xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_txrx_wds.c (revision 2f4b444fb7e689b83a4ab0e7b3b38f0bf4def8e0)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 #include "htt.h"
19 #include "dp_peer.h"
20 #include "hal_rx.h"
21 #include "hal_api.h"
22 #include "qdf_nbuf.h"
23 #include "dp_types.h"
24 #include "dp_internal.h"
25 #include "dp_tx.h"
26 #include "enet.h"
27 #ifdef WIFI_MONITOR_SUPPORT
28 #include "dp_mon.h"
29 #endif
30 #include "dp_txrx_wds.h"
31 
32 /* Generic AST entry aging timer value */
33 #define DP_AST_AGING_TIMER_DEFAULT_MS	5000
34 #define DP_VLAN_UNTAGGED 0
35 #define DP_VLAN_TAGGED_MULTICAST 1
36 #define DP_VLAN_TAGGED_UNICAST 2
37 #define DP_MAX_VLAN_IDS 4096
38 #define DP_INVALID_AST_IDX 0xffff
39 #define DP_INVALID_FLOW_PRIORITY 0xff
40 #define DP_PEER_AST0_FLOW_MASK 0x4
41 #define DP_PEER_AST1_FLOW_MASK 0x8
42 #define DP_PEER_AST2_FLOW_MASK 0x1
43 #define DP_PEER_AST3_FLOW_MASK 0x2
44 #define DP_MAX_AST_INDEX_PER_PEER 4
45 
46 static void
47 dp_peer_age_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
48 {
49 	struct dp_ast_entry *ase, *temp_ase;
50 	struct ast_del_ctxt *del_ctxt = (struct ast_del_ctxt *)arg;
51 
52 	if ((del_ctxt->del_count >= soc->max_ast_ageout_count) &&
53 	    !del_ctxt->age) {
54 		return;
55 	}
56 
57 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
58 		/*
59 		 * Do not expire static ast entries and HM WDS entries
60 		 */
61 		if (ase->type != CDP_TXRX_AST_TYPE_WDS &&
62 		    ase->type != CDP_TXRX_AST_TYPE_DA)
63 			continue;
64 
65 		if (ase->is_active) {
66 			if (del_ctxt->age)
67 				ase->is_active = FALSE;
68 
69 			continue;
70 		}
71 
72 		if (del_ctxt->del_count < soc->max_ast_ageout_count) {
73 			DP_STATS_INC(soc, ast.aged_out, 1);
74 			dp_peer_del_ast(soc, ase);
75 			del_ctxt->del_count++;
76 		} else {
77 			soc->pending_ageout = true;
78 			if (!del_ctxt->age)
79 				break;
80 		}
81 	}
82 }
83 
84 static void
85 dp_peer_age_mec_entries(struct dp_soc *soc)
86 {
87 	uint32_t index;
88 	struct dp_mec_entry *mecentry, *mecentry_next;
89 
90 	TAILQ_HEAD(, dp_mec_entry) free_list;
91 	TAILQ_INIT(&free_list);
92 
93 	for (index = 0; index <= soc->mec_hash.mask; index++) {
94 		qdf_spin_lock_bh(&soc->mec_lock);
95 		/*
96 		 * Expire MEC entry every n sec.
97 		 */
98 		if (!TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
99 			TAILQ_FOREACH_SAFE(mecentry, &soc->mec_hash.bins[index],
100 					   hash_list_elem, mecentry_next) {
101 				if (mecentry->is_active) {
102 					mecentry->is_active = FALSE;
103 					continue;
104 				}
105 				dp_peer_mec_detach_entry(soc, mecentry,
106 							 &free_list);
107 			}
108 		}
109 		qdf_spin_unlock_bh(&soc->mec_lock);
110 	}
111 
112 	dp_peer_mec_free_list(soc, &free_list);
113 }
114 
115 static void dp_ast_aging_timer_fn(void *soc_hdl)
116 {
117 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
118 	struct ast_del_ctxt del_ctxt = {0};
119 
120 
121 	if (soc->wds_ast_aging_timer_cnt++ >= DP_WDS_AST_AGING_TIMER_CNT) {
122 		del_ctxt.age = true;
123 		soc->wds_ast_aging_timer_cnt = 0;
124 	}
125 
126 	if (soc->pending_ageout || del_ctxt.age) {
127 		soc->pending_ageout = false;
128 
129 		/* AST list access lock */
130 		qdf_spin_lock_bh(&soc->ast_lock);
131 
132 		dp_soc_iterate_peer(soc, dp_peer_age_ast_entries, &del_ctxt,
133 				    DP_MOD_ID_AST);
134 		qdf_spin_unlock_bh(&soc->ast_lock);
135 	}
136 
137 	/*
138 	 * If NSS offload is enabled, the MEC timeout
139 	 * will be managed by NSS.
