xref: /wlan-dirver/qca-wifi-host-cmn/hal/wifi3.0/hal_srng.c (revision 58e80d75bdc3ffa28b0428c0e80529f876b8d53d)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "hal_hw_headers.h"
21 #include "hal_api.h"
22 #include "hal_reo.h"
23 #include "target_type.h"
24 #include "qdf_module.h"
25 #include "wcss_version.h"
26 #include <qdf_tracepoint.h>
27 #include "qdf_ssr_driver_dump.h"
28 
29 struct tcl_data_cmd gtcl_data_symbol __attribute__((used));
30 
31 #ifdef QCA_WIFI_QCA8074
32 void hal_qca6290_attach(struct hal_soc *hal);
33 #endif
34 #ifdef QCA_WIFI_QCA8074
35 void hal_qca8074_attach(struct hal_soc *hal);
36 #endif
37 #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
38 	defined(QCA_WIFI_QCA9574)
39 void hal_qca8074v2_attach(struct hal_soc *hal);
40 #endif
41 #ifdef QCA_WIFI_QCA6390
42 void hal_qca6390_attach(struct hal_soc *hal);
43 #endif
44 #ifdef QCA_WIFI_QCA6490
45 void hal_qca6490_attach(struct hal_soc *hal);
46 #endif
47 #ifdef QCA_WIFI_QCN9000
48 void hal_qcn9000_attach(struct hal_soc *hal);
49 #endif
50 #ifdef QCA_WIFI_QCN9224
51 void hal_qcn9224v2_attach(struct hal_soc *hal);
52 #endif
53 #if defined(QCA_WIFI_QCN6122) || defined(QCA_WIFI_QCN9160)
54 void hal_qcn6122_attach(struct hal_soc *hal);
55 #endif
56 #ifdef QCA_WIFI_QCN6432
57 void hal_qcn6432_attach(struct hal_soc *hal);
58 #endif
59 #ifdef QCA_WIFI_QCA6750
60 void hal_qca6750_attach(struct hal_soc *hal);
61 #endif
62 #ifdef QCA_WIFI_QCA5018
63 void hal_qca5018_attach(struct hal_soc *hal);
64 #endif
65 #ifdef QCA_WIFI_QCA5332
66 void hal_qca5332_attach(struct hal_soc *hal);
67 #endif
68 #ifdef QCA_WIFI_KIWI
69 void hal_kiwi_attach(struct hal_soc *hal);
70 #endif
71 
72 #ifdef ENABLE_VERBOSE_DEBUG
73 bool is_hal_verbose_debug_enabled;
74 #endif
75 
76 #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x)	((x) + 0x4)
77 #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x)	((x) + 0x8)
78 #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x)	((x) + 0xc)
79 #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x)	((x) + 0x10)
80 
81 #ifdef ENABLE_HAL_REG_WR_HISTORY
82 struct hal_reg_write_fail_history hal_reg_wr_hist;
83 
84 void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
85 				 uint32_t offset,
86 				 uint32_t wr_val, uint32_t rd_val)
87 {
88 	struct hal_reg_write_fail_entry *record;
89 	int idx;
90 
91 	idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
92 					 HAL_REG_WRITE_HIST_SIZE);
93 
94 	record = &hal_soc->reg_wr_fail_hist->record[idx];
95 
96 	record->timestamp = qdf_get_log_timestamp();
97 	record->reg_offset = offset;
98 	record->write_val = wr_val;
99 	record->read_val = rd_val;
100 }
101 
102 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
103 {
104 	hal->reg_wr_fail_hist = &hal_reg_wr_hist;
105 
106 	qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
107 }
108 #else
109 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
110 {
111 }
112 #endif
113 
114 /**
115  * hal_get_srng_ring_id() - get the ring id of a described ring
116  * @hal: hal_soc data structure
117  * @ring_type: type enum describing the ring
118  * @ring_num: which ring of the ring type
119  * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
120  *
121  * Return: the ring id or -EINVAL if the ring does not exist.
122  */
123 static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
124 				int ring_num, int mac_id)
125 {
126 	struct hal_hw_srng_config *ring_config =
127 		HAL_SRNG_CONFIG(hal, ring_type);
128 	int ring_id;
129 
130 	if (ring_num >= ring_config->max_rings) {
131 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
132 			  "%s: ring_num exceeded maximum no. of supported rings",
133 			  __func__);
134 		/* TODO: This is a programming error. Assert if this happens */
135 		return -EINVAL;
136 	}
137 
138 	/*
139 	 * Some DMAC rings share a common source ring, hence don't provide them
140 	 * with separate ring IDs per LMAC.
141 	 */
142 	if (ring_config->lmac_ring && !ring_config->dmac_cmn_ring) {
143 		ring_id = (ring_config->start_ring_id + ring_num +
144 			   (mac_id * HAL_MAX_RINGS_PER_LMAC));
145 	} else {
146 		ring_id = ring_config->start_ring_id + ring_num;
147 	}
148 
149 	return ring_id;
150 }
151 
152 static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
153 {
154 	/* TODO: Should we allocate srng structures dynamically? */
155 	return &(hal->srng_list[ring_id]);
156 }
157 
158 #ifndef SHADOW_REG_CONFIG_DISABLED
159 #define HP_OFFSET_IN_REG_START 1
160 #define OFFSET_FROM_HP_TO_TP 4
161 static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
162 					  int shadow_config_index,
163 					  int ring_type,
164 					  int ring_num)
165 {
166 	struct hal_srng *srng;
167 	int ring_id;
168 	struct hal_hw_srng_config *ring_config =
169 		HAL_SRNG_CONFIG(hal_soc, ring_type);
170 
171 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
172 	if (ring_id < 0)
173 		return;
174 
175 	srng = hal_get_srng(hal_soc, ring_id);
176 
177 	if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
178 		srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
179 			+ hal_soc->dev_base_addr;
180 		hal_debug("tp_addr=%pK dev base addr %pK index %u",
181 			  srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
182 			  shadow_config_index);
183 	} else {
184 		srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
185 			+ hal_soc->dev_base_addr;
186 		hal_debug("hp_addr=%pK dev base addr %pK index %u",
187 			  srng->u.src_ring.hp_addr,
188 			  hal_soc->dev_base_addr, shadow_config_index);
189 	}
190 
191 }
192 #endif
193 
194 #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
195 void hal_set_one_target_reg_config(struct hal_soc *hal,
196 				   uint32_t target_reg_offset,
197 				   int list_index)
198 {
199 	int i = list_index;
200 
201 	qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
202 	hal->list_shadow_reg_config[i].target_register =
203 		target_reg_offset;
204 	hal->num_generic_shadow_regs_configured++;
205 }
206 
207 qdf_export_symbol(hal_set_one_target_reg_config);
208 
209 #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
210 #define MAX_REO_REMAP_SHADOW_REGS 4
211 QDF_STATUS hal_set_shadow_regs(void *hal_soc)
212 {
213 	uint32_t target_reg_offset;
214 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
215 	int i;
216 	struct hal_hw_srng_config *srng_config =
217 		&hal->hw_srng_table[WBM2SW_RELEASE];
218 	uint32_t reo_reg_base;
219 
220 	reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
221 
222 	target_reg_offset =
223 		HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
224 
225 	for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
226 		hal_set_one_target_reg_config(hal, target_reg_offset, i);
227 		target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
228 	}
229 
230 	target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
231 	target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
232 			      * HAL_IPA_TX_COMP_RING_IDX);
233 
234 	hal_set_one_target_reg_config(hal, target_reg_offset, i);
235 	return QDF_STATUS_SUCCESS;
236 }
237 
238 qdf_export_symbol(hal_set_shadow_regs);
239 
240 QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
241 {
242 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
243 	int shadow_config_index = hal->num_shadow_registers_configured;
244 	int i;
245 	int num_regs = hal->num_generic_shadow_regs_configured;
246 
247 	for (i = 0; i < num_regs; i++) {
248 		qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
249 		hal->shadow_config[shadow_config_index].addr =
250 			hal->list_shadow_reg_config[i].target_register;
251 		hal->list_shadow_reg_config[i].shadow_config_index =
