xref: /wlan-dirver/qca-wifi-host-cmn/hal/wifi3.0/hal_srng.c (revision 569cc296edb935e5bbb6f0a4bca30cab7856c360)
1 /*
2  * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "hal_api.h"
21 #include "target_type.h"
22 #include "wcss_version.h"
23 #include "qdf_module.h"
24 
25 #ifdef QCA_WIFI_QCA8074
26 void hal_qca6290_attach(struct hal_soc *hal);
27 #endif
28 #ifdef QCA_WIFI_QCA8074
29 void hal_qca8074_attach(struct hal_soc *hal);
30 #endif
31 #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
32 void hal_qca8074v2_attach(struct hal_soc *hal);
33 #endif
34 #ifdef QCA_WIFI_QCA6390
35 void hal_qca6390_attach(struct hal_soc *hal);
36 #endif
37 #ifdef QCA_WIFI_QCA6490
38 void hal_qca6490_attach(struct hal_soc *hal);
39 #endif
40 #ifdef QCA_WIFI_QCN9000
41 void hal_qcn9000_attach(struct hal_soc *hal);
42 #endif
43 #ifdef QCA_WIFI_QCN9100
44 void hal_qcn9100_attach(struct hal_soc *hal);
45 #endif
46 #ifdef QCA_WIFI_QCA6750
47 void hal_qca6750_attach(struct hal_soc *hal);
48 #endif
49 #ifdef QCA_WIFI_QCA5018
50 void hal_qca5018_attach(struct hal_soc *hal);
51 #endif
52 
53 #ifdef ENABLE_VERBOSE_DEBUG
54 bool is_hal_verbose_debug_enabled;
55 #endif
56 
57 #ifdef ENABLE_HAL_REG_WR_HISTORY
58 struct hal_reg_write_fail_history hal_reg_wr_hist;
59 
60 void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
61 				 uint32_t offset,
62 				 uint32_t wr_val, uint32_t rd_val)
63 {
64 	struct hal_reg_write_fail_entry *record;
65 	int idx;
66 
67 	idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
68 					 HAL_REG_WRITE_HIST_SIZE);
69 
70 	record = &hal_soc->reg_wr_fail_hist->record[idx];
71 
72 	record->timestamp = qdf_get_log_timestamp();
73 	record->reg_offset = offset;
74 	record->write_val = wr_val;
75 	record->read_val = rd_val;
76 }
77 
78 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
79 {
80 	hal->reg_wr_fail_hist = &hal_reg_wr_hist;
81 
82 	qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
83 }
84 #else
85 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
86 {
87 }
88 #endif
89 
90 /**
91  * hal_get_srng_ring_id() - get the ring id of a descriped ring
92  * @hal: hal_soc data structure
93  * @ring_type: type enum describing the ring
94  * @ring_num: which ring of the ring type
95  * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
96  *
97  * Return: the ring id or -EINVAL if the ring does not exist.
98  */
99 static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
100 				int ring_num, int mac_id)
101 {
102 	struct hal_hw_srng_config *ring_config =
103 		HAL_SRNG_CONFIG(hal, ring_type);
104 	int ring_id;
105 
106 	if (ring_num >= ring_config->max_rings) {
107 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
108 			  "%s: ring_num exceeded maximum no. of supported rings",
109 			  __func__);
110 		/* TODO: This is a programming error. Assert if this happens */
111 		return -EINVAL;
112 	}
113 
114 	if (ring_config->lmac_ring) {
115 		ring_id = ring_config->start_ring_id + ring_num +
116 			(mac_id * HAL_MAX_RINGS_PER_LMAC);
117 	} else {
118 		ring_id = ring_config->start_ring_id + ring_num;
119 	}
120 
121 	return ring_id;
122 }
123 
124 static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
125 {
126 	/* TODO: Should we allocate srng structures dynamically? */
127 	return &(hal->srng_list[ring_id]);
128 }
129 
130 #define HP_OFFSET_IN_REG_START 1
131 #define OFFSET_FROM_HP_TO_TP 4
132 static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
133 					  int shadow_config_index,
134 					  int ring_type,
135 					  int ring_num)
136 {
137 	struct hal_srng *srng;
138 	int ring_id;
139 	struct hal_hw_srng_config *ring_config =
140 		HAL_SRNG_CONFIG(hal_soc, ring_type);
141 
142 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
143 	if (ring_id < 0)
144 		return;
145 
146 	srng = hal_get_srng(hal_soc, ring_id);
147 
148 	if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
149 		srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
150 			+ hal_soc->dev_base_addr;
151 		hal_debug("tp_addr=%pK dev base addr %pK index %u",
152 			  srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
153 			  shadow_config_index);
154 	} else {
155 		srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
156 			+ hal_soc->dev_base_addr;
157 		hal_debug("hp_addr=%pK dev base addr %pK index %u",
158 			  srng->u.src_ring.hp_addr,
159 			  hal_soc->dev_base_addr, shadow_config_index);
160 	}
161 
162 }
163 
164 #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
165 void hal_set_one_target_reg_config(struct hal_soc *hal,
166 				   uint32_t target_reg_offset,
167 				   int list_index)
168 {
169 	int i = list_index;
170 
171 	qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
172 	hal->list_shadow_reg_config[i].target_register =
173 		target_reg_offset;
174 	hal->num_generic_shadow_regs_configured++;
175 }
176 
177 qdf_export_symbol(hal_set_one_target_reg_config);
178 
179 #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
180 #define MAX_REO_REMAP_SHADOW_REGS 4
181 QDF_STATUS hal_set_shadow_regs(void *hal_soc)
182 {
183 	uint32_t target_reg_offset;
184 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
185 	int i;
186 	struct hal_hw_srng_config *srng_config =
187 		&hal->hw_srng_table[WBM2SW_RELEASE];
188 
189 	target_reg_offset =
190 		HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
191 			SEQ_WCSS_UMAC_REO_REG_OFFSET);
192 
193 	for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
194 		hal_set_one_target_reg_config(hal, target_reg_offset, i);
195 		target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
196 	}
197 
198 	target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
199 	target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
200 			      * HAL_IPA_TX_COMP_RING_IDX);
201 
202 	hal_set_one_target_reg_config(hal, target_reg_offset, i);
203 	return QDF_STATUS_SUCCESS;
204 }
205 
206 qdf_export_symbol(hal_set_shadow_regs);
207 
208 QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
209 {
210 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
211 	int shadow_config_index = hal->num_shadow_registers_configured;
