xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_tx.c (revision bea437e2293c3d4fb1b5704fcf633aedac996962)
1 /*
2  * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "htt.h"
20 #include "dp_htt.h"
21 #include "hal_hw_headers.h"
22 #include "dp_tx.h"
23 #include "dp_tx_desc.h"
24 #include "dp_peer.h"
25 #include "dp_types.h"
26 #include "hal_tx.h"
27 #include "qdf_mem.h"
28 #include "qdf_nbuf.h"
29 #include "qdf_net_types.h"
30 #include <wlan_cfg.h>
31 #if defined(MESH_MODE_SUPPORT) || defined(FEATURE_PERPKT_INFO)
32 #include "if_meta_hdr.h"
33 #endif
34 #include "enet.h"
35 #include "dp_internal.h"
36 #ifdef FEATURE_WDS
37 #include "dp_txrx_wds.h"
38 #endif
39 #ifdef ATH_SUPPORT_IQUE
40 #include "dp_txrx_me.h"
41 #endif
42 
43 
44 /* TODO Add support in TSO */
45 #define DP_DESC_NUM_FRAG(x) 0
46 
47 /* disable TQM_BYPASS */
48 #define TQM_BYPASS_WAR 0
49 
50 /* invalid peer id for reinject*/
51 #define DP_INVALID_PEER 0XFFFE
52 
53 /*mapping between hal encrypt type and cdp_sec_type*/
54 #define MAX_CDP_SEC_TYPE 12
55 static const uint8_t sec_type_map[MAX_CDP_SEC_TYPE] = {
56 					HAL_TX_ENCRYPT_TYPE_NO_CIPHER,
57 					HAL_TX_ENCRYPT_TYPE_WEP_128,
58 					HAL_TX_ENCRYPT_TYPE_WEP_104,
59 					HAL_TX_ENCRYPT_TYPE_WEP_40,
60 					HAL_TX_ENCRYPT_TYPE_TKIP_WITH_MIC,
61 					HAL_TX_ENCRYPT_TYPE_TKIP_NO_MIC,
62 					HAL_TX_ENCRYPT_TYPE_AES_CCMP_128,
63 					HAL_TX_ENCRYPT_TYPE_WAPI,
64 					HAL_TX_ENCRYPT_TYPE_AES_CCMP_256,
65 					HAL_TX_ENCRYPT_TYPE_AES_GCMP_128,
66 					HAL_TX_ENCRYPT_TYPE_AES_GCMP_256,
67 					HAL_TX_ENCRYPT_TYPE_WAPI_GCM_SM4};
68 
69 #ifdef QCA_TX_LIMIT_CHECK
70 /**
71  * dp_tx_limit_check - Check if allocated tx descriptors reached
72  * soc max limit and pdev max limit
73  * @vdev: DP vdev handle
74  *
75  * Return: true if allocated tx descriptors reached max configured value, else
76  * false
77  */
78 static inline bool
79 dp_tx_limit_check(struct dp_vdev *vdev)
80 {
81 	struct dp_pdev *pdev = vdev->pdev;
82 	struct dp_soc *soc = pdev->soc;
83 
84 	if (qdf_atomic_read(&soc->num_tx_outstanding) >=
85 			soc->num_tx_allowed) {
86 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
87 			  "%s: queued packets are more than max tx, drop the frame",
88 			  __func__);
89 		DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
90 		return true;
91 	}
92 
93 	if (qdf_atomic_read(&pdev->num_tx_outstanding) >=
94 			pdev->num_tx_allowed) {
95 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
96 			  "%s: queued packets are more than max tx, drop the frame",
97 			  __func__);
98 		DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
99 		return true;
100 	}
101 	return false;
102 }
103 
104 /**
105  * dp_tx_outstanding_inc - Increment outstanding tx desc values on pdev and soc
106  * @vdev: DP pdev handle
107  *
108  * Return: void
109  */
110 static inline void
111 dp_tx_outstanding_inc(struct dp_pdev *pdev)
112 {
113 	struct dp_soc *soc = pdev->soc;
114 
115 	qdf_atomic_inc(&pdev->num_tx_outstanding);
116 	qdf_atomic_inc(&soc->num_tx_outstanding);
117 }
118 
119 /**
120  * dp_tx_outstanding__dec - Decrement outstanding tx desc values on pdev and soc
121  * @vdev: DP pdev handle
122  *
123  * Return: void
124  */
125 static inline void
126 dp_tx_outstanding_dec(struct dp_pdev *pdev)
127 {
128 	struct dp_soc *soc = pdev->soc;
129 
130 	qdf_atomic_dec(&pdev->num_tx_outstanding);
131 	qdf_atomic_dec(&soc->num_tx_outstanding);
132 }
133 
134 #else //QCA_TX_LIMIT_CHECK
135 static inline bool
136 dp_tx_limit_check(struct dp_vdev *vdev)
137 {
138 	return false;
139 }
140 
141 static inline void
142 dp_tx_outstanding_inc(struct dp_pdev *pdev)
143 {
144 	qdf_atomic_inc(&pdev->num_tx_outstanding);
145 }
146 
147 static inline void
148 dp_tx_outstanding_dec(struct dp_pdev *pdev)
149 {
150 	qdf_atomic_dec(&pdev->num_tx_outstanding);
151 }
152 #endif //QCA_TX_LIMIT_CHECK
153 
154 #if defined(FEATURE_TSO)
155 /**
156  * dp_tx_tso_unmap_segment() - Unmap TSO segment
157  *
158  * @soc - core txrx main context
159  * @seg_desc - tso segment descriptor
160  * @num_seg_desc - tso number segment descriptor
161  */
162 static void dp_tx_tso_unmap_segment(
163 		struct dp_soc *soc,
164 		struct qdf_tso_seg_elem_t *seg_desc,
165 		struct qdf_tso_num_seg_elem_t *num_seg_desc)
166 {
167 	TSO_DEBUG("%s: Unmap the tso segment", __func__);
168 	if (qdf_unlikely(!seg_desc)) {
169 		DP_TRACE(ERROR, "%s %d TSO desc is NULL!",
170 			 __func__, __LINE__);
171 		qdf_assert(0);
172 	} else if (qdf_unlikely(!num_seg_desc)) {
173 		DP_TRACE(ERROR, "%s %d TSO num desc is NULL!",
174 			 __func__, __LINE__);
175 		qdf_assert(0);
176 	} else {
177 		bool is_last_seg;
178 		/* no tso segment left to do dma unmap */
179 		if (num_seg_desc->num_seg.tso_cmn_num_seg < 1)
180 			return;
181 
182 		is_last_seg = (num_seg_desc->num_seg.tso_cmn_num_seg == 1) ?
183 					true : false;
184 		qdf_nbuf_unmap_tso_segment(soc->osdev,
185 					   seg_desc, is_last_seg);
186 		num_seg_desc->num_seg.tso_cmn_num_seg--;
187 	}
188 }
189 
190 /**
191  * dp_tx_tso_desc_release() - Release the tso segment and tso_cmn_num_seg
192  *                            back to the freelist
193  *
194  * @soc - soc device handle
195  * @tx_desc - Tx software descriptor
196  */
197 static void dp_tx_tso_desc_release(struct dp_soc *soc,
198 				   struct dp_tx_desc_s *tx_desc)
199 {
200 	TSO_DEBUG("%s: Free the tso descriptor", __func__);
201 	if (qdf_unlikely(!tx_desc->tso_desc)) {
202 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
203 			  "%s %d TSO desc is NULL!",
204 			  __func__, __LINE__);
205 		qdf_assert(0);
206 	} else if (qdf_unlikely(!tx_desc->tso_num_desc)) {
207 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
208 			  "%s %d TSO num desc is NULL!",
209 			  __func__, __LINE__);
210 		qdf_assert(0);
211 	} else {
212 		struct qdf_tso_num_seg_elem_t *tso_num_desc =
213 			(struct qdf_tso_num_seg_elem_t *)tx_desc->tso_num_desc;
214 
215 		/* Add the tso num segment into the free list */
216 		if (tso_num_desc->num_seg.tso_cmn_num_seg == 0) {
217 			dp_tso_num_seg_free(soc, tx_desc->pool_id,
218 					    tx_desc->tso_num_desc);
219 			tx_desc->tso_num_desc = NULL;
220 			DP_STATS_INC(tx_desc->pdev, tso_stats.tso_comp, 1);
221 		}
222 
223 		/* Add the tso segment into the free list*/
224 		dp_tx_tso_desc_free(soc,
225 				    tx_desc->pool_id, tx_desc->tso_desc);
226 		tx_desc->tso_desc = NULL;
227 	}
228 }
229 #else
230 static void dp_tx_tso_unmap_segment(
231 		struct dp_soc *soc,
232 		struct qdf_tso_seg_elem_t *seg_desc,
233 		struct qdf_tso_num_seg_elem_t *num_seg_desc)
234 
235 {
236 }
237 
238 static void dp_tx_tso_desc_release(struct dp_soc *soc,
239 				   struct dp_tx_desc_s *tx_desc)
240 {
241 }
242 #endif
243 /**
244  * dp_tx_desc_release() - Release Tx Descriptor
245  * @tx_desc : Tx Descriptor
246  * @desc_pool_id: Descriptor Pool ID
247  *
248  * Deallocate all resources attached to Tx descriptor and free the Tx
249  * descriptor.
250  *
251  * Return:
252  */
253 static void
254 dp_tx_desc_release(struct dp_tx_desc_s *tx_desc, uint8_t desc_pool_id)
255 {
256 	struct dp_pdev *pdev = tx_desc->pdev;
257 	struct dp_soc *soc;
258 	uint8_t comp_status = 0;
259 
260 	qdf_assert(pdev);
261 
262 	soc = pdev->soc;
263 
264 	if (tx_desc->frm_type == dp_tx_frm_tso)
265 		dp_tx_tso_desc_release(soc, tx_desc);
266 
267 	if (tx_desc->flags & DP_TX_DESC_FLAG_FRAG)
268 		dp_tx_ext_desc_free(soc, tx_desc->msdu_ext_desc, desc_pool_id);
269 
270 	if (tx_desc->flags & DP_TX_DESC_FLAG_ME)
271 		dp_tx_me_free_buf(tx_desc->pdev, tx_desc->me_buffer);
272 
273 	dp_tx_outstanding_dec(pdev);
274 
275 	if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)
276 		qdf_atomic_dec(&pdev->num_tx_exception);
277 
278 	if (HAL_TX_COMP_RELEASE_SOURCE_TQM ==
279 				hal_tx_comp_get_buffer_source(&tx_desc->comp))
280 		comp_status = hal_tx_comp_get_release_reason(&tx_desc->comp,
281 							     soc->hal_soc);
282 	else
283 		comp_status = HAL_TX_COMP_RELEASE_REASON_FW;
284 
285 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
286 		"Tx Completion Release desc %d status %d outstanding %d",
287 		tx_desc->id, comp_status,
288 		qdf_atomic_read(&pdev->num_tx_outstanding));
289 
290 	dp_tx_desc_free(soc, tx_desc, desc_pool_id);
291 	return;
292 }
293 
294 /**
295  * dp_tx_htt_metadata_prepare() - Prepare HTT metadata for special frames
296  * @vdev: DP vdev Handle
297  * @nbuf: skb
298  * @msdu_info: msdu_info required to create HTT metadata
299  *
300  * Prepares and fills HTT metadata in the frame pre-header for special frames
301  * that should be transmitted using varying transmit parameters.
302  * There are 2 VDEV modes that currently needs this special metadata -
303  *  1) Mesh Mode
304  *  2) DSRC Mode
305  *
306  * Return: HTT metadata size
307  *
308  */
309 static uint8_t dp_tx_prepare_htt_metadata(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
310 					  struct dp_tx_msdu_info_s *msdu_info)
311 {
312 	uint32_t *meta_data = msdu_info->meta_data;
313 	struct htt_tx_msdu_desc_ext2_t *desc_ext =
314 				(struct htt_tx_msdu_desc_ext2_t *) meta_data;
315 
316 	uint8_t htt_desc_size;
317 
318 	/* Size rounded of multiple of 8 bytes */
319 	uint8_t htt_desc_size_aligned;
320 
321 	uint8_t *hdr = NULL;
322 
323 	/*
324 	 * Metadata - HTT MSDU Extension header
325 	 */
326 	htt_desc_size = sizeof(struct htt_tx_msdu_desc_ext2_t);
327 	htt_desc_size_aligned = (htt_desc_size + 7) & ~0x7;
328 
329 	if (vdev->mesh_vdev || msdu_info->is_tx_sniffer ||
330 	    HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_GET(msdu_info->
331 							   meta_data[0])) {
332 		if (qdf_unlikely(qdf_nbuf_headroom(nbuf) <
333 				 htt_desc_size_aligned)) {
334 			nbuf = qdf_nbuf_realloc_headroom(nbuf,
335 							 htt_desc_size_aligned);
336 			if (!nbuf) {
337 				/*
338 				 * qdf_nbuf_realloc_headroom won't do skb_clone
339 				 * as skb_realloc_headroom does. so, no free is
340 				 * needed here.
341 				 */
342 				DP_STATS_INC(vdev,
343 					     tx_i.dropped.headroom_insufficient,
344 					     1);
345 				qdf_print(" %s[%d] skb_realloc_headroom failed",
346 					  __func__, __LINE__);
347 				return 0;
348 			}
349 		}
350 		/* Fill and add HTT metaheader */
351 		hdr = qdf_nbuf_push_head(nbuf, htt_desc_size_aligned);
352 		if (!hdr) {
353 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
354 					"Error in filling HTT metadata");
355 
356 			return 0;
357 		}
358 		qdf_mem_copy(hdr, desc_ext, htt_desc_size);
359 
360 	} else if (vdev->opmode == wlan_op_mode_ocb) {
361 		/* Todo - Add support for DSRC */
362 	}
363 
364 	return htt_desc_size_aligned;
365 }
366 
367 /**
368  * dp_tx_prepare_tso_ext_desc() - Prepare MSDU extension descriptor for TSO
369  * @tso_seg: TSO segment to process
370  * @ext_desc: Pointer to MSDU extension descriptor
371  *
372  * Return: void
373  */
374 #if defined(FEATURE_TSO)
375 static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
376 		void *ext_desc)
377 {
378 	uint8_t num_frag;
379 	uint32_t tso_flags;
380 
381 	/*
382 	 * Set tso_en, tcp_flags(NS, CWR, ECE, URG, ACK, PSH, RST, SYN, FIN),
383 	 * tcp_flag_mask
384 	 *
385 	 * Checksum enable flags are set in TCL descriptor and not in Extension
386 	 * Descriptor (H/W ignores checksum_en flags in MSDU ext descriptor)
387 	 */
388 	tso_flags = *(uint32_t *) &tso_seg->tso_flags;
389 
390 	hal_tx_ext_desc_set_tso_flags(ext_desc, tso_flags);
391 
392 	hal_tx_ext_desc_set_msdu_length(ext_desc, tso_seg->tso_flags.l2_len,
393 		tso_seg->tso_flags.ip_len);
394 
395 	hal_tx_ext_desc_set_tcp_seq(ext_desc, tso_seg->tso_flags.tcp_seq_num);
396 	hal_tx_ext_desc_set_ip_id(ext_desc, tso_seg->tso_flags.ip_id);
397 
398 
399 	for (num_frag = 0; num_frag < tso_seg->num_frags; num_frag++) {
400 		uint32_t lo = 0;
401 		uint32_t hi = 0;
402 
403 		qdf_assert_always((tso_seg->tso_frags[num_frag].paddr) &&
404 				  (tso_seg->tso_frags[num_frag].length));
405 
406 		qdf_dmaaddr_to_32s(
407 			tso_seg->tso_frags[num_frag].paddr, &lo, &hi);
408 		hal_tx_ext_desc_set_buffer(ext_desc, num_frag, lo, hi,
409 			tso_seg->tso_frags[num_frag].length);
410 	}
411 
412 	return;
413 }
414 #else
415 static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
416 		void *ext_desc)
417 {
418 	return;
419 }
420 #endif
421 
422 #if defined(FEATURE_TSO)
423 /**
424  * dp_tx_free_tso_seg_list() - Loop through the tso segments
425  *                             allocated and free them
426  *
427  * @soc: soc handle
428  * @free_seg: list of tso segments
429  * @msdu_info: msdu descriptor
430  *
431  * Return - void
432  */
433 static void dp_tx_free_tso_seg_list(
434 		struct dp_soc *soc,
435 		struct qdf_tso_seg_elem_t *free_seg,
436 		struct dp_tx_msdu_info_s *msdu_info)
437 {
438 	struct qdf_tso_seg_elem_t *next_seg;
439 
440 	while (free_seg) {
441 		next_seg = free_seg->next;
442 		dp_tx_tso_desc_free(soc,
443 				    msdu_info->tx_queue.desc_pool_id,
444 				    free_seg);
445 		free_seg = next_seg;
446 	}
447 }
448 
449 /**
450  * dp_tx_free_tso_num_seg_list() - Loop through the tso num segments
451  *                                 allocated and free them
452  *
453  * @soc:  soc handle
454  * @free_num_seg: list of tso number segments
455  * @msdu_info: msdu descriptor
456  * Return - void
457  */
458 static void dp_tx_free_tso_num_seg_list(
459 		struct dp_soc *soc,
460 		struct qdf_tso_num_seg_elem_t *free_num_seg,
461 		struct dp_tx_msdu_info_s *msdu_info)
462 {
463 	struct qdf_tso_num_seg_elem_t *next_num_seg;
464 
465 	while (free_num_seg) {
466 		next_num_seg = free_num_seg->next;
467 		dp_tso_num_seg_free(soc,
468 				    msdu_info->tx_queue.desc_pool_id,
469 				    free_num_seg);
470 		free_num_seg = next_num_seg;
471 	}
472 }
473 
474 /**
475  * dp_tx_unmap_tso_seg_list() - Loop through the tso segments
476  *                              do dma unmap for each segment
477  *
478  * @soc: soc handle
479  * @free_seg: list of tso segments
480  * @num_seg_desc: tso number segment descriptor
481  *
482  * Return - void
483  */
484 static void dp_tx_unmap_tso_seg_list(
485 		struct dp_soc *soc,
486 		struct qdf_tso_seg_elem_t *free_seg,
487 		struct qdf_tso_num_seg_elem_t *num_seg_desc)
488 {
489 	struct qdf_tso_seg_elem_t *next_seg;
490 
491 	if (qdf_unlikely(!num_seg_desc)) {
492 		DP_TRACE(ERROR, "TSO number seg desc is NULL!");
493 		return;
494 	}
495 
496 	while (free_seg) {
497 		next_seg = free_seg->next;
498 		dp_tx_tso_unmap_segment(soc, free_seg, num_seg_desc);
499 		free_seg = next_seg;
500 	}
501 }
502 
503 #ifdef FEATURE_TSO_STATS
504 /**
505  * dp_tso_get_stats_idx: Retrieve the tso packet id
506  * @pdev - pdev handle
507  *
508  * Return: id
509  */
510 static uint32_t dp_tso_get_stats_idx(struct dp_pdev *pdev)
511 {
512 	uint32_t stats_idx;
513 
514 	stats_idx = (((uint32_t)qdf_atomic_inc_return(&pdev->tso_idx))
515 						% CDP_MAX_TSO_PACKETS);
516 	return stats_idx;
517 }
518 #else
519 static int dp_tso_get_stats_idx(struct dp_pdev *pdev)
520 {
521 	return 0;
522 }
523 #endif /* FEATURE_TSO_STATS */
524 
525 /**
526  * dp_tx_free_remaining_tso_desc() - do dma unmap for tso segments if any,
527  *				     free the tso segments descriptor and
528  *				     tso num segments descriptor
529  *
530  * @soc:  soc handle
531  * @msdu_info: msdu descriptor
532  * @tso_seg_unmap: flag to show if dma unmap is necessary
533  *
534  * Return - void
535  */
536 static void dp_tx_free_remaining_tso_desc(struct dp_soc *soc,
537 					  struct dp_tx_msdu_info_s *msdu_info,
538 					  bool tso_seg_unmap)
539 {
540 	struct qdf_tso_info_t *tso_info = &msdu_info->u.tso_info;
541 	struct qdf_tso_seg_elem_t *free_seg = tso_info->tso_seg_list;
542 	struct qdf_tso_num_seg_elem_t *tso_num_desc =
543 					tso_info->tso_num_seg_list;
544 
545 	/* do dma unmap for each segment */
546 	if (tso_seg_unmap)
547 		dp_tx_unmap_tso_seg_list(soc, free_seg, tso_num_desc);
548 
549 	/* free all tso number segment descriptor though looks only have 1 */
550 	dp_tx_free_tso_num_seg_list(soc, tso_num_desc, msdu_info);
551 
552 	/* free all tso segment descriptor */
553 	dp_tx_free_tso_seg_list(soc, free_seg, msdu_info);
554 }
555 
556 /**
557  * dp_tx_prepare_tso() - Given a jumbo msdu, prepare the TSO info
558  * @vdev: virtual device handle
559  * @msdu: network buffer
560  * @msdu_info: meta data associated with the msdu
561  *
562  * Return: QDF_STATUS_SUCCESS success
563  */
564 static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
565 		qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
566 {
567 	struct qdf_tso_seg_elem_t *tso_seg;
568 	int num_seg = qdf_nbuf_get_tso_num_seg(msdu);
569 	struct dp_soc *soc = vdev->pdev->soc;
570 	struct dp_pdev *pdev = vdev->pdev;
571 	struct qdf_tso_info_t *tso_info;
572 	struct qdf_tso_num_seg_elem_t *tso_num_seg;
573 	tso_info = &msdu_info->u.tso_info;
574 	tso_info->curr_seg = NULL;
575 	tso_info->tso_seg_list = NULL;
576 	tso_info->num_segs = num_seg;
577 	msdu_info->frm_type = dp_tx_frm_tso;
578 	tso_info->tso_num_seg_list = NULL;
579 
580 	TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
581 
582 	while (num_seg) {
583 		tso_seg = dp_tx_tso_desc_alloc(
584 				soc, msdu_info->tx_queue.desc_pool_id);
585 		if (tso_seg) {
586 			tso_seg->next = tso_info->tso_seg_list;
587 			tso_info->tso_seg_list = tso_seg;
588 			num_seg--;
589 		} else {
590 			dp_err_rl("Failed to alloc tso seg desc");
591 			DP_STATS_INC_PKT(vdev->pdev,
592 					 tso_stats.tso_no_mem_dropped, 1,
593 					 qdf_nbuf_len(msdu));
594 			dp_tx_free_remaining_tso_desc(soc, msdu_info, false);
595 
596 			return QDF_STATUS_E_NOMEM;
597 		}
598 	}
599 
600 	TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
601 
602 	tso_num_seg = dp_tso_num_seg_alloc(soc,
603 			msdu_info->tx_queue.desc_pool_id);
604 
605 	if (tso_num_seg) {
606 		tso_num_seg->next = tso_info->tso_num_seg_list;
607 		tso_info->tso_num_seg_list = tso_num_seg;
608 	} else {
609 		DP_TRACE(ERROR, "%s: Failed to alloc - Number of segs desc",
610 			 __func__);
611 		dp_tx_free_remaining_tso_desc(soc, msdu_info, false);
612 
613 		return QDF_STATUS_E_NOMEM;
614 	}
615 
616 	msdu_info->num_seg =
617 		qdf_nbuf_get_tso_info(soc->osdev, msdu, tso_info);
618 
619 	TSO_DEBUG(" %s: msdu_info->num_seg: %d", __func__,
620 			msdu_info->num_seg);
621 
622 	if (!(msdu_info->num_seg)) {
623 		/*
624 		 * Free allocated TSO seg desc and number seg desc,
625 		 * do unmap for segments if dma map has done.
