xref: /wlan-dirver/qca-wifi-host-cmn/hal/wifi3.0/hal_srng.c (revision 31da41ae4e815d2fde7ccd921311a5fdc34e04de)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "hal_api.h"
21 #include "hal_reo.h"
22 #include "target_type.h"
23 #include "qdf_module.h"
24 #include "wcss_version.h"
25 
26 #ifdef QCA_WIFI_QCA8074
27 void hal_qca6290_attach(struct hal_soc *hal);
28 #endif
29 #ifdef QCA_WIFI_QCA8074
30 void hal_qca8074_attach(struct hal_soc *hal);
31 #endif
32 #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
33 	defined(QCA_WIFI_QCA9574)
34 void hal_qca8074v2_attach(struct hal_soc *hal);
35 #endif
36 #ifdef QCA_WIFI_QCA6390
37 void hal_qca6390_attach(struct hal_soc *hal);
38 #endif
39 #ifdef QCA_WIFI_QCA6490
40 void hal_qca6490_attach(struct hal_soc *hal);
41 #endif
42 #ifdef QCA_WIFI_QCN9000
43 void hal_qcn9000_attach(struct hal_soc *hal);
44 #endif
45 #ifdef QCA_WIFI_QCN9224
46 void hal_qcn9224_attach(struct hal_soc *hal);
47 #endif
48 #ifdef QCA_WIFI_QCN6122
49 void hal_qcn6122_attach(struct hal_soc *hal);
50 #endif
51 #ifdef QCA_WIFI_QCA6750
52 void hal_qca6750_attach(struct hal_soc *hal);
53 #endif
54 #ifdef QCA_WIFI_QCA5018
55 void hal_qca5018_attach(struct hal_soc *hal);
56 #endif
57 #ifdef QCA_WIFI_WCN7850
58 void hal_wcn7850_attach(struct hal_soc *hal);
59 #endif
60 
61 #ifdef ENABLE_VERBOSE_DEBUG
62 bool is_hal_verbose_debug_enabled;
63 #endif
64 
65 #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x)	((x) + 0x4)
66 #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x)	((x) + 0x8)
67 #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x)	((x) + 0xc)
68 #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x)	((x) + 0x10)
69 
70 #ifdef ENABLE_HAL_REG_WR_HISTORY
71 struct hal_reg_write_fail_history hal_reg_wr_hist;
72 
73 void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
74 				 uint32_t offset,
75 				 uint32_t wr_val, uint32_t rd_val)
76 {
77 	struct hal_reg_write_fail_entry *record;
78 	int idx;
79 
80 	idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
81 					 HAL_REG_WRITE_HIST_SIZE);
82 
83 	record = &hal_soc->reg_wr_fail_hist->record[idx];
84 
85 	record->timestamp = qdf_get_log_timestamp();
86 	record->reg_offset = offset;
87 	record->write_val = wr_val;
88 	record->read_val = rd_val;
89 }
90 
91 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
92 {
93 	hal->reg_wr_fail_hist = &hal_reg_wr_hist;
94 
95 	qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
96 }
97 #else
98 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
99 {
100 }
101 #endif
102 
103 /**
104  * hal_get_srng_ring_id() - get the ring id of a descriped ring
105  * @hal: hal_soc data structure
106  * @ring_type: type enum describing the ring
107  * @ring_num: which ring of the ring type
108  * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
109  *
110  * Return: the ring id or -EINVAL if the ring does not exist.
111  */
112 static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
113 				int ring_num, int mac_id)
114 {
115 	struct hal_hw_srng_config *ring_config =
116 		HAL_SRNG_CONFIG(hal, ring_type);
117 	int ring_id;
118 
119 	if (ring_num >= ring_config->max_rings) {
120 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
121 			  "%s: ring_num exceeded maximum no. of supported rings",
122 			  __func__);
123 		/* TODO: This is a programming error. Assert if this happens */
124 		return -EINVAL;
125 	}
126 
127 	/*
128 	 * For BE, dmac_cmn_src_rxbuf_ring is set. If this is set
129 	 * and ring is dst and also lmac ring then provide ring id per lmac
130 	 */
131 	if (ring_config->lmac_ring &&
132 	    (!hal->dmac_cmn_src_rxbuf_ring ||
133 	     ring_config->ring_dir == HAL_SRNG_DST_RING)) {
134 		ring_id = (ring_config->start_ring_id + ring_num +
135 			   (mac_id * HAL_MAX_RINGS_PER_LMAC));
136 	} else {
137 		ring_id = ring_config->start_ring_id + ring_num;
138 	}
139 
140 	return ring_id;
141 }
142 
143 static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
144 {
145 	/* TODO: Should we allocate srng structures dynamically? */
146 	return &(hal->srng_list[ring_id]);
147 }
148 
149 #ifndef SHADOW_REG_CONFIG_DISABLED
150 #define HP_OFFSET_IN_REG_START 1
151 #define OFFSET_FROM_HP_TO_TP 4
152 static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
153 					  int shadow_config_index,
154 					  int ring_type,
155 					  int ring_num)
156 {
157 	struct hal_srng *srng;
158 	int ring_id;
159 	struct hal_hw_srng_config *ring_config =
160 		HAL_SRNG_CONFIG(hal_soc, ring_type);
161 
162 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
163 	if (ring_id < 0)
164 		return;
165 
166 	srng = hal_get_srng(hal_soc, ring_id);
167 
168 	if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
169 		srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
170 			+ hal_soc->dev_base_addr;
171 		hal_debug("tp_addr=%pK dev base addr %pK index %u",
172 			  srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
173 			  shadow_config_index);
174 	} else {
175 		srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
176 			+ hal_soc->dev_base_addr;
177 		hal_debug("hp_addr=%pK dev base addr %pK index %u",
178 			  srng->u.src_ring.hp_addr,
179 			  hal_soc->dev_base_addr, shadow_config_index);
180 	}
181 
182 }
183 #endif
184 
185 #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
186 void hal_set_one_target_reg_config(struct hal_soc *hal,
187 				   uint32_t target_reg_offset,
188 				   int list_index)
189 {
190 	int i = list_index;
191 
192 	qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
193 	hal->list_shadow_reg_config[i].target_register =
194 		target_reg_offset;
195 	hal->num_generic_shadow_regs_configured++;
196 }
197 
198 qdf_export_symbol(hal_set_one_target_reg_config);
199 
200 #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
201 #define MAX_REO_REMAP_SHADOW_REGS 4
202 QDF_STATUS hal_set_shadow_regs(void *hal_soc)
203 {
204 	uint32_t target_reg_offset;
205 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
206 	int i;
207 	struct hal_hw_srng_config *srng_config =
208 		&hal->hw_srng_table[WBM2SW_RELEASE];
209 	uint32_t reo_reg_base;
210 
211 	reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
212 
213 	target_reg_offset =
214 		HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
215 
216 	for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
217 		hal_set_one_target_reg_config(hal, target_reg_offset, i);
218 		target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
219 	}
220 
221 	target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
222 	target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
223 			      * HAL_IPA_TX_COMP_RING_IDX);
224 
225 	hal_set_one_target_reg_config(hal, target_reg_offset, i);
226 	return QDF_STATUS_SUCCESS;
227 }
228 
229 qdf_export_symbol(hal_set_shadow_regs);
230 
231 QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
232 {
