xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_tx.c (revision 70a19e16789e308182f63b15c75decec7bf0b342)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "htt.h"
21 #include "dp_htt.h"
22 #include "hal_hw_headers.h"
23 #include "dp_tx.h"
24 #include "dp_tx_desc.h"
25 #include "dp_peer.h"
26 #include "dp_types.h"
27 #include "hal_tx.h"
28 #include "qdf_mem.h"
29 #include "qdf_nbuf.h"
30 #include "qdf_net_types.h"
31 #include "qdf_module.h"
32 #include <wlan_cfg.h>
33 #include "dp_ipa.h"
34 #if defined(MESH_MODE_SUPPORT) || defined(FEATURE_PERPKT_INFO)
35 #include "if_meta_hdr.h"
36 #endif
37 #include "enet.h"
38 #include "dp_internal.h"
39 #ifdef ATH_SUPPORT_IQUE
40 #include "dp_txrx_me.h"
41 #endif
42 #include "dp_hist.h"
43 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
44 #include <wlan_dp_swlm.h>
45 #endif
46 #ifdef WIFI_MONITOR_SUPPORT
47 #include <dp_mon.h>
48 #endif
49 #ifdef FEATURE_WDS
50 #include "dp_txrx_wds.h"
51 #endif
52 #include "cdp_txrx_cmn_reg.h"
53 #ifdef CONFIG_SAWF
54 #include <dp_sawf.h>
55 #endif
56 
57 /* Flag to skip CCE classify when mesh or tid override enabled */
58 #define DP_TX_SKIP_CCE_CLASSIFY \
59 	(DP_TXRX_HLOS_TID_OVERRIDE_ENABLED | DP_TX_MESH_ENABLED)
60 
61 /* TODO Add support in TSO */
62 #define DP_DESC_NUM_FRAG(x) 0
63 
64 /* disable TQM_BYPASS */
65 #define TQM_BYPASS_WAR 0
66 
67 /* invalid peer id for reinject*/
68 #define DP_INVALID_PEER 0XFFFE
69 
70 #define DP_RETRY_COUNT 7
71 #ifdef WLAN_PEER_JITTER
72 #define DP_AVG_JITTER_WEIGHT_DENOM 4
73 #define DP_AVG_DELAY_WEIGHT_DENOM 3
74 #endif
75 
76 #ifdef QCA_DP_TX_FW_METADATA_V2
77 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)\
78 	HTT_TX_TCL_METADATA_V2_PDEV_ID_SET(_var, _val)
79 #define DP_TX_TCL_METADATA_VALID_HTT_SET(_var, _val) \
80 	HTT_TX_TCL_METADATA_V2_VALID_HTT_SET(_var, _val)
81 #define DP_TX_TCL_METADATA_TYPE_SET(_var, _val) \
82 	HTT_TX_TCL_METADATA_TYPE_V2_SET(_var, _val)
83 #define DP_TX_TCL_METADATA_HOST_INSPECTED_SET(_var, _val) \
84 	HTT_TX_TCL_METADATA_V2_HOST_INSPECTED_SET(_var, _val)
85 #define DP_TX_TCL_METADATA_PEER_ID_SET(_var, _val) \
86 	 HTT_TX_TCL_METADATA_V2_PEER_ID_SET(_var, _val)
87 #define DP_TX_TCL_METADATA_VDEV_ID_SET(_var, _val) \
88 	HTT_TX_TCL_METADATA_V2_VDEV_ID_SET(_var, _val)
89 #define DP_TCL_METADATA_TYPE_PEER_BASED \
90 	HTT_TCL_METADATA_V2_TYPE_PEER_BASED
91 #define DP_TCL_METADATA_TYPE_VDEV_BASED \
92 	HTT_TCL_METADATA_V2_TYPE_VDEV_BASED
93 #else
94 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)\
95 	HTT_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)
96 #define DP_TX_TCL_METADATA_VALID_HTT_SET(_var, _val) \
97 	HTT_TX_TCL_METADATA_VALID_HTT_SET(_var, _val)
98 #define DP_TX_TCL_METADATA_TYPE_SET(_var, _val) \
99 	HTT_TX_TCL_METADATA_TYPE_SET(_var, _val)
100 #define DP_TX_TCL_METADATA_HOST_INSPECTED_SET(_var, _val) \
101 	HTT_TX_TCL_METADATA_HOST_INSPECTED_SET(_var, _val)
102 #define DP_TX_TCL_METADATA_PEER_ID_SET(_var, _val) \
103 	HTT_TX_TCL_METADATA_PEER_ID_SET(_var, _val)
104 #define DP_TX_TCL_METADATA_VDEV_ID_SET(_var, _val) \
105 	HTT_TX_TCL_METADATA_VDEV_ID_SET(_var, _val)
106 #define DP_TCL_METADATA_TYPE_PEER_BASED \
107 	HTT_TCL_METADATA_TYPE_PEER_BASED
108 #define DP_TCL_METADATA_TYPE_VDEV_BASED \
109 	HTT_TCL_METADATA_TYPE_VDEV_BASED
110 #endif
111 
112 /*mapping between hal encrypt type and cdp_sec_type*/
113 uint8_t sec_type_map[MAX_CDP_SEC_TYPE] = {HAL_TX_ENCRYPT_TYPE_NO_CIPHER,
114 					  HAL_TX_ENCRYPT_TYPE_WEP_128,
115 					  HAL_TX_ENCRYPT_TYPE_WEP_104,
116 					  HAL_TX_ENCRYPT_TYPE_WEP_40,
117 					  HAL_TX_ENCRYPT_TYPE_TKIP_WITH_MIC,
118 					  HAL_TX_ENCRYPT_TYPE_TKIP_NO_MIC,
119 					  HAL_TX_ENCRYPT_TYPE_AES_CCMP_128,
120 					  HAL_TX_ENCRYPT_TYPE_WAPI,
121 					  HAL_TX_ENCRYPT_TYPE_AES_CCMP_256,
122 					  HAL_TX_ENCRYPT_TYPE_AES_GCMP_128,
123 					  HAL_TX_ENCRYPT_TYPE_AES_GCMP_256,
124 					  HAL_TX_ENCRYPT_TYPE_WAPI_GCM_SM4};
125 qdf_export_symbol(sec_type_map);
126 
127 #ifdef WLAN_FEATURE_DP_TX_DESC_HISTORY
128 static inline enum dp_tx_event_type dp_tx_get_event_type(uint32_t flags)
129 {
130 	enum dp_tx_event_type type;
131 
132 	if (flags & DP_TX_DESC_FLAG_FLUSH)
133 		type = DP_TX_DESC_FLUSH;
134 	else if (flags & DP_TX_DESC_FLAG_TX_COMP_ERR)
135 		type = DP_TX_COMP_UNMAP_ERR;
136 	else if (flags & DP_TX_DESC_FLAG_COMPLETED_TX)
137 		type = DP_TX_COMP_UNMAP;
138 	else
139 		type = DP_TX_DESC_UNMAP;
140 
141 	return type;
142 }
143 
144 static inline void
145 dp_tx_desc_history_add(struct dp_soc *soc, dma_addr_t paddr,
146 		       qdf_nbuf_t skb, uint32_t sw_cookie,
147 		       enum dp_tx_event_type type)
148 {
149 	struct dp_tx_tcl_history *tx_tcl_history = &soc->tx_tcl_history;
150 	struct dp_tx_comp_history *tx_comp_history = &soc->tx_comp_history;
151 	struct dp_tx_desc_event *entry;
152 	uint32_t idx;
153 	uint16_t slot;
154 
155 	switch (type) {
156 	case DP_TX_COMP_UNMAP:
157 	case DP_TX_COMP_UNMAP_ERR:
158 	case DP_TX_COMP_MSDU_EXT:
159 		if (qdf_unlikely(!tx_comp_history->allocated))
160 			return;
161 
162 		dp_get_frag_hist_next_atomic_idx(&tx_comp_history->index, &idx,
163 						 &slot,
164 						 DP_TX_COMP_HIST_SLOT_SHIFT,
165 						 DP_TX_COMP_HIST_PER_SLOT_MAX,
166 						 DP_TX_COMP_HISTORY_SIZE);
167 		entry = &tx_comp_history->entry[slot][idx];
168 		break;
169 	case DP_TX_DESC_MAP:
170 	case DP_TX_DESC_UNMAP:
171 	case DP_TX_DESC_COOKIE:
172 	case DP_TX_DESC_FLUSH:
173 		if (qdf_unlikely(!tx_tcl_history->allocated))
174 			return;
175 
176 		dp_get_frag_hist_next_atomic_idx(&tx_tcl_history->index, &idx,
177 						 &slot,
178 						 DP_TX_TCL_HIST_SLOT_SHIFT,
179 						 DP_TX_TCL_HIST_PER_SLOT_MAX,
180 						 DP_TX_TCL_HISTORY_SIZE);
181 		entry = &tx_tcl_history->entry[slot][idx];
182 		break;
183 	default:
184 		dp_info_rl("Invalid dp_tx_event_type: %d", type);
185 		return;
186 	}
187 
188 	entry->skb = skb;
189 	entry->paddr = paddr;
190 	entry->sw_cookie = sw_cookie;
191 	entry->type = type;
192 	entry->ts = qdf_get_log_timestamp();
193 }
194 
195 static inline void
196 dp_tx_tso_seg_history_add(struct dp_soc *soc,
197 			  struct qdf_tso_seg_elem_t *tso_seg,
198 			  qdf_nbuf_t skb, uint32_t sw_cookie,
199 			  enum dp_tx_event_type type)
200 {
201 	int i;
202 
203 	for (i = 1; i < tso_seg->seg.num_frags; i++) {
204 		dp_tx_desc_history_add(soc, tso_seg->seg.tso_frags[i].paddr,
205 				       skb, sw_cookie, type);
206 	}
207 
208 	if (!tso_seg->next)
209 		dp_tx_desc_history_add(soc, tso_seg->seg.tso_frags[0].paddr,
210 				       skb, 0xFFFFFFFF, type);
211 }
212 
213 static inline void
214 dp_tx_tso_history_add(struct dp_soc *soc, struct qdf_tso_info_t tso_info,
215 		      qdf_nbuf_t skb, uint32_t sw_cookie,
216 		      enum dp_tx_event_type type)
217 {
218 	struct qdf_tso_seg_elem_t *curr_seg = tso_info.tso_seg_list;
219 	uint32_t num_segs = tso_info.num_segs;
220 
221 	while (num_segs) {
222 		dp_tx_tso_seg_history_add(soc, curr_seg, skb, sw_cookie, type);
223 		curr_seg = curr_seg->next;
224 		num_segs--;
225 	}
226 }
227 
228 #else
229 static inline enum dp_tx_event_type dp_tx_get_event_type(uint32_t flags)
230 {
231 	return DP_TX_DESC_INVAL_EVT;
232 }
233 
234 static inline void
235 dp_tx_desc_history_add(struct dp_soc *soc, dma_addr_t paddr,
236 		       qdf_nbuf_t skb, uint32_t sw_cookie,
237 		       enum dp_tx_event_type type)
238 {
239 }
240 
241 static inline void
242 dp_tx_tso_seg_history_add(struct dp_soc *soc,
243 			  struct qdf_tso_seg_elem_t *tso_seg,
244 			  qdf_nbuf_t skb, uint32_t sw_cookie,
245 			  enum dp_tx_event_type type)
246 {
247 }
248 
249 static inline void
250 dp_tx_tso_history_add(struct dp_soc *soc, struct qdf_tso_info_t tso_info,
251 		      qdf_nbuf_t skb, uint32_t sw_cookie,
252 		      enum dp_tx_event_type type)
253 {
254 }
255 #endif /* WLAN_FEATURE_DP_TX_DESC_HISTORY */
256 
257 static int dp_get_rtpm_tput_policy_requirement(struct dp_soc *soc);
258 
259 /**
260  * dp_is_tput_high() - Check if throughput is high
261  *
262  * @soc - core txrx main context
263  *
264  * The current function is based of the RTPM tput policy variable where RTPM is
265  * avoided based on throughput.
266  */
267 static inline int dp_is_tput_high(struct dp_soc *soc)
268 {
269 	return dp_get_rtpm_tput_policy_requirement(soc);
270 }
271 
272 #if defined(FEATURE_TSO)
273 /**
274  * dp_tx_tso_unmap_segment() - Unmap TSO segment
275  *
276  * @soc - core txrx main context
277  * @seg_desc - tso segment descriptor
278  * @num_seg_desc - tso number segment descriptor
279  */
280 static void dp_tx_tso_unmap_segment(
281 		struct dp_soc *soc,
282 		struct qdf_tso_seg_elem_t *seg_desc,
283 		struct qdf_tso_num_seg_elem_t *num_seg_desc)
284 {
285 	TSO_DEBUG("%s: Unmap the tso segment", __func__);
286 	if (qdf_unlikely(!seg_desc)) {
287 		DP_TRACE(ERROR, "%s %d TSO desc is NULL!",
288 			 __func__, __LINE__);
289 		qdf_assert(0);
290 	} else if (qdf_unlikely(!num_seg_desc)) {
291 		DP_TRACE(ERROR, "%s %d TSO num desc is NULL!",
292 			 __func__, __LINE__);
293 		qdf_assert(0);
294 	} else {
295 		bool is_last_seg;
296 		/* no tso segment left to do dma unmap */
297 		if (num_seg_desc->num_seg.tso_cmn_num_seg < 1)
298 			return;
299 
300 		is_last_seg = (num_seg_desc->num_seg.tso_cmn_num_seg == 1) ?
301 					true : false;
302 		qdf_nbuf_unmap_tso_segment(soc->osdev,
303 					   seg_desc, is_last_seg);
304 		num_seg_desc->num_seg.tso_cmn_num_seg--;
305 	}
306 }
307 
308 /**
309  * dp_tx_tso_desc_release() - Release the tso segment and tso_cmn_num_seg
310  *                            back to the freelist
311  *
312  * @soc - soc device handle
313  * @tx_desc - Tx software descriptor
314  */
315 static void dp_tx_tso_desc_release(struct dp_soc *soc,
316 				   struct dp_tx_desc_s *tx_desc)
317 {
318 	TSO_DEBUG("%s: Free the tso descriptor", __func__);
319 	if (qdf_unlikely(!tx_desc->msdu_ext_desc->tso_desc)) {
320 		dp_tx_err("SO desc is NULL!");
321 		qdf_assert(0);
322 	} else if (qdf_unlikely(!tx_desc->msdu_ext_desc->tso_num_desc)) {
323 		dp_tx_err("TSO num desc is NULL!");
324 		qdf_assert(0);
325 	} else {
326 		struct qdf_tso_num_seg_elem_t *tso_num_desc =
327 			(struct qdf_tso_num_seg_elem_t *)tx_desc->
328 				msdu_ext_desc->tso_num_desc;
329 
330 		/* Add the tso num segment into the free list */
331 		if (tso_num_desc->num_seg.tso_cmn_num_seg == 0) {
332 			dp_tso_num_seg_free(soc, tx_desc->pool_id,
333 					    tx_desc->msdu_ext_desc->
334 					    tso_num_desc);
335 			tx_desc->msdu_ext_desc->tso_num_desc = NULL;
336 			DP_STATS_INC(tx_desc->pdev, tso_stats.tso_comp, 1);
337 		}
338 
339 		/* Add the tso segment into the free list*/
340 		dp_tx_tso_desc_free(soc,
341 				    tx_desc->pool_id, tx_desc->msdu_ext_desc->
342 				    tso_desc);
343 		tx_desc->msdu_ext_desc->tso_desc = NULL;
344 	}
345 }
346 #else
347 static void dp_tx_tso_unmap_segment(
348 		struct dp_soc *soc,
349 		struct qdf_tso_seg_elem_t *seg_desc,
350 		struct qdf_tso_num_seg_elem_t *num_seg_desc)
351 
352 {
353 }
354 
355 static void dp_tx_tso_desc_release(struct dp_soc *soc,
356 				   struct dp_tx_desc_s *tx_desc)
357 {
358 }
359 #endif
360 
361 /**
362  * dp_tx_desc_release() - Release Tx Descriptor
363  * @tx_desc : Tx Descriptor
364  * @desc_pool_id: Descriptor Pool ID
365  *
366  * Deallocate all resources attached to Tx descriptor and free the Tx
367  * descriptor.
368  *
369  * Return:
370  */
371 void
372 dp_tx_desc_release(struct dp_tx_desc_s *tx_desc, uint8_t desc_pool_id)
373 {
374 	struct dp_pdev *pdev = tx_desc->pdev;
375 	struct dp_soc *soc;
376 	uint8_t comp_status = 0;
377 
378 	qdf_assert(pdev);
379 
380 	soc = pdev->soc;
381 
382 	dp_tx_outstanding_dec(pdev);
383 
384 	if (tx_desc->msdu_ext_desc) {
385 		if (tx_desc->frm_type == dp_tx_frm_tso)
386 			dp_tx_tso_desc_release(soc, tx_desc);
387 
388 		if (tx_desc->flags & DP_TX_DESC_FLAG_ME)
389 			dp_tx_me_free_buf(tx_desc->pdev,
390 					  tx_desc->msdu_ext_desc->me_buffer);
391 
392 		dp_tx_ext_desc_free(soc, tx_desc->msdu_ext_desc, desc_pool_id);
393 	}
394 
395 	if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)
396 		qdf_atomic_dec(&soc->num_tx_exception);
397 
398 	if (HAL_TX_COMP_RELEASE_SOURCE_TQM ==
399 				tx_desc->buffer_src)
400 		comp_status = hal_tx_comp_get_release_reason(&tx_desc->comp,
401 							     soc->hal_soc);
402 	else
403 		comp_status = HAL_TX_COMP_RELEASE_REASON_FW;
404 
405 	dp_tx_debug("Tx Completion Release desc %d status %d outstanding %d",
406 		    tx_desc->id, comp_status,
407 		    qdf_atomic_read(&pdev->num_tx_outstanding));
408 
409 	dp_tx_desc_free(soc, tx_desc, desc_pool_id);
410 	return;
411 }
412 
413 /**
414  * dp_tx_htt_metadata_prepare() - Prepare HTT metadata for special frames
415  * @vdev: DP vdev Handle
416  * @nbuf: skb
417  * @msdu_info: msdu_info required to create HTT metadata
418  *
419  * Prepares and fills HTT metadata in the frame pre-header for special frames
420  * that should be transmitted using varying transmit parameters.
421  * There are 2 VDEV modes that currently needs this special metadata -
422  *  1) Mesh Mode
423  *  2) DSRC Mode
424  *
425  * Return: HTT metadata size
426  *
427  */
428 static uint8_t dp_tx_prepare_htt_metadata(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
429 					  struct dp_tx_msdu_info_s *msdu_info)
430 {
431 	uint32_t *meta_data = msdu_info->meta_data;
432 	struct htt_tx_msdu_desc_ext2_t *desc_ext =
433 				(struct htt_tx_msdu_desc_ext2_t *) meta_data;
434 
435 	uint8_t htt_desc_size;
436 
437 	/* Size rounded of multiple of 8 bytes */
438 	uint8_t htt_desc_size_aligned;
439 
440 	uint8_t *hdr = NULL;
441 
442 	/*
443 	 * Metadata - HTT MSDU Extension header
444 	 */
445 	htt_desc_size = sizeof(struct htt_tx_msdu_desc_ext2_t);
446 	htt_desc_size_aligned = (htt_desc_size + 7) & ~0x7;
447 
448 	if (vdev->mesh_vdev || msdu_info->is_tx_sniffer ||
449 	    HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_GET(msdu_info->
450 							   meta_data[0]) ||
451 	    msdu_info->exception_fw) {
452 		if (qdf_unlikely(qdf_nbuf_headroom(nbuf) <
453 				 htt_desc_size_aligned)) {
454 			nbuf = qdf_nbuf_realloc_headroom(nbuf,
455 							 htt_desc_size_aligned);
456 			if (!nbuf) {
457 				/*
458 				 * qdf_nbuf_realloc_headroom won't do skb_clone
459 				 * as skb_realloc_headroom does. so, no free is
460 				 * needed here.
461 				 */
462 				DP_STATS_INC(vdev,
463 					     tx_i.dropped.headroom_insufficient,
464 					     1);
465 				qdf_print(" %s[%d] skb_realloc_headroom failed",
466 					  __func__, __LINE__);
467 				return 0;
468 			}
469 		}
470 		/* Fill and add HTT metaheader */
471 		hdr = qdf_nbuf_push_head(nbuf, htt_desc_size_aligned);
472 		if (!hdr) {
473 			dp_tx_err("Error in filling HTT metadata");
474 
475 			return 0;
476 		}
477 		qdf_mem_copy(hdr, desc_ext, htt_desc_size);
478 
479 	} else if (vdev->opmode == wlan_op_mode_ocb) {
480 		/* Todo - Add support for DSRC */
481 	}
482 
483 	return htt_desc_size_aligned;
484 }
485 
486 /**
487  * dp_tx_prepare_tso_ext_desc() - Prepare MSDU extension descriptor for TSO
488  * @tso_seg: TSO segment to process
489  * @ext_desc: Pointer to MSDU extension descriptor
490  *
491  * Return: void
492  */
493 #if defined(FEATURE_TSO)
494 static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
495 		void *ext_desc)
496 {
497 	uint8_t num_frag;
498 	uint32_t tso_flags;
499 
500 	/*
501 	 * Set tso_en, tcp_flags(NS, CWR, ECE, URG, ACK, PSH, RST, SYN, FIN),
502 	 * tcp_flag_mask
503 	 *
504 	 * Checksum enable flags are set in TCL descriptor and not in Extension
505 	 * Descriptor (H/W ignores checksum_en flags in MSDU ext descriptor)
506 	 */
507 	tso_flags = *(uint32_t *) &tso_seg->tso_flags;
508 
509 	hal_tx_ext_desc_set_tso_flags(ext_desc, tso_flags);
510 
511 	hal_tx_ext_desc_set_msdu_length(ext_desc, tso_seg->tso_flags.l2_len,
512 		tso_seg->tso_flags.ip_len);
513 
514 	hal_tx_ext_desc_set_tcp_seq(ext_desc, tso_seg->tso_flags.tcp_seq_num);
515 	hal_tx_ext_desc_set_ip_id(ext_desc, tso_seg->tso_flags.ip_id);
516 
517 	for (num_frag = 0; num_frag < tso_seg->num_frags; num_frag++) {
518 		uint32_t lo = 0;
519 		uint32_t hi = 0;
520 
521 		qdf_assert_always((tso_seg->tso_frags[num_frag].paddr) &&
522 				  (tso_seg->tso_frags[num_frag].length));
523 
524 		qdf_dmaaddr_to_32s(
525 			tso_seg->tso_frags[num_frag].paddr, &lo, &hi);
526 		hal_tx_ext_desc_set_buffer(ext_desc, num_frag, lo, hi,
527 			tso_seg->tso_frags[num_frag].length);
528 	}
529 
530 	return;
531 }
532 #else
533 static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
534 		void *ext_desc)
535 {
536 	return;
537 }
538 #endif
539 
540 #if defined(FEATURE_TSO)
541 /**
542  * dp_tx_free_tso_seg_list() - Loop through the tso segments
543  *                             allocated and free them
544  *
545  * @soc: soc handle
546  * @free_seg: list of tso segments
547  * @msdu_info: msdu descriptor
548  *
549  * Return - void
550  */
551 static void dp_tx_free_tso_seg_list(
552 		struct dp_soc *soc,
553 		struct qdf_tso_seg_elem_t *free_seg,
554 		struct dp_tx_msdu_info_s *msdu_info)
555 {
556 	struct qdf_tso_seg_elem_t *next_seg;
557 
558 	while (free_seg) {
559 		next_seg = free_seg->next;
560 		dp_tx_tso_desc_free(soc,
561 				    msdu_info->tx_queue.desc_pool_id,
562 				    free_seg);
563 		free_seg = next_seg;
564 	}
565 }
566 
567 /**
568  * dp_tx_free_tso_num_seg_list() - Loop through the tso num segments
569  *                                 allocated and free them
570  *
571  * @soc:  soc handle
572  * @free_num_seg: list of tso number segments
573  * @msdu_info: msdu descriptor
574  * Return - void
575  */
576 static void dp_tx_free_tso_num_seg_list(
577 		struct dp_soc *soc,
578 		struct qdf_tso_num_seg_elem_t *free_num_seg,
579 		struct dp_tx_msdu_info_s *msdu_info)
580 {
581 	struct qdf_tso_num_seg_elem_t *next_num_seg;
582 
583 	while (free_num_seg) {
584 		next_num_seg = free_num_seg->next;
585 		dp_tso_num_seg_free(soc,
586 				    msdu_info->tx_queue.desc_pool_id,
587 				    free_num_seg);
588 		free_num_seg = next_num_seg;
589 	}
590 }
591 
592 /**
593  * dp_tx_unmap_tso_seg_list() - Loop through the tso segments
594  *                              do dma unmap for each segment
595  *
596  * @soc: soc handle
597  * @free_seg: list of tso segments
598  * @num_seg_desc: tso number segment descriptor
599  *
600  * Return - void
601  */
602 static void dp_tx_unmap_tso_seg_list(
603 		struct dp_soc *soc,
604 		struct qdf_tso_seg_elem_t *free_seg,
605 		struct qdf_tso_num_seg_elem_t *num_seg_desc)
606 {
607 	struct qdf_tso_seg_elem_t *next_seg;
608 
609 	if (qdf_unlikely(!num_seg_desc)) {
610 		DP_TRACE(ERROR, "TSO number seg desc is NULL!");
611 		return;
612 	}
613 
614 	while (free_seg) {
615 		next_seg = free_seg->next;
616 		dp_tx_tso_unmap_segment(soc, free_seg, num_seg_desc);
617 		free_seg = next_seg;
618 	}
619 }
620 
621 #ifdef FEATURE_TSO_STATS
622 /**
623  * dp_tso_get_stats_idx: Retrieve the tso packet id
624  * @pdev - pdev handle
625  *
626  * Return: id
627  */
628 static uint32_t dp_tso_get_stats_idx(struct dp_pdev *pdev)
629 {
630 	uint32_t stats_idx;
631 
632 	stats_idx = (((uint32_t)qdf_atomic_inc_return(&pdev->tso_idx))
633 						% CDP_MAX_TSO_PACKETS);
634 	return stats_idx;
635 }
636 #else
637 static int dp_tso_get_stats_idx(struct dp_pdev *pdev)
638 {
639 	return 0;
640 }
641 #endif /* FEATURE_TSO_STATS */
642 
643 /**
644  * dp_tx_free_remaining_tso_desc() - do dma unmap for tso segments if any,
645  *				     free the tso segments descriptor and
646  *				     tso num segments descriptor
647  *
648  * @soc:  soc handle
649  * @msdu_info: msdu descriptor
650  * @tso_seg_unmap: flag to show if dma unmap is necessary
651  *
652  * Return - void
653  */
654 static void dp_tx_free_remaining_tso_desc(struct dp_soc *soc,
655 					  struct dp_tx_msdu_info_s *msdu_info,
656 					  bool tso_seg_unmap)
657 {
658 	struct qdf_tso_info_t *tso_info = &msdu_info->u.tso_info;
659 	struct qdf_tso_seg_elem_t *free_seg = tso_info->tso_seg_list;
660 	struct qdf_tso_num_seg_elem_t *tso_num_desc =
661 					tso_info->tso_num_seg_list;
662 
663 	/* do dma unmap for each segment */
664 	if (tso_seg_unmap)
665 		dp_tx_unmap_tso_seg_list(soc, free_seg, tso_num_desc);
666 
667 	/* free all tso number segment descriptor though looks only have 1 */
668 	dp_tx_free_tso_num_seg_list(soc, tso_num_desc, msdu_info);
669 
670 	/* free all tso segment descriptor */
671 	dp_tx_free_tso_seg_list(soc, free_seg, msdu_info);
672 }
673 
674 /**
675  * dp_tx_prepare_tso() - Given a jumbo msdu, prepare the TSO info
676  * @vdev: virtual device handle
677  * @msdu: network buffer
678  * @msdu_info: meta data associated with the msdu
679  *
680  * Return: QDF_STATUS_SUCCESS success
681  */
682 static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
683 		qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
684 {
685 	struct qdf_tso_seg_elem_t *tso_seg;
686 	int num_seg = qdf_nbuf_get_tso_num_seg(msdu);
687 	struct dp_soc *soc = vdev->pdev->soc;
688 	struct dp_pdev *pdev = vdev->pdev;
689 	struct qdf_tso_info_t *tso_info;
690 	struct qdf_tso_num_seg_elem_t *tso_num_seg;
691 	tso_info = &msdu_info->u.tso_info;
692 	tso_info->curr_seg = NULL;
693 	tso_info->tso_seg_list = NULL;
694 	tso_info->num_segs = num_seg;
695 	msdu_info->frm_type = dp_tx_frm_tso;
696 	tso_info->tso_num_seg_list = NULL;
697 
698 	TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
699 
700 	while (num_seg) {
701 		tso_seg = dp_tx_tso_desc_alloc(
702 				soc, msdu_info->tx_queue.desc_pool_id);
703 		if (tso_seg) {
704 			tso_seg->next = tso_info->tso_seg_list;
705 			tso_info->tso_seg_list = tso_seg;
706 			num_seg--;
707 		} else {
708 			dp_err_rl("Failed to alloc tso seg desc");
709 			DP_STATS_INC_PKT(vdev->pdev,
710 					 tso_stats.tso_no_mem_dropped, 1,
711 					 qdf_nbuf_len(msdu));
712 			dp_tx_free_remaining_tso_desc(soc, msdu_info, false);
713 
714 			return QDF_STATUS_E_NOMEM;
715 		}
716 	}
717 
718 	TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
719 
720 	tso_num_seg = dp_tso_num_seg_alloc(soc,
721 			msdu_info->tx_queue.desc_pool_id);
722 
723 	if (tso_num_seg) {
724 		tso_num_seg->next = tso_info->tso_num_seg_list;
725 		tso_info->tso_num_seg_list = tso_num_seg;
726 	} else {
727 		DP_TRACE(ERROR, "%s: Failed to alloc - Number of segs desc",
728 			 __func__);
729 		dp_tx_free_remaining_tso_desc(soc, msdu_info, false);
730 
731 		return QDF_STATUS_E_NOMEM;
732 	}
733 
734 	msdu_info->num_seg =
735 		qdf_nbuf_get_tso_info(soc->osdev, msdu, tso_info);
736 
737 	TSO_DEBUG(" %s: msdu_info->num_seg: %d", __func__,
738 			msdu_info->num_seg);
739 
740 	if (!(msdu_info->num_seg)) {
741 		/*
742 		 * Free allocated TSO seg desc and number seg desc,
743 		 * do unmap for segments if dma map has done.
