xref: /wlan-dirver/qca-wifi-host-cmn/hal/wifi3.0/hal_srng.c (revision 2f4b444fb7e689b83a4ab0e7b3b38f0bf4def8e0)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "hal_api.h"
21 #include "hal_reo.h"
22 #include "target_type.h"
23 #include "qdf_module.h"
24 #include "wcss_version.h"
25 
26 #ifdef QCA_WIFI_QCA8074
27 void hal_qca6290_attach(struct hal_soc *hal);
28 #endif
29 #ifdef QCA_WIFI_QCA8074
30 void hal_qca8074_attach(struct hal_soc *hal);
31 #endif
32 #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
33 	defined(QCA_WIFI_QCA9574)
34 void hal_qca8074v2_attach(struct hal_soc *hal);
35 #endif
36 #ifdef QCA_WIFI_QCA6390
37 void hal_qca6390_attach(struct hal_soc *hal);
38 #endif
39 #ifdef QCA_WIFI_QCA6490
40 void hal_qca6490_attach(struct hal_soc *hal);
41 #endif
42 #ifdef QCA_WIFI_QCN9000
43 void hal_qcn9000_attach(struct hal_soc *hal);
44 #endif
45 #ifdef QCA_WIFI_QCN9224
46 void hal_qcn9224_attach(struct hal_soc *hal);
47 #endif
48 #ifdef QCA_WIFI_QCN6122
49 void hal_qcn6122_attach(struct hal_soc *hal);
50 #endif
51 #ifdef QCA_WIFI_QCA6750
52 void hal_qca6750_attach(struct hal_soc *hal);
53 #endif
54 #ifdef QCA_WIFI_QCA5018
55 void hal_qca5018_attach(struct hal_soc *hal);
56 #endif
57 #ifdef QCA_WIFI_WCN7850
58 void hal_wcn7850_attach(struct hal_soc *hal);
59 #endif
60 
61 #ifdef ENABLE_VERBOSE_DEBUG
62 bool is_hal_verbose_debug_enabled;
63 #endif
64 
65 #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x)	((x) + 0x4)
66 #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x)	((x) + 0x8)
67 #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x)	((x) + 0xc)
68 #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x)	((x) + 0x10)
69 
70 #ifdef ENABLE_HAL_REG_WR_HISTORY
71 struct hal_reg_write_fail_history hal_reg_wr_hist;
72 
73 void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
74 				 uint32_t offset,
75 				 uint32_t wr_val, uint32_t rd_val)
76 {
77 	struct hal_reg_write_fail_entry *record;
78 	int idx;
79 
80 	idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
81 					 HAL_REG_WRITE_HIST_SIZE);
82 
83 	record = &hal_soc->reg_wr_fail_hist->record[idx];
84 
85 	record->timestamp = qdf_get_log_timestamp();
86 	record->reg_offset = offset;
87 	record->write_val = wr_val;
88 	record->read_val = rd_val;
89 }
90 
91 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
92 {
93 	hal->reg_wr_fail_hist = &hal_reg_wr_hist;
94 
95 	qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
96 }
97 #else
98 static void hal_reg_write_fail_history_init(struct hal_soc *hal)
99 {
100 }
101 #endif
102 
103 /**
104  * hal_get_srng_ring_id() - get the ring id of a descriped ring
105  * @hal: hal_soc data structure
106  * @ring_type: type enum describing the ring
107  * @ring_num: which ring of the ring type
108  * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
109  *
110  * Return: the ring id or -EINVAL if the ring does not exist.
111  */
112 static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
113 				int ring_num, int mac_id)
114 {
115 	struct hal_hw_srng_config *ring_config =
116 		HAL_SRNG_CONFIG(hal, ring_type);
117 	int ring_id;
118 
119 	if (ring_num >= ring_config->max_rings) {
120 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
121 			  "%s: ring_num exceeded maximum no. of supported rings",
122 			  __func__);
123 		/* TODO: This is a programming error. Assert if this happens */
124 		return -EINVAL;
125 	}
126 
127 	/*
128 	 * For BE, dmac_cmn_src_rxbuf_ring is set. If this is set
129 	 * and ring is dst and also lmac ring then provide ring id per lmac
130 	 */
131 	if (ring_config->lmac_ring &&
132 	    (!hal->dmac_cmn_src_rxbuf_ring ||
133 	     ring_config->ring_dir == HAL_SRNG_DST_RING)) {
134 		ring_id = (ring_config->start_ring_id + ring_num +
135 			   (mac_id * HAL_MAX_RINGS_PER_LMAC));
136 	} else {
137 		ring_id = ring_config->start_ring_id + ring_num;
138 	}
139 
140 	return ring_id;
141 }
142 
143 static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
144 {
145 	/* TODO: Should we allocate srng structures dynamically? */
146 	return &(hal->srng_list[ring_id]);
147 }
148 
149 #ifndef SHADOW_REG_CONFIG_DISABLED
150 #define HP_OFFSET_IN_REG_START 1
151 #define OFFSET_FROM_HP_TO_TP 4
152 static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
153 					  int shadow_config_index,
154 					  int ring_type,
155 					  int ring_num)
156 {
157 	struct hal_srng *srng;
158 	int ring_id;
159 	struct hal_hw_srng_config *ring_config =
160 		HAL_SRNG_CONFIG(hal_soc, ring_type);
161 
162 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
163 	if (ring_id < 0)
164 		return;
165 
166 	srng = hal_get_srng(hal_soc, ring_id);
167 
168 	if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
169 		srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
170 			+ hal_soc->dev_base_addr;
171 		hal_debug("tp_addr=%pK dev base addr %pK index %u",
172 			  srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
173 			  shadow_config_index);
174 	} else {
175 		srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
176 			+ hal_soc->dev_base_addr;
177 		hal_debug("hp_addr=%pK dev base addr %pK index %u",
178 			  srng->u.src_ring.hp_addr,
179 			  hal_soc->dev_base_addr, shadow_config_index);
180 	}
181 
182 }
183 #endif
184 
185 #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
186 void hal_set_one_target_reg_config(struct hal_soc *hal,
187 				   uint32_t target_reg_offset,
188 				   int list_index)
189 {
190 	int i = list_index;
191 
192 	qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
193 	hal->list_shadow_reg_config[i].target_register =
194 		target_reg_offset;
195 	hal->num_generic_shadow_regs_configured++;
196 }
197 
198 qdf_export_symbol(hal_set_one_target_reg_config);
199 
200 #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
201 #define MAX_REO_REMAP_SHADOW_REGS 4
202 QDF_STATUS hal_set_shadow_regs(void *hal_soc)
203 {
204 	uint32_t target_reg_offset;
205 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
206 	int i;
207 	struct hal_hw_srng_config *srng_config =
208 		&hal->hw_srng_table[WBM2SW_RELEASE];
209 	uint32_t reo_reg_base;
210 
211 	reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
212 
213 	target_reg_offset =
214 		HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
215 
216 	for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
217 		hal_set_one_target_reg_config(hal, target_reg_offset, i);
218 		target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
219 	}
220 
221 	target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
222 	target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
223 			      * HAL_IPA_TX_COMP_RING_IDX);
224 
225 	hal_set_one_target_reg_config(hal, target_reg_offset, i);
226 	return QDF_STATUS_SUCCESS;
227 }
228 
229 qdf_export_symbol(hal_set_shadow_regs);
230 
231 QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
232 {
233 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
234 	int shadow_config_index = hal->num_shadow_registers_configured;
235 	int i;
236 	int num_regs = hal->num_generic_shadow_regs_configured;
237 
238 	for (i = 0; i < num_regs; i++) {
239 		qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
240 		hal->shadow_config[shadow_config_index].addr =
241 			hal->list_shadow_reg_config[i].target_register;
242 		hal->list_shadow_reg_config[i].shadow_config_index =
243 			shadow_config_index;
244 		hal->list_shadow_reg_config[i].va =
245 			SHADOW_REGISTER(shadow_config_index) +
246 			(uintptr_t)hal->dev_base_addr;
247 		hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
248 			  hal->shadow_config[shadow_config_index].addr,
249 			  SHADOW_REGISTER(shadow_config_index),
250 			  shadow_config_index);
251 		shadow_config_index++;
252 		hal->num_shadow_registers_configured++;
253 	}
254 	return QDF_STATUS_SUCCESS;
255 }
256 
257 qdf_export_symbol(hal_construct_shadow_regs);
258 #endif
259 
260 #ifndef SHADOW_REG_CONFIG_DISABLED
261 
262 QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
263 				     int ring_type,
264 				     int ring_num)
265 {
266 	uint32_t target_register;
267 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
268 	struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
269 	int shadow_config_index = hal->num_shadow_registers_configured;
270 
271 	if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
272 		QDF_ASSERT(0);
273 		return QDF_STATUS_E_RESOURCES;
274 	}
275 
276 	hal->num_shadow_registers_configured++;
277 
278 	target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
279 	target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
280 			    *ring_num);
281 
282 	/* if the ring is a dst ring, we need to shadow the tail pointer */
283 	if (srng_config->ring_dir == HAL_SRNG_DST_RING)
284 		target_register += OFFSET_FROM_HP_TO_TP;
285 
286 	hal->shadow_config[shadow_config_index].addr = target_register;
287 
288 	/* update hp/tp addr in the hal_soc structure*/
289 	hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
290 				      ring_num);
291 
292 	hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
293 		  target_register,
294 		  SHADOW_REGISTER(shadow_config_index),
295 		  shadow_config_index,
296 		  ring_type, ring_num);
297 
298 	return QDF_STATUS_SUCCESS;
299 }
300 
301 qdf_export_symbol(hal_set_one_shadow_config);
302 
303 QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
304 {
305 	int ring_type, ring_num;
306 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
307 
308 	for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
309 		struct hal_hw_srng_config *srng_config =
310 			&hal->hw_srng_table[ring_type];
311 
312 		if (ring_type == CE_SRC ||
313 		    ring_type == CE_DST ||