233 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
234 	int shadow_config_index = hal->num_shadow_registers_configured;
235 	int i;
236 	int num_regs = hal->num_generic_shadow_regs_configured;
237 
238 	for (i = 0; i < num_regs; i++) {
239 		qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
240 		hal->shadow_config[shadow_config_index].addr =
241 			hal->list_shadow_reg_config[i].target_register;
242 		hal->list_shadow_reg_config[i].shadow_config_index =
243 			shadow_config_index;
244 		hal->list_shadow_reg_config[i].va =
245 			SHADOW_REGISTER(shadow_config_index) +
246 			(uintptr_t)hal->dev_base_addr;
247 		hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
248 			  hal->shadow_config[shadow_config_index].addr,
249 			  SHADOW_REGISTER(shadow_config_index),
250 			  shadow_config_index);
251 		shadow_config_index++;
252 		hal->num_shadow_registers_configured++;
253 	}
254 	return QDF_STATUS_SUCCESS;
255 }
256 
257 qdf_export_symbol(hal_construct_shadow_regs);
258 #endif
259 
260 #ifndef SHADOW_REG_CONFIG_DISABLED
261 
262 QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
263 				     int ring_type,
264 				     int ring_num)
265 {
266 	uint32_t target_register;
267 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
268 	struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
269 	int shadow_config_index = hal->num_shadow_registers_configured;
270 
271 	if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
272 		QDF_ASSERT(0);
273 		return QDF_STATUS_E_RESOURCES;
274 	}
275 
276 	hal->num_shadow_registers_configured++;
277 
278 	target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
279 	target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
280 			    *ring_num);
281 
282 	/* if the ring is a dst ring, we need to shadow the tail pointer */
283 	if (srng_config->ring_dir == HAL_SRNG_DST_RING)
284 		target_register += OFFSET_FROM_HP_TO_TP;
285 
286 	hal->shadow_config[shadow_config_index].addr = target_register;
287 
288 	/* update hp/tp addr in the hal_soc structure*/
289 	hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
290 				      ring_num);
291 
292 	hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
293 		  target_register,
294 		  SHADOW_REGISTER(shadow_config_index),
295 		  shadow_config_index,
296 		  ring_type, ring_num);
297 
298 	return QDF_STATUS_SUCCESS;
299 }
300 
301 qdf_export_symbol(hal_set_one_shadow_config);
302 
303 QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
304 {
305 	int ring_type, ring_num;
306 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
307 
308 	for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
309 		struct hal_hw_srng_config *srng_config =
310 			&hal->hw_srng_table[ring_type];
311 
312 		if (ring_type == CE_SRC ||
313 		    ring_type == CE_DST ||
314 		    ring_type == CE_DST_STATUS)
315 			continue;
316 
317 		if (srng_config->lmac_ring)
318 			continue;
319 
320 		for (ring_num = 0; ring_num < srng_config->max_rings;
321 		     ring_num++)
322 			hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
323 	}
324 
325 	return QDF_STATUS_SUCCESS;
326 }
327 
328 qdf_export_symbol(hal_construct_srng_shadow_regs);
329 #else
330 
331 QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
332 {
333 	return QDF_STATUS_SUCCESS;
334 }
335 
336 qdf_export_symbol(hal_construct_srng_shadow_regs);
337 
338 QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
339 				     int ring_num)
340 {
341 	return QDF_STATUS_SUCCESS;
342 }
343 qdf_export_symbol(hal_set_one_shadow_config);
344 #endif
345 
346 void hal_get_shadow_config(void *hal_soc,
347 	struct pld_shadow_reg_v2_cfg **shadow_config,
348 	int *num_shadow_registers_configured)
349 {
350 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
351 
352 	*shadow_config = hal->shadow_config;
353 	*num_shadow_registers_configured =
354 		hal->num_shadow_registers_configured;
355 }
356 
357 qdf_export_symbol(hal_get_shadow_config);
358 
359 static bool hal_validate_shadow_register(struct hal_soc *hal,
360 					 uint32_t *destination,
361 					 uint32_t *shadow_address)
362 {
363 	unsigned int index;
364 	uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
365 	int destination_ba_offset =
366 		((char *)destination) - (char *)hal->dev_base_addr;
367 
368 	index =	shadow_address - shadow_0_offset;
369 
370 	if (index >= MAX_SHADOW_REGISTERS) {
371 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
372 			"%s: index %x out of bounds", __func__, index);
373 		goto error;
374 	} else if (hal->shadow_config[index].addr != destination_ba_offset) {
375 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
376 			"%s: sanity check failure, expected %x, found %x",
377 			__func__, destination_ba_offset,
378 			hal->shadow_config[index].addr);
379 		goto error;
380 	}
381 	return true;
382 error:
383 	qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
384 		  hal->dev_base_addr, destination, shadow_address,
385 		  shadow_0_offset, index);
386 	QDF_BUG(0);
387 	return false;
388 }
389 
390 static void hal_target_based_configure(struct hal_soc *hal)
391 {
392 	/**
393 	 * Indicate Initialization of srngs to avoid force wake
394 	 * as umac power collapse is not enabled yet
395 	 */
396 	hal->init_phase = true;
397 
398 	switch (hal->target_type) {
399 #ifdef QCA_WIFI_QCA6290
400 	case TARGET_TYPE_QCA6290:
401 		hal->use_register_windowing = true;
402 		hal_qca6290_attach(hal);
403 	break;
404 #endif
405 #ifdef QCA_WIFI_QCA6390
406 	case TARGET_TYPE_QCA6390:
407 		hal->use_register_windowing = true;
408 		hal_qca6390_attach(hal);
409 	break;
410 #endif
411 #ifdef QCA_WIFI_QCA6490
412 	case TARGET_TYPE_QCA6490:
413 		hal->use_register_windowing = true;
414 		hal_qca6490_attach(hal);
415 	break;
416 #endif
417 #ifdef QCA_WIFI_QCA6750
418 		case TARGET_TYPE_QCA6750:
419 			hal->use_register_windowing = true;
420 			hal->static_window_map = true;
421 			hal_qca6750_attach(hal);
422 		break;
423 #endif
424 #ifdef QCA_WIFI_WCN7850
425 	case TARGET_TYPE_WCN7850:
426 		hal->use_register_windowing = true;
427 		hal_wcn7850_attach(hal);
428 		hal->init_phase = false;
429 		break;
430 #endif
431 #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
432 	case TARGET_TYPE_QCA8074:
433 		hal_qca8074_attach(hal);
434 	break;
435 #endif
436 
437 #if defined(QCA_WIFI_QCA8074V2)
438 	case TARGET_TYPE_QCA8074V2:
439 		hal_qca8074v2_attach(hal);
440 	break;
441 #endif
442 
443 #if defined(QCA_WIFI_QCA6018)
444 	case TARGET_TYPE_QCA6018:
445 		hal_qca8074v2_attach(hal);
446 	break;
447 #endif
448 
449 #if defined(QCA_WIFI_QCA9574)
450 	case TARGET_TYPE_QCA9574:
451 		hal_qca8074v2_attach(hal);
452 	break;
453 #endif
454 
455 #if defined(QCA_WIFI_QCN6122)
456 	case TARGET_TYPE_QCN6122:
457 		hal->use_register_windowing = true;
458 		/*
459 		 * Static window map  is enabled for qcn9000 to use 2mb bar
460 		 * size and use multiple windows to write into registers.