744 		 */
745 		DP_TRACE(ERROR, "%s: Failed to get tso info", __func__);
746 		dp_tx_free_remaining_tso_desc(soc, msdu_info, true);
747 
748 		return QDF_STATUS_E_INVAL;
749 	}
750 	dp_tx_tso_history_add(soc, msdu_info->u.tso_info,
751 			      msdu, 0, DP_TX_DESC_MAP);
752 
753 	tso_info->curr_seg = tso_info->tso_seg_list;
754 
755 	tso_info->msdu_stats_idx = dp_tso_get_stats_idx(pdev);
756 	dp_tso_packet_update(pdev, tso_info->msdu_stats_idx,
757 			     msdu, msdu_info->num_seg);
758 	dp_tso_segment_stats_update(pdev, tso_info->tso_seg_list,
759 				    tso_info->msdu_stats_idx);
760 	dp_stats_tso_segment_histogram_update(pdev, msdu_info->num_seg);
761 	return QDF_STATUS_SUCCESS;
762 }
763 #else
764 static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
765 		qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
766 {
767 	return QDF_STATUS_E_NOMEM;
768 }
769 #endif
770 
771 QDF_COMPILE_TIME_ASSERT(dp_tx_htt_metadata_len_check,
772 			(DP_TX_MSDU_INFO_META_DATA_DWORDS * 4 >=
773 			 sizeof(struct htt_tx_msdu_desc_ext2_t)));
774 
775 /**
776  * dp_tx_prepare_ext_desc() - Allocate and prepare MSDU extension descriptor
777  * @vdev: DP Vdev handle
778  * @msdu_info: MSDU info to be setup in MSDU extension descriptor
779  * @desc_pool_id: Descriptor Pool ID
780  *
781  * Return:
782  */
783 static
784 struct dp_tx_ext_desc_elem_s *dp_tx_prepare_ext_desc(struct dp_vdev *vdev,
785 		struct dp_tx_msdu_info_s *msdu_info, uint8_t desc_pool_id)
786 {
787 	uint8_t i;
788 	uint8_t cached_ext_desc[HAL_TX_EXT_DESC_WITH_META_DATA];
789 	struct dp_tx_seg_info_s *seg_info;
790 	struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
791 	struct dp_soc *soc = vdev->pdev->soc;
792 
793 	/* Allocate an extension descriptor */
794 	msdu_ext_desc = dp_tx_ext_desc_alloc(soc, desc_pool_id);
795 	qdf_mem_zero(&cached_ext_desc[0], HAL_TX_EXT_DESC_WITH_META_DATA);
796 
797 	if (!msdu_ext_desc) {
798 		DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
799 		return NULL;
800 	}
801 
802 	if (msdu_info->exception_fw &&
803 			qdf_unlikely(vdev->mesh_vdev)) {
804 		qdf_mem_copy(&cached_ext_desc[HAL_TX_EXTENSION_DESC_LEN_BYTES],
805 				&msdu_info->meta_data[0],
806 				sizeof(struct htt_tx_msdu_desc_ext2_t));
807 		qdf_atomic_inc(&soc->num_tx_exception);
808 		msdu_ext_desc->flags |= DP_TX_EXT_DESC_FLAG_METADATA_VALID;
809 	}
810 
811 	switch (msdu_info->frm_type) {
812 	case dp_tx_frm_sg:
813 	case dp_tx_frm_me:
814 	case dp_tx_frm_raw:
815 		seg_info = msdu_info->u.sg_info.curr_seg;
816 		/* Update the buffer pointers in MSDU Extension Descriptor */
817 		for (i = 0; i < seg_info->frag_cnt; i++) {
818 			hal_tx_ext_desc_set_buffer(&cached_ext_desc[0], i,
819 				seg_info->frags[i].paddr_lo,
820 				seg_info->frags[i].paddr_hi,
821 				seg_info->frags[i].len);
822 		}
823 
824 		break;
825 
826 	case dp_tx_frm_tso:
827 		dp_tx_prepare_tso_ext_desc(&msdu_info->u.tso_info.curr_seg->seg,
828 				&cached_ext_desc[0]);
829 		break;
830 
831 
832 	default:
833 		break;
834 	}
835 
836 	QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
837 			   cached_ext_desc, HAL_TX_EXT_DESC_WITH_META_DATA);
838 
839 	hal_tx_ext_desc_sync(&cached_ext_desc[0],
840 			msdu_ext_desc->vaddr);
841 
842 	return msdu_ext_desc;
843 }
844 
845 /**
846  * dp_tx_trace_pkt() - Trace TX packet at DP layer
847  *
848  * @skb: skb to be traced
849  * @msdu_id: msdu_id of the packet
850  * @vdev_id: vdev_id of the packet
851  *
852  * Return: None
853  */
854 #ifdef DP_DISABLE_TX_PKT_TRACE
855 static void dp_tx_trace_pkt(struct dp_soc *soc,
856 			    qdf_nbuf_t skb, uint16_t msdu_id,
857 			    uint8_t vdev_id)
858 {
859 }
860 #else
861 static void dp_tx_trace_pkt(struct dp_soc *soc,
862 			    qdf_nbuf_t skb, uint16_t msdu_id,
863 			    uint8_t vdev_id)
864 {
865 	if (dp_is_tput_high(soc))
866 		return;
867 
868 	QDF_NBUF_CB_TX_PACKET_TRACK(skb) = QDF_NBUF_TX_PKT_DATA_TRACK;
869 	QDF_NBUF_CB_TX_DP_TRACE(skb) = 1;
870 	DPTRACE(qdf_dp_trace_ptr(skb,
871 				 QDF_DP_TRACE_LI_DP_TX_PACKET_PTR_RECORD,
872 				 QDF_TRACE_DEFAULT_PDEV_ID,
873 				 qdf_nbuf_data_addr(skb),
874 				 sizeof(qdf_nbuf_data(skb)),
875 				 msdu_id, vdev_id, 0));
876 
877 	qdf_dp_trace_log_pkt(vdev_id, skb, QDF_TX, QDF_TRACE_DEFAULT_PDEV_ID);
878 
879 	DPTRACE(qdf_dp_trace_data_pkt(skb, QDF_TRACE_DEFAULT_PDEV_ID,
880 				      QDF_DP_TRACE_LI_DP_TX_PACKET_RECORD,
881 				      msdu_id, QDF_TX));
882 }
883 #endif
884 
885 #ifdef WLAN_DP_FEATURE_MARK_ICMP_REQ_TO_FW
886 /**
887  * dp_tx_is_nbuf_marked_exception() - Check if the packet has been marked as
888  *				      exception by the upper layer (OS_IF)
889  * @soc: DP soc handle
890  * @nbuf: packet to be transmitted
891  *
892  * Returns: 1 if the packet is marked as exception,
893  *	    0, if the packet is not marked as exception.
894  */
895 static inline int dp_tx_is_nbuf_marked_exception(struct dp_soc *soc,
896 						 qdf_nbuf_t nbuf)
897 {
898 	return QDF_NBUF_CB_TX_PACKET_TO_FW(nbuf);
899 }
900 #else
901 static inline int dp_tx_is_nbuf_marked_exception(struct dp_soc *soc,
902 						 qdf_nbuf_t nbuf)
903 {
904 	return 0;
905 }
906 #endif
907 
908 #ifdef DP_TRAFFIC_END_INDICATION
909 /**
910  * dp_tx_get_traffic_end_indication_pkt() - Allocate and prepare packet to send
911  *                                          as indication to fw to inform that
912  *                                          data stream has ended
913  * @vdev: DP vdev handle
914  * @nbuf: original buffer from network stack
915  *
916  * Return: NULL on failure,
917  *         nbuf on success
918  */
919 static inline qdf_nbuf_t
920 dp_tx_get_traffic_end_indication_pkt(struct dp_vdev *vdev,
921 				     qdf_nbuf_t nbuf)
922 {
923 	/* Packet length should be enough to copy upto L3 header */
924 	uint8_t end_nbuf_len = 64;
925 	uint8_t htt_desc_size_aligned;
926 	uint8_t htt_desc_size;
927 	qdf_nbuf_t end_nbuf;
928 
929 	if (qdf_unlikely(QDF_NBUF_CB_GET_PACKET_TYPE(nbuf) ==
930 			 QDF_NBUF_CB_PACKET_TYPE_END_INDICATION)) {
931 		htt_desc_size = sizeof(struct htt_tx_msdu_desc_ext2_t);
932 		htt_desc_size_aligned = (htt_desc_size + 7) & ~0x7;
933 
934 		end_nbuf = qdf_nbuf_queue_remove(&vdev->end_ind_pkt_q);
935 		if (!end_nbuf) {
936 			end_nbuf = qdf_nbuf_alloc(NULL,
937 						  (htt_desc_size_aligned +
938 						  end_nbuf_len),
939 						  htt_desc_size_aligned,
940 						  8, false);
941 			if (!end_nbuf) {
942 				dp_err("Packet allocation failed");
943 				goto out;
944 			}
945 		} else {
946 			qdf_nbuf_reset(end_nbuf, htt_desc_size_aligned, 8);
947 		}
948 		qdf_mem_copy(qdf_nbuf_data(end_nbuf), qdf_nbuf_data(nbuf),
949 			     end_nbuf_len);
950 		qdf_nbuf_set_pktlen(end_nbuf, end_nbuf_len);
951 
952 		return end_nbuf;
953 	}
954 out:
955 	return NULL;
956 }
957 
958 /**
959  * dp_tx_send_traffic_end_indication_pkt() - Send indication packet to FW
960  *                                           via exception path.
961  * @vdev: DP vdev handle
962  * @end_nbuf: skb to send as indication
963  * @msdu_info: msdu_info of original nbuf
964  * @peer_id: peer id
965  *
966  * Return: None
967  */
968 static inline void
969 dp_tx_send_traffic_end_indication_pkt(struct dp_vdev *vdev,
970 				      qdf_nbuf_t end_nbuf,
971 				      struct dp_tx_msdu_info_s *msdu_info,
972 				      uint16_t peer_id)
973 {
974 	struct dp_tx_msdu_info_s e_msdu_info = {0};
975 	qdf_nbuf_t nbuf;
976 	struct htt_tx_msdu_desc_ext2_t *desc_ext =
977 		(struct htt_tx_msdu_desc_ext2_t *)(e_msdu_info.meta_data);
978 	e_msdu_info.tx_queue = msdu_info->tx_queue;
979 	e_msdu_info.tid = msdu_info->tid;
980 	e_msdu_info.exception_fw = 1;
981 	desc_ext->host_tx_desc_pool = 1;
982 	desc_ext->traffic_end_indication = 1;
983 	nbuf = dp_tx_send_msdu_single(vdev, end_nbuf, &e_msdu_info,
984 				      peer_id, NULL);
985 	if (nbuf) {
986 		dp_err("Traffic end indication packet tx failed");
987 		qdf_nbuf_free(nbuf);
988 	}
989 }
990 
991 /**
992  * dp_tx_traffic_end_indication_set_desc_flag() - Set tx descriptor flag to
993  *                                                mark it traffic end indication
994  *                                                packet.
995  * @tx_desc: Tx descriptor pointer
996  * @msdu_info: msdu_info structure pointer
997  *
998  * Return: None
999  */
1000 static inline void
1001 dp_tx_traffic_end_indication_set_desc_flag(struct dp_tx_desc_s *tx_desc,
1002 					   struct dp_tx_msdu_info_s *msdu_info)
1003 {
1004 	struct htt_tx_msdu_desc_ext2_t *desc_ext =
1005 		(struct htt_tx_msdu_desc_ext2_t *)(msdu_info->meta_data);
1006 
1007 	if (qdf_unlikely(desc_ext->traffic_end_indication))
1008 		tx_desc->flags |= DP_TX_DESC_FLAG_TRAFFIC_END_IND;
1009 }
1010 
1011 /**
1012  * dp_tx_traffic_end_indication_enq_ind_pkt() - Enqueue the packet instead of
1013  *                                              freeing which are associated
1014  *                                              with traffic end indication
1015  *                                              flagged descriptor.
1016  * @soc: dp soc handle
1017  * @desc: Tx descriptor pointer
1018  * @nbuf: buffer pointer
1019  *
1020  * Return: True if packet gets enqueued else false
1021  */
1022 static bool
1023 dp_tx_traffic_end_indication_enq_ind_pkt(struct dp_soc *soc,
1024 					 struct dp_tx_desc_s *desc,
1025 					 qdf_nbuf_t nbuf)
1026 {
1027 	struct dp_vdev *vdev = NULL;
1028 
1029 	if (qdf_unlikely((desc->flags &
1030 			  DP_TX_DESC_FLAG_TRAFFIC_END_IND) != 0)) {
1031 		vdev = dp_vdev_get_ref_by_id(soc, desc->vdev_id,
1032 					     DP_MOD_ID_TX_COMP);
1033 		if (vdev) {
1034 			qdf_nbuf_queue_add(&vdev->end_ind_pkt_q, nbuf);
1035 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_COMP);
1036 			return true;
1037 		}
1038 	}
1039 	return false;
1040 }
1041 
1042 /**
1043  * dp_tx_traffic_end_indication_is_enabled() - get the feature
1044  *                                             enable/disable status
1045  * @vdev: dp vdev handle
1046  *
1047  * Return: True if feature is enable else false
1048  */
1049 static inline bool
1050 dp_tx_traffic_end_indication_is_enabled(struct dp_vdev *vdev)
1051 {
1052 	return qdf_unlikely(vdev->traffic_end_ind_en);
1053 }
1054 
1055 static inline qdf_nbuf_t
1056 dp_tx_send_msdu_single_wrapper(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1057 			       struct dp_tx_msdu_info_s *msdu_info,
1058 			       uint16_t peer_id, qdf_nbuf_t end_nbuf)
1059 {
1060 	if (dp_tx_traffic_end_indication_is_enabled(vdev))
1061 		end_nbuf = dp_tx_get_traffic_end_indication_pkt(vdev, nbuf);
1062 
1063 	nbuf = dp_tx_send_msdu_single(vdev, nbuf, msdu_info, peer_id, NULL);
1064 
1065 	if (qdf_unlikely(end_nbuf))
1066 		dp_tx_send_traffic_end_indication_pkt(vdev, end_nbuf,
1067 						      msdu_info, peer_id);
1068 	return nbuf;
1069 }
1070 #else
1071 static inline qdf_nbuf_t
1072 dp_tx_get_traffic_end_indication_pkt(struct dp_vdev *vdev,
1073 				     qdf_nbuf_t nbuf)
1074 {
1075 	return NULL;
1076 }
1077 
1078 static inline void
1079 dp_tx_send_traffic_end_indication_pkt(struct dp_vdev *vdev,
1080 				      qdf_nbuf_t end_nbuf,
1081 				      struct dp_tx_msdu_info_s *msdu_info,
1082 				      uint16_t peer_id)
1083 {}
1084 
1085 static inline void
1086 dp_tx_traffic_end_indication_set_desc_flag(struct dp_tx_desc_s *tx_desc,
1087 					   struct dp_tx_msdu_info_s *msdu_info)
1088 {}
1089 
1090 static inline bool
1091 dp_tx_traffic_end_indication_enq_ind_pkt(struct dp_soc *soc,
1092 					 struct dp_tx_desc_s *desc,
1093 					 qdf_nbuf_t nbuf)
1094 {
1095 	return false;
1096 }
1097 
1098 static inline bool
1099 dp_tx_traffic_end_indication_is_enabled(struct dp_vdev *vdev)
1100 {
1101 	return false;
1102 }
1103 
1104 static inline qdf_nbuf_t
1105 dp_tx_send_msdu_single_wrapper(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1106 			       struct dp_tx_msdu_info_s *msdu_info,
1107 			       uint16_t peer_id, qdf_nbuf_t end_nbuf)
1108 {
1109 	return dp_tx_send_msdu_single(vdev, nbuf, msdu_info, peer_id, NULL);
1110 }
1111 #endif
1112 
1113 #if defined(QCA_SUPPORT_WDS_EXTENDED)
1114 static bool
1115 dp_tx_is_wds_ast_override_en(struct dp_soc *soc,
1116 			     struct cdp_tx_exception_metadata *tx_exc_metadata)
1117 {
1118 	if (soc->features.wds_ext_ast_override_enable &&
1119 	    tx_exc_metadata && tx_exc_metadata->is_wds_extended)
1120 		return true;
1121 
1122 	return false;
1123 }
1124 #else
1125 static bool
1126 dp_tx_is_wds_ast_override_en(struct dp_soc *soc,
1127 			     struct cdp_tx_exception_metadata *tx_exc_metadata)
1128 {
1129 	return false;
1130 }
1131 #endif
1132 
1133 /**
1134  * dp_tx_desc_prepare_single - Allocate and prepare Tx descriptor
1135  * @vdev: DP vdev handle
1136  * @nbuf: skb
1137  * @desc_pool_id: Descriptor pool ID
1138  * @meta_data: Metadata to the fw
1139  * @tx_exc_metadata: Handle that holds exception path metadata
1140  * Allocate and prepare Tx descriptor with msdu information.
1141  *
1142  * Return: Pointer to Tx Descriptor on success,
1143  *         NULL on failure
1144  */
1145 static
1146 struct dp_tx_desc_s *dp_tx_prepare_desc_single(struct dp_vdev *vdev,
1147 		qdf_nbuf_t nbuf, uint8_t desc_pool_id,
1148 		struct dp_tx_msdu_info_s *msdu_info,
1149 		struct cdp_tx_exception_metadata *tx_exc_metadata)
1150 {
1151 	uint8_t align_pad;
1152 	uint8_t is_exception = 0;
1153 	uint8_t htt_hdr_size;
1154 	struct dp_tx_desc_s *tx_desc;
1155 	struct dp_pdev *pdev = vdev->pdev;
1156 	struct dp_soc *soc = pdev->soc;
1157 
1158 	if (dp_tx_limit_check(vdev, nbuf))
1159 		return NULL;
1160 
1161 	/* Allocate software Tx descriptor */
1162 	tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
1163 
1164 	if (qdf_unlikely(!tx_desc)) {
1165 		DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
1166 		DP_STATS_INC(vdev, tx_i.dropped.desc_na_exc_alloc_fail.num, 1);
1167 		return NULL;
1168 	}
1169 
1170 	dp_tx_outstanding_inc(pdev);
1171 
1172 	/* Initialize the SW tx descriptor */
1173 	tx_desc->nbuf = nbuf;
1174 	tx_desc->frm_type = dp_tx_frm_std;
1175 	tx_desc->tx_encap_type = ((tx_exc_metadata &&
1176 		(tx_exc_metadata->tx_encap_type != CDP_INVALID_TX_ENCAP_TYPE)) ?
1177 		tx_exc_metadata->tx_encap_type : vdev->tx_encap_type);
1178 	tx_desc->vdev_id = vdev->vdev_id;
1179 	tx_desc->pdev = pdev;
1180 	tx_desc->msdu_ext_desc = NULL;
1181 	tx_desc->pkt_offset = 0;
1182 	tx_desc->length = qdf_nbuf_headlen(nbuf);
1183 	tx_desc->shinfo_addr = skb_end_pointer(nbuf);
1184 
1185 	dp_tx_trace_pkt(soc, nbuf, tx_desc->id, vdev->vdev_id);
1186 
1187 	if (qdf_unlikely(vdev->multipass_en)) {
1188 		if (!dp_tx_multipass_process(soc, vdev, nbuf, msdu_info))
1189 			goto failure;
1190 	}
1191 
1192 	/* Packets marked by upper layer (OS-IF) to be sent to FW */
1193 	if (dp_tx_is_nbuf_marked_exception(soc, nbuf))
1194 		is_exception = 1;
1195 
1196 	/* for BE chipsets if wds extension was enbled will not mark FW
1197 	 * in desc will mark ast index based search for ast index.
1198 	 */
1199 	if (dp_tx_is_wds_ast_override_en(soc, tx_exc_metadata))
1200 		return tx_desc;
1201 
1202 	/*
1203 	 * For special modes (vdev_type == ocb or mesh), data frames should be
1204 	 * transmitted using varying transmit parameters (tx spec) which include
1205 	 * transmit rate, power, priority, channel, channel bandwidth , nss etc.
1206 	 * These are filled in HTT MSDU descriptor and sent in frame pre-header.
1207 	 * These frames are sent as exception packets to firmware.
1208 	 *
1209 	 * HW requirement is that metadata should always point to a
1210 	 * 8-byte aligned address. So we add alignment pad to start of buffer.