626 		 */
627 		DP_TRACE(ERROR, "%s: Failed to get tso info", __func__);
628 		dp_tx_free_remaining_tso_desc(soc, msdu_info, true);
629 
630 		return QDF_STATUS_E_INVAL;
631 	}
632 
633 	tso_info->curr_seg = tso_info->tso_seg_list;
634 
635 	tso_info->msdu_stats_idx = dp_tso_get_stats_idx(pdev);
636 	dp_tso_packet_update(pdev, tso_info->msdu_stats_idx,
637 			     msdu, msdu_info->num_seg);
638 	dp_tso_segment_stats_update(pdev, tso_info->tso_seg_list,
639 				    tso_info->msdu_stats_idx);
640 	dp_stats_tso_segment_histogram_update(pdev, msdu_info->num_seg);
641 	return QDF_STATUS_SUCCESS;
642 }
643 #else
644 static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
645 		qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
646 {
647 	return QDF_STATUS_E_NOMEM;
648 }
649 #endif
650 
651 /**
652  * dp_tx_prepare_ext_desc() - Allocate and prepare MSDU extension descriptor
653  * @vdev: DP Vdev handle
654  * @msdu_info: MSDU info to be setup in MSDU extension descriptor
655  * @desc_pool_id: Descriptor Pool ID
656  *
657  * Return:
658  */
659 static
660 struct dp_tx_ext_desc_elem_s *dp_tx_prepare_ext_desc(struct dp_vdev *vdev,
661 		struct dp_tx_msdu_info_s *msdu_info, uint8_t desc_pool_id)
662 {
663 	uint8_t i;
664 	uint8_t cached_ext_desc[HAL_TX_EXT_DESC_WITH_META_DATA];
665 	struct dp_tx_seg_info_s *seg_info;
666 	struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
667 	struct dp_soc *soc = vdev->pdev->soc;
668 
669 	/* Allocate an extension descriptor */
670 	msdu_ext_desc = dp_tx_ext_desc_alloc(soc, desc_pool_id);
671 	qdf_mem_zero(&cached_ext_desc[0], HAL_TX_EXT_DESC_WITH_META_DATA);
672 
673 	if (!msdu_ext_desc) {
674 		DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
675 		return NULL;
676 	}
677 
678 	if (msdu_info->exception_fw &&
679 			qdf_unlikely(vdev->mesh_vdev)) {
680 		qdf_mem_copy(&cached_ext_desc[HAL_TX_EXTENSION_DESC_LEN_BYTES],
681 				&msdu_info->meta_data[0],
682 				sizeof(struct htt_tx_msdu_desc_ext2_t));
683 		qdf_atomic_inc(&vdev->pdev->num_tx_exception);
684 	}
685 
686 	switch (msdu_info->frm_type) {
687 	case dp_tx_frm_sg:
688 	case dp_tx_frm_me:
689 	case dp_tx_frm_raw:
690 		seg_info = msdu_info->u.sg_info.curr_seg;
691 		/* Update the buffer pointers in MSDU Extension Descriptor */
692 		for (i = 0; i < seg_info->frag_cnt; i++) {
693 			hal_tx_ext_desc_set_buffer(&cached_ext_desc[0], i,
694 				seg_info->frags[i].paddr_lo,
695 				seg_info->frags[i].paddr_hi,
696 				seg_info->frags[i].len);
697 		}
698 
699 		break;
700 
701 	case dp_tx_frm_tso:
702 		dp_tx_prepare_tso_ext_desc(&msdu_info->u.tso_info.curr_seg->seg,
703 				&cached_ext_desc[0]);
704 		break;
705 
706 
707 	default:
708 		break;
709 	}
710 
711 	QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
712 			   cached_ext_desc, HAL_TX_EXT_DESC_WITH_META_DATA);
713 
714 	hal_tx_ext_desc_sync(&cached_ext_desc[0],
715 			msdu_ext_desc->vaddr);
716 
717 	return msdu_ext_desc;
718 }
719 
720 /**
721  * dp_tx_trace_pkt() - Trace TX packet at DP layer
722  *
723  * @skb: skb to be traced
724  * @msdu_id: msdu_id of the packet
725  * @vdev_id: vdev_id of the packet
726  *
727  * Return: None
728  */
729 static void dp_tx_trace_pkt(qdf_nbuf_t skb, uint16_t msdu_id,
730 			    uint8_t vdev_id)
731 {
732 	QDF_NBUF_CB_TX_PACKET_TRACK(skb) = QDF_NBUF_TX_PKT_DATA_TRACK;
733 	QDF_NBUF_CB_TX_DP_TRACE(skb) = 1;
734 	DPTRACE(qdf_dp_trace_ptr(skb,
735 				 QDF_DP_TRACE_LI_DP_TX_PACKET_PTR_RECORD,
736 				 QDF_TRACE_DEFAULT_PDEV_ID,
737 				 qdf_nbuf_data_addr(skb),
738 				 sizeof(qdf_nbuf_data(skb)),
739 				 msdu_id, vdev_id));
740 
741 	qdf_dp_trace_log_pkt(vdev_id, skb, QDF_TX, QDF_TRACE_DEFAULT_PDEV_ID);
742 
743 	DPTRACE(qdf_dp_trace_data_pkt(skb, QDF_TRACE_DEFAULT_PDEV_ID,
744 				      QDF_DP_TRACE_LI_DP_TX_PACKET_RECORD,
745 				      msdu_id, QDF_TX));
746 }
747 
748 /**
749  * dp_tx_desc_prepare_single - Allocate and prepare Tx descriptor
750  * @vdev: DP vdev handle
751  * @nbuf: skb
752  * @desc_pool_id: Descriptor pool ID
753  * @meta_data: Metadata to the fw
754  * @tx_exc_metadata: Handle that holds exception path metadata
755  * Allocate and prepare Tx descriptor with msdu information.
756  *
757  * Return: Pointer to Tx Descriptor on success,
758  *         NULL on failure
759  */
760 static
761 struct dp_tx_desc_s *dp_tx_prepare_desc_single(struct dp_vdev *vdev,
762 		qdf_nbuf_t nbuf, uint8_t desc_pool_id,
763 		struct dp_tx_msdu_info_s *msdu_info,
764 		struct cdp_tx_exception_metadata *tx_exc_metadata)
765 {
766 	uint8_t align_pad;
767 	uint8_t is_exception = 0;
768 	uint8_t htt_hdr_size;
769 	qdf_ether_header_t *eh;
770 	struct dp_tx_desc_s *tx_desc;
771 	struct dp_pdev *pdev = vdev->pdev;
772 	struct dp_soc *soc = pdev->soc;
773 
774 	if (dp_tx_limit_check(vdev))
775 		return NULL;
776 
777 	/* Allocate software Tx descriptor */
778 	tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
779 	if (qdf_unlikely(!tx_desc)) {
780 		DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
781 		return NULL;
782 	}
783 
784 	dp_tx_outstanding_inc(pdev);
785 
786 	/* Initialize the SW tx descriptor */
787 	tx_desc->nbuf = nbuf;
788 	tx_desc->frm_type = dp_tx_frm_std;
789 	tx_desc->tx_encap_type = ((tx_exc_metadata &&
790 		(tx_exc_metadata->tx_encap_type != CDP_INVALID_TX_ENCAP_TYPE)) ?
791 		tx_exc_metadata->tx_encap_type : vdev->tx_encap_type);
792 	tx_desc->vdev = vdev;
793 	tx_desc->pdev = pdev;
794 	tx_desc->msdu_ext_desc = NULL;
795 	tx_desc->pkt_offset = 0;
796 
797 	dp_tx_trace_pkt(nbuf, tx_desc->id, vdev->vdev_id);
798 
799 	if (qdf_unlikely(vdev->multipass_en)) {
800 		if (!dp_tx_multipass_process(soc, vdev, nbuf, msdu_info))
801 			goto failure;
802 	}
803 
804 	/*
805 	 * For special modes (vdev_type == ocb or mesh), data frames should be
806 	 * transmitted using varying transmit parameters (tx spec) which include
807 	 * transmit rate, power, priority, channel, channel bandwidth , nss etc.
808 	 * These are filled in HTT MSDU descriptor and sent in frame pre-header.
809 	 * These frames are sent as exception packets to firmware.
810 	 *
811 	 * HW requirement is that metadata should always point to a
812 	 * 8-byte aligned address. So we add alignment pad to start of buffer.
813 	 *  HTT Metadata should be ensured to be multiple of 8-bytes,
814 	 *  to get 8-byte aligned start address along with align_pad added
815 	 *
816 	 *  |-----------------------------|
817 	 *  |                             |
818 	 *  |-----------------------------| <-----Buffer Pointer Address given
819 	 *  |                             |  ^    in HW descriptor (aligned)
820 	 *  |       HTT Metadata          |  |
821 	 *  |                             |  |
822 	 *  |                             |  | Packet Offset given in descriptor
823 	 *  |                             |  |
824 	 *  |-----------------------------|  |
825 	 *  |       Alignment Pad         |  v
826 	 *  |-----------------------------| <----- Actual buffer start address
827 	 *  |        SKB Data             |           (Unaligned)
828 	 *  |                             |
829 	 *  |                             |
830 	 *  |                             |
831 	 *  |                             |
832 	 *  |                             |
833 	 *  |-----------------------------|
834 	 */
835 	if (qdf_unlikely((msdu_info->exception_fw)) ||
836 				(vdev->opmode == wlan_op_mode_ocb) ||
837 				(tx_exc_metadata &&
838 				tx_exc_metadata->is_tx_sniffer)) {
839 		align_pad = ((unsigned long) qdf_nbuf_data(nbuf)) & 0x7;
840 
841 		if (qdf_unlikely(qdf_nbuf_headroom(nbuf) < align_pad)) {
842 			DP_STATS_INC(vdev,
843 				     tx_i.dropped.headroom_insufficient, 1);
844 			goto failure;
845 		}
846 
847 		if (qdf_nbuf_push_head(nbuf, align_pad) == NULL) {
848 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
849 					"qdf_nbuf_push_head failed");
850 			goto failure;
851 		}
852 
853 		htt_hdr_size = dp_tx_prepare_htt_metadata(vdev, nbuf,
854 				msdu_info);
855 		if (htt_hdr_size == 0)
856 			goto failure;
857 		tx_desc->pkt_offset = align_pad + htt_hdr_size;
858 		tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
859 		is_exception = 1;
860 	}
861 
862 	if (qdf_unlikely(QDF_STATUS_SUCCESS !=
863 				qdf_nbuf_map(soc->osdev, nbuf,
864 					QDF_DMA_TO_DEVICE))) {
865 		/* Handle failure */
866 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
867 				"qdf_nbuf_map failed");
868 		DP_STATS_INC(vdev, tx_i.dropped.dma_error, 1);
869 		goto failure;
870 	}
871 
872 	if (qdf_unlikely(vdev->nawds_enabled)) {
873 		eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
874 		if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost)) {
875 			tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
876 			is_exception = 1;
877 		}
878 	}
879 
880 #if !TQM_BYPASS_WAR
881 	if (is_exception || tx_exc_metadata)
882 #endif
883 	{
884 		/* Temporary WAR due to TQM VP issues */
885 		tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
886 		qdf_atomic_inc(&pdev->num_tx_exception);
887 	}
888 
889 	return tx_desc;
890 
891 failure:
892 	dp_tx_desc_release(tx_desc, desc_pool_id);
893 	return NULL;
894 }
895 
896 /**
897  * dp_tx_prepare_desc() - Allocate and prepare Tx descriptor for multisegment frame
898  * @vdev: DP vdev handle
899  * @nbuf: skb
900  * @msdu_info: Info to be setup in MSDU descriptor and MSDU extension descriptor
901  * @desc_pool_id : Descriptor Pool ID
902  *
903  * Allocate and prepare Tx descriptor with msdu and fragment descritor
904  * information. For frames wth fragments, allocate and prepare
905  * an MSDU extension descriptor
906  *
907  * Return: Pointer to Tx Descriptor on success,
908  *         NULL on failure
909  */
910 static struct dp_tx_desc_s *dp_tx_prepare_desc(struct dp_vdev *vdev,
911 		qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info,
912 		uint8_t desc_pool_id)
913 {
914 	struct dp_tx_desc_s *tx_desc;
915 	struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
916 	struct dp_pdev *pdev = vdev->pdev;
917 	struct dp_soc *soc = pdev->soc;
918 
919 	if (dp_tx_limit_check(vdev))
920 		return NULL;
921 
922 	/* Allocate software Tx descriptor */
923 	tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
924 	if (!tx_desc) {
925 		DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
926 		return NULL;
927 	}
928 
929 	dp_tx_outstanding_inc(pdev);
930 
931 	/* Initialize the SW tx descriptor */
932 	tx_desc->nbuf = nbuf;
933 	tx_desc->frm_type = msdu_info->frm_type;
934 	tx_desc->tx_encap_type = vdev->tx_encap_type;
935 	tx_desc->vdev = vdev;
936 	tx_desc->pdev = pdev;
937 	tx_desc->pkt_offset = 0;
938 	tx_desc->tso_desc = msdu_info->u.tso_info.curr_seg;
939 	tx_desc->tso_num_desc = msdu_info->u.tso_info.tso_num_seg_list;
940 
941 	dp_tx_trace_pkt(nbuf, tx_desc->id, vdev->vdev_id);
942 
943 	/* Handle scattered frames - TSO/SG/ME */
944 	/* Allocate and prepare an extension descriptor for scattered frames */
945 	msdu_ext_desc = dp_tx_prepare_ext_desc(vdev, msdu_info, desc_pool_id);
946 	if (!msdu_ext_desc) {
947 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
948 				"%s Tx Extension Descriptor Alloc Fail",
949 				__func__);
950 		goto failure;
951 	}
952 
953 #if TQM_BYPASS_WAR
954 	/* Temporary WAR due to TQM VP issues */
955 	tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
956 	qdf_atomic_inc(&pdev->num_tx_exception);
957 #endif
958 	if (qdf_unlikely(msdu_info->exception_fw))
959 		tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
960 
961 	tx_desc->msdu_ext_desc = msdu_ext_desc;
962 	tx_desc->flags |= DP_TX_DESC_FLAG_FRAG;
963 
964 	return tx_desc;
965 failure:
966 	dp_tx_desc_release(tx_desc, desc_pool_id);
967 	return NULL;
968 }
969 
970 /**
971  * dp_tx_prepare_raw() - Prepare RAW packet TX
972  * @vdev: DP vdev handle
973  * @nbuf: buffer pointer
974  * @seg_info: Pointer to Segment info Descriptor to be prepared
975  * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension
976  *     descriptor
977  *
978  * Return:
979  */
980 static qdf_nbuf_t dp_tx_prepare_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
981 	struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
982 {
983 	qdf_nbuf_t curr_nbuf = NULL;
984 	uint16_t total_len = 0;
985 	qdf_dma_addr_t paddr;
986 	int32_t i;
987 	int32_t mapped_buf_num = 0;
988 
989 	struct dp_tx_sg_info_s *sg_info = &msdu_info->u.sg_info;
990 	qdf_dot3_qosframe_t *qos_wh = (qdf_dot3_qosframe_t *) nbuf->data;
991 
992 	DP_STATS_INC_PKT(vdev, tx_i.raw.raw_pkt, 1, qdf_nbuf_len(nbuf));
993 
994 	/* Continue only if frames are of DATA type */
995 	if (!DP_FRAME_IS_DATA(qos_wh)) {
996 		DP_STATS_INC(vdev, tx_i.raw.invalid_raw_pkt_datatype, 1);
997 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
998 			  "Pkt. recd is of not data type");
999 		goto error;
1000 	}
1001 	/* SWAR for HW: Enable WEP bit in the AMSDU frames for RAW mode */
1002 	if (vdev->raw_mode_war &&
1003 	    (qos_wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) &&
1004 	    (qos_wh->i_qos[0] & IEEE80211_QOS_AMSDU))
1005 		qos_wh->i_fc[1] |= IEEE80211_FC1_WEP;
1006 
1007 	for (curr_nbuf = nbuf, i = 0; curr_nbuf;
1008 			curr_nbuf = qdf_nbuf_next(curr_nbuf), i++) {
1009 
1010 		if (QDF_STATUS_SUCCESS != qdf_nbuf_map(vdev->osdev, curr_nbuf,
1011 					QDF_DMA_TO_DEVICE)) {
1012 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1013 				"%s dma map error ", __func__);
1014 			DP_STATS_INC(vdev, tx_i.raw.dma_map_error, 1);
1015 			mapped_buf_num = i;
1016 			goto error;
1017 		}
1018 
1019 		paddr = qdf_nbuf_get_frag_paddr(curr_nbuf, 0);
1020 		seg_info->frags[i].paddr_lo = paddr;
1021 		seg_info->frags[i].paddr_hi = ((uint64_t)paddr >> 32);
1022 		seg_info->frags[i].len = qdf_nbuf_len(curr_nbuf);
1023 		seg_info->frags[i].vaddr = (void *) curr_nbuf;
1024 		total_len += qdf_nbuf_len(curr_nbuf);
1025 	}
1026 
1027 	seg_info->frag_cnt = i;
1028 	seg_info->total_len = total_len;
1029 	seg_info->next = NULL;
1030 
1031 	sg_info->curr_seg = seg_info;
1032 
1033 	msdu_info->frm_type = dp_tx_frm_raw;
1034 	msdu_info->num_seg = 1;
1035 
1036 	return nbuf;
1037 
1038 error:
1039 	i = 0;
1040 	while (nbuf) {
1041 		curr_nbuf = nbuf;
1042 		if (i < mapped_buf_num) {
1043 			qdf_nbuf_unmap(vdev->osdev, curr_nbuf, QDF_DMA_TO_DEVICE);
1044 			i++;
1045 		}
1046 		nbuf = qdf_nbuf_next(nbuf);
1047 		qdf_nbuf_free(curr_nbuf);
1048 	}
1049 	return NULL;
1050 
1051 }
1052 
1053 /**
1054  * dp_tx_raw_prepare_unset() - unmap the chain of nbufs belonging to RAW frame.
1055  * @soc: DP soc handle
1056  * @nbuf: Buffer pointer
1057  *
1058  * unmap the chain of nbufs that belong to this RAW frame.
1059  *
1060  * Return: None
1061  */
1062 static void dp_tx_raw_prepare_unset(struct dp_soc *soc,
1063 				    qdf_nbuf_t nbuf)
1064 {
1065 	qdf_nbuf_t cur_nbuf = nbuf;
1066 
1067 	do {
1068 		qdf_nbuf_unmap(soc->osdev, cur_nbuf, QDF_DMA_TO_DEVICE);
1069 		cur_nbuf = qdf_nbuf_next(cur_nbuf);
1070 	} while (cur_nbuf);
1071 }
1072 
1073 /**
1074  * dp_tx_hw_enqueue() - Enqueue to TCL HW for transmit
1075  * @soc: DP Soc Handle
1076  * @vdev: DP vdev handle
1077  * @tx_desc: Tx Descriptor Handle
1078  * @tid: TID from HLOS for overriding default DSCP-TID mapping
1079  * @fw_metadata: Metadata to send to Target Firmware along with frame
1080  * @ring_id: Ring ID of H/W ring to which we enqueue the packet
1081  * @tx_exc_metadata: Handle that holds exception path meta data
1082  *
1083  *  Gets the next free TCL HW DMA descriptor and sets up required parameters
1084  *  from software Tx descriptor
1085  *
1086  * Return:
1087  */
1088 static QDF_STATUS dp_tx_hw_enqueue(struct dp_soc *soc, struct dp_vdev *vdev,
1089 				   struct dp_tx_desc_s *tx_desc, uint8_t tid,
1090 				   uint16_t fw_metadata, uint8_t ring_id,
1091 				   struct cdp_tx_exception_metadata
1092 					*tx_exc_metadata)
1093 {
1094 	uint8_t type;
1095 	uint16_t length;
1096 	void *hal_tx_desc, *hal_tx_desc_cached;
1097 	qdf_dma_addr_t dma_addr;
1098 	uint8_t cached_desc[HAL_TX_DESC_LEN_BYTES];
1099 
1100 	enum cdp_sec_type sec_type = ((tx_exc_metadata &&
1101 			tx_exc_metadata->sec_type != CDP_INVALID_SEC_TYPE) ?