212 	int i;
213 	int num_regs = hal->num_generic_shadow_regs_configured;
214 
215 	for (i = 0; i < num_regs; i++) {
216 		qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
217 		hal->shadow_config[shadow_config_index].addr =
218 			hal->list_shadow_reg_config[i].target_register;
219 		hal->list_shadow_reg_config[i].shadow_config_index =
220 			shadow_config_index;
221 		hal->list_shadow_reg_config[i].va =
222 			SHADOW_REGISTER(shadow_config_index) +
223 			(uintptr_t)hal->dev_base_addr;
224 		hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
225 			  hal->shadow_config[shadow_config_index].addr,
226 			  SHADOW_REGISTER(shadow_config_index),
227 			  shadow_config_index);
228 		shadow_config_index++;
229 		hal->num_shadow_registers_configured++;
230 	}
231 	return QDF_STATUS_SUCCESS;
232 }
233 
234 qdf_export_symbol(hal_construct_shadow_regs);
235 #endif
236 
237 QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
238 				     int ring_type,
239 				     int ring_num)
240 {
241 	uint32_t target_register;
242 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
243 	struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
244 	int shadow_config_index = hal->num_shadow_registers_configured;
245 
246 	if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
247 		QDF_ASSERT(0);
248 		return QDF_STATUS_E_RESOURCES;
249 	}
250 
251 	hal->num_shadow_registers_configured++;
252 
253 	target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
254 	target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
255 			    *ring_num);
256 
257 	/* if the ring is a dst ring, we need to shadow the tail pointer */
258 	if (srng_config->ring_dir == HAL_SRNG_DST_RING)
259 		target_register += OFFSET_FROM_HP_TO_TP;
260 
261 	hal->shadow_config[shadow_config_index].addr = target_register;
262 
263 	/* update hp/tp addr in the hal_soc structure*/
264 	hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
265 				      ring_num);
266 
267 	hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
268 		  target_register,
269 		  SHADOW_REGISTER(shadow_config_index),
270 		  shadow_config_index,
271 		  ring_type, ring_num);
272 
273 	return QDF_STATUS_SUCCESS;
274 }
275 
276 qdf_export_symbol(hal_set_one_shadow_config);
277 
278 QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
279 {
280 	int ring_type, ring_num;
281 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
282 
283 	for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
284 		struct hal_hw_srng_config *srng_config =
285 			&hal->hw_srng_table[ring_type];
286 
287 		if (ring_type == CE_SRC ||
288 		    ring_type == CE_DST ||
289 		    ring_type == CE_DST_STATUS)
290 			continue;
291 
292 		if (srng_config->lmac_ring)
293 			continue;
294 
295 		for (ring_num = 0; ring_num < srng_config->max_rings;
296 		     ring_num++)
297 			hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
298 	}
299 
300 	return QDF_STATUS_SUCCESS;
301 }
302 
303 qdf_export_symbol(hal_construct_srng_shadow_regs);
304 
305 void hal_get_shadow_config(void *hal_soc,
306 	struct pld_shadow_reg_v2_cfg **shadow_config,
307 	int *num_shadow_registers_configured)
308 {
309 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
310 
311 	*shadow_config = hal->shadow_config;
312 	*num_shadow_registers_configured =
313 		hal->num_shadow_registers_configured;
314 }
315 
316 qdf_export_symbol(hal_get_shadow_config);
317 
318 
319 static void hal_validate_shadow_register(struct hal_soc *hal,
320 				  uint32_t *destination,
321 				  uint32_t *shadow_address)
322 {
323 	unsigned int index;
324 	uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
325 	int destination_ba_offset =
326 		((char *)destination) - (char *)hal->dev_base_addr;
327 
328 	index =	shadow_address - shadow_0_offset;
329 
330 	if (index >= MAX_SHADOW_REGISTERS) {
331 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
332 			"%s: index %x out of bounds", __func__, index);
333 		goto error;
334 	} else if (hal->shadow_config[index].addr != destination_ba_offset) {
335 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
336 			"%s: sanity check failure, expected %x, found %x",
337 			__func__, destination_ba_offset,
338 			hal->shadow_config[index].addr);
339 		goto error;
340 	}
341 	return;
342 error:
343 	qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
344 		  hal->dev_base_addr, destination, shadow_address,
345 		  shadow_0_offset, index);
346 	QDF_BUG(0);
347 	return;
348 }
349 
350 static void hal_target_based_configure(struct hal_soc *hal)
351 {
352 	/**
353 	 * Indicate Initialization of srngs to avoid force wake
354 	 * as umac power collapse is not enabled yet
355 	 */
356 	hal->init_phase = true;
357 
358 	switch (hal->target_type) {
359 #ifdef QCA_WIFI_QCA6290
360 	case TARGET_TYPE_QCA6290:
361 		hal->use_register_windowing = true;
362 		hal_qca6290_attach(hal);
363 	break;
364 #endif
365 #ifdef QCA_WIFI_QCA6390
366 	case TARGET_TYPE_QCA6390:
367 		hal->use_register_windowing = true;
368 		hal_qca6390_attach(hal);
369 	break;
370 #endif
371 #ifdef QCA_WIFI_QCA6490
372 	case TARGET_TYPE_QCA6490:
373 		hal->use_register_windowing = true;
374 		hal_qca6490_attach(hal);
375 		hal->init_phase = false;
376 	break;
377 #endif
378 #ifdef QCA_WIFI_QCA6750
379 		case TARGET_TYPE_QCA6750:
380 			hal->use_register_windowing = true;
381 			hal->static_window_map = true;
382 			hal_qca6750_attach(hal);
383 		break;
384 #endif
385 #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
386 	case TARGET_TYPE_QCA8074:
387 		hal_qca8074_attach(hal);
388 	break;
389 #endif
390 
391 #if defined(QCA_WIFI_QCA8074V2)
392 	case TARGET_TYPE_QCA8074V2:
393 		hal_qca8074v2_attach(hal);
394 	break;
395 #endif
396 
397 #if defined(QCA_WIFI_QCA6018)
398 	case TARGET_TYPE_QCA6018:
399 		hal_qca8074v2_attach(hal);
400 	break;
401 #endif
402 
403 #if defined(QCA_WIFI_QCN9100)
404 	case TARGET_TYPE_QCN9100:
405 		hal->use_register_windowing = true;
406 		/*
407 		 * Static window map  is enabled for qcn9000 to use 2mb bar
408 		 * size and use multiple windows to write into registers.