461 		 */
462 		hal->static_window_map = true;
463 		hal_qcn6122_attach(hal);
464 		break;
465 #endif
466 
467 #ifdef QCA_WIFI_QCN9000
468 	case TARGET_TYPE_QCN9000:
469 		hal->use_register_windowing = true;
470 		/*
471 		 * Static window map  is enabled for qcn9000 to use 2mb bar
472 		 * size and use multiple windows to write into registers.
473 		 */
474 		hal->static_window_map = true;
475 		hal_qcn9000_attach(hal);
476 	break;
477 #endif
478 #ifdef QCA_WIFI_QCA5018
479 	case TARGET_TYPE_QCA5018:
480 		hal->use_register_windowing = true;
481 		hal->static_window_map = true;
482 		hal_qca5018_attach(hal);
483 	break;
484 #endif
485 #ifdef QCA_WIFI_QCN9224
486 	case TARGET_TYPE_QCN9224:
487 		hal->use_register_windowing = true;
488 		hal->static_window_map = true;
489 		hal_qcn9224_attach(hal);
490 	break;
491 #endif
492 	default:
493 	break;
494 	}
495 }
496 
497 uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
498 {
499 	struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
500 	struct hif_target_info *tgt_info =
501 		hif_get_target_info_handle(hal_soc->hif_handle);
502 
503 	return tgt_info->target_type;
504 }
505 
506 qdf_export_symbol(hal_get_target_type);
507 
508 #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
509 /**
510  * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
511  * @hal: hal_soc pointer
512  *
513  * Return: true if throughput is high, else false.
514  */
515 static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
516 {
517 	int bw_level = hif_get_bandwidth_level(hal->hif_handle);
518 
519 	return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
520 }
521 
522 static inline
523 char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
524 				    char *buf, qdf_size_t size)
525 {
526 	qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
527 		      srng->wstats.enqueues, srng->wstats.dequeues,
528 		      srng->wstats.coalesces, srng->wstats.direct);
529 	return buf;
530 }
531 
532 /* bytes for local buffer */
533 #define HAL_REG_WRITE_SRNG_STATS_LEN 100
534 
535 void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
536 {
537 	struct hal_srng *srng;
538 	char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
539 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
540 
541 	srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
542 	hal_debug("SW2TCL1: %s",
543 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
544 
545 	srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
546 	hal_debug("WBM2SW0: %s",
547 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
548 
549 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
550 	hal_debug("REO2SW1: %s",
551 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
552 
553 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
554 	hal_debug("REO2SW2: %s",
555 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
556 
557 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
558 	hal_debug("REO2SW3: %s",
559 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
560 }
561 
562 void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
563 {
564 	uint32_t *hist;
565 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
566 
567 	hist = hal->stats.wstats.sched_delay;
568 	hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
569 		  qdf_atomic_read(&hal->stats.wstats.enqueues),
570 		  hal->stats.wstats.dequeues,
571 		  qdf_atomic_read(&hal->stats.wstats.coalesces),
572 		  qdf_atomic_read(&hal->stats.wstats.direct),
573 		  qdf_atomic_read(&hal->stats.wstats.q_depth),
574 		  hal->stats.wstats.max_q_depth,
575 		  hist[REG_WRITE_SCHED_DELAY_SUB_100us],
576 		  hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
577 		  hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
578 		  hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
579 }
580 
581 int hal_get_reg_write_pending_work(void *hal_soc)
582 {
583 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
584 
585 	return qdf_atomic_read(&hal->active_work_cnt);
586 }
587 
588 #endif
589 
590 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
591 #ifdef MEMORY_DEBUG
592 /*
593  * Length of the queue(array) used to hold delayed register writes.
594  * Must be a multiple of 2.
595  */
596 #define HAL_REG_WRITE_QUEUE_LEN 128
597 #else
598 #define HAL_REG_WRITE_QUEUE_LEN 32
599 #endif
600 
601 /**
602  * hal_process_reg_write_q_elem() - process a regiter write queue element
603  * @hal: hal_soc pointer
604  * @q_elem: pointer to hal regiter write queue element
605  *
606  * Return: The value which was written to the address
607  */
608 static uint32_t
609 hal_process_reg_write_q_elem(struct hal_soc *hal,
610 			     struct hal_reg_write_q_elem *q_elem)
611 {
612 	struct hal_srng *srng = q_elem->srng;
613 	uint32_t write_val;
614 
615 	SRNG_LOCK(&srng->lock);
616 
617 	srng->reg_write_in_progress = false;
618 	srng->wstats.dequeues++;
619 
620 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
621 		q_elem->dequeue_val = srng->u.src_ring.hp;
622 		hal_write_address_32_mb(hal,
623 					srng->u.src_ring.hp_addr,
624 					srng->u.src_ring.hp, false);
625 		write_val = srng->u.src_ring.hp;
626 	} else {
627 		q_elem->dequeue_val = srng->u.dst_ring.tp;
628 		hal_write_address_32_mb(hal,
629 					srng->u.dst_ring.tp_addr,
630 					srng->u.dst_ring.tp, false);
631 		write_val = srng->u.dst_ring.tp;
632 	}
633 
634 	q_elem->valid = 0;
635 	srng->last_dequeue_time = q_elem->dequeue_time;
636 	SRNG_UNLOCK(&srng->lock);
637 
638 	return write_val;
639 }
640 
641 /**
642  * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
643  * @hal: hal_soc pointer
644  * @delay: delay in us
645  *
646  * Return: None
647  */
648 static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
649 						       uint64_t delay_us)
650 {
651 	uint32_t *hist;
652 
653 	hist = hal->stats.wstats.sched_delay;
654 
655 	if (delay_us < 100)
656 		hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
657 	else if (delay_us < 1000)
658 		hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
659 	else if (delay_us < 5000)
660 		hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
661 	else
662 		hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
663 }
664 
665 #ifdef SHADOW_WRITE_DELAY
666 
667 #define SHADOW_WRITE_MIN_DELTA_US	5
668 #define SHADOW_WRITE_DELAY_US		50
669 
670 /*
671  * Never add those srngs which are performance relate.
672  * The delay itself will hit performance heavily.
