xref: /wlan-dirver/qca-wifi-host-cmn/hal/wifi3.0/hal_srng.c (revision 4aa7278f36e63149f11ece1180035fa59b904361)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "hal_hw_headers.h"
21 #include "hal_api.h"
22 #include "hal_reo.h"
23 #include "target_type.h"
24 #include "qdf_module.h"
25 #include "wcss_version.h"
26 #include <qdf_tracepoint.h>
27 
28 struct tcl_data_cmd gtcl_data_symbol __attribute__((used));
29 
30 #ifdef QCA_WIFI_QCA8074
31 void hal_qca6290_attach(struct hal_soc *hal);
32 #endif
33 #ifdef QCA_WIFI_QCA8074
34 void hal_qca8074_attach(struct hal_soc *hal);
35 #endif
36 #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
37 	defined(QCA_WIFI_QCA9574)
38 void hal_qca8074v2_attach(struct hal_soc *hal);
39 #endif
40 #ifdef QCA_WIFI_QCA6390
41 void hal_qca6390_attach(struct hal_soc *hal);
42 #endif
43 #ifdef QCA_WIFI_QCA6490
44 void hal_qca6490_attach(struct hal_soc *hal);
45 #endif
46 #ifdef QCA_WIFI_QCN9000
47 void hal_qcn9000_attach(struct hal_soc *hal);
48 #endif
49 #ifdef QCA_WIFI_QCN9224
50 void hal_qcn9224v1_attach(struct hal_soc *hal);
51 void hal_qcn9224v2_attach(struct hal_soc *hal);
52 #endif
53 #if defined(QCA_WIFI_QCN6122) || defined(QCA_WIFI_QCN9160)
54 void hal_qcn6122_attach(struct hal_soc *hal);
55 #endif
56 #ifdef QCA_WIFI_QCA6750
57 void hal_qca6750_attach(struct hal_soc *hal);
58 #endif
59 #ifdef QCA_WIFI_QCA5018
60 void hal_qca5018_attach(struct hal_soc *hal);
61 #endif
62 #ifdef QCA_WIFI_QCA5332
63 void hal_qca5332_attach(struct hal_soc *hal);
64 #endif
65 #ifdef QCA_WIFI_KIWI
66 void hal_kiwi_attach(struct hal_soc *hal);
67 #endif
68 
69 #ifdef ENABLE_VERBOSE_DEBUG
70 bool is_hal_verbose_debug_enabled;
71 #endif
72 
73 #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x)	((x) + 0x4)
74 #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x)	((x) + 0x8)
75 #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x)	((x) + 0xc)
76 #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x)	((x) + 0x10)
77 
78 #ifdef ENABLE_HAL_REG_WR_HISTORY
79 struct hal_reg_write_fail_history hal_reg_wr_hist;
80 
81 void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
82 				 uint32_t offset,
83 				 uint32_t wr_val, uint32_t rd_val)
84 {
85 	struct hal_reg_write_fail_entry *record;
86 	int idx;
87 
88 	idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
89 					 HAL_REG_WRITE_HIST_SIZE);
90 
91 	record = &hal_soc->reg_wr_fail_hist->record[idx];
92 
93 	record->timestamp = qdf_get_log_timestamp();
94 	record->reg_offset = offset;
95 	record->write_val = wr_val;
96 	record->read_val = rd_val;
97 }
98 
99 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
100 {
101 	hal->reg_wr_fail_hist = &hal_reg_wr_hist;
102 
103 	qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
104 }
105 #else
106 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
107 {
108 }
109 #endif
110 
111 /**
112  * hal_get_srng_ring_id() - get the ring id of a described ring
113  * @hal: hal_soc data structure
114  * @ring_type: type enum describing the ring
115  * @ring_num: which ring of the ring type
116  * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
117  *
118  * Return: the ring id or -EINVAL if the ring does not exist.
119  */
120 static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
121 				int ring_num, int mac_id)
122 {
123 	struct hal_hw_srng_config *ring_config =
124 		HAL_SRNG_CONFIG(hal, ring_type);
125 	int ring_id;
126 
127 	if (ring_num >= ring_config->max_rings) {
128 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
129 			  "%s: ring_num exceeded maximum no. of supported rings",
130 			  __func__);
131 		/* TODO: This is a programming error. Assert if this happens */
132 		return -EINVAL;
133 	}
134 
135 	/**
136 	 * Some DMAC rings share a common source ring, hence don't provide them
137 	 * with separate ring IDs per LMAC.
138 	 */
139 	if (ring_config->lmac_ring && !ring_config->dmac_cmn_ring) {
140 		ring_id = (ring_config->start_ring_id + ring_num +
141 			   (mac_id * HAL_MAX_RINGS_PER_LMAC));
142 	} else {
143 		ring_id = ring_config->start_ring_id + ring_num;
144 	}
145 
146 	return ring_id;
147 }
148 
149 static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
150 {
151 	/* TODO: Should we allocate srng structures dynamically? */
152 	return &(hal->srng_list[ring_id]);
153 }
154 
155 #ifndef SHADOW_REG_CONFIG_DISABLED
156 #define HP_OFFSET_IN_REG_START 1
157 #define OFFSET_FROM_HP_TO_TP 4
158 static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
159 					  int shadow_config_index,
160 					  int ring_type,
161 					  int ring_num)
162 {
163 	struct hal_srng *srng;
164 	int ring_id;
165 	struct hal_hw_srng_config *ring_config =
166 		HAL_SRNG_CONFIG(hal_soc, ring_type);
167 
168 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
169 	if (ring_id < 0)
170 		return;
171 
172 	srng = hal_get_srng(hal_soc, ring_id);
173 
174 	if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
175 		srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
176 			+ hal_soc->dev_base_addr;
177 		hal_debug("tp_addr=%pK dev base addr %pK index %u",
178 			  srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
179 			  shadow_config_index);
180 	} else {
181 		srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
182 			+ hal_soc->dev_base_addr;
183 		hal_debug("hp_addr=%pK dev base addr %pK index %u",
184 			  srng->u.src_ring.hp_addr,
185 			  hal_soc->dev_base_addr, shadow_config_index);
186 	}
187 
188 }
189 #endif
190 
191 #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
192 void hal_set_one_target_reg_config(struct hal_soc *hal,
193 				   uint32_t target_reg_offset,
194 				   int list_index)
195 {
196 	int i = list_index;
197 
198 	qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
199 	hal->list_shadow_reg_config[i].target_register =
200 		target_reg_offset;
201 	hal->num_generic_shadow_regs_configured++;
202 }
203 
204 qdf_export_symbol(hal_set_one_target_reg_config);
205 
206 #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
207 #define MAX_REO_REMAP_SHADOW_REGS 4
208 QDF_STATUS hal_set_shadow_regs(void *hal_soc)
209 {
210 	uint32_t target_reg_offset;
211 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
212 	int i;
213 	struct hal_hw_srng_config *srng_config =
214 		&hal->hw_srng_table[WBM2SW_RELEASE];
215 	uint32_t reo_reg_base;
216 
217 	reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
218 
219 	target_reg_offset =
220 		HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
221 
222 	for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
223 		hal_set_one_target_reg_config(hal, target_reg_offset, i);
224 		target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
225 	}
226 
227 	target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
228 	target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
229 			      * HAL_IPA_TX_COMP_RING_IDX);
230 
231 	hal_set_one_target_reg_config(hal, target_reg_offset, i);
232 	return QDF_STATUS_SUCCESS;
233 }
234 
235 qdf_export_symbol(hal_set_shadow_regs);
236 
237 QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
238 {
239 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
240 	int shadow_config_index = hal->num_shadow_registers_configured;
241 	int i;
242 	int num_regs = hal->num_generic_shadow_regs_configured;
243 
244 	for (i = 0; i < num_regs; i++) {
245 		qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