252 			shadow_config_index;
253 		hal->list_shadow_reg_config[i].va =
254 			SHADOW_REGISTER(shadow_config_index) +
255 			(uintptr_t)hal->dev_base_addr;
256 		hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
257 			  hal->shadow_config[shadow_config_index].addr,
258 			  SHADOW_REGISTER(shadow_config_index),
259 			  shadow_config_index);
260 		shadow_config_index++;
261 		hal->num_shadow_registers_configured++;
262 	}
263 	return QDF_STATUS_SUCCESS;
264 }
265 
266 qdf_export_symbol(hal_construct_shadow_regs);
267 #endif
268 
269 #ifndef SHADOW_REG_CONFIG_DISABLED
270 
271 QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
272 				     int ring_type,
273 				     int ring_num)
274 {
275 	uint32_t target_register;
276 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
277 	struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
278 	int shadow_config_index = hal->num_shadow_registers_configured;
279 
280 	if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
281 		QDF_ASSERT(0);
282 		return QDF_STATUS_E_RESOURCES;
283 	}
284 
285 	hal->num_shadow_registers_configured++;
286 
287 	target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
288 	target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
289 			    *ring_num);
290 
291 	/* if the ring is a dst ring, we need to shadow the tail pointer */
292 	if (srng_config->ring_dir == HAL_SRNG_DST_RING)
293 		target_register += OFFSET_FROM_HP_TO_TP;
294 
295 	hal->shadow_config[shadow_config_index].addr = target_register;
296 
297 	/* update hp/tp addr in the hal_soc structure*/
298 	hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
299 				      ring_num);
300 
301 	hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
302 		  target_register,
303 		  SHADOW_REGISTER(shadow_config_index),
304 		  shadow_config_index,
305 		  ring_type, ring_num);
306 
307 	return QDF_STATUS_SUCCESS;
308 }
309 
310 qdf_export_symbol(hal_set_one_shadow_config);
311 
312 QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
313 {
314 	int ring_type, ring_num;
315 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
316 
317 	for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
318 		struct hal_hw_srng_config *srng_config =
319 			&hal->hw_srng_table[ring_type];
320 
321 		if (ring_type == CE_SRC ||
322 		    ring_type == CE_DST ||
323 		    ring_type == CE_DST_STATUS)
324 			continue;
325 
326 		if (srng_config->lmac_ring)
327 			continue;
328 
329 		for (ring_num = 0; ring_num < srng_config->max_rings;
330 		     ring_num++)
331 			hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
332 	}
333 
334 	return QDF_STATUS_SUCCESS;
335 }
336 
337 qdf_export_symbol(hal_construct_srng_shadow_regs);
338 #else
339 
340 QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
341 {
342 	return QDF_STATUS_SUCCESS;
343 }
344 
345 qdf_export_symbol(hal_construct_srng_shadow_regs);
346 
347 QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
348 				     int ring_num)
349 {
350 	return QDF_STATUS_SUCCESS;
351 }
352 qdf_export_symbol(hal_set_one_shadow_config);
353 #endif
354 
355 void hal_get_shadow_config(void *hal_soc,
356 	struct pld_shadow_reg_v2_cfg **shadow_config,
357 	int *num_shadow_registers_configured)
358 {
359 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
360 
361 	*shadow_config = &hal->shadow_config[0].v2;
362 	*num_shadow_registers_configured =
363 		hal->num_shadow_registers_configured;
364 }
365 qdf_export_symbol(hal_get_shadow_config);
366 
367 #ifdef CONFIG_SHADOW_V3
368 void hal_get_shadow_v3_config(void *hal_soc,
369 			      struct pld_shadow_reg_v3_cfg **shadow_config,
370 			      int *num_shadow_registers_configured)
371 {
372 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
373 
374 	*shadow_config = &hal->shadow_config[0].v3;
375 	*num_shadow_registers_configured =
376 		hal->num_shadow_registers_configured;
377 }
378 qdf_export_symbol(hal_get_shadow_v3_config);
379 #endif
380 
381 static bool hal_validate_shadow_register(struct hal_soc *hal,
382 					 uint32_t *destination,
383 					 uint32_t *shadow_address)
384 {
385 	unsigned int index;
386 	uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
387 	int destination_ba_offset =
388 		((char *)destination) - (char *)hal->dev_base_addr;
389 
390 	index =	shadow_address - shadow_0_offset;
391 
392 	if (index >= MAX_SHADOW_REGISTERS) {
393 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
394 			"%s: index %x out of bounds", __func__, index);
395 		goto error;
396 	} else if (hal->shadow_config[index].addr != destination_ba_offset) {
397 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
398 			"%s: sanity check failure, expected %x, found %x",
399 			__func__, destination_ba_offset,
400 			hal->shadow_config[index].addr);
401 		goto error;
402 	}
403 	return true;
404 error:
405 	qdf_print("baddr %pK, destination %pK, shadow_address %pK s0offset %pK index %x",
406 		  hal->dev_base_addr, destination, shadow_address,
407 		  shadow_0_offset, index);
408 	QDF_BUG(0);
409 	return false;
410 }
411 
412 static void hal_target_based_configure(struct hal_soc *hal)
413 {
414 	/*
415 	 * Indicate Initialization of srngs to avoid force wake
416 	 * as umac power collapse is not enabled yet
417 	 */
418 	hal->init_phase = true;
419 
420 	switch (hal->target_type) {
421 #ifdef QCA_WIFI_QCA6290
422 	case TARGET_TYPE_QCA6290:
423 		hal->use_register_windowing = true;
424 		hal_qca6290_attach(hal);
425 	break;
426 #endif
427 #ifdef QCA_WIFI_QCA6390
428 	case TARGET_TYPE_QCA6390:
429 		hal->use_register_windowing = true;
430 		hal_qca6390_attach(hal);
431 	break;
432 #endif
433 #ifdef QCA_WIFI_QCA6490
434 	case TARGET_TYPE_QCA6490:
435 		hal->use_register_windowing = true;
436 		hal_qca6490_attach(hal);
437 	break;
438 #endif
439 #ifdef QCA_WIFI_QCA6750
440 		case TARGET_TYPE_QCA6750:
441 			hal->use_register_windowing = true;
442 			hal->static_window_map = true;
443 			hal_qca6750_attach(hal);
444 		break;
445 #endif
446 #ifdef QCA_WIFI_KIWI
447 	case TARGET_TYPE_KIWI:
448 	case TARGET_TYPE_MANGO:
449 	case TARGET_TYPE_PEACH:
450 		hal->use_register_windowing = true;
451 		hal_kiwi_attach(hal);
452 		break;
453 #endif
454 #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
455 	case TARGET_TYPE_QCA8074:
456 		hal_qca8074_attach(hal);
457 	break;
458 #endif
459 
460 #if defined(QCA_WIFI_QCA8074V2)
461 	case TARGET_TYPE_QCA8074V2:
462 		hal_qca8074v2_attach(hal);
463 	break;
464 #endif
465 
466 #if defined(QCA_WIFI_QCA6018)
467 	case TARGET_TYPE_QCA6018:
468 		hal_qca8074v2_attach(hal);
469 	break;
470 #endif
471 
472 #if defined(QCA_WIFI_QCA9574)
473 	case TARGET_TYPE_QCA9574:
474 		hal_qca8074v2_attach(hal);
475 	break;
476 #endif
477 
478 #if defined(QCA_WIFI_QCN6122)
479 	case TARGET_TYPE_QCN6122:
480 		hal->use_register_windowing = true;
481 		/*
482 		 * Static window map  is enabled for qcn9000 to use 2mb bar
483 		 * size and use multiple windows to write into registers.
484 		 */
485 		hal->static_window_map = true;
486 		hal_qcn6122_attach(hal);
487 		break;
488 #endif
489 
490 #if defined(QCA_WIFI_QCN9160)
491 	case TARGET_TYPE_QCN9160:
492 		hal->use_register_windowing = true;
493 		/*
494 		 * Static window map  is enabled for qcn9160 to use 2mb bar
495 		 * size and use multiple windows to write into registers.
496 		 */
497 		hal->static_window_map = true;
498 		hal_qcn6122_attach(hal);
499 		break;
500 #endif
501 
502 #if defined(QCA_WIFI_QCN6432)
503 	case TARGET_TYPE_QCN6432:
504 		hal->use_register_windowing = true;
505 		/*
506 		 * Static window map  is enabled for qcn6432 to use 2mb bar
507 		 * size and use multiple windows to write into registers.
