 	qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
80 }
81 #else
82 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
83 {
84 }
85 #endif
86 
87 /**
88  * hal_get_srng_ring_id() - get the ring id of a descriped ring
89  * @hal: hal_soc data structure
90  * @ring_type: type enum describing the ring
91  * @ring_num: which ring of the ring type
92  * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
93  *
94  * Return: the ring id or -EINVAL if the ring does not exist.
95  */
96 static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
97 				int ring_num, int mac_id)
98 {
99 	struct hal_hw_srng_config *ring_config =
100 		HAL_SRNG_CONFIG(hal, ring_type);
101 	int ring_id;
102 
103 	if (ring_num >= ring_config->max_rings) {
104 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
105 			  "%s: ring_num exceeded maximum no. of supported rings",
106 			  __func__);
107 		/* TODO: This is a programming error. Assert if this happens */
108 		return -EINVAL;
109 	}
110 
111 	if (ring_config->lmac_ring) {
112 		ring_id = ring_config->start_ring_id + ring_num +
113 			(mac_id * HAL_MAX_RINGS_PER_LMAC);
114 	} else {
115 		ring_id = ring_config->start_ring_id + ring_num;
116 	}
117 
118 	return ring_id;
119 }
120 
121 static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
122 {
123 	/* TODO: Should we allocate srng structures dynamically? */
124 	return &(hal->srng_list[ring_id]);
125 }
126 
127 #define HP_OFFSET_IN_REG_START 1
128 #define OFFSET_FROM_HP_TO_TP 4
129 static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
130 					  int shadow_config_index,
131 					  int ring_type,
132 					  int ring_num)
133 {
134 	struct hal_srng *srng;
135 	int ring_id;
136 	struct hal_hw_srng_config *ring_config =
137 		HAL_SRNG_CONFIG(hal_soc, ring_type);
138 
139 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
140 	if (ring_id < 0)
141 		return;
142 
143 	srng = hal_get_srng(hal_soc, ring_id);
144 
145 	if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
146 		srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
147 			+ hal_soc->dev_base_addr;
148 		hal_debug("tp_addr=%pK dev base addr %pK index %u",
149 			  srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
150 			  shadow_config_index);
151 	} else {
152 		srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
153 			+ hal_soc->dev_base_addr;
154 		hal_debug("hp_addr=%pK dev base addr %pK index %u",
155 			  srng->u.src_ring.hp_addr,
156 			  hal_soc->dev_base_addr, shadow_config_index);
157 	}
158 
159 }
160 
161 QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
162 				     int ring_type,
163 				     int ring_num)
164 {
165 	uint32_t target_register;
166 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
167 	struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
168 	int shadow_config_index = hal->num_shadow_registers_configured;
169 
170 	if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
171 		QDF_ASSERT(0);
172 		return QDF_STATUS_E_RESOURCES;
173 	}
174 
175 	hal->num_shadow_registers_configured++;
176 
177 	target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
178 	target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
179 			    *ring_num);
180 
181 	/* if the ring is a dst ring, we need to shadow the tail pointer */
182 	if (srng_config->ring_dir == HAL_SRNG_DST_RING)
183 		target_register += OFFSET_FROM_HP_TO_TP;
184 
185 	hal->shadow_config[shadow_config_index].addr = target_register;
186 
187 	/* update hp/tp addr in the hal_soc structure*/
188 	hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
189 				      ring_num);
190 
191 	hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
192 		  target_register,
193 		  SHADOW_REGISTER(shadow_config_index),
194 		  shadow_config_index,
195 		  ring_type, ring_num);
196 
197 	return QDF_STATUS_SUCCESS;
198 }
199 
200 qdf_export_symbol(hal_set_one_shadow_config);
201 
202 QDF_STATUS hal_construct_shadow_config(void *hal_soc)
203 {
204 	int ring_type, ring_num;
205 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
206 
207 	for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
208 		struct hal_hw_srng_config *srng_config =
209 			&hal->hw_srng_table[ring_type];
210 
211 		if (ring_type == CE_SRC ||
212 		    ring_type == CE_DST ||
213 		    ring_type == CE_DST_STATUS)
214 			continue;
215 
216 		if (srng_config->lmac_ring)
217 			continue;
218 
219 		for (ring_num = 0; ring_num < srng_config->max_rings;