246 		hal->shadow_config[shadow_config_index].addr =
247 			hal->list_shadow_reg_config[i].target_register;
248 		hal->list_shadow_reg_config[i].shadow_config_index =
249 			shadow_config_index;
250 		hal->list_shadow_reg_config[i].va =
251 			SHADOW_REGISTER(shadow_config_index) +
252 			(uintptr_t)hal->dev_base_addr;
253 		hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
254 			  hal->shadow_config[shadow_config_index].addr,
255 			  SHADOW_REGISTER(shadow_config_index),
256 			  shadow_config_index);
257 		shadow_config_index++;
258 		hal->num_shadow_registers_configured++;
259 	}
260 	return QDF_STATUS_SUCCESS;
261 }
262 
263 qdf_export_symbol(hal_construct_shadow_regs);
264 #endif
265 
266 #ifndef SHADOW_REG_CONFIG_DISABLED
267 
268 QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
269 				     int ring_type,
270 				     int ring_num)
271 {
272 	uint32_t target_register;
273 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
274 	struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
275 	int shadow_config_index = hal->num_shadow_registers_configured;
276 
277 	if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
278 		QDF_ASSERT(0);
279 		return QDF_STATUS_E_RESOURCES;
280 	}
281 
282 	hal->num_shadow_registers_configured++;
283 
284 	target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
285 	target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
286 			    *ring_num);
287 
288 	/* if the ring is a dst ring, we need to shadow the tail pointer */
289 	if (srng_config->ring_dir == HAL_SRNG_DST_RING)
290 		target_register += OFFSET_FROM_HP_TO_TP;
291 
292 	hal->shadow_config[shadow_config_index].addr = target_register;
293 
294 	/* update hp/tp addr in the hal_soc structure*/
295 	hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
296 				      ring_num);
297 
298 	hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
299 		  target_register,
300 		  SHADOW_REGISTER(shadow_config_index),
301 		  shadow_config_index,
302 		  ring_type, ring_num);
303 
304 	return QDF_STATUS_SUCCESS;
305 }
306 
307 qdf_export_symbol(hal_set_one_shadow_config);
308 
309 QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
310 {
311 	int ring_type, ring_num;
312 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
313 
314 	for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
315 		struct hal_hw_srng_config *srng_config =
316 			&hal->hw_srng_table[ring_type];
317 
318 		if (ring_type == CE_SRC ||
319 		    ring_type == CE_DST ||
320 		    ring_type == CE_DST_STATUS)
321 			continue;
322 
323 		if (srng_config->lmac_ring)
324 			continue;
325 
326 		for (ring_num = 0; ring_num < srng_config->max_rings;
327 		     ring_num++)
328 			hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
329 	}
330 
331 	return QDF_STATUS_SUCCESS;
332 }
333 
334 qdf_export_symbol(hal_construct_srng_shadow_regs);
335 #else
336 
337 QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
338 {
339 	return QDF_STATUS_SUCCESS;
340 }
341 
342 qdf_export_symbol(hal_construct_srng_shadow_regs);
343 
344 QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
345 				     int ring_num)
346 {
347 	return QDF_STATUS_SUCCESS;
348 }
349 qdf_export_symbol(hal_set_one_shadow_config);
350 #endif
351 
352 void hal_get_shadow_config(void *hal_soc,
353 	struct pld_shadow_reg_v2_cfg **shadow_config,
354 	int *num_shadow_registers_configured)
355 {
356 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
357 
358 	*shadow_config = &hal->shadow_config[0].v2;
359 	*num_shadow_registers_configured =
360 		hal->num_shadow_registers_configured;
361 }
362 qdf_export_symbol(hal_get_shadow_config);
363 
364 #ifdef CONFIG_SHADOW_V3
365 void hal_get_shadow_v3_config(void *hal_soc,
366 			      struct pld_shadow_reg_v3_cfg **shadow_config,
367 			      int *num_shadow_registers_configured)
368 {
369 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
370 
371 	*shadow_config = &hal->shadow_config[0].v3;
372 	*num_shadow_registers_configured =
373 		hal->num_shadow_registers_configured;
374 }
375 qdf_export_symbol(hal_get_shadow_v3_config);
376 #endif
377 
378 static bool hal_validate_shadow_register(struct hal_soc *hal,
379 					 uint32_t *destination,
380 					 uint32_t *shadow_address)
381 {
382 	unsigned int index;
383 	uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
384 	int destination_ba_offset =
385 		((char *)destination) - (char *)hal->dev_base_addr;
386 
387 	index =	shadow_address - shadow_0_offset;
388 
389 	if (index >= MAX_SHADOW_REGISTERS) {
390 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
391 			"%s: index %x out of bounds", __func__, index);
392 		goto error;
393 	} else if (hal->shadow_config[index].addr != destination_ba_offset) {
394 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
395 			"%s: sanity check failure, expected %x, found %x",
396 			__func__, destination_ba_offset,
397 			hal->shadow_config[index].addr);
398 		goto error;
399 	}
400 	return true;
401 error:
402 	qdf_print("baddr %pK, destination %pK, shadow_address %pK s0offset %pK index %x",
403 		  hal->dev_base_addr, destination, shadow_address,
404 		  shadow_0_offset, index);
405 	QDF_BUG(0);
406 	return false;
407 }
408 
409 static void hal_target_based_configure(struct hal_soc *hal)
410 {
411 	/**
412 	 * Indicate Initialization of srngs to avoid force wake
413 	 * as umac power collapse is not enabled yet
414 	 */
415 	hal->init_phase = true;
416 
417 	switch (hal->target_type) {
418 #ifdef QCA_WIFI_QCA6290
419 	case TARGET_TYPE_QCA6290:
420 		hal->use_register_windowing = true;
421 		hal_qca6290_attach(hal);
422 	break;
423 #endif
424 #ifdef QCA_WIFI_QCA6390
425 	case TARGET_TYPE_QCA6390:
426 		hal->use_register_windowing = true;
427 		hal_qca6390_attach(hal);
428 	break;
429 #endif
430 #ifdef QCA_WIFI_QCA6490
431 	case TARGET_TYPE_QCA6490:
432 		hal->use_register_windowing = true;
433 		hal_qca6490_attach(hal);
434 	break;
435 #endif
436 #ifdef QCA_WIFI_QCA6750
437 		case TARGET_TYPE_QCA6750:
438 			hal->use_register_windowing = true;
439 			hal->static_window_map = true;
440 			hal_qca6750_attach(hal);
441 		break;
442 #endif
443 #ifdef QCA_WIFI_KIWI
444 	case TARGET_TYPE_KIWI:
445 	case TARGET_TYPE_MANGO:
446 		hal->use_register_windowing = true;
447 		hal_kiwi_attach(hal);
448 		break;
449 #endif
450 #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
451 	case TARGET_TYPE_QCA8074:
452 		hal_qca8074_attach(hal);
453 	break;
454 #endif
455 
456 #if defined(QCA_WIFI_QCA8074V2)
457 	case TARGET_TYPE_QCA8074V2:
458 		hal_qca8074v2_attach(hal);
459 	break;
460 #endif
461 
462 #if defined(QCA_WIFI_QCA6018)
463 	case TARGET_TYPE_QCA6018:
464 		hal_qca8074v2_attach(hal);
465 	break;
466 #endif
467 
468 #if defined(QCA_WIFI_QCA9574)
469 	case TARGET_TYPE_QCA9574:
470 		hal_qca8074v2_attach(hal);
471 	break;
472 #endif
473 
474 #if defined(QCA_WIFI_QCN6122)
475 	case TARGET_TYPE_QCN6122:
476 		hal->use_register_windowing = true;
477 		/*
478 		 * Static window map  is enabled for qcn9000 to use 2mb bar
479 		 * size and use multiple windows to write into registers.
480 		 */
481 		hal->static_window_map = true;
482 		hal_qcn6122_attach(hal);
483 		break;
484 #endif
485 
486 #if defined(QCA_WIFI_QCN9160)
487 	case TARGET_TYPE_QCN9160:
488 		hal->use_register_windowing = true;
489 		/*
490 		 * Static window map  is enabled for qcn9160 to use 2mb bar
491 		 * size and use multiple windows to write into registers.