1102 			tx_exc_metadata->sec_type : vdev->sec_type);
1103 
1104 	/* Return Buffer Manager ID */
1105 	uint8_t bm_id = ring_id;
1106 	hal_ring_handle_t hal_ring_hdl = soc->tcl_data_ring[ring_id].hal_srng;
1107 
1108 	hal_tx_desc_cached = (void *) cached_desc;
1109 	qdf_mem_zero(hal_tx_desc_cached, HAL_TX_DESC_LEN_BYTES);
1110 
1111 	if (tx_desc->flags & DP_TX_DESC_FLAG_FRAG) {
1112 		length = HAL_TX_EXT_DESC_WITH_META_DATA;
1113 		type = HAL_TX_BUF_TYPE_EXT_DESC;
1114 		dma_addr = tx_desc->msdu_ext_desc->paddr;
1115 	} else {
1116 		length = qdf_nbuf_len(tx_desc->nbuf) - tx_desc->pkt_offset;
1117 		type = HAL_TX_BUF_TYPE_BUFFER;
1118 		dma_addr = qdf_nbuf_mapped_paddr_get(tx_desc->nbuf);
1119 	}
1120 
1121 	qdf_assert_always(dma_addr);
1122 
1123 	hal_tx_desc_set_fw_metadata(hal_tx_desc_cached, fw_metadata);
1124 	hal_tx_desc_set_buf_addr(hal_tx_desc_cached,
1125 					dma_addr, bm_id, tx_desc->id,
1126 					type, soc->hal_soc);
1127 
1128 	if (!dp_tx_is_desc_id_valid(soc, tx_desc->id))
1129 		return QDF_STATUS_E_RESOURCES;
1130 
1131 	hal_tx_desc_set_buf_length(hal_tx_desc_cached, length);
1132 	hal_tx_desc_set_buf_offset(hal_tx_desc_cached, tx_desc->pkt_offset);
1133 	hal_tx_desc_set_encap_type(hal_tx_desc_cached, tx_desc->tx_encap_type);
1134 	hal_tx_desc_set_lmac_id(soc->hal_soc, hal_tx_desc_cached,
1135 				vdev->pdev->lmac_id);
1136 	hal_tx_desc_set_search_type(soc->hal_soc, hal_tx_desc_cached,
1137 				    vdev->search_type);
1138 	hal_tx_desc_set_search_index(soc->hal_soc, hal_tx_desc_cached,
1139 				     vdev->bss_ast_idx);
1140 	hal_tx_desc_set_dscp_tid_table_id(soc->hal_soc, hal_tx_desc_cached,
1141 					  vdev->dscp_tid_map_id);
1142 	hal_tx_desc_set_encrypt_type(hal_tx_desc_cached,
1143 			sec_type_map[sec_type]);
1144 	hal_tx_desc_set_cache_set_num(soc->hal_soc, hal_tx_desc_cached,
1145 				      (vdev->bss_ast_hash & 0xF));
1146 
1147 	dp_verbose_debug("length:%d , type = %d, dma_addr %llx, offset %d desc id %u",
1148 			 length, type, (uint64_t)dma_addr,
1149 			 tx_desc->pkt_offset, tx_desc->id);
1150 
1151 	if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)
1152 		hal_tx_desc_set_to_fw(hal_tx_desc_cached, 1);
1153 
1154 	hal_tx_desc_set_addr_search_flags(hal_tx_desc_cached,
1155 			vdev->hal_desc_addr_search_flags);
1156 
1157 	/* verify checksum offload configuration*/
1158 	if ((wlan_cfg_get_checksum_offload(soc->wlan_cfg_ctx)) &&
1159 		((qdf_nbuf_get_tx_cksum(tx_desc->nbuf) == QDF_NBUF_TX_CKSUM_TCP_UDP)
1160 		|| qdf_nbuf_is_tso(tx_desc->nbuf)))  {
1161 		hal_tx_desc_set_l3_checksum_en(hal_tx_desc_cached, 1);
1162 		hal_tx_desc_set_l4_checksum_en(hal_tx_desc_cached, 1);
1163 	}
1164 
1165 	if (tid != HTT_TX_EXT_TID_INVALID)
1166 		hal_tx_desc_set_hlos_tid(hal_tx_desc_cached, tid);
1167 
1168 	if (tx_desc->flags & DP_TX_DESC_FLAG_MESH)
1169 		hal_tx_desc_set_mesh_en(soc->hal_soc, hal_tx_desc_cached, 1);
1170 
1171 
1172 	tx_desc->timestamp = qdf_ktime_to_ms(qdf_ktime_get());
1173 	/* Sync cached descriptor with HW */
1174 	hal_tx_desc = hal_srng_src_get_next(soc->hal_soc, hal_ring_hdl);
1175 
1176 	if (!hal_tx_desc) {
1177 		dp_verbose_debug("TCL ring full ring_id:%d", ring_id);
1178 		DP_STATS_INC(soc, tx.tcl_ring_full[ring_id], 1);
1179 		DP_STATS_INC(vdev, tx_i.dropped.enqueue_fail, 1);
1180 		return QDF_STATUS_E_RESOURCES;
1181 	}
1182 
1183 	tx_desc->flags |= DP_TX_DESC_FLAG_QUEUED_TX;
1184 
1185 	hal_tx_desc_sync(hal_tx_desc_cached, hal_tx_desc);
1186 	DP_STATS_INC_PKT(vdev, tx_i.processed, 1, length);
1187 
1188 	return QDF_STATUS_SUCCESS;
1189 }
1190 
1191 
1192 /**
1193  * dp_cce_classify() - Classify the frame based on CCE rules
1194  * @vdev: DP vdev handle
1195  * @nbuf: skb
1196  *
1197  * Classify frames based on CCE rules
1198  * Return: bool( true if classified,
1199  *               else false)
1200  */
1201 static bool dp_cce_classify(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
1202 {
1203 	qdf_ether_header_t *eh = NULL;
1204 	uint16_t   ether_type;
1205 	qdf_llc_t *llcHdr;
1206 	qdf_nbuf_t nbuf_clone = NULL;
1207 	qdf_dot3_qosframe_t *qos_wh = NULL;
1208 
1209 	/* for mesh packets don't do any classification */
1210 	if (qdf_unlikely(vdev->mesh_vdev))
1211 		return false;
1212 
1213 	if (qdf_likely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
1214 		eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
1215 		ether_type = eh->ether_type;
1216 		llcHdr = (qdf_llc_t *)(nbuf->data +
1217 					sizeof(qdf_ether_header_t));
1218 	} else {
1219 		qos_wh = (qdf_dot3_qosframe_t *) nbuf->data;
1220 		/* For encrypted packets don't do any classification */
1221 		if (qdf_unlikely(qos_wh->i_fc[1] & IEEE80211_FC1_WEP))
1222 			return false;
1223 
1224 		if (qdf_unlikely(qos_wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS)) {
1225 			if (qdf_unlikely(
1226 				qos_wh->i_fc[1] & QDF_IEEE80211_FC1_TODS &&
1227 				qos_wh->i_fc[1] & QDF_IEEE80211_FC1_FROMDS)) {
1228 
1229 				ether_type = *(uint16_t *)(nbuf->data
1230 						+ QDF_IEEE80211_4ADDR_HDR_LEN
1231 						+ sizeof(qdf_llc_t)
1232 						- sizeof(ether_type));
1233 				llcHdr = (qdf_llc_t *)(nbuf->data +
1234 						QDF_IEEE80211_4ADDR_HDR_LEN);
1235 			} else {
1236 				ether_type = *(uint16_t *)(nbuf->data
1237 						+ QDF_IEEE80211_3ADDR_HDR_LEN
1238 						+ sizeof(qdf_llc_t)
1239 						- sizeof(ether_type));
1240 				llcHdr = (qdf_llc_t *)(nbuf->data +
1241 					QDF_IEEE80211_3ADDR_HDR_LEN);
1242 			}
1243 
1244 			if (qdf_unlikely(DP_FRAME_IS_SNAP(llcHdr)
1245 				&& (ether_type ==
1246 				qdf_htons(QDF_NBUF_TRAC_EAPOL_ETH_TYPE)))) {
1247 
1248 				DP_STATS_INC(vdev, tx_i.cce_classified_raw, 1);
1249 				return true;
1250 			}
1251 		}
1252 
1253 		return false;
1254 	}
1255 
1256 	if (qdf_unlikely(DP_FRAME_IS_SNAP(llcHdr))) {
1257 		ether_type = *(uint16_t *)(nbuf->data + 2*QDF_MAC_ADDR_SIZE +
1258 				sizeof(*llcHdr));
1259 		nbuf_clone = qdf_nbuf_clone(nbuf);
1260 		if (qdf_unlikely(nbuf_clone)) {
1261 			qdf_nbuf_pull_head(nbuf_clone, sizeof(*llcHdr));
1262 
1263 			if (ether_type == htons(ETHERTYPE_VLAN)) {
1264 				qdf_nbuf_pull_head(nbuf_clone,
1265 						sizeof(qdf_net_vlanhdr_t));
1266 			}
1267 		}
1268 	} else {
1269 		if (ether_type == htons(ETHERTYPE_VLAN)) {
1270 			nbuf_clone = qdf_nbuf_clone(nbuf);
1271 			if (qdf_unlikely(nbuf_clone)) {
1272 				qdf_nbuf_pull_head(nbuf_clone,
1273 					sizeof(qdf_net_vlanhdr_t));
1274 			}
1275 		}
1276 	}
1277 
1278 	if (qdf_unlikely(nbuf_clone))
1279 		nbuf = nbuf_clone;
1280 
1281 
1282 	if (qdf_unlikely(qdf_nbuf_is_ipv4_eapol_pkt(nbuf)
1283 		|| qdf_nbuf_is_ipv4_arp_pkt(nbuf)
1284 		|| qdf_nbuf_is_ipv4_wapi_pkt(nbuf)
1285 		|| qdf_nbuf_is_ipv4_tdls_pkt(nbuf)
1286 		|| (qdf_nbuf_is_ipv4_pkt(nbuf)
1287 			&& qdf_nbuf_is_ipv4_dhcp_pkt(nbuf))
1288 		|| (qdf_nbuf_is_ipv6_pkt(nbuf) &&
1289 			qdf_nbuf_is_ipv6_dhcp_pkt(nbuf)))) {
1290 		if (qdf_unlikely(nbuf_clone))
1291 			qdf_nbuf_free(nbuf_clone);
1292 		return true;
1293 	}
1294 
1295 	if (qdf_unlikely(nbuf_clone))
1296 		qdf_nbuf_free(nbuf_clone);
1297 
1298 	return false;
1299 }
1300 
1301 /**
1302  * dp_tx_get_tid() - Obtain TID to be used for this frame
1303  * @vdev: DP vdev handle
1304  * @nbuf: skb
1305  *
1306  * Extract the DSCP or PCP information from frame and map into TID value.
1307  *
1308  * Return: void
1309  */
1310 static void dp_tx_get_tid(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1311 			  struct dp_tx_msdu_info_s *msdu_info)
1312 {
1313 	uint8_t tos = 0, dscp_tid_override = 0;
1314 	uint8_t *hdr_ptr, *L3datap;
1315 	uint8_t is_mcast = 0;
1316 	qdf_ether_header_t *eh = NULL;
1317 	qdf_ethervlan_header_t *evh = NULL;
1318 	uint16_t   ether_type;
1319 	qdf_llc_t *llcHdr;
1320 	struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
1321 
1322 	DP_TX_TID_OVERRIDE(msdu_info, nbuf);
1323 	if (qdf_likely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
1324 		eh = (qdf_ether_header_t *)nbuf->data;
1325 		hdr_ptr = eh->ether_dhost;
1326 		L3datap = hdr_ptr + sizeof(qdf_ether_header_t);
1327 	} else {
1328 		qdf_dot3_qosframe_t *qos_wh =
1329 			(qdf_dot3_qosframe_t *) nbuf->data;
1330 		msdu_info->tid = qos_wh->i_fc[0] & DP_FC0_SUBTYPE_QOS ?
1331 			qos_wh->i_qos[0] & DP_QOS_TID : 0;
1332 		return;
1333 	}
1334 
1335 	is_mcast = DP_FRAME_IS_MULTICAST(hdr_ptr);
1336 	ether_type = eh->ether_type;
1337 
1338 	llcHdr = (qdf_llc_t *)(nbuf->data + sizeof(qdf_ether_header_t));
1339 	/*
1340 	 * Check if packet is dot3 or eth2 type.
1341 	 */
1342 	if (DP_FRAME_IS_LLC(ether_type) && DP_FRAME_IS_SNAP(llcHdr)) {
1343 		ether_type = (uint16_t)*(nbuf->data + 2*QDF_MAC_ADDR_SIZE +
1344 				sizeof(*llcHdr));
1345 
1346 		if (ether_type == htons(ETHERTYPE_VLAN)) {
1347 			L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t) +
1348 				sizeof(*llcHdr);
1349 			ether_type = (uint16_t)*(nbuf->data + 2*QDF_MAC_ADDR_SIZE
1350 					+ sizeof(*llcHdr) +
1351 					sizeof(qdf_net_vlanhdr_t));
1352 		} else {
1353 			L3datap = hdr_ptr + sizeof(qdf_ether_header_t) +
1354 				sizeof(*llcHdr);
1355 		}
1356 	} else {
1357 		if (ether_type == htons(ETHERTYPE_VLAN)) {
1358 			evh = (qdf_ethervlan_header_t *) eh;
1359 			ether_type = evh->ether_type;
1360 			L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t);
1361 		}
1362 	}
1363 
1364 	/*
1365 	 * Find priority from IP TOS DSCP field
1366 	 */
1367 	if (qdf_nbuf_is_ipv4_pkt(nbuf)) {
1368 		qdf_net_iphdr_t *ip = (qdf_net_iphdr_t *) L3datap;
1369 		if (qdf_nbuf_is_ipv4_dhcp_pkt(nbuf)) {
1370 			/* Only for unicast frames */
1371 			if (!is_mcast) {
1372 				/* send it on VO queue */
1373 				msdu_info->tid = DP_VO_TID;
1374 			}
1375 		} else {
1376 			/*
1377 			 * IP frame: exclude ECN bits 0-1 and map DSCP bits 2-7
1378 			 * from TOS byte.
1379 			 */
1380 			tos = ip->ip_tos;
1381 			dscp_tid_override = 1;
1382 
1383 		}
1384 	} else if (qdf_nbuf_is_ipv6_pkt(nbuf)) {
1385 		/* TODO
1386 		 * use flowlabel
1387 		 *igmpmld cases to be handled in phase 2
1388 		 */
1389 		unsigned long ver_pri_flowlabel;
1390 		unsigned long pri;
1391 		ver_pri_flowlabel = *(unsigned long *) L3datap;
1392 		pri = (ntohl(ver_pri_flowlabel) & IPV6_FLOWINFO_PRIORITY) >>
1393 			DP_IPV6_PRIORITY_SHIFT;
1394 		tos = pri;
1395 		dscp_tid_override = 1;
1396 	} else if (qdf_nbuf_is_ipv4_eapol_pkt(nbuf))
1397 		msdu_info->tid = DP_VO_TID;
1398 	else if (qdf_nbuf_is_ipv4_arp_pkt(nbuf)) {
1399 		/* Only for unicast frames */
1400 		if (!is_mcast) {
1401 			/* send ucast arp on VO queue */
1402 			msdu_info->tid = DP_VO_TID;
1403 		}
1404 	}
1405 
1406 	/*
1407 	 * Assign all MCAST packets to BE
1408 	 */
1409 	if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
1410 		if (is_mcast) {
1411 			tos = 0;
1412 			dscp_tid_override = 1;
1413 		}
1414 	}
1415 
1416 	if (dscp_tid_override == 1) {
1417 		tos = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
1418 		msdu_info->tid = pdev->dscp_tid_map[vdev->dscp_tid_map_id][tos];
1419 	}
1420 
1421 	if (msdu_info->tid >= CDP_MAX_DATA_TIDS)
1422 		msdu_info->tid = CDP_MAX_DATA_TIDS - 1;
1423 
1424 	return;
1425 }
1426 
1427 /**
1428  * dp_tx_classify_tid() - Obtain TID to be used for this frame
1429  * @vdev: DP vdev handle
1430  * @nbuf: skb
1431  *
1432  * Software based TID classification is required when more than 2 DSCP-TID
1433  * mapping tables are needed.
1434  * Hardware supports 2 DSCP-TID mapping tables for HKv1 and 48 for HKv2.
1435  *
1436  * Return: void
1437  */
1438 static void dp_tx_classify_tid(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1439 			       struct dp_tx_msdu_info_s *msdu_info)
1440 {
1441 	struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
1442 
1443 	DP_TX_TID_OVERRIDE(msdu_info, nbuf);
1444 
1445 	if (pdev->soc && vdev->dscp_tid_map_id < pdev->soc->num_hw_dscp_tid_map)
1446 		return;
1447 
1448 	/* for mesh packets don't do any classification */
1449 	if (qdf_unlikely(vdev->mesh_vdev))
1450 		return;
1451 
1452 	dp_tx_get_tid(vdev, nbuf, msdu_info);
1453 }
1454 
1455 #ifdef FEATURE_WLAN_TDLS
1456 /**
1457  * dp_tx_update_tdls_flags() - Update descriptor flags for TDLS frame
1458  * @tx_desc: TX descriptor
1459  *
1460  * Return: None
1461  */
1462 static void dp_tx_update_tdls_flags(struct dp_tx_desc_s *tx_desc)
1463 {
1464 	if (tx_desc->vdev) {
1465 		if (tx_desc->vdev->is_tdls_frame) {
1466 			tx_desc->flags |= DP_TX_DESC_FLAG_TDLS_FRAME;
1467 			tx_desc->vdev->is_tdls_frame = false;
1468 		}
1469 	}
1470 }
1471 
1472 /**
1473  * dp_non_std_tx_comp_free_buff() - Free the non std tx packet buffer
1474  * @tx_desc: TX descriptor
1475  * @vdev: datapath vdev handle
1476  *
1477  * Return: None
1478  */
1479 static void dp_non_std_tx_comp_free_buff(struct dp_tx_desc_s *tx_desc,
1480 					 struct dp_vdev *vdev)
1481 {
1482 	struct hal_tx_completion_status ts = {0};
1483 	qdf_nbuf_t nbuf = tx_desc->nbuf;
1484 
1485 	if (qdf_unlikely(!vdev)) {
1486 		dp_err("vdev is null!");
1487 		return;
1488 	}
1489 
1490 	hal_tx_comp_get_status(&tx_desc->comp, &ts, vdev->pdev->soc->hal_soc);
1491 	if (vdev->tx_non_std_data_callback.func) {
1492 		qdf_nbuf_set_next(tx_desc->nbuf, NULL);
1493 		vdev->tx_non_std_data_callback.func(
1494 				vdev->tx_non_std_data_callback.ctxt,
1495 				nbuf, ts.status);
1496 		return;
1497 	}
1498 }
1499 #else
1500 static inline void dp_tx_update_tdls_flags(struct dp_tx_desc_s *tx_desc)
1501 {
1502 }
1503 
1504 static inline void dp_non_std_tx_comp_free_buff(struct dp_tx_desc_s *tx_desc,
1505 						struct dp_vdev *vdev)
1506 {
1507 }
1508 #endif
1509 
1510 /**
1511  * dp_tx_frame_is_drop() - checks if the packet is loopback
1512  * @vdev: DP vdev handle
1513  * @nbuf: skb
1514  *
1515  * Return: 1 if frame needs to be dropped else 0
1516  */
1517 int dp_tx_frame_is_drop(struct dp_vdev *vdev, uint8_t *srcmac, uint8_t *dstmac)
1518 {
1519 	struct dp_pdev *pdev = NULL;
1520 	struct dp_ast_entry *src_ast_entry = NULL;
1521 	struct dp_ast_entry *dst_ast_entry = NULL;
1522 	struct dp_soc *soc = NULL;
1523 
1524 	qdf_assert(vdev);
1525 	pdev = vdev->pdev;
1526 	qdf_assert(pdev);
1527 	soc = pdev->soc;
1528 
1529 	dst_ast_entry = dp_peer_ast_hash_find_by_pdevid
1530 				(soc, dstmac, vdev->pdev->pdev_id);
1531 
1532 	src_ast_entry = dp_peer_ast_hash_find_by_pdevid
1533 				(soc, srcmac, vdev->pdev->pdev_id);
1534 	if (dst_ast_entry && src_ast_entry) {
1535 		if (dst_ast_entry->peer->peer_ids[0] ==
1536 				src_ast_entry->peer->peer_ids[0])
1537 			return 1;
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 /**
1544  * dp_tx_send_msdu_single() - Setup descriptor and enqueue single MSDU to TCL
1545  * @vdev: DP vdev handle
1546  * @nbuf: skb
1547  * @tid: TID from HLOS for overriding default DSCP-TID mapping
1548  * @meta_data: Metadata to the fw
1549  * @tx_q: Tx queue to be used for this Tx frame
1550  * @peer_id: peer_id of the peer in case of NAWDS frames
1551  * @tx_exc_metadata: Handle that holds exception path metadata
1552  *
1553  * Return: NULL on success,
1554  *         nbuf when it fails to send
1555  */
1556 qdf_nbuf_t
1557 dp_tx_send_msdu_single(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1558 		       struct dp_tx_msdu_info_s *msdu_info, uint16_t peer_id,
1559 		       struct cdp_tx_exception_metadata *tx_exc_metadata)
1560 {
1561 	struct dp_pdev *pdev = vdev->pdev;
1562 	struct dp_soc *soc = pdev->soc;
1563 	struct dp_tx_desc_s *tx_desc;
1564 	QDF_STATUS status;
1565 	struct dp_tx_queue *tx_q = &(msdu_info->tx_queue);
1566 	hal_ring_handle_t hal_ring_hdl =
1567 				soc->tcl_data_ring[tx_q->ring_id].hal_srng;
1568 	uint16_t htt_tcl_metadata = 0;
1569 	uint8_t tid = msdu_info->tid;
1570 	struct cdp_tid_tx_stats *tid_stats = NULL;
1571 
1572 	/* Setup Tx descriptor for an MSDU, and MSDU extension descriptor */
1573 	tx_desc = dp_tx_prepare_desc_single(vdev, nbuf, tx_q->desc_pool_id,
1574 			msdu_info, tx_exc_metadata);
1575 	if (!tx_desc) {
1576 		dp_err_rl("Tx_desc prepare Fail vdev %pK queue %d",
1577 			  vdev, tx_q->desc_pool_id);
1578 		dp_tx_get_tid(vdev, nbuf, msdu_info);
1579 		tid_stats = &pdev->stats.tid_stats.
1580 			    tid_tx_stats[tx_q->ring_id][msdu_info->tid];
1581 		tid_stats->swdrop_cnt[TX_DESC_ERR]++;
1582 		return nbuf;
1583 	}
1584 
1585 	if (qdf_unlikely(soc->cce_disable)) {
1586 		if (dp_cce_classify(vdev, nbuf) == true) {
1587 			DP_STATS_INC(vdev, tx_i.cce_classified, 1);
1588 			tid = DP_VO_TID;
1589 			tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
1590 		}
1591 	}
1592 
1593 	dp_tx_update_tdls_flags(tx_desc);
1594 
1595 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_ring_hdl))) {
1596 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1597 				"%s %d : HAL RING Access Failed -- %pK",
1598 				__func__, __LINE__, hal_ring_hdl);
1599 		dp_tx_get_tid(vdev, nbuf, msdu_info);
1600 		tid_stats = &pdev->stats.tid_stats.