220 		     ring_num++)
221 			hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
222 	}
223 
224 	return QDF_STATUS_SUCCESS;
225 }
226 
227 qdf_export_symbol(hal_construct_shadow_config);
228 
229 void hal_get_shadow_config(void *hal_soc,
230 	struct pld_shadow_reg_v2_cfg **shadow_config,
231 	int *num_shadow_registers_configured)
232 {
233 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
234 
235 	*shadow_config = hal->shadow_config;
236 	*num_shadow_registers_configured =
237 		hal->num_shadow_registers_configured;
238 }
239 
240 qdf_export_symbol(hal_get_shadow_config);
241 
242 
243 static void hal_validate_shadow_register(struct hal_soc *hal,
244 				  uint32_t *destination,
245 				  uint32_t *shadow_address)
246 {
247 	unsigned int index;
248 	uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
249 	int destination_ba_offset =
250 		((char *)destination) - (char *)hal->dev_base_addr;
251 
252 	index =	shadow_address - shadow_0_offset;
253 
254 	if (index >= MAX_SHADOW_REGISTERS) {
255 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
256 			"%s: index %x out of bounds", __func__, index);
257 		goto error;
258 	} else if (hal->shadow_config[index].addr != destination_ba_offset) {
259 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
260 			"%s: sanity check failure, expected %x, found %x",
261 			__func__, destination_ba_offset,
262 			hal->shadow_config[index].addr);
263 		goto error;
264 	}
265 	return;
266 error:
267 	qdf_print("%s: baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
268 		  __func__, hal->dev_base_addr, destination, shadow_address,
269 		  shadow_0_offset, index);
270 	QDF_BUG(0);
271 	return;
272 }
273 
274 static void hal_target_based_configure(struct hal_soc *hal)
275 {
276 	/**
277 	 * Indicate Initialization of srngs to avoid force wake
278 	 * as umac power collapse is not enabled yet
279 	 */
280 	hal->init_phase = true;
281 
282 	switch (hal->target_type) {
283 #ifdef QCA_WIFI_QCA6290
284 	case TARGET_TYPE_QCA6290:
285 		hal->use_register_windowing = true;
286 		hal_qca6290_attach(hal);
287 	break;
288 #endif
289 #ifdef QCA_WIFI_QCA6390
290 	case TARGET_TYPE_QCA6390:
291 		hal->use_register_windowing = true;
292 		hal_qca6390_attach(hal);
293 	break;
294 #endif
295 #ifdef QCA_WIFI_QCA6490
296 	case TARGET_TYPE_QCA6490:
297 		hal->use_register_windowing = true;
298 		hal_qca6490_attach(hal);
299 		hal->init_phase = false;
300 	break;
301 #endif
302 #ifdef QCA_WIFI_QCA6750
303 		case TARGET_TYPE_QCA6750:
304 			hal->use_register_windowing = true;
305 			hal->static_window_map = true;
306 			hal_qca6750_attach(hal);
307 		break;
308 #endif
309 #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
310 	case TARGET_TYPE_QCA8074:
311 		hal_qca8074_attach(hal);
312 	break;
313 #endif
314 
315 #if defined(QCA_WIFI_QCA8074V2)
316 	case TARGET_TYPE_QCA8074V2:
317 		hal_qca8074v2_attach(hal);
318 	break;
319 #endif
320 
321 #if defined(QCA_WIFI_QCA6018)
322 	case TARGET_TYPE_QCA6018:
323 		hal_qca8074v2_attach(hal);
324 	break;
325 #endif
326 
327 #ifdef QCA_WIFI_QCN9000
328 	case TARGET_TYPE_QCN9000:
329 		hal->use_register_windowing = true;
330 		/*
331 		 * Static window map  is enabled for qcn9000 to use 2mb bar
332 		 * size and use multiple windows to write into registers.
333 		 */
334 		hal->static_window_map = true;
335 		hal_qcn9000_attach(hal);
336 	break;
337 #endif
338 #ifdef QCA_WIFI_QCA5018
339 	case TARGET_TYPE_QCA5018:
340 		hal->use_register_windowing = true;
341 		hal->static_window_map = true;
342 		hal_qca5018_attach(hal);
343 	break;
344 #endif
345 	default:
346 	break;
347 	}
348 }
349 
350 uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
351 {
352 	struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
353 	struct hif_target_info *tgt_info =
354 		hif_get_target_info_handle(hal_soc->hif_handle);
355 
356 	return tgt_info->target_type;
357 }
358 
359 qdf_export_symbol(hal_get_target_type);
360 
361 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
362 #ifdef MEMORY_DEBUG
363 /*
364  * Length of the queue(array) used to hold delayed register writes.
365  * Must be a multiple of 2.
366  */
367 #define HAL_REG_WRITE_QUEUE_LEN 128
368 #else
369 #define HAL_REG_WRITE_QUEUE_LEN 32
370 #endif
371 
372 /**
373  * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
374  * @hal: hal_soc pointer
375  *
376  * Return: true if throughput is high, else false.