492 		 */
493 		hal->static_window_map = true;
494 		hal_qcn6122_attach(hal);
495 		break;
496 #endif
497 
498 #ifdef QCA_WIFI_QCN9000
499 	case TARGET_TYPE_QCN9000:
500 		hal->use_register_windowing = true;
501 		/*
502 		 * Static window map  is enabled for qcn9000 to use 2mb bar
503 		 * size and use multiple windows to write into registers.
504 		 */
505 		hal->static_window_map = true;
506 		hal_qcn9000_attach(hal);
507 	break;
508 #endif
509 #ifdef QCA_WIFI_QCA5018
510 	case TARGET_TYPE_QCA5018:
511 		hal->use_register_windowing = true;
512 		hal->static_window_map = true;
513 		hal_qca5018_attach(hal);
514 	break;
515 #endif
516 #ifdef QCA_WIFI_QCN9224
517 	case TARGET_TYPE_QCN9224:
518 		hal->use_register_windowing = true;
519 		hal->static_window_map = true;
520 		if (hal->version == 1)
521 			hal_qcn9224v1_attach(hal);
522 		else
523 			hal_qcn9224v2_attach(hal);
524 	break;
525 #endif
526 #ifdef QCA_WIFI_QCA5332
527 	case TARGET_TYPE_QCA5332:
528 		hal->use_register_windowing = true;
529 		hal->static_window_map = true;
530 		hal_qca5332_attach(hal);
531 	break;
532 #endif
533 	default:
534 	break;
535 	}
536 }
537 
538 uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
539 {
540 	struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
541 	struct hif_target_info *tgt_info =
542 		hif_get_target_info_handle(hal_soc->hif_handle);
543 
544 	return tgt_info->target_type;
545 }
546 
547 qdf_export_symbol(hal_get_target_type);
548 
549 #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
550 /**
551  * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
552  * @hal: hal_soc pointer
553  *
554  * Return: true if throughput is high, else false.
555  */
556 static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
557 {
558 	int bw_level = hif_get_bandwidth_level(hal->hif_handle);
559 
560 	return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
561 }
562 
563 static inline
564 char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
565 				    char *buf, qdf_size_t size)
566 {
567 	qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
568 		      srng->wstats.enqueues, srng->wstats.dequeues,
569 		      srng->wstats.coalesces, srng->wstats.direct);
570 	return buf;
571 }
572 
573 /* bytes for local buffer */
574 #define HAL_REG_WRITE_SRNG_STATS_LEN 100
575 
576 void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
577 {
578 	struct hal_srng *srng;
579 	char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
580 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
581 
582 	srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
583 	hal_debug("SW2TCL1: %s",
584 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
585 
586 	srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
587 	hal_debug("WBM2SW0: %s",
588 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
589 
590 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
591 	hal_debug("REO2SW1: %s",
592 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
593 
594 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
595 	hal_debug("REO2SW2: %s",
596 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
597 
598 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
599 	hal_debug("REO2SW3: %s",
600 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
601 }
602 
603 void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
604 {
605 	uint32_t *hist;
606 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
607 
608 	hist = hal->stats.wstats.sched_delay;
609 	hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
610 		  qdf_atomic_read(&hal->stats.wstats.enqueues),
611 		  hal->stats.wstats.dequeues,
612 		  qdf_atomic_read(&hal->stats.wstats.coalesces),
613 		  qdf_atomic_read(&hal->stats.wstats.direct),
614 		  qdf_atomic_read(&hal->stats.wstats.q_depth),
615 		  hal->stats.wstats.max_q_depth,
616 		  hist[REG_WRITE_SCHED_DELAY_SUB_100us],
617 		  hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
618 		  hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
619 		  hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
620 }
621 
622 int hal_get_reg_write_pending_work(void *hal_soc)
623 {
624 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
625 
626 	return qdf_atomic_read(&hal->active_work_cnt);
627 }
628 
629 #endif
630 
631 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
632 #ifdef MEMORY_DEBUG
633 /*
634  * Length of the queue(array) used to hold delayed register writes.
635  * Must be a multiple of 2.
636  */
637 #define HAL_REG_WRITE_QUEUE_LEN 128
638 #else
639 #define HAL_REG_WRITE_QUEUE_LEN 32
640 #endif
641 
642 /**
643  * hal_process_reg_write_q_elem() - process a register write queue element
644  * @hal: hal_soc pointer
645  * @q_elem: pointer to hal register write queue element
646  *
647  * Return: The value which was written to the address
648  */
649 static uint32_t
650 hal_process_reg_write_q_elem(struct hal_soc *hal,
651 			     struct hal_reg_write_q_elem *q_elem)
652 {
653 	struct hal_srng *srng = q_elem->srng;
654 	uint32_t write_val;
655 
656 	SRNG_LOCK(&srng->lock);
657 
658 	srng->reg_write_in_progress = false;
659 	srng->wstats.dequeues++;
660 
661 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
662 		q_elem->dequeue_val = srng->u.src_ring.hp;
663 		hal_write_address_32_mb(hal,
664 					srng->u.src_ring.hp_addr,
665 					srng->u.src_ring.hp, false);
666 		write_val = srng->u.src_ring.hp;
667 	} else {
668 		q_elem->dequeue_val = srng->u.dst_ring.tp;
669 		hal_write_address_32_mb(hal,
670 					srng->u.dst_ring.tp_addr,
671 					srng->u.dst_ring.tp, false);
672 		write_val = srng->u.dst_ring.tp;
673 	}
674 
675 	q_elem->valid = 0;
676 	srng->last_dequeue_time = q_elem->dequeue_time;
677 	SRNG_UNLOCK(&srng->lock);
678 
679 	return write_val;
680 }
681 
682 /**
683  * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
684  * @hal: hal_soc pointer
685  * @delay: delay in us
686  *
687  * Return: None
688  */
689 static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
690 						       uint64_t delay_us)
691 {
692 	uint32_t *hist;
693 
694 	hist = hal->stats.wstats.sched_delay;
695 
696 	if (delay_us < 100)
697 		hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
698 	else if (delay_us < 1000)
699 		hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
700 	else if (delay_us < 5000)
701 		hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
702 	else
703 		hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
704 }
705 
706 #ifdef SHADOW_WRITE_DELAY
707 
708 #define SHADOW_WRITE_MIN_DELTA_US	5
709 #define SHADOW_WRITE_DELAY_US		50
710 
711 /*
712  * Never add those srngs which are performance relate.
713  * The delay itself will hit performance heavily.