140 	 */
141 	if (qdf_atomic_read(&soc->mec_cnt) &&
142 	    !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
143 		dp_peer_age_mec_entries(soc);
144 
145 	if (qdf_atomic_read(&soc->cmn_init_done))
146 		qdf_timer_mod(&soc->ast_aging_timer,
147 			      DP_AST_AGING_TIMER_DEFAULT_MS);
148 }
149 
150 /*
151  * dp_soc_wds_attach() - Setup WDS timer and AST table
152  * @soc:		Datapath SOC handle
153  *
154  * Return: None
155  */
156 void dp_soc_wds_attach(struct dp_soc *soc)
157 {
158 	soc->wds_ast_aging_timer_cnt = 0;
159 	soc->pending_ageout = false;
160 	qdf_timer_init(soc->osdev, &soc->ast_aging_timer,
161 		       dp_ast_aging_timer_fn, (void *)soc,
162 		       QDF_TIMER_TYPE_WAKE_APPS);
163 
164 	qdf_timer_mod(&soc->ast_aging_timer, DP_AST_AGING_TIMER_DEFAULT_MS);
165 }
166 
167 /*
168  * dp_soc_wds_detach() - Detach WDS data structures and timers
169  * @txrx_soc: DP SOC handle
170  *
171  * Return: None
172  */
173 void dp_soc_wds_detach(struct dp_soc *soc)
174 {
175 	qdf_timer_stop(&soc->ast_aging_timer);
176 	qdf_timer_free(&soc->ast_aging_timer);
177 }
178 
179 /**
180  * dp_tx_mec_handler() - Tx  MEC Notify Handler
181  * @vdev: pointer to dp dev handler
182  * @status : Tx completion status from HTT descriptor
183  *
184  * Handles MEC notify event sent from fw to Host
185  *
186  * Return: none
187  */
188 void dp_tx_mec_handler(struct dp_vdev *vdev, uint8_t *status)
189 {
190 	struct dp_soc *soc;
191 	QDF_STATUS add_mec_status;
192 	uint8_t mac_addr[QDF_MAC_ADDR_SIZE], i;
193 
194 	if (!vdev->mec_enabled)
195 		return;
196 
197 	/* MEC required only in STA mode */
198 	if (vdev->opmode != wlan_op_mode_sta)
199 		return;
200 
201 	soc = vdev->pdev->soc;
202 
203 	for (i = 0; i < QDF_MAC_ADDR_SIZE; i++)
204 		mac_addr[(QDF_MAC_ADDR_SIZE - 1) - i] =
205 					status[(QDF_MAC_ADDR_SIZE - 2) + i];
206 
207 	dp_peer_debug("%pK: MEC add for mac_addr "QDF_MAC_ADDR_FMT,
208 		      soc, QDF_MAC_ADDR_REF(mac_addr));
209 
210 	if (qdf_mem_cmp(mac_addr, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE)) {
211 		add_mec_status = dp_peer_mec_add_entry(soc, vdev, mac_addr);
212 		dp_peer_debug("%pK: MEC add status %d", vdev, add_mec_status);
213 	}
214 }
215 
216 #ifndef QCA_HOST_MODE_WIFI_DISABLED
217 
218 /**
219  * dp_rx_da_learn() - Add AST entry based on DA lookup
220  *			This is a WAR for HK 1.0 and will
221  *			be removed in HK 2.0
222  *
223  * @soc: core txrx main context
224  * @rx_tlv_hdr	: start address of rx tlvs
225  * @ta_peer	: Transmitter peer entry
226  * @nbuf	: nbuf to retrieve destination mac for which AST will be added
227  *
228  */
229 void
230 dp_rx_da_learn(struct dp_soc *soc,
231 	       uint8_t *rx_tlv_hdr,
232 	       struct dp_peer *ta_peer,
233 	       qdf_nbuf_t nbuf)
234 {
235 	/* For HKv2 DA port learing is not needed */
236 	if (qdf_likely(soc->ast_override_support))
237 		return;
238 
239 	if (qdf_unlikely(!ta_peer))
240 		return;
241 
242 	if (qdf_unlikely(ta_peer->vdev->opmode != wlan_op_mode_ap))
243 		return;
244 
245 	if (!soc->da_war_enabled)
246 		return;
247 
248 	if (qdf_unlikely(!qdf_nbuf_is_da_valid(nbuf) &&
249 			 !qdf_nbuf_is_da_mcbc(nbuf))) {
250 		dp_peer_add_ast(soc,
251 				ta_peer,
252 				qdf_nbuf_data(nbuf),
253 				CDP_TXRX_AST_TYPE_DA,
254 				DP_AST_FLAGS_HM);
255 	}
256 }
257 
258 /**
259  * dp_txrx_set_wds_rx_policy() - API to store datapath
260  *                            config parameters
261  * @soc - datapath soc handle
262  * @vdev_id - id of datapath vdev handle
263  * @cfg: ini parameter handle
264  *
265  * Return: status
266  */
267 #ifdef WDS_VENDOR_EXTENSION
268 QDF_STATUS
269 dp_txrx_set_wds_rx_policy(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
270 			  u_int32_t val)
271 {
272 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
273 	struct dp_peer *peer;
274 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
275 						     DP_MOD_ID_MISC);
276 	if (!vdev) {
277 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
278 			  FL("vdev is NULL for vdev_id %d"), vdev_id);
279 		return QDF_STATUS_E_INVAL;
280 	}
281 
282 	peer = dp_vdev_bss_peer_ref_n_get(vdev, DP_MOD_ID_AST);
283 
284 	if (peer) {
285 		peer->wds_ecm.wds_rx_filter = 1;
286 		peer->wds_ecm.wds_rx_ucast_4addr =
287 			(val & WDS_POLICY_RX_UCAST_4ADDR) ? 1 : 0;
288 		peer->wds_ecm.wds_rx_mcast_4addr =
289 			(val & WDS_POLICY_RX_MCAST_4ADDR) ? 1 : 0;
290 		dp_peer_unref_delete(peer, DP_MOD_ID_AST);
291 	}
292 
293 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MISC);
294 	return QDF_STATUS_SUCCESS;
295 }
296 
297 /**
298  * dp_txrx_peer_wds_tx_policy_update() - API to set tx wds policy
299  *
300  * @cdp_soc: DP soc handle
301  * @vdev_id: id of vdev handle
302  * @peer_mac: peer mac address
303  * @wds_tx_ucast: policy for unicast transmission
304  * @wds_tx_mcast: policy for multicast transmission
305  *
306  * Return: void
307  */
308 QDF_STATUS
309 dp_txrx_peer_wds_tx_policy_update(struct cdp_soc_t *soc,  uint8_t vdev_id,
310 				  uint8_t *peer_mac, int wds_tx_ucast,
311 				  int wds_tx_mcast)
312 {
313 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
314 						       peer_mac, 0,
315 						       vdev_id,
316 						       DP_MOD_ID_AST);
317 	if (!peer) {
318 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
319 			  FL("peer is NULL for mac %pM vdev_id %d"),
320 			  peer_mac, vdev_id);
321 		return QDF_STATUS_E_INVAL;
322 	}
323 
324 	if (wds_tx_ucast || wds_tx_mcast) {
325 		peer->wds_enabled = 1;
326 		peer->wds_ecm.wds_tx_ucast_4addr = wds_tx_ucast;
327 		peer->wds_ecm.wds_tx_mcast_4addr = wds_tx_mcast;
328 	} else {
329 		peer->wds_enabled = 0;
330 		peer->wds_ecm.wds_tx_ucast_4addr = 0;
331 		peer->wds_ecm.wds_tx_mcast_4addr = 0;
332 	}
333 
334 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
335 		  "Policy Update set to :\n");
336 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