314 		    ring_type == CE_DST_STATUS)
315 			continue;
316 
317 		if (srng_config->lmac_ring)
318 			continue;
319 
320 		for (ring_num = 0; ring_num < srng_config->max_rings;
321 		     ring_num++)
322 			hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
323 	}
324 
325 	return QDF_STATUS_SUCCESS;
326 }
327 
328 qdf_export_symbol(hal_construct_srng_shadow_regs);
329 #else
330 
331 QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
332 {
333 	return QDF_STATUS_SUCCESS;
334 }
335 
336 qdf_export_symbol(hal_construct_srng_shadow_regs);
337 
338 QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
339 				     int ring_num)
340 {
341 	return QDF_STATUS_SUCCESS;
342 }
343 qdf_export_symbol(hal_set_one_shadow_config);
344 #endif
345 
346 void hal_get_shadow_config(void *hal_soc,
347 	struct pld_shadow_reg_v2_cfg **shadow_config,
348 	int *num_shadow_registers_configured)
349 {
350 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
351 
352 	*shadow_config = hal->shadow_config;
353 	*num_shadow_registers_configured =
354 		hal->num_shadow_registers_configured;
355 }
356 
357 qdf_export_symbol(hal_get_shadow_config);
358 
359 static bool hal_validate_shadow_register(struct hal_soc *hal,
360 					 uint32_t *destination,
361 					 uint32_t *shadow_address)
362 {
363 	unsigned int index;
364 	uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
365 	int destination_ba_offset =
366 		((char *)destination) - (char *)hal->dev_base_addr;
367 
368 	index =	shadow_address - shadow_0_offset;
369 
370 	if (index >= MAX_SHADOW_REGISTERS) {
371 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
372 			"%s: index %x out of bounds", __func__, index);
373 		goto error;
374 	} else if (hal->shadow_config[index].addr != destination_ba_offset) {
375 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
376 			"%s: sanity check failure, expected %x, found %x",
377 			__func__, destination_ba_offset,
378 			hal->shadow_config[index].addr);
379 		goto error;
380 	}
381 	return true;
382 error:
383 	qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
384 		  hal->dev_base_addr, destination, shadow_address,
385 		  shadow_0_offset, index);
386 	QDF_BUG(0);
387 	return false;
388 }
389 
390 static void hal_target_based_configure(struct hal_soc *hal)
391 {
392 	/**
393 	 * Indicate Initialization of srngs to avoid force wake
394 	 * as umac power collapse is not enabled yet
395 	 */
396 	hal->init_phase = true;
397 
398 	switch (hal->target_type) {
399 #ifdef QCA_WIFI_QCA6290
400 	case TARGET_TYPE_QCA6290:
401 		hal->use_register_windowing = true;
402 		hal_qca6290_attach(hal);
403 	break;
404 #endif
405 #ifdef QCA_WIFI_QCA6390
406 	case TARGET_TYPE_QCA6390:
407 		hal->use_register_windowing = true;
408 		hal_qca6390_attach(hal);
409 	break;
410 #endif
411 #ifdef QCA_WIFI_QCA6490
412 	case TARGET_TYPE_QCA6490:
413 		hal->use_register_windowing = true;
414 		hal_qca6490_attach(hal);
415 	break;
416 #endif
417 #ifdef QCA_WIFI_QCA6750
418 		case TARGET_TYPE_QCA6750:
419 			hal->use_register_windowing = true;
420 			hal->static_window_map = true;
421 			hal_qca6750_attach(hal);
422 		break;
423 #endif
424 #ifdef QCA_WIFI_WCN7850
425 	case TARGET_TYPE_WCN7850:
426 		hal->use_register_windowing = true;
427 		hal_wcn7850_attach(hal);
428 		hal->init_phase = false;
429 		break;
430 #endif
431 #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
432 	case TARGET_TYPE_QCA8074:
433 		hal_qca8074_attach(hal);
434 	break;
435 #endif
436 
437 #if defined(QCA_WIFI_QCA8074V2)
438 	case TARGET_TYPE_QCA8074V2:
439 		hal_qca8074v2_attach(hal);
440 	break;
441 #endif
442 
443 #if defined(QCA_WIFI_QCA6018)
444 	case TARGET_TYPE_QCA6018:
445 		hal_qca8074v2_attach(hal);
446 	break;
447 #endif
448 
449 #if defined(QCA_WIFI_QCA9574)
450 	case TARGET_TYPE_QCA9574:
451 		hal_qca8074v2_attach(hal);
452 	break;
453 #endif
454 
455 #if defined(QCA_WIFI_QCN6122)
456 	case TARGET_TYPE_QCN6122:
457 		hal->use_register_windowing = true;
458 		/*
459 		 * Static window map  is enabled for qcn9000 to use 2mb bar
460 		 * size and use multiple windows to write into registers.
461 		 */
462 		hal->static_window_map = true;
463 		hal_qcn6122_attach(hal);
464 		break;
465 #endif
466 
467 #ifdef QCA_WIFI_QCN9000
468 	case TARGET_TYPE_QCN9000:
469 		hal->use_register_windowing = true;
470 		/*
471 		 * Static window map  is enabled for qcn9000 to use 2mb bar
472 		 * size and use multiple windows to write into registers.
473 		 */
474 		hal->static_window_map = true;
475 		hal_qcn9000_attach(hal);
476 	break;
477 #endif
478 #ifdef QCA_WIFI_QCA5018
479 	case TARGET_TYPE_QCA5018:
480 		hal->use_register_windowing = true;
481 		hal->static_window_map = true;
482 		hal_qca5018_attach(hal);
483 	break;
484 #endif
485 #ifdef QCA_WIFI_QCN9224
486 	case TARGET_TYPE_QCN9224:
487 		hal->use_register_windowing = true;
488 		hal->static_window_map = true;
489 		hal_qcn9224_attach(hal);
490 	break;
491 #endif
492 	default:
493 	break;
494 	}
495 }
496 
497 uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
498 {
499 	struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
500 	struct hif_target_info *tgt_info =
501 		hif_get_target_info_handle(hal_soc->hif_handle);
502 
503 	return tgt_info->target_type;
504 }
505 
506 qdf_export_symbol(hal_get_target_type);
507 
508 #if defined(FEATURE_HAL_DELAYED_REG_WRITE) || \
509 	defined(FEATURE_HAL_DELAYED_REG_WRITE_V2)
510 /**
511  * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
512  * @hal: hal_soc pointer
513  *
514  * Return: true if throughput is high, else false.
515  */
516 static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
517 {
518 	int bw_level = hif_get_bandwidth_level(hal->hif_handle);
519 
520 	return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
521 }
522 
523 static inline
524 char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
525 				    char *buf, qdf_size_t size)
526 {
527 	qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
528 		      srng->wstats.enqueues, srng->wstats.dequeues,
529 		      srng->wstats.coalesces, srng->wstats.direct);
530 	return buf;
531 }
532 
533 /* bytes for local buffer */
534 #define HAL_REG_WRITE_SRNG_STATS_LEN 100
535 
536 void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
537 {
538 	struct hal_srng *srng;
539 	char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
540 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
541 
542 	srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
543 	hal_debug("SW2TCL1: %s",
544 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
545 
546 	srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
547 	hal_debug("WBM2SW0: %s",
548 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
549 
550 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
551 	hal_debug("REO2SW1: %s",
552 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
553 
554 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
555 	hal_debug("REO2SW2: %s",
556 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
557 
558 	srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
559 	hal_debug("REO2SW3: %s",
560 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
561 }
562 
563 #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
564 /**
565  * hal_dump_tcl_stats() - dump the TCL reg write stats
566  * @hal: hal_soc pointer
567  *
568  * Return: None
569  */
570 static inline void hal_dump_tcl_stats(struct hal_soc *hal)
571 {
572 	struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
573 	uint32_t *hist = hal->tcl_stats.sched_delay;
574 	char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
575 
576 	hal_debug("TCL: %s sched-delay hist %u %u %u %u",
577 		  hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)),
578 		  hist[REG_WRITE_SCHED_DELAY_SUB_100us],
579 		  hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
580 		  hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
581 		  hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
582 	hal_debug("wq_dly %u wq_dir %u tim_enq %u tim_dir %u enq_tim_cnt %u dir_tim_cnt %u rst_tim_cnt %u",
583 		  hal->tcl_stats.wq_delayed,
584 		  hal->tcl_stats.wq_direct,
585 		  hal->tcl_stats.timer_enq,
586 		  hal->tcl_stats.timer_direct,
587 		  hal->tcl_stats.enq_timer_set,
588 		  hal->tcl_stats.direct_timer_set,
589 		  hal->tcl_stats.timer_reset);
590 }
591 
592 #else
593 static inline void hal_dump_tcl_stats(struct hal_soc *hal)
594 {
595 }
596 #endif
597 
598 void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
599 {
600 	uint32_t *hist;
601 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
602 
603 	hist = hal->stats.wstats.sched_delay;
604 	hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
605 		  qdf_atomic_read(&hal->stats.wstats.enqueues),
606 		  hal->stats.wstats.dequeues,
607 		  qdf_atomic_read(&hal->stats.wstats.coalesces),
608 		  qdf_atomic_read(&hal->stats.wstats.direct),
609 		  qdf_atomic_read(&hal->stats.wstats.q_depth),
610 		  hal->stats.wstats.max_q_depth,
611 		  hist[REG_WRITE_SCHED_DELAY_SUB_100us],
612 		  hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
613 		  hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
614 		  hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
615 
616 	hal_dump_tcl_stats(hal);
617 }
618 
619 int hal_get_reg_write_pending_work(void *hal_soc)
620 {
621 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
622 
623 	return qdf_atomic_read(&hal->active_work_cnt);
624 }
625 
626 #endif
627 
628 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
629 #ifdef MEMORY_DEBUG
630 /*
631  * Length of the queue(array) used to hold delayed register writes.