508 		 */
509 		hal->static_window_map = true;
510 		hal_qcn6432_attach(hal);
511 		break;
512 #endif
513 
514 #ifdef QCA_WIFI_QCN9000
515 	case TARGET_TYPE_QCN9000:
516 		hal->use_register_windowing = true;
517 		/*
518 		 * Static window map  is enabled for qcn9000 to use 2mb bar
519 		 * size and use multiple windows to write into registers.
520 		 */
521 		hal->static_window_map = true;
522 		hal_qcn9000_attach(hal);
523 	break;
524 #endif
525 #ifdef QCA_WIFI_QCA5018
526 	case TARGET_TYPE_QCA5018:
527 		hal->use_register_windowing = true;
528 		hal->static_window_map = true;
529 		hal_qca5018_attach(hal);
530 	break;
531 #endif
532 #ifdef QCA_WIFI_QCN9224
533 	case TARGET_TYPE_QCN9224:
534 		hal->use_register_windowing = true;
535 		hal->static_window_map = true;
536 		if (hal->version == 1)
537 			qdf_assert_always(0);
538 		else
539 			hal_qcn9224v2_attach(hal);
540 	break;
541 #endif
542 #ifdef QCA_WIFI_QCA5332
543 	case TARGET_TYPE_QCA5332:
544 		hal->use_register_windowing = true;
545 		hal->static_window_map = true;
546 		hal_qca5332_attach(hal);
547 	break;
548 #endif
549 #ifdef QCA_WIFI_WCN6450
550 	case TARGET_TYPE_WCN6450:
551 		hal->use_register_windowing = true;
552 		hal->static_window_map = true;
553 		hal_wcn6450_attach(hal);
554 	break;
555 #endif
556 	default:
557 	break;
558 	}
559 }
560 
561 uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
562 {
563 	struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
564 	struct hif_target_info *tgt_info =
565 		hif_get_target_info_handle(hal_soc->hif_handle);
566 
567 	return tgt_info->target_type;
568 }
569 
570 qdf_export_symbol(hal_get_target_type);
571 
572 #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
573 /**
574  * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
575  * @hal: hal_soc pointer
576  *
577  * Return: true if throughput is high, else false.
578  */
579 static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
580 {
581 	int bw_level = hif_get_bandwidth_level(hal->hif_handle);
582 
583 	return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
584 }
585 
586 static inline
587 char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
588 				    char *buf, qdf_size_t size)
589 {
590 	qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
591 		      srng->wstats.enqueues, srng->wstats.dequeues,
592 		      srng->wstats.coalesces, srng->wstats.direct);
593 	return buf;
594 }
595 
596 /* bytes for local buffer */
597 #define HAL_REG_WRITE_SRNG_STATS_LEN 100
598 
599 #ifndef WLAN_SOFTUMAC_SUPPORT
600 void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
601 {
602 	struct hal_srng *srng;
603 	char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
604 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
605 
606 	srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
607 	hal_debug("SW2TCL1: %s",
608 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
609 
610 	srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
611 	hal_debug("WBM2SW0: %s",
612 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
613 
614 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
615 	hal_debug("REO2SW1: %s",
616 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
617 
618 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
619 	hal_debug("REO2SW2: %s",
620 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
621 
622 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
623 	hal_debug("REO2SW3: %s",
624 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
625 }
626 #else
627 void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
628 {
629 }
630 #endif
631 
632 void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
633 {
634 	uint32_t *hist;
635 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
636 
637 	hist = hal->stats.wstats.sched_delay;
638 	hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
639 		  qdf_atomic_read(&hal->stats.wstats.enqueues),
640 		  hal->stats.wstats.dequeues,
641 		  qdf_atomic_read(&hal->stats.wstats.coalesces),
642 		  qdf_atomic_read(&hal->stats.wstats.direct),
643 		  qdf_atomic_read(&hal->stats.wstats.q_depth),
644 		  hal->stats.wstats.max_q_depth,
645 		  hist[REG_WRITE_SCHED_DELAY_SUB_100us],
646 		  hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
647 		  hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
648 		  hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
649 }
650 
651 int hal_get_reg_write_pending_work(void *hal_soc)
652 {
653 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
654 
655 	return qdf_atomic_read(&hal->active_work_cnt);
656 }
657 
658 #endif
659 
660 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
661 #ifdef MEMORY_DEBUG
662 /*
663  * Length of the queue(array) used to hold delayed register writes.
664  * Must be a multiple of 2.
665  */
666 #define HAL_REG_WRITE_QUEUE_LEN 128
667 #else
668 #define HAL_REG_WRITE_QUEUE_LEN 32
669 #endif
670 
671 /**
672  * hal_process_reg_write_q_elem() - process a register write queue element
673  * @hal: hal_soc pointer
674  * @q_elem: pointer to hal register write queue element
675  *
676  * Return: The value which was written to the address
677  */
678 static uint32_t
679 hal_process_reg_write_q_elem(struct hal_soc *hal,
680 			     struct hal_reg_write_q_elem *q_elem)
681 {
682 	struct hal_srng *srng = q_elem->srng;
683 	uint32_t write_val;
684 
685 	SRNG_LOCK(&srng->lock);
686 
687 	srng->reg_write_in_progress = false;
688 	srng->wstats.dequeues++;
689 
690 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
691 		q_elem->dequeue_val = srng->u.src_ring.hp;
692 		hal_write_address_32_mb(hal,
693 					srng->u.src_ring.hp_addr,
694 					srng->u.src_ring.hp, false);
695 		write_val = srng->u.src_ring.hp;
696 	} else {
697 		q_elem->dequeue_val = srng->u.dst_ring.tp;
698 		hal_write_address_32_mb(hal,
699 					srng->u.dst_ring.tp_addr,
700 					srng->u.dst_ring.tp, false);
701 		write_val = srng->u.dst_ring.tp;
702 	}
703 	hal_srng_reg_his_add(srng, write_val);
704 
705 	q_elem->valid = 0;
706 	srng->last_dequeue_time = q_elem->dequeue_time;
707 	SRNG_UNLOCK(&srng->lock);
708 
709 	return write_val;
710 }
711 
712 /**
713  * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
714  * @hal: hal_soc pointer
715  * @delay_us: delay in us
716  *
717  * Return: None
718  */
719 static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
720 						       uint64_t delay_us)
721 {
722 	uint32_t *hist;
723 
724 	hist = hal->stats.wstats.sched_delay;
725 
726 	if (delay_us < 100)
727 		hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
728 	else if (delay_us < 1000)
729 		hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
730 	else if (delay_us < 5000)
731 		hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
732 	else
733 		hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
734 }
735 
736 #ifdef SHADOW_WRITE_DELAY
737 
738 #define SHADOW_WRITE_MIN_DELTA_US	5
739 #define SHADOW_WRITE_DELAY_US		50
740 
741 /*
742  * Never add those srngs which are performance relate.
743  * The delay itself will hit performance heavily.