377  */
378 static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
379 {
380 	int bw_level = hif_get_bandwidth_level(hal->hif_handle);
381 
382 	return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
383 }
384 
385 /**
386  * hal_process_reg_write_q_elem() - process a regiter write queue element
387  * @hal: hal_soc pointer
388  * @q_elem: pointer to hal regiter write queue element
389  *
390  * Return: The value which was written to the address
391  */
392 static uint32_t
393 hal_process_reg_write_q_elem(struct hal_soc *hal,
394 			     struct hal_reg_write_q_elem *q_elem)
395 {
396 	struct hal_srng *srng = q_elem->srng;
397 	uint32_t write_val;
398 
399 	SRNG_LOCK(&srng->lock);
400 
401 	srng->reg_write_in_progress = false;
402 	srng->wstats.dequeues++;
403 
404 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
405 		q_elem->dequeue_val = srng->u.src_ring.hp;
406 		hal_write_address_32_mb(hal,
407 					srng->u.src_ring.hp_addr,
408 					srng->u.src_ring.hp, false);
409 		write_val = srng->u.src_ring.hp;
410 	} else {
411 		q_elem->dequeue_val = srng->u.dst_ring.tp;
412 		hal_write_address_32_mb(hal,
413 					srng->u.dst_ring.tp_addr,
414 					srng->u.dst_ring.tp, false);
415 		write_val = srng->u.dst_ring.tp;
416 	}
417 
418 	q_elem->valid = 0;
419 	SRNG_UNLOCK(&srng->lock);
420 
421 	return write_val;
422 }
423 
424 /**
425  * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
426  * @hal: hal_soc pointer
427  * @delay: delay in us
428  *
429  * Return: None
430  */
431 static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
432 						       uint64_t delay_us)
433 {
434 	uint32_t *hist;
435 
436 	hist = hal->stats.wstats.sched_delay;
437 
438 	if (delay_us < 100)
439 		hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
440 	else if (delay_us < 1000)
441 		hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
442 	else if (delay_us < 5000)
443 		hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
444 	else
445 		hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
446 }
447 
448 /**
449  * hal_reg_write_work() - Worker to process delayed writes
450  * @arg: hal_soc pointer
451  *
452  * Return: None
453  */
454 static void hal_reg_write_work(void *arg)
455 {
456 	int32_t q_depth, write_val;
457 	struct hal_soc *hal = arg;
458 	struct hal_reg_write_q_elem *q_elem;
459 	uint64_t delta_us;
460 	uint8_t ring_id;
461 	uint32_t *addr;
462 
463 	q_elem = &hal->reg_write_queue[(hal->read_idx)];
464 	q_elem->work_scheduled_time = qdf_get_log_timestamp();
465 
466 	/* Make sure q_elem consistent in the memory for multi-cores */
467 	qdf_rmb();
468 	if (!q_elem->valid)
469 		return;
470 
471 	q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
472 	if (q_depth > hal->stats.wstats.max_q_depth)
473 		hal->stats.wstats.max_q_depth =  q_depth;
474 
475 	if (hif_prevent_link_low_power_states(hal->hif_handle)) {
476 		hal->stats.wstats.prevent_l1_fails++;
477 		return;
478 	}
479 
480 	while (true) {
481 		qdf_rmb();
482 		if (!q_elem->valid)
483 			break;
484 
485 		q_elem->dequeue_time = qdf_get_log_timestamp();
486 		ring_id = q_elem->srng->ring_id;
487 		addr = q_elem->addr;
488 		delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
489 						      q_elem->enqueue_time);
490 		hal_reg_write_fill_sched_delay_hist(hal, delta_us);
491 
492 		hal->stats.wstats.dequeues++;
493 		qdf_atomic_dec(&hal->stats.wstats.q_depth);
494 
495 		write_val = hal_process_reg_write_q_elem(hal, q_elem);
496 		hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
497 				  hal->read_idx, ring_id, addr, write_val, delta_us);
498 
499 		qdf_atomic_dec(&hal->active_work_cnt);
500 		hal->read_idx = (hal->read_idx + 1) &
501 					(HAL_REG_WRITE_QUEUE_LEN - 1);
502 		q_elem = &hal->reg_write_queue[(hal->read_idx)];
503 	}
504 
505 	hif_allow_link_low_power_states(hal->hif_handle);
506 }
507 
508 /**
509  * hal_flush_reg_write_work() - flush all writes from regiter write queue
510  * @arg: hal_soc pointer
511  *
512  * Return: None
513  */
514 static inline void hal_flush_reg_write_work(struct hal_soc *hal)
515 {
516 	qdf_cancel_work(&hal->reg_write_work);
517 	qdf_flush_work(&hal->reg_write_work);
518 	qdf_flush_workqueue(0, hal->reg_write_wq);
519 }
520 
521 /**
522  * hal_reg_write_enqueue() - enqueue register writes into kworker
523  * @hal_soc: hal_soc pointer
524  * @srng: srng pointer
525  * @addr: iomem address of regiter
526  * @value: value to be written to iomem address
527  *
528  * This function executes from within the SRNG LOCK
529  *
530  * Return: None
531  */
532 static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
533 				  struct hal_srng *srng,
534 				  void __iomem *addr,
535 				  uint32_t value)
536 {
537 	struct hal_reg_write_q_elem *q_elem;
538 	uint32_t write_idx;
539 
540 	if (srng->reg_write_in_progress) {
541 		hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
542 				  srng->ring_id, addr, value);
543 		qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
544 		srng->wstats.coalesces++;
545 		return;
546 	}
547 
548 	write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
549 
550 	write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
551 
552 	q_elem = &hal_soc->reg_write_queue[write_idx];
553 
554 	if (q_elem->valid) {
555 		hal_err("queue full");
556 		QDF_BUG(0);
557 		return;
558 	}
559 
560 	qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
561 	srng->wstats.enqueues++;
562 
563 	qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
564 
565 	q_elem->srng = srng;
566 	q_elem->addr = addr;
567 	q_elem->enqueue_val = value;
568 	q_elem->enqueue_time = qdf_get_log_timestamp();
569 
570 	/*
571 	 * Before the valid flag is set to true, all the other
572 	 * fields in the q_elem needs to be updated in memory.