632  * Must be a multiple of 2.
633  */
634 #define HAL_REG_WRITE_QUEUE_LEN 128
635 #else
636 #define HAL_REG_WRITE_QUEUE_LEN 32
637 #endif
638 
639 #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
640 /**
641  * hal_process_reg_write_q_elem() - process a regiter write queue element
642  * @hal: hal_soc pointer
643  * @q_elem: pointer to hal regiter write queue element
644  *
645  * Return: The value which was written to the address
646  */
647 static uint32_t
648 hal_process_reg_write_q_elem(struct hal_soc *hal,
649 			     struct hal_reg_write_q_elem *q_elem)
650 {
651 	struct hal_srng *srng = q_elem->srng;
652 	uint32_t write_val;
653 
654 	SRNG_LOCK(&srng->lock);
655 	srng->reg_write_in_progress = false;
656 	srng->wstats.dequeues++;
657 
658 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
659 		write_val = srng->u.src_ring.hp;
660 		q_elem->dequeue_val = write_val;
661 		q_elem->valid = 0;
662 		SRNG_UNLOCK(&srng->lock);
663 		hal_write_address_32_mb(hal,
664 					srng->u.src_ring.hp_addr,
665 					write_val, false);
666 	} else {
667 		write_val = srng->u.dst_ring.tp;
668 		q_elem->dequeue_val = write_val;
669 		q_elem->valid = 0;
670 		SRNG_UNLOCK(&srng->lock);
671 		hal_write_address_32_mb(hal,
672 					srng->u.dst_ring.tp_addr,
673 					write_val, false);
674 	}
675 
676 	return write_val;
677 }
678 #else
679 /**
680  * hal_process_reg_write_q_elem() - process a regiter write queue element
681  * @hal: hal_soc pointer
682  * @q_elem: pointer to hal regiter write queue element
683  *
684  * Return: The value which was written to the address
685  */
686 static uint32_t
687 hal_process_reg_write_q_elem(struct hal_soc *hal,
688 			     struct hal_reg_write_q_elem *q_elem)
689 {
690 	struct hal_srng *srng = q_elem->srng;
691 	uint32_t write_val;
692 
693 	SRNG_LOCK(&srng->lock);
694 
695 	srng->reg_write_in_progress = false;
696 	srng->wstats.dequeues++;
697 
698 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
699 		q_elem->dequeue_val = srng->u.src_ring.hp;
700 		hal_write_address_32_mb(hal,
701 					srng->u.src_ring.hp_addr,
702 					srng->u.src_ring.hp, false);
703 		write_val = srng->u.src_ring.hp;
704 	} else {
705 		q_elem->dequeue_val = srng->u.dst_ring.tp;
706 		hal_write_address_32_mb(hal,
707 					srng->u.dst_ring.tp_addr,
708 					srng->u.dst_ring.tp, false);
709 		write_val = srng->u.dst_ring.tp;
710 	}
711 
712 	q_elem->valid = 0;
713 	srng->last_dequeue_time = q_elem->dequeue_time;
714 	SRNG_UNLOCK(&srng->lock);
715 
716 	return write_val;
717 }
718 #endif
719 
720 /**
721  * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
722  * @hal: hal_soc pointer
723  * @delay: delay in us
724  *
725  * Return: None
726  */
727 static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
728 						       uint64_t delay_us)
729 {
730 	uint32_t *hist;
731 
732 	hist = hal->stats.wstats.sched_delay;
733 
734 	if (delay_us < 100)
735 		hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
736 	else if (delay_us < 1000)
737 		hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
738 	else if (delay_us < 5000)
739 		hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
740 	else
741 		hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
742 }
743 
744 #ifdef SHADOW_WRITE_DELAY
745 
746 #define SHADOW_WRITE_MIN_DELTA_US	5
747 #define SHADOW_WRITE_DELAY_US		50
748 
749 /*
750  * Never add those srngs which are performance relate.
751  * The delay itself will hit performance heavily.
752  */
753 #define IS_SRNG_MATCH(s)	((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
754 				 (s)->ring_id == HAL_SRNG_CE_1_DST)
755 
756 static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
757 {
758 	struct hal_srng *srng = elem->srng;
759 	struct hal_soc *hal;
760 	qdf_time_t now;
761 	qdf_iomem_t real_addr;
762 
763 	if (qdf_unlikely(!srng))
764 		return false;
765 
766 	hal = srng->hal_soc;
767 	if (qdf_unlikely(!hal))
768 		return false;
769 
770 	/* Check if it is target srng, and valid shadow reg */
771 	if (qdf_likely(!IS_SRNG_MATCH(srng)))
772 		return false;
773 
774 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
775 		real_addr = SRNG_SRC_ADDR(srng, HP);
776 	else
777 		real_addr = SRNG_DST_ADDR(srng, TP);
778 	if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
779 		return false;
780 
781 	/* Check the time delta from last write of same srng */
782 	now = qdf_get_log_timestamp();
783 	if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
784 		SHADOW_WRITE_MIN_DELTA_US)
785 		return false;
786 
787 	/* Delay dequeue, and record */
788 	qdf_udelay(SHADOW_WRITE_DELAY_US);
789 
790 	srng->wstats.dequeue_delay++;
791 	hal->stats.wstats.dequeue_delay++;
792 
793 	return true;
794 }
795 #else
796 static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
797 {
798 	return false;
799 }
800 #endif
801 
802 /**
803  * hal_reg_write_work() - Worker to process delayed writes
804  * @arg: hal_soc pointer
805  *
806  * Return: None
807  */
808 static void hal_reg_write_work(void *arg)
809 {
810 	int32_t q_depth, write_val;
811 	struct hal_soc *hal = arg;
812 	struct hal_reg_write_q_elem *q_elem;
813 	uint64_t delta_us;
814 	uint8_t ring_id;
815 	uint32_t *addr;
816 	uint32_t num_processed = 0;
817 
818 	q_elem = &hal->reg_write_queue[(hal->read_idx)];
819 	q_elem->work_scheduled_time = qdf_get_log_timestamp();
820 
821 	/* Make sure q_elem consistent in the memory for multi-cores */
822 	qdf_rmb();
823 	if (!q_elem->valid)
824 		return;
825 
826 	q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
827 	if (q_depth > hal->stats.wstats.max_q_depth)
828 		hal->stats.wstats.max_q_depth =  q_depth;
829 
830 	if (hif_prevent_link_low_power_states(hal->hif_handle)) {
831 		hal->stats.wstats.prevent_l1_fails++;
832 		return;
833 	}
834 
835 	while (true) {
836 		qdf_rmb();
837 		if (!q_elem->valid)
838 			break;
839 
840 		q_elem->dequeue_time = qdf_get_log_timestamp();
841 		ring_id = q_elem->srng->ring_id;
842 		addr = q_elem->addr;
843 		delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
844 						      q_elem->enqueue_time);
845 		hal_reg_write_fill_sched_delay_hist(hal, delta_us);
846 
847 		hal->stats.wstats.dequeues++;
848 		qdf_atomic_dec(&hal->stats.wstats.q_depth);
849 
850 		if (hal_reg_write_need_delay(q_elem))
851 			hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
852 					  q_elem->srng->ring_id, q_elem->addr);
853 
854 		write_val = hal_process_reg_write_q_elem(hal, q_elem);
855 		hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
856 				  hal->read_idx, ring_id, addr, write_val, delta_us);
857 
858 		num_processed++;
859 		hal->read_idx = (hal->read_idx + 1) &
860 					(HAL_REG_WRITE_QUEUE_LEN - 1);
861 		q_elem = &hal->reg_write_queue[(hal->read_idx)];
862 	}
863 
864 	hif_allow_link_low_power_states(hal->hif_handle);
865 	/*
866 	 * Decrement active_work_cnt by the number of elements dequeued after
867 	 * hif_allow_link_low_power_states.
868 	 * This makes sure that hif_try_complete_tasks will wait till we make
869 	 * the bus access in hif_allow_link_low_power_states. This will avoid
870 	 * race condition between delayed register worker and bus suspend
871 	 * (system suspend or runtime suspend).