1211 	 *  HTT Metadata should be ensured to be multiple of 8-bytes,
1212 	 *  to get 8-byte aligned start address along with align_pad added
1213 	 *
1214 	 *  |-----------------------------|
1215 	 *  |                             |
1216 	 *  |-----------------------------| <-----Buffer Pointer Address given
1217 	 *  |                             |  ^    in HW descriptor (aligned)
1218 	 *  |       HTT Metadata          |  |
1219 	 *  |                             |  |
1220 	 *  |                             |  | Packet Offset given in descriptor
1221 	 *  |                             |  |
1222 	 *  |-----------------------------|  |
1223 	 *  |       Alignment Pad         |  v
1224 	 *  |-----------------------------| <----- Actual buffer start address
1225 	 *  |        SKB Data             |           (Unaligned)
1226 	 *  |                             |
1227 	 *  |                             |
1228 	 *  |                             |
1229 	 *  |                             |
1230 	 *  |                             |
1231 	 *  |-----------------------------|
1232 	 */
1233 	if (qdf_unlikely((msdu_info->exception_fw)) ||
1234 				(vdev->opmode == wlan_op_mode_ocb) ||
1235 				(tx_exc_metadata &&
1236 				tx_exc_metadata->is_tx_sniffer)) {
1237 		align_pad = ((unsigned long) qdf_nbuf_data(nbuf)) & 0x7;
1238 
1239 		if (qdf_unlikely(qdf_nbuf_headroom(nbuf) < align_pad)) {
1240 			DP_STATS_INC(vdev,
1241 				     tx_i.dropped.headroom_insufficient, 1);
1242 			goto failure;
1243 		}
1244 
1245 		if (qdf_nbuf_push_head(nbuf, align_pad) == NULL) {
1246 			dp_tx_err("qdf_nbuf_push_head failed");
1247 			goto failure;
1248 		}
1249 
1250 		htt_hdr_size = dp_tx_prepare_htt_metadata(vdev, nbuf,
1251 				msdu_info);
1252 		if (htt_hdr_size == 0)
1253 			goto failure;
1254 
1255 		tx_desc->length = qdf_nbuf_headlen(nbuf);
1256 		tx_desc->pkt_offset = align_pad + htt_hdr_size;
1257 		tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
1258 		dp_tx_traffic_end_indication_set_desc_flag(tx_desc,
1259 							   msdu_info);
1260 		is_exception = 1;
1261 		tx_desc->length -= tx_desc->pkt_offset;
1262 	}
1263 
1264 #if !TQM_BYPASS_WAR
1265 	if (is_exception || tx_exc_metadata)
1266 #endif
1267 	{
1268 		/* Temporary WAR due to TQM VP issues */
1269 		tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
1270 		qdf_atomic_inc(&soc->num_tx_exception);
1271 	}
1272 
1273 	return tx_desc;
1274 
1275 failure:
1276 	dp_tx_desc_release(tx_desc, desc_pool_id);
1277 	return NULL;
1278 }
1279 
1280 /**
1281  * dp_tx_prepare_desc() - Allocate and prepare Tx descriptor for multisegment frame
1282  * @vdev: DP vdev handle
1283  * @nbuf: skb
1284  * @msdu_info: Info to be setup in MSDU descriptor and MSDU extension descriptor
1285  * @desc_pool_id : Descriptor Pool ID
1286  *
1287  * Allocate and prepare Tx descriptor with msdu and fragment descritor
1288  * information. For frames with fragments, allocate and prepare
1289  * an MSDU extension descriptor
1290  *
1291  * Return: Pointer to Tx Descriptor on success,
1292  *         NULL on failure
1293  */
1294 static struct dp_tx_desc_s *dp_tx_prepare_desc(struct dp_vdev *vdev,
1295 		qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info,
1296 		uint8_t desc_pool_id)
1297 {
1298 	struct dp_tx_desc_s *tx_desc;
1299 	struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
1300 	struct dp_pdev *pdev = vdev->pdev;
1301 	struct dp_soc *soc = pdev->soc;
1302 
1303 	if (dp_tx_limit_check(vdev, nbuf))
1304 		return NULL;
1305 
1306 	/* Allocate software Tx descriptor */
1307 	tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
1308 	if (!tx_desc) {
1309 		DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
1310 		return NULL;
1311 	}
1312 	dp_tx_tso_seg_history_add(soc, msdu_info->u.tso_info.curr_seg,
1313 				  nbuf, tx_desc->id, DP_TX_DESC_COOKIE);
1314 
1315 	dp_tx_outstanding_inc(pdev);
1316 
1317 	/* Initialize the SW tx descriptor */
1318 	tx_desc->nbuf = nbuf;
1319 	tx_desc->frm_type = msdu_info->frm_type;
1320 	tx_desc->tx_encap_type = vdev->tx_encap_type;
1321 	tx_desc->vdev_id = vdev->vdev_id;
1322 	tx_desc->pdev = pdev;
1323 	tx_desc->pkt_offset = 0;
1324 
1325 	dp_tx_trace_pkt(soc, nbuf, tx_desc->id, vdev->vdev_id);
1326 
1327 	/* Handle scattered frames - TSO/SG/ME */
1328 	/* Allocate and prepare an extension descriptor for scattered frames */
1329 	msdu_ext_desc = dp_tx_prepare_ext_desc(vdev, msdu_info, desc_pool_id);
1330 	if (!msdu_ext_desc) {
1331 		dp_tx_info("Tx Extension Descriptor Alloc Fail");
1332 		goto failure;
1333 	}
1334 
1335 #if TQM_BYPASS_WAR
1336 	/* Temporary WAR due to TQM VP issues */
1337 	tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
1338 	qdf_atomic_inc(&soc->num_tx_exception);
1339 #endif
1340 	if (qdf_unlikely(msdu_info->exception_fw))
1341 		tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
1342 
1343 	tx_desc->msdu_ext_desc = msdu_ext_desc;
1344 	tx_desc->flags |= DP_TX_DESC_FLAG_FRAG;
1345 
1346 	msdu_ext_desc->tso_desc = msdu_info->u.tso_info.curr_seg;
1347 	msdu_ext_desc->tso_num_desc = msdu_info->u.tso_info.tso_num_seg_list;
1348 
1349 	tx_desc->dma_addr = msdu_ext_desc->paddr;
1350 
1351 	if (msdu_ext_desc->flags & DP_TX_EXT_DESC_FLAG_METADATA_VALID)
1352 		tx_desc->length = HAL_TX_EXT_DESC_WITH_META_DATA;
1353 	else
1354 		tx_desc->length = HAL_TX_EXTENSION_DESC_LEN_BYTES;
1355 
1356 	return tx_desc;
1357 failure:
1358 	dp_tx_desc_release(tx_desc, desc_pool_id);
1359 	return NULL;
1360 }
1361 
1362 /**
1363  * dp_tx_prepare_raw() - Prepare RAW packet TX
1364  * @vdev: DP vdev handle
1365  * @nbuf: buffer pointer
1366  * @seg_info: Pointer to Segment info Descriptor to be prepared
1367  * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension
1368  *     descriptor
1369  *
1370  * Return:
1371  */
1372 static qdf_nbuf_t dp_tx_prepare_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1373 	struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
1374 {
1375 	qdf_nbuf_t curr_nbuf = NULL;
1376 	uint16_t total_len = 0;
1377 	qdf_dma_addr_t paddr;
1378 	int32_t i;
1379 	int32_t mapped_buf_num = 0;
1380 
1381 	struct dp_tx_sg_info_s *sg_info = &msdu_info->u.sg_info;
1382 	qdf_dot3_qosframe_t *qos_wh = (qdf_dot3_qosframe_t *) nbuf->data;
1383 
1384 	DP_STATS_INC_PKT(vdev, tx_i.raw.raw_pkt, 1, qdf_nbuf_len(nbuf));
1385 
1386 	/* Continue only if frames are of DATA type */
1387 	if (!DP_FRAME_IS_DATA(qos_wh)) {
1388 		DP_STATS_INC(vdev, tx_i.raw.invalid_raw_pkt_datatype, 1);
1389 		dp_tx_debug("Pkt. recd is of not data type");
1390 		goto error;
1391 	}
1392 	/* SWAR for HW: Enable WEP bit in the AMSDU frames for RAW mode */
1393 	if (vdev->raw_mode_war &&
1394 	    (qos_wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) &&
1395 	    (qos_wh->i_qos[0] & IEEE80211_QOS_AMSDU))
1396 		qos_wh->i_fc[1] |= IEEE80211_FC1_WEP;
1397 
1398 	for (curr_nbuf = nbuf, i = 0; curr_nbuf;
1399 			curr_nbuf = qdf_nbuf_next(curr_nbuf), i++) {
1400 		/*
1401 		 * Number of nbuf's must not exceed the size of the frags
1402 		 * array in seg_info.
1403 		 */
1404 		if (i >= DP_TX_MAX_NUM_FRAGS) {
1405 			dp_err_rl("nbuf cnt exceeds the max number of segs");
1406 			DP_STATS_INC(vdev, tx_i.raw.num_frags_overflow_err, 1);
1407 			goto error;
1408 		}
1409 		if (QDF_STATUS_SUCCESS !=
1410 			qdf_nbuf_map_nbytes_single(vdev->osdev,
1411 						   curr_nbuf,
1412 						   QDF_DMA_TO_DEVICE,
1413 						   curr_nbuf->len)) {
1414 			dp_tx_err("%s dma map error ", __func__);
1415 			DP_STATS_INC(vdev, tx_i.raw.dma_map_error, 1);
1416 			goto error;
1417 		}
1418 		/* Update the count of mapped nbuf's */
1419 		mapped_buf_num++;
1420 		paddr = qdf_nbuf_get_frag_paddr(curr_nbuf, 0);
1421 		seg_info->frags[i].paddr_lo = paddr;
1422 		seg_info->frags[i].paddr_hi = ((uint64_t)paddr >> 32);
1423 		seg_info->frags[i].len = qdf_nbuf_len(curr_nbuf);
1424 		seg_info->frags[i].vaddr = (void *) curr_nbuf;
1425 		total_len += qdf_nbuf_len(curr_nbuf);
1426 	}
1427 
1428 	seg_info->frag_cnt = i;
1429 	seg_info->total_len = total_len;
1430 	seg_info->next = NULL;
1431 
1432 	sg_info->curr_seg = seg_info;
1433 
1434 	msdu_info->frm_type = dp_tx_frm_raw;
1435 	msdu_info->num_seg = 1;
1436 
1437 	return nbuf;
1438 
1439 error:
1440 	i = 0;
1441 	while (nbuf) {
1442 		curr_nbuf = nbuf;
1443 		if (i < mapped_buf_num) {
1444 			qdf_nbuf_unmap_nbytes_single(vdev->osdev, curr_nbuf,
1445 						     QDF_DMA_TO_DEVICE,
1446 						     curr_nbuf->len);
1447 			i++;
1448 		}
1449 		nbuf = qdf_nbuf_next(nbuf);
1450 		qdf_nbuf_free(curr_nbuf);
1451 	}
1452 	return NULL;
1453 
1454 }
1455 
1456 /**
1457  * dp_tx_raw_prepare_unset() - unmap the chain of nbufs belonging to RAW frame.
1458  * @soc: DP soc handle
1459  * @nbuf: Buffer pointer
1460  *
1461  * unmap the chain of nbufs that belong to this RAW frame.
1462  *
1463  * Return: None
1464  */
1465 static void dp_tx_raw_prepare_unset(struct dp_soc *soc,
1466 				    qdf_nbuf_t nbuf)
1467 {
1468 	qdf_nbuf_t cur_nbuf = nbuf;
1469 
1470 	do {
1471 		qdf_nbuf_unmap_nbytes_single(soc->osdev, cur_nbuf,
1472 					     QDF_DMA_TO_DEVICE,
1473 					     cur_nbuf->len);
1474 		cur_nbuf = qdf_nbuf_next(cur_nbuf);
1475 	} while (cur_nbuf);
1476 }
1477 
1478 #ifdef VDEV_PEER_PROTOCOL_COUNT
1479 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
1480 					       qdf_nbuf_t nbuf)
1481 {
1482 	qdf_nbuf_t nbuf_local;
1483 	struct dp_vdev *vdev_local = vdev_hdl;
1484 
1485 	do {
1486 		if (qdf_likely(!((vdev_local)->peer_protocol_count_track)))
1487 			break;
1488 		nbuf_local = nbuf;
1489 		if (qdf_unlikely(((vdev_local)->tx_encap_type) ==
1490 			 htt_cmn_pkt_type_raw))
1491 			break;
1492 		else if (qdf_unlikely(qdf_nbuf_is_nonlinear((nbuf_local))))
1493 			break;
1494 		else if (qdf_nbuf_is_tso((nbuf_local)))
1495 			break;
1496 		dp_vdev_peer_stats_update_protocol_cnt((vdev_local),
1497 						       (nbuf_local),
1498 						       NULL, 1, 0);
1499 	} while (0);
1500 }
1501 #endif
1502 
1503 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
1504 /**
1505  * dp_tx_update_stats() - Update soc level tx stats
1506  * @soc: DP soc handle
1507  * @tx_desc: TX descriptor reference
1508  * @ring_id: TCL ring id
1509  *
1510  * Returns: none
1511  */
1512 void dp_tx_update_stats(struct dp_soc *soc,
1513 			struct dp_tx_desc_s *tx_desc,
1514 			uint8_t ring_id)
1515 {
1516 	uint32_t stats_len = dp_tx_get_pkt_len(tx_desc);
1517 
1518 	DP_STATS_INC_PKT(soc, tx.egress[ring_id], 1, stats_len);
1519 }
1520 
1521 int
1522 dp_tx_attempt_coalescing(struct dp_soc *soc, struct dp_vdev *vdev,
1523 			 struct dp_tx_desc_s *tx_desc,
1524 			 uint8_t tid,
1525 			 struct dp_tx_msdu_info_s *msdu_info,
1526 			 uint8_t ring_id)
1527 {
1528 	struct dp_swlm *swlm = &soc->swlm;
1529 	union swlm_data swlm_query_data;
1530 	struct dp_swlm_tcl_data tcl_data;
1531 	QDF_STATUS status;
1532 	int ret;
1533 
1534 	if (!swlm->is_enabled)
1535 		return msdu_info->skip_hp_update;
1536 
1537 	tcl_data.nbuf = tx_desc->nbuf;
1538 	tcl_data.tid = tid;
1539 	tcl_data.ring_id = ring_id;
1540 	tcl_data.pkt_len = dp_tx_get_pkt_len(tx_desc);
1541 	tcl_data.num_ll_connections = vdev->num_latency_critical_conn;
1542 	swlm_query_data.tcl_data = &tcl_data;
1543 
1544 	status = dp_swlm_tcl_pre_check(soc, &tcl_data);
1545 	if (QDF_IS_STATUS_ERROR(status)) {
1546 		dp_swlm_tcl_reset_session_data(soc, ring_id);
1547 		DP_STATS_INC(swlm, tcl[ring_id].coalesce_fail, 1);
1548 		return 0;
1549 	}
1550 
1551 	ret = dp_swlm_query_policy(soc, TCL_DATA, swlm_query_data);
1552 	if (ret) {
1553 		DP_STATS_INC(swlm, tcl[ring_id].coalesce_success, 1);
1554 	} else {
1555 		DP_STATS_INC(swlm, tcl[ring_id].coalesce_fail, 1);
1556 	}
1557 
1558 	return ret;
1559 }
1560 
1561 void
1562 dp_tx_ring_access_end(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl,
1563 		      int coalesce)
1564 {
1565 	if (coalesce)
1566 		dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
1567 	else
1568 		dp_tx_hal_ring_access_end(soc, hal_ring_hdl);
1569 }
1570 
1571 static inline void
1572 dp_tx_is_hp_update_required(uint32_t i, struct dp_tx_msdu_info_s *msdu_info)
1573 {
1574 	if (((i + 1) < msdu_info->num_seg))
1575 		msdu_info->skip_hp_update = 1;
1576 	else
1577 		msdu_info->skip_hp_update = 0;
1578 }
1579 
1580 static inline void
1581 dp_flush_tcp_hp(struct dp_soc *soc, uint8_t ring_id)
1582 {
1583 	hal_ring_handle_t hal_ring_hdl =
1584 		dp_tx_get_hal_ring_hdl(soc, ring_id);
1585 
1586 	if (dp_tx_hal_ring_access_start(soc, hal_ring_hdl)) {
1587 		dp_err("Fillmore: SRNG access start failed");
1588 		return;
1589 	}
1590 
1591 	dp_tx_ring_access_end_wrapper(soc, hal_ring_hdl, 0);
1592 }
1593 
1594 static inline void
1595 dp_tx_check_and_flush_hp(struct dp_soc *soc,
1596 			 QDF_STATUS status,
1597 			 struct dp_tx_msdu_info_s *msdu_info)
1598 {
1599 	if (QDF_IS_STATUS_ERROR(status) && !msdu_info->skip_hp_update) {
1600 		dp_flush_tcp_hp(soc,
1601 			(msdu_info->tx_queue.ring_id & DP_TX_QUEUE_MASK));
1602 	}
1603 }
1604 #else
1605 static inline void
1606 dp_tx_is_hp_update_required(uint32_t i, struct dp_tx_msdu_info_s *msdu_info)
1607 {
1608 }
1609 
1610 static inline void
1611 dp_tx_check_and_flush_hp(struct dp_soc *soc,
1612 			 QDF_STATUS status,
1613 			 struct dp_tx_msdu_info_s *msdu_info)
1614 {
1615 }
1616 #endif
1617 
1618 #ifdef FEATURE_RUNTIME_PM
1619 static inline int dp_get_rtpm_tput_policy_requirement(struct dp_soc *soc)
1620 {
1621 	int ret;
1622 
1623 	ret = qdf_atomic_read(&soc->rtpm_high_tput_flag) &&
1624 	      (hif_rtpm_get_state() <= HIF_RTPM_STATE_ON);
1625 	return ret;
1626 }
1627 /**
1628  * dp_tx_ring_access_end_wrapper() - Wrapper for ring access end
1629  * @soc: Datapath soc handle
1630  * @hal_ring_hdl: HAL ring handle
1631  * @coalesce: Coalesce the current write or not
1632  *
1633  * Wrapper for HAL ring access end for data transmission for
1634  * FEATURE_RUNTIME_PM
1635  *
1636  * Returns: none
1637  */
1638 void
1639 dp_tx_ring_access_end_wrapper(struct dp_soc *soc,
1640 			      hal_ring_handle_t hal_ring_hdl,
1641 			      int coalesce)
1642 {
1643 	int ret;
1644 
1645 	/*
1646 	 * Avoid runtime get and put APIs under high throughput scenarios.
1647 	 */
1648 	if (dp_get_rtpm_tput_policy_requirement(soc)) {
1649 		dp_tx_ring_access_end(soc, hal_ring_hdl, coalesce);
1650 		return;
1651 	}
1652 
1653 	ret = hif_rtpm_get(HIF_RTPM_GET_ASYNC, HIF_RTPM_ID_DP);
1654 	if (QDF_IS_STATUS_SUCCESS(ret)) {
1655 		if (hif_system_pm_state_check(soc->hif_handle)) {
1656 			dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
1657 			hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
1658 			hal_srng_inc_flush_cnt(hal_ring_hdl);
1659 		} else {
1660 			dp_tx_ring_access_end(soc, hal_ring_hdl, coalesce);
1661 		}
1662 		hif_rtpm_put(HIF_RTPM_PUT_ASYNC, HIF_RTPM_ID_DP);
1663 	} else {
1664 		dp_runtime_get(soc);
1665 		dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
1666 		hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
1667 		qdf_atomic_inc(&soc->tx_pending_rtpm);
1668 		hal_srng_inc_flush_cnt(hal_ring_hdl);
1669 		dp_runtime_put(soc);
1670 	}
1671 }
1672 #else
1673 
1674 #ifdef DP_POWER_SAVE
1675 void
1676 dp_tx_ring_access_end_wrapper(struct dp_soc *soc,
1677 			      hal_ring_handle_t hal_ring_hdl,
1678 			      int coalesce)
1679 {
1680 	if (hif_system_pm_state_check(soc->hif_handle)) {
1681 		dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
1682 		hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
1683 		hal_srng_inc_flush_cnt(hal_ring_hdl);
1684 	} else {
1685 		dp_tx_ring_access_end(soc, hal_ring_hdl, coalesce);
1686 	}
1687 }
1688 #endif
1689 
1690 static inline int dp_get_rtpm_tput_policy_requirement(struct dp_soc *soc)
1691 {
1692 	return 0;
1693 }
1694 #endif
1695 
1696 /**
1697  * dp_tx_get_tid() - Obtain TID to be used for this frame
1698  * @vdev: DP vdev handle
1699  * @nbuf: skb
1700  *
1701  * Extract the DSCP or PCP information from frame and map into TID value.
1702  *
1703  * Return: void
1704  */
1705 static void dp_tx_get_tid(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1706 			  struct dp_tx_msdu_info_s *msdu_info)
1707 {
1708 	uint8_t tos = 0, dscp_tid_override = 0;
1709 	uint8_t *hdr_ptr, *L3datap;
1710 	uint8_t is_mcast = 0;
1711 	qdf_ether_header_t *eh = NULL;
1712 	qdf_ethervlan_header_t *evh = NULL;
1713 	uint16_t   ether_type;
1714 	qdf_llc_t *llcHdr;
1715 	struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
1716 
1717 	DP_TX_TID_OVERRIDE(msdu_info, nbuf);
1718 	if (qdf_likely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
1719 		eh = (qdf_ether_header_t *)nbuf->data;
1720 		hdr_ptr = (uint8_t *)(eh->ether_dhost);
1721 		L3datap = hdr_ptr + sizeof(qdf_ether_header_t);
1722 	} else {
1723 		qdf_dot3_qosframe_t *qos_wh =
1724 			(qdf_dot3_qosframe_t *) nbuf->data;
1725 		msdu_info->tid = qos_wh->i_fc[0] & DP_FC0_SUBTYPE_QOS ?
1726 			qos_wh->i_qos[0] & DP_QOS_TID : 0;
1727 		return;
1728 	}
1729 
1730 	is_mcast = DP_FRAME_IS_MULTICAST(hdr_ptr);
1731 	ether_type = eh->ether_type;
1732 
1733 	llcHdr = (qdf_llc_t *)(nbuf->data + sizeof(qdf_ether_header_t));
1734 	/*
1735 	 * Check if packet is dot3 or eth2 type.
1736 	 */
1737 	if (DP_FRAME_IS_LLC(ether_type) && DP_FRAME_IS_SNAP(llcHdr)) {
1738 		ether_type = (uint16_t)*(nbuf->data + 2*QDF_MAC_ADDR_SIZE +
1739 				sizeof(*llcHdr));
1740 
1741 		if (ether_type == htons(ETHERTYPE_VLAN)) {
1742 			L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t) +
1743 				sizeof(*llcHdr);
1744 			ether_type = (uint16_t)*(nbuf->data + 2*QDF_MAC_ADDR_SIZE
1745 					+ sizeof(*llcHdr) +
1746 					sizeof(qdf_net_vlanhdr_t));
1747 		} else {
1748 			L3datap = hdr_ptr + sizeof(qdf_ether_header_t) +
1749 				sizeof(*llcHdr);
1750 		}
1751 	} else {
1752 		if (ether_type == htons(ETHERTYPE_VLAN)) {
1753 			evh = (qdf_ethervlan_header_t *) eh;
1754 			ether_type = evh->ether_type;
1755 			L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t);
1756 		}
1757 	}
1758 
1759 	/*
1760 	 * Find priority from IP TOS DSCP field
1761 	 */
1762 	if (qdf_nbuf_is_ipv4_pkt(nbuf)) {
1763 		qdf_net_iphdr_t *ip = (qdf_net_iphdr_t *) L3datap;
1764 		if (qdf_nbuf_is_ipv4_dhcp_pkt(nbuf)) {
1765 			/* Only for unicast frames */
1766 			if (!is_mcast) {
1767 				/* send it on VO queue */
1768 				msdu_info->tid = DP_VO_TID;
1769 			}
1770 		} else {
1771 			/*
1772 			 * IP frame: exclude ECN bits 0-1 and map DSCP bits 2-7
1773 			 * from TOS byte.
1774 			 */
1775 			tos = ip->ip_tos;
1776 			dscp_tid_override = 1;
1777 
1778 		}
1779 	} else if (qdf_nbuf_is_ipv6_pkt(nbuf)) {
1780 		/* TODO
1781 		 * use flowlabel
1782 		 *igmpmld cases to be handled in phase 2
1783 		 */
1784 		unsigned long ver_pri_flowlabel;
1785 		unsigned long pri;
1786 		ver_pri_flowlabel = *(unsigned long *) L3datap;
1787 		pri = (ntohl(ver_pri_flowlabel) & IPV6_FLOWINFO_PRIORITY) >>
1788 			DP_IPV6_PRIORITY_SHIFT;
1789 		tos = pri;
1790 		dscp_tid_override = 1;
1791 	} else if (qdf_nbuf_is_ipv4_eapol_pkt(nbuf))
1792 		msdu_info->tid = DP_VO_TID;
1793 	else if (qdf_nbuf_is_ipv4_arp_pkt(nbuf)) {
1794 		/* Only for unicast frames */
1795 		if (!is_mcast) {
1796 			/* send ucast arp on VO queue */
1797 			msdu_info->tid = DP_VO_TID;
1798 		}
1799 	}
1800 
1801 	/*
1802 	 * Assign all MCAST packets to BE
1803 	 */
1804 	if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
1805 		if (is_mcast) {
1806 			tos = 0;
1807 			dscp_tid_override = 1;
1808 		}
1809 	}
1810 
1811 	if (dscp_tid_override == 1) {
1812 		tos = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
1813 		msdu_info->tid = pdev->dscp_tid_map[vdev->dscp_tid_map_id][tos];
1814 	}
1815 
1816 	if (msdu_info->tid >= CDP_MAX_DATA_TIDS)
1817 		msdu_info->tid = CDP_MAX_DATA_TIDS - 1;
1818 
1819 	return;
1820 }
1821 
1822 /**
1823  * dp_tx_classify_tid() - Obtain TID to be used for this frame
1824  * @vdev: DP vdev handle
1825  * @nbuf: skb
1826  *
1827  * Software based TID classification is required when more than 2 DSCP-TID
1828  * mapping tables are needed.
1829  * Hardware supports 2 DSCP-TID mapping tables for HKv1 and 48 for HKv2.
1830  *
1831  * Return: void
1832  */
1833 static inline void dp_tx_classify_tid(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1834 				      struct dp_tx_msdu_info_s *msdu_info)
1835 {
1836 	DP_TX_TID_OVERRIDE(msdu_info, nbuf);
1837 
1838 	/*
1839 	 * skip_sw_tid_classification flag will set in below cases-
1840 	 * 1. vdev->dscp_tid_map_id < pdev->soc->num_hw_dscp_tid_map
1841 	 * 2. hlos_tid_override enabled for vdev
1842 	 * 3. mesh mode enabled for vdev
1843 	 */
1844 	if (qdf_likely(vdev->skip_sw_tid_classification)) {
1845 		/* Update tid in msdu_info from skb priority */
1846 		if (qdf_unlikely(vdev->skip_sw_tid_classification
1847 			& DP_TXRX_HLOS_TID_OVERRIDE_ENABLED)) {
1848 			uint32_t tid = qdf_nbuf_get_priority(nbuf);
1849 
1850 			if (tid == DP_TX_INVALID_QOS_TAG)
1851 				return;
1852 
1853 			msdu_info->tid = tid;
1854 			return;
1855 		}
1856 		return;
1857 	}
1858 
1859 	dp_tx_get_tid(vdev, nbuf, msdu_info);
1860 }
1861 
1862 #ifdef FEATURE_WLAN_TDLS
1863 /**
1864  * dp_tx_update_tdls_flags() - Update descriptor flags for TDLS frame
1865  * @soc: datapath SOC
1866  * @vdev: datapath vdev
1867  * @tx_desc: TX descriptor
1868  *
1869  * Return: None
1870  */
1871 static void dp_tx_update_tdls_flags(struct dp_soc *soc,
1872 				    struct dp_vdev *vdev,
1873 				    struct dp_tx_desc_s *tx_desc)
1874 {
1875 	if (vdev) {
1876 		if (vdev->is_tdls_frame) {
1877 			tx_desc->flags |= DP_TX_DESC_FLAG_TDLS_FRAME;
1878 			vdev->is_tdls_frame = false;
1879 		}
1880 	}
1881 }
1882 
1883 static uint8_t dp_htt_tx_comp_get_status(struct dp_soc *soc, char *htt_desc)
1884 {
1885 	uint8_t tx_status = HTT_TX_FW2WBM_TX_STATUS_MAX;
1886 
1887 	switch (soc->arch_id) {
1888 	case CDP_ARCH_TYPE_LI:
1889 		tx_status = HTT_TX_WBM_COMPLETION_V2_TX_STATUS_GET(htt_desc[0]);
1890 		break;
1891 
1892 	case CDP_ARCH_TYPE_BE:
1893 		tx_status = HTT_TX_WBM_COMPLETION_V3_TX_STATUS_GET(htt_desc[0]);
1894 		break;
1895 
1896 	default:
1897 		dp_err("Incorrect CDP_ARCH %d", soc->arch_id);
1898 		QDF_BUG(0);
1899 	}
1900 
1901 	return tx_status;
1902 }
1903 
1904 /**
1905  * dp_non_std_htt_tx_comp_free_buff() - Free the non std tx packet buffer
1906  * @soc: dp_soc handle
1907  * @tx_desc: TX descriptor
1908  * @vdev: datapath vdev handle
1909  *
1910  * Return: None
1911  */
1912 static void dp_non_std_htt_tx_comp_free_buff(struct dp_soc *soc,
1913 					 struct dp_tx_desc_s *tx_desc)
1914 {
1915 	uint8_t tx_status = 0;
1916 	uint8_t htt_tx_status[HAL_TX_COMP_HTT_STATUS_LEN];
1917 
1918 	qdf_nbuf_t nbuf = tx_desc->nbuf;
1919 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, tx_desc->vdev_id,
1920 						     DP_MOD_ID_TDLS);
1921 
1922 	if (qdf_unlikely(!vdev)) {
1923 		dp_err_rl("vdev is null!");
1924 		goto error;
1925 	}
1926 
1927 	hal_tx_comp_get_htt_desc(&tx_desc->comp, htt_tx_status);
1928 	tx_status = dp_htt_tx_comp_get_status(soc, htt_tx_status);
1929 	dp_debug("vdev_id: %d tx_status: %d", tx_desc->vdev_id, tx_status);
1930 
1931 	if (vdev->tx_non_std_data_callback.func) {
1932 		qdf_nbuf_set_next(nbuf, NULL);
1933 		vdev->tx_non_std_data_callback.func(
1934 				vdev->tx_non_std_data_callback.ctxt,
1935 				nbuf, tx_status);
1936 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TDLS);
1937 		return;
1938 	} else {
1939 		dp_err_rl("callback func is null");
1940 	}
1941 
1942 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TDLS);
1943 error:
1944 	qdf_nbuf_unmap_single(soc->osdev, nbuf, QDF_DMA_TO_DEVICE);
1945 	qdf_nbuf_free(nbuf);
1946 }
1947 
1948 /**
1949  * dp_tx_msdu_single_map() - do nbuf map
1950  * @vdev: DP vdev handle
1951  * @tx_desc: DP TX descriptor pointer
1952  * @nbuf: skb pointer
1953  *
1954  * For TDLS frame, use qdf_nbuf_map_single() to align with the unmap
1955  * operation done in other component.