1601 			    tid_tx_stats[tx_q->ring_id][tid];
1602 		tid_stats->swdrop_cnt[TX_HAL_RING_ACCESS_ERR]++;
1603 		DP_STATS_INC(vdev, tx_i.dropped.ring_full, 1);
1604 		dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
1605 		qdf_nbuf_unmap(vdev->osdev, nbuf, QDF_DMA_TO_DEVICE);
1606 		goto fail_return;
1607 	}
1608 
1609 	if (qdf_unlikely(peer_id == DP_INVALID_PEER)) {
1610 		htt_tcl_metadata = vdev->htt_tcl_metadata;
1611 		HTT_TX_TCL_METADATA_HOST_INSPECTED_SET(htt_tcl_metadata, 1);
1612 	} else if (qdf_unlikely(peer_id != HTT_INVALID_PEER)) {
1613 		HTT_TX_TCL_METADATA_TYPE_SET(htt_tcl_metadata,
1614 				HTT_TCL_METADATA_TYPE_PEER_BASED);
1615 		HTT_TX_TCL_METADATA_PEER_ID_SET(htt_tcl_metadata,
1616 				peer_id);
1617 	} else
1618 		htt_tcl_metadata = vdev->htt_tcl_metadata;
1619 
1620 
1621 	if (msdu_info->exception_fw) {
1622 		HTT_TX_TCL_METADATA_VALID_HTT_SET(htt_tcl_metadata, 1);
1623 	}
1624 
1625 	/* Enqueue the Tx MSDU descriptor to HW for transmit */
1626 	status = dp_tx_hw_enqueue(soc, vdev, tx_desc, tid,
1627 			htt_tcl_metadata, tx_q->ring_id, tx_exc_metadata);
1628 
1629 	if (status != QDF_STATUS_SUCCESS) {
1630 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1631 			  "%s Tx_hw_enqueue Fail tx_desc %pK queue %d",
1632 			  __func__, tx_desc, tx_q->ring_id);
1633 		dp_tx_get_tid(vdev, nbuf, msdu_info);
1634 		tid_stats = &pdev->stats.tid_stats.
1635 			    tid_tx_stats[tx_q->ring_id][tid];
1636 		tid_stats->swdrop_cnt[TX_HW_ENQUEUE]++;
1637 		dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
1638 		qdf_nbuf_unmap(vdev->osdev, nbuf, QDF_DMA_TO_DEVICE);
1639 		goto fail_return;
1640 	}
1641 
1642 	nbuf = NULL;
1643 
1644 fail_return:
1645 	if (hif_pm_runtime_get(soc->hif_handle) == 0) {
1646 		hal_srng_access_end(soc->hal_soc, hal_ring_hdl);
1647 		hif_pm_runtime_put(soc->hif_handle);
1648 	} else {
1649 		hal_srng_access_end_reap(soc->hal_soc, hal_ring_hdl);
1650 		hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
1651 		hal_srng_inc_flush_cnt(hal_ring_hdl);
1652 	}
1653 
1654 	return nbuf;
1655 }
1656 
1657 /**
1658  * dp_tx_send_msdu_multiple() - Enqueue multiple MSDUs
1659  * @vdev: DP vdev handle
1660  * @nbuf: skb
1661  * @msdu_info: MSDU info to be setup in MSDU extension descriptor
1662  *
1663  * Prepare descriptors for multiple MSDUs (TSO segments) and enqueue to TCL
1664  *
1665  * Return: NULL on success,
1666  *         nbuf when it fails to send
1667  */
1668 #if QDF_LOCK_STATS
1669 noinline
1670 #else
1671 #endif
1672 qdf_nbuf_t dp_tx_send_msdu_multiple(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1673 				    struct dp_tx_msdu_info_s *msdu_info)
1674 {
1675 	uint8_t i;
1676 	struct dp_pdev *pdev = vdev->pdev;
1677 	struct dp_soc *soc = pdev->soc;
1678 	struct dp_tx_desc_s *tx_desc;
1679 	bool is_cce_classified = false;
1680 	QDF_STATUS status;
1681 	uint16_t htt_tcl_metadata = 0;
1682 	struct dp_tx_queue *tx_q = &msdu_info->tx_queue;
1683 	hal_ring_handle_t hal_ring_hdl =
1684 				soc->tcl_data_ring[tx_q->ring_id].hal_srng;
1685 	struct cdp_tid_tx_stats *tid_stats = NULL;
1686 
1687 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_ring_hdl))) {
1688 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1689 				"%s %d : HAL RING Access Failed -- %pK",
1690 				__func__, __LINE__, hal_ring_hdl);
1691 		dp_tx_get_tid(vdev, nbuf, msdu_info);
1692 		tid_stats = &pdev->stats.tid_stats.
1693 			    tid_tx_stats[tx_q->ring_id][msdu_info->tid];
1694 		tid_stats->swdrop_cnt[TX_HAL_RING_ACCESS_ERR]++;
1695 		DP_STATS_INC(vdev, tx_i.dropped.ring_full, 1);
1696 		return nbuf;
1697 	}
1698 
1699 	if (qdf_unlikely(soc->cce_disable)) {
1700 		is_cce_classified = dp_cce_classify(vdev, nbuf);
1701 		if (is_cce_classified) {
1702 			DP_STATS_INC(vdev, tx_i.cce_classified, 1);
1703 			msdu_info->tid = DP_VO_TID;
1704 		}
1705 	}
1706 
1707 	if (msdu_info->frm_type == dp_tx_frm_me)
1708 		nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
1709 
1710 	i = 0;
1711 	/* Print statement to track i and num_seg */
1712 	/*
1713 	 * For each segment (maps to 1 MSDU) , prepare software and hardware
1714 	 * descriptors using information in msdu_info
1715 	 */
1716 	while (i < msdu_info->num_seg) {
1717 		/*
1718 		 * Setup Tx descriptor for an MSDU, and MSDU extension
1719 		 * descriptor
1720 		 */
1721 		tx_desc = dp_tx_prepare_desc(vdev, nbuf, msdu_info,
1722 				tx_q->desc_pool_id);
1723 
1724 		if (!tx_desc) {
1725 			if (msdu_info->frm_type == dp_tx_frm_me) {
1726 				dp_tx_me_free_buf(pdev,
1727 					(void *)(msdu_info->u.sg_info
1728 						.curr_seg->frags[0].vaddr));
1729 				i++;
1730 				continue;
1731 			}
1732 			goto done;
1733 		}
1734 
1735 		if (msdu_info->frm_type == dp_tx_frm_me) {
1736 			tx_desc->me_buffer =
1737 				msdu_info->u.sg_info.curr_seg->frags[0].vaddr;
1738 			tx_desc->flags |= DP_TX_DESC_FLAG_ME;
1739 		}
1740 
1741 		if (is_cce_classified)
1742 			tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
1743 
1744 		htt_tcl_metadata = vdev->htt_tcl_metadata;
1745 		if (msdu_info->exception_fw) {
1746 			HTT_TX_TCL_METADATA_VALID_HTT_SET(htt_tcl_metadata, 1);
1747 		}
1748 
1749 		/*
1750 		 * Enqueue the Tx MSDU descriptor to HW for transmit
1751 		 */
1752 		status = dp_tx_hw_enqueue(soc, vdev, tx_desc, msdu_info->tid,
1753 			htt_tcl_metadata, tx_q->ring_id, NULL);
1754 
1755 		if (status != QDF_STATUS_SUCCESS) {
1756 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1757 					"%s Tx_hw_enqueue Fail tx_desc %pK queue %d",
1758 					__func__, tx_desc, tx_q->ring_id);
1759 
1760 			dp_tx_get_tid(vdev, nbuf, msdu_info);
1761 			tid_stats = &pdev->stats.tid_stats.
1762 				    tid_tx_stats[tx_q->ring_id][msdu_info->tid];
1763 			tid_stats->swdrop_cnt[TX_HW_ENQUEUE]++;
1764 
1765 			dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
1766 			if (msdu_info->frm_type == dp_tx_frm_me) {
1767 				i++;
1768 				continue;
1769 			}
1770 			goto done;
1771 		}
1772 
1773 		/*
1774 		 * TODO
1775 		 * if tso_info structure can be modified to have curr_seg
1776 		 * as first element, following 2 blocks of code (for TSO and SG)
1777 		 * can be combined into 1
1778 		 */
1779 
1780 		/*
1781 		 * For frames with multiple segments (TSO, ME), jump to next
1782 		 * segment.
1783 		 */
1784 		if (msdu_info->frm_type == dp_tx_frm_tso) {
1785 			if (msdu_info->u.tso_info.curr_seg->next) {
1786 				msdu_info->u.tso_info.curr_seg =
1787 					msdu_info->u.tso_info.curr_seg->next;
1788 
1789 				/*
1790 				 * If this is a jumbo nbuf, then increment the number of
1791 				 * nbuf users for each additional segment of the msdu.
1792 				 * This will ensure that the skb is freed only after
1793 				 * receiving tx completion for all segments of an nbuf
1794 				 */
1795 				qdf_nbuf_inc_users(nbuf);
1796 
1797 				/* Check with MCL if this is needed */
1798 				/* nbuf = msdu_info->u.tso_info.curr_seg->nbuf; */
1799 			}
1800 		}
1801 
1802 		/*
1803 		 * For Multicast-Unicast converted packets,
1804 		 * each converted frame (for a client) is represented as
1805 		 * 1 segment
1806 		 */
1807 		if ((msdu_info->frm_type == dp_tx_frm_sg) ||
1808 				(msdu_info->frm_type == dp_tx_frm_me)) {
1809 			if (msdu_info->u.sg_info.curr_seg->next) {
1810 				msdu_info->u.sg_info.curr_seg =
1811 					msdu_info->u.sg_info.curr_seg->next;
1812 				nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
1813 			}
1814 		}
1815 		i++;
1816 	}
1817 
1818 	nbuf = NULL;
1819 
1820 done:
1821 	if (hif_pm_runtime_get(soc->hif_handle) == 0) {
1822 		hal_srng_access_end(soc->hal_soc, hal_ring_hdl);
1823 		hif_pm_runtime_put(soc->hif_handle);
1824 	} else {
1825 		hal_srng_access_end_reap(soc->hal_soc, hal_ring_hdl);
1826 		hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
1827 		hal_srng_inc_flush_cnt(hal_ring_hdl);
1828 	}
1829 
1830 	return nbuf;
1831 }
1832 
1833 /**
1834  * dp_tx_prepare_sg()- Extract SG info from NBUF and prepare msdu_info
1835  *                     for SG frames
1836  * @vdev: DP vdev handle
1837  * @nbuf: skb
1838  * @seg_info: Pointer to Segment info Descriptor to be prepared
1839  * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
1840  *
1841  * Return: NULL on success,
1842  *         nbuf when it fails to send
1843  */
1844 static qdf_nbuf_t dp_tx_prepare_sg(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1845 	struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
1846 {
1847 	uint32_t cur_frag, nr_frags;
1848 	qdf_dma_addr_t paddr;
1849 	struct dp_tx_sg_info_s *sg_info;
1850 
1851 	sg_info = &msdu_info->u.sg_info;
1852 	nr_frags = qdf_nbuf_get_nr_frags(nbuf);
1853 
1854 	if (QDF_STATUS_SUCCESS != qdf_nbuf_map(vdev->osdev, nbuf,
1855 				QDF_DMA_TO_DEVICE)) {
1856 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1857 				"dma map error");
1858 		DP_STATS_INC(vdev, tx_i.sg.dma_map_error, 1);
1859 
1860 		qdf_nbuf_free(nbuf);
1861 		return NULL;
1862 	}
1863 
1864 	paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
1865 	seg_info->frags[0].paddr_lo = paddr;
1866 	seg_info->frags[0].paddr_hi = ((uint64_t) paddr) >> 32;
1867 	seg_info->frags[0].len = qdf_nbuf_headlen(nbuf);
1868 	seg_info->frags[0].vaddr = (void *) nbuf;
1869 
1870 	for (cur_frag = 0; cur_frag < nr_frags; cur_frag++) {
1871 		if (QDF_STATUS_E_FAILURE == qdf_nbuf_frag_map(vdev->osdev,
1872 					nbuf, 0, QDF_DMA_TO_DEVICE, cur_frag)) {
1873 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1874 					"frag dma map error");
1875 			DP_STATS_INC(vdev, tx_i.sg.dma_map_error, 1);
1876 			qdf_nbuf_free(nbuf);
1877 			return NULL;
1878 		}
1879 
1880 		paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
1881 		seg_info->frags[cur_frag + 1].paddr_lo = paddr;
1882 		seg_info->frags[cur_frag + 1].paddr_hi =
1883 			((uint64_t) paddr) >> 32;
1884 		seg_info->frags[cur_frag + 1].len =
1885 			qdf_nbuf_get_frag_size(nbuf, cur_frag);
1886 	}
1887 
1888 	seg_info->frag_cnt = (cur_frag + 1);
1889 	seg_info->total_len = qdf_nbuf_len(nbuf);
1890 	seg_info->next = NULL;
1891 
1892 	sg_info->curr_seg = seg_info;
1893 
1894 	msdu_info->frm_type = dp_tx_frm_sg;
1895 	msdu_info->num_seg = 1;
1896 
1897 	return nbuf;
1898 }
1899 
1900 /**
1901  * dp_tx_add_tx_sniffer_meta_data()- Add tx_sniffer meta hdr info
1902  * @vdev: DP vdev handle
1903  * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
1904  * @ppdu_cookie: PPDU cookie that should be replayed in the ppdu completions
1905  *
1906  * Return: NULL on failure,
1907  *         nbuf when extracted successfully
1908  */
1909 static
1910 void dp_tx_add_tx_sniffer_meta_data(struct dp_vdev *vdev,
1911 				    struct dp_tx_msdu_info_s *msdu_info,
1912 				    uint16_t ppdu_cookie)
1913 {
1914 	struct htt_tx_msdu_desc_ext2_t *meta_data =
1915 		(struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
1916 
1917 	qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
1918 
1919 	HTT_TX_MSDU_EXT2_DESC_FLAG_SEND_AS_STANDALONE_SET
1920 				(msdu_info->meta_data[5], 1);
1921 	HTT_TX_MSDU_EXT2_DESC_FLAG_HOST_OPAQUE_VALID_SET
1922 				(msdu_info->meta_data[5], 1);
1923 	HTT_TX_MSDU_EXT2_DESC_HOST_OPAQUE_COOKIE_SET
1924 				(msdu_info->meta_data[6], ppdu_cookie);
1925 
1926 	msdu_info->exception_fw = 1;
1927 	msdu_info->is_tx_sniffer = 1;
1928 }
1929 
1930 #ifdef MESH_MODE_SUPPORT
1931 
1932 /**
1933  * dp_tx_extract_mesh_meta_data()- Extract mesh meta hdr info from nbuf
1934 				and prepare msdu_info for mesh frames.
1935  * @vdev: DP vdev handle
1936  * @nbuf: skb
1937  * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
1938  *
1939  * Return: NULL on failure,
1940  *         nbuf when extracted successfully
1941  */
1942 static
1943 qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1944 				struct dp_tx_msdu_info_s *msdu_info)
1945 {
1946 	struct meta_hdr_s *mhdr;
1947 	struct htt_tx_msdu_desc_ext2_t *meta_data =
1948 				(struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
1949 
1950 	mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
1951 
1952 	if (CB_FTYPE_MESH_TX_INFO != qdf_nbuf_get_tx_ftype(nbuf)) {
1953 		msdu_info->exception_fw = 0;
1954 		goto remove_meta_hdr;
1955 	}
1956 
1957 	msdu_info->exception_fw = 1;
1958 
1959 	qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
1960 
1961 	meta_data->host_tx_desc_pool = 1;
1962 	meta_data->update_peer_cache = 1;
1963 	meta_data->learning_frame = 1;
1964 
1965 	if (!(mhdr->flags & METAHDR_FLAG_AUTO_RATE)) {
1966 		meta_data->power = mhdr->power;
1967 
1968 		meta_data->mcs_mask = 1 << mhdr->rate_info[0].mcs;
1969 		meta_data->nss_mask = 1 << mhdr->rate_info[0].nss;
1970 		meta_data->pream_type = mhdr->rate_info[0].preamble_type;
1971 		meta_data->retry_limit = mhdr->rate_info[0].max_tries;
1972 
1973 		meta_data->dyn_bw = 1;
1974 
1975 		meta_data->valid_pwr = 1;
1976 		meta_data->valid_mcs_mask = 1;
1977 		meta_data->valid_nss_mask = 1;
1978 		meta_data->valid_preamble_type  = 1;
1979 		meta_data->valid_retries = 1;
1980 		meta_data->valid_bw_info = 1;
1981 	}
1982 
1983 	if (mhdr->flags & METAHDR_FLAG_NOENCRYPT) {
1984 		meta_data->encrypt_type = 0;
1985 		meta_data->valid_encrypt_type = 1;
1986 		meta_data->learning_frame = 0;
1987 	}
1988 
1989 	meta_data->valid_key_flags = 1;
1990 	meta_data->key_flags = (mhdr->keyix & 0x3);
1991 
1992 remove_meta_hdr:
1993 	if (qdf_nbuf_pull_head(nbuf, sizeof(struct meta_hdr_s)) == NULL) {
1994 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1995 				"qdf_nbuf_pull_head failed");
1996 		qdf_nbuf_free(nbuf);
1997 		return NULL;
1998 	}
1999 
2000 	msdu_info->tid = qdf_nbuf_get_priority(nbuf);
2001 
2002 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
2003 			"%s , Meta hdr %0x %0x %0x %0x %0x %0x"
2004 			" tid %d to_fw %d",
2005 			__func__, msdu_info->meta_data[0],
2006 			msdu_info->meta_data[1],
2007 			msdu_info->meta_data[2],
2008 			msdu_info->meta_data[3],
2009 			msdu_info->meta_data[4],
2010 			msdu_info->meta_data[5],
2011 			msdu_info->tid, msdu_info->exception_fw);
2012 
2013 	return nbuf;
2014 }
2015 #else
2016 static
2017 qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
2018 				struct dp_tx_msdu_info_s *msdu_info)
2019 {
2020 	return nbuf;
2021 }
2022 
2023 #endif
2024 
2025 /**
2026  * dp_check_exc_metadata() - Checks if parameters are valid
2027  * @tx_exc - holds all exception path parameters
2028  *
2029  * Returns true when all the parameters are valid else false
2030  *
2031  */
2032 static bool dp_check_exc_metadata(struct cdp_tx_exception_metadata *tx_exc)
2033 {
2034 	bool invalid_tid = (tx_exc->tid > DP_MAX_TIDS && tx_exc->tid !=
2035 			    HTT_INVALID_TID);
2036 	bool invalid_encap_type =
2037 			(tx_exc->tx_encap_type > htt_cmn_pkt_num_types &&
2038 			 tx_exc->tx_encap_type != CDP_INVALID_TX_ENCAP_TYPE);
2039 	bool invalid_sec_type = (tx_exc->sec_type > cdp_num_sec_types &&
2040 				 tx_exc->sec_type != CDP_INVALID_SEC_TYPE);
2041 	bool invalid_cookie = (tx_exc->is_tx_sniffer == 1 &&
2042 			       tx_exc->ppdu_cookie == 0);
2043 
2044 	if (invalid_tid || invalid_encap_type || invalid_sec_type ||
2045 	    invalid_cookie) {
2046 		return false;
2047 	}
2048 
2049 	return true;
2050 }
2051 
2052 /**
2053  * dp_tx_send_exception() - Transmit a frame on a given VAP in exception path
2054  * @vap_dev: DP vdev handle
2055  * @nbuf: skb
2056  * @tx_exc_metadata: Handle that holds exception path meta data
2057  *
2058  * Entry point for Core Tx layer (DP_TX) invoked from
2059  * hard_start_xmit in OSIF/HDD to transmit frames through fw
2060  *
2061  * Return: NULL on success,
2062  *         nbuf when it fails to send
2063  */
2064 qdf_nbuf_t
2065 dp_tx_send_exception(struct cdp_vdev *vap_dev, qdf_nbuf_t nbuf,
2066 		     struct cdp_tx_exception_metadata *tx_exc_metadata)
2067 {
2068 	qdf_ether_header_t *eh = NULL;
2069 	struct dp_vdev *vdev = (struct dp_vdev *) vap_dev;
2070 	struct dp_tx_msdu_info_s msdu_info;
2071 
2072 	qdf_mem_zero(&msdu_info, sizeof(msdu_info));
2073 
2074 	if (!tx_exc_metadata)
2075 		goto fail;
2076 
2077 	msdu_info.tid = tx_exc_metadata->tid;
2078 
2079 	eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
2080 	dp_verbose_debug("skb %pM", nbuf->data);
2081 
2082 	DP_STATS_INC_PKT(vdev, tx_i.rcvd, 1, qdf_nbuf_len(nbuf));
2083 
2084 	if (qdf_unlikely(!dp_check_exc_metadata(tx_exc_metadata))) {
2085 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2086 			"Invalid parameters in exception path");
2087 		goto fail;
2088 	}
2089 
2090 	/* Basic sanity checks for unsupported packets */
2091 
2092 	/* MESH mode */
2093 	if (qdf_unlikely(vdev->mesh_vdev)) {
2094 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2095 			"Mesh mode is not supported in exception path");
2096 		goto fail;
2097 	}
2098 
2099 	/* TSO or SG */
2100 	if (qdf_unlikely(qdf_nbuf_is_tso(nbuf)) ||
2101 	    qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
2102 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2103 			  "TSO and SG are not supported in exception path");
2104 
2105 		goto fail;
2106 	}
2107 
2108 	/* RAW */
2109 	if (qdf_unlikely(tx_exc_metadata->tx_encap_type == htt_cmn_pkt_type_raw)) {
2110 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2111 			  "Raw frame is not supported in exception path");
2112 		goto fail;
2113 	}
2114 
2115 
2116 	/* Mcast enhancement*/
2117 	if (qdf_unlikely(vdev->mcast_enhancement_en > 0)) {
2118 		if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost) &&
2119 		    !DP_FRAME_IS_BROADCAST((eh)->ether_dhost)) {
2120 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2121 					  "Ignoring mcast_enhancement_en which is set and sending the mcast packet to the FW");
2122 		}
2123 	}
2124 
2125 	if (qdf_likely(tx_exc_metadata->is_tx_sniffer)) {
2126 		DP_STATS_INC_PKT(vdev, tx_i.sniffer_rcvd, 1,
2127 				 qdf_nbuf_len(nbuf));
2128 
2129 		dp_tx_add_tx_sniffer_meta_data(vdev, &msdu_info,
2130 					       tx_exc_metadata->ppdu_cookie);
2131 	}
2132 
2133 	/*
2134 	 * Get HW Queue to use for this frame.