573 	 * Else there is a chance that the dequeuing worker thread
574 	 * might read stale entries and process incorrect srng.
575 	 */
576 	qdf_wmb();
577 	q_elem->valid = true;
578 
579 	/*
580 	 * After all other fields in the q_elem has been updated
581 	 * in memory successfully, the valid flag needs to be updated
582 	 * in memory in time too.
583 	 * Else there is a chance that the dequeuing worker thread
584 	 * might read stale valid flag and the work will be bypassed
585 	 * for this round. And if there is no other work scheduled
586 	 * later, this hal register writing won't be updated any more.
587 	 */
588 	qdf_wmb();
589 
590 	srng->reg_write_in_progress  = true;
591 	qdf_atomic_inc(&hal_soc->active_work_cnt);
592 
593 	hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
594 			  write_idx, srng->ring_id, addr, value);
595 
596 	qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
597 		       &hal_soc->reg_write_work);
598 }
599 
600 void hal_delayed_reg_write(struct hal_soc *hal_soc,
601 			   struct hal_srng *srng,
602 			   void __iomem *addr,
603 			   uint32_t value)
604 {
605 	if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
606 	    hal_is_reg_write_tput_level_high(hal_soc)) {
607 		qdf_atomic_inc(&hal_soc->stats.wstats.direct);
608 		srng->wstats.direct++;
609 		hal_write_address_32_mb(hal_soc, addr, value, false);
610 	} else {
611 		hal_reg_write_enqueue(hal_soc, srng, addr, value);
612 	}
613 }
614 
615 /**
616  * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
617  * @hal_soc: hal_soc pointer
618  *
619  * Initialize main data structures to process register writes in a delayed
620  * workqueue.
621  *
622  * Return: QDF_STATUS_SUCCESS on success else a QDF error.
623  */
624 static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
625 {
626 	hal->reg_write_wq =
627 		qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
628 	qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
629 	hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
630 					      sizeof(*hal->reg_write_queue));
631 	if (!hal->reg_write_queue) {
632 		hal_err("unable to allocate memory");
633 		QDF_BUG(0);
634 		return QDF_STATUS_E_NOMEM;
635 	}
636 
637 	/* Initial value of indices */
638 	hal->read_idx = 0;
639 	qdf_atomic_set(&hal->write_idx, -1);
640 	return QDF_STATUS_SUCCESS;
641 }
642 
643 /**
644  * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
645  * @hal_soc: hal_soc pointer
646  *
647  * De-initialize main data structures to process register writes in a delayed
648  * workqueue.
649  *
650  * Return: None
651  */
652 static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
653 {
654 	hal_flush_reg_write_work(hal);
655 	qdf_destroy_workqueue(0, hal->reg_write_wq);
656 	qdf_mem_free(hal->reg_write_queue);
657 }
658 
659 static inline
660 char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
661 				    char *buf, qdf_size_t size)
662 {
663 	qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
664 		      srng->wstats.enqueues, srng->wstats.dequeues,
665 		      srng->wstats.coalesces, srng->wstats.direct);
666 	return buf;
667 }
668 
669 /* bytes for local buffer */
670 #define HAL_REG_WRITE_SRNG_STATS_LEN 100
671 
672 void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
673 {
674 	struct hal_srng *srng;
675 	char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
676 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
677 
678 	srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
679 	hal_debug("SW2TCL1: %s",
680 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
681 
682 	srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
683 	hal_debug("WBM2SW0: %s",
684 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
685 
686 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
687 	hal_debug("REO2SW1: %s",
688 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
689 
690 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
691 	hal_debug("REO2SW2: %s",
692 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
693 
694 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
695 	hal_debug("REO2SW3: %s",
696 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
697 }
698 
699 void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
700 {
701 	uint32_t *hist;
702 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
703 
704 	hist = hal->stats.wstats.sched_delay;
705 
706 	hal_debug("enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
707 		  qdf_atomic_read(&hal->stats.wstats.enqueues),
708 		  hal->stats.wstats.dequeues,
709 		  qdf_atomic_read(&hal->stats.wstats.coalesces),
710 		  qdf_atomic_read(&hal->stats.wstats.direct),
711 		  qdf_atomic_read(&hal->stats.wstats.q_depth),
712 		  hal->stats.wstats.max_q_depth,
713 		  hist[REG_WRITE_SCHED_DELAY_SUB_100us],
714 		  hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
715 		  hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
716 		  hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
717 }
718 
719 int hal_get_reg_write_pending_work(void *hal_soc)
720 {
721 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
722 
723 	return qdf_atomic_read(&hal->active_work_cnt);
724 }
725 
726 #else
727 static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