409 		 */
410 		hal->static_window_map = true;
411 		hal_qcn9100_attach(hal);
412 		break;
413 #endif
414 
415 #ifdef QCA_WIFI_QCN9000
416 	case TARGET_TYPE_QCN9000:
417 		hal->use_register_windowing = true;
418 		/*
419 		 * Static window map  is enabled for qcn9000 to use 2mb bar
420 		 * size and use multiple windows to write into registers.
421 		 */
422 		hal->static_window_map = true;
423 		hal_qcn9000_attach(hal);
424 	break;
425 #endif
426 #ifdef QCA_WIFI_QCA5018
427 	case TARGET_TYPE_QCA5018:
428 		hal->use_register_windowing = true;
429 		hal->static_window_map = true;
430 		hal_qca5018_attach(hal);
431 	break;
432 #endif
433 	default:
434 	break;
435 	}
436 }
437 
438 uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
439 {
440 	struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
441 	struct hif_target_info *tgt_info =
442 		hif_get_target_info_handle(hal_soc->hif_handle);
443 
444 	return tgt_info->target_type;
445 }
446 
447 qdf_export_symbol(hal_get_target_type);
448 
449 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
450 #ifdef MEMORY_DEBUG
451 /*
452  * Length of the queue(array) used to hold delayed register writes.
453  * Must be a multiple of 2.
454  */
455 #define HAL_REG_WRITE_QUEUE_LEN 128
456 #else
457 #define HAL_REG_WRITE_QUEUE_LEN 32
458 #endif
459 
460 /**
461  * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
462  * @hal: hal_soc pointer
463  *
464  * Return: true if throughput is high, else false.
465  */
466 static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
467 {
468 	int bw_level = hif_get_bandwidth_level(hal->hif_handle);
469 
470 	return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
471 }
472 
473 /**
474  * hal_process_reg_write_q_elem() - process a regiter write queue element
475  * @hal: hal_soc pointer
476  * @q_elem: pointer to hal regiter write queue element
477  *
478  * Return: The value which was written to the address
479  */
480 static uint32_t
481 hal_process_reg_write_q_elem(struct hal_soc *hal,
482 			     struct hal_reg_write_q_elem *q_elem)
483 {
484 	struct hal_srng *srng = q_elem->srng;
485 	uint32_t write_val;
486 
487 	SRNG_LOCK(&srng->lock);
488 
489 	srng->reg_write_in_progress = false;
490 	srng->wstats.dequeues++;
491 
492 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
493 		q_elem->dequeue_val = srng->u.src_ring.hp;
494 		hal_write_address_32_mb(hal,
495 					srng->u.src_ring.hp_addr,
496 					srng->u.src_ring.hp, false);
497 		write_val = srng->u.src_ring.hp;
498 	} else {
499 		q_elem->dequeue_val = srng->u.dst_ring.tp;
500 		hal_write_address_32_mb(hal,
501 					srng->u.dst_ring.tp_addr,
502 					srng->u.dst_ring.tp, false);
503 		write_val = srng->u.dst_ring.tp;
504 	}
505 
506 	q_elem->valid = 0;
507 	SRNG_UNLOCK(&srng->lock);
508 
509 	return write_val;
510 }
511 
512 /**
513  * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
514  * @hal: hal_soc pointer
515  * @delay: delay in us
516  *
517  * Return: None
518  */
519 static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
520 						       uint64_t delay_us)
521 {
522 	uint32_t *hist;
523 
524 	hist = hal->stats.wstats.sched_delay;
525 
526 	if (delay_us < 100)
527 		hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
528 	else if (delay_us < 1000)
529 		hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
530 	else if (delay_us < 5000)
531 		hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
532 	else
533 		hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
534 }
535 
536 /**
537  * hal_reg_write_work() - Worker to process delayed writes
538  * @arg: hal_soc pointer
539  *
540  * Return: None
541  */
542 static void hal_reg_write_work(void *arg)
543 {
544 	int32_t q_depth, write_val;
545 	struct hal_soc *hal = arg;
546 	struct hal_reg_write_q_elem *q_elem;
547 	uint64_t delta_us;
548 	uint8_t ring_id;
549 	uint32_t *addr;
550 	uint32_t num_processed = 0;
551 
552 	q_elem = &hal->reg_write_queue[(hal->read_idx)];
553 	q_elem->work_scheduled_time = qdf_get_log_timestamp();
554 
555 	/* Make sure q_elem consistent in the memory for multi-cores */
556 	qdf_rmb();
557 	if (!q_elem->valid)
558 		return;
559 
560 	q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
561 	if (q_depth > hal->stats.wstats.max_q_depth)
562 		hal->stats.wstats.max_q_depth =  q_depth;
563 
564 	if (hif_prevent_link_low_power_states(hal->hif_handle)) {
565 		hal->stats.wstats.prevent_l1_fails++;
566 		return;
567 	}
568 
569 	while (true) {
570 		qdf_rmb();
571 		if (!q_elem->valid)
572 			break;
573 
574 		q_elem->dequeue_time = qdf_get_log_timestamp();
575 		ring_id = q_elem->srng->ring_id;
576 		addr = q_elem->addr;
577 		delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
578 						      q_elem->enqueue_time);
579 		hal_reg_write_fill_sched_delay_hist(hal, delta_us);
580 
581 		hal->stats.wstats.dequeues++;
582 		qdf_atomic_dec(&hal->stats.wstats.q_depth);
583 
584 		write_val = hal_process_reg_write_q_elem(hal, q_elem);
585 		hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
586 				  hal->read_idx, ring_id, addr, write_val, delta_us);
587 
588 		num_processed++;
589 		hal->read_idx = (hal->read_idx + 1) &
590 					(HAL_REG_WRITE_QUEUE_LEN - 1);
591 		q_elem = &hal->reg_write_queue[(hal->read_idx)];
592 	}
593 
594 	hif_allow_link_low_power_states(hal->hif_handle);
595 	/*
596 	 * Decrement active_work_cnt by the number of elements dequeued after
597 	 * hif_allow_link_low_power_states.