337 		  "peer->wds_enabled %d\n", peer->wds_enabled);
338 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
339 		  "peer->wds_ecm.wds_tx_ucast_4addr %d\n",
340 		  peer->wds_ecm.wds_tx_ucast_4addr);
341 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
342 		  "peer->wds_ecm.wds_tx_mcast_4addr %d\n",
343 		  peer->wds_ecm.wds_tx_mcast_4addr);
344 
345 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
346 	return QDF_STATUS_SUCCESS;
347 }
348 
349 int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
350 			   struct dp_vdev *vdev,
351 			   struct dp_peer *peer)
352 {
353 	struct dp_peer *bss_peer;
354 	int fr_ds, to_ds, rx_3addr, rx_4addr;
355 	int rx_policy_ucast, rx_policy_mcast;
356 	hal_soc_handle_t hal_soc = vdev->pdev->soc->hal_soc;
357 	int rx_mcast = hal_rx_msdu_end_da_is_mcbc_get(hal_soc, rx_tlv_hdr);
358 
359 	if (vdev->opmode == wlan_op_mode_ap) {
360 		bss_peer = dp_vdev_bss_peer_ref_n_get(vdev, DP_MOD_ID_AST);
361 		/* if wds policy check is not enabled on this vdev, accept all frames */
362 		if (bss_peer && !bss_peer->wds_ecm.wds_rx_filter) {
363 			dp_peer_unref_delete(bss_peer, DP_MOD_ID_AST);
364 			return 1;
365 		}
366 		rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
367 		rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
368 		dp_peer_unref_delete(bss_peer, DP_MOD_ID_AST);
369 	} else {             /* sta mode */
370 		if (!peer->wds_ecm.wds_rx_filter) {
371 			return 1;
372 		}
373 		rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
374 		rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
375 	}
376 
377 	/* ------------------------------------------------
378 	 *                       self
379 	 * peer-             rx  rx-
380 	 * wds  ucast mcast dir policy accept note
381 	 * ------------------------------------------------
382 	 * 1     1     0     11  x1     1      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
383 	 * 1     1     0     01  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
384 	 * 1     1     0     10  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
385 	 * 1     1     0     00  x1     0      bad frame, won't see it
386 	 * 1     0     1     11  1x     1      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
387 	 * 1     0     1     01  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
388 	 * 1     0     1     10  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
389 	 * 1     0     1     00  1x     0      bad frame, won't see it
390 	 * 1     1     0     11  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
391 	 * 1     1     0     01  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
392 	 * 1     1     0     10  x0     1      AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
393 	 * 1     1     0     00  x0     0      bad frame, won't see it
394 	 * 1     0     1     11  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
395 	 * 1     0     1     01  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
396 	 * 1     0     1     10  0x     1      AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
397 	 * 1     0     1     00  0x     0      bad frame, won't see it
398 	 *
399 	 * 0     x     x     11  xx     0      we only accept td-ds Rx frames from non-wds peers in mode.
400 	 * 0     x     x     01  xx     1
401 	 * 0     x     x     10  xx     0
402 	 * 0     x     x     00  xx     0      bad frame, won't see it
403 	 * ------------------------------------------------
404 	 */
405 
406 	fr_ds = hal_rx_mpdu_get_fr_ds(hal_soc, rx_tlv_hdr);
407 	to_ds = hal_rx_mpdu_get_to_ds(hal_soc, rx_tlv_hdr);
408 	rx_3addr = fr_ds ^ to_ds;
409 	rx_4addr = fr_ds & to_ds;
410 
411 	if (vdev->opmode == wlan_op_mode_ap) {
412 		if ((!peer->wds_enabled && rx_3addr && to_ds) ||
413 				(peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
414 				(peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
415 			return 1;
416 		}
417 	} else {           /* sta mode */
418 		if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
419 				(rx_mcast && (rx_4addr == rx_policy_mcast))) {
420 			return 1;
421 		}
422 	}
423 	return 0;
424 }
425 #endif
426 
427 /**
428  * dp_tx_add_groupkey_metadata - Add group key in metadata
429  * @vdev: DP vdev handle
430  * @msdu_info: MSDU info to be setup in MSDU descriptor
431  * @group_key: Group key index programmed in metadata
432  *
433  * Return: void
434  */
435 #ifdef QCA_MULTIPASS_SUPPORT
436 static
437 void dp_tx_add_groupkey_metadata(struct dp_vdev *vdev,
438 		struct dp_tx_msdu_info_s *msdu_info, uint16_t group_key)
439 {
440 	struct htt_tx_msdu_desc_ext2_t *meta_data =
441 		(struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
442 
443 	qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
444 
445 	/*
446 	 * When attempting to send a multicast packet with multi-passphrase,
447 	 * host shall add HTT EXT meta data "struct htt_tx_msdu_desc_ext2_t"
448 	 * ref htt.h indicating the group_id field in "key_flags" also having
449 	 * "valid_key_flags" as 1. Assign “key_flags = group_key_ix”.
450 	 */
451 	HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info->meta_data[0], 1);
452 	HTT_TX_MSDU_EXT2_DESC_KEY_FLAGS_SET(msdu_info->meta_data[2], group_key);
453 }
454 
455 /**
456  * dp_tx_remove_vlan_tag - Remove 4 bytes of vlan tag
457  * @vdev: DP vdev handle
458  * @tx_desc: Tx Descriptor Handle
459  *
460  * Return: void
461  */
462 static
463 void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
464 {
465 	struct vlan_ethhdr veth_hdr;
466 	struct vlan_ethhdr *veh = (struct vlan_ethhdr *)nbuf->data;
467 
468 	/*
469 	 * Extract VLAN header of 4 bytes:
470 	 * Frame Format : {dst_addr[6], src_addr[6], 802.1Q header[4], EtherType[2], Payload}
471 	 * Before Removal : xx xx xx xx xx xx xx xx xx xx xx xx 81 00 00 02 08 00 45 00 00...
472 	 * After Removal  : xx xx xx xx xx xx xx xx xx xx xx xx 08 00 45 00 00...