728 {
729 	return QDF_STATUS_SUCCESS;
730 }
731 
732 static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
733 {
734 }
735 #endif
736 
737 /**
738  * hal_attach - Initialize HAL layer
739  * @hif_handle: Opaque HIF handle
740  * @qdf_dev: QDF device
741  *
742  * Return: Opaque HAL SOC handle
743  *		 NULL on failure (if given ring is not available)
744  *
745  * This function should be called as part of HIF initialization (for accessing
746  * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
747  *
748  */
749 void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
750 {
751 	struct hal_soc *hal;
752 	int i;
753 
754 	hal = qdf_mem_malloc(sizeof(*hal));
755 
756 	if (!hal) {
757 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
758 			"%s: hal_soc allocation failed", __func__);
759 		goto fail0;
760 	}
761 	hal->hif_handle = hif_handle;
762 	hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
763 	hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
764 	hal->qdf_dev = qdf_dev;
765 	hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
766 		qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
767 		HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
768 	if (!hal->shadow_rdptr_mem_paddr) {
769 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
770 			"%s: hal->shadow_rdptr_mem_paddr allocation failed",
771 			__func__);
772 		goto fail1;
773 	}
774 	qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
775 		     sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
776 
777 	hal->shadow_wrptr_mem_vaddr =
778 		(uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
779 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
780 		&(hal->shadow_wrptr_mem_paddr));
781 	if (!hal->shadow_wrptr_mem_vaddr) {
782 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
783 			"%s: hal->shadow_wrptr_mem_vaddr allocation failed",
784 			__func__);
785 		goto fail2;
786 	}
787 	qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
788 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
789 
790 	for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
791 		hal->srng_list[i].initialized = 0;
792 		hal->srng_list[i].ring_id = i;
793 	}
794 
795 	qdf_spinlock_create(&hal->register_access_lock);
796 	hal->register_window = 0;
797 	hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
798 
799 	hal_target_based_configure(hal);
800 
801 	hal_reg_write_fail_history_init(hal);
802 
803 	qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
804 
805 	qdf_atomic_init(&hal->active_work_cnt);
806 	hal_delayed_reg_write_init(hal);
807 
808 	return (void *)hal;
809 
810 fail2:
811 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
812 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
813 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
814 fail1:
815 	qdf_mem_free(hal);
816 fail0:
817 	return NULL;
818 }
819 qdf_export_symbol(hal_attach);
820 
821 /**
822  * hal_mem_info - Retrieve hal memory base address
823  *
824  * @hal_soc: Opaque HAL SOC handle
825  * @mem: pointer to structure to be updated with hal mem info
826  */
827 void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
828 {
829 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
830 	mem->dev_base_addr = (void *)hal->dev_base_addr;
831         mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
832 	mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
833         mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
834 	mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
835 	hif_read_phy_mem_base((void *)hal->hif_handle,
836 			      (qdf_dma_addr_t *)&mem->dev_base_paddr);
837 	return;
838 }
839 qdf_export_symbol(hal_get_meminfo);
840 
841 /**
842  * hal_detach - Detach HAL layer
843  * @hal_soc: HAL SOC handle
844  *
845  * Return: Opaque HAL SOC handle
846  *		 NULL on failure (if given ring is not available)
847  *
848  * This function should be called as part of HIF initialization (for accessing
849  * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
850  *
851  */
852 extern void hal_detach(void *hal_soc)
853 {
854 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
855 
856 	hal_delayed_reg_write_deinit(hal);
857 
858 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
859 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
860 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
861 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
862 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
863 		hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
864 	qdf_minidump_remove(hal);
865 	qdf_mem_free(hal);
866 
867 	return;
868 }
869 qdf_export_symbol(hal_detach);
870 
871 /**
872  * hal_ce_dst_setup - Initialize CE destination ring registers
873  * @hal_soc: HAL SOC handle
874  * @srng: SRNG ring pointer
875  */
876 static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
877 				    int ring_num)
878 {
879 	uint32_t reg_val = 0;
880 	uint32_t reg_addr;
881 	struct hal_hw_srng_config *ring_config =
882 		HAL_SRNG_CONFIG(hal, CE_DST);
883 
884 	/* set DEST_MAX_LENGTH according to ce assignment */
885 	reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
886 			ring_config->reg_start[R0_INDEX] +
887 			(ring_num * ring_config->reg_size[R0_INDEX]));