598 	 * This makes sure that hif_try_complete_tasks will wait till we make
599 	 * the bus access in hif_allow_link_low_power_states. This will avoid
600 	 * race condition between delayed register worker and bus suspend
601 	 * (system suspend or runtime suspend).
602 	 *
603 	 * The following decrement should be done at the end!
604 	 */
605 	qdf_atomic_sub(num_processed, &hal->active_work_cnt);
606 }
607 
608 static void __hal_flush_reg_write_work(struct hal_soc *hal)
609 {
610 	qdf_cancel_work(&hal->reg_write_work);
611 
612 }
613 
614 void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
615 {	__hal_flush_reg_write_work((struct hal_soc *)hal_handle);
616 }
617 
618 /**
619  * hal_reg_write_enqueue() - enqueue register writes into kworker
620  * @hal_soc: hal_soc pointer
621  * @srng: srng pointer
622  * @addr: iomem address of regiter
623  * @value: value to be written to iomem address
624  *
625  * This function executes from within the SRNG LOCK
626  *
627  * Return: None
628  */
629 static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
630 				  struct hal_srng *srng,
631 				  void __iomem *addr,
632 				  uint32_t value)
633 {
634 	struct hal_reg_write_q_elem *q_elem;
635 	uint32_t write_idx;
636 
637 	if (srng->reg_write_in_progress) {
638 		hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
639 				  srng->ring_id, addr, value);
640 		qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
641 		srng->wstats.coalesces++;
642 		return;
643 	}
644 
645 	write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
646 
647 	write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
648 
649 	q_elem = &hal_soc->reg_write_queue[write_idx];
650 
651 	if (q_elem->valid) {
652 		hal_err("queue full");
653 		QDF_BUG(0);
654 		return;
655 	}
656 
657 	qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
658 	srng->wstats.enqueues++;
659 
660 	qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
661 
662 	q_elem->srng = srng;
663 	q_elem->addr = addr;
664 	q_elem->enqueue_val = value;
665 	q_elem->enqueue_time = qdf_get_log_timestamp();
666 
667 	/*
668 	 * Before the valid flag is set to true, all the other
669 	 * fields in the q_elem needs to be updated in memory.
670 	 * Else there is a chance that the dequeuing worker thread
671 	 * might read stale entries and process incorrect srng.
672 	 */
673 	qdf_wmb();
674 	q_elem->valid = true;
675 
676 	/*
677 	 * After all other fields in the q_elem has been updated
678 	 * in memory successfully, the valid flag needs to be updated
679 	 * in memory in time too.
680 	 * Else there is a chance that the dequeuing worker thread
681 	 * might read stale valid flag and the work will be bypassed
682 	 * for this round. And if there is no other work scheduled
683 	 * later, this hal register writing won't be updated any more.
684 	 */
685 	qdf_wmb();
686 
687 	srng->reg_write_in_progress  = true;
688 	qdf_atomic_inc(&hal_soc->active_work_cnt);
689 
690 	hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
691 			  write_idx, srng->ring_id, addr, value);
692 
693 	qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
694 		       &hal_soc->reg_write_work);
695 }
696 
697 void hal_delayed_reg_write(struct hal_soc *hal_soc,
698 			   struct hal_srng *srng,
699 			   void __iomem *addr,
700 			   uint32_t value)
701 {
702 	if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
703 	    hal_is_reg_write_tput_level_high(hal_soc)) {
704 		qdf_atomic_inc(&hal_soc->stats.wstats.direct);
705 		srng->wstats.direct++;
706 		hal_write_address_32_mb(hal_soc, addr, value, false);
707 	} else {
708 		hal_reg_write_enqueue(hal_soc, srng, addr, value);
709 	}
710 }
711 
712 /**
713  * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
714  * @hal_soc: hal_soc pointer
715  *
716  * Initialize main data structures to process register writes in a delayed
717  * workqueue.
718  *
719  * Return: QDF_STATUS_SUCCESS on success else a QDF error.
720  */
721 static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
722 {
723 	hal->reg_write_wq =
724 		qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
725 	qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
726 	hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
727 					      sizeof(*hal->reg_write_queue));
728 	if (!hal->reg_write_queue) {
729 		hal_err("unable to allocate memory");
730 		QDF_BUG(0);
731 		return QDF_STATUS_E_NOMEM;
732 	}
733 
734 	/* Initial value of indices */
735 	hal->read_idx = 0;
736 	qdf_atomic_set(&hal->write_idx, -1);
737 	return QDF_STATUS_SUCCESS;
738 }
739 
740 /**
741  * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
742  * @hal_soc: hal_soc pointer
743  *
744  * De-initialize main data structures to process register writes in a delayed
745  * workqueue.