744  */
745 #define IS_SRNG_MATCH(s)	((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
746 				 (s)->ring_id == HAL_SRNG_CE_1_DST)
747 
748 static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
749 {
750 	struct hal_srng *srng = elem->srng;
751 	struct hal_soc *hal;
752 	qdf_time_t now;
753 	qdf_iomem_t real_addr;
754 
755 	if (qdf_unlikely(!srng))
756 		return false;
757 
758 	hal = srng->hal_soc;
759 	if (qdf_unlikely(!hal))
760 		return false;
761 
762 	/* Check if it is target srng, and valid shadow reg */
763 	if (qdf_likely(!IS_SRNG_MATCH(srng)))
764 		return false;
765 
766 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
767 		real_addr = SRNG_SRC_ADDR(srng, HP);
768 	else
769 		real_addr = SRNG_DST_ADDR(srng, TP);
770 	if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
771 		return false;
772 
773 	/* Check the time delta from last write of same srng */
774 	now = qdf_get_log_timestamp();
775 	if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
776 		SHADOW_WRITE_MIN_DELTA_US)
777 		return false;
778 
779 	/* Delay dequeue, and record */
780 	qdf_udelay(SHADOW_WRITE_DELAY_US);
781 
782 	srng->wstats.dequeue_delay++;
783 	hal->stats.wstats.dequeue_delay++;
784 
785 	return true;
786 }
787 #else
788 static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
789 {
790 	return false;
791 }
792 #endif
793 
794 /**
795  * hal_reg_write_work() - Worker to process delayed writes
796  * @arg: hal_soc pointer
797  *
798  * Return: None
799  */
800 static void hal_reg_write_work(void *arg)
801 {
802 	int32_t q_depth, write_val;
803 	struct hal_soc *hal = arg;
804 	struct hal_reg_write_q_elem *q_elem;
805 	uint64_t delta_us;
806 	uint8_t ring_id;
807 	uint32_t *addr;
808 	uint32_t num_processed = 0;
809 
810 	q_elem = &hal->reg_write_queue[(hal->read_idx)];
811 	q_elem->work_scheduled_time = qdf_get_log_timestamp();
812 	q_elem->cpu_id = qdf_get_cpu();
813 
814 	/* Make sure q_elem consistent in the memory for multi-cores */
815 	qdf_rmb();
816 	if (!q_elem->valid)
817 		return;
818 
819 	q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
820 	if (q_depth > hal->stats.wstats.max_q_depth)
821 		hal->stats.wstats.max_q_depth =  q_depth;
822 
823 	if (hif_prevent_link_low_power_states(hal->hif_handle)) {
824 		hal->stats.wstats.prevent_l1_fails++;
825 		return;
826 	}
827 
828 	while (true) {
829 		qdf_rmb();
830 		if (!q_elem->valid)
831 			break;
832 
833 		q_elem->dequeue_time = qdf_get_log_timestamp();
834 		ring_id = q_elem->srng->ring_id;
835 		addr = q_elem->addr;
836 		delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
837 						      q_elem->enqueue_time);
838 		hal_reg_write_fill_sched_delay_hist(hal, delta_us);
839 
840 		hal->stats.wstats.dequeues++;
841 		qdf_atomic_dec(&hal->stats.wstats.q_depth);
842 
843 		if (hal_reg_write_need_delay(q_elem))
844 			hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
845 					  q_elem->srng->ring_id, q_elem->addr);
846 
847 		write_val = hal_process_reg_write_q_elem(hal, q_elem);
848 		hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
849 				  hal->read_idx, ring_id, addr, write_val, delta_us);
850 
851 		qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
852 					   q_elem->dequeue_val,
853 					   q_elem->enqueue_time,
854 					   q_elem->dequeue_time);
855 
856 		num_processed++;
857 		hal->read_idx = (hal->read_idx + 1) &
858 					(HAL_REG_WRITE_QUEUE_LEN - 1);
859 		q_elem = &hal->reg_write_queue[(hal->read_idx)];
860 	}
861 
862 	hif_allow_link_low_power_states(hal->hif_handle);
863 	/*
864 	 * Decrement active_work_cnt by the number of elements dequeued after
865 	 * hif_allow_link_low_power_states.
866 	 * This makes sure that hif_try_complete_tasks will wait till we make
867 	 * the bus access in hif_allow_link_low_power_states. This will avoid
868 	 * race condition between delayed register worker and bus suspend
869 	 * (system suspend or runtime suspend).
870 	 *
871 	 * The following decrement should be done at the end!
872 	 */
873 	qdf_atomic_sub(num_processed, &hal->active_work_cnt);
874 }
875 
876 static void __hal_flush_reg_write_work(struct hal_soc *hal)
877 {
878 	qdf_flush_work(&hal->reg_write_work);
879 	qdf_disable_work(&hal->reg_write_work);
880 }
881 
882 void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
883 {	__hal_flush_reg_write_work((struct hal_soc *)hal_handle);
884 }
885 
886 /**
887  * hal_reg_write_enqueue() - enqueue register writes into kworker
888  * @hal_soc: hal_soc pointer
889  * @srng: srng pointer
890  * @addr: iomem address of register
891  * @value: value to be written to iomem address
892  *
893  * This function executes from within the SRNG LOCK
894  *
895  * Return: None
896  */
897 static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
898 				  struct hal_srng *srng,
899 				  void __iomem *addr,
900 				  uint32_t value)
901 {
902 	struct hal_reg_write_q_elem *q_elem;
903 	uint32_t write_idx;
904 
905 	if (srng->reg_write_in_progress) {
906 		hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
907 				  srng->ring_id, addr, value);
908 		qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
909 		srng->wstats.coalesces++;
910 		return;
911 	}
912 
913 	write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
914 
915 	write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
916 
917 	q_elem = &hal_soc->reg_write_queue[write_idx];
918 
919 	if (q_elem->valid) {
920 		hal_err("queue full");
921 		QDF_BUG(0);
922 		return;
923 	}
924 
925 	qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
926 	srng->wstats.enqueues++;
927 
928 	qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
929 
930 	q_elem->srng = srng;
931 	q_elem->addr = addr;
932 	q_elem->enqueue_val = value;
933 	q_elem->enqueue_time = qdf_get_log_timestamp();
934 
935 	/*
936 	 * Before the valid flag is set to true, all the other
937 	 * fields in the q_elem needs to be updated in memory.
938 	 * Else there is a chance that the dequeuing worker thread
939 	 * might read stale entries and process incorrect srng.
940 	 */
941 	qdf_wmb();
942 	q_elem->valid = true;
943 
944 	/*
945 	 * After all other fields in the q_elem has been updated
946 	 * in memory successfully, the valid flag needs to be updated
947 	 * in memory in time too.
948 	 * Else there is a chance that the dequeuing worker thread
949 	 * might read stale valid flag and the work will be bypassed
950 	 * for this round. And if there is no other work scheduled
951 	 * later, this hal register writing won't be updated any more.
952 	 */
953 	qdf_wmb();
954 
955 	srng->reg_write_in_progress  = true;
956 	qdf_atomic_inc(&hal_soc->active_work_cnt);
957 
958 	hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
959 			  write_idx, srng->ring_id, addr, value);
960 
961 	qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
962 		       &hal_soc->reg_write_work);
963 }
964 
965 /**
966  * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
967  * @hal: hal_soc pointer
968  *
969  * Initialize main data structures to process register writes in a delayed
970  * workqueue.
971  *
972  * Return: QDF_STATUS_SUCCESS on success else a QDF error.
973  */
974 static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
975 {
976 	hal->reg_write_wq =
977 		qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
978 	qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
979 	hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
980 					      sizeof(*hal->reg_write_queue));
981 	if (!hal->reg_write_queue) {
982 		hal_err("unable to allocate memory");
983 		QDF_BUG(0);
984 		return QDF_STATUS_E_NOMEM;
985 	}
986 
987 	/* Initial value of indices */
988 	hal->read_idx = 0;
989 	qdf_atomic_set(&hal->write_idx, -1);
990 	return QDF_STATUS_SUCCESS;
991 }
992 
993 /**
994  * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
995  * @hal: hal_soc pointer
996  *
997  * De-initialize main data structures to process register writes in a delayed
998  * workqueue.