473 	 */
474 	qdf_mem_copy(&veth_hdr, veh, sizeof(veth_hdr));
475 	qdf_nbuf_pull_head(nbuf, ETHERTYPE_VLAN_LEN);
476 	veh = (struct vlan_ethhdr *)nbuf->data;
477 	qdf_mem_copy(veh, &veth_hdr, 2 * QDF_MAC_ADDR_SIZE);
478 	return;
479 }
480 
481 /**
482  * dp_tx_need_multipass_process - If frame needs multipass phrase processing
483  * @vdev: DP vdev handle
484  * @tx_desc: Tx Descriptor Handle
485  * @vlan_id: vlan id of frame
486  *
487  * Return: whether peer is special or classic
488  */
489 static
490 uint8_t dp_tx_need_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
491 			   qdf_nbuf_t buf, uint16_t *vlan_id)
492 {
493 	struct dp_peer *peer = NULL;
494 	qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(buf);
495 	struct vlan_ethhdr *veh = NULL;
496 	bool not_vlan = ((vdev->tx_encap_type == htt_cmn_pkt_type_raw) ||
497 			(htons(eh->ether_type) != ETH_P_8021Q));
498 
499 	if (qdf_unlikely(not_vlan))
500 		return DP_VLAN_UNTAGGED;
501 
502 	veh = (struct vlan_ethhdr *)eh;
503 	*vlan_id = (ntohs(veh->h_vlan_TCI) & VLAN_VID_MASK);
504 
505 	if (qdf_unlikely(DP_FRAME_IS_MULTICAST((eh)->ether_dhost))) {
506 		qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
507 		TAILQ_FOREACH(peer, &vdev->mpass_peer_list,
508 			      mpass_peer_list_elem) {
509 			if (*vlan_id == peer->vlan_id) {
510 				qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
511 				return DP_VLAN_TAGGED_MULTICAST;
512 			}
513 		}
514 		qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
515 		return DP_VLAN_UNTAGGED;
516 	}
517 
518 	peer = dp_peer_find_hash_find(soc, eh->ether_dhost, 0, DP_VDEV_ALL,
519 				      DP_MOD_ID_TX_MULTIPASS);
520 
521 	if (qdf_unlikely(peer == NULL))
522 		return DP_VLAN_UNTAGGED;
523 
524 	/*
525 	 * Do not drop the frame when vlan_id doesn't match.
526 	 * Send the frame as it is.
527 	 */
528 	if (*vlan_id == peer->vlan_id) {
529 		dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
530 		return DP_VLAN_TAGGED_UNICAST;
531 	}
532 
533 	dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
534 	return DP_VLAN_UNTAGGED;
535 }
536 
537 /**
538  * dp_tx_multipass_process - Process vlan frames in tx path
539  * @soc: dp soc handle
540  * @vdev: DP vdev handle
541  * @nbuf: skb
542  * @msdu_info: msdu descriptor
543  *
544  * Return: status whether frame needs to be dropped or transmitted
545  */
546 bool dp_tx_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
547 			     qdf_nbuf_t nbuf,
548 			     struct dp_tx_msdu_info_s *msdu_info)
549 {
550 	uint16_t vlan_id = 0;
551 	uint16_t group_key = 0;
552 	uint8_t is_spcl_peer = DP_VLAN_UNTAGGED;
553 	qdf_nbuf_t nbuf_copy = NULL;
554 
555 	if (HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_GET(msdu_info->meta_data[0])) {
556 		return true;
557 	}
558 
559 	is_spcl_peer = dp_tx_need_multipass_process(soc, vdev, nbuf, &vlan_id);
560 
561 	if ((is_spcl_peer != DP_VLAN_TAGGED_MULTICAST) &&
562 	    (is_spcl_peer != DP_VLAN_TAGGED_UNICAST))
563 		return true;
564 
565 	if (is_spcl_peer == DP_VLAN_TAGGED_UNICAST) {
566 		dp_tx_remove_vlan_tag(vdev, nbuf);
567 		return true;
568 	}
569 
570 	/* AP can have classic clients, special clients &
571 	 * classic repeaters.
572 	 * 1. Classic clients & special client:
573 	 *	Remove vlan header, find corresponding group key
574 	 *	index, fill in metaheader and enqueue multicast
575 	 *	frame to TCL.
576 	 * 2. Classic repeater:
577 	 *	Pass through to classic repeater with vlan tag
578 	 *	intact without any group key index. Hardware
579 	 *	will know which key to use to send frame to
580 	 *	repeater.
581 	 */
582 	nbuf_copy = qdf_nbuf_copy(nbuf);
583 
584 	/*
585 	 * Send multicast frame to special peers even
586 	 * if pass through to classic repeater fails.
587 	 */
588 	if (nbuf_copy) {
589 		struct dp_tx_msdu_info_s msdu_info_copy;
590 		qdf_mem_zero(&msdu_info_copy, sizeof(msdu_info_copy));
591 		msdu_info_copy.tid = HTT_TX_EXT_TID_INVALID;
592 		HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info_copy.meta_data[0], 1);
593 		nbuf_copy = dp_tx_send_msdu_single(vdev, nbuf_copy, &msdu_info_copy, HTT_INVALID_PEER, NULL);
594 		if (nbuf_copy) {
595 			qdf_nbuf_free(nbuf_copy);
596 			qdf_err("nbuf_copy send failed");
597 		}
598 	}
599 
600 	group_key = vdev->iv_vlan_map[vlan_id];
601 
602 	/*
603 	 * If group key is not installed, drop the frame.
604 	 */
605 	if (!group_key)
606 		return false;
607 
608 	dp_tx_remove_vlan_tag(vdev, nbuf);
609 	dp_tx_add_groupkey_metadata(vdev, msdu_info, group_key);
610 	msdu_info->exception_fw = 1;
611 	return true;
612 }
613 
614 /**
615  * dp_rx_multipass_process - insert vlan tag on frames for traffic separation
616  * @vdev: DP vdev handle
617  * @nbuf: skb
618  * @tid: traffic priority
619  *
620  * Return: bool: true in case of success else false
621  * Success is considered if:
622  *  i. If frame has vlan header
623  *  ii. If the frame comes from different peer and dont need multipass processing
624  * Failure is considered if:
625  *  i. Frame comes from multipass peer but doesn't contain vlan header.
626  *  In failure case, drop such frames.
627  */
628 bool dp_rx_multipass_process(struct dp_peer *peer, qdf_nbuf_t nbuf, uint8_t tid)
629 {
630 	struct vlan_ethhdr *vethhdrp;
631 
632 	if (qdf_unlikely(!peer->vlan_id))
633 	       return true;
634 
635 	vethhdrp = (struct vlan_ethhdr *)qdf_nbuf_data(nbuf);
636 	/*
637 	 * h_vlan_proto & h_vlan_TCI should be 0x8100 & zero respectively
638 	 * as it is expected to be padded by 0
639 	 * return false if frame doesn't have above tag so that caller will
640 	 * drop the frame.