746  *
747  * Return: None
748  */
749 static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
750 {
751 	__hal_flush_reg_write_work(hal);
752 
753 	qdf_flush_workqueue(0, hal->reg_write_wq);
754 	qdf_destroy_workqueue(0, hal->reg_write_wq);
755 	qdf_mem_free(hal->reg_write_queue);
756 }
757 
758 static inline
759 char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
760 				    char *buf, qdf_size_t size)
761 {
762 	qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
763 		      srng->wstats.enqueues, srng->wstats.dequeues,
764 		      srng->wstats.coalesces, srng->wstats.direct);
765 	return buf;
766 }
767 
768 /* bytes for local buffer */
769 #define HAL_REG_WRITE_SRNG_STATS_LEN 100
770 
771 void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
772 {
773 	struct hal_srng *srng;
774 	char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
775 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
776 
777 	srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
778 	hal_debug("SW2TCL1: %s",
779 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
780 
781 	srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
782 	hal_debug("WBM2SW0: %s",
783 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
784 
785 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
786 	hal_debug("REO2SW1: %s",
787 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
788 
789 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
790 	hal_debug("REO2SW2: %s",
791 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
792 
793 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
794 	hal_debug("REO2SW3: %s",
795 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
796 }
797 
798 void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
799 {
800 	uint32_t *hist;
801 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
802 
803 	hist = hal->stats.wstats.sched_delay;
804 
805 	hal_debug("enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
806 		  qdf_atomic_read(&hal->stats.wstats.enqueues),
807 		  hal->stats.wstats.dequeues,
808 		  qdf_atomic_read(&hal->stats.wstats.coalesces),
809 		  qdf_atomic_read(&hal->stats.wstats.direct),
810 		  qdf_atomic_read(&hal->stats.wstats.q_depth),
811 		  hal->stats.wstats.max_q_depth,
812 		  hist[REG_WRITE_SCHED_DELAY_SUB_100us],
813 		  hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
814 		  hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
815 		  hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
816 }
817 
818 int hal_get_reg_write_pending_work(void *hal_soc)
819 {
820 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
821 
822 	return qdf_atomic_read(&hal->active_work_cnt);
823 }
824 
825 #else
826 static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
827 {
828 	return QDF_STATUS_SUCCESS;
829 }
830 
831 static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
832 {
833 }
834 #endif
835 
836 /**
837  * hal_attach - Initialize HAL layer
838  * @hif_handle: Opaque HIF handle
839  * @qdf_dev: QDF device
840  *
841  * Return: Opaque HAL SOC handle
842  *		 NULL on failure (if given ring is not available)
843  *
844  * This function should be called as part of HIF initialization (for accessing
845  * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
846  *
847  */
848 void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
849 {
850 	struct hal_soc *hal;
851 	int i;
852 
853 	hal = qdf_mem_malloc(sizeof(*hal));
854 
855 	if (!hal) {
856 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
857 			"%s: hal_soc allocation failed", __func__);
858 		goto fail0;
859 	}
860 	hal->hif_handle = hif_handle;
861 	hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
862 	hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
863 	hal->qdf_dev = qdf_dev;
864 	hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
865 		qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
866 		HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
867 	if (!hal->shadow_rdptr_mem_paddr) {
868 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
869 			"%s: hal->shadow_rdptr_mem_paddr allocation failed",
870 			__func__);
871 		goto fail1;
872 	}
873 	qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
874 		     sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
875 
876 	hal->shadow_wrptr_mem_vaddr =
877 		(uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
878 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
879 		&(hal->shadow_wrptr_mem_paddr));
880 	if (!hal->shadow_wrptr_mem_vaddr) {
881 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
882 			"%s: hal->shadow_wrptr_mem_vaddr allocation failed",
883 			__func__);
884 		goto fail2;
885 	}
886 	qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
887 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
888 
889 	for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
890 		hal->srng_list[i].initialized = 0;
891 		hal->srng_list[i].ring_id = i;
892 	}
893 
894 	qdf_spinlock_create(&hal->register_access_lock);
895 	hal->register_window = 0;
896 	hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
897 
898 	hal_target_based_configure(hal);
899 
900 	hal_reg_write_fail_history_init(hal);
901 
902 	qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
903 
904 	qdf_atomic_init(&hal->active_work_cnt);
905 	hal_delayed_reg_write_init(hal);
906 
907 	return (void *)hal;
908 
909 fail2:
910 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
911 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
912 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
913 fail1:
914 	qdf_mem_free(hal);
915 fail0:
916 	return NULL;
917 }
918 qdf_export_symbol(hal_attach);
919 
920 /**
921  * hal_mem_info - Retrieve hal memory base address
922  *
923  * @hal_soc: Opaque HAL SOC handle
924  * @mem: pointer to structure to be updated with hal mem info
925  */
926 void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
927 {
928 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
929 	mem->dev_base_addr = (void *)hal->dev_base_addr;
930         mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
931 	mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
932         mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
933 	mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
934 	hif_read_phy_mem_base((void *)hal->hif_handle,
935 			      (qdf_dma_addr_t *)&mem->dev_base_paddr);
936 	return;
937 }
938 qdf_export_symbol(hal_get_meminfo);
939 
940 /**
941  * hal_detach - Detach HAL layer
942  * @hal_soc: HAL SOC handle
943  *
944  * Return: Opaque HAL SOC handle
945  *		 NULL on failure (if given ring is not available)
946  *