1956  *
1957  * Return: QDF_STATUS
1958  */
1959 static inline QDF_STATUS dp_tx_msdu_single_map(struct dp_vdev *vdev,
1960 					       struct dp_tx_desc_s *tx_desc,
1961 					       qdf_nbuf_t nbuf)
1962 {
1963 	if (qdf_likely(!(tx_desc->flags & DP_TX_DESC_FLAG_TDLS_FRAME)))
1964 		return qdf_nbuf_map_nbytes_single(vdev->osdev,
1965 						  nbuf,
1966 						  QDF_DMA_TO_DEVICE,
1967 						  nbuf->len);
1968 	else
1969 		return qdf_nbuf_map_single(vdev->osdev, nbuf,
1970 					   QDF_DMA_TO_DEVICE);
1971 }
1972 #else
1973 static inline void dp_tx_update_tdls_flags(struct dp_soc *soc,
1974 					   struct dp_vdev *vdev,
1975 					   struct dp_tx_desc_s *tx_desc)
1976 {
1977 }
1978 
1979 static inline void dp_non_std_htt_tx_comp_free_buff(struct dp_soc *soc,
1980 						struct dp_tx_desc_s *tx_desc)
1981 {
1982 }
1983 
1984 static inline QDF_STATUS dp_tx_msdu_single_map(struct dp_vdev *vdev,
1985 					       struct dp_tx_desc_s *tx_desc,
1986 					       qdf_nbuf_t nbuf)
1987 {
1988 	return qdf_nbuf_map_nbytes_single(vdev->osdev,
1989 					  nbuf,
1990 					  QDF_DMA_TO_DEVICE,
1991 					  nbuf->len);
1992 }
1993 #endif
1994 
1995 static inline
1996 qdf_dma_addr_t dp_tx_nbuf_map_regular(struct dp_vdev *vdev,
1997 				      struct dp_tx_desc_s *tx_desc,
1998 				      qdf_nbuf_t nbuf)
1999 {
2000 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
2001 
2002 	ret = dp_tx_msdu_single_map(vdev, tx_desc, nbuf);
2003 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret)))
2004 		return 0;
2005 
2006 	return qdf_nbuf_mapped_paddr_get(nbuf);
2007 }
2008 
2009 static inline
2010 void dp_tx_nbuf_unmap_regular(struct dp_soc *soc, struct dp_tx_desc_s *desc)
2011 {
2012 	qdf_nbuf_unmap_nbytes_single_paddr(soc->osdev,
2013 					   desc->nbuf,
2014 					   desc->dma_addr,
2015 					   QDF_DMA_TO_DEVICE,
2016 					   desc->length);
2017 }
2018 
2019 #ifdef QCA_DP_TX_RMNET_OPTIMIZATION
2020 static inline bool
2021 is_nbuf_frm_rmnet(qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info)
2022 {
2023 	struct net_device *ingress_dev;
2024 	skb_frag_t *frag;
2025 	uint16_t buf_len = 0;
2026 	uint16_t linear_data_len = 0;
2027 	uint8_t *payload_addr = NULL;
2028 
2029 	ingress_dev = dev_get_by_index(dev_net(nbuf->dev), nbuf->skb_iif);
2030 
2031 	if ((ingress_dev->priv_flags & IFF_PHONY_HEADROOM)) {
2032 		dev_put(ingress_dev);
2033 		frag = &(skb_shinfo(nbuf)->frags[0]);
2034 		buf_len = skb_frag_size(frag);
2035 		payload_addr = (uint8_t *)skb_frag_address(frag);
2036 		linear_data_len = skb_headlen(nbuf);
2037 
2038 		buf_len += linear_data_len;
2039 		payload_addr = payload_addr - linear_data_len;
2040 		memcpy(payload_addr, nbuf->data, linear_data_len);
2041 
2042 		msdu_info->frm_type = dp_tx_frm_rmnet;
2043 		msdu_info->buf_len = buf_len;
2044 		msdu_info->payload_addr = payload_addr;
2045 
2046 		return true;
2047 	}
2048 	dev_put(ingress_dev);
2049 	return false;
2050 }
2051 
2052 static inline
2053 qdf_dma_addr_t dp_tx_rmnet_nbuf_map(struct dp_tx_msdu_info_s *msdu_info,
2054 				    struct dp_tx_desc_s *tx_desc)
2055 {
2056 	qdf_dma_addr_t paddr;
2057 
2058 	paddr = (qdf_dma_addr_t)qdf_mem_virt_to_phys(msdu_info->payload_addr);
2059 	tx_desc->length  = msdu_info->buf_len;
2060 
2061 	qdf_nbuf_dma_clean_range((void *)msdu_info->payload_addr,
2062 				 (void *)(msdu_info->payload_addr +
2063 					  msdu_info->buf_len));
2064 
2065 	tx_desc->flags |= DP_TX_DESC_FLAG_RMNET;
2066 	return paddr;
2067 }
2068 #else
2069 static inline bool
2070 is_nbuf_frm_rmnet(qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info)
2071 {
2072 	return false;
2073 }
2074 
2075 static inline
2076 qdf_dma_addr_t dp_tx_rmnet_nbuf_map(struct dp_tx_msdu_info_s *msdu_info,
2077 				    struct dp_tx_desc_s *tx_desc)
2078 {
2079 	return 0;
2080 }
2081 #endif
2082 
2083 #if defined(QCA_DP_TX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
2084 static inline
2085 qdf_dma_addr_t dp_tx_nbuf_map(struct dp_vdev *vdev,
2086 			      struct dp_tx_desc_s *tx_desc,
2087 			      qdf_nbuf_t nbuf)
2088 {
2089 	if (qdf_likely(tx_desc->flags & DP_TX_DESC_FLAG_SIMPLE)) {
2090 		qdf_nbuf_dma_clean_range((void *)nbuf->data,
2091 					 (void *)(nbuf->data + nbuf->len));
2092 		return (qdf_dma_addr_t)qdf_mem_virt_to_phys(nbuf->data);
2093 	} else {
2094 		return dp_tx_nbuf_map_regular(vdev, tx_desc, nbuf);
2095 	}
2096 }
2097 
2098 static inline
2099 void dp_tx_nbuf_unmap(struct dp_soc *soc,
2100 		      struct dp_tx_desc_s *desc)
2101 {
2102 	if (qdf_unlikely(!(desc->flags &
2103 			   (DP_TX_DESC_FLAG_SIMPLE | DP_TX_DESC_FLAG_RMNET))))
2104 		return dp_tx_nbuf_unmap_regular(soc, desc);
2105 }
2106 #else
2107 static inline
2108 qdf_dma_addr_t dp_tx_nbuf_map(struct dp_vdev *vdev,
2109 			      struct dp_tx_desc_s *tx_desc,
2110 			      qdf_nbuf_t nbuf)
2111 {
2112 	return dp_tx_nbuf_map_regular(vdev, tx_desc, nbuf);
2113 }
2114 
2115 static inline
2116 void dp_tx_nbuf_unmap(struct dp_soc *soc,
2117 		      struct dp_tx_desc_s *desc)
2118 {
2119 	return dp_tx_nbuf_unmap_regular(soc, desc);
2120 }
2121 #endif
2122 
2123 #if defined(WLAN_TX_PKT_CAPTURE_ENH) || defined(FEATURE_PERPKT_INFO)
2124 static inline
2125 void dp_tx_enh_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
2126 {
2127 	dp_tx_nbuf_unmap(soc, desc);
2128 	desc->flags |= DP_TX_DESC_FLAG_UNMAP_DONE;
2129 }
2130 
2131 static inline void dp_tx_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
2132 {
2133 	if (qdf_likely(!(desc->flags & DP_TX_DESC_FLAG_UNMAP_DONE)))
2134 		dp_tx_nbuf_unmap(soc, desc);
2135 }
2136 #else
2137 static inline
2138 void dp_tx_enh_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
2139 {
2140 }
2141 
2142 static inline void dp_tx_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
2143 {
2144 	dp_tx_nbuf_unmap(soc, desc);
2145 }
2146 #endif
2147 
2148 #ifdef MESH_MODE_SUPPORT
2149 /**
2150  * dp_tx_update_mesh_flags() - Update descriptor flags for mesh VAP
2151  * @soc: datapath SOC
2152  * @vdev: datapath vdev
2153  * @tx_desc: TX descriptor
2154  *
2155  * Return: None
2156  */
2157 static inline void dp_tx_update_mesh_flags(struct dp_soc *soc,
2158 					   struct dp_vdev *vdev,
2159 					   struct dp_tx_desc_s *tx_desc)
2160 {
2161 	if (qdf_unlikely(vdev->mesh_vdev))
2162 		tx_desc->flags |= DP_TX_DESC_FLAG_MESH_MODE;
2163 }
2164 
2165 /**
2166  * dp_mesh_tx_comp_free_buff() - Free the mesh tx packet buffer
2167  * @soc: dp_soc handle
2168  * @tx_desc: TX descriptor
2169  * @delayed_free: delay the nbuf free
2170  *
2171  * Return: nbuf to be freed late
2172  */
2173 static inline qdf_nbuf_t dp_mesh_tx_comp_free_buff(struct dp_soc *soc,
2174 						   struct dp_tx_desc_s *tx_desc,
2175 						   bool delayed_free)
2176 {
2177 	qdf_nbuf_t nbuf = tx_desc->nbuf;
2178 	struct dp_vdev *vdev = NULL;
2179 
2180 	vdev = dp_vdev_get_ref_by_id(soc, tx_desc->vdev_id, DP_MOD_ID_MESH);
2181 	if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW) {
2182 		if (vdev)
2183 			DP_STATS_INC(vdev, tx_i.mesh.completion_fw, 1);
2184 
2185 		if (delayed_free)
2186 			return nbuf;
2187 
2188 		qdf_nbuf_free(nbuf);
2189 	} else {
2190 		if (vdev && vdev->osif_tx_free_ext) {
2191 			vdev->osif_tx_free_ext((nbuf));
2192 		} else {
2193 			if (delayed_free)
2194 				return nbuf;
2195 
2196 			qdf_nbuf_free(nbuf);
2197 		}
2198 	}
2199 
2200 	if (vdev)
2201 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MESH);
2202 
2203 	return NULL;
2204 }
2205 #else
2206 static inline void dp_tx_update_mesh_flags(struct dp_soc *soc,
2207 					   struct dp_vdev *vdev,
2208 					   struct dp_tx_desc_s *tx_desc)
2209 {
2210 }
2211 
2212 static inline qdf_nbuf_t dp_mesh_tx_comp_free_buff(struct dp_soc *soc,
2213 						   struct dp_tx_desc_s *tx_desc,
2214 						   bool delayed_free)
2215 {
2216 	return NULL;
2217 }
2218 #endif
2219 
2220 /**
2221  * dp_tx_frame_is_drop() - checks if the packet is loopback
2222  * @vdev: DP vdev handle
2223  * @nbuf: skb
2224  *
2225  * Return: 1 if frame needs to be dropped else 0
2226  */
2227 int dp_tx_frame_is_drop(struct dp_vdev *vdev, uint8_t *srcmac, uint8_t *dstmac)
2228 {
2229 	struct dp_pdev *pdev = NULL;
2230 	struct dp_ast_entry *src_ast_entry = NULL;
2231 	struct dp_ast_entry *dst_ast_entry = NULL;
2232 	struct dp_soc *soc = NULL;
2233 
2234 	qdf_assert(vdev);
2235 	pdev = vdev->pdev;
2236 	qdf_assert(pdev);
2237 	soc = pdev->soc;
2238 
2239 	dst_ast_entry = dp_peer_ast_hash_find_by_pdevid
2240 				(soc, dstmac, vdev->pdev->pdev_id);
2241 
2242 	src_ast_entry = dp_peer_ast_hash_find_by_pdevid
2243 				(soc, srcmac, vdev->pdev->pdev_id);
2244 	if (dst_ast_entry && src_ast_entry) {
2245 		if (dst_ast_entry->peer_id ==
2246 				src_ast_entry->peer_id)
2247 			return 1;
2248 	}
2249 
2250 	return 0;
2251 }
2252 
2253 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
2254 	defined(WLAN_MCAST_MLO)
2255 /* MLO peer id for reinject*/
2256 #define DP_MLO_MCAST_REINJECT_PEER_ID 0XFFFD
2257 /* MLO vdev id inc offset */
2258 #define DP_MLO_VDEV_ID_OFFSET 0x80
2259 
2260 static inline void
2261 dp_tx_bypass_reinjection(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
2262 {
2263 	if (!(tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)) {
2264 		tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
2265 		qdf_atomic_inc(&soc->num_tx_exception);
2266 	}
2267 }
2268 
2269 static inline void
2270 dp_tx_update_mcast_param(uint16_t peer_id,
2271 			 uint16_t *htt_tcl_metadata,
2272 			 struct dp_vdev *vdev,
2273 			 struct dp_tx_msdu_info_s *msdu_info)
2274 {
2275 	if (peer_id == DP_MLO_MCAST_REINJECT_PEER_ID) {
2276 		*htt_tcl_metadata = 0;
2277 		DP_TX_TCL_METADATA_TYPE_SET(
2278 				*htt_tcl_metadata,
2279 				HTT_TCL_METADATA_V2_TYPE_GLOBAL_SEQ_BASED);
2280 		HTT_TX_TCL_METADATA_GLBL_SEQ_NO_SET(*htt_tcl_metadata,
2281 						    msdu_info->gsn);
2282 
2283 		msdu_info->vdev_id = vdev->vdev_id + DP_MLO_VDEV_ID_OFFSET;
2284 		if (qdf_unlikely(vdev->nawds_enabled))
2285 			HTT_TX_TCL_METADATA_GLBL_SEQ_HOST_INSPECTED_SET(
2286 							*htt_tcl_metadata, 1);
2287 	} else {
2288 		msdu_info->vdev_id = vdev->vdev_id;
2289 	}
2290 }
2291 #else
2292 static inline void
2293 dp_tx_bypass_reinjection(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
2294 {
2295 }
2296 
2297 static inline void
2298 dp_tx_update_mcast_param(uint16_t peer_id,
2299 			 uint16_t *htt_tcl_metadata,
2300 			 struct dp_vdev *vdev,
2301 			 struct dp_tx_msdu_info_s *msdu_info)
2302 {
2303 }
2304 #endif
2305 
2306 #ifdef DP_TX_SW_DROP_STATS_INC
2307 static void tx_sw_drop_stats_inc(struct dp_pdev *pdev,
2308 				 qdf_nbuf_t nbuf,
2309 				 enum cdp_tx_sw_drop drop_code)
2310 {
2311 	/* EAPOL Drop stats */
2312 	if (qdf_nbuf_is_ipv4_eapol_pkt(nbuf)) {
2313 		switch (drop_code) {
2314 		case TX_DESC_ERR:
2315 			DP_STATS_INC(pdev, eap_drop_stats.tx_desc_err, 1);
2316 			break;
2317 		case TX_HAL_RING_ACCESS_ERR:
2318 			DP_STATS_INC(pdev,
2319 				     eap_drop_stats.tx_hal_ring_access_err, 1);
2320 			break;
2321 		case TX_DMA_MAP_ERR:
2322 			DP_STATS_INC(pdev, eap_drop_stats.tx_dma_map_err, 1);
2323 			break;
2324 		case TX_HW_ENQUEUE:
2325 			DP_STATS_INC(pdev, eap_drop_stats.tx_hw_enqueue, 1);
2326 			break;
2327 		case TX_SW_ENQUEUE:
2328 			DP_STATS_INC(pdev, eap_drop_stats.tx_sw_enqueue, 1);
2329 			break;
2330 		default:
2331 			dp_info_rl("Invalid eapol_drop code: %d", drop_code);
2332 			break;
2333 		}
2334 	}
2335 }
2336 #else
2337 static void tx_sw_drop_stats_inc(struct dp_pdev *pdev,
2338 				 qdf_nbuf_t nbuf,
2339 				 enum cdp_tx_sw_drop drop_code)
2340 {
2341 }
2342 #endif
2343 
2344 /**
2345  * dp_tx_send_msdu_single() - Setup descriptor and enqueue single MSDU to TCL
2346  * @vdev: DP vdev handle
2347  * @nbuf: skb
2348  * @tid: TID from HLOS for overriding default DSCP-TID mapping
2349  * @meta_data: Metadata to the fw
2350  * @tx_q: Tx queue to be used for this Tx frame
2351  * @peer_id: peer_id of the peer in case of NAWDS frames
2352  * @tx_exc_metadata: Handle that holds exception path metadata
2353  *
2354  * Return: NULL on success,
2355  *         nbuf when it fails to send
2356  */
2357 qdf_nbuf_t
2358 dp_tx_send_msdu_single(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
2359 		       struct dp_tx_msdu_info_s *msdu_info, uint16_t peer_id,
2360 		       struct cdp_tx_exception_metadata *tx_exc_metadata)
2361 {
2362 	struct dp_pdev *pdev = vdev->pdev;
2363 	struct dp_soc *soc = pdev->soc;
2364 	struct dp_tx_desc_s *tx_desc;
2365 	QDF_STATUS status;
2366 	struct dp_tx_queue *tx_q = &(msdu_info->tx_queue);
2367 	uint16_t htt_tcl_metadata = 0;
2368 	enum cdp_tx_sw_drop drop_code = TX_MAX_DROP;
2369 	uint8_t tid = msdu_info->tid;
2370 	struct cdp_tid_tx_stats *tid_stats = NULL;
2371 	qdf_dma_addr_t paddr;
2372 
2373 	/* Setup Tx descriptor for an MSDU, and MSDU extension descriptor */
2374 	tx_desc = dp_tx_prepare_desc_single(vdev, nbuf, tx_q->desc_pool_id,
2375 			msdu_info, tx_exc_metadata);
2376 	if (!tx_desc) {
2377 		dp_err_rl("Tx_desc prepare Fail vdev_id %d vdev %pK queue %d",
2378 			  vdev->vdev_id, vdev, tx_q->desc_pool_id);
2379 		drop_code = TX_DESC_ERR;
2380 		goto fail_return;
2381 	}
2382 
2383 	dp_tx_update_tdls_flags(soc, vdev, tx_desc);
2384 
2385 	if (qdf_unlikely(peer_id == DP_INVALID_PEER)) {
2386 		htt_tcl_metadata = vdev->htt_tcl_metadata;
2387 		DP_TX_TCL_METADATA_HOST_INSPECTED_SET(htt_tcl_metadata, 1);
2388 	} else if (qdf_unlikely(peer_id != HTT_INVALID_PEER)) {
2389 		DP_TX_TCL_METADATA_TYPE_SET(htt_tcl_metadata,
2390 					    DP_TCL_METADATA_TYPE_PEER_BASED);
2391 		DP_TX_TCL_METADATA_PEER_ID_SET(htt_tcl_metadata,
2392 					       peer_id);
2393 		dp_tx_bypass_reinjection(soc, tx_desc);
2394 	} else
2395 		htt_tcl_metadata = vdev->htt_tcl_metadata;
2396 
2397 	if (msdu_info->exception_fw)
2398 		DP_TX_TCL_METADATA_VALID_HTT_SET(htt_tcl_metadata, 1);
2399 
2400 	dp_tx_desc_update_fast_comp_flag(soc, tx_desc,
2401 					 !pdev->enhanced_stats_en);
2402 
2403 	dp_tx_update_mesh_flags(soc, vdev, tx_desc);
2404 
2405 	if (qdf_unlikely(msdu_info->frm_type == dp_tx_frm_rmnet))
2406 		paddr = dp_tx_rmnet_nbuf_map(msdu_info, tx_desc);
2407 	else
2408 		paddr =  dp_tx_nbuf_map(vdev, tx_desc, nbuf);
2409 
2410 	if (!paddr) {
2411 		/* Handle failure */
2412 		dp_err("qdf_nbuf_map failed");
2413 		DP_STATS_INC(vdev, tx_i.dropped.dma_error, 1);
2414 		drop_code = TX_DMA_MAP_ERR;
2415 		goto release_desc;
2416 	}
2417 
2418 	tx_desc->dma_addr = paddr;
2419 	dp_tx_desc_history_add(soc, tx_desc->dma_addr, nbuf,
2420 			       tx_desc->id, DP_TX_DESC_MAP);
2421 	dp_tx_update_mcast_param(peer_id, &htt_tcl_metadata, vdev, msdu_info);
2422 	/* Enqueue the Tx MSDU descriptor to HW for transmit */
2423 	status = soc->arch_ops.tx_hw_enqueue(soc, vdev, tx_desc,
2424 					     htt_tcl_metadata,
2425 					     tx_exc_metadata, msdu_info);
2426 
2427 	if (status != QDF_STATUS_SUCCESS) {
2428 		dp_tx_err_rl("Tx_hw_enqueue Fail tx_desc %pK queue %d",
2429 			     tx_desc, tx_q->ring_id);
2430 		dp_tx_desc_history_add(soc, tx_desc->dma_addr, nbuf,
2431 				       tx_desc->id, DP_TX_DESC_UNMAP);
2432 		dp_tx_nbuf_unmap(soc, tx_desc);
2433 		drop_code = TX_HW_ENQUEUE;
2434 		goto release_desc;
2435 	}
2436 
2437 	tx_sw_drop_stats_inc(pdev, nbuf, drop_code);
2438 	return NULL;
2439 
2440 release_desc:
2441 	dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
2442 
2443 fail_return:
2444 	dp_tx_get_tid(vdev, nbuf, msdu_info);
2445 	tx_sw_drop_stats_inc(pdev, nbuf, drop_code);
2446 	tid_stats = &pdev->stats.tid_stats.