641 	 */
642 	if (qdf_unlikely(vethhdrp->h_vlan_proto != htons(QDF_ETH_TYPE_8021Q)) ||
643 	    qdf_unlikely(vethhdrp->h_vlan_TCI != 0))
644 		return false;
645 
646 	vethhdrp->h_vlan_TCI = htons(((tid & 0x7) << VLAN_PRIO_SHIFT) |
647 		(peer->vlan_id & VLAN_VID_MASK));
648 	return true;
649 }
650 
651 #endif /* QCA_MULTIPASS_SUPPORT */
652 
653 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
654 
655 #ifdef QCA_MULTIPASS_SUPPORT
656 
657 /**
658  * dp_peer_multipass_list_remove: remove peer from list
659  * @peer: pointer to peer
660  *
661  * return: void
662  */
663 void dp_peer_multipass_list_remove(struct dp_peer *peer)
664 {
665 	struct dp_vdev *vdev = peer->vdev;
666 	struct dp_peer *tpeer = NULL;
667 	bool found = 0;
668 
669 	qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
670 	TAILQ_FOREACH(tpeer, &vdev->mpass_peer_list, mpass_peer_list_elem) {
671 		if (tpeer == peer) {
672 			found = 1;
673 			TAILQ_REMOVE(&vdev->mpass_peer_list, peer, mpass_peer_list_elem);
674 			break;
675 		}
676 	}
677 
678 	qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
679 
680 	if (found)
681 		dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
682 }
683 
684 /**
685  * dp_peer_multipass_list_add: add to new multipass list
686  * @dp_soc: soc handle
687  * @peer_mac: mac address
688  * @vdev_id: vdev id for peer
689  * @vlan_id: vlan_id
690  *
691  * return: void
692  */
693 static void dp_peer_multipass_list_add(struct dp_soc *soc, uint8_t *peer_mac,
694 				       uint8_t vdev_id, uint16_t vlan_id)
695 {
696 	struct dp_peer *peer =
697 			dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
698 					       DP_MOD_ID_TX_MULTIPASS);
699 
700 	if (qdf_unlikely(!peer)) {
701 		qdf_err("NULL peer");
702 		return;
703 	}
704 
705 	/* If peer already exists in vdev multipass list, do not add it.
706 	 * This may happen if key install comes twice or re-key
707 	 * happens for a peer.
708 	 */
709 	if (peer->vlan_id) {
710 		dp_debug("peer already added to vdev multipass list"
711 			 "MAC: "QDF_MAC_ADDR_FMT" vlan: %d ",
712 			 QDF_MAC_ADDR_REF(peer->mac_addr.raw), peer->vlan_id);
713 		dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
714 		return;
715 	}
716 
717 	/*
718 	 * Ref_cnt is incremented inside dp_peer_find_hash_find().
719 	 * Decrement it when element is deleted from the list.
720 	 */
721 	peer->vlan_id = vlan_id;
722 	qdf_spin_lock_bh(&peer->vdev->mpass_peer_mutex);
723 	TAILQ_INSERT_HEAD(&peer->vdev->mpass_peer_list, peer,
724 			  mpass_peer_list_elem);
725 	qdf_spin_unlock_bh(&peer->vdev->mpass_peer_mutex);
726 }
727 
728 /**
729  * dp_peer_set_vlan_id: set vlan_id for this peer
730  * @cdp_soc: soc handle
731  * @vdev_id: vdev id for peer
732  * @peer_mac: mac address
733  * @vlan_id: vlan id for peer
734  *
735  * return: void
736  */
737 void dp_peer_set_vlan_id(struct cdp_soc_t *cdp_soc,
738 		uint8_t vdev_id, uint8_t *peer_mac,
739 		uint16_t vlan_id)
740 {
741 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
742 	struct dp_vdev *vdev =
743 		dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
744 				      DP_MOD_ID_TX_MULTIPASS);
745 
746 	if (vdev && vdev->multipass_en) {
747 		dp_peer_multipass_list_add(soc, peer_mac, vdev_id, vlan_id);
748 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
749 	}
750 }
751 
752 /**
753  * dp_set_vlan_groupkey: set vlan map for vdev
754  * @soc: pointer to soc
755  * @vdev_id : id of vdev
756  * @vlan_id: vlan_id
757  * @group_key: group key for vlan
758  *
759  * return: set success/failure
760  */
761 QDF_STATUS dp_set_vlan_groupkey(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
762 				uint16_t vlan_id, uint16_t group_key)
763 {
764 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
765 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
766 						     DP_MOD_ID_TX_MULTIPASS);
767 	QDF_STATUS status;
768 
769 	if (!vdev || !vdev->multipass_en) {
770 		status = QDF_STATUS_E_INVAL;
771 		goto fail;
772 	}
773 
774 	if (!vdev->iv_vlan_map) {
775 		uint16_t vlan_map_size = (sizeof(uint16_t))*DP_MAX_VLAN_IDS;
776 		vdev->iv_vlan_map = (uint16_t *)qdf_mem_malloc(vlan_map_size);
777 
778 		if (!vdev->iv_vlan_map) {
779 			QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "iv_vlan_map");
780 			status = QDF_STATUS_E_NOMEM;
781 			goto fail;
782 		}
783 
784 		/*
785 		 * 0 is invalid group key.
786 		 * Initilalize array with invalid group keys.