947  * This function should be called as part of HIF initialization (for accessing
948  * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
949  *
950  */
951 extern void hal_detach(void *hal_soc)
952 {
953 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
954 
955 	hal_delayed_reg_write_deinit(hal);
956 
957 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
958 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
959 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
960 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
961 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
962 		hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
963 	qdf_minidump_remove(hal);
964 	qdf_mem_free(hal);
965 
966 	return;
967 }
968 qdf_export_symbol(hal_detach);
969 
970 /**
971  * hal_ce_dst_setup - Initialize CE destination ring registers
972  * @hal_soc: HAL SOC handle
973  * @srng: SRNG ring pointer
974  */
975 static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
976 				    int ring_num)
977 {
978 	uint32_t reg_val = 0;
979 	uint32_t reg_addr;
980 	struct hal_hw_srng_config *ring_config =
981 		HAL_SRNG_CONFIG(hal, CE_DST);
982 
983 	/* set DEST_MAX_LENGTH according to ce assignment */
984 	reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
985 			ring_config->reg_start[R0_INDEX] +
986 			(ring_num * ring_config->reg_size[R0_INDEX]));
987 
988 	reg_val = HAL_REG_READ(hal, reg_addr);
989 	reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
990 	reg_val |= srng->u.dst_ring.max_buffer_length &
991 		HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
992 	HAL_REG_WRITE(hal, reg_addr, reg_val);
993 
994 	if (srng->prefetch_timer) {
995 		reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
996 				ring_config->reg_start[R0_INDEX] +
997 				(ring_num * ring_config->reg_size[R0_INDEX]));
998 
999 		reg_val = HAL_REG_READ(hal, reg_addr);
1000 		reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
1001 		reg_val |= srng->prefetch_timer;
1002 		HAL_REG_WRITE(hal, reg_addr, reg_val);
1003 		reg_val = HAL_REG_READ(hal, reg_addr);
1004 	}
1005 
1006 }
1007 
1008 /**
1009  * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
1010  * @hal: HAL SOC handle
1011  * @read: boolean value to indicate if read or write
1012  * @ix0: pointer to store IX0 reg value
1013  * @ix1: pointer to store IX1 reg value
1014  * @ix2: pointer to store IX2 reg value
1015  * @ix3: pointer to store IX3 reg value
1016  */
1017 void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
1018 				uint32_t *ix0, uint32_t *ix1,
1019 				uint32_t *ix2, uint32_t *ix3)
1020 {
1021 	uint32_t reg_offset;
1022 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
1023 
1024 	if (read) {
1025 		if (ix0) {
1026 			reg_offset =
1027 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
1028 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
1029 			*ix0 = HAL_REG_READ(hal, reg_offset);
1030 		}
1031 
1032 		if (ix1) {
1033 			reg_offset =
1034 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
1035 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
1036 			*ix1 = HAL_REG_READ(hal, reg_offset);
1037 		}
1038 
1039 		if (ix2) {
1040 			reg_offset =
1041 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
1042 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
1043 			*ix2 = HAL_REG_READ(hal, reg_offset);
1044 		}
1045 
1046 		if (ix3) {
1047 			reg_offset =
1048 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
1049 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
1050 			*ix3 = HAL_REG_READ(hal, reg_offset);
1051 		}
1052 	} else {
1053 		if (ix0) {
1054 			reg_offset =
1055 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
1056 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
1057 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1058 						    *ix0, true);
1059 		}
1060 
1061 		if (ix1) {
1062 			reg_offset =
1063 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
1064 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
1065 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1066 						    *ix1, true);
1067 		}
1068 
1069 		if (ix2) {
1070 			reg_offset =
1071 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
1072 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
1073 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1074 						    *ix2, true);
1075 		}
1076 
1077 		if (ix3) {
1078 			reg_offset =
1079 				HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
1080 						SEQ_WCSS_UMAC_REO_REG_OFFSET);
1081 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1082 						    *ix3, true);
1083 		}
1084 	}
1085 }
1086 
1087 /**
1088  * hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
1089  * @srng: sring pointer
1090  * @paddr: physical address
1091  */
1092 void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
1093 			       uint64_t paddr)
1094 {
1095 	SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
1096 			   paddr & 0xffffffff);
1097 	SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
1098 			   paddr >> 32);
1099 }
1100 
1101 /**
1102  * hal_srng_dst_init_hp() - Initialize destination ring head
1103  * pointer
1104  * @hal_soc: hal_soc handle
1105  * @srng: sring pointer
1106  * @vaddr: virtual address
1107  */
1108 void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
1109 			  struct hal_srng *srng,
1110 			  uint32_t *vaddr)
1111 {
1112 	uint32_t reg_offset;
1113 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1114 
1115 	if (!srng)
1116 		return;
1117 
1118 	srng->u.dst_ring.hp_addr = vaddr;
1119 	reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
1120 	HAL_REG_WRITE_CONFIRM_RETRY(
1121 		hal, reg_offset, srng->u.dst_ring.cached_hp, true);
1122 
1123 	if (vaddr) {
1124 		*srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
1125 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1126 			  "hp_addr=%pK, cached_hp=%d, hp=%d",
1127 			  (void *)srng->u.dst_ring.hp_addr,
1128 			  srng->u.dst_ring.cached_hp,
1129 			  *srng->u.dst_ring.hp_addr);
1130 	}
1131 }
1132 
1133 /**
1134  * hal_srng_hw_init - Private function to initialize SRNG HW
1135  * @hal_soc: HAL SOC handle
1136  * @srng: SRNG ring pointer
1137  */
1138 static inline void hal_srng_hw_init(struct hal_soc *hal,
1139 	struct hal_srng *srng)
1140 {
1141 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
1142 		hal_srng_src_hw_init(hal, srng);
1143 	else
1144 		hal_srng_dst_hw_init(hal, srng);
1145 }
1146 
1147 #ifdef CONFIG_SHADOW_V2
1148 #define ignore_shadow false
1149 #define CHECK_SHADOW_REGISTERS true
1150 #else
1151 #define ignore_shadow true
1152 #define CHECK_SHADOW_REGISTERS false
1153 #endif
1154 
1155 /**
1156  * hal_srng_setup - Initialize HW SRNG ring.