888 
889 	reg_val = HAL_REG_READ(hal, reg_addr);
890 	reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
891 	reg_val |= srng->u.dst_ring.max_buffer_length &
892 		HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
893 	HAL_REG_WRITE(hal, reg_addr, reg_val);
894 
895 	if (srng->prefetch_timer) {
896 		reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
897 				ring_config->reg_start[R0_INDEX] +
898 				(ring_num * ring_config->reg_size[R0_INDEX]));
899 
900 		reg_val = HAL_REG_READ(hal, reg_addr);
901 		reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
902 		reg_val |= srng->prefetch_timer;
903 		HAL_REG_WRITE(hal, reg_addr, reg_val);
904 		reg_val = HAL_REG_READ(hal, reg_addr);
905 	}
906 
907 }
908 
909 /**
910  * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
911  * @hal: HAL SOC handle
912  * @read: boolean value to indicate if read or write
913  * @ix0: pointer to store IX0 reg value
914  * @ix1: pointer to store IX1 reg value
915  * @ix2: pointer to store IX2 reg value
916  * @ix3: pointer to store IX3 reg value
917  */
918 void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
919 				uint32_t *ix0, uint32_t *ix1,
920 				uint32_t *ix2, uint32_t *ix3)
921 {
922 	uint32_t reg_offset;
923 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
924 
925 	if (read) {
926 		if (ix0) {
927 			reg_offset =
928 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
929 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
930 			*ix0 = HAL_REG_READ(hal, reg_offset);
931 		}
932 
933 		if (ix1) {
934 			reg_offset =
935 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
936 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
937 			*ix1 = HAL_REG_READ(hal, reg_offset);
938 		}
939 
940 		if (ix2) {
941 			reg_offset =
942 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
943 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
944 			*ix2 = HAL_REG_READ(hal, reg_offset);
945 		}
946 
947 		if (ix3) {
948 			reg_offset =
949 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
950 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
951 			*ix3 = HAL_REG_READ(hal, reg_offset);
952 		}
953 	} else {
954 		if (ix0) {
955 			reg_offset =
956 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
957 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
958 			HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix0);
959 		}
960 
961 		if (ix1) {
962 			reg_offset =
963 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
964 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
965 			HAL_REG_WRITE(hal, reg_offset, *ix1);
966 		}
967 
968 		if (ix2) {
969 			reg_offset =
970 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
971 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
972 			HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix2);
973 		}
974 
975 		if (ix3) {
976 			reg_offset =
977 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
978 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
979 			HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix3);
980 		}
981 	}
982 }
983 
984 /**
985  * hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
986  * @srng: sring pointer
987  * @paddr: physical address
988  */
989 void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
990 			       uint64_t paddr)
991 {
992 	SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
993 			   paddr & 0xffffffff);
994 	SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
995 			   paddr >> 32);
996 }
997 
998 /**
999  * hal_srng_dst_init_hp() - Initilaize destination ring head pointer
1000  * @srng: sring pointer
1001  * @vaddr: virtual address
1002  */
1003 void hal_srng_dst_init_hp(struct hal_srng *srng,
1004 			  uint32_t *vaddr)
1005 {
1006 	if (!srng)
1007 		return;
1008 
1009 	srng->u.dst_ring.hp_addr = vaddr;
1010 	SRNG_DST_REG_WRITE_CONFIRM(srng, HP, srng->u.dst_ring.cached_hp);
1011 
1012 	if (vaddr) {
1013 		*srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
1014 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1015 			  "hp_addr=%pK, cached_hp=%d, hp=%d",
1016 			  (void *)srng->u.dst_ring.hp_addr,
1017 			  srng->u.dst_ring.cached_hp,
1018 			  *srng->u.dst_ring.hp_addr);
1019 	}
1020 }
1021 
1022 /**
1023  * hal_srng_hw_init - Private function to initialize SRNG HW
1024  * @hal_soc: HAL SOC handle
1025  * @srng: SRNG ring pointer
1026  */
1027 static inline void hal_srng_hw_init(struct hal_soc *hal,
1028 	struct hal_srng *srng)
1029 {
1030 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
1031 		hal_srng_src_hw_init(hal, srng);
1032 	else
1033 		hal_srng_dst_hw_init(hal, srng);
1034 }
1035 
1036 #ifdef CONFIG_SHADOW_V2
1037 #define ignore_shadow false
1038 #define CHECK_SHADOW_REGISTERS true
1039 #else
1040 #define ignore_shadow true
1041 #define CHECK_SHADOW_REGISTERS false
1042 #endif
1043 
1044 /**
1045  * hal_srng_setup - Initialize HW SRNG ring.
1046  * @hal_soc: Opaque HAL SOC handle
1047  * @ring_type: one of the types from hal_ring_type
1048  * @ring_num: Ring number if there are multiple rings of same type (staring
1049  * from 0)
1050  * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
1051  * @ring_params: SRNG ring params in hal_srng_params structure.