787 		 */
788 		qdf_mem_zero(vdev->iv_vlan_map, vlan_map_size);
789 	}
790 
791 	if (vlan_id >= DP_MAX_VLAN_IDS) {
792 		status = QDF_STATUS_E_INVAL;
793 		goto fail;
794 	}
795 
796 	vdev->iv_vlan_map[vlan_id] = group_key;
797 	status = QDF_STATUS_SUCCESS;
798 fail:
799 	if (vdev)
800 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
801 	return status;
802 }
803 
804 /**
805  * dp_tx_vdev_multipass_deinit: set vlan map for vdev
806  * @vdev_handle: pointer to vdev
807  *
808  * return: void
809  */
810 void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev)
811 {
812 	struct dp_peer *peer = NULL;
813 	qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
814 	TAILQ_FOREACH(peer, &vdev->mpass_peer_list, mpass_peer_list_elem)
815 		qdf_err("Peers present in mpass list :" QDF_MAC_ADDR_FMT,
816 			QDF_MAC_ADDR_REF(peer->mac_addr.raw));
817 	qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
818 
819 	if (vdev->iv_vlan_map) {
820 		qdf_mem_free(vdev->iv_vlan_map);
821 		vdev->iv_vlan_map = NULL;
822 	}
823 
824 	qdf_spinlock_destroy(&vdev->mpass_peer_mutex);
825 }
826 
827 /**
828  * dp_peer_multipass_list_init: initialize peer mulitpass list
829  * @vdev_handle: pointer to vdev
830  *
831  * return: set success/failure
832  */
833 void dp_peer_multipass_list_init(struct dp_vdev *vdev)
834 {
835 	/*
836 	 * vdev->iv_vlan_map is allocated when the first configuration command
837 	 * is issued to avoid unnecessary allocation for regular mode VAP.
838 	 */
839 	TAILQ_INIT(&vdev->mpass_peer_list);
840 	qdf_spinlock_create(&vdev->mpass_peer_mutex);
841 }
842 #endif /* QCA_MULTIPASS_SUPPORT */
843 
844 #ifdef QCA_PEER_MULTIQ_SUPPORT
845 
846 /**
847  * dp_peer_reset_flowq_map() - reset peer flowq map table
848  * @peer - dp peer handle
849  *
850  * Return: none
851  */
852 void dp_peer_reset_flowq_map(struct dp_peer *peer)
853 {
854 	int i = 0;
855 
856 	if (!peer)
857 		return;
858 
859 	for (i = 0; i < DP_PEER_AST_FLOWQ_MAX; i++) {
860 		peer->peer_ast_flowq_idx[i].is_valid = false;
861 		peer->peer_ast_flowq_idx[i].valid_tid_mask = false;
862 		peer->peer_ast_flowq_idx[i].ast_idx = DP_INVALID_AST_IDX;
863 		peer->peer_ast_flowq_idx[i].flowQ = DP_INVALID_FLOW_PRIORITY;
864 	}
865 }
866 
867 /**
868  * dp_peer_get_flowid_from_flowmask() - get flow id from flow mask
869  * @peer - dp peer handle
870  * @mask - flow mask
871  *
872  * Return: flow id
873  */
874 static int dp_peer_get_flowid_from_flowmask(struct dp_peer *peer,
875 		uint8_t mask)
876 {
877 	if (!peer) {
878 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
879 				"%s: Invalid peer\n", __func__);
880 		return -1;
881 	}
882 
883 	if (mask & DP_PEER_AST0_FLOW_MASK)
884 		return DP_PEER_AST_FLOWQ_UDP;
885 	else if (mask & DP_PEER_AST1_FLOW_MASK)
886 		return DP_PEER_AST_FLOWQ_NON_UDP;
887 	else if (mask & DP_PEER_AST2_FLOW_MASK)
888 		return DP_PEER_AST_FLOWQ_HI_PRIO;
889 	else if (mask & DP_PEER_AST3_FLOW_MASK)
890 		return DP_PEER_AST_FLOWQ_LOW_PRIO;
891 
892 	return DP_PEER_AST_FLOWQ_MAX;
893 }
894 
895 /**
896  * dp_peer_get_ast_valid() - get ast index valid from mask
897  * @mask - mask for ast valid bits
898  * @index - index for an ast
899  *
900  * Return - 1 if ast index is valid from mask else 0
901  */
902 static inline bool dp_peer_get_ast_valid(uint8_t mask, uint16_t index)
903 {
904 	if (index == 0)
905 		return 1;
906 	return ((mask) & (1 << ((index) - 1)));
907 }
908 
909 /**
910  * dp_peer_ast_index_flow_queue_map_create() - create ast index flow queue map
911  * @soc - genereic soc handle
912  * @is_wds - flag to indicate if peer is wds
913  * @peer_id - peer_id from htt peer map message
914  * @peer_mac_addr - mac address of the peer
915  * @ast_info - ast flow override information from peer map
916  *
917  * Return: none
918  */
919 void dp_peer_ast_index_flow_queue_map_create(void *soc_hdl,
920 		bool is_wds, uint16_t peer_id, uint8_t *peer_mac_addr,
921 		struct dp_ast_flow_override_info *ast_info)
922 {
923 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
924 	struct dp_peer *peer = NULL;
925 	uint8_t i;
926 
927 	/*
928 	 * Ast flow override feature is supported
929 	 * only for connected client
930 	 */
931 	if (is_wds)
932 		return;
933 
934 	peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_AST);
935 	if (!peer) {
936 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
937 				"%s: Invalid peer\n", __func__);
938 		return;
939 	}
940 
941 	/* Valid only in AP mode */
942 	if (peer->vdev->opmode != wlan_op_mode_ap) {
943 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
944 				"%s: Peer ast flow map not in STA mode\n", __func__);
945 		goto end;
946 	}
947 
948 	/* Making sure the peer is for this mac address */
949 	if (!qdf_is_macaddr_equal((struct qdf_mac_addr *)peer_mac_addr,
950 				(struct qdf_mac_addr *)peer->mac_addr.raw)) {
951 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
952 				"%s: Peer mac address mismatch\n", __func__);
953 		goto end;
954 	}
955 
956 	/* Ast entry flow mapping not valid for self peer map */
957 	if (qdf_is_macaddr_equal((struct qdf_mac_addr *)peer_mac_addr,
958 				(struct qdf_mac_addr *)peer->vdev->mac_addr.raw)) {
959 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
960 				"%s: Ast flow mapping not valid for self peer \n", __func__);