714  */
715 #define IS_SRNG_MATCH(s)	((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
716 				 (s)->ring_id == HAL_SRNG_CE_1_DST)
717 
718 static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
719 {
720 	struct hal_srng *srng = elem->srng;
721 	struct hal_soc *hal;
722 	qdf_time_t now;
723 	qdf_iomem_t real_addr;
724 
725 	if (qdf_unlikely(!srng))
726 		return false;
727 
728 	hal = srng->hal_soc;
729 	if (qdf_unlikely(!hal))
730 		return false;
731 
732 	/* Check if it is target srng, and valid shadow reg */
733 	if (qdf_likely(!IS_SRNG_MATCH(srng)))
734 		return false;
735 
736 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
737 		real_addr = SRNG_SRC_ADDR(srng, HP);
738 	else
739 		real_addr = SRNG_DST_ADDR(srng, TP);
740 	if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
741 		return false;
742 
743 	/* Check the time delta from last write of same srng */
744 	now = qdf_get_log_timestamp();
745 	if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
746 		SHADOW_WRITE_MIN_DELTA_US)
747 		return false;
748 
749 	/* Delay dequeue, and record */
750 	qdf_udelay(SHADOW_WRITE_DELAY_US);
751 
752 	srng->wstats.dequeue_delay++;
753 	hal->stats.wstats.dequeue_delay++;
754 
755 	return true;
756 }
757 #else
758 static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
759 {
760 	return false;
761 }
762 #endif
763 
764 /**
765  * hal_reg_write_work() - Worker to process delayed writes
766  * @arg: hal_soc pointer
767  *
768  * Return: None
769  */
770 static void hal_reg_write_work(void *arg)
771 {
772 	int32_t q_depth, write_val;
773 	struct hal_soc *hal = arg;
774 	struct hal_reg_write_q_elem *q_elem;
775 	uint64_t delta_us;
776 	uint8_t ring_id;
777 	uint32_t *addr;
778 	uint32_t num_processed = 0;
779 
780 	q_elem = &hal->reg_write_queue[(hal->read_idx)];
781 	q_elem->work_scheduled_time = qdf_get_log_timestamp();
782 	q_elem->cpu_id = qdf_get_cpu();
783 
784 	/* Make sure q_elem consistent in the memory for multi-cores */
785 	qdf_rmb();
786 	if (!q_elem->valid)
787 		return;
788 
789 	q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
790 	if (q_depth > hal->stats.wstats.max_q_depth)
791 		hal->stats.wstats.max_q_depth =  q_depth;
792 
793 	if (hif_prevent_link_low_power_states(hal->hif_handle)) {
794 		hal->stats.wstats.prevent_l1_fails++;
795 		return;
796 	}
797 
798 	while (true) {
799 		qdf_rmb();
800 		if (!q_elem->valid)
801 			break;
802 
803 		q_elem->dequeue_time = qdf_get_log_timestamp();
804 		ring_id = q_elem->srng->ring_id;
805 		addr = q_elem->addr;
806 		delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
807 						      q_elem->enqueue_time);
808 		hal_reg_write_fill_sched_delay_hist(hal, delta_us);
809 
810 		hal->stats.wstats.dequeues++;
811 		qdf_atomic_dec(&hal->stats.wstats.q_depth);
812 
813 		if (hal_reg_write_need_delay(q_elem))
814 			hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
815 					  q_elem->srng->ring_id, q_elem->addr);
816 
817 		write_val = hal_process_reg_write_q_elem(hal, q_elem);
818 		hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
819 				  hal->read_idx, ring_id, addr, write_val, delta_us);
820 
821 		qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
822 					   q_elem->dequeue_val,
823 					   q_elem->enqueue_time,
824 					   q_elem->dequeue_time);
825 
826 		num_processed++;
827 		hal->read_idx = (hal->read_idx + 1) &
828 					(HAL_REG_WRITE_QUEUE_LEN - 1);
829 		q_elem = &hal->reg_write_queue[(hal->read_idx)];
830 	}
831 
832 	hif_allow_link_low_power_states(hal->hif_handle);
833 	/*
834 	 * Decrement active_work_cnt by the number of elements dequeued after
835 	 * hif_allow_link_low_power_states.
836 	 * This makes sure that hif_try_complete_tasks will wait till we make
837 	 * the bus access in hif_allow_link_low_power_states. This will avoid
838 	 * race condition between delayed register worker and bus suspend
839 	 * (system suspend or runtime suspend).
840 	 *
841 	 * The following decrement should be done at the end!
842 	 */
843 	qdf_atomic_sub(num_processed, &hal->active_work_cnt);
844 }
845 
846 static void __hal_flush_reg_write_work(struct hal_soc *hal)
847 {
848 	qdf_flush_work(&hal->reg_write_work);
849 	qdf_disable_work(&hal->reg_write_work);
850 }
851 
852 void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
853 {	__hal_flush_reg_write_work((struct hal_soc *)hal_handle);
854 }
855 
856 /**
857  * hal_reg_write_enqueue() - enqueue register writes into kworker
858  * @hal_soc: hal_soc pointer
859  * @srng: srng pointer
860  * @addr: iomem address of register
861  * @value: value to be written to iomem address
862  *
863  * This function executes from within the SRNG LOCK
864  *
865  * Return: None
866  */
867 static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
868 				  struct hal_srng *srng,
869 				  void __iomem *addr,
870 				  uint32_t value)
871 {
872 	struct hal_reg_write_q_elem *q_elem;
873 	uint32_t write_idx;
874 
875 	if (srng->reg_write_in_progress) {
876 		hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
877 				  srng->ring_id, addr, value);
878 		qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
879 		srng->wstats.coalesces++;
880 		return;
881 	}
882 
883 	write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
884 
885 	write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
886 
887 	q_elem = &hal_soc->reg_write_queue[write_idx];
888 
889 	if (q_elem->valid) {
890 		hal_err("queue full");
891 		QDF_BUG(0);
892 		return;
893 	}
894 
895 	qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
896 	srng->wstats.enqueues++;
897 
898 	qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
899 
900 	q_elem->srng = srng;
901 	q_elem->addr = addr;
902 	q_elem->enqueue_val = value;
903 	q_elem->enqueue_time = qdf_get_log_timestamp();
904 
905 	/*
906 	 * Before the valid flag is set to true, all the other
907 	 * fields in the q_elem needs to be updated in memory.
908 	 * Else there is a chance that the dequeuing worker thread
909 	 * might read stale entries and process incorrect srng.
910 	 */
911 	qdf_wmb();
912 	q_elem->valid = true;
913 
914 	/*
915 	 * After all other fields in the q_elem has been updated
916 	 * in memory successfully, the valid flag needs to be updated
917 	 * in memory in time too.
918 	 * Else there is a chance that the dequeuing worker thread
919 	 * might read stale valid flag and the work will be bypassed
920 	 * for this round. And if there is no other work scheduled
921 	 * later, this hal register writing won't be updated any more.
922 	 */
923 	qdf_wmb();
924 
925 	srng->reg_write_in_progress  = true;
926 	qdf_atomic_inc(&hal_soc->active_work_cnt);
927 
928 	hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
929 			  write_idx, srng->ring_id, addr, value);
930 
931 	qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
932 		       &hal_soc->reg_write_work);
933 }
934 
935 /**
936  * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
937  * @hal_soc: hal_soc pointer
938  *
939  * Initialize main data structures to process register writes in a delayed
940  * workqueue.
941  *
942  * Return: QDF_STATUS_SUCCESS on success else a QDF error.
943  */
944 static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
945 {
946 	hal->reg_write_wq =
947 		qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
948 	qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
949 	hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
950 					      sizeof(*hal->reg_write_queue));
951 	if (!hal->reg_write_queue) {
952 		hal_err("unable to allocate memory");
953 		QDF_BUG(0);
954 		return QDF_STATUS_E_NOMEM;
955 	}
956 
957 	/* Initial value of indices */
958 	hal->read_idx = 0;
959 	qdf_atomic_set(&hal->write_idx, -1);
960 	return QDF_STATUS_SUCCESS;
961 }
962 
963 /**
964  * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
965  * @hal_soc: hal_soc pointer
966  *
967  * De-initialize main data structures to process register writes in a delayed
968  * workqueue.