2135 	 * TCL supports upto 4 DMA rings, out of which 3 rings are
2136 	 * dedicated for data and 1 for command.
2137 	 * "queue_id" maps to one hardware ring.
2138 	 *  With each ring, we also associate a unique Tx descriptor pool
2139 	 *  to minimize lock contention for these resources.
2140 	 */
2141 	dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
2142 
2143 	/*  Single linear frame */
2144 	/*
2145 	 * If nbuf is a simple linear frame, use send_single function to
2146 	 * prepare direct-buffer type TCL descriptor and enqueue to TCL
2147 	 * SRNG. There is no need to setup a MSDU extension descriptor.
2148 	 */
2149 	nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info,
2150 			tx_exc_metadata->peer_id, tx_exc_metadata);
2151 
2152 	return nbuf;
2153 
2154 fail:
2155 	dp_verbose_debug("pkt send failed");
2156 	return nbuf;
2157 }
2158 
2159 /**
2160  * dp_tx_send_mesh() - Transmit mesh frame on a given VAP
2161  * @soc: DP soc handle
2162  * @vdev_id: DP vdev handle
2163  * @nbuf: skb
2164  *
2165  * Entry point for Core Tx layer (DP_TX) invoked from
2166  * hard_start_xmit in OSIF/HDD
2167  *
2168  * Return: NULL on success,
2169  *         nbuf when it fails to send
2170  */
2171 #ifdef MESH_MODE_SUPPORT
2172 qdf_nbuf_t dp_tx_send_mesh(struct cdp_soc_t *soc, uint8_t vdev_id,
2173 			   qdf_nbuf_t nbuf)
2174 {
2175 	struct meta_hdr_s *mhdr;
2176 	qdf_nbuf_t nbuf_mesh = NULL;
2177 	qdf_nbuf_t nbuf_clone = NULL;
2178 	struct dp_vdev *vdev;
2179 	uint8_t no_enc_frame = 0;
2180 
2181 	nbuf_mesh = qdf_nbuf_unshare(nbuf);
2182 	if (!nbuf_mesh) {
2183 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2184 				"qdf_nbuf_unshare failed");
2185 		return nbuf;
2186 	}
2187 
2188 	vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc,
2189 						  vdev_id);
2190 	if (!vdev) {
2191 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2192 				"vdev is NULL for vdev_id %d", vdev_id);
2193 		return nbuf;
2194 	}
2195 
2196 	nbuf = nbuf_mesh;
2197 
2198 	mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
2199 
2200 	if ((vdev->sec_type != cdp_sec_type_none) &&
2201 			(mhdr->flags & METAHDR_FLAG_NOENCRYPT))
2202 		no_enc_frame = 1;
2203 
2204 	if (mhdr->flags & METAHDR_FLAG_NOQOS)
2205 		qdf_nbuf_set_priority(nbuf, HTT_TX_EXT_TID_NON_QOS_MCAST_BCAST);
2206 
2207 	if ((mhdr->flags & METAHDR_FLAG_INFO_UPDATED) &&
2208 		       !no_enc_frame) {
2209 		nbuf_clone = qdf_nbuf_clone(nbuf);
2210 		if (!nbuf_clone) {
2211 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2212 				"qdf_nbuf_clone failed");
2213 			return nbuf;
2214 		}
2215 		qdf_nbuf_set_tx_ftype(nbuf_clone, CB_FTYPE_MESH_TX_INFO);
2216 	}
2217 
2218 	if (nbuf_clone) {
2219 		if (!dp_tx_send(soc, vdev_id, nbuf_clone)) {
2220 			DP_STATS_INC(vdev, tx_i.mesh.exception_fw, 1);
2221 		} else {
2222 			qdf_nbuf_free(nbuf_clone);
2223 		}
2224 	}
2225 
2226 	if (no_enc_frame)
2227 		qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_MESH_TX_INFO);
2228 	else
2229 		qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_INVALID);
2230 
2231 	nbuf = dp_tx_send(soc, vdev_id, nbuf);
2232 	if ((!nbuf) && no_enc_frame) {
2233 		DP_STATS_INC(vdev, tx_i.mesh.exception_fw, 1);
2234 	}
2235 
2236 	return nbuf;
2237 }
2238 
2239 #else
2240 
2241 qdf_nbuf_t dp_tx_send_mesh(struct cdp_soc_t *soc, uint8_t vdev_id,
2242 			   qdf_nbuf_t nbuf)
2243 {
2244 	return dp_tx_send(soc, vdev_id, nbuf);
2245 }
2246 
2247 #endif
2248 
2249 /**
2250  * dp_tx_send() - Transmit a frame on a given VAP
2251  * @soc: DP soc handle
2252  * @vdev_id: id of DP vdev handle
2253  * @nbuf: skb
2254  *
2255  * Entry point for Core Tx layer (DP_TX) invoked from
2256  * hard_start_xmit in OSIF/HDD or from dp_rx_process for intravap forwarding
2257  * cases
2258  *
2259  * Return: NULL on success,
2260  *         nbuf when it fails to send
2261  */
2262 qdf_nbuf_t dp_tx_send(struct cdp_soc_t *soc, uint8_t vdev_id, qdf_nbuf_t nbuf)
2263 {
2264 	qdf_ether_header_t *eh = NULL;
2265 	struct dp_tx_msdu_info_s msdu_info;
2266 	struct dp_tx_seg_info_s seg_info;
2267 	uint16_t peer_id = HTT_INVALID_PEER;
2268 	qdf_nbuf_t nbuf_mesh = NULL;
2269 	struct dp_vdev *vdev =
2270 		dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc,
2271 						   vdev_id);
2272 
2273 	if (qdf_unlikely(!vdev))
2274 		return nbuf;
2275 
2276 	qdf_mem_zero(&msdu_info, sizeof(msdu_info));
2277 	qdf_mem_zero(&seg_info, sizeof(seg_info));
2278 
2279 	eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
2280 
2281 	dp_verbose_debug("skb %pM", nbuf->data);
2282 
2283 	/*
2284 	 * Set Default Host TID value to invalid TID
2285 	 * (TID override disabled)
2286 	 */
2287 	msdu_info.tid = HTT_TX_EXT_TID_INVALID;
2288 	DP_STATS_INC_PKT(vdev, tx_i.rcvd, 1, qdf_nbuf_len(nbuf));
2289 
2290 	if (qdf_unlikely(vdev->mesh_vdev)) {
2291 		nbuf_mesh = dp_tx_extract_mesh_meta_data(vdev, nbuf,
2292 								&msdu_info);
2293 		if (!nbuf_mesh) {
2294 			dp_verbose_debug("Extracting mesh metadata failed");
2295 			return nbuf;
2296 		}
2297 		nbuf = nbuf_mesh;
2298 	}
2299 
2300 	/*
2301 	 * Get HW Queue to use for this frame.
2302 	 * TCL supports upto 4 DMA rings, out of which 3 rings are
2303 	 * dedicated for data and 1 for command.
2304 	 * "queue_id" maps to one hardware ring.
2305 	 *  With each ring, we also associate a unique Tx descriptor pool
2306 	 *  to minimize lock contention for these resources.
2307 	 */
2308 	dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
2309 
2310 	/*
2311 	 * TCL H/W supports 2 DSCP-TID mapping tables.
2312 	 *  Table 1 - Default DSCP-TID mapping table
2313 	 *  Table 2 - 1 DSCP-TID override table
2314 	 *
2315 	 * If we need a different DSCP-TID mapping for this vap,
2316 	 * call tid_classify to extract DSCP/ToS from frame and
2317 	 * map to a TID and store in msdu_info. This is later used
2318 	 * to fill in TCL Input descriptor (per-packet TID override).
2319 	 */
2320 	dp_tx_classify_tid(vdev, nbuf, &msdu_info);
2321 
2322 	/*
2323 	 * Classify the frame and call corresponding
2324 	 * "prepare" function which extracts the segment (TSO)
2325 	 * and fragmentation information (for TSO , SG, ME, or Raw)
2326 	 * into MSDU_INFO structure which is later used to fill
2327 	 * SW and HW descriptors.
2328 	 */
2329 	if (qdf_nbuf_is_tso(nbuf)) {
2330 		dp_verbose_debug("TSO frame %pK", vdev);
2331 		DP_STATS_INC_PKT(vdev->pdev, tso_stats.num_tso_pkts, 1,
2332 				 qdf_nbuf_len(nbuf));
2333 
2334 		if (dp_tx_prepare_tso(vdev, nbuf, &msdu_info)) {
2335 			DP_STATS_INC_PKT(vdev->pdev, tso_stats.dropped_host, 1,
2336 					 qdf_nbuf_len(nbuf));
2337 			return nbuf;
2338 		}
2339 
2340 		goto send_multiple;
2341 	}
2342 
2343 	/* SG */
2344 	if (qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
2345 		nbuf = dp_tx_prepare_sg(vdev, nbuf, &seg_info, &msdu_info);
2346 
2347 		if (!nbuf)
2348 			return NULL;
2349 
2350 		dp_verbose_debug("non-TSO SG frame %pK", vdev);
2351 
2352 		DP_STATS_INC_PKT(vdev, tx_i.sg.sg_pkt, 1,
2353 				qdf_nbuf_len(nbuf));
2354 
2355 		goto send_multiple;
2356 	}
2357 
2358 #ifdef ATH_SUPPORT_IQUE
2359 	/* Mcast to Ucast Conversion*/
2360 	if (qdf_unlikely(vdev->mcast_enhancement_en > 0)) {
2361 		eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
2362 		if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost) &&
2363 		    !DP_FRAME_IS_BROADCAST((eh)->ether_dhost)) {
2364 			dp_verbose_debug("Mcast frm for ME %pK", vdev);
2365 
2366 			DP_STATS_INC_PKT(vdev,
2367 					tx_i.mcast_en.mcast_pkt, 1,
2368 					qdf_nbuf_len(nbuf));
2369 			if (dp_tx_prepare_send_me(vdev, nbuf) ==
2370 					QDF_STATUS_SUCCESS) {
2371 				return NULL;
2372 			}
2373 		}
2374 	}
2375 #endif
2376 
2377 	/* RAW */
2378 	if (qdf_unlikely(vdev->tx_encap_type == htt_cmn_pkt_type_raw)) {
2379 		nbuf = dp_tx_prepare_raw(vdev, nbuf, &seg_info, &msdu_info);
2380 		if (!nbuf)
2381 			return NULL;
2382 
2383 		dp_verbose_debug("Raw frame %pK", vdev);
2384 
2385 		goto send_multiple;
2386 
2387 	}
2388 
2389 	/*  Single linear frame */
2390 	/*
2391 	 * If nbuf is a simple linear frame, use send_single function to
2392 	 * prepare direct-buffer type TCL descriptor and enqueue to TCL
2393 	 * SRNG. There is no need to setup a MSDU extension descriptor.
2394 	 */
2395 	nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info, peer_id, NULL);
2396 
2397 	return nbuf;
2398 
2399 send_multiple:
2400 	nbuf = dp_tx_send_msdu_multiple(vdev, nbuf, &msdu_info);
2401 
2402 	if (qdf_unlikely(nbuf && msdu_info.frm_type == dp_tx_frm_raw))
2403 		dp_tx_raw_prepare_unset(vdev->pdev->soc, nbuf);
2404 
2405 	return nbuf;
2406 }
2407 
2408 /**
2409  * dp_tx_reinject_handler() - Tx Reinject Handler
2410  * @tx_desc: software descriptor head pointer
2411  * @status : Tx completion status from HTT descriptor
2412  *
2413  * This function reinjects frames back to Target.
2414  * Todo - Host queue needs to be added
2415  *
2416  * Return: none
2417  */
2418 static
2419 void dp_tx_reinject_handler(struct dp_tx_desc_s *tx_desc, uint8_t *status)
2420 {
2421 	struct dp_vdev *vdev;
2422 	struct dp_peer *peer = NULL;
2423 	uint32_t peer_id = HTT_INVALID_PEER;
2424 	qdf_nbuf_t nbuf = tx_desc->nbuf;
2425 	qdf_nbuf_t nbuf_copy = NULL;
2426 	struct dp_tx_msdu_info_s msdu_info;
2427 	struct dp_peer *sa_peer = NULL;
2428 	struct dp_ast_entry *ast_entry = NULL;
2429 	struct dp_soc *soc = NULL;
2430 	qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
2431 #ifdef WDS_VENDOR_EXTENSION
2432 	int is_mcast = 0, is_ucast = 0;
2433 	int num_peers_3addr = 0;
2434 	qdf_ether_header_t *eth_hdr = (qdf_ether_header_t *)(qdf_nbuf_data(nbuf));
2435 	struct ieee80211_frame_addr4 *wh = (struct ieee80211_frame_addr4 *)(qdf_nbuf_data(nbuf));
2436 #endif
2437 
2438 	vdev = tx_desc->vdev;
2439 	soc = vdev->pdev->soc;
2440 
2441 	qdf_assert(vdev);
2442 
2443 	qdf_mem_zero(&msdu_info, sizeof(msdu_info));
2444 
2445 	dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
2446 
2447 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2448 			"%s Tx reinject path", __func__);
2449 
2450 	DP_STATS_INC_PKT(vdev, tx_i.reinject_pkts, 1,
2451 			qdf_nbuf_len(tx_desc->nbuf));
2452 
2453 	qdf_spin_lock_bh(&(soc->ast_lock));
2454 
2455 	ast_entry = dp_peer_ast_hash_find_by_pdevid
2456 				(soc,
2457 				 (uint8_t *)(eh->ether_shost),
2458 				 vdev->pdev->pdev_id);
2459 
2460 	if (ast_entry)
2461 		sa_peer = ast_entry->peer;
2462 
2463 	qdf_spin_unlock_bh(&(soc->ast_lock));
2464 
2465 #ifdef WDS_VENDOR_EXTENSION
2466 	if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
2467 		is_mcast = (IS_MULTICAST(wh->i_addr1)) ? 1 : 0;
2468 	} else {
2469 		is_mcast = (IS_MULTICAST(eth_hdr->ether_dhost)) ? 1 : 0;
2470 	}
2471 	is_ucast = !is_mcast;
2472 
2473 	TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
2474 		if (peer->bss_peer)
2475 			continue;
2476 
2477 		/* Detect wds peers that use 3-addr framing for mcast.
2478 		 * if there are any, the bss_peer is used to send the
2479 		 * the mcast frame using 3-addr format. all wds enabled
2480 		 * peers that use 4-addr framing for mcast frames will
2481 		 * be duplicated and sent as 4-addr frames below.
2482 		 */
2483 		if (!peer->wds_enabled || !peer->wds_ecm.wds_tx_mcast_4addr) {
2484 			num_peers_3addr = 1;
2485 			break;
2486 		}
2487 	}
2488 #endif
2489 
2490 	if (qdf_unlikely(vdev->mesh_vdev)) {
2491 		DP_TX_FREE_SINGLE_BUF(vdev->pdev->soc, tx_desc->nbuf);
2492 	} else {
2493 		TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
2494 			if ((peer->peer_ids[0] != HTT_INVALID_PEER) &&
2495 #ifdef WDS_VENDOR_EXTENSION
2496 			/*
2497 			 * . if 3-addr STA, then send on BSS Peer
2498 			 * . if Peer WDS enabled and accept 4-addr mcast,
2499 			 * send mcast on that peer only
2500 			 * . if Peer WDS enabled and accept 4-addr ucast,
2501 			 * send ucast on that peer only
2502 			 */
2503 			((peer->bss_peer && num_peers_3addr && is_mcast) ||
2504 			 (peer->wds_enabled &&
2505 				  ((is_mcast && peer->wds_ecm.wds_tx_mcast_4addr) ||
2506 				   (is_ucast && peer->wds_ecm.wds_tx_ucast_4addr))))) {
2507 #else
2508 			((peer->bss_peer &&
2509 			  !(vdev->osif_proxy_arp(vdev->osif_vdev, nbuf))) ||
2510 				 peer->nawds_enabled)) {
2511 #endif
2512 				peer_id = DP_INVALID_PEER;
2513 
2514 				if (peer->nawds_enabled) {
2515 					peer_id = peer->peer_ids[0];
2516 					if (sa_peer == peer) {
2517 						QDF_TRACE(
2518 							QDF_MODULE_ID_DP,
2519 							QDF_TRACE_LEVEL_DEBUG,
2520 							" %s: multicast packet",
2521 							__func__);
2522 						DP_STATS_INC(peer,
2523 							tx.nawds_mcast_drop, 1);
2524 						continue;
2525 					}
2526 				}
2527 
2528 				nbuf_copy = qdf_nbuf_copy(nbuf);
2529 
2530 				if (!nbuf_copy) {
2531 					QDF_TRACE(QDF_MODULE_ID_DP,
2532 						QDF_TRACE_LEVEL_DEBUG,
2533 						FL("nbuf copy failed"));
2534 					break;
2535 				}
2536 
2537 				nbuf_copy = dp_tx_send_msdu_single(vdev,
2538 						nbuf_copy,
2539 						&msdu_info,
2540 						peer_id,
2541 						NULL);
2542 
2543 				if (nbuf_copy) {
2544 					QDF_TRACE(QDF_MODULE_ID_DP,
2545 						QDF_TRACE_LEVEL_DEBUG,
2546 						FL("pkt send failed"));
2547 					qdf_nbuf_free(nbuf_copy);
2548 				} else {
2549 					if (peer_id != DP_INVALID_PEER)
2550 						DP_STATS_INC_PKT(peer,
2551 							tx.nawds_mcast,
2552 							1, qdf_nbuf_len(nbuf));
2553 				}
2554 			}
2555 		}
2556 	}
2557 
2558 	if (vdev->nawds_enabled) {
2559 		peer_id = DP_INVALID_PEER;
2560 
2561 		DP_STATS_INC_PKT(vdev, tx_i.nawds_mcast,
2562 					1, qdf_nbuf_len(nbuf));
2563 
2564 		nbuf = dp_tx_send_msdu_single(vdev,
2565 				nbuf,
2566 				&msdu_info,
2567 				peer_id, NULL);
2568 
2569 		if (nbuf) {
2570 			QDF_TRACE(QDF_MODULE_ID_DP,
2571 				QDF_TRACE_LEVEL_DEBUG,
2572 				FL("pkt send failed"));
2573 			qdf_nbuf_free(nbuf);
2574 		}
2575 	} else
2576 		qdf_nbuf_free(nbuf);
2577 
2578 	dp_tx_desc_release(tx_desc, tx_desc->pool_id);
2579 }
2580 
2581 /**
2582  * dp_tx_inspect_handler() - Tx Inspect Handler
2583  * @tx_desc: software descriptor head pointer
2584  * @status : Tx completion status from HTT descriptor
2585  *
2586  * Handles Tx frames sent back to Host for inspection
2587  * (ProxyARP)
2588  *
2589  * Return: none
2590  */
2591 static void dp_tx_inspect_handler(struct dp_tx_desc_s *tx_desc, uint8_t *status)
2592 {
2593 
2594 	struct dp_soc *soc;
2595 	struct dp_pdev *pdev = tx_desc->pdev;
2596 
2597 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
2598 			"%s Tx inspect path",
2599 			__func__);
2600 
2601 	qdf_assert(pdev);
2602 
2603 	soc = pdev->soc;
2604 
2605 	DP_STATS_INC_PKT(tx_desc->vdev, tx_i.inspect_pkts, 1,
2606 			qdf_nbuf_len(tx_desc->nbuf));
2607 
2608 	DP_TX_FREE_SINGLE_BUF(soc, tx_desc->nbuf);
2609 	dp_tx_desc_release(tx_desc, tx_desc->pool_id);
2610 }
2611 
2612 #ifdef FEATURE_PERPKT_INFO
2613 /**
2614  * dp_get_completion_indication_for_stack() - send completion to stack
2615  * @soc : dp_soc handle
2616  * @pdev: dp_pdev handle
2617  * @peer: dp peer handle
2618  * @ts: transmit completion status structure
2619  * @netbuf: Buffer pointer for free
2620  *
2621  * This function is used for indication whether buffer needs to be
2622  * sent to stack for freeing or not
2623 */
2624 QDF_STATUS
2625 dp_get_completion_indication_for_stack(struct dp_soc *soc,
2626 				       struct dp_pdev *pdev,
2627 				       struct dp_peer *peer,
2628 				       struct hal_tx_completion_status *ts,
2629 				       qdf_nbuf_t netbuf,
2630 				       uint64_t time_latency)
2631 {
2632 	struct tx_capture_hdr *ppdu_hdr;
2633 	uint16_t peer_id = ts->peer_id;
2634 	uint32_t ppdu_id = ts->ppdu_id;
2635 	uint8_t first_msdu = ts->first_msdu;
2636 	uint8_t last_msdu = ts->last_msdu;
2637 
2638 	if (qdf_unlikely(!pdev->tx_sniffer_enable && !pdev->mcopy_mode &&
2639 			 !pdev->latency_capture_enable))
2640 		return QDF_STATUS_E_NOSUPPORT;
2641 
2642 	if (!peer) {
2643 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2644 				FL("Peer Invalid"));
2645 		return QDF_STATUS_E_INVAL;
2646 	}
2647 
2648 	if (pdev->mcopy_mode) {
2649 		if ((pdev->m_copy_id.tx_ppdu_id == ppdu_id) &&
2650 				(pdev->m_copy_id.tx_peer_id == peer_id)) {
2651 			return QDF_STATUS_E_INVAL;
2652 		}
2653 
2654 		pdev->m_copy_id.tx_ppdu_id = ppdu_id;
2655 		pdev->m_copy_id.tx_peer_id = peer_id;
2656 	}
2657 
2658 	if (!qdf_nbuf_push_head(netbuf, sizeof(struct tx_capture_hdr))) {
2659 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2660 				FL("No headroom"));
2661 		return QDF_STATUS_E_NOMEM;
2662 	}
2663 
2664 	ppdu_hdr = (struct tx_capture_hdr *)qdf_nbuf_data(netbuf);
2665 	qdf_mem_copy(ppdu_hdr->ta, peer->vdev->mac_addr.raw,
2666 		     QDF_MAC_ADDR_SIZE);
2667 	qdf_mem_copy(ppdu_hdr->ra, peer->mac_addr.raw,
2668 		     QDF_MAC_ADDR_SIZE);
2669 	ppdu_hdr->ppdu_id = ppdu_id;
2670 	ppdu_hdr->peer_id = peer_id;
2671 	ppdu_hdr->first_msdu = first_msdu;
2672 	ppdu_hdr->last_msdu = last_msdu;
2673 	if (qdf_unlikely(pdev->latency_capture_enable)) {
2674 		ppdu_hdr->tsf = ts->tsf;
2675 		ppdu_hdr->time_latency = time_latency;
2676 	}
2677 
2678 	return QDF_STATUS_SUCCESS;
2679 }
2680 
2681 
2682 /**
2683  * dp_send_completion_to_stack() - send completion to stack
2684  * @soc :  dp_soc handle
2685  * @pdev:  dp_pdev handle