961 		goto end;
962 	}
963 
964 	/* Fill up ast index <---> flow id mapping table for this peer */
965 	for (i = 0; i < DP_MAX_AST_INDEX_PER_PEER; i++) {
966 
967 		/* Check if this ast index is valid */
968 		peer->peer_ast_flowq_idx[i].is_valid =
969 			dp_peer_get_ast_valid(ast_info->ast_valid_mask, i);
970 		if (!peer->peer_ast_flowq_idx[i].is_valid)
971 			continue;
972 
973 		/* Get the flow queue id which is mapped to this ast index */
974 		peer->peer_ast_flowq_idx[i].flowQ =
975 			dp_peer_get_flowid_from_flowmask(peer,
976 					ast_info->ast_flow_mask[i]);
977 		/*
978 		 * Update tid valid mask only if flow id HIGH or
979 		 * Low priority
980 		 */
981 		if (peer->peer_ast_flowq_idx[i].flowQ ==
982 				DP_PEER_AST_FLOWQ_HI_PRIO) {
983 			peer->peer_ast_flowq_idx[i].valid_tid_mask =
984 				ast_info->tid_valid_hi_pri_mask;
985 		} else if (peer->peer_ast_flowq_idx[i].flowQ ==
986 				DP_PEER_AST_FLOWQ_LOW_PRIO) {
987 			peer->peer_ast_flowq_idx[i].valid_tid_mask =
988 				ast_info->tid_valid_low_pri_mask;
989 		}
990 
991 		/* Save the ast index for this entry */
992 		peer->peer_ast_flowq_idx[i].ast_idx = ast_info->ast_idx[i];
993 	}
994 
995 	if (soc->cdp_soc.ol_ops->peer_ast_flowid_map) {
996 		soc->cdp_soc.ol_ops->peer_ast_flowid_map(
997 				soc->ctrl_psoc, peer->peer_id,
998 				peer->vdev->vdev_id, peer_mac_addr);
999 	}
1000 
1001 end:
1002 	/* Release peer reference */
1003 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
1004 }
1005 
1006 /**
1007  * dp_peer_find_ast_index_by_flowq_id() - API to get ast idx for a given flowid
1008  * @soc - soc handle
1009  * @peer_mac_addr - mac address of the peer
1010  * @flow_id - flow id to find ast index
1011  *
1012  * Return: ast index for a given flow id, -1 for fail cases
1013  */
1014 int dp_peer_find_ast_index_by_flowq_id(struct cdp_soc_t *soc,
1015 		uint16_t vdev_id, uint8_t *peer_mac_addr,
1016 		uint8_t flow_id, uint8_t tid)
1017 {
1018 	struct dp_peer *peer = NULL;
1019 	uint8_t i;
1020 	uint16_t ast_index;
1021 
1022 	if (flow_id >= DP_PEER_AST_FLOWQ_MAX) {
1023 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1024 				"Invalid Flow ID %d\n", flow_id);
1025 		return -1;
1026 	}
1027 
1028 	peer = dp_peer_find_hash_find((struct dp_soc *)soc,
1029 				peer_mac_addr, 0, vdev_id,
1030 				DP_MOD_ID_AST);
1031 	if (!peer) {
1032 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1033 				"%s: Invalid peer\n", __func__);
1034 		return -1;
1035 	}
1036 
1037 	 /*
1038 	  * Loop over the ast entry <----> flow-id mapping to find
1039 	  * which ast index entry has this flow queue id enabled.
1040 	  */
1041 	for (i = 0; i < DP_PEER_AST_FLOWQ_MAX; i++) {
1042 		if (peer->peer_ast_flowq_idx[i].flowQ == flow_id)
1043 			/*
1044 			 * Found the matching index for this flow id
1045 			 */
1046 			break;
1047 	}
1048 
1049 	/*
1050 	 * No match found for this flow id
1051 	 */
1052 	if (i == DP_PEER_AST_FLOWQ_MAX) {
1053 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1054 				"%s: ast index not found for flow %d\n", __func__, flow_id);
1055 		dp_peer_unref_delete(peer, DP_MOD_ID_AST);
1056 		return -1;
1057 	}
1058 
1059 	/* Check whether this ast entry is valid */
1060 	if (!peer->peer_ast_flowq_idx[i].is_valid) {
1061 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1062 				"%s: ast index is invalid for flow %d\n", __func__, flow_id);
1063 		dp_peer_unref_delete(peer, DP_MOD_ID_AST);
1064 		return -1;
1065 	}
1066 
1067 	if (flow_id == DP_PEER_AST_FLOWQ_HI_PRIO ||
1068 			flow_id == DP_PEER_AST_FLOWQ_LOW_PRIO) {
1069 		/*
1070 		 * check if this tid is valid for Hi
1071 		 * and Low priority flow id
1072 		 */
1073 		if ((peer->peer_ast_flowq_idx[i].valid_tid_mask
1074 					& (1 << tid))) {
1075 			/* Release peer reference */
1076 			ast_index = peer->peer_ast_flowq_idx[i].ast_idx;
1077 			dp_peer_unref_delete(peer, DP_MOD_ID_AST);
1078 			return ast_index;
1079 		} else {
1080 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1081 					"%s: TID %d is not valid for flow %d\n",
1082 					__func__, tid, flow_id);
1083 			/*
1084 			 * TID is not valid for this flow
1085 			 * Return -1
1086 			 */
1087 			dp_peer_unref_delete(peer, DP_MOD_ID_AST);
1088 			return -1;
1089 		}
1090 	}
1091 
1092 	/*
1093 	 * TID valid check not required for
1094 	 * UDP/NON UDP flow id
1095 	 */
1096 	ast_index = peer->peer_ast_flowq_idx[i].ast_idx;
1097 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
1098 	return ast_index;
1099 }
1100 #endif
1101 
1102 void dp_hmwds_ast_add_notify(struct dp_peer *peer,
1103 			     uint8_t *mac_addr,
1104 			     enum cdp_txrx_ast_entry_type type,
1105 			     QDF_STATUS err,
1106 			     bool is_peer_map)
1107 {
1108 	struct dp_vdev *dp_vdev = peer->vdev;
1109 	struct dp_pdev *dp_pdev = dp_vdev->pdev;
1110 	struct cdp_peer_hmwds_ast_add_status add_status;
1111 
1112 	/* Ignore ast types other than HM */
1113 	if ((type != CDP_TXRX_AST_TYPE_WDS_HM) &&
1114 	    (type != CDP_TXRX_AST_TYPE_WDS_HM_SEC))
1115 		return;
1116 
1117 	/* existing ast delete in progress, will be attempted
1118 	 * to add again after delete is complete. Send status then.
1119 	 */
1120 	if (err == QDF_STATUS_E_AGAIN)
1121 		return;
1122 
1123 	/* peer map pending, notify actual status
1124 	 * when peer map is received.