969  *
970  * Return: None
971  */
972 static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
973 {
974 	__hal_flush_reg_write_work(hal);
975 
976 	qdf_flush_workqueue(0, hal->reg_write_wq);
977 	qdf_destroy_workqueue(0, hal->reg_write_wq);
978 	qdf_mem_free(hal->reg_write_queue);
979 }
980 
981 #else
982 static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
983 {
984 	return QDF_STATUS_SUCCESS;
985 }
986 
987 static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
988 {
989 }
990 #endif
991 
992 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
993 #ifdef HAL_RECORD_SUSPEND_WRITE
994 static struct hal_suspend_write_history
995 		g_hal_suspend_write_history[HAL_SUSPEND_WRITE_HISTORY_MAX];
996 
997 static
998 void hal_event_suspend_record(uint8_t ring_id, uint32_t value, uint32_t count)
999 {
1000 	uint32_t index = qdf_atomic_read(g_hal_suspend_write_history.index) &
1001 					(HAL_SUSPEND_WRITE_HISTORY_MAX - 1);
1002 	struct hal_suspend_write_record *cur_event =
1003 					&hal_suspend_write_event.record[index];
1004 
1005 	cur_event->ts = qdf_get_log_timestamp();
1006 	cur_event->ring_id = ring_id;
1007 	cur_event->value = value;
1008 	cur_event->direct_wcount = count;
1009 	qdf_atomic_inc(g_hal_suspend_write_history.index);
1010 }
1011 
1012 static inline
1013 void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
1014 {
1015 	if (hif_rtpm_get_state() >= HIF_RTPM_STATE_SUSPENDING)
1016 		hal_event_suspend_record(ring_id, value, count);
1017 }
1018 #else
1019 static inline
1020 void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
1021 {
1022 }
1023 #endif
1024 
1025 #ifdef QCA_WIFI_QCA6750
1026 void hal_delayed_reg_write(struct hal_soc *hal_soc,
1027 			   struct hal_srng *srng,
1028 			   void __iomem *addr,
1029 			   uint32_t value)
1030 {
1031 	uint8_t vote_access;
1032 
1033 	switch (srng->ring_type) {
1034 	case CE_SRC:
1035 	case CE_DST:
1036 	case CE_DST_STATUS:
1037 		vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
1038 						     HIF_EP_VOTE_NONDP_ACCESS);
1039 		if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
1040 		    (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
1041 		     PLD_MHI_STATE_L0 ==
1042 		     pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
1043 			hal_write_address_32_mb(hal_soc, addr, value, false);
1044 			qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1045 			srng->wstats.direct++;
1046 		} else {
1047 			hal_reg_write_enqueue(hal_soc, srng, addr, value);
1048 		}
1049 		break;
1050 	default:
1051 		if (hif_get_ep_vote_access(hal_soc->hif_handle,
1052 		    HIF_EP_VOTE_DP_ACCESS) ==
1053 		    HIF_EP_VOTE_ACCESS_DISABLE ||
1054 		    hal_is_reg_write_tput_level_high(hal_soc) ||
1055 		    PLD_MHI_STATE_L0 ==
1056 		    pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
1057 			hal_write_address_32_mb(hal_soc, addr, value, false);
1058 			qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1059 			srng->wstats.direct++;
1060 		} else {
1061 			hal_reg_write_enqueue(hal_soc, srng, addr, value);
1062 		}
1063 
1064 		break;
1065 	}
1066 }
1067 #else
1068 void hal_delayed_reg_write(struct hal_soc *hal_soc,
1069 			   struct hal_srng *srng,
1070 			   void __iomem *addr,
1071 			   uint32_t value)
1072 {
1073 	if (hal_is_reg_write_tput_level_high(hal_soc) ||
1074 	    pld_is_device_awake(hal_soc->qdf_dev->dev)) {
1075 		qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1076 		srng->wstats.direct++;
1077 		hal_write_address_32_mb(hal_soc, addr, value, false);
1078 	} else {
1079 		hal_reg_write_enqueue(hal_soc, srng, addr, value);
1080 	}
1081 
1082 	hal_record_suspend_write(srng->ring_id, value, srng->wstats.direct);
1083 }
1084 #endif
1085 #endif
1086 
1087 /**
1088  * hal_attach - Initialize HAL layer
1089  * @hif_handle: Opaque HIF handle
1090  * @qdf_dev: QDF device
1091  *
1092  * Return: Opaque HAL SOC handle
1093  *		 NULL on failure (if given ring is not available)
1094  *
1095  * This function should be called as part of HIF initialization (for accessing
1096  * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
1097  *
1098  */
1099 void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
1100 {
1101 	struct hal_soc *hal;
1102 	int i;
1103 
1104 	hal = qdf_mem_malloc(sizeof(*hal));
1105 
1106 	if (!hal) {
1107 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1108 			"%s: hal_soc allocation failed", __func__);
1109 		goto fail0;
1110 	}
1111 	hal->hif_handle = hif_handle;
1112 	hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
1113 	hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
1114 	hal->dev_base_addr_cmem = hif_get_dev_ba_cmem(hif_handle); /* CMEM */
1115 	hal->qdf_dev = qdf_dev;
1116 	hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
1117 		qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
1118 		HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
1119 	if (!hal->shadow_rdptr_mem_paddr) {
1120 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1121 			"%s: hal->shadow_rdptr_mem_paddr allocation failed",
1122 			__func__);
1123 		goto fail1;
1124 	}
1125 	qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
1126 		     sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
1127 
1128 	hal->shadow_wrptr_mem_vaddr =
1129 		(uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
1130 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
1131 		&(hal->shadow_wrptr_mem_paddr));
1132 	if (!hal->shadow_wrptr_mem_vaddr) {
1133 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1134 			"%s: hal->shadow_wrptr_mem_vaddr allocation failed",
1135 			__func__);
1136 		goto fail2;
1137 	}
1138 	qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
1139 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
1140 
1141 	for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
1142 		hal->srng_list[i].initialized = 0;
1143 		hal->srng_list[i].ring_id = i;
1144 	}
1145 
1146 	qdf_spinlock_create(&hal->register_access_lock);
1147 	hal->register_window = 0;
1148 	hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
1149 	hal->version = hif_get_soc_version(hif_handle);
1150 	hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
1151 
1152 	if (!hal->ops) {
1153 		hal_err("unable to allocable memory for HAL ops");
1154 		goto fail3;
1155 	}
1156 
1157 	hal_target_based_configure(hal);
1158 
1159 	hal_reg_write_fail_history_init(hal);
1160 
1161 	qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
1162 
1163 	qdf_atomic_init(&hal->active_work_cnt);
1164 	hal_delayed_reg_write_init(hal);
1165 
1166 	hal_reo_shared_qaddr_setup((hal_soc_handle_t)hal);
1167 
1168 	hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL);
1169 
1170 	return (void *)hal;
1171 fail3:
1172 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
1173 				sizeof(*hal->shadow_wrptr_mem_vaddr) *
1174 				HAL_MAX_LMAC_RINGS,
1175 				hal->shadow_wrptr_mem_vaddr,
1176 				hal->shadow_wrptr_mem_paddr, 0);
1177 fail2:
1178 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
1179 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
1180 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
1181 fail1:
1182 	qdf_mem_free(hal);
1183 fail0:
1184 	return NULL;
1185 }
1186 qdf_export_symbol(hal_attach);
1187 
1188 /**
1189  * hal_mem_info - Retrieve hal memory base address
1190  *
1191  * @hal_soc: Opaque HAL SOC handle
1192  * @mem: pointer to structure to be updated with hal mem info
1193  */
1194 void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
1195 {
1196 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
1197 	mem->dev_base_addr = (void *)hal->dev_base_addr;
1198         mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
1199 	mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
1200         mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
1201 	mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
1202 	hif_read_phy_mem_base((void *)hal->hif_handle,
1203 			      (qdf_dma_addr_t *)&mem->dev_base_paddr);
1204 	mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
1205 	return;
1206 }
1207 qdf_export_symbol(hal_get_meminfo);
1208 
1209 /**
1210  * hal_detach - Detach HAL layer
1211  * @hal_soc: HAL SOC handle
1212  *
1213  * Return: Opaque HAL SOC handle
1214  *		 NULL on failure (if given ring is not available)
1215  *
1216  * This function should be called as part of HIF initialization (for accessing
1217  * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
1218  *
1219  */
1220 extern void hal_detach(void *hal_soc)
1221 {
1222 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1223 
1224 	hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD);
1225 	hal_delayed_reg_write_deinit(hal);
1226 	hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
1227 	qdf_mem_free(hal->ops);
1228 
1229 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
1230 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
1231 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
1232 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
1233 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
1234 		hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
1235 	qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
1236 
1237 	qdf_mem_free(hal);
1238 
1239 	return;
1240 }
1241 qdf_export_symbol(hal_detach);
1242 
1243 #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x)		((x) + 0x000000b0)
1244 #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK	0x0000ffff
1245 #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x)	((x) + 0x00000040)
1246 #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK	0x00000007
1247 /**
1248  * hal_ce_dst_setup - Initialize CE destination ring registers
1249  * @hal_soc: HAL SOC handle
1250  * @srng: SRNG ring pointer
1251  */
1252 static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
1253 				    int ring_num)
1254 {
1255 	uint32_t reg_val = 0;
1256 	uint32_t reg_addr;
1257 	struct hal_hw_srng_config *ring_config =
1258 		HAL_SRNG_CONFIG(hal, CE_DST);
1259 
1260 	/* set DEST_MAX_LENGTH according to ce assignment */
1261 	reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
1262 			ring_config->reg_start[R0_INDEX] +