1157  * @hal_soc: Opaque HAL SOC handle
1158  * @ring_type: one of the types from hal_ring_type
1159  * @ring_num: Ring number if there are multiple rings of same type (staring
1160  * from 0)
1161  * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
1162  * @ring_params: SRNG ring params in hal_srng_params structure.
1163 
1164  * Callers are expected to allocate contiguous ring memory of size
1165  * 'num_entries * entry_size' bytes and pass the physical and virtual base
1166  * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
1167  * hal_srng_params structure. Ring base address should be 8 byte aligned
1168  * and size of each ring entry should be queried using the API
1169  * hal_srng_get_entrysize
1170  *
1171  * Return: Opaque pointer to ring on success
1172  *		 NULL on failure (if given ring is not available)
1173  */
1174 void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
1175 	int mac_id, struct hal_srng_params *ring_params)
1176 {
1177 	int ring_id;
1178 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1179 	struct hal_srng *srng;
1180 	struct hal_hw_srng_config *ring_config =
1181 		HAL_SRNG_CONFIG(hal, ring_type);
1182 	void *dev_base_addr;
1183 	int i;
1184 
1185 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
1186 	if (ring_id < 0)
1187 		return NULL;
1188 
1189 	hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
1190 
1191 	srng = hal_get_srng(hal_soc, ring_id);
1192 
1193 	if (srng->initialized) {
1194 		hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
1195 		return NULL;
1196 	}
1197 
1198 	dev_base_addr = hal->dev_base_addr;
1199 	srng->ring_id = ring_id;
1200 	srng->ring_dir = ring_config->ring_dir;
1201 	srng->ring_base_paddr = ring_params->ring_base_paddr;
1202 	srng->ring_base_vaddr = ring_params->ring_base_vaddr;
1203 	srng->entry_size = ring_config->entry_size;
1204 	srng->num_entries = ring_params->num_entries;
1205 	srng->ring_size = srng->num_entries * srng->entry_size;
1206 	srng->ring_size_mask = srng->ring_size - 1;
1207 	srng->msi_addr = ring_params->msi_addr;
1208 	srng->msi_data = ring_params->msi_data;
1209 	srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
1210 	srng->intr_batch_cntr_thres_entries =
1211 		ring_params->intr_batch_cntr_thres_entries;
1212 	srng->prefetch_timer = ring_params->prefetch_timer;
1213 	srng->hal_soc = hal_soc;
1214 
1215 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
1216 		srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
1217 			+ (ring_num * ring_config->reg_size[i]);
1218 	}
1219 
1220 	/* Zero out the entire ring memory */
1221 	qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
1222 		srng->num_entries) << 2);
1223 
1224 	srng->flags = ring_params->flags;
1225 #ifdef BIG_ENDIAN_HOST
1226 		/* TODO: See if we should we get these flags from caller */
1227 	srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
1228 	srng->flags |= HAL_SRNG_MSI_SWAP;
1229 	srng->flags |= HAL_SRNG_RING_PTR_SWAP;
1230 #endif
1231 
1232 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1233 		srng->u.src_ring.hp = 0;
1234 		srng->u.src_ring.reap_hp = srng->ring_size -
1235 			srng->entry_size;
1236 		srng->u.src_ring.tp_addr =
1237 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1238 		srng->u.src_ring.low_threshold =
1239 			ring_params->low_threshold * srng->entry_size;
1240 		if (ring_config->lmac_ring) {
1241 			/* For LMAC rings, head pointer updates will be done
1242 			 * through FW by writing to a shared memory location
1243 			 */
1244 			srng->u.src_ring.hp_addr =
1245 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1246 					HAL_SRNG_LMAC1_ID_START]);
1247 			srng->flags |= HAL_SRNG_LMAC_RING;
1248 		} else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
1249 			srng->u.src_ring.hp_addr =
1250 				hal_get_window_address(hal,
1251 						SRNG_SRC_ADDR(srng, HP));
1252 
1253 			if (CHECK_SHADOW_REGISTERS) {
1254 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1255 				    QDF_TRACE_LEVEL_ERROR,
1256 				    "%s: Ring (%d, %d) missing shadow config",
1257 				    __func__, ring_type, ring_num);
1258 			}
1259 		} else {
1260 			hal_validate_shadow_register(hal,
1261 						     SRNG_SRC_ADDR(srng, HP),
1262 						     srng->u.src_ring.hp_addr);
1263 		}
1264 	} else {
1265 		/* During initialization loop count in all the descriptors
1266 		 * will be set to zero, and HW will set it to 1 on completing
1267 		 * descriptor update in first loop, and increments it by 1 on
1268 		 * subsequent loops (loop count wraps around after reaching
1269 		 * 0xffff). The 'loop_cnt' in SW ring state is the expected
1270 		 * loop count in descriptors updated by HW (to be processed
1271 		 * by SW).