999  *
1000  * Return: None
1001  */
1002 static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
1003 {
1004 	__hal_flush_reg_write_work(hal);
1005 
1006 	qdf_flush_workqueue(0, hal->reg_write_wq);
1007 	qdf_destroy_workqueue(0, hal->reg_write_wq);
1008 	qdf_mem_free(hal->reg_write_queue);
1009 }
1010 
1011 #else
1012 static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
1013 {
1014 	return QDF_STATUS_SUCCESS;
1015 }
1016 
1017 static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
1018 {
1019 }
1020 #endif
1021 
1022 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
1023 #ifdef HAL_RECORD_SUSPEND_WRITE
1024 static struct hal_suspend_write_history
1025 		g_hal_suspend_write_history[HAL_SUSPEND_WRITE_HISTORY_MAX];
1026 
1027 static
1028 void hal_event_suspend_record(uint8_t ring_id, uint32_t value, uint32_t count)
1029 {
1030 	uint32_t index = qdf_atomic_read(g_hal_suspend_write_history.index) &
1031 					(HAL_SUSPEND_WRITE_HISTORY_MAX - 1);
1032 	struct hal_suspend_write_record *cur_event =
1033 					&hal_suspend_write_event.record[index];
1034 
1035 	cur_event->ts = qdf_get_log_timestamp();
1036 	cur_event->ring_id = ring_id;
1037 	cur_event->value = value;
1038 	cur_event->direct_wcount = count;
1039 	qdf_atomic_inc(g_hal_suspend_write_history.index);
1040 }
1041 
1042 static inline
1043 void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
1044 {
1045 	if (hif_rtpm_get_state() >= HIF_RTPM_STATE_SUSPENDING)
1046 		hal_event_suspend_record(ring_id, value, count);
1047 }
1048 #else
1049 static inline
1050 void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
1051 {
1052 }
1053 #endif
1054 
1055 #ifdef QCA_WIFI_QCA6750
1056 void hal_delayed_reg_write(struct hal_soc *hal_soc,
1057 			   struct hal_srng *srng,
1058 			   void __iomem *addr,
1059 			   uint32_t value)
1060 {
1061 	uint8_t vote_access;
1062 
1063 	switch (srng->ring_type) {
1064 	case CE_SRC:
1065 	case CE_DST:
1066 	case CE_DST_STATUS:
1067 		vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
1068 						     HIF_EP_VOTE_NONDP_ACCESS);
1069 		if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
1070 		    (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
1071 		     PLD_MHI_STATE_L0 ==
1072 		     pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
1073 			hal_write_address_32_mb(hal_soc, addr, value, false);
1074 			hal_srng_reg_his_add(srng, value);
1075 			qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1076 			srng->wstats.direct++;
1077 		} else {
1078 			hal_reg_write_enqueue(hal_soc, srng, addr, value);
1079 		}
1080 		break;
1081 	default:
1082 		if (hif_get_ep_vote_access(hal_soc->hif_handle,
1083 		    HIF_EP_VOTE_DP_ACCESS) ==
1084 		    HIF_EP_VOTE_ACCESS_DISABLE ||
1085 		    hal_is_reg_write_tput_level_high(hal_soc) ||
1086 		    PLD_MHI_STATE_L0 ==
1087 		    pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
1088 			hal_write_address_32_mb(hal_soc, addr, value, false);
1089 			hal_srng_reg_his_add(srng, value);
1090 			qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1091 			srng->wstats.direct++;
1092 		} else {
1093 			hal_reg_write_enqueue(hal_soc, srng, addr, value);
1094 		}
1095 
1096 		break;
1097 	}
1098 }
1099 #else
1100 void hal_delayed_reg_write(struct hal_soc *hal_soc,
1101 			   struct hal_srng *srng,
1102 			   void __iomem *addr,
1103 			   uint32_t value)
1104 {
1105 	if (hal_is_reg_write_tput_level_high(hal_soc) ||
1106 	    pld_is_device_awake(hal_soc->qdf_dev->dev)) {
1107 		qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1108 		srng->wstats.direct++;
1109 		hal_write_address_32_mb(hal_soc, addr, value, false);
1110 		hal_srng_reg_his_add(srng, value);
1111 	} else {
1112 		hal_reg_write_enqueue(hal_soc, srng, addr, value);
1113 	}
1114 
1115 	hal_record_suspend_write(srng->ring_id, value, srng->wstats.direct);
1116 }
1117 #endif
1118 #endif
1119 
1120 #ifdef HAL_SRNG_REG_HIS_DEBUG
1121 inline void hal_free_srng_history(struct hal_soc *hal)
1122 {
1123 	int i;
1124 
1125 	for (i = 0; i < HAL_SRNG_ID_MAX; i++)
1126 		qdf_mem_free(hal->srng_list[i].reg_his_ctx);
1127 }
1128 
1129 inline bool hal_alloc_srng_history(struct hal_soc *hal)
1130 {
1131 	int i;
1132 
1133 	for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
1134 		hal->srng_list[i].reg_his_ctx =
1135 			qdf_mem_malloc(sizeof(struct hal_srng_reg_his_ctx));
1136 		if (!hal->srng_list[i].reg_his_ctx) {
1137 			hal_err("srng_hist alloc failed");
1138 			hal_free_srng_history(hal);
1139 			return false;
1140 		}
1141 	}
1142 
1143 	return true;
1144 }
1145 #else
1146 inline void hal_free_srng_history(struct hal_soc *hal)
1147 {
1148 }
1149 
1150 inline bool hal_alloc_srng_history(struct hal_soc *hal)
1151 {
1152 	return true;
1153 }
1154 #endif
1155 
1156 void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
1157 {
1158 	struct hal_soc *hal;
1159 	int i;
1160 
1161 	hal = qdf_mem_common_alloc(sizeof(*hal));
1162 
1163 	if (!hal) {
1164 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1165 			"%s: hal_soc allocation failed", __func__);
1166 		goto fail0;
1167 	}
1168 	hal->hif_handle = hif_handle;
1169 	hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
1170 	hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
1171 	hal->dev_base_addr_cmem = hif_get_dev_ba_cmem(hif_handle); /* CMEM */
1172 	hal->dev_base_addr_pmm = hif_get_dev_ba_pmm(hif_handle); /* PMM */
1173 	hal->qdf_dev = qdf_dev;
1174 	hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
1175 		qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
1176 		HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
1177 	if (!hal->shadow_rdptr_mem_paddr) {
1178 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1179 			"%s: hal->shadow_rdptr_mem_paddr allocation failed",
1180 			__func__);
1181 		goto fail1;
1182 	}
1183 	qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
1184 		     sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
1185 
1186 	hal->shadow_wrptr_mem_vaddr =
1187 		(uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
1188 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
1189 		&(hal->shadow_wrptr_mem_paddr));
1190 	if (!hal->shadow_wrptr_mem_vaddr) {
1191 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1192 			"%s: hal->shadow_wrptr_mem_vaddr allocation failed",
1193 			__func__);
1194 		goto fail2;
1195 	}
1196 	qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
1197 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
1198 
1199 	if (!hal_alloc_srng_history(hal))
1200 		goto fail2;
1201 
1202 	for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
1203 		hal->srng_list[i].initialized = 0;
1204 		hal->srng_list[i].ring_id = i;
1205 	}
1206 
1207 	qdf_spinlock_create(&hal->register_access_lock);
1208 	hal->register_window = 0;
1209 	hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
1210 	hal->version = hif_get_soc_version(hif_handle);
1211 	hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
1212 
1213 	if (!hal->ops) {
1214 		hal_err("unable to allocable memory for HAL ops");
1215 		goto fail3;
1216 	}
1217 
1218 	hal_target_based_configure(hal);
1219 
1220 	hal_reg_write_fail_history_init(hal);
1221 
1222 	qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
1223 
1224 	qdf_ssr_driver_dump_register_region("hal_soc", hal, sizeof(*hal));
1225 
1226 	qdf_atomic_init(&hal->active_work_cnt);
1227 	if (hal_delayed_reg_write_init(hal) != QDF_STATUS_SUCCESS) {
1228 		hal_err("unable to initialize delayed reg write");
1229 		goto fail4;
1230 	}
1231 
1232 	hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL);
1233 
1234 	return (void *)hal;
1235 fail4:
1236 	qdf_ssr_driver_dump_unregister_region("hal_soc");
1237 	qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
1238 	qdf_mem_free(hal->ops);
1239 fail3:
1240 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
1241 				sizeof(*hal->shadow_wrptr_mem_vaddr) *
1242 				HAL_MAX_LMAC_RINGS,
1243 				hal->shadow_wrptr_mem_vaddr,
1244 				hal->shadow_wrptr_mem_paddr, 0);
1245 fail2:
1246 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
1247 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
1248 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
1249 fail1:
1250 	qdf_mem_common_free(hal);
1251 fail0:
1252 	return NULL;
1253 }
1254 qdf_export_symbol(hal_attach);
1255 
1256 void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
1257 {
1258 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
1259 	mem->dev_base_addr = (void *)hal->dev_base_addr;
1260         mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
1261 	mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
1262         mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
1263 	mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