1263 			(ring_num * ring_config->reg_size[R0_INDEX]));
1264 
1265 	reg_val = HAL_REG_READ(hal, reg_addr);
1266 	reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
1267 	reg_val |= srng->u.dst_ring.max_buffer_length &
1268 		HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
1269 	HAL_REG_WRITE(hal, reg_addr, reg_val);
1270 
1271 	if (srng->prefetch_timer) {
1272 		reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
1273 				ring_config->reg_start[R0_INDEX] +
1274 				(ring_num * ring_config->reg_size[R0_INDEX]));
1275 
1276 		reg_val = HAL_REG_READ(hal, reg_addr);
1277 		reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
1278 		reg_val |= srng->prefetch_timer;
1279 		HAL_REG_WRITE(hal, reg_addr, reg_val);
1280 		reg_val = HAL_REG_READ(hal, reg_addr);
1281 	}
1282 
1283 }
1284 
1285 /**
1286  * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
1287  * @hal: HAL SOC handle
1288  * @read: boolean value to indicate if read or write
1289  * @ix0: pointer to store IX0 reg value
1290  * @ix1: pointer to store IX1 reg value
1291  * @ix2: pointer to store IX2 reg value
1292  * @ix3: pointer to store IX3 reg value
1293  */
1294 void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
1295 				uint32_t *ix0, uint32_t *ix1,
1296 				uint32_t *ix2, uint32_t *ix3)
1297 {
1298 	uint32_t reg_offset;
1299 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
1300 	uint32_t reo_reg_base;
1301 
1302 	reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
1303 
1304 	if (read) {
1305 		if (ix0) {
1306 			reg_offset =
1307 				HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
1308 						reo_reg_base);
1309 			*ix0 = HAL_REG_READ(hal, reg_offset);
1310 		}
1311 
1312 		if (ix1) {
1313 			reg_offset =
1314 				HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
1315 						reo_reg_base);
1316 			*ix1 = HAL_REG_READ(hal, reg_offset);
1317 		}
1318 
1319 		if (ix2) {
1320 			reg_offset =
1321 				HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
1322 						reo_reg_base);
1323 			*ix2 = HAL_REG_READ(hal, reg_offset);
1324 		}
1325 
1326 		if (ix3) {
1327 			reg_offset =
1328 				HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
1329 						reo_reg_base);
1330 			*ix3 = HAL_REG_READ(hal, reg_offset);
1331 		}
1332 	} else {
1333 		if (ix0) {
1334 			reg_offset =
1335 				HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
1336 						reo_reg_base);
1337 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1338 						    *ix0, true);
1339 		}
1340 
1341 		if (ix1) {
1342 			reg_offset =
1343 				HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
1344 						reo_reg_base);
1345 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1346 						    *ix1, true);
1347 		}
1348 
1349 		if (ix2) {
1350 			reg_offset =
1351 				HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
1352 						reo_reg_base);
1353 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1354 						    *ix2, true);
1355 		}
1356 
1357 		if (ix3) {
1358 			reg_offset =
1359 				HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
1360 						reo_reg_base);
1361 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1362 						    *ix3, true);
1363 		}
1364 	}
1365 }
1366 
1367 qdf_export_symbol(hal_reo_read_write_ctrl_ix);
1368 
1369 /**
1370  * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
1371  *  pointer and confirm that write went through by reading back the value
1372  * @srng: sring pointer
1373  * @paddr: physical address
1374  *
1375  * Return: None
1376  */
1377 void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
1378 {
1379 	SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
1380 	SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
1381 }
1382 
1383 qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
1384 
1385 /**
1386  * hal_srng_dst_init_hp() - Initialize destination ring head
1387  * pointer
1388  * @hal_soc: hal_soc handle
1389  * @srng: sring pointer
1390  * @vaddr: virtual address
1391  */
1392 void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
1393 			  struct hal_srng *srng,
1394 			  uint32_t *vaddr)
1395 {
1396 	uint32_t reg_offset;
1397 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1398 
1399 	if (!srng)
1400 		return;
1401 
1402 	srng->u.dst_ring.hp_addr = vaddr;
1403 	reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
1404 	HAL_REG_WRITE_CONFIRM_RETRY(
1405 		hal, reg_offset, srng->u.dst_ring.cached_hp, true);
1406 
1407 	if (vaddr) {
1408 		*srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
1409 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1410 			  "hp_addr=%pK, cached_hp=%d, hp=%d",
1411 			  (void *)srng->u.dst_ring.hp_addr,
1412 			  srng->u.dst_ring.cached_hp,
1413 			  *srng->u.dst_ring.hp_addr);
1414 	}
1415 }
1416 
1417 qdf_export_symbol(hal_srng_dst_init_hp);
1418 
1419 /**
1420  * hal_srng_hw_init - Private function to initialize SRNG HW
1421  * @hal_soc: HAL SOC handle
1422  * @srng: SRNG ring pointer
1423  * @idle_check: Check if ring is idle
1424  */
1425 static inline void hal_srng_hw_init(struct hal_soc *hal,
1426 	struct hal_srng *srng, bool idle_check)
1427 {
1428 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
1429 		hal_srng_src_hw_init(hal, srng, idle_check);
1430 	else
1431 		hal_srng_dst_hw_init(hal, srng, idle_check);
1432 }
1433 
1434 #if defined(CONFIG_SHADOW_V2) || defined(CONFIG_SHADOW_V3)
1435 #define ignore_shadow false
1436 #define CHECK_SHADOW_REGISTERS true
1437 #else
1438 #define ignore_shadow true
1439 #define CHECK_SHADOW_REGISTERS false
1440 #endif
1441 
1442 #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
1443 /**
1444  * hal_srng_is_near_full_irq_supported() - Check if near full irq is
1445  *				supported on this SRNG
1446  * @hal_soc: HAL SoC handle
1447  * @ring_type: SRNG type
1448  * @ring_num: ring number
1449  *
1450  * Return: true, if near full irq is supported for this SRNG
1451  *	   false, if near full irq is not supported for this SRNG
1452  */
1453 bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
1454 					 int ring_type, int ring_num)
1455 {
1456 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1457 	struct hal_hw_srng_config *ring_config =
1458 		HAL_SRNG_CONFIG(hal, ring_type);
1459 
1460 	return ring_config->nf_irq_support;
1461 }
1462 
1463 /**
1464  * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
1465  *				ring params
1466  * @srng: SRNG handle
1467  * @ring_params: ring params for this SRNG
1468  *
1469  * Return: None
1470  */
1471 static inline void
1472 hal_srng_set_msi2_params(struct hal_srng *srng,
1473 			 struct hal_srng_params *ring_params)
1474 {
1475 	srng->msi2_addr = ring_params->msi2_addr;
1476 	srng->msi2_data = ring_params->msi2_data;
1477 }
1478 
1479 /**
1480  * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
1481  * @srng: SRNG handle
1482  * @ring_params: ring params for this SRNG
1483  *
1484  * Return: None
1485  */
1486 static inline void
1487 hal_srng_get_nf_params(struct hal_srng *srng,
1488 		       struct hal_srng_params *ring_params)
1489 {
1490 	ring_params->msi2_addr = srng->msi2_addr;
1491 	ring_params->msi2_data = srng->msi2_data;
1492 }
1493 
1494 /**
1495  * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
1496  * @srng: SRNG handle where the params are to be set
1497  * @ring_params: ring params, from where threshold is to be fetched
1498  *
1499  * Return: None
1500  */
1501 static inline void
1502 hal_srng_set_nf_thresholds(struct hal_srng *srng,
1503 			   struct hal_srng_params *ring_params)
1504 {
1505 	srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
1506 	srng->u.dst_ring.high_thresh = ring_params->high_thresh;
1507 }
1508 #else
1509 static inline void
1510 hal_srng_set_msi2_params(struct hal_srng *srng,
1511 			 struct hal_srng_params *ring_params)
1512 {
1513 }
1514 
1515 static inline void
1516 hal_srng_get_nf_params(struct hal_srng *srng,
1517 		       struct hal_srng_params *ring_params)
1518 {
1519 }
1520 
1521 static inline void
1522 hal_srng_set_nf_thresholds(struct hal_srng *srng,
1523 			   struct hal_srng_params *ring_params)
1524 {
1525 }
1526 #endif
1527 
1528 #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
1529 /**
1530  * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
1531  *
1532  * @srng: Source ring pointer
1533  *
1534  * Return: None
1535  */
1536 static inline
1537 void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
1538 {
1539 	srng->last_desc_cleared = srng->ring_size - srng->entry_size;
1540 }
1541 
1542 #else
1543 static inline
1544 void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
1545 {
1546 }
1547 #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
1548 
1549 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
1550 static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
1551 {
1552 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100] =
1553 			((srng->num_entries * 90) / 100);
1554 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90] =
1555 			((srng->num_entries * 80) / 100);
1556 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80] =
1557 			((srng->num_entries * 70) / 100);
1558 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70] =
1559 			((srng->num_entries * 60) / 100);
1560 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60] =
1561 			((srng->num_entries * 50) / 100);
1562 	/* Below 50% threshold is not needed */
1563 	srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT] = 0;
1564 
1565 	hal_info("ring_id: %u, wm_thresh- <50:%u, 50-60:%u, 60-70:%u, 70-80:%u, 80-90:%u, 90-100:%u",
1566 		 srng->ring_id,
1567 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT],
1568 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60],
1569 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70],
1570 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80],
1571 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90],
1572 		 srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100]);
1573 }
1574 #else
1575 static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
1576 {
1577 }
1578 #endif
1579 
1580 /**
1581  * hal_srng_setup - Initialize HW SRNG ring.