1052 
1053  * Callers are expected to allocate contiguous ring memory of size
1054  * 'num_entries * entry_size' bytes and pass the physical and virtual base
1055  * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
1056  * hal_srng_params structure. Ring base address should be 8 byte aligned
1057  * and size of each ring entry should be queried using the API
1058  * hal_srng_get_entrysize
1059  *
1060  * Return: Opaque pointer to ring on success
1061  *		 NULL on failure (if given ring is not available)
1062  */
1063 void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
1064 	int mac_id, struct hal_srng_params *ring_params)
1065 {
1066 	int ring_id;
1067 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1068 	struct hal_srng *srng;
1069 	struct hal_hw_srng_config *ring_config =
1070 		HAL_SRNG_CONFIG(hal, ring_type);
1071 	void *dev_base_addr;
1072 	int i;
1073 
1074 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
1075 	if (ring_id < 0)
1076 		return NULL;
1077 
1078 	hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
1079 
1080 	srng = hal_get_srng(hal_soc, ring_id);
1081 
1082 	if (srng->initialized) {
1083 		hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
1084 		return NULL;
1085 	}
1086 
1087 	dev_base_addr = hal->dev_base_addr;
1088 	srng->ring_id = ring_id;
1089 	srng->ring_dir = ring_config->ring_dir;
1090 	srng->ring_base_paddr = ring_params->ring_base_paddr;
1091 	srng->ring_base_vaddr = ring_params->ring_base_vaddr;
1092 	srng->entry_size = ring_config->entry_size;
1093 	srng->num_entries = ring_params->num_entries;
1094 	srng->ring_size = srng->num_entries * srng->entry_size;
1095 	srng->ring_size_mask = srng->ring_size - 1;
1096 	srng->msi_addr = ring_params->msi_addr;
1097 	srng->msi_data = ring_params->msi_data;
1098 	srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
1099 	srng->intr_batch_cntr_thres_entries =
1100 		ring_params->intr_batch_cntr_thres_entries;
1101 	srng->prefetch_timer = ring_params->prefetch_timer;
1102 	srng->hal_soc = hal_soc;
1103 
1104 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
1105 		srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
1106 			+ (ring_num * ring_config->reg_size[i]);
1107 	}
1108 
1109 	/* Zero out the entire ring memory */
1110 	qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
1111 		srng->num_entries) << 2);
1112 
1113 	srng->flags = ring_params->flags;
1114 #ifdef BIG_ENDIAN_HOST
1115 		/* TODO: See if we should we get these flags from caller */
1116 	srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
1117 	srng->flags |= HAL_SRNG_MSI_SWAP;
1118 	srng->flags |= HAL_SRNG_RING_PTR_SWAP;
1119 #endif
1120 
1121 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1122 		srng->u.src_ring.hp = 0;
1123 		srng->u.src_ring.reap_hp = srng->ring_size -
1124 			srng->entry_size;
1125 		srng->u.src_ring.tp_addr =
1126 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1127 		srng->u.src_ring.low_threshold =
1128 			ring_params->low_threshold * srng->entry_size;
1129 		if (ring_config->lmac_ring) {
1130 			/* For LMAC rings, head pointer updates will be done
1131 			 * through FW by writing to a shared memory location
1132 			 */
1133 			srng->u.src_ring.hp_addr =
1134 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1135 					HAL_SRNG_LMAC1_ID_START]);
1136 			srng->flags |= HAL_SRNG_LMAC_RING;
1137 		} else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
1138 			srng->u.src_ring.hp_addr =
1139 				hal_get_window_address(hal,
1140 						SRNG_SRC_ADDR(srng, HP));
1141 
1142 			if (CHECK_SHADOW_REGISTERS) {
1143 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1144 				    QDF_TRACE_LEVEL_ERROR,
1145 				    "%s: Ring (%d, %d) missing shadow config",
1146 				    __func__, ring_type, ring_num);
1147 			}
1148 		} else {
1149 			hal_validate_shadow_register(hal,
1150 						     SRNG_SRC_ADDR(srng, HP),
1151 						     srng->u.src_ring.hp_addr);
1152 		}
1153 	} else {
1154 		/* During initialization loop count in all the descriptors
1155 		 * will be set to zero, and HW will set it to 1 on completing
1156 		 * descriptor update in first loop, and increments it by 1 on
1157 		 * subsequent loops (loop count wraps around after reaching
1158 		 * 0xffff). The 'loop_cnt' in SW ring state is the expected
1159 		 * loop count in descriptors updated by HW (to be processed
1160 		 * by SW).
1161 		 */
1162 		srng->u.dst_ring.loop_cnt = 1;
1163 		srng->u.dst_ring.tp = 0;
1164 		srng->u.dst_ring.hp_addr =
1165 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1166 		if (ring_config->lmac_ring) {
1167 			/* For LMAC rings, tail pointer updates will be done
1168 			 * through FW by writing to a shared memory location
1169 			 */
1170 			srng->u.dst_ring.tp_addr =
1171 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1172 				HAL_SRNG_LMAC1_ID_START]);
1173 			srng->flags |= HAL_SRNG_LMAC_RING;
1174 		} else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
1175 			srng->u.dst_ring.tp_addr =
1176 				hal_get_window_address(hal,
1177 						SRNG_DST_ADDR(srng, TP));
1178 
1179 			if (CHECK_SHADOW_REGISTERS) {
1180 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1181 				    QDF_TRACE_LEVEL_ERROR,
1182 				    "%s: Ring (%d, %d) missing shadow config",
1183 				    __func__, ring_type, ring_num);
1184 			}
1185 		} else {
1186 			hal_validate_shadow_register(hal,
1187 						     SRNG_DST_ADDR(srng, TP),
1188 						     srng->u.dst_ring.tp_addr);
1189 		}
1190 	}
1191 
1192 	if (!(ring_config->lmac_ring)) {
1193 		hal_srng_hw_init(hal, srng);
1194 
1195 		if (ring_type == CE_DST) {
1196 			srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
1197 			hal_ce_dst_setup(hal, srng, ring_num);
1198 		}
1199 	}
1200 
1201 	SRNG_LOCK_INIT(&srng->lock);
1202 
1203 	srng->srng_event = 0;
1204 
1205 	srng->initialized = true;
1206 
1207 	return (void *)srng;
1208 }
1209 qdf_export_symbol(hal_srng_setup);
1210 
1211 /**
1212  * hal_srng_cleanup - Deinitialize HW SRNG ring.