1272 		 */
1273 		srng->u.dst_ring.loop_cnt = 1;
1274 		srng->u.dst_ring.tp = 0;
1275 		srng->u.dst_ring.hp_addr =
1276 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1277 		if (ring_config->lmac_ring) {
1278 			/* For LMAC rings, tail pointer updates will be done
1279 			 * through FW by writing to a shared memory location
1280 			 */
1281 			srng->u.dst_ring.tp_addr =
1282 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1283 				HAL_SRNG_LMAC1_ID_START]);
1284 			srng->flags |= HAL_SRNG_LMAC_RING;
1285 		} else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
1286 			srng->u.dst_ring.tp_addr =
1287 				hal_get_window_address(hal,
1288 						SRNG_DST_ADDR(srng, TP));
1289 
1290 			if (CHECK_SHADOW_REGISTERS) {
1291 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1292 				    QDF_TRACE_LEVEL_ERROR,
1293 				    "%s: Ring (%d, %d) missing shadow config",
1294 				    __func__, ring_type, ring_num);
1295 			}
1296 		} else {
1297 			hal_validate_shadow_register(hal,
1298 						     SRNG_DST_ADDR(srng, TP),
1299 						     srng->u.dst_ring.tp_addr);
1300 		}
1301 	}
1302 
1303 	if (!(ring_config->lmac_ring)) {
1304 		hal_srng_hw_init(hal, srng);
1305 
1306 		if (ring_type == CE_DST) {
1307 			srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
1308 			hal_ce_dst_setup(hal, srng, ring_num);
1309 		}
1310 	}
1311 
1312 	SRNG_LOCK_INIT(&srng->lock);
1313 
1314 	srng->srng_event = 0;
1315 
1316 	srng->initialized = true;
1317 
1318 	return (void *)srng;
1319 }
1320 qdf_export_symbol(hal_srng_setup);
1321 
1322 /**
1323  * hal_srng_cleanup - Deinitialize HW SRNG ring.
1324  * @hal_soc: Opaque HAL SOC handle
1325  * @hal_srng: Opaque HAL SRNG pointer
1326  */
1327 void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
1328 {
1329 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1330 	SRNG_LOCK_DESTROY(&srng->lock);
1331 	srng->initialized = 0;
1332 }
1333 qdf_export_symbol(hal_srng_cleanup);
1334 
1335 /**
1336  * hal_srng_get_entrysize - Returns size of ring entry in bytes
1337  * @hal_soc: Opaque HAL SOC handle
1338  * @ring_type: one of the types from hal_ring_type
1339  *
1340  */
1341 uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
1342 {
1343 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1344 	struct hal_hw_srng_config *ring_config =
1345 		HAL_SRNG_CONFIG(hal, ring_type);
1346 	return ring_config->entry_size << 2;
1347 }
1348 qdf_export_symbol(hal_srng_get_entrysize);
1349 
1350 /**
1351  * hal_srng_max_entries - Returns maximum possible number of ring entries
1352  * @hal_soc: Opaque HAL SOC handle
1353  * @ring_type: one of the types from hal_ring_type
1354  *
1355  * Return: Maximum number of entries for the given ring_type
1356  */
1357 uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
1358 {
1359 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1360 	struct hal_hw_srng_config *ring_config =
1361 		HAL_SRNG_CONFIG(hal, ring_type);
1362 
1363 	return ring_config->max_size / ring_config->entry_size;
1364 }
1365 qdf_export_symbol(hal_srng_max_entries);
1366 
1367 enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
1368 {
1369 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1370 	struct hal_hw_srng_config *ring_config =
1371 		HAL_SRNG_CONFIG(hal, ring_type);
1372 
1373 	return ring_config->ring_dir;
1374 }
1375 
1376 /**
1377  * hal_srng_dump - Dump ring status
1378  * @srng: hal srng pointer
1379  */
1380 void hal_srng_dump(struct hal_srng *srng)
1381 {
1382 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1383 		hal_debug("=== SRC RING %d ===", srng->ring_id);
1384 		hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
1385 			  srng->u.src_ring.hp,
1386 			  srng->u.src_ring.reap_hp,
1387 			  *srng->u.src_ring.tp_addr,
1388 			  srng->u.src_ring.cached_tp);
1389 	} else {
1390 		hal_debug("=== DST RING %d ===", srng->ring_id);
1391 		hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
1392 			  srng->u.dst_ring.tp,
1393 			  *srng->u.dst_ring.hp_addr,
1394 			  srng->u.dst_ring.cached_hp,
1395 			  srng->u.dst_ring.loop_cnt);
1396 	}
1397 }
1398 
1399 /**
1400  * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
1401  *
1402  * @hal_soc: Opaque HAL SOC handle
1403  * @hal_ring: Ring pointer (Source or Destination ring)
1404  * @ring_params: SRNG parameters will be returned through this structure
1405  */
1406 extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
1407 				hal_ring_handle_t hal_ring_hdl,
1408 				struct hal_srng_params *ring_params)
1409 {
1410 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1411 	int i =0;
1412 	ring_params->ring_id = srng->ring_id;
1413 	ring_params->ring_dir = srng->ring_dir;
1414 	ring_params->entry_size = srng->entry_size;
1415 
1416 	ring_params->ring_base_paddr = srng->ring_base_paddr;
1417 	ring_params->ring_base_vaddr = srng->ring_base_vaddr;
1418 	ring_params->num_entries = srng->num_entries;
1419 	ring_params->msi_addr = srng->msi_addr;
1420 	ring_params->msi_data = srng->msi_data;
1421 	ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
1422 	ring_params->intr_batch_cntr_thres_entries =
1423 		srng->intr_batch_cntr_thres_entries;
1424 	ring_params->low_threshold = srng->u.src_ring.low_threshold;
1425 	ring_params->flags = srng->flags;
1426 	ring_params->ring_id = srng->ring_id;
1427 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
1428 		ring_params->hwreg_base[i] = srng->hwreg_base[i];
1429 }
1430 qdf_export_symbol(hal_get_srng_params);
1431 
1432 void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
1433 				 uint32_t low_threshold)
1434 {
1435 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1436 	srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
1437 }
1438 qdf_export_symbol(hal_set_low_threshold);
1439 
1440 
1441 #ifdef FORCE_WAKE
1442 void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
1443 {
1444 	struct hal_soc *hal_soc = (struct hal_soc *)soc;
1445 
1446 	hal_soc->init_phase = init_phase;
1447 }
1448 #endif /* FORCE_WAKE */
1449