872 	 *
873 	 * The following decrement should be done at the end!
874 	 */
875 	qdf_atomic_sub(num_processed, &hal->active_work_cnt);
876 }
877 
878 static void __hal_flush_reg_write_work(struct hal_soc *hal)
879 {
880 	qdf_cancel_work(&hal->reg_write_work);
881 
882 }
883 
884 void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
885 {	__hal_flush_reg_write_work((struct hal_soc *)hal_handle);
886 }
887 
888 /**
889  * hal_reg_write_enqueue() - enqueue register writes into kworker
890  * @hal_soc: hal_soc pointer
891  * @srng: srng pointer
892  * @addr: iomem address of regiter
893  * @value: value to be written to iomem address
894  *
895  * This function executes from within the SRNG LOCK
896  *
897  * Return: None
898  */
899 static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
900 				  struct hal_srng *srng,
901 				  void __iomem *addr,
902 				  uint32_t value)
903 {
904 	struct hal_reg_write_q_elem *q_elem;
905 	uint32_t write_idx;
906 
907 	if (srng->reg_write_in_progress) {
908 		hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
909 				  srng->ring_id, addr, value);
910 		qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
911 		srng->wstats.coalesces++;
912 		return;
913 	}
914 
915 	write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
916 
917 	write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
918 
919 	q_elem = &hal_soc->reg_write_queue[write_idx];
920 
921 	if (q_elem->valid) {
922 		hal_err("queue full");
923 		QDF_BUG(0);
924 		return;
925 	}
926 
927 	qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
928 	srng->wstats.enqueues++;
929 
930 	qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
931 
932 	q_elem->srng = srng;
933 	q_elem->addr = addr;
934 	q_elem->enqueue_val = value;
935 	q_elem->enqueue_time = qdf_get_log_timestamp();
936 
937 	/*
938 	 * Before the valid flag is set to true, all the other
939 	 * fields in the q_elem needs to be updated in memory.
940 	 * Else there is a chance that the dequeuing worker thread
941 	 * might read stale entries and process incorrect srng.
942 	 */
943 	qdf_wmb();
944 	q_elem->valid = true;
945 
946 	/*
947 	 * After all other fields in the q_elem has been updated
948 	 * in memory successfully, the valid flag needs to be updated
949 	 * in memory in time too.
950 	 * Else there is a chance that the dequeuing worker thread
951 	 * might read stale valid flag and the work will be bypassed
952 	 * for this round. And if there is no other work scheduled
953 	 * later, this hal register writing won't be updated any more.
954 	 */
955 	qdf_wmb();
956 
957 	srng->reg_write_in_progress  = true;
958 	qdf_atomic_inc(&hal_soc->active_work_cnt);
959 
960 	hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
961 			  write_idx, srng->ring_id, addr, value);
962 
963 	qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
964 		       &hal_soc->reg_write_work);
965 }
966 
967 /**
968  * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
969  * @hal_soc: hal_soc pointer
970  *
971  * Initialize main data structures to process register writes in a delayed
972  * workqueue.
973  *
974  * Return: QDF_STATUS_SUCCESS on success else a QDF error.
975  */
976 static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
977 {
978 	hal->reg_write_wq =
979 		qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
980 	qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
981 	hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
982 					      sizeof(*hal->reg_write_queue));
983 	if (!hal->reg_write_queue) {
984 		hal_err("unable to allocate memory");
985 		QDF_BUG(0);
986 		return QDF_STATUS_E_NOMEM;
987 	}
988 
989 	/* Initial value of indices */
990 	hal->read_idx = 0;
991 	qdf_atomic_set(&hal->write_idx, -1);
992 	return QDF_STATUS_SUCCESS;
993 }
994 
995 /**
996  * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
997  * @hal_soc: hal_soc pointer
998  *
999  * De-initialize main data structures to process register writes in a delayed
1000  * workqueue.
1001  *
1002  * Return: None
1003  */
1004 static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
1005 {
1006 	__hal_flush_reg_write_work(hal);
1007 
1008 	qdf_flush_workqueue(0, hal->reg_write_wq);
1009 	qdf_destroy_workqueue(0, hal->reg_write_wq);
1010 	qdf_mem_free(hal->reg_write_queue);
1011 }
1012 
1013 #else
1014 static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
1015 {
1016 	return QDF_STATUS_SUCCESS;
1017 }
1018 
1019 static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
1020 {
1021 }
1022 #endif
1023 
1024 #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
1025 #ifdef MEMORY_DEBUG
1026 /**
1027  * hal_reg_write_get_timestamp() - Function to get the timestamp
1028  *
1029  * Return: return present simestamp
1030  */
1031 static inline qdf_time_t hal_del_reg_write_get_ts(void)
1032 {
1033 	return qdf_get_log_timestamp();
1034 }
1035 
1036 /**
1037  * hal_del_reg_write_ts_usecs() - Convert the timestamp to micro secs
1038  * @ts: timestamp value to be converted
1039  *
1040  * Return: return the timestamp in micro secs
1041  */
1042 static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
1043 {
1044 	return qdf_log_timestamp_to_usecs(ts);
1045 }
1046 
1047 /**
1048  * hal_tcl_write_fill_sched_delay_hist() - fill TCL reg write delay histogram
1049  * @hal: hal_soc pointer
1050  * @delay: delay in us
1051  *
1052  * Return: None
1053  */
1054 static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
1055 {
1056 	uint32_t *hist;
1057 	uint32_t delay_us;
1058 
1059 	hal->tcl_stats.deq_time = hal_del_reg_write_get_ts();
1060 	delay_us = hal_del_reg_write_ts_usecs(hal->tcl_stats.deq_time -
1061 					      hal->tcl_stats.enq_time);
1062 
1063 	hist = hal->tcl_stats.sched_delay;
1064 	if (delay_us < 100)
1065 		hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
1066 	else if (delay_us < 1000)
1067 		hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
1068 	else if (delay_us < 5000)
1069 		hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
1070 	else
1071 		hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
1072 }
1073 
1074 #else
1075 static inline qdf_time_t hal_del_reg_write_get_ts(void)
1076 {
1077 	return 0;
1078 }
1079 
1080 static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
1081 {
1082 	return 0;
1083 }
1084 
1085 static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
1086 {
1087 }
1088 #endif
1089 
1090 /**
1091  * hal_tcl_reg_write_work() - Worker to process delayed SW2TCL1 writes
1092  * @arg: hal_soc pointer
1093  *
1094  * Return: None
1095  */
1096 static void hal_tcl_reg_write_work(void *arg)
1097 {
1098 	struct hal_soc *hal = arg;
1099 	struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
1100 
1101 	SRNG_LOCK(&srng->lock);
1102 	srng->wstats.dequeues++;
1103 	hal_tcl_write_fill_sched_delay_hist(hal);
1104 
1105 	/*
1106 	 * During the tranition of low to high tput scenario, reg write moves
1107 	 * from delayed to direct write context, there is a little chance that
1108 	 * worker thread gets scheduled later than direct context write which
1109 	 * already wrote the latest HP value. This check can catch that case
1110 	 * and avoid the repetitive writing of the same HP value.
1111 	 */
1112 	if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
1113 		srng->last_reg_wr_val = srng->u.src_ring.hp;
1114 		if (hal->tcl_direct) {
1115 			/*
1116 			 * TCL reg writes have been moved to direct context and
1117 			 * the assumption is that PCIe bus stays in Active state
1118 			 * during high tput, hence its fine to write the HP
1119 			 * while the SRNG_LOCK is being held.
1120 			 */
1121 			hal->tcl_stats.wq_direct++;
1122 			hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
1123 						srng->last_reg_wr_val, false);
1124 			srng->reg_write_in_progress = false;
1125 			SRNG_UNLOCK(&srng->lock);
1126 		} else {
1127 			/*
1128 			 * TCL reg write to happen in delayed context,
1129 			 * write operation might take time due to possibility of
1130 			 * PCIe bus stays in low power state during low tput,
1131 			 * Hence release the SRNG_LOCK before writing.
1132 			 */
1133 			hal->tcl_stats.wq_delayed++;
1134 			srng->reg_write_in_progress = false;
1135 			SRNG_UNLOCK(&srng->lock);
1136 			hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
1137 						srng->last_reg_wr_val, false);
1138 		}
1139 	} else {
1140 		srng->reg_write_in_progress = false;
1141 		SRNG_UNLOCK(&srng->lock);
1142 	}
1143 
1144 	/*
1145 	 * Decrement active_work_cnt to make sure that hif_try_complete_tasks
1146 	 * will wait. This will avoid race condition between delayed register
1147 	 * worker and bus suspend (system suspend or runtime suspend).
1148 	 *
1149 	 * The following decrement should be done at the end!