1213  * @hal_soc: Opaque HAL SOC handle
1214  * @hal_srng: Opaque HAL SRNG pointer
1215  */
1216 void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
1217 {
1218 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1219 	SRNG_LOCK_DESTROY(&srng->lock);
1220 	srng->initialized = 0;
1221 }
1222 qdf_export_symbol(hal_srng_cleanup);
1223 
1224 /**
1225  * hal_srng_get_entrysize - Returns size of ring entry in bytes
1226  * @hal_soc: Opaque HAL SOC handle
1227  * @ring_type: one of the types from hal_ring_type
1228  *
1229  */
1230 uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
1231 {
1232 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1233 	struct hal_hw_srng_config *ring_config =
1234 		HAL_SRNG_CONFIG(hal, ring_type);
1235 	return ring_config->entry_size << 2;
1236 }
1237 qdf_export_symbol(hal_srng_get_entrysize);
1238 
1239 /**
1240  * hal_srng_max_entries - Returns maximum possible number of ring entries
1241  * @hal_soc: Opaque HAL SOC handle
1242  * @ring_type: one of the types from hal_ring_type
1243  *
1244  * Return: Maximum number of entries for the given ring_type
1245  */
1246 uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
1247 {
1248 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1249 	struct hal_hw_srng_config *ring_config =
1250 		HAL_SRNG_CONFIG(hal, ring_type);
1251 
1252 	return ring_config->max_size / ring_config->entry_size;
1253 }
1254 qdf_export_symbol(hal_srng_max_entries);
1255 
1256 enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
1257 {
1258 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1259 	struct hal_hw_srng_config *ring_config =
1260 		HAL_SRNG_CONFIG(hal, ring_type);
1261 
1262 	return ring_config->ring_dir;
1263 }
1264 
1265 /**
1266  * hal_srng_dump - Dump ring status
1267  * @srng: hal srng pointer
1268  */
1269 void hal_srng_dump(struct hal_srng *srng)
1270 {
1271 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1272 		hal_debug("=== SRC RING %d ===", srng->ring_id);
1273 		hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
1274 			  srng->u.src_ring.hp,
1275 			  srng->u.src_ring.reap_hp,
1276 			  *srng->u.src_ring.tp_addr,
1277 			  srng->u.src_ring.cached_tp);
1278 	} else {
1279 		hal_debug("=== DST RING %d ===", srng->ring_id);
1280 		hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
1281 			  srng->u.dst_ring.tp,
1282 			  *srng->u.dst_ring.hp_addr,
1283 			  srng->u.dst_ring.cached_hp,
1284 			  srng->u.dst_ring.loop_cnt);
1285 	}
1286 }
1287 
1288 /**
1289  * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
1290  *
1291  * @hal_soc: Opaque HAL SOC handle
1292  * @hal_ring: Ring pointer (Source or Destination ring)
1293  * @ring_params: SRNG parameters will be returned through this structure
1294  */
1295 extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
1296 				hal_ring_handle_t hal_ring_hdl,
1297 				struct hal_srng_params *ring_params)
1298 {
1299 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1300 	int i =0;
1301 	ring_params->ring_id = srng->ring_id;
1302 	ring_params->ring_dir = srng->ring_dir;
1303 	ring_params->entry_size = srng->entry_size;
1304 
1305 	ring_params->ring_base_paddr = srng->ring_base_paddr;
1306 	ring_params->ring_base_vaddr = srng->ring_base_vaddr;
1307 	ring_params->num_entries = srng->num_entries;
1308 	ring_params->msi_addr = srng->msi_addr;
1309 	ring_params->msi_data = srng->msi_data;
1310 	ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
1311 	ring_params->intr_batch_cntr_thres_entries =
1312 		srng->intr_batch_cntr_thres_entries;
1313 	ring_params->low_threshold = srng->u.src_ring.low_threshold;
1314 	ring_params->flags = srng->flags;
1315 	ring_params->ring_id = srng->ring_id;
1316 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
1317 		ring_params->hwreg_base[i] = srng->hwreg_base[i];
1318 }
1319 qdf_export_symbol(hal_get_srng_params);
1320 
1321 void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
1322 				 uint32_t low_threshold)
1323 {
1324 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1325 	srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
1326 }
1327 qdf_export_symbol(hal_set_low_threshold);
1328 
1329 
1330 #ifdef FORCE_WAKE
1331 void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
1332 {
1333 	struct hal_soc *hal_soc = (struct hal_soc *)soc;
1334 
1335 	hal_soc->init_phase = init_phase;
1336 }
1337 #endif /* FORCE_WAKE */
1338