1582  * @hal_soc: Opaque HAL SOC handle
1583  * @ring_type: one of the types from hal_ring_type
1584  * @ring_num: Ring number if there are multiple rings of same type (staring
1585  * from 0)
1586  * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
1587  * @ring_params: SRNG ring params in hal_srng_params structure.
1588  * @idle_check: Check if ring is idle
1589  *
1590  * Callers are expected to allocate contiguous ring memory of size
1591  * 'num_entries * entry_size' bytes and pass the physical and virtual base
1592  * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
1593  * hal_srng_params structure. Ring base address should be 8 byte aligned
1594  * and size of each ring entry should be queried using the API
1595  * hal_srng_get_entrysize
1596  *
1597  * Return: Opaque pointer to ring on success
1598  *		 NULL on failure (if given ring is not available)
1599  */
1600 void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
1601 	int mac_id, struct hal_srng_params *ring_params, bool idle_check)
1602 {
1603 	int ring_id;
1604 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1605 	struct hal_srng *srng;
1606 	struct hal_hw_srng_config *ring_config =
1607 		HAL_SRNG_CONFIG(hal, ring_type);
1608 	void *dev_base_addr;
1609 	int i;
1610 
1611 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
1612 	if (ring_id < 0)
1613 		return NULL;
1614 
1615 	hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
1616 
1617 	srng = hal_get_srng(hal_soc, ring_id);
1618 
1619 	if (srng->initialized) {
1620 		hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
1621 		return NULL;
1622 	}
1623 
1624 	dev_base_addr = hal->dev_base_addr;
1625 	srng->ring_id = ring_id;
1626 	srng->ring_type = ring_type;
1627 	srng->ring_dir = ring_config->ring_dir;
1628 	srng->ring_base_paddr = ring_params->ring_base_paddr;
1629 	srng->ring_base_vaddr = ring_params->ring_base_vaddr;
1630 	srng->entry_size = ring_config->entry_size;
1631 	srng->num_entries = ring_params->num_entries;
1632 	srng->ring_size = srng->num_entries * srng->entry_size;
1633 	srng->ring_size_mask = srng->ring_size - 1;
1634 	srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
1635 	srng->msi_addr = ring_params->msi_addr;
1636 	srng->msi_data = ring_params->msi_data;
1637 	srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
1638 	srng->intr_batch_cntr_thres_entries =
1639 		ring_params->intr_batch_cntr_thres_entries;
1640 	if (!idle_check)
1641 		srng->prefetch_timer = ring_params->prefetch_timer;
1642 	srng->hal_soc = hal_soc;
1643 	hal_srng_set_msi2_params(srng, ring_params);
1644 	hal_srng_update_high_wm_thresholds(srng);
1645 
1646 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
1647 		srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
1648 			+ (ring_num * ring_config->reg_size[i]);
1649 	}
1650 
1651 	/* Zero out the entire ring memory */
1652 	qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
1653 		srng->num_entries) << 2);
1654 
1655 	srng->flags = ring_params->flags;
1656 
1657 	/* For cached descriptors flush and invalidate the memory*/
1658 	if (srng->flags & HAL_SRNG_CACHED_DESC) {
1659 		qdf_nbuf_dma_clean_range(
1660 				srng->ring_base_vaddr,
1661 				srng->ring_base_vaddr +
1662 				((srng->entry_size * srng->num_entries)));
1663 		qdf_nbuf_dma_inv_range(
1664 				srng->ring_base_vaddr,
1665 				srng->ring_base_vaddr +
1666 				((srng->entry_size * srng->num_entries)));
1667 	}
1668 #ifdef BIG_ENDIAN_HOST
1669 		/* TODO: See if we should we get these flags from caller */
1670 	srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
1671 	srng->flags |= HAL_SRNG_MSI_SWAP;
1672 	srng->flags |= HAL_SRNG_RING_PTR_SWAP;
1673 #endif
1674 
1675 	hal_srng_last_desc_cleared_init(srng);
1676 
1677 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1678 		srng->u.src_ring.hp = 0;
1679 		srng->u.src_ring.reap_hp = srng->ring_size -
1680 			srng->entry_size;
1681 		srng->u.src_ring.tp_addr =
1682 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1683 		srng->u.src_ring.low_threshold =
1684 			ring_params->low_threshold * srng->entry_size;
1685 
1686 		if (srng->u.src_ring.tp_addr)
1687 			qdf_mem_zero(srng->u.src_ring.tp_addr,
1688 				     sizeof(*hal->shadow_rdptr_mem_vaddr));
1689 
1690 		if (ring_config->lmac_ring) {
1691 			/* For LMAC rings, head pointer updates will be done
1692 			 * through FW by writing to a shared memory location
1693 			 */
1694 			srng->u.src_ring.hp_addr =
1695 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1696 					HAL_SRNG_LMAC1_ID_START]);
1697 			srng->flags |= HAL_SRNG_LMAC_RING;
1698 
1699 			if (srng->u.src_ring.hp_addr)
1700 				qdf_mem_zero(srng->u.src_ring.hp_addr,
1701 					sizeof(*hal->shadow_wrptr_mem_vaddr));
1702 
1703 		} else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
1704 			srng->u.src_ring.hp_addr =
1705 				hal_get_window_address(hal,
1706 						SRNG_SRC_ADDR(srng, HP));
1707 
1708 			if (CHECK_SHADOW_REGISTERS) {
1709 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1710 				    QDF_TRACE_LEVEL_ERROR,
1711 				    "%s: Ring (%d, %d) missing shadow config",
1712 				    __func__, ring_type, ring_num);
1713 			}
1714 		} else {
1715 			hal_validate_shadow_register(hal,
1716 						     SRNG_SRC_ADDR(srng, HP),
1717 						     srng->u.src_ring.hp_addr);
1718 		}
1719 	} else {
1720 		/* During initialization loop count in all the descriptors
1721 		 * will be set to zero, and HW will set it to 1 on completing
1722 		 * descriptor update in first loop, and increments it by 1 on
1723 		 * subsequent loops (loop count wraps around after reaching
1724 		 * 0xffff). The 'loop_cnt' in SW ring state is the expected
1725 		 * loop count in descriptors updated by HW (to be processed
1726 		 * by SW).