1150 	 */
1151 	qdf_atomic_dec(&hal->active_work_cnt);
1152 	qdf_atomic_set(&hal->tcl_work_active, false);
1153 }
1154 
1155 static void __hal_flush_tcl_reg_write_work(struct hal_soc *hal)
1156 {
1157 	qdf_cancel_work(&hal->tcl_reg_write_work);
1158 }
1159 
1160 /**
1161  * hal_tcl_reg_write_enqueue() - enqueue TCL register writes into kworker
1162  * @hal_soc: hal_soc pointer
1163  * @srng: srng pointer
1164  * @addr: iomem address of regiter
1165  * @value: value to be written to iomem address
1166  *
1167  * This function executes from within the SRNG LOCK
1168  *
1169  * Return: None
1170  */
1171 static void hal_tcl_reg_write_enqueue(struct hal_soc *hal_soc,
1172 				      struct hal_srng *srng,
1173 				      void __iomem *addr,
1174 				      uint32_t value)
1175 {
1176 	hal_soc->tcl_stats.enq_time = hal_del_reg_write_get_ts();
1177 
1178 	if (qdf_queue_work(hal_soc->qdf_dev, hal_soc->tcl_reg_write_wq,
1179 			   &hal_soc->tcl_reg_write_work)) {
1180 		srng->reg_write_in_progress  = true;
1181 		qdf_atomic_inc(&hal_soc->active_work_cnt);
1182 		qdf_atomic_set(&hal_soc->tcl_work_active, true);
1183 		srng->wstats.enqueues++;
1184 	} else {
1185 		hal_soc->tcl_stats.enq_timer_set++;
1186 		qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
1187 	}
1188 }
1189 
1190 /**
1191  * hal_tcl_reg_write_timer() - timer handler to take care of pending TCL writes
1192  * @arg: srng handle
1193  *
1194  * This function handles the pending TCL reg writes missed due to the previous
1195  * scheduled worker running.
1196  *
1197  * Return: None
1198  */
1199 static void hal_tcl_reg_write_timer(void *arg)
1200 {
1201 	hal_ring_handle_t srng_hdl = arg;
1202 	struct hal_srng *srng;
1203 	struct hal_soc *hal;
1204 
1205 	srng = (struct hal_srng *)srng_hdl;
1206 	hal = srng->hal_soc;
1207 
1208 	if (hif_pm_runtime_get(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE,
1209 			       true)) {
1210 		hal_srng_set_event(srng_hdl, HAL_SRNG_FLUSH_EVENT);
1211 		hal_srng_inc_flush_cnt(srng_hdl);
1212 		goto fail;
1213 	}
1214 
1215 	SRNG_LOCK(&srng->lock);
1216 	if (hal->tcl_direct) {
1217 		/*
1218 		 * Due to the previous scheduled worker still running,
1219 		 * direct reg write cannot be performed, so posted the
1220 		 * pending writes to timer context.
1221 		 */
1222 		if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
1223 			srng->last_reg_wr_val = srng->u.src_ring.hp;
1224 			srng->wstats.direct++;
1225 			hal->tcl_stats.timer_direct++;
1226 			hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
1227 						srng->last_reg_wr_val, false);
1228 		}
1229 	} else {
1230 		/*
1231 		 * Due to the previous scheduled worker still running,
1232 		 * queue_work from delayed context would fail,
1233 		 * so retry from timer context.
1234 		 */
1235 		if (qdf_queue_work(hal->qdf_dev, hal->tcl_reg_write_wq,
1236 				   &hal->tcl_reg_write_work)) {
1237 			srng->reg_write_in_progress  = true;
1238 			qdf_atomic_inc(&hal->active_work_cnt);
1239 			qdf_atomic_set(&hal->tcl_work_active, true);
1240 			srng->wstats.enqueues++;
1241 			hal->tcl_stats.timer_enq++;
1242 		} else {
1243 			if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
1244 				hal->tcl_stats.timer_reset++;
1245 				qdf_timer_mod(&hal->tcl_reg_write_timer, 1);
1246 			}
1247 		}
1248 	}
1249 	SRNG_UNLOCK(&srng->lock);
1250 	hif_pm_runtime_put(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE);
1251 
1252 fail:
1253 	return;
1254 }
1255 
1256 /**
1257  * hal_delayed_tcl_reg_write_init() - Initialization for delayed TCL reg writes
1258  * @hal_soc: hal_soc pointer
1259  *
1260  * Initialize main data structures to process TCL register writes in a delayed
1261  * workqueue.
1262  *
1263  * Return: QDF_STATUS_SUCCESS on success else a QDF error.
1264  */
1265 static QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
1266 {
1267 	struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
1268 	QDF_STATUS status;
1269 
1270 	hal->tcl_reg_write_wq =
1271 		qdf_alloc_high_prior_ordered_workqueue("hal_tcl_reg_write_wq");
1272 	if (!hal->tcl_reg_write_wq) {
1273 		hal_err("hal_tcl_reg_write_wq alloc failed");
1274 		return QDF_STATUS_E_NOMEM;
1275 	}
1276 
1277 	status = qdf_create_work(0, &hal->tcl_reg_write_work,
1278 				 hal_tcl_reg_write_work, hal);
1279 	if (status != QDF_STATUS_SUCCESS) {
1280 		hal_err("tcl_reg_write_work create failed");
1281 		goto fail;
1282 	}
1283 
1284 	status = qdf_timer_init(hal->qdf_dev, &hal->tcl_reg_write_timer,
1285 				hal_tcl_reg_write_timer, (void *)srng,
1286 				QDF_TIMER_TYPE_WAKE_APPS);
1287 	if (status != QDF_STATUS_SUCCESS) {
1288 		hal_err("tcl_reg_write_timer init failed");
1289 		goto fail;
1290 	}
1291 
1292 	qdf_atomic_init(&hal->tcl_work_active);
1293 
1294 	return QDF_STATUS_SUCCESS;
1295 
1296 fail:
1297 	qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
1298 	return status;
1299 }
1300 
1301 /**
1302  * hal_delayed_tcl_reg_write_deinit() - De-Initialize delayed TCL reg writes
1303  * @hal_soc: hal_soc pointer
1304  *
1305  * De-initialize main data structures to process TCL register writes in a
1306  * delayed workqueue.
1307  *
1308  * Return: None
1309  */
1310 static void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
1311 {
1312 	qdf_timer_stop(&hal->tcl_reg_write_timer);
1313 	qdf_timer_free(&hal->tcl_reg_write_timer);
1314 
1315 	__hal_flush_tcl_reg_write_work(hal);
1316 	qdf_flush_workqueue(0, hal->tcl_reg_write_wq);
1317 	qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
1318 }
1319 
1320 #else
1321 static inline QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
1322 {
1323 	return QDF_STATUS_SUCCESS;
1324 }
1325 
1326 static inline void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
1327 {
1328 }
1329 #endif
1330 
1331 #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
1332 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
1333 static inline void hal_reg_write_enqueue_v2(struct hal_soc *hal_soc,
1334 					    struct hal_srng *srng,
1335 					    void __iomem *addr,
1336 					    uint32_t value)
1337 {
1338 	hal_reg_write_enqueue(hal_soc, srng, addr, value);
1339 }
1340 #else
1341 static inline void hal_reg_write_enqueue_v2(struct hal_soc *hal_soc,
1342 					    struct hal_srng *srng,
1343 					    void __iomem *addr,
1344 					    uint32_t value)
1345 {
1346 	qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1347 	srng->wstats.direct++;
1348 	hal_write_address_32_mb(hal_soc, addr, value, false);
1349 }
1350 #endif
1351 
1352 void hal_delayed_reg_write(struct hal_soc *hal_soc,
1353 			   struct hal_srng *srng,
1354 			   void __iomem *addr,
1355 			   uint32_t value)
1356 {
1357 	switch (srng->ring_type) {
1358 	case TCL_DATA:
1359 		if (hal_is_reg_write_tput_level_high(hal_soc)) {
1360 			hal_soc->tcl_direct = true;
1361 			if (srng->reg_write_in_progress ||
1362 			    !qdf_atomic_read(&hal_soc->tcl_work_active)) {
1363 				/*
1364 				 * Now the delayed work have either completed
1365 				 * the writing or not even scheduled and would
1366 				 * be blocked by SRNG_LOCK, hence it is fine to
1367 				 * do direct write here.