2447 		    tid_tx_stats[tx_q->ring_id][tid];
2448 	tid_stats->swdrop_cnt[drop_code]++;
2449 	return nbuf;
2450 }
2451 
2452 /**
2453  * dp_tdls_tx_comp_free_buff() - Free non std buffer when TDLS flag is set
2454  * @soc: Soc handle
2455  * @desc: software Tx descriptor to be processed
2456  *
2457  * Return: 0 if Success
2458  */
2459 #ifdef FEATURE_WLAN_TDLS
2460 static inline int
2461 dp_tdls_tx_comp_free_buff(struct dp_soc *soc, struct dp_tx_desc_s *desc)
2462 {
2463 	/* If it is TDLS mgmt, don't unmap or free the frame */
2464 	if (desc->flags & DP_TX_DESC_FLAG_TDLS_FRAME) {
2465 		dp_non_std_htt_tx_comp_free_buff(soc, desc);
2466 		return 0;
2467 	}
2468 	return 1;
2469 }
2470 #else
2471 static inline int
2472 dp_tdls_tx_comp_free_buff(struct dp_soc *soc, struct dp_tx_desc_s *desc)
2473 {
2474 	return 1;
2475 }
2476 #endif
2477 
2478 /**
2479  * dp_tx_comp_free_buf() - Free nbuf associated with the Tx Descriptor
2480  * @soc: Soc handle
2481  * @desc: software Tx descriptor to be processed
2482  * @delayed_free: defer freeing of nbuf
2483  *
2484  * Return: nbuf to be freed later
2485  */
2486 qdf_nbuf_t dp_tx_comp_free_buf(struct dp_soc *soc, struct dp_tx_desc_s *desc,
2487 			       bool delayed_free)
2488 {
2489 	qdf_nbuf_t nbuf = desc->nbuf;
2490 	enum dp_tx_event_type type = dp_tx_get_event_type(desc->flags);
2491 
2492 	/* nbuf already freed in vdev detach path */
2493 	if (!nbuf)
2494 		return NULL;
2495 
2496 	if (!dp_tdls_tx_comp_free_buff(soc, desc))
2497 		return NULL;
2498 
2499 	/* 0 : MSDU buffer, 1 : MLE */
2500 	if (desc->msdu_ext_desc) {
2501 		/* TSO free */
2502 		if (hal_tx_ext_desc_get_tso_enable(
2503 					desc->msdu_ext_desc->vaddr)) {
2504 			dp_tx_desc_history_add(soc, desc->dma_addr, desc->nbuf,
2505 					       desc->id, DP_TX_COMP_MSDU_EXT);
2506 			dp_tx_tso_seg_history_add(soc,
2507 						  desc->msdu_ext_desc->tso_desc,
2508 						  desc->nbuf, desc->id, type);
2509 			/* unmap eash TSO seg before free the nbuf */
2510 			dp_tx_tso_unmap_segment(soc,
2511 						desc->msdu_ext_desc->tso_desc,
2512 						desc->msdu_ext_desc->
2513 						tso_num_desc);
2514 			goto nbuf_free;
2515 		}
2516 
2517 		if (qdf_unlikely(desc->frm_type == dp_tx_frm_sg)) {
2518 			void *msdu_ext_desc = desc->msdu_ext_desc->vaddr;
2519 			qdf_dma_addr_t iova;
2520 			uint32_t frag_len;
2521 			uint32_t i;
2522 
2523 			qdf_nbuf_unmap_nbytes_single(soc->osdev, nbuf,
2524 						     QDF_DMA_TO_DEVICE,
2525 						     qdf_nbuf_headlen(nbuf));
2526 
2527 			for (i = 1; i < DP_TX_MAX_NUM_FRAGS; i++) {
2528 				hal_tx_ext_desc_get_frag_info(msdu_ext_desc, i,
2529 							      &iova,
2530 							      &frag_len);
2531 				if (!iova || !frag_len)
2532 					break;
2533 
2534 				qdf_mem_unmap_page(soc->osdev, iova, frag_len,
2535 						   QDF_DMA_TO_DEVICE);
2536 			}
2537 
2538 			goto nbuf_free;
2539 		}
2540 	}
2541 	/* If it's ME frame, dont unmap the cloned nbuf's */
2542 	if ((desc->flags & DP_TX_DESC_FLAG_ME) && qdf_nbuf_is_cloned(nbuf))
2543 		goto nbuf_free;
2544 
2545 	dp_tx_desc_history_add(soc, desc->dma_addr, desc->nbuf, desc->id, type);
2546 	dp_tx_unmap(soc, desc);
2547 
2548 	if (desc->flags & DP_TX_DESC_FLAG_MESH_MODE)
2549 		return dp_mesh_tx_comp_free_buff(soc, desc, delayed_free);
2550 
2551 	if (dp_tx_traffic_end_indication_enq_ind_pkt(soc, desc, nbuf))
2552 		return NULL;
2553 
2554 nbuf_free:
2555 	if (delayed_free)
2556 		return nbuf;
2557 
2558 	qdf_nbuf_free(nbuf);
2559 
2560 	return NULL;
2561 }
2562 
2563 /**
2564  * dp_tx_sg_unmap_buf() - Unmap scatter gather fragments
2565  * @soc: DP soc handle
2566  * @nbuf: skb
2567  * @msdu_info: MSDU info
2568  *
2569  * Return: None
2570  */
2571 static inline void
2572 dp_tx_sg_unmap_buf(struct dp_soc *soc, qdf_nbuf_t nbuf,
2573 		   struct dp_tx_msdu_info_s *msdu_info)
2574 {
2575 	uint32_t cur_idx;
2576 	struct dp_tx_seg_info_s *seg = msdu_info->u.sg_info.curr_seg;
2577 
2578 	qdf_nbuf_unmap_nbytes_single(soc->osdev, nbuf, QDF_DMA_TO_DEVICE,
2579 				     qdf_nbuf_headlen(nbuf));
2580 
2581 	for (cur_idx = 1; cur_idx < seg->frag_cnt; cur_idx++)
2582 		qdf_mem_unmap_page(soc->osdev, (qdf_dma_addr_t)
2583 				   (seg->frags[cur_idx].paddr_lo | ((uint64_t)
2584 				    seg->frags[cur_idx].paddr_hi) << 32),
2585 				   seg->frags[cur_idx].len,
2586 				   QDF_DMA_TO_DEVICE);
2587 }
2588 
2589 /**
2590  * dp_tx_send_msdu_multiple() - Enqueue multiple MSDUs
2591  * @vdev: DP vdev handle
2592  * @nbuf: skb
2593  * @msdu_info: MSDU info to be setup in MSDU extension descriptor
2594  *
2595  * Prepare descriptors for multiple MSDUs (TSO segments) and enqueue to TCL
2596  *
2597  * Return: NULL on success,
2598  *         nbuf when it fails to send
2599  */
2600 #if QDF_LOCK_STATS
2601 noinline
2602 #else
2603 #endif
2604 qdf_nbuf_t dp_tx_send_msdu_multiple(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
2605 				    struct dp_tx_msdu_info_s *msdu_info)
2606 {
2607 	uint32_t i;
2608 	struct dp_pdev *pdev = vdev->pdev;
2609 	struct dp_soc *soc = pdev->soc;
2610 	struct dp_tx_desc_s *tx_desc;
2611 	bool is_cce_classified = false;
2612 	QDF_STATUS status;
2613 	uint16_t htt_tcl_metadata = 0;
2614 	struct dp_tx_queue *tx_q = &msdu_info->tx_queue;
2615 	struct cdp_tid_tx_stats *tid_stats = NULL;
2616 	uint8_t prep_desc_fail = 0, hw_enq_fail = 0;
2617 
2618 	if (msdu_info->frm_type == dp_tx_frm_me)
2619 		nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
2620 
2621 	i = 0;
2622 	/* Print statement to track i and num_seg */
2623 	/*
2624 	 * For each segment (maps to 1 MSDU) , prepare software and hardware
2625 	 * descriptors using information in msdu_info
2626 	 */
2627 	while (i < msdu_info->num_seg) {
2628 		/*
2629 		 * Setup Tx descriptor for an MSDU, and MSDU extension
2630 		 * descriptor
2631 		 */
2632 		tx_desc = dp_tx_prepare_desc(vdev, nbuf, msdu_info,
2633 				tx_q->desc_pool_id);
2634 
2635 		if (!tx_desc) {
2636 			if (msdu_info->frm_type == dp_tx_frm_me) {
2637 				prep_desc_fail++;
2638 				dp_tx_me_free_buf(pdev,
2639 					(void *)(msdu_info->u.sg_info
2640 						.curr_seg->frags[0].vaddr));
2641 				if (prep_desc_fail == msdu_info->num_seg) {
2642 					/*
2643 					 * Unmap is needed only if descriptor
2644 					 * preparation failed for all segments.
2645 					 */
2646 					qdf_nbuf_unmap(soc->osdev,
2647 						       msdu_info->u.sg_info.
2648 						       curr_seg->nbuf,
2649 						       QDF_DMA_TO_DEVICE);
2650 				}
2651 				/*
2652 				 * Free the nbuf for the current segment
2653 				 * and make it point to the next in the list.
2654 				 * For me, there are as many segments as there
2655 				 * are no of clients.
2656 				 */
2657 				qdf_nbuf_free(msdu_info->u.sg_info
2658 					      .curr_seg->nbuf);
2659 				if (msdu_info->u.sg_info.curr_seg->next) {
2660 					msdu_info->u.sg_info.curr_seg =
2661 						msdu_info->u.sg_info
2662 						.curr_seg->next;
2663 					nbuf = msdu_info->u.sg_info
2664 					       .curr_seg->nbuf;
2665 				}
2666 				i++;
2667 				continue;
2668 			}
2669 
2670 			if (msdu_info->frm_type == dp_tx_frm_tso) {
2671 				dp_tx_tso_seg_history_add(
2672 						soc,
2673 						msdu_info->u.tso_info.curr_seg,
2674 						nbuf, 0, DP_TX_DESC_UNMAP);
2675 				dp_tx_tso_unmap_segment(soc,
2676 							msdu_info->u.tso_info.
2677 							curr_seg,
2678 							msdu_info->u.tso_info.
2679 							tso_num_seg_list);
2680 
2681 				if (msdu_info->u.tso_info.curr_seg->next) {
2682 					msdu_info->u.tso_info.curr_seg =
2683 					msdu_info->u.tso_info.curr_seg->next;
2684 					i++;
2685 					continue;
2686 				}
2687 			}
2688 
2689 			if (msdu_info->frm_type == dp_tx_frm_sg)
2690 				dp_tx_sg_unmap_buf(soc, nbuf, msdu_info);
2691 
2692 			goto done;
2693 		}
2694 
2695 		if (msdu_info->frm_type == dp_tx_frm_me) {
2696 			tx_desc->msdu_ext_desc->me_buffer =
2697 				(struct dp_tx_me_buf_t *)msdu_info->
2698 				u.sg_info.curr_seg->frags[0].vaddr;
2699 			tx_desc->flags |= DP_TX_DESC_FLAG_ME;
2700 		}
2701 
2702 		if (is_cce_classified)
2703 			tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
2704 
2705 		htt_tcl_metadata = vdev->htt_tcl_metadata;
2706 		if (msdu_info->exception_fw) {
2707 			DP_TX_TCL_METADATA_VALID_HTT_SET(htt_tcl_metadata, 1);
2708 		}
2709 
2710 		dp_tx_is_hp_update_required(i, msdu_info);
2711 
2712 		/*
2713 		 * For frames with multiple segments (TSO, ME), jump to next
2714 		 * segment.
2715 		 */
2716 		if (msdu_info->frm_type == dp_tx_frm_tso) {
2717 			if (msdu_info->u.tso_info.curr_seg->next) {
2718 				msdu_info->u.tso_info.curr_seg =
2719 					msdu_info->u.tso_info.curr_seg->next;
2720 
2721 				/*
2722 				 * If this is a jumbo nbuf, then increment the
2723 				 * number of nbuf users for each additional
2724 				 * segment of the msdu. This will ensure that
2725 				 * the skb is freed only after receiving tx
2726 				 * completion for all segments of an nbuf
2727 				 */
2728 				qdf_nbuf_inc_users(nbuf);
2729 
2730 				/* Check with MCL if this is needed */
2731 				/* nbuf = msdu_info->u.tso_info.curr_seg->nbuf;
2732 				 */
2733 			}
2734 		}
2735 
2736 		dp_tx_update_mcast_param(DP_INVALID_PEER,
2737 					 &htt_tcl_metadata,
2738 					 vdev,
2739 					 msdu_info);
2740 		/*
2741 		 * Enqueue the Tx MSDU descriptor to HW for transmit
2742 		 */
2743 		status = soc->arch_ops.tx_hw_enqueue(soc, vdev, tx_desc,
2744 						     htt_tcl_metadata,
2745 						     NULL, msdu_info);
2746 
2747 		dp_tx_check_and_flush_hp(soc, status, msdu_info);
2748 
2749 		if (status != QDF_STATUS_SUCCESS) {
2750 			dp_info_rl("Tx_hw_enqueue Fail tx_desc %pK queue %d",
2751 				   tx_desc, tx_q->ring_id);
2752 
2753 			dp_tx_get_tid(vdev, nbuf, msdu_info);
2754 			tid_stats = &pdev->stats.tid_stats.
2755 				    tid_tx_stats[tx_q->ring_id][msdu_info->tid];
2756 			tid_stats->swdrop_cnt[TX_HW_ENQUEUE]++;
2757 
2758 			if (msdu_info->frm_type == dp_tx_frm_me) {
2759 				hw_enq_fail++;
2760 				if (hw_enq_fail == msdu_info->num_seg) {
2761 					/*
2762 					 * Unmap is needed only if enqueue
2763 					 * failed for all segments.
2764 					 */
2765 					qdf_nbuf_unmap(soc->osdev,
2766 						       msdu_info->u.sg_info.
2767 						       curr_seg->nbuf,
2768 						       QDF_DMA_TO_DEVICE);
2769 				}
2770 				/*
2771 				 * Free the nbuf for the current segment
2772 				 * and make it point to the next in the list.
2773 				 * For me, there are as many segments as there
2774 				 * are no of clients.
2775 				 */
2776 				qdf_nbuf_free(msdu_info->u.sg_info
2777 					      .curr_seg->nbuf);
2778 				dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
2779 				if (msdu_info->u.sg_info.curr_seg->next) {
2780 					msdu_info->u.sg_info.curr_seg =
2781 						msdu_info->u.sg_info
2782 						.curr_seg->next;
2783 					nbuf = msdu_info->u.sg_info
2784 					       .curr_seg->nbuf;
2785 				} else
2786 					break;
2787 				i++;
2788 				continue;
2789 			}
2790 
2791 			/*
2792 			 * For TSO frames, the nbuf users increment done for
2793 			 * the current segment has to be reverted, since the
2794 			 * hw enqueue for this segment failed
2795 			 */
2796 			if (msdu_info->frm_type == dp_tx_frm_tso &&
2797 			    msdu_info->u.tso_info.curr_seg) {
2798 				/*
2799 				 * unmap and free current,
2800 				 * retransmit remaining segments
2801 				 */
2802 				dp_tx_comp_free_buf(soc, tx_desc, false);
2803 				i++;
2804 				dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
2805 				continue;
2806 			}
2807 
2808 			if (msdu_info->frm_type == dp_tx_frm_sg)
2809 				dp_tx_sg_unmap_buf(soc, nbuf, msdu_info);
2810 
2811 			dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
2812 			goto done;
2813 		}
2814 
2815 		/*
2816 		 * TODO
2817 		 * if tso_info structure can be modified to have curr_seg
2818 		 * as first element, following 2 blocks of code (for TSO and SG)
2819 		 * can be combined into 1
2820 		 */
2821 
2822 		/*
2823 		 * For Multicast-Unicast converted packets,
2824 		 * each converted frame (for a client) is represented as
2825 		 * 1 segment
2826 		 */
2827 		if ((msdu_info->frm_type == dp_tx_frm_sg) ||
2828 				(msdu_info->frm_type == dp_tx_frm_me)) {
2829 			if (msdu_info->u.sg_info.curr_seg->next) {
2830 				msdu_info->u.sg_info.curr_seg =
2831 					msdu_info->u.sg_info.curr_seg->next;
2832 				nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
2833 			} else
2834 				break;
2835 		}
2836 		i++;
2837 	}
2838 
2839 	nbuf = NULL;
2840 
2841 done:
2842 	return nbuf;
2843 }
2844 
2845 /**
2846  * dp_tx_prepare_sg()- Extract SG info from NBUF and prepare msdu_info
2847  *                     for SG frames
2848  * @vdev: DP vdev handle
2849  * @nbuf: skb
2850  * @seg_info: Pointer to Segment info Descriptor to be prepared
2851  * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
2852  *
2853  * Return: NULL on success,
2854  *         nbuf when it fails to send
2855  */
2856 static qdf_nbuf_t dp_tx_prepare_sg(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
2857 	struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
2858 {
2859 	uint32_t cur_frag, nr_frags, i;
2860 	qdf_dma_addr_t paddr;
2861 	struct dp_tx_sg_info_s *sg_info;
2862 
2863 	sg_info = &msdu_info->u.sg_info;
2864 	nr_frags = qdf_nbuf_get_nr_frags(nbuf);
2865 
2866 	if (QDF_STATUS_SUCCESS !=
2867 		qdf_nbuf_map_nbytes_single(vdev->osdev, nbuf,
2868 					   QDF_DMA_TO_DEVICE,
2869 					   qdf_nbuf_headlen(nbuf))) {
2870 		dp_tx_err("dma map error");
2871 		DP_STATS_INC(vdev, tx_i.sg.dma_map_error, 1);
2872 		qdf_nbuf_free(nbuf);
2873 		return NULL;
2874 	}
2875 
2876 	paddr = qdf_nbuf_mapped_paddr_get(nbuf);
2877 	seg_info->frags[0].paddr_lo = paddr;
2878 	seg_info->frags[0].paddr_hi = ((uint64_t) paddr) >> 32;
2879 	seg_info->frags[0].len = qdf_nbuf_headlen(nbuf);
2880 	seg_info->frags[0].vaddr = (void *) nbuf;
2881 
2882 	for (cur_frag = 0; cur_frag < nr_frags; cur_frag++) {
2883 		if (QDF_STATUS_SUCCESS != qdf_nbuf_frag_map(vdev->osdev,
2884 							    nbuf, 0,
2885 							    QDF_DMA_TO_DEVICE,
2886 							    cur_frag)) {
2887 			dp_tx_err("frag dma map error");
2888 			DP_STATS_INC(vdev, tx_i.sg.dma_map_error, 1);
2889 			goto map_err;
2890 		}
2891 
2892 		paddr = qdf_nbuf_get_tx_frag_paddr(nbuf);
2893 		seg_info->frags[cur_frag + 1].paddr_lo = paddr;
2894 		seg_info->frags[cur_frag + 1].paddr_hi =
2895 			((uint64_t) paddr) >> 32;
2896 		seg_info->frags[cur_frag + 1].len =
2897 			qdf_nbuf_get_frag_size(nbuf, cur_frag);
2898 	}
2899 
2900 	seg_info->frag_cnt = (cur_frag + 1);
2901 	seg_info->total_len = qdf_nbuf_len(nbuf);
2902 	seg_info->next = NULL;
2903 
2904 	sg_info->curr_seg = seg_info;
2905 
2906 	msdu_info->frm_type = dp_tx_frm_sg;
2907 	msdu_info->num_seg = 1;
2908 
2909 	return nbuf;
2910 map_err:
2911 	/* restore paddr into nbuf before calling unmap */
2912 	qdf_nbuf_mapped_paddr_set(nbuf,
2913 				  (qdf_dma_addr_t)(seg_info->frags[0].paddr_lo |
2914 				  ((uint64_t)
2915 				  seg_info->frags[0].paddr_hi) << 32));
2916 	qdf_nbuf_unmap_nbytes_single(vdev->osdev, nbuf,
2917 				     QDF_DMA_TO_DEVICE,
2918 				     seg_info->frags[0].len);
2919 	for (i = 1; i <= cur_frag; i++) {
2920 		qdf_mem_unmap_page(vdev->osdev, (qdf_dma_addr_t)
2921 				   (seg_info->frags[i].paddr_lo | ((uint64_t)
2922 				   seg_info->frags[i].paddr_hi) << 32),
2923 				   seg_info->frags[i].len,
2924 				   QDF_DMA_TO_DEVICE);
2925 	}
2926 	qdf_nbuf_free(nbuf);
2927 	return NULL;
2928 }
2929 
2930 /**
2931  * dp_tx_add_tx_sniffer_meta_data()- Add tx_sniffer meta hdr info
2932  * @vdev: DP vdev handle
2933  * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
2934  * @ppdu_cookie: PPDU cookie that should be replayed in the ppdu completions
2935  *
2936  * Return: NULL on failure,
2937  *         nbuf when extracted successfully
2938  */
2939 static
2940 void dp_tx_add_tx_sniffer_meta_data(struct dp_vdev *vdev,
2941 				    struct dp_tx_msdu_info_s *msdu_info,
2942 				    uint16_t ppdu_cookie)
2943 {
2944 	struct htt_tx_msdu_desc_ext2_t *meta_data =
2945 		(struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
2946 
2947 	qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
2948 
2949 	HTT_TX_MSDU_EXT2_DESC_FLAG_SEND_AS_STANDALONE_SET
2950 				(msdu_info->meta_data[5], 1);
2951 	HTT_TX_MSDU_EXT2_DESC_FLAG_HOST_OPAQUE_VALID_SET
2952 				(msdu_info->meta_data[5], 1);
2953 	HTT_TX_MSDU_EXT2_DESC_HOST_OPAQUE_COOKIE_SET
2954 				(msdu_info->meta_data[6], ppdu_cookie);
2955 
2956 	msdu_info->exception_fw = 1;
2957 	msdu_info->is_tx_sniffer = 1;
2958 }
2959 
2960 #ifdef MESH_MODE_SUPPORT
2961 
2962 /**
2963  * dp_tx_extract_mesh_meta_data()- Extract mesh meta hdr info from nbuf
2964 				and prepare msdu_info for mesh frames.
2965  * @vdev: DP vdev handle
2966  * @nbuf: skb
2967  * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
2968  *
2969  * Return: NULL on failure,
2970  *         nbuf when extracted successfully
2971  */
2972 static
2973 qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
2974 				struct dp_tx_msdu_info_s *msdu_info)
2975 {
2976 	struct meta_hdr_s *mhdr;
2977 	struct htt_tx_msdu_desc_ext2_t *meta_data =
2978 				(struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
2979 
2980 	mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
2981 
2982 	if (CB_FTYPE_MESH_TX_INFO != qdf_nbuf_get_tx_ftype(nbuf)) {
2983 		msdu_info->exception_fw = 0;
2984 		goto remove_meta_hdr;
2985 	}
2986 
2987 	msdu_info->exception_fw = 1;
2988 
2989 	qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
2990 
2991 	meta_data->host_tx_desc_pool = 1;
2992 	meta_data->update_peer_cache = 1;
2993 	meta_data->learning_frame = 1;
2994 
2995 	if (!(mhdr->flags & METAHDR_FLAG_AUTO_RATE)) {
2996 		meta_data->power = mhdr->power;
2997 
2998 		meta_data->mcs_mask = 1 << mhdr->rate_info[0].mcs;
2999 		meta_data->nss_mask = 1 << mhdr->rate_info[0].nss;
3000 		meta_data->pream_type = mhdr->rate_info[0].preamble_type;
3001 		meta_data->retry_limit = mhdr->rate_info[0].max_tries;
3002 
3003 		meta_data->dyn_bw = 1;
3004 
3005 		meta_data->valid_pwr = 1;
3006 		meta_data->valid_mcs_mask = 1;
3007 		meta_data->valid_nss_mask = 1;
3008 		meta_data->valid_preamble_type  = 1;
3009 		meta_data->valid_retries = 1;
3010 		meta_data->valid_bw_info = 1;
3011 	}
3012 
3013 	if (mhdr->flags & METAHDR_FLAG_NOENCRYPT) {
3014 		meta_data->encrypt_type = 0;
3015 		meta_data->valid_encrypt_type = 1;
3016 		meta_data->learning_frame = 0;
3017 	}
3018 
3019 	meta_data->valid_key_flags = 1;
3020 	meta_data->key_flags = (mhdr->keyix & 0x3);
3021 
3022 remove_meta_hdr:
3023 	if (qdf_nbuf_pull_head(nbuf, sizeof(struct meta_hdr_s)) == NULL) {
3024 		dp_tx_err("qdf_nbuf_pull_head failed");
3025 		qdf_nbuf_free(nbuf);
3026 		return NULL;
3027 	}
3028 
3029 	msdu_info->tid = qdf_nbuf_get_priority(nbuf);
3030 
3031 	dp_tx_info("Meta hdr %0x %0x %0x %0x %0x %0x"
3032 		   " tid %d to_fw %d",
3033 		   msdu_info->meta_data[0],
3034 		   msdu_info->meta_data[1],
3035 		   msdu_info->meta_data[2],
3036 		   msdu_info->meta_data[3],
3037 		   msdu_info->meta_data[4],
3038 		   msdu_info->meta_data[5],
3039 		   msdu_info->tid, msdu_info->exception_fw);
3040 
3041 	return nbuf;
3042 }
3043 #else
3044 static
3045 qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
3046 				struct dp_tx_msdu_info_s *msdu_info)
3047 {
3048 	return nbuf;
3049 }
3050 
3051 #endif
3052 
3053 /**
3054  * dp_check_exc_metadata() - Checks if parameters are valid
3055  * @tx_exc - holds all exception path parameters
3056  *
3057  * Returns true when all the parameters are valid else false
3058  *
3059  */
3060 static bool dp_check_exc_metadata(struct cdp_tx_exception_metadata *tx_exc)
3061 {
3062 	bool invalid_tid = (tx_exc->tid >= DP_MAX_TIDS && tx_exc->tid !=
3063 			    HTT_INVALID_TID);
3064 	bool invalid_encap_type =
3065 			(tx_exc->tx_encap_type > htt_cmn_pkt_num_types &&
3066 			 tx_exc->tx_encap_type != CDP_INVALID_TX_ENCAP_TYPE);
3067 	bool invalid_sec_type = (tx_exc->sec_type > cdp_num_sec_types &&
3068 				 tx_exc->sec_type != CDP_INVALID_SEC_TYPE);
3069 	bool invalid_cookie = (tx_exc->is_tx_sniffer == 1 &&
3070 			       tx_exc->ppdu_cookie == 0);
3071 
3072 	if (tx_exc->is_intrabss_fwd)
3073 		return true;
3074 
3075 	if (invalid_tid || invalid_encap_type || invalid_sec_type ||
3076 	    invalid_cookie) {
3077 		return false;
3078 	}
3079 
3080 	return true;
3081 }
3082 
3083 #ifdef ATH_SUPPORT_IQUE
3084 /**
3085  * dp_tx_mcast_enhance() - Multicast enhancement on TX
3086  * @vdev: vdev handle
3087  * @nbuf: skb
3088  *
3089  * Return: true on success,
3090  *         false on failure
3091  */
3092 static inline bool dp_tx_mcast_enhance(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
3093 {
3094 	qdf_ether_header_t *eh;
3095 
3096 	/* Mcast to Ucast Conversion*/
3097 	if (qdf_likely(!vdev->mcast_enhancement_en))
3098 		return true;
3099 
3100 	eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
3101 	if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost) &&
3102 	    !DP_FRAME_IS_BROADCAST((eh)->ether_dhost)) {
3103 		dp_verbose_debug("Mcast frm for ME %pK", vdev);
3104 		qdf_nbuf_set_next(nbuf, NULL);
3105 
3106 		DP_STATS_INC_PKT(vdev, tx_i.mcast_en.mcast_pkt, 1,
3107 				 qdf_nbuf_len(nbuf));
3108 		if (dp_tx_prepare_send_me(vdev, nbuf) ==
3109 				QDF_STATUS_SUCCESS) {
3110 			return false;
3111 		}
3112 
3113 		if (qdf_unlikely(vdev->igmp_mcast_enhanc_en > 0)) {
3114 			if (dp_tx_prepare_send_igmp_me(vdev, nbuf) ==
3115 					QDF_STATUS_SUCCESS) {
3116 				return false;
3117 			}
3118 		}
3119 	}
3120 
3121 	return true;
3122 }
3123 #else
3124 static inline bool dp_tx_mcast_enhance(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
3125 {
3126 	return true;
3127 }
3128 #endif
3129 
3130 #ifdef QCA_SUPPORT_WDS_EXTENDED
3131 /**
3132  * dp_tx_mcast_drop() - Drop mcast frame if drop_tx_mcast is set in WDS_EXT
3133  * @vdev: vdev handle
3134  * @nbuf: skb
3135  *
3136  * Return: true if frame is dropped, false otherwise
3137  */
3138 static inline bool dp_tx_mcast_drop(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
3139 {
3140 	/* Drop tx mcast and WDS Extended feature check */
3141 	if (qdf_unlikely((vdev->drop_tx_mcast) && (vdev->wds_ext_enabled))) {
3142 		qdf_ether_header_t *eh = (qdf_ether_header_t *)
3143 						qdf_nbuf_data(nbuf);
3144 		if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost)) {
3145 			DP_STATS_INC(vdev, tx_i.dropped.tx_mcast_drop, 1);
3146 			return true;
3147 		}
3148 	}
3149 
3150 	return false;
3151 }
3152 #else
3153 static inline bool dp_tx_mcast_drop(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
3154 {
3155 	return false;
3156 }
3157 #endif
3158 /**
3159  * dp_tx_per_pkt_vdev_id_check() - vdev id check for frame
3160  * @nbuf: qdf_nbuf_t
3161  * @vdev: struct dp_vdev *
3162  *
3163  * Allow packet for processing only if it is for peer client which is
3164  * connected with same vap. Drop packet if client is connected to
3165  * different vap.