1727 		 */
1728 		hal_srng_set_nf_thresholds(srng, ring_params);
1729 		srng->u.dst_ring.loop_cnt = 1;
1730 		srng->u.dst_ring.tp = 0;
1731 		srng->u.dst_ring.hp_addr =
1732 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1733 
1734 		if (srng->u.dst_ring.hp_addr)
1735 			qdf_mem_zero(srng->u.dst_ring.hp_addr,
1736 				     sizeof(*hal->shadow_rdptr_mem_vaddr));
1737 
1738 		if (ring_config->lmac_ring) {
1739 			/* For LMAC rings, tail pointer updates will be done
1740 			 * through FW by writing to a shared memory location
1741 			 */
1742 			srng->u.dst_ring.tp_addr =
1743 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1744 				HAL_SRNG_LMAC1_ID_START]);
1745 			srng->flags |= HAL_SRNG_LMAC_RING;
1746 
1747 			if (srng->u.dst_ring.tp_addr)
1748 				qdf_mem_zero(srng->u.dst_ring.tp_addr,
1749 					sizeof(*hal->shadow_wrptr_mem_vaddr));
1750 
1751 		} else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
1752 			srng->u.dst_ring.tp_addr =
1753 				hal_get_window_address(hal,
1754 						SRNG_DST_ADDR(srng, TP));
1755 
1756 			if (CHECK_SHADOW_REGISTERS) {
1757 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1758 				    QDF_TRACE_LEVEL_ERROR,
1759 				    "%s: Ring (%d, %d) missing shadow config",
1760 				    __func__, ring_type, ring_num);
1761 			}
1762 		} else {
1763 			hal_validate_shadow_register(hal,
1764 						     SRNG_DST_ADDR(srng, TP),
1765 						     srng->u.dst_ring.tp_addr);
1766 		}
1767 	}
1768 
1769 	if (!(ring_config->lmac_ring)) {
1770 		hal_srng_hw_init(hal, srng, idle_check);
1771 
1772 		if (ring_type == CE_DST) {
1773 			srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
1774 			hal_ce_dst_setup(hal, srng, ring_num);
1775 		}
1776 	}
1777 
1778 	SRNG_LOCK_INIT(&srng->lock);
1779 
1780 	srng->srng_event = 0;
1781 
1782 	srng->initialized = true;
1783 
1784 	return (void *)srng;
1785 }
1786 qdf_export_symbol(hal_srng_setup);
1787 
1788 /**
1789  * hal_srng_cleanup - Deinitialize HW SRNG ring.
1790  * @hal_soc: Opaque HAL SOC handle
1791  * @hal_srng: Opaque HAL SRNG pointer
1792  */
1793 void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
1794 {
1795 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1796 	SRNG_LOCK_DESTROY(&srng->lock);
1797 	srng->initialized = 0;
1798 	hal_srng_hw_disable(hal_soc, srng);
1799 }
1800 qdf_export_symbol(hal_srng_cleanup);
1801 
1802 /**
1803  * hal_srng_get_entrysize - Returns size of ring entry in bytes
1804  * @hal_soc: Opaque HAL SOC handle
1805  * @ring_type: one of the types from hal_ring_type
1806  *
1807  */
1808 uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
1809 {
1810 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1811 	struct hal_hw_srng_config *ring_config =
1812 		HAL_SRNG_CONFIG(hal, ring_type);
1813 	return ring_config->entry_size << 2;
1814 }
1815 qdf_export_symbol(hal_srng_get_entrysize);
1816 
1817 /**
1818  * hal_srng_max_entries - Returns maximum possible number of ring entries
1819  * @hal_soc: Opaque HAL SOC handle
1820  * @ring_type: one of the types from hal_ring_type
1821  *
1822  * Return: Maximum number of entries for the given ring_type
1823  */
1824 uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
1825 {
1826 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1827 	struct hal_hw_srng_config *ring_config =
1828 		HAL_SRNG_CONFIG(hal, ring_type);
1829 
1830 	return ring_config->max_size / ring_config->entry_size;
1831 }
1832 qdf_export_symbol(hal_srng_max_entries);
1833 
1834 enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
1835 {
1836 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1837 	struct hal_hw_srng_config *ring_config =
1838 		HAL_SRNG_CONFIG(hal, ring_type);
1839 
1840 	return ring_config->ring_dir;
1841 }
1842 
1843 /**
1844  * hal_srng_dump - Dump ring status
1845  * @srng: hal srng pointer
1846  */
1847 void hal_srng_dump(struct hal_srng *srng)
1848 {
1849 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1850 		hal_debug("=== SRC RING %d ===", srng->ring_id);
1851 		hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
1852 			  srng->u.src_ring.hp,
1853 			  srng->u.src_ring.reap_hp,
1854 			  *srng->u.src_ring.tp_addr,
1855 			  srng->u.src_ring.cached_tp);
1856 	} else {
1857 		hal_debug("=== DST RING %d ===", srng->ring_id);
1858 		hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
1859 			  srng->u.dst_ring.tp,
1860 			  *srng->u.dst_ring.hp_addr,
1861 			  srng->u.dst_ring.cached_hp,
1862 			  srng->u.dst_ring.loop_cnt);
1863 	}
1864 }
1865 
1866 /**
1867  * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
1868  *
1869  * @hal_soc: Opaque HAL SOC handle
1870  * @hal_ring: Ring pointer (Source or Destination ring)
1871  * @ring_params: SRNG parameters will be returned through this structure
1872  */
1873 extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
1874 				hal_ring_handle_t hal_ring_hdl,
1875 				struct hal_srng_params *ring_params)
1876 {
1877 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1878 	int i =0;
1879 	ring_params->ring_id = srng->ring_id;
1880 	ring_params->ring_dir = srng->ring_dir;
1881 	ring_params->entry_size = srng->entry_size;
1882 
1883 	ring_params->ring_base_paddr = srng->ring_base_paddr;
1884 	ring_params->ring_base_vaddr = srng->ring_base_vaddr;
1885 	ring_params->num_entries = srng->num_entries;
1886 	ring_params->msi_addr = srng->msi_addr;
1887 	ring_params->msi_data = srng->msi_data;
1888 	ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
1889 	ring_params->intr_batch_cntr_thres_entries =
1890 		srng->intr_batch_cntr_thres_entries;
1891 	ring_params->low_threshold = srng->u.src_ring.low_threshold;
1892 	ring_params->flags = srng->flags;
1893 	ring_params->ring_id = srng->ring_id;
1894 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
1895 		ring_params->hwreg_base[i] = srng->hwreg_base[i];
1896 
1897 	hal_srng_get_nf_params(srng, ring_params);
1898 }
1899 qdf_export_symbol(hal_get_srng_params);
1900 
1901 void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
1902 				 uint32_t low_threshold)
1903 {
1904 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1905 	srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
1906 }
1907 qdf_export_symbol(hal_set_low_threshold);
1908 
1909 #ifdef FEATURE_RUNTIME_PM
1910 void
1911 hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
1912 			 hal_ring_handle_t hal_ring_hdl,
1913 			 uint32_t rtpm_id)
1914 {
1915 	if (qdf_unlikely(!hal_ring_hdl)) {
1916 		qdf_print("Error: Invalid hal_ring\n");
1917 		return;
1918 	}
1919 
1920 	if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) {
1921 		hal_srng_access_end(hal_soc_hdl, hal_ring_hdl);
1922 		hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id);
1923 	} else {
1924 		hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
1925 		hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
1926 		hal_srng_inc_flush_cnt(hal_ring_hdl);
1927 	}
1928 }
1929 
1930 qdf_export_symbol(hal_srng_rtpm_access_end);
1931 #endif /* FEATURE_RUNTIME_PM */
1932 
1933 #ifdef FORCE_WAKE
1934 void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
1935 {
1936 	struct hal_soc *hal_soc = (struct hal_soc *)soc;
1937 	hal_soc->init_phase = init_phase;
1938 }
1939 #endif /* FORCE_WAKE */
1940