673  */
674 #define IS_SRNG_MATCH(s)	((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
675 				 (s)->ring_id == HAL_SRNG_CE_1_DST)
676 
677 static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
678 {
679 	struct hal_srng *srng = elem->srng;
680 	struct hal_soc *hal;
681 	qdf_time_t now;
682 	qdf_iomem_t real_addr;
683 
684 	if (qdf_unlikely(!srng))
685 		return false;
686 
687 	hal = srng->hal_soc;
688 	if (qdf_unlikely(!hal))
689 		return false;
690 
691 	/* Check if it is target srng, and valid shadow reg */
692 	if (qdf_likely(!IS_SRNG_MATCH(srng)))
693 		return false;
694 
695 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
696 		real_addr = SRNG_SRC_ADDR(srng, HP);
697 	else
698 		real_addr = SRNG_DST_ADDR(srng, TP);
699 	if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
700 		return false;
701 
702 	/* Check the time delta from last write of same srng */
703 	now = qdf_get_log_timestamp();
704 	if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
705 		SHADOW_WRITE_MIN_DELTA_US)
706 		return false;
707 
708 	/* Delay dequeue, and record */
709 	qdf_udelay(SHADOW_WRITE_DELAY_US);
710 
711 	srng->wstats.dequeue_delay++;
712 	hal->stats.wstats.dequeue_delay++;
713 
714 	return true;
715 }
716 #else
717 static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
718 {
719 	return false;
720 }
721 #endif
722 
723 /**
724  * hal_reg_write_work() - Worker to process delayed writes
725  * @arg: hal_soc pointer
726  *
727  * Return: None
728  */
729 static void hal_reg_write_work(void *arg)
730 {
731 	int32_t q_depth, write_val;
732 	struct hal_soc *hal = arg;
733 	struct hal_reg_write_q_elem *q_elem;
734 	uint64_t delta_us;
735 	uint8_t ring_id;
736 	uint32_t *addr;
737 	uint32_t num_processed = 0;
738 
739 	q_elem = &hal->reg_write_queue[(hal->read_idx)];
740 	q_elem->work_scheduled_time = qdf_get_log_timestamp();
741 	q_elem->cpu_id = qdf_get_cpu();
742 
743 	/* Make sure q_elem consistent in the memory for multi-cores */
744 	qdf_rmb();
745 	if (!q_elem->valid)
746 		return;
747 
748 	q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
749 	if (q_depth > hal->stats.wstats.max_q_depth)
750 		hal->stats.wstats.max_q_depth =  q_depth;
751 
752 	if (hif_prevent_link_low_power_states(hal->hif_handle)) {
753 		hal->stats.wstats.prevent_l1_fails++;
754 		return;
755 	}
756 
757 	while (true) {
758 		qdf_rmb();
759 		if (!q_elem->valid)
760 			break;
761 
762 		q_elem->dequeue_time = qdf_get_log_timestamp();
763 		ring_id = q_elem->srng->ring_id;
764 		addr = q_elem->addr;
765 		delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
766 						      q_elem->enqueue_time);
767 		hal_reg_write_fill_sched_delay_hist(hal, delta_us);
768 
769 		hal->stats.wstats.dequeues++;
770 		qdf_atomic_dec(&hal->stats.wstats.q_depth);
771 
772 		if (hal_reg_write_need_delay(q_elem))
773 			hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
774 					  q_elem->srng->ring_id, q_elem->addr);
775 
776 		write_val = hal_process_reg_write_q_elem(hal, q_elem);
777 		hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
778 				  hal->read_idx, ring_id, addr, write_val, delta_us);
779 
780 		num_processed++;
781 		hal->read_idx = (hal->read_idx + 1) &
782 					(HAL_REG_WRITE_QUEUE_LEN - 1);
783 		q_elem = &hal->reg_write_queue[(hal->read_idx)];
784 	}
785 
786 	hif_allow_link_low_power_states(hal->hif_handle);
787 	/*
788 	 * Decrement active_work_cnt by the number of elements dequeued after
789 	 * hif_allow_link_low_power_states.
790 	 * This makes sure that hif_try_complete_tasks will wait till we make
791 	 * the bus access in hif_allow_link_low_power_states. This will avoid
792 	 * race condition between delayed register worker and bus suspend
793 	 * (system suspend or runtime suspend).
794 	 *
795 	 * The following decrement should be done at the end!
796 	 */
797 	qdf_atomic_sub(num_processed, &hal->active_work_cnt);
798 }
799 
800 static void __hal_flush_reg_write_work(struct hal_soc *hal)
801 {
802 	qdf_flush_work(&hal->reg_write_work);
803 	qdf_disable_work(&hal->reg_write_work);
804 }
805 
806 void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
807 {	__hal_flush_reg_write_work((struct hal_soc *)hal_handle);
808 }
809 
810 /**
811  * hal_reg_write_enqueue() - enqueue register writes into kworker
812  * @hal_soc: hal_soc pointer
813  * @srng: srng pointer
814  * @addr: iomem address of regiter
815  * @value: value to be written to iomem address
816  *
817  * This function executes from within the SRNG LOCK
818  *
819  * Return: None
820  */
821 static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
822 				  struct hal_srng *srng,
823 				  void __iomem *addr,
824 				  uint32_t value)
825 {
826 	struct hal_reg_write_q_elem *q_elem;
827 	uint32_t write_idx;
828 
829 	if (srng->reg_write_in_progress) {
830 		hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
831 				  srng->ring_id, addr, value);
832 		qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
833 		srng->wstats.coalesces++;
834 		return;
835 	}
836 
837 	write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
838 
839 	write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
840 
841 	q_elem = &hal_soc->reg_write_queue[write_idx];
842 
843 	if (q_elem->valid) {
844 		hal_err("queue full");
845 		QDF_BUG(0);
846 		return;
847 	}
848 
849 	qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
850 	srng->wstats.enqueues++;
851 
852 	qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
853 
854 	q_elem->srng = srng;
855 	q_elem->addr = addr;
856 	q_elem->enqueue_val = value;
857 	q_elem->enqueue_time = qdf_get_log_timestamp();
858 
859 	/*
860 	 * Before the valid flag is set to true, all the other
861 	 * fields in the q_elem needs to be updated in memory.
862 	 * Else there is a chance that the dequeuing worker thread
863 	 * might read stale entries and process incorrect srng.
864 	 */
865 	qdf_wmb();
866 	q_elem->valid = true;
867 
868 	/*
869 	 * After all other fields in the q_elem has been updated
870 	 * in memory successfully, the valid flag needs to be updated
871 	 * in memory in time too.
872 	 * Else there is a chance that the dequeuing worker thread
873 	 * might read stale valid flag and the work will be bypassed
874 	 * for this round. And if there is no other work scheduled
875 	 * later, this hal register writing won't be updated any more.
876 	 */
877 	qdf_wmb();
878 
879 	srng->reg_write_in_progress  = true;
880 	qdf_atomic_inc(&hal_soc->active_work_cnt);
881 
882 	hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
883 			  write_idx, srng->ring_id, addr, value);
884 
885 	qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
886 		       &hal_soc->reg_write_work);
887 }
888 
889 /**
890  * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
891  * @hal_soc: hal_soc pointer
892  *
893  * Initialize main data structures to process register writes in a delayed
894  * workqueue.
895  *
896  * Return: QDF_STATUS_SUCCESS on success else a QDF error.