1264 	hif_read_phy_mem_base((void *)hal->hif_handle,
1265 			      (qdf_dma_addr_t *)&mem->dev_base_paddr);
1266 	mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
1267 	return;
1268 }
1269 qdf_export_symbol(hal_get_meminfo);
1270 
1271 void hal_detach(void *hal_soc)
1272 {
1273 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1274 
1275 	hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD);
1276 	hal_delayed_reg_write_deinit(hal);
1277 	hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
1278 	qdf_ssr_driver_dump_unregister_region("hal_soc");
1279 	qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
1280 	qdf_mem_free(hal->ops);
1281 
1282 	hal_free_srng_history(hal);
1283 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
1284 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
1285 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
1286 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
1287 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
1288 		hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
1289 	qdf_mem_common_free(hal);
1290 
1291 	return;
1292 }
1293 qdf_export_symbol(hal_detach);
1294 
1295 #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x)		((x) + 0x000000b0)
1296 #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK	0x0000ffff
1297 #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x)	((x) + 0x00000040)
1298 #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK	0x00000007
1299 
1300 /**
1301  * hal_ce_dst_setup() - Initialize CE destination ring registers
1302  * @hal: HAL SOC handle
1303  * @srng: SRNG ring pointer
1304  * @ring_num: ring number
1305  */
1306 static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
1307 				    int ring_num)
1308 {
1309 	uint32_t reg_val = 0;
1310 	uint32_t reg_addr;
1311 	struct hal_hw_srng_config *ring_config =
1312 		HAL_SRNG_CONFIG(hal, CE_DST);
1313 
1314 	/* set DEST_MAX_LENGTH according to ce assignment */
1315 	reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
1316 			ring_config->reg_start[R0_INDEX] +
1317 			(ring_num * ring_config->reg_size[R0_INDEX]));
1318 
1319 	reg_val = HAL_REG_READ(hal, reg_addr);
1320 	reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
1321 	reg_val |= srng->u.dst_ring.max_buffer_length &
1322 		HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
1323 	HAL_REG_WRITE(hal, reg_addr, reg_val);
1324 
1325 	if (srng->prefetch_timer) {
1326 		reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
1327 				ring_config->reg_start[R0_INDEX] +
1328 				(ring_num * ring_config->reg_size[R0_INDEX]));
1329 
1330 		reg_val = HAL_REG_READ(hal, reg_addr);
1331 		reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
1332 		reg_val |= srng->prefetch_timer;
1333 		HAL_REG_WRITE(hal, reg_addr, reg_val);
1334 		reg_val = HAL_REG_READ(hal, reg_addr);
1335 	}
1336 
1337 }
1338 
1339 void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
1340 				uint32_t *ix0, uint32_t *ix1,
1341 				uint32_t *ix2, uint32_t *ix3)
1342 {
1343 	uint32_t reg_offset;
1344 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
1345 	uint32_t reo_reg_base;
1346 
1347 	reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
1348 
1349 	if (read) {
1350 		if (ix0) {
1351 			reg_offset =
1352 				HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
1353 						reo_reg_base);
1354 			*ix0 = HAL_REG_READ(hal, reg_offset);
1355 		}
1356 
1357 		if (ix1) {
1358 			reg_offset =
1359 				HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
1360 						reo_reg_base);
1361 			*ix1 = HAL_REG_READ(hal, reg_offset);
1362 		}
1363 
1364 		if (ix2) {
1365 			reg_offset =
1366 				HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
1367 						reo_reg_base);
1368 			*ix2 = HAL_REG_READ(hal, reg_offset);
1369 		}
1370 
1371 		if (ix3) {
1372 			reg_offset =
1373 				HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
1374 						reo_reg_base);
1375 			*ix3 = HAL_REG_READ(hal, reg_offset);
1376 		}
1377 	} else {
1378 		if (ix0) {
1379 			reg_offset =
1380 				HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
1381 						reo_reg_base);
1382 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1383 						    *ix0, true);
1384 		}
1385 
1386 		if (ix1) {
1387 			reg_offset =
1388 				HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
1389 						reo_reg_base);
1390 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1391 						    *ix1, true);
1392 		}
1393 
1394 		if (ix2) {
1395 			reg_offset =
1396 				HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
1397 						reo_reg_base);
1398 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1399 						    *ix2, true);
1400 		}
1401 
1402 		if (ix3) {
1403 			reg_offset =
1404 				HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
1405 						reo_reg_base);
1406 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1407 						    *ix3, true);
1408 		}
1409 	}
1410 }
1411 
1412 qdf_export_symbol(hal_reo_read_write_ctrl_ix);
1413 
1414 void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
1415 {
1416 	SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
1417 	SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
1418 }
1419 
1420 qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
1421 
1422 void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
1423 			  struct hal_srng *srng,
1424 			  uint32_t *vaddr)
1425 {
1426 	uint32_t reg_offset;
1427 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1428 
1429 	if (!srng)
1430 		return;
1431 
1432 	srng->u.dst_ring.hp_addr = vaddr;
1433 	reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
1434 	HAL_REG_WRITE_CONFIRM_RETRY(
1435 		hal, reg_offset, srng->u.dst_ring.cached_hp, true);
1436 
1437 	if (vaddr) {
1438 		*srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
1439 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1440 			  "hp_addr=%pK, cached_hp=%d",
1441 			  (void *)srng->u.dst_ring.hp_addr,
1442 			  srng->u.dst_ring.cached_hp);
1443 	}
1444 }
1445 
1446 qdf_export_symbol(hal_srng_dst_init_hp);
1447 
1448 /**
1449  * hal_srng_hw_init - Private function to initialize SRNG HW
1450  * @hal: HAL SOC handle
1451  * @srng: SRNG ring pointer
1452  * @idle_check: Check if ring is idle
1453  * @idx: ring index
1454  */
1455 static inline void hal_srng_hw_init(struct hal_soc *hal,
1456 	struct hal_srng *srng, bool idle_check, uint32_t idx)
1457 {
1458 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
1459 		hal_srng_src_hw_init(hal, srng, idle_check, idx);
1460 	else
1461 		hal_srng_dst_hw_init(hal, srng, idle_check, idx);
1462 }
1463 
1464 #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
1465 bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
1466 					 int ring_type, int ring_num)
1467 {
1468 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1469 	struct hal_hw_srng_config *ring_config =
1470 		HAL_SRNG_CONFIG(hal, ring_type);
1471 
1472 	return ring_config->nf_irq_support;
1473 }
1474 
1475 /**
1476  * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
1477  *				ring params
1478  * @srng: SRNG handle
1479  * @ring_params: ring params for this SRNG
1480  *
1481  * Return: None
1482  */
1483 static inline void
1484 hal_srng_set_msi2_params(struct hal_srng *srng,
1485 			 struct hal_srng_params *ring_params)
1486 {
1487 	srng->msi2_addr = ring_params->msi2_addr;
1488 	srng->msi2_data = ring_params->msi2_data;
1489 }
1490 
1491 /**
1492  * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
1493  * @srng: SRNG handle
1494  * @ring_params: ring params for this SRNG
1495  *
1496  * Return: None
1497  */
1498 static inline void
1499 hal_srng_get_nf_params(struct hal_srng *srng,
1500 		       struct hal_srng_params *ring_params)
1501 {
1502 	ring_params->msi2_addr = srng->msi2_addr;
1503 	ring_params->msi2_data = srng->msi2_data;
1504 }
1505 
1506 /**
1507  * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
1508  * @srng: SRNG handle where the params are to be set
1509  * @ring_params: ring params, from where threshold is to be fetched
1510  *
1511  * Return: None
1512  */
1513 static inline void
1514 hal_srng_set_nf_thresholds(struct hal_srng *srng,
1515 			   struct hal_srng_params *ring_params)
1516 {
1517 	srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
1518 	srng->u.dst_ring.high_thresh = ring_params->high_thresh;
1519 }
1520 #else
1521 static inline void
1522 hal_srng_set_msi2_params(struct hal_srng *srng,
1523 			 struct hal_srng_params *ring_params)
1524 {
1525 }
1526 
1527 static inline void
1528 hal_srng_get_nf_params(struct hal_srng *srng,
1529 		       struct hal_srng_params *ring_params)
1530 {
1531 }
1532 
1533 static inline void
1534 hal_srng_set_nf_thresholds(struct hal_srng *srng,