3166  *
3167  * Return: QDF_STATUS
3168  */
3169 static inline QDF_STATUS
3170 dp_tx_per_pkt_vdev_id_check(qdf_nbuf_t nbuf, struct dp_vdev *vdev)
3171 {
3172 	struct dp_ast_entry *dst_ast_entry = NULL;
3173 	qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
3174 
3175 	if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost) ||
3176 	    DP_FRAME_IS_BROADCAST((eh)->ether_dhost))
3177 		return QDF_STATUS_SUCCESS;
3178 
3179 	qdf_spin_lock_bh(&vdev->pdev->soc->ast_lock);
3180 	dst_ast_entry = dp_peer_ast_hash_find_by_vdevid(vdev->pdev->soc,
3181 							eh->ether_dhost,
3182 							vdev->vdev_id);
3183 
3184 	/* If there is no ast entry, return failure */
3185 	if (qdf_unlikely(!dst_ast_entry)) {
3186 		qdf_spin_unlock_bh(&vdev->pdev->soc->ast_lock);
3187 		return QDF_STATUS_E_FAILURE;
3188 	}
3189 	qdf_spin_unlock_bh(&vdev->pdev->soc->ast_lock);
3190 
3191 	return QDF_STATUS_SUCCESS;
3192 }
3193 
3194 /**
3195  * dp_tx_nawds_handler() - NAWDS handler
3196  *
3197  * @soc: DP soc handle
3198  * @vdev_id: id of DP vdev handle
3199  * @msdu_info: msdu_info required to create HTT metadata
3200  * @nbuf: skb
3201  *
3202  * This API transfers the multicast frames with the peer id
3203  * on NAWDS enabled peer.
3204 
3205  * Return: none
3206  */
3207 
3208 static inline
3209 void dp_tx_nawds_handler(struct dp_soc *soc, struct dp_vdev *vdev,
3210 			 struct dp_tx_msdu_info_s *msdu_info,
3211 			 qdf_nbuf_t nbuf, uint16_t sa_peer_id)
3212 {
3213 	struct dp_peer *peer = NULL;
3214 	qdf_nbuf_t nbuf_clone = NULL;
3215 	uint16_t peer_id = DP_INVALID_PEER;
3216 	struct dp_txrx_peer *txrx_peer;
3217 
3218 	/* This check avoids pkt forwarding which is entered
3219 	 * in the ast table but still doesn't have valid peerid.
3220 	 */
3221 	if (sa_peer_id == HTT_INVALID_PEER)
3222 		return;
3223 
3224 	qdf_spin_lock_bh(&vdev->peer_list_lock);
3225 	TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
3226 		txrx_peer = dp_get_txrx_peer(peer);
3227 		if (!txrx_peer)
3228 			continue;
3229 
3230 		if (!txrx_peer->bss_peer && txrx_peer->nawds_enabled) {
3231 			peer_id = peer->peer_id;
3232 
3233 			if (!dp_peer_is_primary_link_peer(peer))
3234 				continue;
3235 
3236 			/* Multicast packets needs to be
3237 			 * dropped in case of intra bss forwarding
3238 			 */
3239 			if (sa_peer_id == txrx_peer->peer_id) {
3240 				dp_tx_debug("multicast packet");
3241 				DP_PEER_PER_PKT_STATS_INC(txrx_peer,
3242 							  tx.nawds_mcast_drop,
3243 							  1);
3244 				continue;
3245 			}
3246 
3247 			nbuf_clone = qdf_nbuf_clone(nbuf);
3248 
3249 			if (!nbuf_clone) {
3250 				QDF_TRACE(QDF_MODULE_ID_DP,
3251 					  QDF_TRACE_LEVEL_ERROR,
3252 					  FL("nbuf clone failed"));
3253 				break;
3254 			}
3255 
3256 			nbuf_clone = dp_tx_send_msdu_single(vdev, nbuf_clone,
3257 							    msdu_info, peer_id,
3258 							    NULL);
3259 
3260 			if (nbuf_clone) {
3261 				dp_tx_debug("pkt send failed");
3262 				qdf_nbuf_free(nbuf_clone);
3263 			} else {
3264 				if (peer_id != DP_INVALID_PEER)
3265 					DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer,
3266 								      tx.nawds_mcast,
3267 								      1, qdf_nbuf_len(nbuf));
3268 			}
3269 		}
3270 	}
3271 
3272 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
3273 }
3274 
3275 /**
3276  * dp_tx_send_exception() - Transmit a frame on a given VAP in exception path
3277  * @soc: DP soc handle
3278  * @vdev_id: id of DP vdev handle
3279  * @nbuf: skb
3280  * @tx_exc_metadata: Handle that holds exception path meta data
3281  *
3282  * Entry point for Core Tx layer (DP_TX) invoked from
3283  * hard_start_xmit in OSIF/HDD to transmit frames through fw
3284  *
3285  * Return: NULL on success,
3286  *         nbuf when it fails to send
3287  */
3288 qdf_nbuf_t
3289 dp_tx_send_exception(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3290 		     qdf_nbuf_t nbuf,
3291 		     struct cdp_tx_exception_metadata *tx_exc_metadata)
3292 {
3293 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
3294 	struct dp_tx_msdu_info_s msdu_info;
3295 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
3296 						     DP_MOD_ID_TX_EXCEPTION);
3297 
3298 	if (qdf_unlikely(!vdev))
3299 		goto fail;
3300 
3301 	qdf_mem_zero(&msdu_info, sizeof(msdu_info));
3302 
3303 	if (!tx_exc_metadata)
3304 		goto fail;
3305 
3306 	msdu_info.tid = tx_exc_metadata->tid;
3307 	dp_verbose_debug("skb "QDF_MAC_ADDR_FMT,
3308 			 QDF_MAC_ADDR_REF(nbuf->data));
3309 
3310 	DP_STATS_INC_PKT(vdev, tx_i.rcvd, 1, qdf_nbuf_len(nbuf));
3311 
3312 	if (qdf_unlikely(!dp_check_exc_metadata(tx_exc_metadata))) {
3313 		dp_tx_err("Invalid parameters in exception path");
3314 		goto fail;
3315 	}
3316 
3317 	/* for peer based metadata check if peer is valid */
3318 	if (tx_exc_metadata->peer_id != CDP_INVALID_PEER) {
3319 		struct dp_peer *peer = NULL;
3320 
3321 		 peer = dp_peer_get_ref_by_id(vdev->pdev->soc,
3322 					      tx_exc_metadata->peer_id,
3323 					      DP_MOD_ID_TX_EXCEPTION);
3324 		if (qdf_unlikely(!peer)) {
3325 			DP_STATS_INC(vdev,
3326 				     tx_i.dropped.invalid_peer_id_in_exc_path,
3327 				     1);
3328 			goto fail;
3329 		}
3330 		dp_peer_unref_delete(peer, DP_MOD_ID_TX_EXCEPTION);
3331 	}
3332 	/* Basic sanity checks for unsupported packets */
3333 
3334 	/* MESH mode */
3335 	if (qdf_unlikely(vdev->mesh_vdev)) {
3336 		dp_tx_err("Mesh mode is not supported in exception path");
3337 		goto fail;
3338 	}
3339 
3340 	/*
3341 	 * Classify the frame and call corresponding
3342 	 * "prepare" function which extracts the segment (TSO)
3343 	 * and fragmentation information (for TSO , SG, ME, or Raw)
3344 	 * into MSDU_INFO structure which is later used to fill
3345 	 * SW and HW descriptors.
3346 	 */
3347 	if (qdf_nbuf_is_tso(nbuf)) {
3348 		dp_verbose_debug("TSO frame %pK", vdev);
3349 		DP_STATS_INC_PKT(vdev->pdev, tso_stats.num_tso_pkts, 1,
3350 				 qdf_nbuf_len(nbuf));
3351 
3352 		if (dp_tx_prepare_tso(vdev, nbuf, &msdu_info)) {
3353 			DP_STATS_INC_PKT(vdev->pdev, tso_stats.dropped_host, 1,
3354 					 qdf_nbuf_len(nbuf));
3355 			goto fail;
3356 		}
3357 
3358 		DP_STATS_INC(vdev,  tx_i.rcvd.num, msdu_info.num_seg - 1);
3359 
3360 		goto send_multiple;
3361 	}
3362 
3363 	/* SG */
3364 	if (qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
3365 		struct dp_tx_seg_info_s seg_info = {0};
3366 
3367 		nbuf = dp_tx_prepare_sg(vdev, nbuf, &seg_info, &msdu_info);
3368 		if (!nbuf)
3369 			goto fail;
3370 
3371 		dp_verbose_debug("non-TSO SG frame %pK", vdev);
3372 
3373 		DP_STATS_INC_PKT(vdev, tx_i.sg.sg_pkt, 1,
3374 				 qdf_nbuf_len(nbuf));
3375 
3376 		goto send_multiple;
3377 	}
3378 
3379 	if (qdf_likely(tx_exc_metadata->is_tx_sniffer)) {
3380 		DP_STATS_INC_PKT(vdev, tx_i.sniffer_rcvd, 1,
3381 				 qdf_nbuf_len(nbuf));
3382 
3383 		dp_tx_add_tx_sniffer_meta_data(vdev, &msdu_info,
3384 					       tx_exc_metadata->ppdu_cookie);
3385 	}
3386 
3387 	/*
3388 	 * Get HW Queue to use for this frame.
3389 	 * TCL supports upto 4 DMA rings, out of which 3 rings are
3390 	 * dedicated for data and 1 for command.
3391 	 * "queue_id" maps to one hardware ring.
3392 	 *  With each ring, we also associate a unique Tx descriptor pool
3393 	 *  to minimize lock contention for these resources.
3394 	 */
3395 	dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
3396 
3397 	if (qdf_likely(tx_exc_metadata->is_intrabss_fwd)) {
3398 		if (qdf_unlikely(vdev->nawds_enabled)) {
3399 			/*
3400 			 * This is a multicast packet
3401 			 */
3402 			dp_tx_nawds_handler(soc, vdev, &msdu_info, nbuf,
3403 					    tx_exc_metadata->peer_id);
3404 			DP_STATS_INC_PKT(vdev, tx_i.nawds_mcast,
3405 					 1, qdf_nbuf_len(nbuf));
3406 		}
3407 
3408 		nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info,
3409 					      DP_INVALID_PEER, NULL);
3410 	} else {
3411 		/*
3412 		 * Check exception descriptors
3413 		 */
3414 		if (dp_tx_exception_limit_check(vdev))
3415 			goto fail;
3416 
3417 		/*  Single linear frame */
3418 		/*
3419 		 * If nbuf is a simple linear frame, use send_single function to
3420 		 * prepare direct-buffer type TCL descriptor and enqueue to TCL
3421 		 * SRNG. There is no need to setup a MSDU extension descriptor.
3422 		 */
3423 		nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info,
3424 					      tx_exc_metadata->peer_id,
3425 					      tx_exc_metadata);
3426 	}
3427 
3428 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
3429 	return nbuf;
3430 
3431 send_multiple:
3432 	nbuf = dp_tx_send_msdu_multiple(vdev, nbuf, &msdu_info);
3433 
3434 fail:
3435 	if (vdev)
3436 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
3437 	dp_verbose_debug("pkt send failed");
3438 	return nbuf;
3439 }
3440 
3441 /**
3442  * dp_tx_send_exception_vdev_id_check() - Transmit a frame on a given VAP
3443  *      in exception path in special case to avoid regular exception path chk.
3444  * @soc: DP soc handle
3445  * @vdev_id: id of DP vdev handle
3446  * @nbuf: skb
3447  * @tx_exc_metadata: Handle that holds exception path meta data
3448  *
3449  * Entry point for Core Tx layer (DP_TX) invoked from
3450  * hard_start_xmit in OSIF/HDD to transmit frames through fw
3451  *
3452  * Return: NULL on success,
3453  *         nbuf when it fails to send
3454  */
3455 qdf_nbuf_t
3456 dp_tx_send_exception_vdev_id_check(struct cdp_soc_t *soc_hdl,
3457 				   uint8_t vdev_id, qdf_nbuf_t nbuf,
3458 		     struct cdp_tx_exception_metadata *tx_exc_metadata)
3459 {
3460 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
3461 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
3462 						     DP_MOD_ID_TX_EXCEPTION);
3463 
3464 	if (qdf_unlikely(!vdev))
3465 		goto fail;
3466 
3467 	if (qdf_unlikely(dp_tx_per_pkt_vdev_id_check(nbuf, vdev)
3468 			== QDF_STATUS_E_FAILURE)) {
3469 		DP_STATS_INC(vdev, tx_i.dropped.fail_per_pkt_vdev_id_check, 1);
3470 		goto fail;
3471 	}
3472 
3473 	/* Unref count as it will again be taken inside dp_tx_exception */
3474 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
3475 
3476 	return dp_tx_send_exception(soc_hdl, vdev_id, nbuf, tx_exc_metadata);
3477 
3478 fail:
3479 	if (vdev)
3480 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
3481 	dp_verbose_debug("pkt send failed");
3482 	return nbuf;
3483 }
3484 
3485 /**
3486  * dp_tx_send_mesh() - Transmit mesh frame on a given VAP
3487  * @soc: DP soc handle
3488  * @vdev_id: DP vdev handle
3489  * @nbuf: skb
3490  *
3491  * Entry point for Core Tx layer (DP_TX) invoked from
3492  * hard_start_xmit in OSIF/HDD
3493  *
3494  * Return: NULL on success,
3495  *         nbuf when it fails to send
3496  */
3497 #ifdef MESH_MODE_SUPPORT
3498 qdf_nbuf_t dp_tx_send_mesh(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3499 			   qdf_nbuf_t nbuf)
3500 {
3501 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
3502 	struct meta_hdr_s *mhdr;
3503 	qdf_nbuf_t nbuf_mesh = NULL;
3504 	qdf_nbuf_t nbuf_clone = NULL;
3505 	struct dp_vdev *vdev;
3506 	uint8_t no_enc_frame = 0;
3507 
3508 	nbuf_mesh = qdf_nbuf_unshare(nbuf);
3509 	if (!nbuf_mesh) {
3510 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
3511 				"qdf_nbuf_unshare failed");
3512 		return nbuf;
3513 	}
3514 
3515 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_MESH);
3516 	if (!vdev) {
3517 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
3518 				"vdev is NULL for vdev_id %d", vdev_id);
3519 		return nbuf;
3520 	}
3521 
3522 	nbuf = nbuf_mesh;
3523 
3524 	mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
3525 
3526 	if ((vdev->sec_type != cdp_sec_type_none) &&
3527 			(mhdr->flags & METAHDR_FLAG_NOENCRYPT))
3528 		no_enc_frame = 1;
3529 
3530 	if (mhdr->flags & METAHDR_FLAG_NOQOS)
3531 		qdf_nbuf_set_priority(nbuf, HTT_TX_EXT_TID_NON_QOS_MCAST_BCAST);
3532 
3533 	if ((mhdr->flags & METAHDR_FLAG_INFO_UPDATED) &&
3534 		       !no_enc_frame) {
3535 		nbuf_clone = qdf_nbuf_clone(nbuf);
3536 		if (!nbuf_clone) {
3537 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
3538 				"qdf_nbuf_clone failed");
3539 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MESH);
3540 			return nbuf;
3541 		}
3542 		qdf_nbuf_set_tx_ftype(nbuf_clone, CB_FTYPE_MESH_TX_INFO);
3543 	}
3544 
3545 	if (nbuf_clone) {
3546 		if (!dp_tx_send(soc_hdl, vdev_id, nbuf_clone)) {
3547 			DP_STATS_INC(vdev, tx_i.mesh.exception_fw, 1);
3548 		} else {
3549 			qdf_nbuf_free(nbuf_clone);
3550 		}
3551 	}
3552 
3553 	if (no_enc_frame)
3554 		qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_MESH_TX_INFO);
3555 	else
3556 		qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_INVALID);
3557 
3558 	nbuf = dp_tx_send(soc_hdl, vdev_id, nbuf);
3559 	if ((!nbuf) && no_enc_frame) {
3560 		DP_STATS_INC(vdev, tx_i.mesh.exception_fw, 1);
3561 	}
3562 
3563 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MESH);
3564 	return nbuf;
3565 }
3566 
3567 #else
3568 
3569 qdf_nbuf_t dp_tx_send_mesh(struct cdp_soc_t *soc, uint8_t vdev_id,
3570 			   qdf_nbuf_t nbuf)
3571 {
3572 	return dp_tx_send(soc, vdev_id, nbuf);
3573 }
3574 
3575 #endif
3576 
3577 #ifdef QCA_DP_TX_NBUF_AND_NBUF_DATA_PREFETCH
3578 static inline
3579 void dp_tx_prefetch_nbuf_data(qdf_nbuf_t nbuf)
3580 {
3581 	if (nbuf) {
3582 		qdf_prefetch(&nbuf->len);
3583 		qdf_prefetch(&nbuf->data);
3584 	}
3585 }
3586 #else
3587 static inline
3588 void dp_tx_prefetch_nbuf_data(qdf_nbuf_t nbuf)
3589 {
3590 }
3591 #endif
3592 
3593 #ifdef DP_UMAC_HW_RESET_SUPPORT
3594 /*
3595  * dp_tx_drop() - Drop the frame on a given VAP
3596  * @soc: DP soc handle
3597  * @vdev_id: id of DP vdev handle
3598  * @nbuf: skb
3599  *
3600  * Drop all the incoming packets
3601  *
3602  * Return: nbuf
3603  *
3604  */
3605 qdf_nbuf_t dp_tx_drop(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3606 		      qdf_nbuf_t nbuf)
3607 {
3608 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
3609 	struct dp_vdev *vdev = NULL;
3610 
3611 	vdev = soc->vdev_id_map[vdev_id];
3612 	if (qdf_unlikely(!vdev))
3613 		return nbuf;
3614 
3615 	DP_STATS_INC(vdev, tx_i.dropped.drop_ingress, 1);
3616 	return nbuf;
3617 }
3618 
3619 /*
3620  * dp_tx_exc_drop() - Drop the frame on a given VAP
3621  * @soc: DP soc handle
3622  * @vdev_id: id of DP vdev handle
3623  * @nbuf: skb
3624  * @tx_exc_metadata: Handle that holds exception path meta data
3625  *
3626  * Drop all the incoming packets
3627  *
3628  * Return: nbuf
3629  *
3630  */
3631 qdf_nbuf_t dp_tx_exc_drop(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3632 			  qdf_nbuf_t nbuf,
3633 			  struct cdp_tx_exception_metadata *tx_exc_metadata)
3634 {
3635 	return dp_tx_drop(soc_hdl, vdev_id, nbuf);
3636 }
3637 #endif
3638 
3639 #ifdef FEATURE_DIRECT_LINK
3640 /*
3641  * dp_vdev_tx_mark_to_fw() - Mark to_fw bit for the tx packet
3642  * @nbuf: skb
3643  * @vdev: DP vdev handle
3644  *
3645  * Return: None
3646  */
3647 static inline void dp_vdev_tx_mark_to_fw(qdf_nbuf_t nbuf, struct dp_vdev *vdev)
3648 {
3649 	if (qdf_unlikely(vdev->to_fw))
3650 		QDF_NBUF_CB_TX_PACKET_TO_FW(nbuf) = 1;
3651 }
3652 #else
3653 static inline void dp_vdev_tx_mark_to_fw(qdf_nbuf_t nbuf, struct dp_vdev *vdev)
3654 {
3655 }
3656 #endif
3657 
3658 /*
3659  * dp_tx_send() - Transmit a frame on a given VAP
3660  * @soc: DP soc handle
3661  * @vdev_id: id of DP vdev handle
3662  * @nbuf: skb
3663  *
3664  * Entry point for Core Tx layer (DP_TX) invoked from
3665  * hard_start_xmit in OSIF/HDD or from dp_rx_process for intravap forwarding
3666  * cases
3667  *
3668  * Return: NULL on success,
3669  *         nbuf when it fails to send
3670  */
3671 qdf_nbuf_t dp_tx_send(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3672 		      qdf_nbuf_t nbuf)
3673 {
3674 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
3675 	uint16_t peer_id = HTT_INVALID_PEER;
3676 	/*
3677 	 * doing a memzero is causing additional function call overhead
3678 	 * so doing static stack clearing
3679 	 */
3680 	struct dp_tx_msdu_info_s msdu_info = {0};
3681 	struct dp_vdev *vdev = NULL;
3682 	qdf_nbuf_t end_nbuf = NULL;
3683 
3684 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
3685 		return nbuf;
3686 
3687 	/*
3688 	 * dp_vdev_get_ref_by_id does does a atomic operation avoid using
3689 	 * this in per packet path.
3690 	 *
3691 	 * As in this path vdev memory is already protected with netdev
3692 	 * tx lock
3693 	 */
3694 	vdev = soc->vdev_id_map[vdev_id];
3695 	if (qdf_unlikely(!vdev))
3696 		return nbuf;
3697 
3698 	dp_vdev_tx_mark_to_fw(nbuf, vdev);
3699 
3700 	/*
3701 	 * Set Default Host TID value to invalid TID
3702 	 * (TID override disabled)
3703 	 */
3704 	msdu_info.tid = HTT_TX_EXT_TID_INVALID;
3705 	DP_STATS_INC_PKT(vdev, tx_i.rcvd, 1, qdf_nbuf_len(nbuf));
3706 
3707 	if (qdf_unlikely(vdev->mesh_vdev)) {
3708 		qdf_nbuf_t nbuf_mesh = dp_tx_extract_mesh_meta_data(vdev, nbuf,
3709 								&msdu_info);
3710 		if (!nbuf_mesh) {
3711 			dp_verbose_debug("Extracting mesh metadata failed");
3712 			return nbuf;
3713 		}
3714 		nbuf = nbuf_mesh;
3715 	}
3716 
3717 	/*
3718 	 * Get HW Queue to use for this frame.
3719 	 * TCL supports upto 4 DMA rings, out of which 3 rings are
3720 	 * dedicated for data and 1 for command.
3721 	 * "queue_id" maps to one hardware ring.
3722 	 *  With each ring, we also associate a unique Tx descriptor pool
3723 	 *  to minimize lock contention for these resources.
3724 	 */
3725 	dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
3726 	DP_STATS_INC(vdev, tx_i.rcvd_per_core[msdu_info.tx_queue.desc_pool_id],
3727 		     1);
3728 
3729 	/*
3730 	 * TCL H/W supports 2 DSCP-TID mapping tables.
3731 	 *  Table 1 - Default DSCP-TID mapping table
3732 	 *  Table 2 - 1 DSCP-TID override table
3733 	 *
3734 	 * If we need a different DSCP-TID mapping for this vap,
3735 	 * call tid_classify to extract DSCP/ToS from frame and
3736 	 * map to a TID and store in msdu_info. This is later used
3737 	 * to fill in TCL Input descriptor (per-packet TID override).
3738 	 */
3739 	dp_tx_classify_tid(vdev, nbuf, &msdu_info);
3740 
3741 	/*
3742 	 * Classify the frame and call corresponding
3743 	 * "prepare" function which extracts the segment (TSO)
3744 	 * and fragmentation information (for TSO , SG, ME, or Raw)
3745 	 * into MSDU_INFO structure which is later used to fill
3746 	 * SW and HW descriptors.
3747 	 */
3748 	if (qdf_nbuf_is_tso(nbuf)) {
3749 		dp_verbose_debug("TSO frame %pK", vdev);
3750 		DP_STATS_INC_PKT(vdev->pdev, tso_stats.num_tso_pkts, 1,
3751 				 qdf_nbuf_len(nbuf));
3752 
3753 		if (dp_tx_prepare_tso(vdev, nbuf, &msdu_info)) {
3754 			DP_STATS_INC_PKT(vdev->pdev, tso_stats.dropped_host, 1,
3755 					 qdf_nbuf_len(nbuf));
3756 			return nbuf;
3757 		}
3758 
3759 		DP_STATS_INC(vdev,  tx_i.rcvd.num, msdu_info.num_seg - 1);
3760 
3761 		goto send_multiple;
3762 	}
3763 
3764 	/* SG */
3765 	if (qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
3766 		if (qdf_nbuf_get_nr_frags(nbuf) > DP_TX_MAX_NUM_FRAGS - 1) {
3767 			if (qdf_unlikely(qdf_nbuf_linearize(nbuf)))
3768 				return nbuf;
3769 		} else {
3770 			struct dp_tx_seg_info_s seg_info = {0};
3771 
3772 			if (qdf_unlikely(is_nbuf_frm_rmnet(nbuf, &msdu_info)))
3773 				goto send_single;
3774 
3775 			nbuf = dp_tx_prepare_sg(vdev, nbuf, &seg_info,
3776 						&msdu_info);
3777 			if (!nbuf)
3778 				return NULL;
3779 
3780 			dp_verbose_debug("non-TSO SG frame %pK", vdev);
3781 
3782 			DP_STATS_INC_PKT(vdev, tx_i.sg.sg_pkt, 1,
3783 					 qdf_nbuf_len(nbuf));
3784 
3785 			goto send_multiple;
3786 		}
3787 	}
3788 
3789 	if (qdf_unlikely(!dp_tx_mcast_enhance(vdev, nbuf)))
3790 		return NULL;
3791 
3792 	if (qdf_unlikely(dp_tx_mcast_drop(vdev, nbuf)))
3793 		return nbuf;
3794 
3795 	/* RAW */
3796 	if (qdf_unlikely(vdev->tx_encap_type == htt_cmn_pkt_type_raw)) {
3797 		struct dp_tx_seg_info_s seg_info = {0};
3798 
3799 		nbuf = dp_tx_prepare_raw(vdev, nbuf, &seg_info, &msdu_info);
3800 		if (!nbuf)
3801 			return NULL;
3802 
3803 		dp_verbose_debug("Raw frame %pK", vdev);
3804 
3805 		goto send_multiple;
3806 
3807 	}
3808 
3809 	if (qdf_unlikely(vdev->nawds_enabled)) {
3810 		qdf_ether_header_t *eh = (qdf_ether_header_t *)
3811 					  qdf_nbuf_data(nbuf);
3812 		if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost)) {
3813 			uint16_t sa_peer_id = DP_INVALID_PEER;
3814 
3815 			if (!soc->ast_offload_support) {
3816 				struct dp_ast_entry *ast_entry = NULL;
3817 
3818 				qdf_spin_lock_bh(&soc->ast_lock);
3819 				ast_entry = dp_peer_ast_hash_find_by_pdevid
3820 					(soc,
3821 					 (uint8_t *)(eh->ether_shost),
3822 					 vdev->pdev->pdev_id);
3823 				if (ast_entry)
3824 					sa_peer_id = ast_entry->peer_id;
3825 				qdf_spin_unlock_bh(&soc->ast_lock);
3826 			}
3827 
3828 			dp_tx_nawds_handler(soc, vdev, &msdu_info, nbuf,
3829 					    sa_peer_id);
3830 		}
3831 		peer_id = DP_INVALID_PEER;
3832 		DP_STATS_INC_PKT(vdev, tx_i.nawds_mcast,
3833 				 1, qdf_nbuf_len(nbuf));
3834 	}
3835 
3836 send_single:
3837 	/*  Single linear frame */
3838 	/*
3839 	 * If nbuf is a simple linear frame, use send_single function to
3840 	 * prepare direct-buffer type TCL descriptor and enqueue to TCL
3841 	 * SRNG. There is no need to setup a MSDU extension descriptor.
3842 	 */
3843 	dp_tx_prefetch_nbuf_data(nbuf);
3844 
3845 	nbuf = dp_tx_send_msdu_single_wrapper(vdev, nbuf, &msdu_info,
3846 					      peer_id, end_nbuf);
3847 	return nbuf;
3848 
3849 send_multiple:
3850 	nbuf = dp_tx_send_msdu_multiple(vdev, nbuf, &msdu_info);
3851 
3852 	if (qdf_unlikely(nbuf && msdu_info.frm_type == dp_tx_frm_raw))
3853 		dp_tx_raw_prepare_unset(vdev->pdev->soc, nbuf);
3854 
3855 	return nbuf;
3856 }
3857 
3858 /**
3859  * dp_tx_send_vdev_id_check() - Transmit a frame on a given VAP in special
3860  *      case to vaoid check in perpkt path.