1368 				 */
1369 				srng->last_reg_wr_val = srng->u.src_ring.hp;
1370 				srng->wstats.direct++;
1371 				hal_write_address_32_mb(hal_soc, addr,
1372 							srng->last_reg_wr_val,
1373 							false);
1374 			} else {
1375 				hal_soc->tcl_stats.direct_timer_set++;
1376 				qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
1377 			}
1378 		} else {
1379 			hal_soc->tcl_direct = false;
1380 			if (srng->reg_write_in_progress) {
1381 				srng->wstats.coalesces++;
1382 			} else {
1383 				hal_tcl_reg_write_enqueue(hal_soc, srng,
1384 							  addr, value);
1385 			}
1386 		}
1387 		break;
1388 	case CE_SRC:
1389 	case CE_DST:
1390 	case CE_DST_STATUS:
1391 		hal_reg_write_enqueue_v2(hal_soc, srng, addr, value);
1392 		break;
1393 	default:
1394 		qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1395 		srng->wstats.direct++;
1396 		hal_write_address_32_mb(hal_soc, addr, value, false);
1397 		break;
1398 	}
1399 }
1400 
1401 #else
1402 #ifdef FEATURE_HAL_DELAYED_REG_WRITE
1403 #ifdef QCA_WIFI_QCA6750
1404 void hal_delayed_reg_write(struct hal_soc *hal_soc,
1405 			   struct hal_srng *srng,
1406 			   void __iomem *addr,
1407 			   uint32_t value)
1408 {
1409 	uint8_t vote_access;
1410 
1411 	switch (srng->ring_type) {
1412 	case CE_SRC:
1413 	case CE_DST:
1414 	case CE_DST_STATUS:
1415 		vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
1416 						     HIF_EP_VOTE_NONDP_ACCESS);
1417 		if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
1418 		    (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
1419 		     PLD_MHI_STATE_L0 ==
1420 		     pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
1421 			hal_write_address_32_mb(hal_soc, addr, value, false);
1422 			qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1423 			srng->wstats.direct++;
1424 		} else {
1425 			hal_reg_write_enqueue(hal_soc, srng, addr, value);
1426 		}
1427 		break;
1428 	default:
1429 		if (hif_get_ep_vote_access(hal_soc->hif_handle,
1430 		    HIF_EP_VOTE_DP_ACCESS) ==
1431 		    HIF_EP_VOTE_ACCESS_DISABLE ||
1432 		    hal_is_reg_write_tput_level_high(hal_soc) ||
1433 		    PLD_MHI_STATE_L0 ==
1434 		    pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
1435 			hal_write_address_32_mb(hal_soc, addr, value, false);
1436 			qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1437 			srng->wstats.direct++;
1438 		} else {
1439 			hal_reg_write_enqueue(hal_soc, srng, addr, value);
1440 		}
1441 
1442 		break;
1443 	}
1444 }
1445 #else
1446 void hal_delayed_reg_write(struct hal_soc *hal_soc,
1447 			   struct hal_srng *srng,
1448 			   void __iomem *addr,
1449 			   uint32_t value)
1450 {
1451 	if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
1452 	    hal_is_reg_write_tput_level_high(hal_soc)) {
1453 		qdf_atomic_inc(&hal_soc->stats.wstats.direct);
1454 		srng->wstats.direct++;
1455 		hal_write_address_32_mb(hal_soc, addr, value, false);
1456 	} else {
1457 		hal_reg_write_enqueue(hal_soc, srng, addr, value);
1458 	}
1459 }
1460 #endif
1461 #endif
1462 #endif
1463 
1464 /**
1465  * hal_attach - Initialize HAL layer
1466  * @hif_handle: Opaque HIF handle
1467  * @qdf_dev: QDF device
1468  *
1469  * Return: Opaque HAL SOC handle
1470  *		 NULL on failure (if given ring is not available)
1471  *
1472  * This function should be called as part of HIF initialization (for accessing
1473  * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
1474  *
1475  */
1476 void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
1477 {
1478 	struct hal_soc *hal;
1479 	int i;
1480 
1481 	hal = qdf_mem_malloc(sizeof(*hal));
1482 
1483 	if (!hal) {
1484 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1485 			"%s: hal_soc allocation failed", __func__);
1486 		goto fail0;
1487 	}
1488 	hal->hif_handle = hif_handle;
1489 	hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
1490 	hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
1491 	hal->qdf_dev = qdf_dev;
1492 	hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
1493 		qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
1494 		HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
1495 	if (!hal->shadow_rdptr_mem_paddr) {
1496 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1497 			"%s: hal->shadow_rdptr_mem_paddr allocation failed",
1498 			__func__);
1499 		goto fail1;
1500 	}
1501 	qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
1502 		     sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
1503 
1504 	hal->shadow_wrptr_mem_vaddr =
1505 		(uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
1506 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
1507 		&(hal->shadow_wrptr_mem_paddr));
1508 	if (!hal->shadow_wrptr_mem_vaddr) {
1509 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1510 			"%s: hal->shadow_wrptr_mem_vaddr allocation failed",
1511 			__func__);
1512 		goto fail2;
1513 	}
1514 	qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
1515 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
1516 
1517 	for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
1518 		hal->srng_list[i].initialized = 0;
1519 		hal->srng_list[i].ring_id = i;
1520 	}
1521 
1522 	qdf_spinlock_create(&hal->register_access_lock);
1523 	hal->register_window = 0;
1524 	hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
1525 	hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
1526 
1527 	if (!hal->ops) {
1528 		hal_err("unable to allocable memory for HAL ops");
1529 		goto fail3;
1530 	}
1531 
1532 	hal_target_based_configure(hal);
1533 
1534 	hal_reg_write_fail_history_init(hal);
1535 
1536 	qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
1537 
1538 	qdf_atomic_init(&hal->active_work_cnt);
1539 	hal_delayed_reg_write_init(hal);
1540 	hal_delayed_tcl_reg_write_init(hal);
1541 
1542 	return (void *)hal;
1543 fail3:
1544 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
1545 				sizeof(*hal->shadow_wrptr_mem_vaddr) *
1546 				HAL_MAX_LMAC_RINGS,
1547 				hal->shadow_wrptr_mem_vaddr,
1548 				hal->shadow_wrptr_mem_paddr, 0);
1549 fail2:
1550 	qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
1551 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
1552 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
1553 fail1:
1554 	qdf_mem_free(hal);
1555 fail0:
1556 	return NULL;
1557 }
1558 qdf_export_symbol(hal_attach);
1559 
1560 /**
1561  * hal_mem_info - Retrieve hal memory base address
1562  *
1563  * @hal_soc: Opaque HAL SOC handle
1564  * @mem: pointer to structure to be updated with hal mem info
1565  */
1566 void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
1567 {
1568 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
1569 	mem->dev_base_addr = (void *)hal->dev_base_addr;
1570         mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
1571 	mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
1572         mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
1573 	mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
1574 	hif_read_phy_mem_base((void *)hal->hif_handle,
1575 			      (qdf_dma_addr_t *)&mem->dev_base_paddr);
1576 	mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
1577 	return;
1578 }
1579 qdf_export_symbol(hal_get_meminfo);
1580 
1581 /**
1582  * hal_detach - Detach HAL layer
1583  * @hal_soc: HAL SOC handle
1584  *
1585  * Return: Opaque HAL SOC handle
1586  *		 NULL on failure (if given ring is not available)
1587  *
1588  * This function should be called as part of HIF initialization (for accessing
1589  * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
1590  *
1591  */
1592 extern void hal_detach(void *hal_soc)
1593 {
1594 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1595 
1596 	hal_delayed_reg_write_deinit(hal);
1597 	hal_delayed_tcl_reg_write_deinit(hal);
1598 	qdf_mem_free(hal->ops);
1599 
1600 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
1601 		sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
1602 		hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
1603 	qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
1604 		sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
1605 		hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
1606 	qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
1607 	qdf_mem_free(hal);
1608 
1609 	return;
1610 }
1611 qdf_export_symbol(hal_detach);
1612 
1613 #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x)		((x) + 0x000000b0)
1614 #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK	0x0000ffff
1615 #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x)	((x) + 0x00000040)
1616 #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK	0x00000007
1617 /**
1618  * hal_ce_dst_setup - Initialize CE destination ring registers
1619  * @hal_soc: HAL SOC handle
1620  * @srng: SRNG ring pointer
1621  */
1622 static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
1623 				    int ring_num)
1624 {
1625 	uint32_t reg_val = 0;
1626 	uint32_t reg_addr;
1627 	struct hal_hw_srng_config *ring_config =
1628 		HAL_SRNG_CONFIG(hal, CE_DST);
1629 
1630 	/* set DEST_MAX_LENGTH according to ce assignment */
1631 	reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
1632 			ring_config->reg_start[R0_INDEX] +
1633 			(ring_num * ring_config->reg_size[R0_INDEX]));
1634 
1635 	reg_val = HAL_REG_READ(hal, reg_addr);
1636 	reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
1637 	reg_val |= srng->u.dst_ring.max_buffer_length &
1638 		HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
1639 	HAL_REG_WRITE(hal, reg_addr, reg_val);
1640 
1641 	if (srng->prefetch_timer) {
1642 		reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
1643 				ring_config->reg_start[R0_INDEX] +
1644 				(ring_num * ring_config->reg_size[R0_INDEX]));
1645 
1646 		reg_val = HAL_REG_READ(hal, reg_addr);
1647 		reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
1648 		reg_val |= srng->prefetch_timer;
1649 		HAL_REG_WRITE(hal, reg_addr, reg_val);
1650 		reg_val = HAL_REG_READ(hal, reg_addr);
1651 	}
1652 
1653 }
1654 
1655 /**
1656  * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
1657  * @hal: HAL SOC handle
1658  * @read: boolean value to indicate if read or write
1659  * @ix0: pointer to store IX0 reg value
1660  * @ix1: pointer to store IX1 reg value
1661  * @ix2: pointer to store IX2 reg value
1662  * @ix3: pointer to store IX3 reg value
1663  */
1664 void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
1665 				uint32_t *ix0, uint32_t *ix1,
1666 				uint32_t *ix2, uint32_t *ix3)
1667 {
1668 	uint32_t reg_offset;
1669 	struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
1670 	uint32_t reo_reg_base;
1671 
1672 	reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
1673 
1674 	if (read) {
1675 		if (ix0) {
1676 			reg_offset =
1677 				HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
1678 						reo_reg_base);
1679 			*ix0 = HAL_REG_READ(hal, reg_offset);
1680 		}
1681 
1682 		if (ix1) {
1683 			reg_offset =
1684 				HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
1685 						reo_reg_base);
1686 			*ix1 = HAL_REG_READ(hal, reg_offset);
1687 		}
1688 
1689 		if (ix2) {
1690 			reg_offset =
1691 				HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
1692 						reo_reg_base);
1693 			*ix2 = HAL_REG_READ(hal, reg_offset);