2686  * @peer_id: peer_id of the peer for which completion came
2687  * @ppdu_id: ppdu_id
2688  * @netbuf: Buffer pointer for free
2689  *
2690  * This function is used to send completion to stack
2691  * to free buffer
2692 */
2693 void  dp_send_completion_to_stack(struct dp_soc *soc,  struct dp_pdev *pdev,
2694 					uint16_t peer_id, uint32_t ppdu_id,
2695 					qdf_nbuf_t netbuf)
2696 {
2697 	dp_wdi_event_handler(WDI_EVENT_TX_DATA, soc,
2698 				netbuf, peer_id,
2699 				WDI_NO_VAL, pdev->pdev_id);
2700 }
2701 #else
2702 static QDF_STATUS
2703 dp_get_completion_indication_for_stack(struct dp_soc *soc,
2704 				       struct dp_pdev *pdev,
2705 				       struct dp_peer *peer,
2706 				       struct hal_tx_completion_status *ts,
2707 				       qdf_nbuf_t netbuf,
2708 				       uint64_t time_latency)
2709 {
2710 	return QDF_STATUS_E_NOSUPPORT;
2711 }
2712 
2713 static void
2714 dp_send_completion_to_stack(struct dp_soc *soc,  struct dp_pdev *pdev,
2715 	uint16_t peer_id, uint32_t ppdu_id, qdf_nbuf_t netbuf)
2716 {
2717 }
2718 #endif
2719 
2720 /**
2721  * dp_tx_comp_free_buf() - Free nbuf associated with the Tx Descriptor
2722  * @soc: Soc handle
2723  * @desc: software Tx descriptor to be processed
2724  *
2725  * Return: none
2726  */
2727 static inline void dp_tx_comp_free_buf(struct dp_soc *soc,
2728 				       struct dp_tx_desc_s *desc)
2729 {
2730 	struct dp_vdev *vdev = desc->vdev;
2731 	qdf_nbuf_t nbuf = desc->nbuf;
2732 
2733 	/* nbuf already freed in vdev detach path */
2734 	if (!nbuf)
2735 		return;
2736 
2737 	/* If it is TDLS mgmt, don't unmap or free the frame */
2738 	if (desc->flags & DP_TX_DESC_FLAG_TDLS_FRAME)
2739 		return dp_non_std_tx_comp_free_buff(desc, vdev);
2740 
2741 	/* 0 : MSDU buffer, 1 : MLE */
2742 	if (desc->msdu_ext_desc) {
2743 		/* TSO free */
2744 		if (hal_tx_ext_desc_get_tso_enable(
2745 					desc->msdu_ext_desc->vaddr)) {
2746 			/* unmap eash TSO seg before free the nbuf */
2747 			dp_tx_tso_unmap_segment(soc, desc->tso_desc,
2748 						desc->tso_num_desc);
2749 			qdf_nbuf_free(nbuf);
2750 			return;
2751 		}
2752 	}
2753 
2754 	qdf_nbuf_unmap(soc->osdev, nbuf, QDF_DMA_TO_DEVICE);
2755 
2756 	if (qdf_unlikely(!vdev)) {
2757 		qdf_nbuf_free(nbuf);
2758 		return;
2759 	}
2760 
2761 	if (qdf_likely(!vdev->mesh_vdev))
2762 		qdf_nbuf_free(nbuf);
2763 	else {
2764 		if (desc->flags & DP_TX_DESC_FLAG_TO_FW) {
2765 			qdf_nbuf_free(nbuf);
2766 			DP_STATS_INC(vdev, tx_i.mesh.completion_fw, 1);
2767 		} else
2768 			vdev->osif_tx_free_ext((nbuf));
2769 	}
2770 }
2771 
2772 #ifdef MESH_MODE_SUPPORT
2773 /**
2774  * dp_tx_comp_fill_tx_completion_stats() - Fill per packet Tx completion stats
2775  *                                         in mesh meta header
2776  * @tx_desc: software descriptor head pointer
2777  * @ts: pointer to tx completion stats
2778  * Return: none
2779  */
2780 static
2781 void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
2782 		struct hal_tx_completion_status *ts)
2783 {
2784 	struct meta_hdr_s *mhdr;
2785 	qdf_nbuf_t netbuf = tx_desc->nbuf;
2786 
2787 	if (!tx_desc->msdu_ext_desc) {
2788 		if (qdf_nbuf_pull_head(netbuf, tx_desc->pkt_offset) == NULL) {
2789 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2790 				"netbuf %pK offset %d",
2791 				netbuf, tx_desc->pkt_offset);
2792 			return;
2793 		}
2794 	}
2795 	if (qdf_nbuf_push_head(netbuf, sizeof(struct meta_hdr_s)) == NULL) {
2796 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2797 			"netbuf %pK offset %lu", netbuf,
2798 			sizeof(struct meta_hdr_s));
2799 		return;
2800 	}
2801 
2802 	mhdr = (struct meta_hdr_s *)qdf_nbuf_data(netbuf);
2803 	mhdr->rssi = ts->ack_frame_rssi;
2804 	mhdr->channel = tx_desc->pdev->operating_channel;
2805 }
2806 
2807 #else
2808 static
2809 void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
2810 		struct hal_tx_completion_status *ts)
2811 {
2812 }
2813 
2814 #endif
2815 
2816 /**
2817  * dp_tx_compute_delay() - Compute and fill in all timestamps
2818  *				to pass in correct fields
2819  *
2820  * @vdev: pdev handle
2821  * @tx_desc: tx descriptor
2822  * @tid: tid value
2823  * @ring_id: TCL or WBM ring number for transmit path
2824  * Return: none
2825  */
2826 static void dp_tx_compute_delay(struct dp_vdev *vdev,
2827 				struct dp_tx_desc_s *tx_desc,
2828 				uint8_t tid, uint8_t ring_id)
2829 {
2830 	int64_t current_timestamp, timestamp_ingress, timestamp_hw_enqueue;
2831 	uint32_t sw_enqueue_delay, fwhw_transmit_delay, interframe_delay;
2832 
2833 	if (qdf_likely(!vdev->pdev->delay_stats_flag))
2834 		return;
2835 
2836 	current_timestamp = qdf_ktime_to_ms(qdf_ktime_get());
2837 	timestamp_ingress = qdf_nbuf_get_timestamp(tx_desc->nbuf);
2838 	timestamp_hw_enqueue = tx_desc->timestamp;
2839 	sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
2840 	fwhw_transmit_delay = (uint32_t)(current_timestamp -
2841 					 timestamp_hw_enqueue);
2842 	interframe_delay = (uint32_t)(timestamp_ingress -
2843 				      vdev->prev_tx_enq_tstamp);
2844 
2845 	/*
2846 	 * Delay in software enqueue
2847 	 */
2848 	dp_update_delay_stats(vdev->pdev, sw_enqueue_delay, tid,
2849 			      CDP_DELAY_STATS_SW_ENQ, ring_id);
2850 	/*
2851 	 * Delay between packet enqueued to HW and Tx completion
2852 	 */
2853 	dp_update_delay_stats(vdev->pdev, fwhw_transmit_delay, tid,
2854 			      CDP_DELAY_STATS_FW_HW_TRANSMIT, ring_id);
2855 
2856 	/*
2857 	 * Update interframe delay stats calculated at hardstart receive point.
2858 	 * Value of vdev->prev_tx_enq_tstamp will be 0 for 1st frame, so
2859 	 * interframe delay will not be calculate correctly for 1st frame.
2860 	 * On the other side, this will help in avoiding extra per packet check
2861 	 * of !vdev->prev_tx_enq_tstamp.
2862 	 */
2863 	dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
2864 			      CDP_DELAY_STATS_TX_INTERFRAME, ring_id);
2865 	vdev->prev_tx_enq_tstamp = timestamp_ingress;
2866 }
2867 
2868 /**
2869  * dp_tx_update_peer_stats() - Update peer stats from Tx completion indications
2870  *				per wbm ring
2871  *
2872  * @tx_desc: software descriptor head pointer
2873  * @ts: Tx completion status
2874  * @peer: peer handle
2875  * @ring_id: ring number
2876  *
2877  * Return: None
2878  */
2879 static inline void
2880 dp_tx_update_peer_stats(struct dp_tx_desc_s *tx_desc,
2881 			struct hal_tx_completion_status *ts,
2882 			struct dp_peer *peer, uint8_t ring_id)
2883 {
2884 	struct dp_pdev *pdev = peer->vdev->pdev;
2885 	struct dp_soc *soc = NULL;
2886 	uint8_t mcs, pkt_type;
2887 	uint8_t tid = ts->tid;
2888 	uint32_t length;
2889 	struct cdp_tid_tx_stats *tid_stats;
2890 
2891 	if (!pdev)
2892 		return;
2893 
2894 	if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
2895 		tid = CDP_MAX_DATA_TIDS - 1;
2896 
2897 	tid_stats = &pdev->stats.tid_stats.tid_tx_stats[ring_id][tid];
2898 	soc = pdev->soc;
2899 
2900 	mcs = ts->mcs;
2901 	pkt_type = ts->pkt_type;
2902 
2903 	if (ts->release_src != HAL_TX_COMP_RELEASE_SOURCE_TQM) {
2904 		dp_err("Release source is not from TQM");
2905 		return;
2906 	}
2907 
2908 	length = qdf_nbuf_len(tx_desc->nbuf);
2909 	DP_STATS_INC_PKT(peer, tx.comp_pkt, 1, length);
2910 
2911 	if (qdf_unlikely(pdev->delay_stats_flag))
2912 		dp_tx_compute_delay(peer->vdev, tx_desc, tid, ring_id);
2913 	DP_STATS_INCC(peer, tx.dropped.age_out, 1,
2914 		     (ts->status == HAL_TX_TQM_RR_REM_CMD_AGED));
2915 
2916 	DP_STATS_INCC_PKT(peer, tx.dropped.fw_rem, 1, length,
2917 			  (ts->status == HAL_TX_TQM_RR_REM_CMD_REM));
2918 
2919 	DP_STATS_INCC(peer, tx.dropped.fw_rem_notx, 1,
2920 		     (ts->status == HAL_TX_TQM_RR_REM_CMD_NOTX));
2921 
2922 	DP_STATS_INCC(peer, tx.dropped.fw_rem_tx, 1,
2923 		     (ts->status == HAL_TX_TQM_RR_REM_CMD_TX));
2924 
2925 	DP_STATS_INCC(peer, tx.dropped.fw_reason1, 1,
2926 		     (ts->status == HAL_TX_TQM_RR_FW_REASON1));
2927 
2928 	DP_STATS_INCC(peer, tx.dropped.fw_reason2, 1,
2929 		     (ts->status == HAL_TX_TQM_RR_FW_REASON2));
2930 
2931 	DP_STATS_INCC(peer, tx.dropped.fw_reason3, 1,
2932 		     (ts->status == HAL_TX_TQM_RR_FW_REASON3));
2933 
2934 	/*
2935 	 * tx_failed is ideally supposed to be updated from HTT ppdu completion
2936 	 * stats. But in IPQ807X/IPQ6018 chipsets owing to hw limitation there
2937 	 * are no completions for failed cases. Hence updating tx_failed from
2938 	 * data path. Please note that if tx_failed is fixed to be from ppdu,
2939 	 * then this has to be removed
2940 	 */
2941 	peer->stats.tx.tx_failed = peer->stats.tx.dropped.fw_rem.num +
2942 				peer->stats.tx.dropped.fw_rem_notx +
2943 				peer->stats.tx.dropped.fw_rem_tx +
2944 				peer->stats.tx.dropped.age_out +
2945 				peer->stats.tx.dropped.fw_reason1 +
2946 				peer->stats.tx.dropped.fw_reason2 +
2947 				peer->stats.tx.dropped.fw_reason3;
2948 
2949 	if (ts->status < CDP_MAX_TX_TQM_STATUS) {
2950 		tid_stats->tqm_status_cnt[ts->status]++;
2951 	}
2952 
2953 	if (ts->status != HAL_TX_TQM_RR_FRAME_ACKED) {
2954 		return;
2955 	}
2956 
2957 	DP_STATS_INCC(peer, tx.ofdma, 1, ts->ofdma);
2958 
2959 	DP_STATS_INCC(peer, tx.amsdu_cnt, 1, ts->msdu_part_of_amsdu);
2960 	DP_STATS_INCC(peer, tx.non_amsdu_cnt, 1, !ts->msdu_part_of_amsdu);
2961 
2962 	/*
2963 	 * Following Rate Statistics are updated from HTT PPDU events from FW.
2964 	 * Return from here if HTT PPDU events are enabled.
2965 	 */
2966 	if (!(soc->process_tx_status))
2967 		return;
2968 
2969 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
2970 			((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
2971 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
2972 			((mcs < (MAX_MCS_11A)) && (pkt_type == DOT11_A)));
2973 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
2974 			((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
2975 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
2976 			((mcs < MAX_MCS_11B) && (pkt_type == DOT11_B)));
2977 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
2978 			((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
2979 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
2980 			((mcs < MAX_MCS_11A) && (pkt_type == DOT11_N)));
2981 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
2982 			((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
2983 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
2984 			((mcs < MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
2985 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
2986 			((mcs >= (MAX_MCS - 1)) && (pkt_type == DOT11_AX)));
2987 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
2988 			((mcs < (MAX_MCS - 1)) && (pkt_type == DOT11_AX)));
2989 
2990 	DP_STATS_INC(peer, tx.sgi_count[ts->sgi], 1);
2991 	DP_STATS_INC(peer, tx.bw[ts->bw], 1);
2992 	DP_STATS_UPD(peer, tx.last_ack_rssi, ts->ack_frame_rssi);
2993 	DP_STATS_INC(peer, tx.wme_ac_type[TID_TO_WME_AC(ts->tid)], 1);
2994 	DP_STATS_INCC(peer, tx.stbc, 1, ts->stbc);
2995 	DP_STATS_INCC(peer, tx.ldpc, 1, ts->ldpc);
2996 	DP_STATS_INCC(peer, tx.retries, 1, ts->transmit_cnt > 1);
2997 
2998 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
2999 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc,
3000 			     &peer->stats, ts->peer_id,
3001 			     UPDATE_PEER_STATS, pdev->pdev_id);
3002 #endif
3003 }
3004 
3005 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
3006 /**
3007  * dp_tx_flow_pool_lock() - take flow pool lock
3008  * @soc: core txrx main context
3009  * @tx_desc: tx desc
3010  *
3011  * Return: None
3012  */
3013 static inline
3014 void dp_tx_flow_pool_lock(struct dp_soc *soc,
3015 			  struct dp_tx_desc_s *tx_desc)
3016 {
3017 	struct dp_tx_desc_pool_s *pool;
3018 	uint8_t desc_pool_id;
3019 
3020 	desc_pool_id = tx_desc->pool_id;
3021 	pool = &soc->tx_desc[desc_pool_id];
3022 
3023 	qdf_spin_lock_bh(&pool->flow_pool_lock);
3024 }
3025 
3026 /**
3027  * dp_tx_flow_pool_unlock() - release flow pool lock
3028  * @soc: core txrx main context
3029  * @tx_desc: tx desc
3030  *
3031  * Return: None
3032  */
3033 static inline
3034 void dp_tx_flow_pool_unlock(struct dp_soc *soc,
3035 			    struct dp_tx_desc_s *tx_desc)
3036 {
3037 	struct dp_tx_desc_pool_s *pool;
3038 	uint8_t desc_pool_id;
3039 
3040 	desc_pool_id = tx_desc->pool_id;
3041 	pool = &soc->tx_desc[desc_pool_id];
3042 
3043 	qdf_spin_unlock_bh(&pool->flow_pool_lock);
3044 }
3045 #else
3046 static inline
3047 void dp_tx_flow_pool_lock(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
3048 {
3049 }
3050 
3051 static inline
3052 void dp_tx_flow_pool_unlock(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
3053 {
3054 }
3055 #endif
3056 
3057 /**
3058  * dp_tx_notify_completion() - Notify tx completion for this desc
3059  * @soc: core txrx main context
3060  * @tx_desc: tx desc
3061  * @netbuf:  buffer
3062  *
3063  * Return: none
3064  */
3065 static inline void dp_tx_notify_completion(struct dp_soc *soc,
3066 					   struct dp_tx_desc_s *tx_desc,
3067 					   qdf_nbuf_t netbuf)
3068 {
3069 	void *osif_dev;
3070 	ol_txrx_completion_fp tx_compl_cbk = NULL;
3071 
3072 	qdf_assert(tx_desc);
3073 
3074 	dp_tx_flow_pool_lock(soc, tx_desc);
3075 
3076 	if (!tx_desc->vdev ||
3077 	    !tx_desc->vdev->osif_vdev) {
3078 		dp_tx_flow_pool_unlock(soc, tx_desc);
3079 		return;
3080 	}
3081 
3082 	osif_dev = tx_desc->vdev->osif_vdev;
3083 	tx_compl_cbk = tx_desc->vdev->tx_comp;
3084 	dp_tx_flow_pool_unlock(soc, tx_desc);
3085 
3086 	if (tx_compl_cbk)
3087 		tx_compl_cbk(netbuf, osif_dev);
3088 }
3089 
3090 /** dp_tx_sojourn_stats_process() - Collect sojourn stats
3091  * @pdev: pdev handle
3092  * @tid: tid value
3093  * @txdesc_ts: timestamp from txdesc
3094  * @ppdu_id: ppdu id
3095  *
3096  * Return: none
3097  */
3098 #ifdef FEATURE_PERPKT_INFO
3099 static inline void dp_tx_sojourn_stats_process(struct dp_pdev *pdev,
3100 					       struct dp_peer *peer,
3101 					       uint8_t tid,
3102 					       uint64_t txdesc_ts,
3103 					       uint32_t ppdu_id)
3104 {
3105 	uint64_t delta_ms;
3106 	struct cdp_tx_sojourn_stats *sojourn_stats;
3107 
3108 	if (qdf_unlikely(pdev->enhanced_stats_en == 0))
3109 		return;
3110 
3111 	if (qdf_unlikely(tid == HTT_INVALID_TID ||
3112 			 tid >= CDP_DATA_TID_MAX))
3113 		return;
3114 
3115 	if (qdf_unlikely(!pdev->sojourn_buf))
3116 		return;
3117 
3118 	sojourn_stats = (struct cdp_tx_sojourn_stats *)
3119 		qdf_nbuf_data(pdev->sojourn_buf);
3120 
3121 	sojourn_stats->cookie = (void *)peer->wlanstats_ctx;
3122 
3123 	delta_ms = qdf_ktime_to_ms(qdf_ktime_get()) -
3124 				txdesc_ts;
3125 	qdf_ewma_tx_lag_add(&peer->avg_sojourn_msdu[tid],
3126 			    delta_ms);
3127 	sojourn_stats->sum_sojourn_msdu[tid] = delta_ms;
3128 	sojourn_stats->num_msdus[tid] = 1;
3129 	sojourn_stats->avg_sojourn_msdu[tid].internal =
3130 		peer->avg_sojourn_msdu[tid].internal;
3131 	dp_wdi_event_handler(WDI_EVENT_TX_SOJOURN_STAT, pdev->soc,
3132 			     pdev->sojourn_buf, HTT_INVALID_PEER,
3133 			     WDI_NO_VAL, pdev->pdev_id);
3134 	sojourn_stats->sum_sojourn_msdu[tid] = 0;
3135 	sojourn_stats->num_msdus[tid] = 0;
3136 	sojourn_stats->avg_sojourn_msdu[tid].internal = 0;
3137 }
3138 #else
3139 static inline void dp_tx_sojourn_stats_process(struct dp_pdev *pdev,
3140 					       uint8_t tid,
3141 					       uint64_t txdesc_ts,
3142 					       uint32_t ppdu_id)
3143 {
3144 }
3145 #endif
3146 
3147 /**
3148  * dp_tx_comp_process_desc() - Process tx descriptor and free associated nbuf
3149  * @soc: DP Soc handle
3150  * @tx_desc: software Tx descriptor
3151  * @ts : Tx completion status from HAL/HTT descriptor
3152  *
3153  * Return: none
3154  */
3155 static inline void
3156 dp_tx_comp_process_desc(struct dp_soc *soc,
3157 			struct dp_tx_desc_s *desc,
3158 			struct hal_tx_completion_status *ts,
3159 			struct dp_peer *peer)
3160 {
3161 	uint64_t time_latency = 0;
3162 	/*
3163 	 * m_copy/tx_capture modes are not supported for
3164 	 * scatter gather packets
3165 	 */
3166 	if (qdf_unlikely(!!desc->pdev->latency_capture_enable)) {
3167 		time_latency = (qdf_ktime_to_ms(qdf_ktime_get()) -
3168 				desc->timestamp);
3169 	}
3170 	if (!(desc->msdu_ext_desc)) {
3171 		if (QDF_STATUS_SUCCESS ==
3172 		    dp_tx_add_to_comp_queue(soc, desc, ts, peer)) {
3173 			return;
3174 		}
3175 
3176 		if (QDF_STATUS_SUCCESS ==
3177 		    dp_get_completion_indication_for_stack(soc,
3178 							   desc->pdev,
3179 							   peer, ts,
3180 							   desc->nbuf,
3181 							   time_latency)) {
3182 			qdf_nbuf_unmap(soc->osdev, desc->nbuf,
3183 				       QDF_DMA_TO_DEVICE);
3184 			dp_send_completion_to_stack(soc,
3185 						    desc->pdev,
3186 						    ts->peer_id,
3187 						    ts->ppdu_id,
3188 						    desc->nbuf);
3189 			return;
3190 		}
3191 	}
3192 
3193 	dp_tx_comp_free_buf(soc, desc);
3194 }
3195 
3196 /**
3197  * dp_tx_comp_process_tx_status() - Parse and Dump Tx completion status info
3198  * @tx_desc: software descriptor head pointer
3199  * @ts: Tx completion status
3200  * @peer: peer handle
3201  * @ring_id: ring number
3202  *
3203  * Return: none
3204  */
3205 static inline
3206 void dp_tx_comp_process_tx_status(struct dp_tx_desc_s *tx_desc,
3207 				  struct hal_tx_completion_status *ts,
3208 				  struct dp_peer *peer, uint8_t ring_id)
3209 {
3210 	uint32_t length;
3211 	qdf_ether_header_t *eh;