3861  * @soc: DP soc handle
3862  * @vdev_id: id of DP vdev handle
3863  * @nbuf: skb
3864  *
3865  * Entry point for Core Tx layer (DP_TX) invoked from
3866  * hard_start_xmit in OSIF/HDD to transmit packet through dp_tx_send
3867  * with special condition to avoid per pkt check in dp_tx_send
3868  *
3869  * Return: NULL on success,
3870  *         nbuf when it fails to send
3871  */
3872 qdf_nbuf_t dp_tx_send_vdev_id_check(struct cdp_soc_t *soc_hdl,
3873 				    uint8_t vdev_id, qdf_nbuf_t nbuf)
3874 {
3875 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
3876 	struct dp_vdev *vdev = NULL;
3877 
3878 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
3879 		return nbuf;
3880 
3881 	/*
3882 	 * dp_vdev_get_ref_by_id does does a atomic operation avoid using
3883 	 * this in per packet path.
3884 	 *
3885 	 * As in this path vdev memory is already protected with netdev
3886 	 * tx lock
3887 	 */
3888 	vdev = soc->vdev_id_map[vdev_id];
3889 	if (qdf_unlikely(!vdev))
3890 		return nbuf;
3891 
3892 	if (qdf_unlikely(dp_tx_per_pkt_vdev_id_check(nbuf, vdev)
3893 			== QDF_STATUS_E_FAILURE)) {
3894 		DP_STATS_INC(vdev, tx_i.dropped.fail_per_pkt_vdev_id_check, 1);
3895 		return nbuf;
3896 	}
3897 
3898 	return dp_tx_send(soc_hdl, vdev_id, nbuf);
3899 }
3900 
3901 #ifdef UMAC_SUPPORT_PROXY_ARP
3902 /**
3903  * dp_tx_proxy_arp() - Tx proxy arp handler
3904  * @vdev: datapath vdev handle
3905  * @buf: sk buffer
3906  *
3907  * Return: status
3908  */
3909 static inline
3910 int dp_tx_proxy_arp(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
3911 {
3912 	if (vdev->osif_proxy_arp)
3913 		return vdev->osif_proxy_arp(vdev->osif_vdev, nbuf);
3914 
3915 	/*
3916 	 * when UMAC_SUPPORT_PROXY_ARP is defined, we expect
3917 	 * osif_proxy_arp has a valid function pointer assigned
3918 	 * to it
3919 	 */
3920 	dp_tx_err("valid function pointer for osif_proxy_arp is expected!!\n");
3921 
3922 	return QDF_STATUS_NOT_INITIALIZED;
3923 }
3924 #else
3925 /**
3926  * dp_tx_proxy_arp() - Tx proxy arp handler
3927  * @vdev: datapath vdev handle
3928  * @buf: sk buffer
3929  *
3930  * This function always return 0 when UMAC_SUPPORT_PROXY_ARP
3931  * is not defined.
3932  *
3933  * Return: status
3934  */
3935 static inline
3936 int dp_tx_proxy_arp(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
3937 {
3938 	return QDF_STATUS_SUCCESS;
3939 }
3940 #endif
3941 
3942 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
3943 #ifdef WLAN_MCAST_MLO
3944 static bool
3945 dp_tx_reinject_mlo_hdl(struct dp_soc *soc, struct dp_vdev *vdev,
3946 		       struct dp_tx_desc_s *tx_desc,
3947 		       qdf_nbuf_t nbuf,
3948 		       uint8_t reinject_reason)
3949 {
3950 	if (reinject_reason == HTT_TX_FW2WBM_REINJECT_REASON_MLO_MCAST) {
3951 		if (soc->arch_ops.dp_tx_mcast_handler)
3952 			soc->arch_ops.dp_tx_mcast_handler(soc, vdev, nbuf);
3953 
3954 		dp_tx_desc_release(tx_desc, tx_desc->pool_id);
3955 		return true;
3956 	}
3957 
3958 	return false;
3959 }
3960 #else /* WLAN_MCAST_MLO */
3961 static inline bool
3962 dp_tx_reinject_mlo_hdl(struct dp_soc *soc, struct dp_vdev *vdev,
3963 		       struct dp_tx_desc_s *tx_desc,
3964 		       qdf_nbuf_t nbuf,
3965 		       uint8_t reinject_reason)
3966 {
3967 	return false;
3968 }
3969 #endif /* WLAN_MCAST_MLO */
3970 #else
3971 static inline bool
3972 dp_tx_reinject_mlo_hdl(struct dp_soc *soc, struct dp_vdev *vdev,
3973 		       struct dp_tx_desc_s *tx_desc,
3974 		       qdf_nbuf_t nbuf,
3975 		       uint8_t reinject_reason)
3976 {
3977 	return false;
3978 }
3979 #endif
3980 
3981 /**
3982  * dp_tx_reinject_handler() - Tx Reinject Handler
3983  * @soc: datapath soc handle
3984  * @vdev: datapath vdev handle
3985  * @tx_desc: software descriptor head pointer
3986  * @status : Tx completion status from HTT descriptor
3987  * @reinject_reason : reinject reason from HTT descriptor
3988  *
3989  * This function reinjects frames back to Target.
3990  * Todo - Host queue needs to be added
3991  *
3992  * Return: none
3993  */
3994 void dp_tx_reinject_handler(struct dp_soc *soc,
3995 			    struct dp_vdev *vdev,
3996 			    struct dp_tx_desc_s *tx_desc,
3997 			    uint8_t *status,
3998 			    uint8_t reinject_reason)
3999 {
4000 	struct dp_peer *peer = NULL;
4001 	uint32_t peer_id = HTT_INVALID_PEER;
4002 	qdf_nbuf_t nbuf = tx_desc->nbuf;
4003 	qdf_nbuf_t nbuf_copy = NULL;
4004 	struct dp_tx_msdu_info_s msdu_info;
4005 #ifdef WDS_VENDOR_EXTENSION
4006 	int is_mcast = 0, is_ucast = 0;
4007 	int num_peers_3addr = 0;
4008 	qdf_ether_header_t *eth_hdr = (qdf_ether_header_t *)(qdf_nbuf_data(nbuf));
4009 	struct ieee80211_frame_addr4 *wh = (struct ieee80211_frame_addr4 *)(qdf_nbuf_data(nbuf));
4010 #endif
4011 	struct dp_txrx_peer *txrx_peer;
4012 
4013 	qdf_assert(vdev);
4014 
4015 	dp_tx_debug("Tx reinject path");
4016 
4017 	DP_STATS_INC_PKT(vdev, tx_i.reinject_pkts, 1,
4018 			qdf_nbuf_len(tx_desc->nbuf));
4019 
4020 	if (dp_tx_reinject_mlo_hdl(soc, vdev, tx_desc, nbuf, reinject_reason))
4021 		return;
4022 
4023 #ifdef WDS_VENDOR_EXTENSION
4024 	if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
4025 		is_mcast = (IS_MULTICAST(wh->i_addr1)) ? 1 : 0;
4026 	} else {
4027 		is_mcast = (IS_MULTICAST(eth_hdr->ether_dhost)) ? 1 : 0;
4028 	}
4029 	is_ucast = !is_mcast;
4030 
4031 	qdf_spin_lock_bh(&vdev->peer_list_lock);
4032 	TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
4033 		txrx_peer = dp_get_txrx_peer(peer);
4034 
4035 		if (!txrx_peer || txrx_peer->bss_peer)
4036 			continue;
4037 
4038 		/* Detect wds peers that use 3-addr framing for mcast.
4039 		 * if there are any, the bss_peer is used to send the
4040 		 * the mcast frame using 3-addr format. all wds enabled
4041 		 * peers that use 4-addr framing for mcast frames will
4042 		 * be duplicated and sent as 4-addr frames below.
4043 		 */
4044 		if (!txrx_peer->wds_enabled ||
4045 		    !txrx_peer->wds_ecm.wds_tx_mcast_4addr) {
4046 			num_peers_3addr = 1;
4047 			break;
4048 		}
4049 	}
4050 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
4051 #endif
4052 
4053 	if (qdf_unlikely(vdev->mesh_vdev)) {
4054 		DP_TX_FREE_SINGLE_BUF(vdev->pdev->soc, tx_desc->nbuf);
4055 	} else {
4056 		qdf_spin_lock_bh(&vdev->peer_list_lock);
4057 		TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
4058 			txrx_peer = dp_get_txrx_peer(peer);
4059 			if (!txrx_peer)
4060 				continue;
4061 
4062 			if ((txrx_peer->peer_id != HTT_INVALID_PEER) &&
4063 #ifdef WDS_VENDOR_EXTENSION
4064 			/*
4065 			 * . if 3-addr STA, then send on BSS Peer
4066 			 * . if Peer WDS enabled and accept 4-addr mcast,
4067 			 * send mcast on that peer only
4068 			 * . if Peer WDS enabled and accept 4-addr ucast,
4069 			 * send ucast on that peer only
4070 			 */
4071 			((txrx_peer->bss_peer && num_peers_3addr && is_mcast) ||
4072 			 (txrx_peer->wds_enabled &&
4073 			 ((is_mcast && txrx_peer->wds_ecm.wds_tx_mcast_4addr) ||
4074 			 (is_ucast &&
4075 			 txrx_peer->wds_ecm.wds_tx_ucast_4addr))))) {
4076 #else
4077 			(txrx_peer->bss_peer &&
4078 			 (dp_tx_proxy_arp(vdev, nbuf) == QDF_STATUS_SUCCESS))) {
4079 #endif
4080 				peer_id = DP_INVALID_PEER;
4081 
4082 				nbuf_copy = qdf_nbuf_copy(nbuf);
4083 
4084 				if (!nbuf_copy) {
4085 					dp_tx_debug("nbuf copy failed");
4086 					break;
4087 				}
4088 				qdf_mem_zero(&msdu_info, sizeof(msdu_info));
4089 				dp_tx_get_queue(vdev, nbuf,
4090 						&msdu_info.tx_queue);
4091 
4092 				nbuf_copy = dp_tx_send_msdu_single(vdev,
4093 						nbuf_copy,
4094 						&msdu_info,
4095 						peer_id,
4096 						NULL);
4097 
4098 				if (nbuf_copy) {
4099 					dp_tx_debug("pkt send failed");
4100 					qdf_nbuf_free(nbuf_copy);
4101 				}
4102 			}
4103 		}
4104 		qdf_spin_unlock_bh(&vdev->peer_list_lock);
4105 
4106 		qdf_nbuf_unmap_nbytes_single(vdev->osdev, nbuf,
4107 					     QDF_DMA_TO_DEVICE, nbuf->len);
4108 		qdf_nbuf_free(nbuf);
4109 	}
4110 
4111 	dp_tx_desc_release(tx_desc, tx_desc->pool_id);
4112 }
4113 
4114 /**
4115  * dp_tx_inspect_handler() - Tx Inspect Handler
4116  * @soc: datapath soc handle
4117  * @vdev: datapath vdev handle
4118  * @tx_desc: software descriptor head pointer
4119  * @status : Tx completion status from HTT descriptor
4120  *
4121  * Handles Tx frames sent back to Host for inspection
4122  * (ProxyARP)
4123  *
4124  * Return: none
4125  */
4126 void dp_tx_inspect_handler(struct dp_soc *soc,
4127 			   struct dp_vdev *vdev,
4128 			   struct dp_tx_desc_s *tx_desc,
4129 			   uint8_t *status)
4130 {
4131 
4132 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
4133 			"%s Tx inspect path",
4134 			__func__);
4135 
4136 	DP_STATS_INC_PKT(vdev, tx_i.inspect_pkts, 1,
4137 			 qdf_nbuf_len(tx_desc->nbuf));
4138 
4139 	DP_TX_FREE_SINGLE_BUF(soc, tx_desc->nbuf);
4140 	dp_tx_desc_release(tx_desc, tx_desc->pool_id);
4141 }
4142 
4143 #ifdef MESH_MODE_SUPPORT
4144 /**
4145  * dp_tx_comp_fill_tx_completion_stats() - Fill per packet Tx completion stats
4146  *                                         in mesh meta header
4147  * @tx_desc: software descriptor head pointer
4148  * @ts: pointer to tx completion stats
4149  * Return: none
4150  */
4151 static
4152 void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
4153 		struct hal_tx_completion_status *ts)
4154 {
4155 	qdf_nbuf_t netbuf = tx_desc->nbuf;
4156 
4157 	if (!tx_desc->msdu_ext_desc) {
4158 		if (qdf_nbuf_pull_head(netbuf, tx_desc->pkt_offset) == NULL) {
4159 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
4160 				"netbuf %pK offset %d",
4161 				netbuf, tx_desc->pkt_offset);
4162 			return;
4163 		}
4164 	}
4165 }
4166 
4167 #else
4168 static
4169 void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
4170 		struct hal_tx_completion_status *ts)
4171 {
4172 }
4173 
4174 #endif
4175 
4176 #ifdef CONFIG_SAWF
4177 static void dp_tx_update_peer_sawf_stats(struct dp_soc *soc,
4178 					 struct dp_vdev *vdev,
4179 					 struct dp_txrx_peer *txrx_peer,
4180 					 struct dp_tx_desc_s *tx_desc,
4181 					 struct hal_tx_completion_status *ts,
4182 					 uint8_t tid)
4183 {
4184 	dp_sawf_tx_compl_update_peer_stats(soc, vdev, txrx_peer, tx_desc,
4185 					   ts, tid);
4186 }
4187 
4188 static void dp_tx_compute_delay_avg(struct cdp_delay_tx_stats  *tx_delay,
4189 				    uint32_t nw_delay,
4190 				    uint32_t sw_delay,
4191 				    uint32_t hw_delay)
4192 {
4193 	dp_peer_tid_delay_avg(tx_delay,
4194 			      nw_delay,
4195 			      sw_delay,
4196 			      hw_delay);
4197 }
4198 #else
4199 static void dp_tx_update_peer_sawf_stats(struct dp_soc *soc,
4200 					 struct dp_vdev *vdev,
4201 					 struct dp_txrx_peer *txrx_peer,
4202 					 struct dp_tx_desc_s *tx_desc,
4203 					 struct hal_tx_completion_status *ts,
4204 					 uint8_t tid)
4205 {
4206 }
4207 
4208 static inline void
4209 dp_tx_compute_delay_avg(struct cdp_delay_tx_stats *tx_delay,
4210 			uint32_t nw_delay, uint32_t sw_delay,
4211 			uint32_t hw_delay)
4212 {
4213 }
4214 #endif
4215 
4216 #ifdef QCA_PEER_EXT_STATS
4217 #ifdef WLAN_CONFIG_TX_DELAY
4218 static void dp_tx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
4219 				    struct dp_tx_desc_s *tx_desc,
4220 				    struct hal_tx_completion_status *ts,
4221 				    struct dp_vdev *vdev)
4222 {
4223 	struct dp_soc *soc = vdev->pdev->soc;
4224 	struct cdp_delay_tx_stats  *tx_delay = &stats->tx_delay;
4225 	int64_t timestamp_ingress, timestamp_hw_enqueue;
4226 	uint32_t sw_enqueue_delay, fwhw_transmit_delay = 0;
4227 
4228 	if (!ts->valid)
4229 		return;
4230 
4231 	timestamp_ingress = qdf_nbuf_get_timestamp_us(tx_desc->nbuf);
4232 	timestamp_hw_enqueue = qdf_ktime_to_us(tx_desc->timestamp);
4233 
4234 	sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
4235 	dp_hist_update_stats(&tx_delay->tx_swq_delay, sw_enqueue_delay);
4236 
4237 	if (soc->arch_ops.dp_tx_compute_hw_delay)
4238 		if (!soc->arch_ops.dp_tx_compute_hw_delay(soc, vdev, ts,
4239 							  &fwhw_transmit_delay))
4240 			dp_hist_update_stats(&tx_delay->hwtx_delay,
4241 					     fwhw_transmit_delay);
4242 
4243 	dp_tx_compute_delay_avg(tx_delay, 0, sw_enqueue_delay,
4244 				fwhw_transmit_delay);
4245 }
4246 #else
4247 /*
4248  * dp_tx_compute_tid_delay() - Compute per TID delay
4249  * @stats: Per TID delay stats
4250  * @tx_desc: Software Tx descriptor
4251  * @ts: Tx completion status
4252  * @vdev: vdev
4253  *
4254  * Compute the software enqueue and hw enqueue delays and
4255  * update the respective histograms
4256  *
4257  * Return: void
4258  */
4259 static void dp_tx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
4260 				    struct dp_tx_desc_s *tx_desc,
4261 				    struct hal_tx_completion_status *ts,
4262 				    struct dp_vdev *vdev)
4263 {
4264 	struct cdp_delay_tx_stats  *tx_delay = &stats->tx_delay;
4265 	int64_t current_timestamp, timestamp_ingress, timestamp_hw_enqueue;
4266 	uint32_t sw_enqueue_delay, fwhw_transmit_delay;
4267 
4268 	current_timestamp = qdf_ktime_to_ms(qdf_ktime_real_get());
4269 	timestamp_ingress = qdf_nbuf_get_timestamp(tx_desc->nbuf);
4270 	timestamp_hw_enqueue = qdf_ktime_to_ms(tx_desc->timestamp);
4271 	sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
4272 	fwhw_transmit_delay = (uint32_t)(current_timestamp -
4273 					 timestamp_hw_enqueue);
4274 
4275 	/*
4276 	 * Update the Tx software enqueue delay and HW enque-Completion delay.
4277 	 */
4278 	dp_hist_update_stats(&tx_delay->tx_swq_delay, sw_enqueue_delay);
4279 	dp_hist_update_stats(&tx_delay->hwtx_delay, fwhw_transmit_delay);
4280 }
4281 #endif
4282 
4283 /*
4284  * dp_tx_update_peer_delay_stats() - Update the peer delay stats
4285  * @txrx_peer: DP peer context
4286  * @tx_desc: Tx software descriptor
4287  * @tid: Transmission ID
4288  * @ring_id: Rx CPU context ID/CPU_ID
4289  *
4290  * Update the peer extended stats. These are enhanced other
4291  * delay stats per msdu level.
4292  *
4293  * Return: void
4294  */
4295 static void dp_tx_update_peer_delay_stats(struct dp_txrx_peer *txrx_peer,
4296 					  struct dp_tx_desc_s *tx_desc,
4297 					  struct hal_tx_completion_status *ts,
4298 					  uint8_t ring_id)
4299 {
4300 	struct dp_pdev *pdev = txrx_peer->vdev->pdev;
4301 	struct dp_soc *soc = NULL;
4302 	struct dp_peer_delay_stats *delay_stats = NULL;
4303 	uint8_t tid;
4304 
4305 	soc = pdev->soc;
4306 	if (qdf_likely(!wlan_cfg_is_peer_ext_stats_enabled(soc->wlan_cfg_ctx)))
4307 		return;
4308 
4309 	if (!txrx_peer->delay_stats)
4310 		return;
4311 
4312 	tid = ts->tid;
4313 	delay_stats = txrx_peer->delay_stats;
4314 
4315 	qdf_assert(ring < CDP_MAX_TXRX_CTX);
4316 
4317 	/*
4318 	 * For non-TID packets use the TID 9
4319 	 */
4320 	if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
4321 		tid = CDP_MAX_DATA_TIDS - 1;
4322 
4323 	dp_tx_compute_tid_delay(&delay_stats->delay_tid_stats[tid][ring_id],
4324 				tx_desc, ts, txrx_peer->vdev);
4325 }
4326 #else
4327 static inline
4328 void dp_tx_update_peer_delay_stats(struct dp_txrx_peer *txrx_peer,
4329 				   struct dp_tx_desc_s *tx_desc,
4330 				   struct hal_tx_completion_status *ts,
4331 				   uint8_t ring_id)
4332 {
4333 }
4334 #endif
4335 
4336 #ifdef WLAN_PEER_JITTER
4337 /*
4338  * dp_tx_jitter_get_avg_jitter() - compute the average jitter
4339  * @curr_delay: Current delay
4340  * @prev_Delay: Previous delay
4341  * @avg_jitter: Average Jitter
4342  * Return: Newly Computed Average Jitter
4343  */
4344 static uint32_t dp_tx_jitter_get_avg_jitter(uint32_t curr_delay,
4345 					    uint32_t prev_delay,
4346 					    uint32_t avg_jitter)
4347 {
4348 	uint32_t curr_jitter;
4349 	int32_t jitter_diff;
4350 
4351 	curr_jitter = qdf_abs(curr_delay - prev_delay);
4352 	if (!avg_jitter)
4353 		return curr_jitter;
4354 
4355 	jitter_diff = curr_jitter - avg_jitter;
4356 	if (jitter_diff < 0)
4357 		avg_jitter = avg_jitter -
4358 			(qdf_abs(jitter_diff) >> DP_AVG_JITTER_WEIGHT_DENOM);
4359 	else
4360 		avg_jitter = avg_jitter +
4361 			(qdf_abs(jitter_diff) >> DP_AVG_JITTER_WEIGHT_DENOM);
4362 
4363 	return avg_jitter;
4364 }
4365 
4366 /*
4367  * dp_tx_jitter_get_avg_delay() - compute the average delay
4368  * @curr_delay: Current delay
4369  * @avg_Delay: Average delay
4370  * Return: Newly Computed Average Delay
4371  */
4372 static uint32_t dp_tx_jitter_get_avg_delay(uint32_t curr_delay,
4373 					   uint32_t avg_delay)
4374 {
4375 	int32_t delay_diff;
4376 
4377 	if (!avg_delay)
4378 		return curr_delay;
4379 
4380 	delay_diff = curr_delay - avg_delay;
4381 	if (delay_diff < 0)
4382 		avg_delay = avg_delay - (qdf_abs(delay_diff) >>
4383 					DP_AVG_DELAY_WEIGHT_DENOM);
4384 	else
4385 		avg_delay = avg_delay + (qdf_abs(delay_diff) >>
4386 					DP_AVG_DELAY_WEIGHT_DENOM);
4387 
4388 	return avg_delay;
4389 }
4390 
4391 #ifdef WLAN_CONFIG_TX_DELAY
4392 /*
4393  * dp_tx_compute_cur_delay() - get the current delay
4394  * @soc: soc handle
4395  * @vdev: vdev structure for data path state
4396  * @ts: Tx completion status
4397  * @curr_delay: current delay
4398  * @tx_desc: tx descriptor
4399  * Return: void
4400  */
4401 static
4402 QDF_STATUS dp_tx_compute_cur_delay(struct dp_soc *soc,
4403 				   struct dp_vdev *vdev,
4404 				   struct hal_tx_completion_status *ts,
4405 				   uint32_t *curr_delay,
4406 				   struct dp_tx_desc_s *tx_desc)
4407 {
4408 	QDF_STATUS status = QDF_STATUS_E_FAILURE;
4409 
4410 	if (soc->arch_ops.dp_tx_compute_hw_delay)
4411 		status = soc->arch_ops.dp_tx_compute_hw_delay(soc, vdev, ts,
4412 							      curr_delay);
4413 	return status;
4414 }
4415 #else
4416 static
4417 QDF_STATUS dp_tx_compute_cur_delay(struct dp_soc *soc,
4418 				   struct dp_vdev *vdev,
4419 				   struct hal_tx_completion_status *ts,
4420 				   uint32_t *curr_delay,
4421 				   struct dp_tx_desc_s *tx_desc)
4422 {
4423 	int64_t current_timestamp, timestamp_hw_enqueue;
4424 
4425 	current_timestamp = qdf_ktime_to_us(qdf_ktime_real_get());
4426 	timestamp_hw_enqueue = qdf_ktime_to_us(tx_desc->timestamp);
4427 	*curr_delay = (uint32_t)(current_timestamp - timestamp_hw_enqueue);
4428 
4429 	return QDF_STATUS_SUCCESS;
4430 }
4431 #endif
4432 
4433 /* dp_tx_compute_tid_jitter() - compute per tid per ring jitter
4434  * @jiiter - per tid per ring jitter stats
4435  * @ts: Tx completion status
4436  * @vdev - vdev structure for data path state
4437  * @tx_desc - tx descriptor
4438  * Return: void
4439  */
4440 static void dp_tx_compute_tid_jitter(struct cdp_peer_tid_stats *jitter,
4441 				     struct hal_tx_completion_status *ts,
4442 				     struct dp_vdev *vdev,
4443 				     struct dp_tx_desc_s *tx_desc)
4444 {
4445 	uint32_t curr_delay, avg_delay, avg_jitter, prev_delay;
4446 	struct dp_soc *soc = vdev->pdev->soc;
4447 	QDF_STATUS status = QDF_STATUS_E_FAILURE;
4448 
4449 	if (ts->status !=  HAL_TX_TQM_RR_FRAME_ACKED) {
4450 		jitter->tx_drop += 1;
4451 		return;
4452 	}
4453 
4454 	status = dp_tx_compute_cur_delay(soc, vdev, ts, &curr_delay,
4455 					 tx_desc);
4456 
4457 	if (QDF_IS_STATUS_SUCCESS(status)) {
4458 		avg_delay = jitter->tx_avg_delay;
4459 		avg_jitter = jitter->tx_avg_jitter;
4460 		prev_delay = jitter->tx_prev_delay;
4461 		avg_jitter = dp_tx_jitter_get_avg_jitter(curr_delay,
4462 							 prev_delay,
4463 							 avg_jitter);
4464 		avg_delay = dp_tx_jitter_get_avg_delay(curr_delay, avg_delay);
4465 		jitter->tx_avg_delay = avg_delay;
4466 		jitter->tx_avg_jitter = avg_jitter;
4467 		jitter->tx_prev_delay = curr_delay;
4468 		jitter->tx_total_success += 1;
4469 	} else if (status == QDF_STATUS_E_FAILURE) {
4470 		jitter->tx_avg_err += 1;
4471 	}
4472 }
4473 
4474 /* dp_tx_update_peer_jitter_stats() - Update the peer jitter stats
4475  * @txrx_peer: DP peer context
4476  * @tx_desc: Tx software descriptor
4477  * @ts: Tx completion status
4478  * @ring_id: Rx CPU context ID/CPU_ID
4479  * Return: void
4480  */
4481 static void dp_tx_update_peer_jitter_stats(struct dp_txrx_peer *txrx_peer,
4482 					   struct dp_tx_desc_s *tx_desc,
4483 					   struct hal_tx_completion_status *ts,
4484 					   uint8_t ring_id)
4485 {
4486 	struct dp_pdev *pdev = txrx_peer->vdev->pdev;
4487 	struct dp_soc *soc = pdev->soc;
4488 	struct cdp_peer_tid_stats *jitter_stats = NULL;
4489 	uint8_t tid;
4490 	struct cdp_peer_tid_stats *rx_tid = NULL;
4491 
4492 	if (qdf_likely(!wlan_cfg_is_peer_jitter_stats_enabled(soc->wlan_cfg_ctx)))
4493 		return;
4494 
4495 	tid = ts->tid;
4496 	jitter_stats = txrx_peer->jitter_stats;
4497 	qdf_assert_always(jitter_stats);
4498 	qdf_assert(ring < CDP_MAX_TXRX_CTX);
4499 	/*
4500 	 * For non-TID packets use the TID 9
4501 	 */
4502 	if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
4503 		tid = CDP_MAX_DATA_TIDS - 1;
4504 
4505 	rx_tid = &jitter_stats[tid * CDP_MAX_TXRX_CTX + ring_id];
4506 	dp_tx_compute_tid_jitter(rx_tid,
4507 				 ts, txrx_peer->vdev, tx_desc);
4508 }
4509 #else
4510 static void dp_tx_update_peer_jitter_stats(struct dp_txrx_peer *txrx_peer,
4511 					   struct dp_tx_desc_s *tx_desc,
4512 					   struct hal_tx_completion_status *ts,
4513 					   uint8_t ring_id)
4514 {
4515 }
4516 #endif
4517 
4518 #ifdef HW_TX_DELAY_STATS_ENABLE
4519 /**
4520  * dp_update_tx_delay_stats() - update the delay stats
4521  * @vdev: vdev handle
4522  * @delay: delay in ms or us based on the flag delay_in_us
4523  * @tid: tid value
4524  * @mode: type of tx delay mode
4525  * @ring id: ring number
4526  * @delay_in_us: flag to indicate whether the delay is in ms or us
4527  *
4528  * Return: none
4529  */
4530 static inline
4531 void dp_update_tx_delay_stats(struct dp_vdev *vdev, uint32_t delay, uint8_t tid,
4532 			      uint8_t mode, uint8_t ring_id, bool delay_in_us)
4533 {
4534 	struct cdp_tid_tx_stats *tstats =
4535 		&vdev->stats.tid_tx_stats[ring_id][tid];
4536 
4537 	dp_update_delay_stats(tstats, NULL, delay, tid, mode, ring_id,
4538 			      delay_in_us);
4539 }
4540 #else
4541 static inline
4542 void dp_update_tx_delay_stats(struct dp_vdev *vdev, uint32_t delay, uint8_t tid,
4543 			      uint8_t mode, uint8_t ring_id, bool delay_in_us)
4544 {
4545 	struct cdp_tid_tx_stats *tstats =
4546 		&vdev->pdev->stats.tid_stats.tid_tx_stats[ring_id][tid];
4547 
4548 	dp_update_delay_stats(tstats, NULL, delay, tid, mode, ring_id,
4549 			      delay_in_us);
4550 }
4551 #endif
4552 
4553 /**
4554  * dp_tx_compute_delay() - Compute and fill in all timestamps
4555  *				to pass in correct fields
4556  *
4557  * @vdev: pdev handle
4558  * @tx_desc: tx descriptor
4559  * @tid: tid value
4560  * @ring_id: TCL or WBM ring number for transmit path
4561  * Return: none
4562  */
4563 void dp_tx_compute_delay(struct dp_vdev *vdev, struct dp_tx_desc_s *tx_desc,
4564 			 uint8_t tid, uint8_t ring_id)
4565 {
4566 	int64_t current_timestamp, timestamp_ingress, timestamp_hw_enqueue;
4567 	uint32_t sw_enqueue_delay, fwhw_transmit_delay, interframe_delay;
4568 	uint32_t fwhw_transmit_delay_us;
4569 
4570 	if (qdf_likely(!vdev->pdev->delay_stats_flag) &&
4571 	    qdf_likely(!dp_is_vdev_tx_delay_stats_enabled(vdev)))
4572 		return;
4573 
4574 	if (dp_is_vdev_tx_delay_stats_enabled(vdev)) {
4575 		fwhw_transmit_delay_us =
4576 			qdf_ktime_to_us(qdf_ktime_real_get()) -
4577 			qdf_ktime_to_us(tx_desc->timestamp);
4578 
4579 		/*
4580 		 * Delay between packet enqueued to HW and Tx completion in us
4581 		 */
4582 		dp_update_tx_delay_stats(vdev, fwhw_transmit_delay_us, tid,
4583 					 CDP_DELAY_STATS_FW_HW_TRANSMIT,
4584 					 ring_id, true);
4585 		/*
4586 		 * For MCL, only enqueue to completion delay is required
4587 		 * so return if the vdev flag is enabled.