1694 		}
1695 
1696 		if (ix3) {
1697 			reg_offset =
1698 				HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
1699 						reo_reg_base);
1700 			*ix3 = HAL_REG_READ(hal, reg_offset);
1701 		}
1702 	} else {
1703 		if (ix0) {
1704 			reg_offset =
1705 				HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
1706 						reo_reg_base);
1707 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1708 						    *ix0, true);
1709 		}
1710 
1711 		if (ix1) {
1712 			reg_offset =
1713 				HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
1714 						reo_reg_base);
1715 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1716 						    *ix1, true);
1717 		}
1718 
1719 		if (ix2) {
1720 			reg_offset =
1721 				HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
1722 						reo_reg_base);
1723 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1724 						    *ix2, true);
1725 		}
1726 
1727 		if (ix3) {
1728 			reg_offset =
1729 				HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
1730 						reo_reg_base);
1731 			HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
1732 						    *ix3, true);
1733 		}
1734 	}
1735 }
1736 
1737 /**
1738  * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
1739  *  pointer and confirm that write went through by reading back the value
1740  * @srng: sring pointer
1741  * @paddr: physical address
1742  *
1743  * Return: None
1744  */
1745 void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
1746 {
1747 	SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
1748 	SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
1749 }
1750 
1751 /**
1752  * hal_srng_dst_init_hp() - Initialize destination ring head
1753  * pointer
1754  * @hal_soc: hal_soc handle
1755  * @srng: sring pointer
1756  * @vaddr: virtual address
1757  */
1758 void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
1759 			  struct hal_srng *srng,
1760 			  uint32_t *vaddr)
1761 {
1762 	uint32_t reg_offset;
1763 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1764 
1765 	if (!srng)
1766 		return;
1767 
1768 	srng->u.dst_ring.hp_addr = vaddr;
1769 	reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
1770 	HAL_REG_WRITE_CONFIRM_RETRY(
1771 		hal, reg_offset, srng->u.dst_ring.cached_hp, true);
1772 
1773 	if (vaddr) {
1774 		*srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
1775 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1776 			  "hp_addr=%pK, cached_hp=%d, hp=%d",
1777 			  (void *)srng->u.dst_ring.hp_addr,
1778 			  srng->u.dst_ring.cached_hp,
1779 			  *srng->u.dst_ring.hp_addr);
1780 	}
1781 }
1782 
1783 /**
1784  * hal_srng_hw_init - Private function to initialize SRNG HW
1785  * @hal_soc: HAL SOC handle
1786  * @srng: SRNG ring pointer
1787  */
1788 static inline void hal_srng_hw_init(struct hal_soc *hal,
1789 	struct hal_srng *srng)
1790 {
1791 	if (srng->ring_dir == HAL_SRNG_SRC_RING)
1792 		hal_srng_src_hw_init(hal, srng);
1793 	else
1794 		hal_srng_dst_hw_init(hal, srng);
1795 }
1796 
1797 #ifdef CONFIG_SHADOW_V2
1798 #define ignore_shadow false
1799 #define CHECK_SHADOW_REGISTERS true
1800 #else
1801 #define ignore_shadow true
1802 #define CHECK_SHADOW_REGISTERS false
1803 #endif
1804 
1805 #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
1806 /**
1807  * hal_srng_is_near_full_irq_supported() - Check if near full irq is
1808  *				supported on this SRNG
1809  * @hal_soc: HAL SoC handle
1810  * @ring_type: SRNG type
1811  * @ring_num: ring number
1812  *
1813  * Return: true, if near full irq is supported for this SRNG
1814  *	   false, if near full irq is not supported for this SRNG
1815  */
1816 bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
1817 					 int ring_type, int ring_num)
1818 {
1819 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1820 	struct hal_hw_srng_config *ring_config =
1821 		HAL_SRNG_CONFIG(hal, ring_type);
1822 
1823 	return ring_config->nf_irq_support;
1824 }
1825 
1826 /**
1827  * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
1828  *				ring params
1829  * @srng: SRNG handle
1830  * @ring_params: ring params for this SRNG
1831  *
1832  * Return: None
1833  */
1834 static inline void
1835 hal_srng_set_msi2_params(struct hal_srng *srng,
1836 			 struct hal_srng_params *ring_params)
1837 {
1838 	srng->msi2_addr = ring_params->msi2_addr;
1839 	srng->msi2_data = ring_params->msi2_data;
1840 }
1841 
1842 /**
1843  * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
1844  * @srng: SRNG handle
1845  * @ring_params: ring params for this SRNG
1846  *
1847  * Return: None
1848  */
1849 static inline void
1850 hal_srng_get_nf_params(struct hal_srng *srng,
1851 		       struct hal_srng_params *ring_params)
1852 {
1853 	ring_params->msi2_addr = srng->msi2_addr;
1854 	ring_params->msi2_data = srng->msi2_data;
1855 }
1856 
1857 /**
1858  * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
1859  * @srng: SRNG handle where the params are to be set
1860  * @ring_params: ring params, from where threshold is to be fetched
1861  *
1862  * Return: None
1863  */
1864 static inline void
1865 hal_srng_set_nf_thresholds(struct hal_srng *srng,
1866 			   struct hal_srng_params *ring_params)
1867 {
1868 	srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
1869 	srng->u.dst_ring.high_thresh = ring_params->high_thresh;
1870 }
1871 #else
1872 static inline void
1873 hal_srng_set_msi2_params(struct hal_srng *srng,
1874 			 struct hal_srng_params *ring_params)
1875 {
1876 }
1877 
1878 static inline void
1879 hal_srng_get_nf_params(struct hal_srng *srng,
1880 		       struct hal_srng_params *ring_params)
1881 {
1882 }
1883 
1884 static inline void
1885 hal_srng_set_nf_thresholds(struct hal_srng *srng,
1886 			   struct hal_srng_params *ring_params)
1887 {
1888 }
1889 #endif
1890 
1891 #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
1892 /**
1893  * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
1894  *
1895  * @srng: Source ring pointer
1896  *
1897  * Return: None
1898  */
1899 static inline
1900 void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
1901 {
1902 	srng->last_desc_cleared = srng->ring_size - srng->entry_size;
1903 }
1904 
1905 #else
1906 static inline
1907 void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
1908 {
1909 }
1910 #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
1911 
1912 /**
1913  * hal_srng_setup - Initialize HW SRNG ring.
1914  * @hal_soc: Opaque HAL SOC handle
1915  * @ring_type: one of the types from hal_ring_type
1916  * @ring_num: Ring number if there are multiple rings of same type (staring
1917  * from 0)
1918  * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
1919  * @ring_params: SRNG ring params in hal_srng_params structure.
1920 
1921  * Callers are expected to allocate contiguous ring memory of size
1922  * 'num_entries * entry_size' bytes and pass the physical and virtual base
1923  * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
1924  * hal_srng_params structure. Ring base address should be 8 byte aligned
1925  * and size of each ring entry should be queried using the API
1926  * hal_srng_get_entrysize
1927  *
1928  * Return: Opaque pointer to ring on success
1929  *		 NULL on failure (if given ring is not available)
1930  */
1931 void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
1932 	int mac_id, struct hal_srng_params *ring_params)
1933 {
1934 	int ring_id;
1935 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
1936 	struct hal_srng *srng;
1937 	struct hal_hw_srng_config *ring_config =
1938 		HAL_SRNG_CONFIG(hal, ring_type);
1939 	void *dev_base_addr;
1940 	int i;
1941 
1942 	ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
1943 	if (ring_id < 0)
1944 		return NULL;
1945 
1946 	hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
1947 
1948 	srng = hal_get_srng(hal_soc, ring_id);
1949 
1950 	if (srng->initialized) {
1951 		hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
1952 		return NULL;
1953 	}
1954 
1955 	dev_base_addr = hal->dev_base_addr;
1956 	srng->ring_id = ring_id;
1957 	srng->ring_type = ring_type;
1958 	srng->ring_dir = ring_config->ring_dir;
1959 	srng->ring_base_paddr = ring_params->ring_base_paddr;
1960 	srng->ring_base_vaddr = ring_params->ring_base_vaddr;
1961 	srng->entry_size = ring_config->entry_size;
1962 	srng->num_entries = ring_params->num_entries;
1963 	srng->ring_size = srng->num_entries * srng->entry_size;
1964 	srng->ring_size_mask = srng->ring_size - 1;
1965 	srng->msi_addr = ring_params->msi_addr;
1966 	srng->msi_data = ring_params->msi_data;
1967 	srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
1968 	srng->intr_batch_cntr_thres_entries =
1969 		ring_params->intr_batch_cntr_thres_entries;
1970 	srng->prefetch_timer = ring_params->prefetch_timer;
1971 	srng->hal_soc = hal_soc;
1972 	hal_srng_set_msi2_params(srng, ring_params);
1973 
1974 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
1975 		srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
1976 			+ (ring_num * ring_config->reg_size[i]);
1977 	}
1978 
1979 	/* Zero out the entire ring memory */
1980 	qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
1981 		srng->num_entries) << 2);
1982 
1983 	srng->flags = ring_params->flags;
1984 #ifdef BIG_ENDIAN_HOST
1985 		/* TODO: See if we should we get these flags from caller */
1986 	srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
1987 	srng->flags |= HAL_SRNG_MSI_SWAP;
1988 	srng->flags |= HAL_SRNG_RING_PTR_SWAP;
1989 #endif
1990 
1991 	hal_srng_last_desc_cleared_init(srng);
1992 
1993 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
1994 		srng->u.src_ring.hp = 0;
1995 		srng->u.src_ring.reap_hp = srng->ring_size -
1996 			srng->entry_size;
1997 		srng->u.src_ring.tp_addr =
1998 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
1999 		srng->u.src_ring.low_threshold =
2000 			ring_params->low_threshold * srng->entry_size;
2001 		if (ring_config->lmac_ring) {
2002 			/* For LMAC rings, head pointer updates will be done
2003 			 * through FW by writing to a shared memory location
2004 			 */
2005 			srng->u.src_ring.hp_addr =
2006 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
2007 					HAL_SRNG_LMAC1_ID_START]);
2008 			srng->flags |= HAL_SRNG_LMAC_RING;
2009 		} else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
2010 			srng->u.src_ring.hp_addr =
2011 				hal_get_window_address(hal,
2012 						SRNG_SRC_ADDR(srng, HP));
2013 
2014 			if (CHECK_SHADOW_REGISTERS) {
2015 				QDF_TRACE(QDF_MODULE_ID_TXRX,
2016 				    QDF_TRACE_LEVEL_ERROR,
2017 				    "%s: Ring (%d, %d) missing shadow config",
2018 				    __func__, ring_type, ring_num);
2019 			}
2020 		} else {
2021 			hal_validate_shadow_register(hal,
2022 						     SRNG_SRC_ADDR(srng, HP),
2023 						     srng->u.src_ring.hp_addr);
2024 		}
2025 	} else {
2026 		/* During initialization loop count in all the descriptors
2027 		 * will be set to zero, and HW will set it to 1 on completing
2028 		 * descriptor update in first loop, and increments it by 1 on
2029 		 * subsequent loops (loop count wraps around after reaching
2030 		 * 0xffff). The 'loop_cnt' in SW ring state is the expected
2031 		 * loop count in descriptors updated by HW (to be processed
2032 		 * by SW).