897  */
898 static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
899 {
900 	hal->reg_write_wq =
901 		qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
902 	qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
903 	hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
904 					      sizeof(*hal->reg_write_queue));
905 	if (!hal->reg_write_queue) {
906 		hal_err("unable to allocate memory");
907 		QDF_BUG(0);
908 		return QDF_STATUS_E_NOMEM;
909 	}
910 
911 	/* Initial value of indices */
912 	hal->read_idx = 0;
913 	qdf_atomic_set(&hal->write_idx, -1);
914 	return QDF_STATUS_SUCCESS;
915 }
916 
917 /**
918  * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
919  * @hal_soc: hal_soc pointer
920  *
921  * De-initialize main data structures to process register writes in a delayed
922  * workqueue.
923  *
924  * Return: None
925  */
926 static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
927 {
928 	__hal_flush_reg_write_work(hal);
929 
930 	qdf_flush_workqueue(0, hal->reg_write_wq);
931 	qdf_destroy_workqueue(0, hal->reg_write_wq);
932 	qdf_mem_free(hal->reg_write_queue);
933 }
934 
935 #else
936 static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
937 {
938 	return QDF_STATUS_SUCCESS;
939 }
940 
941 static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
942 {
943 }
944 #endif
945 
946 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
947 #ifdef QCA_WIFI_QCA6750
948 void hal_delayed_reg_write(struct hal_soc *hal_soc,
949 			   struct hal_srng *srng,
950 			   void __iomem *addr,
951 			   uint32_t value)
952 {
953 	uint8_t vote_access;
954 
955 	switch (srng->ring_type) {
956 	case CE_SRC:
957 	case CE_DST:
958 	case CE_DST_STATUS:
959 		vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
960 						     HIF_EP_VOTE_NONDP_ACCESS);
961 		if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
962 		    (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
963 		     PLD_MHI_STATE_L0 ==
964 		     pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
965 			hal_write_address_32_mb(hal_soc, addr, value, false);
966 			qdf_atomic_inc(&hal_soc->stats.wstats.direct);
967 			srng->wstats.direct++;
968 		} else {
969 			hal_reg_write_enqueue(hal_soc, srng, addr, value);
970 		}
971 		break;
972 	default:
973 		if (hif_get_ep_vote_access(hal_soc->hif_handle,
974 		    HIF_EP_VOTE_DP_ACCESS) ==
975 		    HIF_EP_VOTE_ACCESS_DISABLE ||
976 		    hal_is_reg_write_tput_level_high(hal_soc) ||
977 		    PLD_MHI_STATE_L0 ==
978 		    pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
979 			hal_write_address_32_mb(hal_soc, addr, value, false);
980 			qdf_atomic_inc(&hal_soc->stats.wstats.direct);
981 			srng->wstats.direct++;
982 		} else {
983 			hal_reg_write_enqueue(hal_soc, srng, addr, value);
984 		}
985 
986 		break;
987 	}
988 }
989 #else
990 void hal_delayed_reg_write(struct hal_soc *hal_soc,
991 			   struct hal_srng *srng,
992 			   void __iomem *addr,
993 			   uint32_t value)
994 {
995 	if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
996 	    hal_is_reg_write_tput_level_high(hal_soc)) {
997 		qdf_atomic_inc(&hal_soc->stats.wstats.direct);
998 		srng->wstats.direct++;
999 		hal_write_address_32_mb(hal_soc, addr, value, false);
1000 	} else {
1001 		hal_reg_write_enqueue(hal_soc, srng, addr, value);
1002 	}
1003 }
1004 #endif
1005 #endif
1006 
1007 /**
1008  * hal_attach - Initialize HAL layer
1009  * @hif_handle: Opaque HIF handle
1010  * @qdf_dev: QDF device
1011  *
1012  * Return: Opaque HAL SOC handle
1013  *		 NULL on failure (if given ring is not available)
1014  *
1015  * This function should be called as part of HIF initialization (for accessing
1016  * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
1017  *
1018  */
1019 void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
1020 {
1021 	struct hal_soc *hal;
1022 	int i;
1023 
1024 	hal = qdf_mem_malloc(sizeof(*hal));
1025 
1026 	if (!hal) {
1027 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1028 			"%s: hal_soc allocation failed", __func__);
1029 		goto fail0;
1030 	}
1031 	hal->hif_handle = hif_handle;
1032 	hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
1033 	hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
1034 	hal->qdf_dev = qdf_dev;
1035 	hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
1036 		qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
1037 		HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
1038 	if (!hal->shadow_rdptr_mem_paddr) {
1039 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1040 			"%s: hal->shadow_rdptr_mem_paddr allocation failed",
1041 			__func__);
1042 		goto fail1;
1043 	}
1044 	qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
1045 		     sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
1046 
1047 	hal->shadow_wrptr_mem_vaddr =
1048 		(uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
1049 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
1050 		&(hal->shadow_wrptr_mem_paddr));
1051 	if (!hal->shadow_wrptr_mem_vaddr) {
1052 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1053 			"%s: hal->shadow_wrptr_mem_vaddr allocation failed",
1054 			__func__);
1055 		goto fail2;
1056 	}
1057 	qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
1058 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
1059 
1060 	for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
1061 		hal->srng_list[i].initialized = 0;
1062 		hal->srng_list[i].ring_id = i;
1063 	}
1064 
1065 	qdf_spinlock_create(&hal->register_access_lock);
1066 	hal->register_window = 0;
1067 	hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
1068 	hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
1069 
1070 	if (!hal->ops) {
1071 		hal_err("unable to allocable memory for HAL ops");
1072 		goto fail3;
1073 	}
1074 
1075 	hal_target_based_configure(hal);
1076 
1077 	hal_reg_write_fail_history_init(hal);
1078 
1079 	qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
1080 
1081 	qdf_atomic_init(&hal->active_work_cnt);
1082 	hal_delayed_reg_write_init(hal);
1083 
1084 	return (void *)hal;
1085 fail3:
1086 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
1087 				sizeof(*hal->shadow_wrptr_mem_vaddr) *
1088 				HAL_MAX_LMAC_RINGS,
1089 				hal->shadow_wrptr_mem_vaddr,
1090 				hal->shadow_wrptr_mem_paddr, 0);
1091 fail2:
1092 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
1093 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
1094 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
1095 fail1:
1096 	qdf_mem_free(hal);
1097 fail0:
1098 	return NULL;
1099 }
1100 qdf_export_symbol(hal_attach);
1101 
1102 /**
1103  * hal_mem_info - Retrieve hal memory base address
1104  *
1105  * @hal_soc: Opaque HAL SOC handle
1106  * @mem: pointer to structure to be updated with hal mem info
1107  */
1108 void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
1109 {
1110 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
1111 	mem->dev_base_addr = (void *)hal->dev_base_addr;
1112         mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
1113 	mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
1114         mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
1115 	mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
1116 	hif_read_phy_mem_base((void *)hal->hif_handle,
1117 			      (qdf_dma_addr_t *)&mem->dev_base_paddr);
1118 	mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
1119 	return;
1120 }
1121 qdf_export_symbol(hal_get_meminfo);
1122 
1123 /**
1124  * hal_detach - Detach HAL layer
1125  * @hal_soc: HAL SOC handle
1126  *
1127  * Return: Opaque HAL SOC handle