1535 			   struct hal_srng_params *ring_params)
1536 {
1537 }
1538 #endif
1539 
1540 #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
1541 /**
1542  * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
1543  * @srng: Source ring pointer
1544  *
1545  * Return: None
1546  */
1547 static inline
1548 void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
1549 {
1550 	srng->last_desc_cleared = srng->ring_size - srng->entry_size;
1551 }
1552 
1553 #else
1554 static inline
1555 void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
1556 {
1557 }
1558 #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
1559 
1560 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
1561 static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
1562 {
1563 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100] =
1564 			((srng->num_entries * 90) / 100);
1565 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90] =
1566 			((srng->num_entries * 80) / 100);
1567 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80] =
1568 			((srng->num_entries * 70) / 100);
1569 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70] =
1570 			((srng->num_entries * 60) / 100);
1571 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60] =
1572 			((srng->num_entries * 50) / 100);
1573 	/* Below 50% threshold is not needed */
1574 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT] = 0;
1575 
1576 	hal_info("ring_id: %u, wm_thresh- <50:%u, 50-60:%u, 60-70:%u, 70-80:%u, 80-90:%u, 90-100:%u",
1577 		 srng->ring_id,
1578 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT],
1579 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60],
1580 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70],
1581 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80],
1582 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90],
1583 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100]);
1584 }
1585 #else
1586 static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
1587 {
1588 }
1589 #endif
1590 
1591 void *hal_srng_setup_idx(void *hal_soc, int ring_type, int ring_num, int mac_id,
1592 			 struct hal_srng_params *ring_params, bool idle_check,
1593 			 uint32_t idx)
1594 {
1595 	int ring_id;
1596 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1597 	hal_soc_handle_t hal_hdl = (hal_soc_handle_t)hal;
1598 	struct hal_srng *srng;
1599 	struct hal_hw_srng_config *ring_config =
1600 		HAL_SRNG_CONFIG(hal, ring_type);
1601 	void *dev_base_addr;
1602 	int i;
1603 
1604 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
1605 	if (ring_id < 0)
1606 		return NULL;
1607 
1608 	hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
1609 
1610 	srng = hal_get_srng(hal_soc, ring_id);
1611 
1612 	if (srng->initialized) {
1613 		hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
1614 		return NULL;
1615 	}
1616 
1617 	hal_srng_reg_his_init(srng);
1618 	dev_base_addr = hal->dev_base_addr;
1619 	srng->ring_id = ring_id;
1620 	srng->ring_type = ring_type;
1621 	srng->ring_dir = ring_config->ring_dir;
1622 	srng->ring_base_paddr = ring_params->ring_base_paddr;
1623 	srng->ring_base_vaddr = ring_params->ring_base_vaddr;
1624 	srng->entry_size = ring_config->entry_size;
1625 	srng->num_entries = ring_params->num_entries;
1626 	srng->ring_size = srng->num_entries * srng->entry_size;
1627 	srng->ring_size_mask = srng->ring_size - 1;
1628 	srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
1629 	srng->msi_addr = ring_params->msi_addr;
1630 	srng->msi_data = ring_params->msi_data;
1631 	srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
1632 	srng->intr_batch_cntr_thres_entries =
1633 		ring_params->intr_batch_cntr_thres_entries;
1634 	srng->pointer_timer_threshold =
1635 		ring_params->pointer_timer_threshold;
1636 	srng->pointer_num_threshold =
1637 		ring_params->pointer_num_threshold;
1638 
1639 	if (!idle_check)
1640 		srng->prefetch_timer = ring_params->prefetch_timer;
1641 	srng->hal_soc = hal_soc;
1642 	hal_srng_set_msi2_params(srng, ring_params);
1643 	hal_srng_update_high_wm_thresholds(srng);
1644 
1645 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
1646 		srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
1647 			+ (ring_num * ring_config->reg_size[i]);
1648 	}
1649 
1650 	/* Zero out the entire ring memory */
1651 	qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
1652 		srng->num_entries) << 2);
1653 
1654 	srng->flags = ring_params->flags;
1655 
1656 	/* For cached descriptors flush and invalidate the memory*/
1657 	if (srng->flags & HAL_SRNG_CACHED_DESC) {
1658 		qdf_nbuf_dma_clean_range(
1659 				srng->ring_base_vaddr,
1660 				srng->ring_base_vaddr +
1661 				((srng->entry_size * srng->num_entries)));
1662 		qdf_nbuf_dma_inv_range(
1663 				srng->ring_base_vaddr,
1664 				srng->ring_base_vaddr +
1665 				((srng->entry_size * srng->num_entries)));
1666 	}
1667 #ifdef BIG_ENDIAN_HOST
1668 		/* TODO: See if we should we get these flags from caller */
1669 	srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
1670 	srng->flags |= HAL_SRNG_MSI_SWAP;
1671 	srng->flags |= HAL_SRNG_RING_PTR_SWAP;
1672 #endif
1673 
1674 	hal_srng_last_desc_cleared_init(srng);
1675 
1676 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1677 		srng->u.src_ring.hp = 0;
1678 		srng->u.src_ring.reap_hp = srng->ring_size -
1679 			srng->entry_size;
1680 		srng->u.src_ring.tp_addr =
1681 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1682 		srng->u.src_ring.low_threshold =
1683 			ring_params->low_threshold * srng->entry_size;
1684 
1685 		if (srng->u.src_ring.tp_addr)
1686 			qdf_mem_zero(srng->u.src_ring.tp_addr,
1687 				     sizeof(*hal->shadow_rdptr_mem_vaddr));
1688 
1689 		if (ring_config->lmac_ring) {
1690 			/* For LMAC rings, head pointer updates will be done
1691 			 * through FW by writing to a shared memory location
1692 			 */
1693 			srng->u.src_ring.hp_addr =
1694 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1695 					HAL_SRNG_LMAC1_ID_START]);
1696 			srng->flags |= HAL_SRNG_LMAC_RING;
1697 
1698 			if (srng->u.src_ring.hp_addr)
1699 				qdf_mem_zero(srng->u.src_ring.hp_addr,
1700 					sizeof(*hal->shadow_wrptr_mem_vaddr));
1701 
1702 		} else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
1703 			srng->u.src_ring.hp_addr =
1704 				hal_get_window_address(hal,
1705 						SRNG_SRC_ADDR(srng, HP));
1706 
1707 			if (CHECK_SHADOW_REGISTERS) {
1708 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1709 				    QDF_TRACE_LEVEL_ERROR,
1710 				    "%s: Ring (%d, %d) missing shadow config",
1711 				    __func__, ring_type, ring_num);
1712 			}
1713 		} else {
1714 			hal_validate_shadow_register(hal,
1715 						     SRNG_SRC_ADDR(srng, HP),
1716 						     srng->u.src_ring.hp_addr);
1717 		}
1718 	} else {
1719 		/* During initialization loop count in all the descriptors
1720 		 * will be set to zero, and HW will set it to 1 on completing
1721 		 * descriptor update in first loop, and increments it by 1 on
1722 		 * subsequent loops (loop count wraps around after reaching
1723 		 * 0xffff). The 'loop_cnt' in SW ring state is the expected
1724 		 * loop count in descriptors updated by HW (to be processed
1725 		 * by SW).
1726 		 */
1727 		hal_srng_set_nf_thresholds(srng, ring_params);
1728 		srng->u.dst_ring.loop_cnt = 1;
1729 		srng->u.dst_ring.tp = 0;
1730 		srng->u.dst_ring.hp_addr =
1731 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1732 
1733 		if (srng->u.dst_ring.hp_addr)
1734 			qdf_mem_zero(srng->u.dst_ring.hp_addr,
1735 				     sizeof(*hal->shadow_rdptr_mem_vaddr));
1736 
1737 		if (ring_config->lmac_ring) {
1738 			/* For LMAC rings, tail pointer updates will be done
1739 			 * through FW by writing to a shared memory location
1740 			 */
1741 			srng->u.dst_ring.tp_addr =
1742 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1743 				HAL_SRNG_LMAC1_ID_START]);
1744 			srng->flags |= HAL_SRNG_LMAC_RING;
1745 
1746 			if (srng->u.dst_ring.tp_addr)
1747 				qdf_mem_zero(srng->u.dst_ring.tp_addr,
1748 					sizeof(*hal->shadow_wrptr_mem_vaddr));
1749 
1750 		} else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
1751 			srng->u.dst_ring.tp_addr =
1752 				hal_get_window_address(hal,
1753 						SRNG_DST_ADDR(srng, TP));
1754 
1755 			if (CHECK_SHADOW_REGISTERS) {
1756 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1757 				    QDF_TRACE_LEVEL_ERROR,
1758 				    "%s: Ring (%d, %d) missing shadow config",
1759 				    __func__, ring_type, ring_num);
1760 			}
1761 		} else {
1762 			hal_validate_shadow_register(hal,
1763 						     SRNG_DST_ADDR(srng, TP),
1764 						     srng->u.dst_ring.tp_addr);
1765 		}
1766 	}
1767 
1768 	if (!(ring_config->lmac_ring)) {
1769 		/*
1770 		 * UMAC reset has idle check enabled.