2033 		 */
2034 		hal_srng_set_nf_thresholds(srng, ring_params);
2035 		srng->u.dst_ring.loop_cnt = 1;
2036 		srng->u.dst_ring.tp = 0;
2037 		srng->u.dst_ring.hp_addr =
2038 			&(hal->shadow_rdptr_mem_vaddr[ring_id]);
2039 		if (ring_config->lmac_ring) {
2040 			/* For LMAC rings, tail pointer updates will be done
2041 			 * through FW by writing to a shared memory location
2042 			 */
2043 			srng->u.dst_ring.tp_addr =
2044 				&(hal->shadow_wrptr_mem_vaddr[ring_id -
2045 				HAL_SRNG_LMAC1_ID_START]);
2046 			srng->flags |= HAL_SRNG_LMAC_RING;
2047 		} else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
2048 			srng->u.dst_ring.tp_addr =
2049 				hal_get_window_address(hal,
2050 						SRNG_DST_ADDR(srng, TP));
2051 
2052 			if (CHECK_SHADOW_REGISTERS) {
2053 				QDF_TRACE(QDF_MODULE_ID_TXRX,
2054 				    QDF_TRACE_LEVEL_ERROR,
2055 				    "%s: Ring (%d, %d) missing shadow config",
2056 				    __func__, ring_type, ring_num);
2057 			}
2058 		} else {
2059 			hal_validate_shadow_register(hal,
2060 						     SRNG_DST_ADDR(srng, TP),
2061 						     srng->u.dst_ring.tp_addr);
2062 		}
2063 	}
2064 
2065 	if (!(ring_config->lmac_ring)) {
2066 		hal_srng_hw_init(hal, srng);
2067 
2068 		if (ring_type == CE_DST) {
2069 			srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
2070 			hal_ce_dst_setup(hal, srng, ring_num);
2071 		}
2072 	}
2073 
2074 	SRNG_LOCK_INIT(&srng->lock);
2075 
2076 	srng->srng_event = 0;
2077 
2078 	srng->initialized = true;
2079 
2080 	return (void *)srng;
2081 }
2082 qdf_export_symbol(hal_srng_setup);
2083 
2084 /**
2085  * hal_srng_cleanup - Deinitialize HW SRNG ring.
2086  * @hal_soc: Opaque HAL SOC handle
2087  * @hal_srng: Opaque HAL SRNG pointer
2088  */
2089 void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
2090 {
2091 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
2092 	SRNG_LOCK_DESTROY(&srng->lock);
2093 	srng->initialized = 0;
2094 }
2095 qdf_export_symbol(hal_srng_cleanup);
2096 
2097 /**
2098  * hal_srng_get_entrysize - Returns size of ring entry in bytes
2099  * @hal_soc: Opaque HAL SOC handle
2100  * @ring_type: one of the types from hal_ring_type
2101  *
2102  */
2103 uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
2104 {
2105 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
2106 	struct hal_hw_srng_config *ring_config =
2107 		HAL_SRNG_CONFIG(hal, ring_type);
2108 	return ring_config->entry_size << 2;
2109 }
2110 qdf_export_symbol(hal_srng_get_entrysize);
2111 
2112 /**
2113  * hal_srng_max_entries - Returns maximum possible number of ring entries
2114  * @hal_soc: Opaque HAL SOC handle
2115  * @ring_type: one of the types from hal_ring_type
2116  *
2117  * Return: Maximum number of entries for the given ring_type
2118  */
2119 uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
2120 {
2121 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
2122 	struct hal_hw_srng_config *ring_config =
2123 		HAL_SRNG_CONFIG(hal, ring_type);
2124 
2125 	return ring_config->max_size / ring_config->entry_size;
2126 }
2127 qdf_export_symbol(hal_srng_max_entries);
2128 
2129 enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
2130 {
2131 	struct hal_soc *hal = (struct hal_soc *)hal_soc;
2132 	struct hal_hw_srng_config *ring_config =
2133 		HAL_SRNG_CONFIG(hal, ring_type);
2134 
2135 	return ring_config->ring_dir;
2136 }
2137 
2138 /**
2139  * hal_srng_dump - Dump ring status
2140  * @srng: hal srng pointer
2141  */
2142 void hal_srng_dump(struct hal_srng *srng)
2143 {
2144 	if (srng->ring_dir == HAL_SRNG_SRC_RING) {
2145 		hal_debug("=== SRC RING %d ===", srng->ring_id);
2146 		hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
2147 			  srng->u.src_ring.hp,
2148 			  srng->u.src_ring.reap_hp,
2149 			  *srng->u.src_ring.tp_addr,
2150 			  srng->u.src_ring.cached_tp);
2151 	} else {
2152 		hal_debug("=== DST RING %d ===", srng->ring_id);
2153 		hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
2154 			  srng->u.dst_ring.tp,
2155 			  *srng->u.dst_ring.hp_addr,
2156 			  srng->u.dst_ring.cached_hp,
2157 			  srng->u.dst_ring.loop_cnt);
2158 	}
2159 }
2160 
2161 /**
2162  * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
2163  *
2164  * @hal_soc: Opaque HAL SOC handle
2165  * @hal_ring: Ring pointer (Source or Destination ring)
2166  * @ring_params: SRNG parameters will be returned through this structure
2167  */
2168 extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
2169 				hal_ring_handle_t hal_ring_hdl,
2170 				struct hal_srng_params *ring_params)
2171 {
2172 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
2173 	int i =0;
2174 	ring_params->ring_id = srng->ring_id;
2175 	ring_params->ring_dir = srng->ring_dir;
2176 	ring_params->entry_size = srng->entry_size;
2177 
2178 	ring_params->ring_base_paddr = srng->ring_base_paddr;
2179 	ring_params->ring_base_vaddr = srng->ring_base_vaddr;
2180 	ring_params->num_entries = srng->num_entries;
2181 	ring_params->msi_addr = srng->msi_addr;
2182 	ring_params->msi_data = srng->msi_data;
2183 	ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
2184 	ring_params->intr_batch_cntr_thres_entries =
2185 		srng->intr_batch_cntr_thres_entries;
2186 	ring_params->low_threshold = srng->u.src_ring.low_threshold;
2187 	ring_params->flags = srng->flags;
2188 	ring_params->ring_id = srng->ring_id;
2189 	for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
2190 		ring_params->hwreg_base[i] = srng->hwreg_base[i];
2191 
2192 	hal_srng_get_nf_params(srng, ring_params);
2193 }
2194 qdf_export_symbol(hal_get_srng_params);
2195 
2196 void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
2197 				 uint32_t low_threshold)
2198 {
2199 	struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
2200 	srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
2201 }
2202 qdf_export_symbol(hal_set_low_threshold);
2203 
2204 
2205 #ifdef FORCE_WAKE
2206 void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
2207 {
2208 	struct hal_soc *hal_soc = (struct hal_soc *)soc;
2209 
2210 	hal_soc->init_phase = init_phase;
2211 }
2212 #endif /* FORCE_WAKE */
2213