1125 	 */
1126 	if (!is_peer_map && (err == QDF_STATUS_SUCCESS))
1127 		return;
1128 
1129 	qdf_mem_zero(&add_status, sizeof(add_status));
1130 	add_status.vdev_id = dp_vdev->vdev_id;
1131 	/* For type CDP_TXRX_AST_TYPE_WDS_HM_SEC dp_peer_add_ast()
1132 	 * returns QDF_STATUS_E_FAILURE as it is host only entry.
1133 	 * In such cases set err as success. Also err code set to
1134 	 * QDF_STATUS_E_ALREADY indicates entry already exist in
1135 	 * such cases set err as success too. Any other error code
1136 	 * is actual error.
1137 	 */
1138 	if (((type == CDP_TXRX_AST_TYPE_WDS_HM_SEC) &&
1139 	     (err == QDF_STATUS_E_FAILURE)) ||
1140 	    (err == QDF_STATUS_E_ALREADY)) {
1141 		err = QDF_STATUS_SUCCESS;
1142 	}
1143 	add_status.status = err;
1144 	qdf_mem_copy(add_status.peer_mac, peer->mac_addr.raw,
1145 		     QDF_MAC_ADDR_SIZE);
1146 	qdf_mem_copy(add_status.ast_mac, mac_addr,
1147 		     QDF_MAC_ADDR_SIZE);
1148 #ifdef WDI_EVENT_ENABLE
1149 	dp_wdi_event_handler(WDI_EVENT_HMWDS_AST_ADD_STATUS, dp_pdev->soc,
1150 			     (void *)&add_status, 0,
1151 			     WDI_NO_VAL, dp_pdev->pdev_id);
1152 #endif
1153 }
1154 
1155 #ifdef FEATURE_PERPKT_INFO
1156 /**
1157  * dp_get_completion_indication_for_stack() - send completion to stack
1158  * @soc : dp_soc handle
1159  * @pdev: dp_pdev handle
1160  * @peer: dp peer handle
1161  * @ts: transmit completion status structure
1162  * @netbuf: Buffer pointer for free
1163  *
1164  * This function is used for indication whether buffer needs to be
1165  * sent to stack for freeing or not
1166 */
1167 QDF_STATUS
1168 dp_get_completion_indication_for_stack(struct dp_soc *soc,
1169 				       struct dp_pdev *pdev,
1170 				       struct dp_peer *peer,
1171 				       struct hal_tx_completion_status *ts,
1172 				       qdf_nbuf_t netbuf,
1173 				       uint64_t time_latency)
1174 {
1175 	struct tx_capture_hdr *ppdu_hdr;
1176 	uint16_t peer_id = ts->peer_id;
1177 	uint32_t ppdu_id = ts->ppdu_id;
1178 	uint8_t first_msdu = ts->first_msdu;
1179 	uint8_t last_msdu = ts->last_msdu;
1180 	uint32_t txcap_hdr_size = sizeof(struct tx_capture_hdr);
1181 
1182 	if (qdf_unlikely(!dp_monitor_is_enable_tx_sniffer(pdev) &&
1183 			 !dp_monitor_is_enable_mcopy_mode(pdev) &&
1184 			 !pdev->latency_capture_enable))
1185 		return QDF_STATUS_E_NOSUPPORT;
1186 
1187 	if (!peer) {
1188 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1189 			  FL("Peer Invalid"));
1190 		return QDF_STATUS_E_INVAL;
1191 	}
1192 
1193 	/* If mcopy is enabled and mcopy_mode is M_COPY deliver 1st MSDU
1194 	 * per PPDU. If mcopy_mode is M_COPY_EXTENDED deliver 1st MSDU
1195 	 * for each MPDU
1196 	 */
1197 	if (dp_monitor_mcopy_check_deliver(pdev,
1198 					   peer_id,
1199 					   ppdu_id,
1200 					   first_msdu) != QDF_STATUS_SUCCESS)
1201 		return QDF_STATUS_E_INVAL;
1202 
1203 	if (qdf_unlikely(qdf_nbuf_headroom(netbuf) < txcap_hdr_size)) {
1204 		netbuf = qdf_nbuf_realloc_headroom(netbuf, txcap_hdr_size);
1205 		if (!netbuf) {
1206 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1207 				  FL("No headroom"));
1208 			return QDF_STATUS_E_NOMEM;
1209 		}
1210 	}
1211 
1212 	if (!qdf_nbuf_push_head(netbuf, txcap_hdr_size)) {
1213 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1214 			  FL("No headroom"));
1215 		return QDF_STATUS_E_NOMEM;
1216 	}
1217 
1218 	ppdu_hdr = (struct tx_capture_hdr *)qdf_nbuf_data(netbuf);
1219 	qdf_mem_copy(ppdu_hdr->ta, peer->vdev->mac_addr.raw,
1220 		     QDF_MAC_ADDR_SIZE);
1221 	qdf_mem_copy(ppdu_hdr->ra, peer->mac_addr.raw,
1222 		     QDF_MAC_ADDR_SIZE);
1223 	ppdu_hdr->ppdu_id = ppdu_id;
1224 	ppdu_hdr->peer_id = peer_id;
1225 	ppdu_hdr->first_msdu = first_msdu;
1226 	ppdu_hdr->last_msdu = last_msdu;
1227 	if (qdf_unlikely(pdev->latency_capture_enable)) {
1228 		ppdu_hdr->tsf = ts->tsf;
1229 		ppdu_hdr->time_latency = (uint32_t)time_latency;
1230 	}
1231 
1232 	return QDF_STATUS_SUCCESS;
1233 }
1234 
1235 /**
1236  * dp_send_completion_to_stack() - send completion to stack
1237  * @soc :  dp_soc handle
1238  * @pdev:  dp_pdev handle
1239  * @peer_id: peer_id of the peer for which completion came
1240  * @ppdu_id: ppdu_id
1241  * @netbuf: Buffer pointer for free
1242  *
1243  * This function is used to send completion to stack
1244  * to free buffer
1245 */
1246 void dp_send_completion_to_stack(struct dp_soc *soc,  struct dp_pdev *pdev,
1247 				 uint16_t peer_id, uint32_t ppdu_id,
1248 				 qdf_nbuf_t netbuf)
1249 {
1250 	dp_wdi_event_handler(WDI_EVENT_TX_DATA, soc,
1251 			     netbuf, peer_id,
1252 			     WDI_NO_VAL, pdev->pdev_id);
1253 }
1254 #endif
1255