1128  *		 NULL on failure (if given ring is not available)
1129  *
1130  * This function should be called as part of HIF initialization (for accessing
1131  * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
1132  *
1133  */
1134 extern void hal_detach(void *hal_soc)
1135 {
1136 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1137 
1138 	hal_delayed_reg_write_deinit(hal);
1139 	qdf_mem_free(hal->ops);
1140 
1141 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
1142 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
1143 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
1144 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
1145 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
1146 		hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
1147 	qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
1148 	qdf_mem_free(hal);
1149 
1150 	return;
1151 }
1152 qdf_export_symbol(hal_detach);
1153 
1154 #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x)		((x) + 0x000000b0)
1155 #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK	0x0000ffff
1156 #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x)	((x) + 0x00000040)
1157 #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK	0x00000007
1158 /**
1159  * hal_ce_dst_setup - Initialize CE destination ring registers
1160  * @hal_soc: HAL SOC handle
1161  * @srng: SRNG ring pointer
1162  */
1163 static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
1164 				    int ring_num)
1165 {
1166 	uint32_t reg_val = 0;
1167 	uint32_t reg_addr;
1168 	struct hal_hw_srng_config *ring_config =
1169 		HAL_SRNG_CONFIG(hal, CE_DST);
1170 
1171 	/* set DEST_MAX_LENGTH according to ce assignment */
1172 	reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
1173 			ring_config->reg_start[R0_INDEX] +
1174 			(ring_num * ring_config->reg_size[R0_INDEX]));
1175 
1176 	reg_val = HAL_REG_READ(hal, reg_addr);
1177 	reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
1178 	reg_val |= srng->u.dst_ring.max_buffer_length &
1179 		HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
1180 	HAL_REG_WRITE(hal, reg_addr, reg_val);
1181 
1182 	if (srng->prefetch_timer) {
1183 		reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
1184 				ring_config->reg_start[R0_INDEX] +
1185 				(ring_num * ring_config->reg_size[R0_INDEX]));
1186 
1187 		reg_val = HAL_REG_READ(hal, reg_addr);
1188 		reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
1189 		reg_val |= srng->prefetch_timer;
1190 		HAL_REG_WRITE(hal, reg_addr, reg_val);
1191 		reg_val = HAL_REG_READ(hal, reg_addr);
1192 	}
1193 
1194 }
1195 
1196 /**
1197  * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
1198  * @hal: HAL SOC handle
1199  * @read: boolean value to indicate if read or write
1200  * @ix0: pointer to store IX0 reg value
1201  * @ix1: pointer to store IX1 reg value
1202  * @ix2: pointer to store IX2 reg value
1203  * @ix3: pointer to store IX3 reg value
1204  */
1205 void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
1206 				uint32_t *ix0, uint32_t *ix1,
1207 				uint32_t *ix2, uint32_t *ix3)
1208 {
1209 	uint32_t reg_offset;
1210 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
1211 	uint32_t reo_reg_base;
1212 
1213 	reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
1214 
1215 	if (read) {
1216 		if (ix0) {
1217 			reg_offset =
1218 				HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
1219 						reo_reg_base);
1220 			*ix0 = HAL_REG_READ(hal, reg_offset);
1221 		}
1222 
1223 		if (ix1) {
1224 			reg_offset =
1225 				HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
1226 						reo_reg_base);
1227 			*ix1 = HAL_REG_READ(hal, reg_offset);
1228 		}
1229 
1230 		if (ix2) {
1231 			reg_offset =
1232 				HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
1233 						reo_reg_base);
1234 			*ix2 = HAL_REG_READ(hal, reg_offset);
1235 		}
1236 
1237 		if (ix3) {
1238 			reg_offset =
1239 				HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
1240 						reo_reg_base);
1241 			*ix3 = HAL_REG_READ(hal, reg_offset);
1242 		}
1243 	} else {
1244 		if (ix0) {
1245 			reg_offset =
1246 				HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
1247 						reo_reg_base);
1248 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1249 						    *ix0, true);
1250 		}
1251 
1252 		if (ix1) {
1253 			reg_offset =
1254 				HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
1255 						reo_reg_base);
1256 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1257 						    *ix1, true);
1258 		}
1259 
1260 		if (ix2) {
1261 			reg_offset =
1262 				HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
1263 						reo_reg_base);
1264 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1265 						    *ix2, true);
1266 		}
1267 
1268 		if (ix3) {
1269 			reg_offset =
1270 				HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
1271 						reo_reg_base);
1272 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1273 						    *ix3, true);
1274 		}
1275 	}
1276 }
1277 
1278 qdf_export_symbol(hal_reo_read_write_ctrl_ix);
1279 
1280 /**
1281  * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
1282  *  pointer and confirm that write went through by reading back the value
1283  * @srng: sring pointer
1284  * @paddr: physical address
1285  *
1286  * Return: None
1287  */
1288 void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
1289 {
1290 	SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
1291 	SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
1292 }
1293 
1294 qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
1295 
1296 /**
1297  * hal_srng_dst_init_hp() - Initialize destination ring head
1298  * pointer
1299  * @hal_soc: hal_soc handle
1300  * @srng: sring pointer
1301  * @vaddr: virtual address
1302  */
1303 void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
1304 			  struct hal_srng *srng,
1305 			  uint32_t *vaddr)
1306 {
1307 	uint32_t reg_offset;
1308 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1309 
1310 	if (!srng)
1311 		return;
1312 
1313 	srng->u.dst_ring.hp_addr = vaddr;
1314 	reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
1315 	HAL_REG_WRITE_CONFIRM_RETRY(
1316 		hal, reg_offset, srng->u.dst_ring.cached_hp, true);
1317 
1318 	if (vaddr) {
1319 		*srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
1320 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1321 			  "hp_addr=%pK, cached_hp=%d, hp=%d",
1322 			  (void *)srng->u.dst_ring.hp_addr,
1323 			  srng->u.dst_ring.cached_hp,
1324 			  *srng->u.dst_ring.hp_addr);
1325 	}
1326 }
1327 
1328 qdf_export_symbol(hal_srng_dst_init_hp);
1329 
1330 /**
1331  * hal_srng_hw_init - Private function to initialize SRNG HW
1332  * @hal_soc: HAL SOC handle
1333  * @srng: SRNG ring pointer
1334  */
1335 static inline void hal_srng_hw_init(struct hal_soc *hal,
1336 	struct hal_srng *srng)
1337 {
1338 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
1339 		hal_srng_src_hw_init(hal, srng);
1340 	else
1341 		hal_srng_dst_hw_init(hal, srng);
1342 }
1343 
1344 #ifdef CONFIG_SHADOW_V2
1345 #define ignore_shadow false
1346 #define CHECK_SHADOW_REGISTERS true
1347 #else
1348 #define ignore_shadow true
1349 #define CHECK_SHADOW_REGISTERS false
1350 #endif
1351 
1352 #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
1353 /**
1354  * hal_srng_is_near_full_irq_supported() - Check if near full irq is
1355  *				supported on this SRNG
1356  * @hal_soc: HAL SoC handle
1357  * @ring_type: SRNG type
1358  * @ring_num: ring number
1359  *
1360  * Return: true, if near full irq is supported for this SRNG
1361  *	   false, if near full irq is not supported for this SRNG