3212 	struct dp_soc *soc = NULL;
3213 	struct dp_vdev *vdev = tx_desc->vdev;
3214 	qdf_nbuf_t nbuf = tx_desc->nbuf;
3215 
3216 	if (!vdev || !nbuf) {
3217 		dp_info_rl("invalid tx descriptor. vdev or nbuf NULL");
3218 		goto out;
3219 	}
3220 
3221 	eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
3222 
3223 	DPTRACE(qdf_dp_trace_ptr(tx_desc->nbuf,
3224 				 QDF_DP_TRACE_LI_DP_FREE_PACKET_PTR_RECORD,
3225 				 QDF_TRACE_DEFAULT_PDEV_ID,
3226 				 qdf_nbuf_data_addr(nbuf),
3227 				 sizeof(qdf_nbuf_data(nbuf)),
3228 				 tx_desc->id,
3229 				 ts->status));
3230 
3231 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
3232 				"-------------------- \n"
3233 				"Tx Completion Stats: \n"
3234 				"-------------------- \n"
3235 				"ack_frame_rssi = %d \n"
3236 				"first_msdu = %d \n"
3237 				"last_msdu = %d \n"
3238 				"msdu_part_of_amsdu = %d \n"
3239 				"rate_stats valid = %d \n"
3240 				"bw = %d \n"
3241 				"pkt_type = %d \n"
3242 				"stbc = %d \n"
3243 				"ldpc = %d \n"
3244 				"sgi = %d \n"
3245 				"mcs = %d \n"
3246 				"ofdma = %d \n"
3247 				"tones_in_ru = %d \n"
3248 				"tsf = %d \n"
3249 				"ppdu_id = %d \n"
3250 				"transmit_cnt = %d \n"
3251 				"tid = %d \n"
3252 				"peer_id = %d\n",
3253 				ts->ack_frame_rssi, ts->first_msdu,
3254 				ts->last_msdu, ts->msdu_part_of_amsdu,
3255 				ts->valid, ts->bw, ts->pkt_type, ts->stbc,
3256 				ts->ldpc, ts->sgi, ts->mcs, ts->ofdma,
3257 				ts->tones_in_ru, ts->tsf, ts->ppdu_id,
3258 				ts->transmit_cnt, ts->tid, ts->peer_id);
3259 
3260 	soc = vdev->pdev->soc;
3261 
3262 	/* Update SoC level stats */
3263 	DP_STATS_INCC(soc, tx.dropped_fw_removed, 1,
3264 			(ts->status == HAL_TX_TQM_RR_REM_CMD_REM));
3265 
3266 	/* Update per-packet stats for mesh mode */
3267 	if (qdf_unlikely(vdev->mesh_vdev) &&
3268 			!(tx_desc->flags & DP_TX_DESC_FLAG_TO_FW))
3269 		dp_tx_comp_fill_tx_completion_stats(tx_desc, ts);
3270 
3271 	length = qdf_nbuf_len(nbuf);
3272 	/* Update peer level stats */
3273 	if (!peer) {
3274 		QDF_TRACE_DEBUG_RL(QDF_MODULE_ID_DP,
3275 				   "peer is null or deletion in progress");
3276 		DP_STATS_INC_PKT(soc, tx.tx_invalid_peer, 1, length);
3277 		goto out;
3278 	}
3279 
3280 	if (qdf_unlikely(peer->bss_peer && vdev->opmode == wlan_op_mode_ap)) {
3281 		if (ts->status != HAL_TX_TQM_RR_REM_CMD_REM) {
3282 			DP_STATS_INC_PKT(peer, tx.mcast, 1, length);
3283 
3284 			if ((peer->vdev->tx_encap_type ==
3285 				htt_cmn_pkt_type_ethernet) &&
3286 				QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
3287 				DP_STATS_INC_PKT(peer, tx.bcast, 1, length);
3288 			}
3289 		}
3290 	} else {
3291 		DP_STATS_INC_PKT(peer, tx.ucast, 1, length);
3292 		if (ts->status == HAL_TX_TQM_RR_FRAME_ACKED)
3293 			DP_STATS_INC_PKT(peer, tx.tx_success, 1, length);
3294 	}
3295 
3296 	dp_tx_update_peer_stats(tx_desc, ts, peer, ring_id);
3297 
3298 #ifdef QCA_SUPPORT_RDK_STATS
3299 	if (soc->wlanstats_enabled)
3300 		dp_tx_sojourn_stats_process(vdev->pdev, peer, ts->tid,
3301 					    tx_desc->timestamp,
3302 					    ts->ppdu_id);
3303 #endif
3304 
3305 out:
3306 	return;
3307 }
3308 /**
3309  * dp_tx_comp_process_desc_list() - Tx complete software descriptor handler
3310  * @soc: core txrx main context
3311  * @comp_head: software descriptor head pointer
3312  * @ring_id: ring number
3313  *
3314  * This function will process batch of descriptors reaped by dp_tx_comp_handler
3315  * and release the software descriptors after processing is complete
3316  *
3317  * Return: none
3318  */
3319 static void
3320 dp_tx_comp_process_desc_list(struct dp_soc *soc,
3321 			     struct dp_tx_desc_s *comp_head, uint8_t ring_id)
3322 {
3323 	struct dp_tx_desc_s *desc;
3324 	struct dp_tx_desc_s *next;
3325 	struct hal_tx_completion_status ts = {0};
3326 	struct dp_peer *peer;
3327 	qdf_nbuf_t netbuf;
3328 
3329 	desc = comp_head;
3330 
3331 	while (desc) {
3332 		hal_tx_comp_get_status(&desc->comp, &ts, soc->hal_soc);
3333 		peer = dp_peer_find_by_id(soc, ts.peer_id);
3334 		dp_tx_comp_process_tx_status(desc, &ts, peer, ring_id);
3335 
3336 		netbuf = desc->nbuf;
3337 		/* check tx complete notification */
3338 		if (QDF_NBUF_CB_TX_EXTRA_FRAG_FLAGS_NOTIFY_COMP(netbuf))
3339 			dp_tx_notify_completion(soc, desc, netbuf);
3340 
3341 		dp_tx_comp_process_desc(soc, desc, &ts, peer);
3342 
3343 		if (peer)
3344 			dp_peer_unref_del_find_by_id(peer);
3345 
3346 		next = desc->next;
3347 
3348 		dp_tx_desc_release(desc, desc->pool_id);
3349 		desc = next;
3350 	}
3351 
3352 }
3353 
3354 /**
3355  * dp_tx_process_htt_completion() - Tx HTT Completion Indication Handler
3356  * @tx_desc: software descriptor head pointer
3357  * @status : Tx completion status from HTT descriptor
3358  * @ring_id: ring number
3359  *
3360  * This function will process HTT Tx indication messages from Target
3361  *
3362  * Return: none
3363  */
3364 static
3365 void dp_tx_process_htt_completion(struct dp_tx_desc_s *tx_desc, uint8_t *status,
3366 				  uint8_t ring_id)
3367 {
3368 	uint8_t tx_status;
3369 	struct dp_pdev *pdev;
3370 	struct dp_vdev *vdev;
3371 	struct dp_soc *soc;
3372 	struct hal_tx_completion_status ts = {0};
3373 	uint32_t *htt_desc = (uint32_t *)status;
3374 	struct dp_peer *peer;
3375 	struct cdp_tid_tx_stats *tid_stats = NULL;
3376 	struct htt_soc *htt_handle;
3377 
3378 	qdf_assert(tx_desc->pdev);
3379 
3380 	pdev = tx_desc->pdev;
3381 	vdev = tx_desc->vdev;
3382 	soc = pdev->soc;
3383 
3384 	if (!vdev)
3385 		return;
3386 	tx_status = HTT_TX_WBM_COMPLETION_V2_TX_STATUS_GET(htt_desc[0]);
3387 	htt_handle = (struct htt_soc *)soc->htt_handle;
3388 	htt_wbm_event_record(htt_handle->htt_logger_handle, tx_status, status);
3389 
3390 	switch (tx_status) {
3391 	case HTT_TX_FW2WBM_TX_STATUS_OK:
3392 	case HTT_TX_FW2WBM_TX_STATUS_DROP:
3393 	case HTT_TX_FW2WBM_TX_STATUS_TTL:
3394 	{
3395 		uint8_t tid;
3396 		if (HTT_TX_WBM_COMPLETION_V2_VALID_GET(htt_desc[2])) {
3397 			ts.peer_id =
3398 				HTT_TX_WBM_COMPLETION_V2_SW_PEER_ID_GET(
3399 						htt_desc[2]);
3400 			ts.tid =
3401 				HTT_TX_WBM_COMPLETION_V2_TID_NUM_GET(
3402 						htt_desc[2]);
3403 		} else {
3404 			ts.peer_id = HTT_INVALID_PEER;
3405 			ts.tid = HTT_INVALID_TID;
3406 		}
3407 		ts.ppdu_id =
3408 			HTT_TX_WBM_COMPLETION_V2_SCH_CMD_ID_GET(
3409 					htt_desc[1]);
3410 		ts.ack_frame_rssi =
3411 			HTT_TX_WBM_COMPLETION_V2_ACK_FRAME_RSSI_GET(
3412 					htt_desc[1]);
3413 
3414 		ts.first_msdu = 1;
3415 		ts.last_msdu = 1;
3416 		tid = ts.tid;
3417 		if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
3418 			tid = CDP_MAX_DATA_TIDS - 1;
3419 
3420 		tid_stats = &pdev->stats.tid_stats.tid_tx_stats[ring_id][tid];
3421 
3422 		if (qdf_unlikely(pdev->delay_stats_flag))
3423 			dp_tx_compute_delay(vdev, tx_desc, tid, ring_id);
3424 		if (tx_status < CDP_MAX_TX_HTT_STATUS) {
3425 			tid_stats->htt_status_cnt[tx_status]++;
3426 		}
3427 
3428 		peer = dp_peer_find_by_id(soc, ts.peer_id);
3429 
3430 		if (qdf_likely(peer))
3431 			dp_peer_unref_del_find_by_id(peer);
3432 
3433 		dp_tx_comp_process_tx_status(tx_desc, &ts, peer, ring_id);
3434 		dp_tx_comp_process_desc(soc, tx_desc, &ts, peer);
3435 		dp_tx_desc_release(tx_desc, tx_desc->pool_id);
3436 
3437 		break;
3438 	}
3439 	case HTT_TX_FW2WBM_TX_STATUS_REINJECT:
3440 	{
3441 		dp_tx_reinject_handler(tx_desc, status);
3442 		break;
3443 	}
3444 	case HTT_TX_FW2WBM_TX_STATUS_INSPECT:
3445 	{
3446 		dp_tx_inspect_handler(tx_desc, status);
3447 		break;
3448 	}
3449 	case HTT_TX_FW2WBM_TX_STATUS_MEC_NOTIFY:
3450 	{
3451 		dp_tx_mec_handler(vdev, status);
3452 		break;
3453 	}
3454 	default:
3455 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
3456 			  "%s Invalid HTT tx_status %d\n",
3457 			  __func__, tx_status);
3458 		break;
3459 	}
3460 }
3461 
3462 #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
3463 static inline
3464 bool dp_tx_comp_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
3465 {
3466 	bool limit_hit = false;
3467 	struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
3468 
3469 	limit_hit =
3470 		(num_reaped >= cfg->tx_comp_loop_pkt_limit) ? true : false;
3471 
3472 	if (limit_hit)
3473 		DP_STATS_INC(soc, tx.tx_comp_loop_pkt_limit_hit, 1);
3474 
3475 	return limit_hit;
3476 }
3477 
3478 static inline bool dp_tx_comp_enable_eol_data_check(struct dp_soc *soc)
3479 {
3480 	return soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check;
3481 }
3482 #else
3483 static inline
3484 bool dp_tx_comp_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
3485 {
3486 	return false;
3487 }
3488 
3489 static inline bool dp_tx_comp_enable_eol_data_check(struct dp_soc *soc)
3490 {
3491 	return false;
3492 }
3493 #endif
3494 
3495 uint32_t dp_tx_comp_handler(struct dp_intr *int_ctx, struct dp_soc *soc,
3496 			    hal_ring_handle_t hal_ring_hdl, uint8_t ring_id,
3497 			    uint32_t quota)
3498 {
3499 	void *tx_comp_hal_desc;
3500 	uint8_t buffer_src;
3501 	uint8_t pool_id;
3502 	uint32_t tx_desc_id;
3503 	struct dp_tx_desc_s *tx_desc = NULL;
3504 	struct dp_tx_desc_s *head_desc = NULL;
3505 	struct dp_tx_desc_s *tail_desc = NULL;
3506 	uint32_t num_processed = 0;
3507 	uint32_t count = 0;
3508 	bool force_break = false;
3509 
3510 	DP_HIST_INIT();
3511 
3512 more_data:
3513 	/* Re-initialize local variables to be re-used */
3514 		head_desc = NULL;
3515 		tail_desc = NULL;
3516 	if (qdf_unlikely(dp_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
3517 		dp_err("HAL RING Access Failed -- %pK", hal_ring_hdl);
3518 		return 0;
3519 	}
3520 
3521 	/* Find head descriptor from completion ring */
3522 	while (qdf_likely(tx_comp_hal_desc =
3523 			hal_srng_dst_get_next(soc->hal_soc, hal_ring_hdl))) {
3524 
3525 		buffer_src = hal_tx_comp_get_buffer_source(tx_comp_hal_desc);
3526 
3527 		/* If this buffer was not released by TQM or FW, then it is not
3528 		 * Tx completion indication, assert */
3529 		if ((buffer_src != HAL_TX_COMP_RELEASE_SOURCE_TQM) &&
3530 				(buffer_src != HAL_TX_COMP_RELEASE_SOURCE_FW)) {
3531 			uint8_t wbm_internal_error;
3532 
3533 			dp_err_rl(
3534 				"Tx comp release_src != TQM | FW but from %d",
3535 				buffer_src);
3536 			hal_dump_comp_desc(tx_comp_hal_desc);
3537 			DP_STATS_INC(soc, tx.invalid_release_source, 1);
3538 
3539 			/* When WBM sees NULL buffer_addr_info in any of
3540 			 * ingress rings it sends an error indication,
3541 			 * with wbm_internal_error=1, to a specific ring.
3542 			 * The WBM2SW ring used to indicate these errors is
3543 			 * fixed in HW, and that ring is being used as Tx
3544 			 * completion ring. These errors are not related to
3545 			 * Tx completions, and should just be ignored
3546 			 */
3547 
3548 			wbm_internal_error =
3549 			hal_get_wbm_internal_error(tx_comp_hal_desc);
3550 
3551 			if (wbm_internal_error) {
3552 				dp_err_rl("Tx comp wbm_internal_error!!");
3553 				DP_STATS_INC(soc, tx.wbm_internal_error[WBM_INT_ERROR_ALL], 1);
3554 
3555 				if (HAL_TX_COMP_RELEASE_SOURCE_REO ==
3556 								buffer_src)
3557 					dp_handle_wbm_internal_error(
3558 						soc,
3559 						tx_comp_hal_desc,
3560 						hal_tx_comp_get_buffer_type(
3561 							tx_comp_hal_desc));
3562 
3563 			} else {
3564 				dp_err_rl("Tx comp wbm_internal_error false");
3565 				DP_STATS_INC(soc, tx.non_wbm_internal_err, 1);
3566 			}
3567 			continue;
3568 		}
3569 
3570 		/* Get descriptor id */
3571 		tx_desc_id = hal_tx_comp_get_desc_id(tx_comp_hal_desc);
3572 		pool_id = (tx_desc_id & DP_TX_DESC_ID_POOL_MASK) >>
3573 			DP_TX_DESC_ID_POOL_OS;
3574 
3575 		/* Find Tx descriptor */
3576 		tx_desc = dp_tx_desc_find(soc, pool_id,
3577 				(tx_desc_id & DP_TX_DESC_ID_PAGE_MASK) >>
3578 				DP_TX_DESC_ID_PAGE_OS,
3579 				(tx_desc_id & DP_TX_DESC_ID_OFFSET_MASK) >>
3580 				DP_TX_DESC_ID_OFFSET_OS);
3581 
3582 		/*
3583 		 * If the descriptor is already freed in vdev_detach,
3584 		 * continue to next descriptor
3585 		 */
3586 		if (!tx_desc->vdev && !tx_desc->flags) {
3587 			QDF_TRACE(QDF_MODULE_ID_DP,
3588 				  QDF_TRACE_LEVEL_INFO,
3589 				  "Descriptor freed in vdev_detach %d",
3590 				  tx_desc_id);
3591 
3592 			num_processed += !(count & DP_TX_NAPI_BUDGET_DIV_MASK);
3593 			count++;
3594 			continue;
3595 		}
3596 
3597 		if (qdf_unlikely(tx_desc->pdev->is_pdev_down)) {
3598 			QDF_TRACE(QDF_MODULE_ID_DP,
3599 				  QDF_TRACE_LEVEL_INFO,
3600 				  "pdev in down state %d",
3601 				  tx_desc_id);
3602 
3603 			num_processed += !(count & DP_TX_NAPI_BUDGET_DIV_MASK);
3604 			count++;
3605 
3606 			dp_tx_comp_free_buf(soc, tx_desc);
3607 			dp_tx_desc_release(tx_desc, tx_desc->pool_id);
3608 			continue;
3609 		}
3610 
3611 		/*
3612 		 * If the release source is FW, process the HTT status
3613 		 */
3614 		if (qdf_unlikely(buffer_src ==
3615 					HAL_TX_COMP_RELEASE_SOURCE_FW)) {
3616 			uint8_t htt_tx_status[HAL_TX_COMP_HTT_STATUS_LEN];
3617 			hal_tx_comp_get_htt_desc(tx_comp_hal_desc,
3618 					htt_tx_status);
3619 			dp_tx_process_htt_completion(tx_desc,
3620 					htt_tx_status, ring_id);
3621 		} else {
3622 			/* Pool id is not matching. Error */
3623 			if (tx_desc->pool_id != pool_id) {
3624 				QDF_TRACE(QDF_MODULE_ID_DP,
3625 					QDF_TRACE_LEVEL_FATAL,
3626 					"Tx Comp pool id %d not matched %d",
3627 					pool_id, tx_desc->pool_id);
3628 
3629 				qdf_assert_always(0);
3630 			}
3631 
3632 			if (!(tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED) ||
3633 				!(tx_desc->flags & DP_TX_DESC_FLAG_QUEUED_TX)) {
3634 				QDF_TRACE(QDF_MODULE_ID_DP,
3635 					QDF_TRACE_LEVEL_FATAL,
3636 					"Txdesc invalid, flgs = %x,id = %d",
3637 					tx_desc->flags,	tx_desc_id);
3638 				qdf_assert_always(0);
3639 			}
3640 
3641 			/* First ring descriptor on the cycle */
3642 			if (!head_desc) {
3643 				head_desc = tx_desc;
3644 				tail_desc = tx_desc;
3645 			}
3646 
3647 			tail_desc->next = tx_desc;
3648 			tx_desc->next = NULL;
3649 			tail_desc = tx_desc;
3650 
3651 			DP_HIST_PACKET_COUNT_INC(tx_desc->pdev->pdev_id);
3652 
3653 			/* Collect hw completion contents */
3654 			hal_tx_comp_desc_sync(tx_comp_hal_desc,
3655 					&tx_desc->comp, 1);
3656 
3657 		}
3658 
3659 		num_processed += !(count & DP_TX_NAPI_BUDGET_DIV_MASK);
3660 
3661 		/*
3662 		 * Processed packet count is more than given quota
3663 		 * stop to processing
3664 		 */
3665 		if (num_processed >= quota) {
3666 			force_break = true;
3667 			break;
3668 		}
3669 
3670 		count++;
3671 
3672 		if (dp_tx_comp_loop_pkt_limit_hit(soc, count))
3673 			break;
3674 	}
3675 
3676 	dp_srng_access_end(int_ctx, soc, hal_ring_hdl);
3677 
3678 	/* Process the reaped descriptors */
3679 	if (head_desc)
3680 		dp_tx_comp_process_desc_list(soc, head_desc, ring_id);
3681 
3682 	if (dp_tx_comp_enable_eol_data_check(soc)) {
3683 		if (!force_break &&
3684 		    hal_srng_dst_peek_sync_locked(soc->hal_soc,
3685 						  hal_ring_hdl)) {
3686 			DP_STATS_INC(soc, tx.hp_oos2, 1);
3687 			if (!hif_exec_should_yield(soc->hif_handle,
3688 						   int_ctx->dp_intr_id))
3689 				goto more_data;
3690 		}
3691 	}
3692 	DP_TX_HIST_STATS_PER_PDEV();
3693 
3694 	return num_processed;
3695 }
3696 
3697 #ifdef FEATURE_WLAN_TDLS
3698 qdf_nbuf_t dp_tx_non_std(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3699 			 enum ol_tx_spec tx_spec, qdf_nbuf_t msdu_list)
3700 {
3701 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
3702 	struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
3703 
3704 	if (!vdev) {
3705 		dp_err("vdev handle for id %d is NULL", vdev_id);
3706 		return NULL;
3707 	}
3708 
3709 	if (tx_spec & OL_TX_SPEC_NO_FREE)
3710 		vdev->is_tdls_frame = true;
3711 
3712 	return dp_tx_send(soc_hdl, vdev_id, msdu_list);
3713 }
3714 #endif
3715 
3716 /**
3717  * dp_tx_vdev_attach() - attach vdev to dp tx
3718  * @vdev: virtual device instance
3719  *
3720  * Return: QDF_STATUS_SUCCESS: success
3721  *         QDF_STATUS_E_RESOURCES: Error return
3722  */
3723 QDF_STATUS dp_tx_vdev_attach(struct dp_vdev *vdev)
3724 {
3725 	/*
3726 	 * Fill HTT TCL Metadata with Vdev ID and MAC ID
3727 	 */
3728 	HTT_TX_TCL_METADATA_TYPE_SET(vdev->htt_tcl_metadata,
3729 			HTT_TCL_METADATA_TYPE_VDEV_BASED);
3730 
3731 	HTT_TX_TCL_METADATA_VDEV_ID_SET(vdev->htt_tcl_metadata,
3732 			vdev->vdev_id);
3733 
3734 	HTT_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata,
3735 			DP_SW2HW_MACID(vdev->pdev->pdev_id));
3736 
3737 	/*
3738 	 * Set HTT Extension Valid bit to 0 by default
3739 	 */
3740 	HTT_TX_TCL_METADATA_VALID_HTT_SET(vdev->htt_tcl_metadata, 0);
3741 
3742 	dp_tx_vdev_update_search_flags(vdev);
3743 
3744 	return QDF_STATUS_SUCCESS;
3745 }
3746 
3747 #ifndef FEATURE_WDS
3748 static inline bool dp_tx_da_search_override(struct dp_vdev *vdev)
3749 {
3750 	return false;
3751 }
3752 #endif
3753 
3754 /**
3755  * dp_tx_vdev_update_search_flags() - Update vdev flags as per opmode
3756  * @vdev: virtual device instance
3757  *
3758  * Return: void
3759  *
3760  */
3761 void dp_tx_vdev_update_search_flags(struct dp_vdev *vdev)
3762 {
3763 	struct dp_soc *soc = vdev->pdev->soc;
3764 
3765 	/*
3766 	 * Enable both AddrY (SA based search) and AddrX (Da based search)
3767 	 * for TDLS link
3768 	 *
3769 	 * Enable AddrY (SA based search) only for non-WDS STA and
3770 	 * ProxySTA VAP (in HKv1) modes.