1771 		 * During UMAC reset Tx ring halt is set
1772 		 * by Wi-Fi FW during pre-reset stage,
1773 		 * avoid Tx ring halt again.
1774 		 */
1775 		if (idle_check && idx) {
1776 			if (!hal->ops->hal_tx_ring_halt_get(hal_hdl)) {
1777 				qdf_print("\nTx ring halt not set:Ring(%d, %d)",
1778 					  ring_type, ring_num);
1779 				qdf_assert_always(0);
1780 			}
1781 			hal_srng_hw_init(hal, srng, idle_check, idx);
1782 			goto ce_setup;
1783 		}
1784 
1785 		if (idx) {
1786 			hal->ops->hal_tx_ring_halt_set(hal_hdl);
1787 			do {
1788 				hal_info("Waiting for ring reset");
1789 			} while (!(hal->ops->hal_tx_ring_halt_poll(hal_hdl)));
1790 		}
1791 		hal_srng_hw_init(hal, srng, idle_check, idx);
1792 
1793 		if (idx) {
1794 			hal->ops->hal_tx_ring_halt_reset(hal_hdl);
1795 		}
1796 
1797 ce_setup:
1798 		if (ring_type == CE_DST) {
1799 			srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
1800 			hal_ce_dst_setup(hal, srng, ring_num);
1801 		}
1802 	}
1803 
1804 	SRNG_LOCK_INIT(&srng->lock);
1805 
1806 	srng->srng_event = 0;
1807 
1808 	srng->initialized = true;
1809 
1810 	return (void *)srng;
1811 }
1812 qdf_export_symbol(hal_srng_setup_idx);
1813 
1814 /**
1815  * hal_srng_setup - Initialize HW SRNG ring.
1816  * @hal_soc: Opaque HAL SOC handle
1817  * @ring_type: one of the types from hal_ring_type
1818  * @ring_num: Ring number if there are multiple rings of same type (staring
1819  * from 0)
1820  * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
1821  * @ring_params: SRNG ring params in hal_srng_params structure.
1822  * @idle_check: Check if ring is idle
1823  *
1824  * Callers are expected to allocate contiguous ring memory of size
1825  * 'num_entries * entry_size' bytes and pass the physical and virtual base
1826  * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
1827  * hal_srng_params structure. Ring base address should be 8 byte aligned
1828  * and size of each ring entry should be queried using the API
1829  * hal_srng_get_entrysize
1830  *
1831  * Return: Opaque pointer to ring on success
1832  *		 NULL on failure (if given ring is not available)
1833  */
1834 void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
1835 		     int mac_id, struct hal_srng_params *ring_params,
1836 		     bool idle_check)
1837 {
1838 	return hal_srng_setup_idx(hal_soc, ring_type, ring_num, mac_id,
1839 				  ring_params, idle_check, 0);
1840 }
1841 qdf_export_symbol(hal_srng_setup);
1842 
1843 void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl,
1844 		      bool umac_reset_inprogress)
1845 {
1846 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1847 	SRNG_LOCK_DESTROY(&srng->lock);
1848 	srng->initialized = 0;
1849 	if (umac_reset_inprogress)
1850 		hal_srng_hw_disable(hal_soc, srng);
1851 }
1852 qdf_export_symbol(hal_srng_cleanup);
1853 
1854 uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
1855 {
1856 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1857 	struct hal_hw_srng_config *ring_config =
1858 		HAL_SRNG_CONFIG(hal, ring_type);
1859 	return ring_config->entry_size << 2;
1860 }
1861 qdf_export_symbol(hal_srng_get_entrysize);
1862 
1863 uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
1864 {
1865 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1866 	struct hal_hw_srng_config *ring_config =
1867 		HAL_SRNG_CONFIG(hal, ring_type);
1868 
1869 	return ring_config->max_size / ring_config->entry_size;
1870 }
1871 qdf_export_symbol(hal_srng_max_entries);
1872 
1873 enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
1874 {
1875 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1876 	struct hal_hw_srng_config *ring_config =
1877 		HAL_SRNG_CONFIG(hal, ring_type);
1878 
1879 	return ring_config->ring_dir;
1880 }
1881 
1882 void hal_srng_dump(struct hal_srng *srng)
1883 {
1884 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1885 		hal_debug("=== SRC RING %d ===", srng->ring_id);
1886 		hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
1887 			  srng->u.src_ring.hp,
1888 			  srng->u.src_ring.reap_hp,
1889 			  *srng->u.src_ring.tp_addr,
1890 			  srng->u.src_ring.cached_tp);
1891 	} else {
1892 		hal_debug("=== DST RING %d ===", srng->ring_id);
1893 		hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
1894 			  srng->u.dst_ring.tp,
1895 			  *srng->u.dst_ring.hp_addr,
1896 			  srng->u.dst_ring.cached_hp,
1897 			  srng->u.dst_ring.loop_cnt);
1898 	}
1899 }
1900 
1901 void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
1902 			 hal_ring_handle_t hal_ring_hdl,
1903 			 struct hal_srng_params *ring_params)
1904 {
1905 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1906 	int i =0;
1907 	ring_params->ring_id = srng->ring_id;
1908 	ring_params->ring_dir = srng->ring_dir;
1909 	ring_params->entry_size = srng->entry_size;
1910 
1911 	ring_params->ring_base_paddr = srng->ring_base_paddr;
1912 	ring_params->ring_base_vaddr = srng->ring_base_vaddr;
1913 	ring_params->num_entries = srng->num_entries;
1914 	ring_params->msi_addr = srng->msi_addr;
1915 	ring_params->msi_data = srng->msi_data;
1916 	ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
1917 	ring_params->intr_batch_cntr_thres_entries =
1918 		srng->intr_batch_cntr_thres_entries;
1919 	ring_params->low_threshold = srng->u.src_ring.low_threshold;
1920 	ring_params->flags = srng->flags;
1921 	ring_params->ring_id = srng->ring_id;
1922 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
1923 		ring_params->hwreg_base[i] = srng->hwreg_base[i];
1924 
1925 	hal_srng_get_nf_params(srng, ring_params);
1926 }
1927 qdf_export_symbol(hal_get_srng_params);
1928 
1929 void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
1930 				 uint32_t low_threshold)
1931 {
1932 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1933 	srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
1934 }
1935 qdf_export_symbol(hal_set_low_threshold);
1936 
1937 #ifdef FEATURE_RUNTIME_PM
1938 void
1939 hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
1940 			 hal_ring_handle_t hal_ring_hdl,
1941 			 uint32_t rtpm_id)
1942 {
1943 	struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
1944 
1945 	if (qdf_unlikely(!hal_ring_hdl)) {
1946 		qdf_print("Error: Invalid hal_ring\n");
1947 		return;
1948 	}
1949 
1950 	if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) {
1951 		if (hif_system_pm_state_check(hal_soc->hif_handle)) {
1952 			hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
1953 			hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
1954 			hal_srng_inc_flush_cnt(hal_ring_hdl);
1955 		} else {
1956 			hal_srng_access_end(hal_soc_hdl, hal_ring_hdl);
1957 		}
1958 
1959 		hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id);
1960 	} else {
1961 		hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
1962 		hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
1963 		hal_srng_inc_flush_cnt(hal_ring_hdl);
1964 	}
1965 }
1966 
1967 qdf_export_symbol(hal_srng_rtpm_access_end);
1968 #endif /* FEATURE_RUNTIME_PM */
1969 
1970 #ifdef FORCE_WAKE
1971 void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
1972 {
1973 	struct hal_soc *hal_soc = (struct hal_soc *)soc;
1974 	hal_soc->init_phase = init_phase;
1975 }
1976 #endif /* FORCE_WAKE */
1977