1362  */
1363 bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
1364 					 int ring_type, int ring_num)
1365 {
1366 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1367 	struct hal_hw_srng_config *ring_config =
1368 		HAL_SRNG_CONFIG(hal, ring_type);
1369 
1370 	return ring_config->nf_irq_support;
1371 }
1372 
1373 /**
1374  * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
1375  *				ring params
1376  * @srng: SRNG handle
1377  * @ring_params: ring params for this SRNG
1378  *
1379  * Return: None
1380  */
1381 static inline void
1382 hal_srng_set_msi2_params(struct hal_srng *srng,
1383 			 struct hal_srng_params *ring_params)
1384 {
1385 	srng->msi2_addr = ring_params->msi2_addr;
1386 	srng->msi2_data = ring_params->msi2_data;
1387 }
1388 
1389 /**
1390  * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
1391  * @srng: SRNG handle
1392  * @ring_params: ring params for this SRNG
1393  *
1394  * Return: None
1395  */
1396 static inline void
1397 hal_srng_get_nf_params(struct hal_srng *srng,
1398 		       struct hal_srng_params *ring_params)
1399 {
1400 	ring_params->msi2_addr = srng->msi2_addr;
1401 	ring_params->msi2_data = srng->msi2_data;
1402 }
1403 
1404 /**
1405  * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
1406  * @srng: SRNG handle where the params are to be set
1407  * @ring_params: ring params, from where threshold is to be fetched
1408  *
1409  * Return: None
1410  */
1411 static inline void
1412 hal_srng_set_nf_thresholds(struct hal_srng *srng,
1413 			   struct hal_srng_params *ring_params)
1414 {
1415 	srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
1416 	srng->u.dst_ring.high_thresh = ring_params->high_thresh;
1417 }
1418 #else
1419 static inline void
1420 hal_srng_set_msi2_params(struct hal_srng *srng,
1421 			 struct hal_srng_params *ring_params)
1422 {
1423 }
1424 
1425 static inline void
1426 hal_srng_get_nf_params(struct hal_srng *srng,
1427 		       struct hal_srng_params *ring_params)
1428 {
1429 }
1430 
1431 static inline void
1432 hal_srng_set_nf_thresholds(struct hal_srng *srng,
1433 			   struct hal_srng_params *ring_params)
1434 {
1435 }
1436 #endif
1437 
1438 #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
1439 /**
1440  * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
1441  *
1442  * @srng: Source ring pointer
1443  *
1444  * Return: None
1445  */
1446 static inline
1447 void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
1448 {
1449 	srng->last_desc_cleared = srng->ring_size - srng->entry_size;
1450 }
1451 
1452 #else
1453 static inline
1454 void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
1455 {
1456 }
1457 #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
1458 
1459 /**
1460  * hal_srng_setup - Initialize HW SRNG ring.
1461  * @hal_soc: Opaque HAL SOC handle
1462  * @ring_type: one of the types from hal_ring_type
1463  * @ring_num: Ring number if there are multiple rings of same type (staring
1464  * from 0)
1465  * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
1466  * @ring_params: SRNG ring params in hal_srng_params structure.
1467 
1468  * Callers are expected to allocate contiguous ring memory of size
1469  * 'num_entries * entry_size' bytes and pass the physical and virtual base
1470  * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
1471  * hal_srng_params structure. Ring base address should be 8 byte aligned
1472  * and size of each ring entry should be queried using the API
1473  * hal_srng_get_entrysize
1474  *
1475  * Return: Opaque pointer to ring on success
1476  *		 NULL on failure (if given ring is not available)
1477  */
1478 void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
1479 	int mac_id, struct hal_srng_params *ring_params)
1480 {
1481 	int ring_id;
1482 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1483 	struct hal_srng *srng;
1484 	struct hal_hw_srng_config *ring_config =
1485 		HAL_SRNG_CONFIG(hal, ring_type);
1486 	void *dev_base_addr;
1487 	int i;
1488 
1489 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
1490 	if (ring_id < 0)
1491 		return NULL;
1492 
1493 	hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
1494 
1495 	srng = hal_get_srng(hal_soc, ring_id);
1496 
1497 	if (srng->initialized) {
1498 		hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
1499 		return NULL;
1500 	}
1501 
1502 	dev_base_addr = hal->dev_base_addr;
1503 	srng->ring_id = ring_id;
1504 	srng->ring_type = ring_type;
1505 	srng->ring_dir = ring_config->ring_dir;
1506 	srng->ring_base_paddr = ring_params->ring_base_paddr;
1507 	srng->ring_base_vaddr = ring_params->ring_base_vaddr;
1508 	srng->entry_size = ring_config->entry_size;
1509 	srng->num_entries = ring_params->num_entries;
1510 	srng->ring_size = srng->num_entries * srng->entry_size;
1511 	srng->ring_size_mask = srng->ring_size - 1;
1512 	srng->msi_addr = ring_params->msi_addr;
1513 	srng->msi_data = ring_params->msi_data;
1514 	srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
1515 	srng->intr_batch_cntr_thres_entries =
1516 		ring_params->intr_batch_cntr_thres_entries;
1517 	srng->prefetch_timer = ring_params->prefetch_timer;
1518 	srng->hal_soc = hal_soc;
1519 	hal_srng_set_msi2_params(srng, ring_params);
1520 
1521 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
1522 		srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
1523 			+ (ring_num * ring_config->reg_size[i]);
1524 	}
1525 
1526 	/* Zero out the entire ring memory */
1527 	qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
1528 		srng->num_entries) << 2);
1529 
1530 	srng->flags = ring_params->flags;
1531 #ifdef BIG_ENDIAN_HOST
1532 		/* TODO: See if we should we get these flags from caller */
1533 	srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
1534 	srng->flags |= HAL_SRNG_MSI_SWAP;
1535 	srng->flags |= HAL_SRNG_RING_PTR_SWAP;
1536 #endif
1537 
1538 	hal_srng_last_desc_cleared_init(srng);
1539 
1540 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1541 		srng->u.src_ring.hp = 0;
1542 		srng->u.src_ring.reap_hp = srng->ring_size -
1543 			srng->entry_size;
1544 		srng->u.src_ring.tp_addr =
1545 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1546 		srng->u.src_ring.low_threshold =
1547 			ring_params->low_threshold * srng->entry_size;
1548 		if (ring_config->lmac_ring) {
1549 			/* For LMAC rings, head pointer updates will be done
1550 			 * through FW by writing to a shared memory location
1551 			 */
1552 			srng->u.src_ring.hp_addr =
1553 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1554 					HAL_SRNG_LMAC1_ID_START]);
1555 			srng->flags |= HAL_SRNG_LMAC_RING;
1556 		} else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
1557 			srng->u.src_ring.hp_addr =
1558 				hal_get_window_address(hal,
1559 						SRNG_SRC_ADDR(srng, HP));
1560 
1561 			if (CHECK_SHADOW_REGISTERS) {
1562 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1563 				    QDF_TRACE_LEVEL_ERROR,
1564 				    "%s: Ring (%d, %d) missing shadow config",
1565 				    __func__, ring_type, ring_num);
1566 			}
1567 		} else {
1568 			hal_validate_shadow_register(hal,
1569 						     SRNG_SRC_ADDR(srng, HP),
1570 						     srng->u.src_ring.hp_addr);
1571 		}
1572 	} else {
1573 		/* During initialization loop count in all the descriptors
1574 		 * will be set to zero, and HW will set it to 1 on completing
1575 		 * descriptor update in first loop, and increments it by 1 on
1576 		 * subsequent loops (loop count wraps around after reaching
1577 		 * 0xffff). The 'loop_cnt' in SW ring state is the expected
1578 		 * loop count in descriptors updated by HW (to be processed
1579 		 * by SW).