3771 	 *
3772 	 * In all other VAP modes, only DA based search should be
3773 	 * enabled
3774 	 */
3775 	if (vdev->opmode == wlan_op_mode_sta &&
3776 	    vdev->tdls_link_connected)
3777 		vdev->hal_desc_addr_search_flags =
3778 			(HAL_TX_DESC_ADDRX_EN | HAL_TX_DESC_ADDRY_EN);
3779 	else if ((vdev->opmode == wlan_op_mode_sta) &&
3780 		 !dp_tx_da_search_override(vdev))
3781 		vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRY_EN;
3782 	else
3783 		vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRX_EN;
3784 
3785 	/* Set search type only when peer map v2 messaging is enabled
3786 	 * as we will have the search index (AST hash) only when v2 is
3787 	 * enabled
3788 	 */
3789 	if (soc->is_peer_map_unmap_v2 && vdev->opmode == wlan_op_mode_sta)
3790 		vdev->search_type = HAL_TX_ADDR_INDEX_SEARCH;
3791 	else
3792 		vdev->search_type = HAL_TX_ADDR_SEARCH_DEFAULT;
3793 }
3794 
3795 static inline bool
3796 dp_is_tx_desc_flush_match(struct dp_pdev *pdev,
3797 			  struct dp_vdev *vdev,
3798 			  struct dp_tx_desc_s *tx_desc)
3799 {
3800 	if (!(tx_desc && (tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED)))
3801 		return false;
3802 
3803 	/*
3804 	 * if vdev is given, then only check whether desc
3805 	 * vdev match. if vdev is NULL, then check whether
3806 	 * desc pdev match.
3807 	 */
3808 	return vdev ? (tx_desc->vdev == vdev) : (tx_desc->pdev == pdev);
3809 }
3810 
3811 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
3812 /**
3813  * dp_tx_desc_reset_vdev() - reset vdev to NULL in TX Desc
3814  *
3815  * @soc: Handle to DP SoC structure
3816  * @tx_desc: pointer of one TX desc
3817  * @desc_pool_id: TX Desc pool id
3818  */
3819 static inline void
3820 dp_tx_desc_reset_vdev(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
3821 		      uint8_t desc_pool_id)
3822 {
3823 	struct dp_tx_desc_pool_s *pool = &soc->tx_desc[desc_pool_id];
3824 
3825 	qdf_spin_lock_bh(&pool->flow_pool_lock);
3826 
3827 	tx_desc->vdev = NULL;
3828 
3829 	qdf_spin_unlock_bh(&pool->flow_pool_lock);
3830 }
3831 
3832 /**
3833  * dp_tx_desc_flush() - release resources associated
3834  *                      to TX Desc
3835  *
3836  * @dp_pdev: Handle to DP pdev structure
3837  * @vdev: virtual device instance
3838  * NULL: no specific Vdev is required and check all allcated TX desc
3839  * on this pdev.
3840  * Non-NULL: only check the allocated TX Desc associated to this Vdev.
3841  *
3842  * @force_free:
3843  * true: flush the TX desc.
3844  * false: only reset the Vdev in each allocated TX desc
3845  * that associated to current Vdev.
3846  *
3847  * This function will go through the TX desc pool to flush
3848  * the outstanding TX data or reset Vdev to NULL in associated TX
3849  * Desc.
3850  */
3851 static void dp_tx_desc_flush(struct dp_pdev *pdev,
3852 			     struct dp_vdev *vdev,
3853 			     bool force_free)
3854 {
3855 	uint8_t i;
3856 	uint32_t j;
3857 	uint32_t num_desc, page_id, offset;
3858 	uint16_t num_desc_per_page;
3859 	struct dp_soc *soc = pdev->soc;
3860 	struct dp_tx_desc_s *tx_desc = NULL;
3861 	struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
3862 
3863 	if (!vdev && !force_free) {
3864 		dp_err("Reset TX desc vdev, Vdev param is required!");
3865 		return;
3866 	}
3867 
3868 	for (i = 0; i < MAX_TXDESC_POOLS; i++) {
3869 		tx_desc_pool = &soc->tx_desc[i];
3870 		if (!(tx_desc_pool->pool_size) ||
3871 		    IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
3872 		    !(tx_desc_pool->desc_pages.cacheable_pages))
3873 			continue;
3874 
3875 		num_desc = tx_desc_pool->pool_size;
3876 		num_desc_per_page =
3877 			tx_desc_pool->desc_pages.num_element_per_page;
3878 		for (j = 0; j < num_desc; j++) {
3879 			page_id = j / num_desc_per_page;
3880 			offset = j % num_desc_per_page;
3881 
3882 			if (qdf_unlikely(!(tx_desc_pool->
3883 					 desc_pages.cacheable_pages)))
3884 				break;
3885 
3886 			tx_desc = dp_tx_desc_find(soc, i, page_id, offset);
3887 
3888 			if (dp_is_tx_desc_flush_match(pdev, vdev, tx_desc)) {
3889 				/*
3890 				 * Free TX desc if force free is
3891 				 * required, otherwise only reset vdev
3892 				 * in this TX desc.
3893 				 */
3894 				if (force_free) {
3895 					dp_tx_comp_free_buf(soc, tx_desc);
3896 					dp_tx_desc_release(tx_desc, i);
3897 				} else {
3898 					dp_tx_desc_reset_vdev(soc, tx_desc,
3899 							      i);
3900 				}
3901 			}
3902 		}
3903 	}
3904 }
3905 #else /* QCA_LL_TX_FLOW_CONTROL_V2! */
3906 
3907 static inline void
3908 dp_tx_desc_reset_vdev(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
3909 		      uint8_t desc_pool_id)
3910 {
3911 	TX_DESC_LOCK_LOCK(&soc->tx_desc[desc_pool_id].lock);
3912 
3913 	tx_desc->vdev = NULL;
3914 
3915 	TX_DESC_LOCK_UNLOCK(&soc->tx_desc[desc_pool_id].lock);
3916 }
3917 
3918 static void dp_tx_desc_flush(struct dp_pdev *pdev,
3919 			     struct dp_vdev *vdev,
3920 			     bool force_free)
3921 {
3922 	uint8_t i, num_pool;
3923 	uint32_t j;
3924 	uint32_t num_desc, page_id, offset;
3925 	uint16_t num_desc_per_page;
3926 	struct dp_soc *soc = pdev->soc;
3927 	struct dp_tx_desc_s *tx_desc = NULL;
3928 	struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
3929 
3930 	if (!vdev && !force_free) {
3931 		dp_err("Reset TX desc vdev, Vdev param is required!");
3932 		return;
3933 	}
3934 
3935 	num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
3936 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
3937 
3938 	for (i = 0; i < num_pool; i++) {
3939 		tx_desc_pool = &soc->tx_desc[i];
3940 		if (!tx_desc_pool->desc_pages.cacheable_pages)
3941 			continue;
3942 
3943 		num_desc_per_page =
3944 			tx_desc_pool->desc_pages.num_element_per_page;
3945 		for (j = 0; j < num_desc; j++) {
3946 			page_id = j / num_desc_per_page;
3947 			offset = j % num_desc_per_page;
3948 			tx_desc = dp_tx_desc_find(soc, i, page_id, offset);
3949 
3950 			if (dp_is_tx_desc_flush_match(pdev, vdev, tx_desc)) {
3951 				if (force_free) {
3952 					dp_tx_comp_free_buf(soc, tx_desc);
3953 					dp_tx_desc_release(tx_desc, i);
3954 				} else {
3955 					dp_tx_desc_reset_vdev(soc, tx_desc,
3956 							      i);
3957 				}
3958 			}
3959 		}
3960 	}
3961 }
3962 #endif /* !QCA_LL_TX_FLOW_CONTROL_V2 */
3963 
3964 /**
3965  * dp_tx_vdev_detach() - detach vdev from dp tx
3966  * @vdev: virtual device instance
3967  *
3968  * Return: QDF_STATUS_SUCCESS: success
3969  *         QDF_STATUS_E_RESOURCES: Error return
3970  */
3971 QDF_STATUS dp_tx_vdev_detach(struct dp_vdev *vdev)
3972 {
3973 	struct dp_pdev *pdev = vdev->pdev;
3974 
3975 	/* Reset TX desc associated to this Vdev as NULL */
3976 	dp_tx_desc_flush(pdev, vdev, false);
3977 	dp_tx_vdev_multipass_deinit(vdev);
3978 
3979 	return QDF_STATUS_SUCCESS;
3980 }
3981 
3982 /**
3983  * dp_tx_pdev_attach() - attach pdev to dp tx
3984  * @pdev: physical device instance
3985  *
3986  * Return: QDF_STATUS_SUCCESS: success
3987  *         QDF_STATUS_E_RESOURCES: Error return
3988  */
3989 QDF_STATUS dp_tx_pdev_attach(struct dp_pdev *pdev)
3990 {
3991 	struct dp_soc *soc = pdev->soc;
3992 
3993 	/* Initialize Flow control counters */
3994 	qdf_atomic_init(&pdev->num_tx_exception);
3995 	qdf_atomic_init(&pdev->num_tx_outstanding);
3996 
3997 	if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
3998 		/* Initialize descriptors in TCL Ring */
3999 		hal_tx_init_data_ring(soc->hal_soc,
4000 				soc->tcl_data_ring[pdev->pdev_id].hal_srng);
4001 	}
4002 
4003 	return QDF_STATUS_SUCCESS;
4004 }
4005 
4006 /**
4007  * dp_tx_pdev_detach() - detach pdev from dp tx
4008  * @pdev: physical device instance
4009  *
4010  * Return: QDF_STATUS_SUCCESS: success
4011  *         QDF_STATUS_E_RESOURCES: Error return
4012  */
4013 QDF_STATUS dp_tx_pdev_detach(struct dp_pdev *pdev)
4014 {
4015 	/* flush TX outstanding data per pdev */
4016 	dp_tx_desc_flush(pdev, NULL, true);
4017 	dp_tx_me_exit(pdev);
4018 	return QDF_STATUS_SUCCESS;
4019 }
4020 
4021 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
4022 /* Pools will be allocated dynamically */
4023 static int dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
4024 					int num_desc)
4025 {
4026 	uint8_t i;
4027 
4028 	for (i = 0; i < num_pool; i++) {
4029 		qdf_spinlock_create(&soc->tx_desc[i].flow_pool_lock);
4030 		soc->tx_desc[i].status = FLOW_POOL_INACTIVE;
4031 	}
4032 
4033 	return 0;
4034 }
4035 
4036 static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
4037 {
4038 	uint8_t i;
4039 
4040 	for (i = 0; i < num_pool; i++)
4041 		qdf_spinlock_destroy(&soc->tx_desc[i].flow_pool_lock);
4042 }
4043 #else /* QCA_LL_TX_FLOW_CONTROL_V2! */
4044 static int dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
4045 					int num_desc)
4046 {
4047 	uint8_t i;
4048 
4049 	/* Allocate software Tx descriptor pools */
4050 	for (i = 0; i < num_pool; i++) {
4051 		if (dp_tx_desc_pool_alloc(soc, i, num_desc)) {
4052 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
4053 					"%s Tx Desc Pool alloc %d failed %pK",
4054 					__func__, i, soc);
4055 			return ENOMEM;
4056 		}
4057 	}
4058 	return 0;
4059 }
4060 
4061 static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
4062 {
4063 	uint8_t i;
4064 
4065 	for (i = 0; i < num_pool; i++) {
4066 		qdf_assert_always(!soc->tx_desc[i].num_allocated);
4067 		if (dp_tx_desc_pool_free(soc, i)) {
4068 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
4069 				"%s Tx Desc Pool Free failed", __func__);
4070 		}
4071 	}
4072 }
4073 
4074 #endif /* !QCA_LL_TX_FLOW_CONTROL_V2 */
4075 
4076 #ifndef QCA_MEM_ATTACH_ON_WIFI3
4077 /**
4078  * dp_tso_attach_wifi3() - TSO attach handler
4079  * @txrx_soc: Opaque Dp handle
4080  *
4081  * Reserve TSO descriptor buffers
4082  *
4083  * Return: QDF_STATUS_E_FAILURE on failure or
4084  * QDF_STATUS_SUCCESS on success
4085  */
4086 static
4087 QDF_STATUS dp_tso_attach_wifi3(void *txrx_soc)
4088 {
4089 	return dp_tso_soc_attach(txrx_soc);
4090 }
4091 
4092 /**
4093  * dp_tso_detach_wifi3() - TSO Detach handler
4094  * @txrx_soc: Opaque Dp handle
4095  *
4096  * Deallocate TSO descriptor buffers
4097  *
4098  * Return: QDF_STATUS_E_FAILURE on failure or
4099  * QDF_STATUS_SUCCESS on success
4100  */
4101 static
4102 QDF_STATUS dp_tso_detach_wifi3(void *txrx_soc)
4103 {
4104 	return dp_tso_soc_detach(txrx_soc);
4105 }
4106 #else
4107 static
4108 QDF_STATUS dp_tso_attach_wifi3(void *txrx_soc)
4109 {
4110 	return QDF_STATUS_SUCCESS;
4111 }
4112 
4113 static
4114 QDF_STATUS dp_tso_detach_wifi3(void *txrx_soc)
4115 {
4116 	return QDF_STATUS_SUCCESS;
4117 }
4118 #endif
4119 
4120 QDF_STATUS dp_tso_soc_detach(struct cdp_soc_t *txrx_soc)
4121 {
4122 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
4123 	uint8_t i;
4124 	uint8_t num_pool;
4125 	uint32_t num_desc;
4126 
4127 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
4128 	num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
4129 
4130 	for (i = 0; i < num_pool; i++)
4131 		dp_tx_tso_desc_pool_free(soc, i);
4132 
4133 	dp_info("%s TSO Desc Pool %d Free descs = %d",
4134 		__func__, num_pool, num_desc);
4135 
4136 	for (i = 0; i < num_pool; i++)
4137 		dp_tx_tso_num_seg_pool_free(soc, i);
4138 
4139 	dp_info("%s TSO Num of seg Desc Pool %d Free descs = %d",
4140 		__func__, num_pool, num_desc);
4141 
4142 	return QDF_STATUS_SUCCESS;
4143 }
4144 
4145 /**
4146  * dp_tso_attach() - TSO attach handler
4147  * @txrx_soc: Opaque Dp handle
4148  *
4149  * Reserve TSO descriptor buffers
4150  *
4151  * Return: QDF_STATUS_E_FAILURE on failure or
4152  * QDF_STATUS_SUCCESS on success
4153  */
4154 QDF_STATUS dp_tso_soc_attach(struct cdp_soc_t *txrx_soc)
4155 {
4156 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
4157 	uint8_t i;
4158 	uint8_t num_pool;
4159 	uint32_t num_desc;
4160 
4161 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
4162 	num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
4163 
4164 	for (i = 0; i < num_pool; i++) {
4165 		if (dp_tx_tso_desc_pool_alloc(soc, i, num_desc)) {
4166 			dp_err("TSO Desc Pool alloc %d failed %pK",
4167 			       i, soc);
4168 
4169 			return QDF_STATUS_E_FAILURE;
4170 		}
4171 	}
4172 
4173 	dp_info("%s TSO Desc Alloc %d, descs = %d",
4174 		__func__, num_pool, num_desc);
4175 
4176 	for (i = 0; i < num_pool; i++) {
4177 		if (dp_tx_tso_num_seg_pool_alloc(soc, i, num_desc)) {
4178 			dp_err("TSO Num of seg Pool alloc %d failed %pK",
4179 			       i, soc);
4180 
4181 			return QDF_STATUS_E_FAILURE;
4182 		}
4183 	}
4184 	return QDF_STATUS_SUCCESS;
4185 }
4186 
4187 /**
4188  * dp_tx_soc_detach() - detach soc from dp tx
4189  * @soc: core txrx main context
4190  *
4191  * This function will detach dp tx into main device context
4192  * will free dp tx resource and initialize resources
4193  *
4194  * Return: QDF_STATUS_SUCCESS: success
4195  *         QDF_STATUS_E_RESOURCES: Error return
4196  */
4197 QDF_STATUS dp_tx_soc_detach(struct dp_soc *soc)
4198 {
4199 	uint8_t num_pool;
4200 	uint16_t num_desc;
4201 	uint16_t num_ext_desc;
4202 	uint8_t i;
4203 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4204 
4205 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
4206 	num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
4207 	num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
4208 
4209 	dp_tx_flow_control_deinit(soc);
4210 	dp_tx_delete_static_pools(soc, num_pool);
4211 
4212 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
4213 			"%s Tx Desc Pool Free num_pool = %d, descs = %d",
4214 			__func__, num_pool, num_desc);
4215 
4216 	for (i = 0; i < num_pool; i++) {
4217 		if (dp_tx_ext_desc_pool_free(soc, i)) {
4218 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
4219 					"%s Tx Ext Desc Pool Free failed",
4220 					__func__);
4221 			return QDF_STATUS_E_RESOURCES;
4222 		}
4223 	}
4224 
4225 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
4226 			"%s MSDU Ext Desc Pool %d Free descs = %d",
4227 			__func__, num_pool, num_ext_desc);
4228 
4229 	status = dp_tso_detach_wifi3(soc);
4230 	if (status != QDF_STATUS_SUCCESS)
4231 		return status;
4232 
4233 	return QDF_STATUS_SUCCESS;
4234 }
4235 
4236 /**
4237  * dp_tx_soc_attach() - attach soc to dp tx
4238  * @soc: core txrx main context
4239  *
4240  * This function will attach dp tx into main device context
4241  * will allocate dp tx resource and initialize resources
4242  *
4243  * Return: QDF_STATUS_SUCCESS: success
4244  *         QDF_STATUS_E_RESOURCES: Error return
4245  */
4246 QDF_STATUS dp_tx_soc_attach(struct dp_soc *soc)
4247 {
4248 	uint8_t i;
4249 	uint8_t num_pool;
4250 	uint32_t num_desc;
4251 	uint32_t num_ext_desc;
4252 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4253 
4254 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
4255 	num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
4256 	num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
4257 
4258 	if (num_pool > MAX_TXDESC_POOLS)
4259 		goto fail;
4260 
4261 	if (dp_tx_alloc_static_pools(soc, num_pool, num_desc))
4262 		goto fail;
4263 
4264 	dp_tx_flow_control_init(soc);
4265 
4266 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
4267 			"%s Tx Desc Alloc num_pool = %d, descs = %d",
4268 			__func__, num_pool, num_desc);
4269 
4270 	/* Allocate extension tx descriptor pools */
4271 	for (i = 0; i < num_pool; i++) {
4272 		if (dp_tx_ext_desc_pool_alloc(soc, i, num_ext_desc)) {
4273 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
4274 				"MSDU Ext Desc Pool alloc %d failed %pK",
4275 				i, soc);
4276 
4277 			goto fail;
4278 		}
4279 	}
4280 
4281 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
4282 			"%s MSDU Ext Desc Alloc %d, descs = %d",
4283 			__func__, num_pool, num_ext_desc);
4284 
4285 	status = dp_tso_attach_wifi3((void *)soc);
4286 	if (status != QDF_STATUS_SUCCESS)
4287 		goto fail;
4288 
4289 
4290 	/* Initialize descriptors in TCL Rings */
4291 	if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
4292 		for (i = 0; i < soc->num_tcl_data_rings; i++) {
4293 			hal_tx_init_data_ring(soc->hal_soc,
4294 					soc->tcl_data_ring[i].hal_srng);
4295 		}
4296 	}
4297 
4298 	/*
4299 	 * todo - Add a runtime config option to enable this.
4300 	 */
4301 	/*
4302 	 * Due to multiple issues on NPR EMU, enable it selectively
4303 	 * only for NPR EMU, should be removed, once NPR platforms
4304 	 * are stable.
4305 	 */
4306 	soc->process_tx_status = CONFIG_PROCESS_TX_STATUS;
4307 
4308 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
4309 			"%s HAL Tx init Success", __func__);
4310 
4311 	return QDF_STATUS_SUCCESS;
4312 
4313 fail:
4314 	/* Detach will take care of freeing only allocated resources */
4315 	dp_tx_soc_detach(soc);
4316 	return QDF_STATUS_E_RESOURCES;
4317 }
4318