1580 		 */
1581 		hal_srng_set_nf_thresholds(srng, ring_params);
1582 		srng->u.dst_ring.loop_cnt = 1;
1583 		srng->u.dst_ring.tp = 0;
1584 		srng->u.dst_ring.hp_addr =
1585 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1586 		if (ring_config->lmac_ring) {
1587 			/* For LMAC rings, tail pointer updates will be done
1588 			 * through FW by writing to a shared memory location
1589 			 */
1590 			srng->u.dst_ring.tp_addr =
1591 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
1592 				HAL_SRNG_LMAC1_ID_START]);
1593 			srng->flags |= HAL_SRNG_LMAC_RING;
1594 		} else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
1595 			srng->u.dst_ring.tp_addr =
1596 				hal_get_window_address(hal,
1597 						SRNG_DST_ADDR(srng, TP));
1598 
1599 			if (CHECK_SHADOW_REGISTERS) {
1600 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1601 				    QDF_TRACE_LEVEL_ERROR,
1602 				    "%s: Ring (%d, %d) missing shadow config",
1603 				    __func__, ring_type, ring_num);
1604 			}
1605 		} else {
1606 			hal_validate_shadow_register(hal,
1607 						     SRNG_DST_ADDR(srng, TP),
1608 						     srng->u.dst_ring.tp_addr);
1609 		}
1610 	}
1611 
1612 	if (!(ring_config->lmac_ring)) {
1613 		hal_srng_hw_init(hal, srng);
1614 
1615 		if (ring_type == CE_DST) {
1616 			srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
1617 			hal_ce_dst_setup(hal, srng, ring_num);
1618 		}
1619 	}
1620 
1621 	SRNG_LOCK_INIT(&srng->lock);
1622 
1623 	srng->srng_event = 0;
1624 
1625 	srng->initialized = true;
1626 
1627 	return (void *)srng;
1628 }
1629 qdf_export_symbol(hal_srng_setup);
1630 
1631 /**
1632  * hal_srng_cleanup - Deinitialize HW SRNG ring.
1633  * @hal_soc: Opaque HAL SOC handle
1634  * @hal_srng: Opaque HAL SRNG pointer
1635  */
1636 void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
1637 {
1638 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1639 	SRNG_LOCK_DESTROY(&srng->lock);
1640 	srng->initialized = 0;
1641 }
1642 qdf_export_symbol(hal_srng_cleanup);
1643 
1644 /**
1645  * hal_srng_get_entrysize - Returns size of ring entry in bytes
1646  * @hal_soc: Opaque HAL SOC handle
1647  * @ring_type: one of the types from hal_ring_type
1648  *
1649  */
1650 uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
1651 {
1652 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1653 	struct hal_hw_srng_config *ring_config =
1654 		HAL_SRNG_CONFIG(hal, ring_type);
1655 	return ring_config->entry_size << 2;
1656 }
1657 qdf_export_symbol(hal_srng_get_entrysize);
1658 
1659 /**
1660  * hal_srng_max_entries - Returns maximum possible number of ring entries
1661  * @hal_soc: Opaque HAL SOC handle
1662  * @ring_type: one of the types from hal_ring_type
1663  *
1664  * Return: Maximum number of entries for the given ring_type
1665  */
1666 uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
1667 {
1668 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1669 	struct hal_hw_srng_config *ring_config =
1670 		HAL_SRNG_CONFIG(hal, ring_type);
1671 
1672 	return ring_config->max_size / ring_config->entry_size;
1673 }
1674 qdf_export_symbol(hal_srng_max_entries);
1675 
1676 enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
1677 {
1678 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1679 	struct hal_hw_srng_config *ring_config =
1680 		HAL_SRNG_CONFIG(hal, ring_type);
1681 
1682 	return ring_config->ring_dir;
1683 }
1684 
1685 /**
1686  * hal_srng_dump - Dump ring status
1687  * @srng: hal srng pointer
1688  */
1689 void hal_srng_dump(struct hal_srng *srng)
1690 {
1691 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1692 		hal_debug("=== SRC RING %d ===", srng->ring_id);
1693 		hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
1694 			  srng->u.src_ring.hp,
1695 			  srng->u.src_ring.reap_hp,
1696 			  *srng->u.src_ring.tp_addr,
1697 			  srng->u.src_ring.cached_tp);
1698 	} else {
1699 		hal_debug("=== DST RING %d ===", srng->ring_id);
1700 		hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
1701 			  srng->u.dst_ring.tp,
1702 			  *srng->u.dst_ring.hp_addr,
1703 			  srng->u.dst_ring.cached_hp,
1704 			  srng->u.dst_ring.loop_cnt);
1705 	}
1706 }
1707 
1708 /**
1709  * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
1710  *
1711  * @hal_soc: Opaque HAL SOC handle
1712  * @hal_ring: Ring pointer (Source or Destination ring)
1713  * @ring_params: SRNG parameters will be returned through this structure
1714  */
1715 extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
1716 				hal_ring_handle_t hal_ring_hdl,
1717 				struct hal_srng_params *ring_params)
1718 {
1719 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1720 	int i =0;
1721 	ring_params->ring_id = srng->ring_id;
1722 	ring_params->ring_dir = srng->ring_dir;
1723 	ring_params->entry_size = srng->entry_size;
1724 
1725 	ring_params->ring_base_paddr = srng->ring_base_paddr;
1726 	ring_params->ring_base_vaddr = srng->ring_base_vaddr;
1727 	ring_params->num_entries = srng->num_entries;
1728 	ring_params->msi_addr = srng->msi_addr;
1729 	ring_params->msi_data = srng->msi_data;
1730 	ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
1731 	ring_params->intr_batch_cntr_thres_entries =
1732 		srng->intr_batch_cntr_thres_entries;
1733 	ring_params->low_threshold = srng->u.src_ring.low_threshold;
1734 	ring_params->flags = srng->flags;
1735 	ring_params->ring_id = srng->ring_id;
1736 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
1737 		ring_params->hwreg_base[i] = srng->hwreg_base[i];
1738 
1739 	hal_srng_get_nf_params(srng, ring_params);
1740 }
1741 qdf_export_symbol(hal_get_srng_params);
1742 
1743 void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
1744 				 uint32_t low_threshold)
1745 {
1746 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
1747 	srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
1748 }
1749 qdf_export_symbol(hal_set_low_threshold);
1750 
1751 #ifdef FORCE_WAKE
1752 void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
1753 {
1754 	struct hal_soc *hal_soc = (struct hal_soc *)soc;
1755 
1756 	hal_soc->init_phase = init_phase;
1757 }
1758 #endif /* FORCE_WAKE */
1759