4588 		 */
4589 		return;
4590 	}
4591 
4592 	current_timestamp = qdf_ktime_to_ms(qdf_ktime_real_get());
4593 	timestamp_hw_enqueue = qdf_ktime_to_ms(tx_desc->timestamp);
4594 	fwhw_transmit_delay = (uint32_t)(current_timestamp -
4595 					 timestamp_hw_enqueue);
4596 
4597 	if (!timestamp_hw_enqueue)
4598 		return;
4599 	/*
4600 	 * Delay between packet enqueued to HW and Tx completion in ms
4601 	 */
4602 	dp_update_tx_delay_stats(vdev, fwhw_transmit_delay, tid,
4603 				 CDP_DELAY_STATS_FW_HW_TRANSMIT, ring_id,
4604 				 false);
4605 
4606 	timestamp_ingress = qdf_nbuf_get_timestamp(tx_desc->nbuf);
4607 	sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
4608 	interframe_delay = (uint32_t)(timestamp_ingress -
4609 				      vdev->prev_tx_enq_tstamp);
4610 
4611 	/*
4612 	 * Delay in software enqueue
4613 	 */
4614 	dp_update_tx_delay_stats(vdev, sw_enqueue_delay, tid,
4615 				 CDP_DELAY_STATS_SW_ENQ, ring_id,
4616 				 false);
4617 
4618 	/*
4619 	 * Update interframe delay stats calculated at hardstart receive point.
4620 	 * Value of vdev->prev_tx_enq_tstamp will be 0 for 1st frame, so
4621 	 * interframe delay will not be calculate correctly for 1st frame.
4622 	 * On the other side, this will help in avoiding extra per packet check
4623 	 * of !vdev->prev_tx_enq_tstamp.
4624 	 */
4625 	dp_update_tx_delay_stats(vdev, interframe_delay, tid,
4626 				 CDP_DELAY_STATS_TX_INTERFRAME, ring_id,
4627 				 false);
4628 	vdev->prev_tx_enq_tstamp = timestamp_ingress;
4629 }
4630 
4631 #ifdef DISABLE_DP_STATS
4632 static
4633 inline void dp_update_no_ack_stats(qdf_nbuf_t nbuf,
4634 				   struct dp_txrx_peer *txrx_peer)
4635 {
4636 }
4637 #else
4638 static inline void
4639 dp_update_no_ack_stats(qdf_nbuf_t nbuf, struct dp_txrx_peer *txrx_peer)
4640 {
4641 	enum qdf_proto_subtype subtype = QDF_PROTO_INVALID;
4642 
4643 	DPTRACE(qdf_dp_track_noack_check(nbuf, &subtype));
4644 	if (subtype != QDF_PROTO_INVALID)
4645 		DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.no_ack_count[subtype],
4646 					  1);
4647 }
4648 #endif
4649 
4650 #ifndef QCA_ENHANCED_STATS_SUPPORT
4651 #ifdef DP_PEER_EXTENDED_API
4652 static inline uint8_t
4653 dp_tx_get_mpdu_retry_threshold(struct dp_txrx_peer *txrx_peer)
4654 {
4655 	return txrx_peer->mpdu_retry_threshold;
4656 }
4657 #else
4658 static inline uint8_t
4659 dp_tx_get_mpdu_retry_threshold(struct dp_txrx_peer *txrx_peer)
4660 {
4661 	return 0;
4662 }
4663 #endif
4664 
4665 /**
4666  * dp_tx_update_peer_extd_stats()- Update Tx extended path stats for peer
4667  *
4668  * @ts: Tx compltion status
4669  * @txrx_peer: datapath txrx_peer handle
4670  *
4671  * Return: void
4672  */
4673 static inline void
4674 dp_tx_update_peer_extd_stats(struct hal_tx_completion_status *ts,
4675 			     struct dp_txrx_peer *txrx_peer)
4676 {
4677 	uint8_t mcs, pkt_type, dst_mcs_idx;
4678 	uint8_t retry_threshold = dp_tx_get_mpdu_retry_threshold(txrx_peer);
4679 
4680 	mcs = ts->mcs;
4681 	pkt_type = ts->pkt_type;
4682 	/* do HW to SW pkt type conversion */
4683 	pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX :
4684 		    hal_2_dp_pkt_type_map[pkt_type]);
4685 
4686 	dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs);
4687 	if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx)
4688 		DP_PEER_EXTD_STATS_INC(txrx_peer,
4689 				       tx.pkt_type[pkt_type].mcs_count[dst_mcs_idx],
4690 				       1);
4691 
4692 	DP_PEER_EXTD_STATS_INC(txrx_peer, tx.sgi_count[ts->sgi], 1);
4693 	DP_PEER_EXTD_STATS_INC(txrx_peer, tx.bw[ts->bw], 1);
4694 	DP_PEER_EXTD_STATS_UPD(txrx_peer, tx.last_ack_rssi, ts->ack_frame_rssi);
4695 	DP_PEER_EXTD_STATS_INC(txrx_peer,
4696 			       tx.wme_ac_type[TID_TO_WME_AC(ts->tid)], 1);
4697 	DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.stbc, 1, ts->stbc);
4698 	DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.ldpc, 1, ts->ldpc);
4699 	DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.retries, 1, ts->transmit_cnt > 1);
4700 	if (ts->first_msdu) {
4701 		DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.retries_mpdu, 1,
4702 					ts->transmit_cnt > 1);
4703 
4704 		if (!retry_threshold)
4705 			return;
4706 		DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.mpdu_success_with_retries,
4707 					qdf_do_div(ts->transmit_cnt,
4708 						   retry_threshold),
4709 					ts->transmit_cnt > retry_threshold);
4710 	}
4711 }
4712 #else
4713 static inline void
4714 dp_tx_update_peer_extd_stats(struct hal_tx_completion_status *ts,
4715 			     struct dp_txrx_peer *txrx_peer)
4716 {
4717 }
4718 #endif
4719 
4720 /**
4721  * dp_tx_update_peer_stats() - Update peer stats from Tx completion indications
4722  *				per wbm ring
4723  *
4724  * @tx_desc: software descriptor head pointer
4725  * @ts: Tx completion status
4726  * @peer: peer handle
4727  * @ring_id: ring number
4728  *
4729  * Return: None
4730  */
4731 static inline void
4732 dp_tx_update_peer_stats(struct dp_tx_desc_s *tx_desc,
4733 			struct hal_tx_completion_status *ts,
4734 			struct dp_txrx_peer *txrx_peer, uint8_t ring_id)
4735 {
4736 	struct dp_pdev *pdev = txrx_peer->vdev->pdev;
4737 	uint8_t tid = ts->tid;
4738 	uint32_t length;
4739 	struct cdp_tid_tx_stats *tid_stats;
4740 
4741 	if (!pdev)
4742 		return;
4743 
4744 	if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
4745 		tid = CDP_MAX_DATA_TIDS - 1;
4746 
4747 	tid_stats = &pdev->stats.tid_stats.tid_tx_stats[ring_id][tid];
4748 
4749 	if (ts->release_src != HAL_TX_COMP_RELEASE_SOURCE_TQM) {
4750 		dp_err_rl("Release source:%d is not from TQM", ts->release_src);
4751 		DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.release_src_not_tqm, 1);
4752 		return;
4753 	}
4754 
4755 	length = qdf_nbuf_len(tx_desc->nbuf);
4756 	DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
4757 
4758 	if (qdf_unlikely(pdev->delay_stats_flag) ||
4759 	    qdf_unlikely(dp_is_vdev_tx_delay_stats_enabled(txrx_peer->vdev)))
4760 		dp_tx_compute_delay(txrx_peer->vdev, tx_desc, tid, ring_id);
4761 
4762 	if (ts->status < CDP_MAX_TX_TQM_STATUS) {
4763 		tid_stats->tqm_status_cnt[ts->status]++;
4764 	}
4765 
4766 	if (qdf_likely(ts->status == HAL_TX_TQM_RR_FRAME_ACKED)) {
4767 		DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.retry_count, 1,
4768 					   ts->transmit_cnt > 1);
4769 
4770 		DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.multiple_retry_count,
4771 					   1, ts->transmit_cnt > 2);
4772 
4773 		DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.ofdma, 1, ts->ofdma);
4774 
4775 		DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.amsdu_cnt, 1,
4776 					   ts->msdu_part_of_amsdu);
4777 		DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.non_amsdu_cnt, 1,
4778 					   !ts->msdu_part_of_amsdu);
4779 
4780 		txrx_peer->stats.per_pkt_stats.tx.last_tx_ts =
4781 							qdf_system_ticks();
4782 
4783 		dp_tx_update_peer_extd_stats(ts, txrx_peer);
4784 
4785 		return;
4786 	}
4787 
4788 	/*
4789 	 * tx_failed is ideally supposed to be updated from HTT ppdu
4790 	 * completion stats. But in IPQ807X/IPQ6018 chipsets owing to
4791 	 * hw limitation there are no completions for failed cases.
4792 	 * Hence updating tx_failed from data path. Please note that
4793 	 * if tx_failed is fixed to be from ppdu, then this has to be
4794 	 * removed
4795 	 */
4796 	DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
4797 
4798 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.failed_retry_count, 1,
4799 				   ts->transmit_cnt > DP_RETRY_COUNT);
4800 	dp_update_no_ack_stats(tx_desc->nbuf, txrx_peer);
4801 
4802 	if (ts->status == HAL_TX_TQM_RR_REM_CMD_AGED) {
4803 		DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.age_out, 1);
4804 	} else if (ts->status == HAL_TX_TQM_RR_REM_CMD_REM) {
4805 		DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.dropped.fw_rem, 1,
4806 					      length);
4807 	} else if (ts->status == HAL_TX_TQM_RR_REM_CMD_NOTX) {
4808 		DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_rem_notx, 1);
4809 	} else if (ts->status == HAL_TX_TQM_RR_REM_CMD_TX) {
4810 		DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_rem_tx, 1);
4811 	} else if (ts->status == HAL_TX_TQM_RR_FW_REASON1) {
4812 		DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_reason1, 1);
4813 	} else if (ts->status == HAL_TX_TQM_RR_FW_REASON2) {
4814 		DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_reason2, 1);
4815 	} else if (ts->status == HAL_TX_TQM_RR_FW_REASON3) {
4816 		DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_reason3, 1);
4817 	} else if (ts->status == HAL_TX_TQM_RR_REM_CMD_DISABLE_QUEUE) {
4818 		DP_PEER_PER_PKT_STATS_INC(txrx_peer,
4819 					  tx.dropped.fw_rem_queue_disable, 1);
4820 	} else if (ts->status == HAL_TX_TQM_RR_REM_CMD_TILL_NONMATCHING) {
4821 		DP_PEER_PER_PKT_STATS_INC(txrx_peer,
4822 					  tx.dropped.fw_rem_no_match, 1);
4823 	} else if (ts->status == HAL_TX_TQM_RR_DROP_THRESHOLD) {
4824 		DP_PEER_PER_PKT_STATS_INC(txrx_peer,
4825 					  tx.dropped.drop_threshold, 1);
4826 	} else if (ts->status == HAL_TX_TQM_RR_LINK_DESC_UNAVAILABLE) {
4827 		DP_PEER_PER_PKT_STATS_INC(txrx_peer,
4828 					  tx.dropped.drop_link_desc_na, 1);
4829 	} else if (ts->status == HAL_TX_TQM_RR_DROP_OR_INVALID_MSDU) {
4830 		DP_PEER_PER_PKT_STATS_INC(txrx_peer,
4831 					  tx.dropped.invalid_drop, 1);
4832 	} else if (ts->status == HAL_TX_TQM_RR_MULTICAST_DROP) {
4833 		DP_PEER_PER_PKT_STATS_INC(txrx_peer,
4834 					  tx.dropped.mcast_vdev_drop, 1);
4835 	} else {
4836 		DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.invalid_rr, 1);
4837 	}
4838 }
4839 
4840 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
4841 /**
4842  * dp_tx_flow_pool_lock() - take flow pool lock
4843  * @soc: core txrx main context
4844  * @tx_desc: tx desc
4845  *
4846  * Return: None
4847  */
4848 static inline
4849 void dp_tx_flow_pool_lock(struct dp_soc *soc,
4850 			  struct dp_tx_desc_s *tx_desc)
4851 {
4852 	struct dp_tx_desc_pool_s *pool;
4853 	uint8_t desc_pool_id;
4854 
4855 	desc_pool_id = tx_desc->pool_id;
4856 	pool = &soc->tx_desc[desc_pool_id];
4857 
4858 	qdf_spin_lock_bh(&pool->flow_pool_lock);
4859 }
4860 
4861 /**
4862  * dp_tx_flow_pool_unlock() - release flow pool lock
4863  * @soc: core txrx main context
4864  * @tx_desc: tx desc
4865  *
4866  * Return: None
4867  */
4868 static inline
4869 void dp_tx_flow_pool_unlock(struct dp_soc *soc,
4870 			    struct dp_tx_desc_s *tx_desc)
4871 {
4872 	struct dp_tx_desc_pool_s *pool;
4873 	uint8_t desc_pool_id;
4874 
4875 	desc_pool_id = tx_desc->pool_id;
4876 	pool = &soc->tx_desc[desc_pool_id];
4877 
4878 	qdf_spin_unlock_bh(&pool->flow_pool_lock);
4879 }
4880 #else
4881 static inline
4882 void dp_tx_flow_pool_lock(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
4883 {
4884 }
4885 
4886 static inline
4887 void dp_tx_flow_pool_unlock(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
4888 {
4889 }
4890 #endif
4891 
4892 /**
4893  * dp_tx_notify_completion() - Notify tx completion for this desc
4894  * @soc: core txrx main context
4895  * @vdev: datapath vdev handle
4896  * @tx_desc: tx desc
4897  * @netbuf:  buffer
4898  * @status: tx status
4899  *
4900  * Return: none
4901  */
4902 static inline void dp_tx_notify_completion(struct dp_soc *soc,
4903 					   struct dp_vdev *vdev,
4904 					   struct dp_tx_desc_s *tx_desc,
4905 					   qdf_nbuf_t netbuf,
4906 					   uint8_t status)
4907 {
4908 	void *osif_dev;
4909 	ol_txrx_completion_fp tx_compl_cbk = NULL;
4910 	uint16_t flag = BIT(QDF_TX_RX_STATUS_DOWNLOAD_SUCC);
4911 
4912 	qdf_assert(tx_desc);
4913 
4914 	if (!vdev ||
4915 	    !vdev->osif_vdev) {
4916 		return;
4917 	}
4918 
4919 	osif_dev = vdev->osif_vdev;
4920 	tx_compl_cbk = vdev->tx_comp;
4921 
4922 	if (status == HAL_TX_TQM_RR_FRAME_ACKED)
4923 		flag |= BIT(QDF_TX_RX_STATUS_OK);
4924 
4925 	if (tx_compl_cbk)
4926 		tx_compl_cbk(netbuf, osif_dev, flag);
4927 }
4928 
4929 /** dp_tx_sojourn_stats_process() - Collect sojourn stats
4930  * @pdev: pdev handle
4931  * @tid: tid value
4932  * @txdesc_ts: timestamp from txdesc
4933  * @ppdu_id: ppdu id
4934  *
4935  * Return: none
4936  */
4937 #ifdef FEATURE_PERPKT_INFO
4938 static inline void dp_tx_sojourn_stats_process(struct dp_pdev *pdev,
4939 					       struct dp_txrx_peer *txrx_peer,
4940 					       uint8_t tid,
4941 					       uint64_t txdesc_ts,
4942 					       uint32_t ppdu_id)
4943 {
4944 	uint64_t delta_ms;
4945 	struct cdp_tx_sojourn_stats *sojourn_stats;
4946 	struct dp_peer *primary_link_peer = NULL;
4947 	struct dp_soc *link_peer_soc = NULL;
4948 
4949 	if (qdf_unlikely(!pdev->enhanced_stats_en))
4950 		return;
4951 
4952 	if (qdf_unlikely(tid == HTT_INVALID_TID ||
4953 			 tid >= CDP_DATA_TID_MAX))
4954 		return;
4955 
4956 	if (qdf_unlikely(!pdev->sojourn_buf))
4957 		return;
4958 
4959 	primary_link_peer = dp_get_primary_link_peer_by_id(pdev->soc,
4960 							   txrx_peer->peer_id,
4961 							   DP_MOD_ID_TX_COMP);
4962 
4963 	if (qdf_unlikely(!primary_link_peer))
4964 		return;
4965 
4966 	sojourn_stats = (struct cdp_tx_sojourn_stats *)
4967 		qdf_nbuf_data(pdev->sojourn_buf);
4968 
4969 	link_peer_soc = primary_link_peer->vdev->pdev->soc;
4970 	sojourn_stats->cookie = (void *)
4971 			dp_monitor_peer_get_peerstats_ctx(link_peer_soc,
4972 							  primary_link_peer);
4973 
4974 	delta_ms = qdf_ktime_to_ms(qdf_ktime_real_get()) -
4975 				txdesc_ts;
4976 	qdf_ewma_tx_lag_add(&txrx_peer->stats.per_pkt_stats.tx.avg_sojourn_msdu[tid],
4977 			    delta_ms);
4978 	sojourn_stats->sum_sojourn_msdu[tid] = delta_ms;
4979 	sojourn_stats->num_msdus[tid] = 1;
4980 	sojourn_stats->avg_sojourn_msdu[tid].internal =
4981 		txrx_peer->stats.per_pkt_stats.tx.avg_sojourn_msdu[tid].internal;
4982 	dp_wdi_event_handler(WDI_EVENT_TX_SOJOURN_STAT, pdev->soc,
4983 			     pdev->sojourn_buf, HTT_INVALID_PEER,
4984 			     WDI_NO_VAL, pdev->pdev_id);
4985 	sojourn_stats->sum_sojourn_msdu[tid] = 0;
4986 	sojourn_stats->num_msdus[tid] = 0;
4987 	sojourn_stats->avg_sojourn_msdu[tid].internal = 0;
4988 
4989 	dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_TX_COMP);
4990 }
4991 #else
4992 static inline void dp_tx_sojourn_stats_process(struct dp_pdev *pdev,
4993 					       struct dp_txrx_peer *txrx_peer,
4994 					       uint8_t tid,
4995 					       uint64_t txdesc_ts,
4996 					       uint32_t ppdu_id)
4997 {
4998 }
4999 #endif
5000 
5001 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
5002 /**
5003  * dp_send_completion_to_pkt_capture() - send tx completion to packet capture
5004  * @soc: dp_soc handle
5005  * @desc: Tx Descriptor
5006  * @ts: HAL Tx completion descriptor contents
5007  *
5008  * This function is used to send tx completion to packet capture
5009  */
5010 void dp_send_completion_to_pkt_capture(struct dp_soc *soc,
5011 				       struct dp_tx_desc_s *desc,
5012 				       struct hal_tx_completion_status *ts)
5013 {
5014 	dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_TX_DATA, soc,
5015 			     desc, ts->peer_id,
5016 			     WDI_NO_VAL, desc->pdev->pdev_id);
5017 }
5018 #endif
5019 
5020 /**
5021  * dp_tx_comp_process_desc() - Process tx descriptor and free associated nbuf
5022  * @soc: DP Soc handle
5023  * @tx_desc: software Tx descriptor
5024  * @ts : Tx completion status from HAL/HTT descriptor
5025  *
5026  * Return: none
5027  */
5028 void
5029 dp_tx_comp_process_desc(struct dp_soc *soc,
5030 			struct dp_tx_desc_s *desc,
5031 			struct hal_tx_completion_status *ts,
5032 			struct dp_txrx_peer *txrx_peer)
5033 {
5034 	uint64_t time_latency = 0;
5035 	uint16_t peer_id = DP_INVALID_PEER_ID;
5036 
5037 	/*
5038 	 * m_copy/tx_capture modes are not supported for
5039 	 * scatter gather packets
5040 	 */
5041 	if (qdf_unlikely(!!desc->pdev->latency_capture_enable)) {
5042 		time_latency = (qdf_ktime_to_ms(qdf_ktime_real_get()) -
5043 				qdf_ktime_to_ms(desc->timestamp));
5044 	}
5045 
5046 	dp_send_completion_to_pkt_capture(soc, desc, ts);
5047 
5048 	if (dp_tx_pkt_tracepoints_enabled())
5049 		qdf_trace_dp_packet(desc->nbuf, QDF_TX,
5050 				    desc->msdu_ext_desc ?
5051 				    desc->msdu_ext_desc->tso_desc : NULL,
5052 				    qdf_ktime_to_ms(desc->timestamp));
5053 
5054 	if (!(desc->msdu_ext_desc)) {
5055 		dp_tx_enh_unmap(soc, desc);
5056 		if (txrx_peer)
5057 			peer_id = txrx_peer->peer_id;
5058 
5059 		if (QDF_STATUS_SUCCESS ==
5060 		    dp_monitor_tx_add_to_comp_queue(soc, desc, ts, peer_id)) {
5061 			return;
5062 		}
5063 
5064 		if (QDF_STATUS_SUCCESS ==
5065 		    dp_get_completion_indication_for_stack(soc,
5066 							   desc->pdev,
5067 							   txrx_peer, ts,
5068 							   desc->nbuf,
5069 							   time_latency)) {
5070 			dp_send_completion_to_stack(soc,
5071 						    desc->pdev,
5072 						    ts->peer_id,
5073 						    ts->ppdu_id,
5074 						    desc->nbuf);
5075 			return;
5076 		}
5077 	}
5078 
5079 	desc->flags |= DP_TX_DESC_FLAG_COMPLETED_TX;
5080 	dp_tx_comp_free_buf(soc, desc, false);
5081 }
5082 
5083 #ifdef DISABLE_DP_STATS
5084 /**
5085  * dp_tx_update_connectivity_stats() - update tx connectivity stats
5086  * @soc: core txrx main context
5087  * @tx_desc: tx desc
5088  * @status: tx status
5089  *
5090  * Return: none
5091  */
5092 static inline
5093 void dp_tx_update_connectivity_stats(struct dp_soc *soc,
5094 				     struct dp_vdev *vdev,
5095 				     struct dp_tx_desc_s *tx_desc,
5096 				     uint8_t status)
5097 {
5098 }
5099 #else
5100 static inline
5101 void dp_tx_update_connectivity_stats(struct dp_soc *soc,
5102 				     struct dp_vdev *vdev,
5103 				     struct dp_tx_desc_s *tx_desc,
5104 				     uint8_t status)
5105 {
5106 	void *osif_dev;
5107 	ol_txrx_stats_rx_fp stats_cbk;
5108 	uint8_t pkt_type;
5109 
5110 	qdf_assert(tx_desc);
5111 
5112 	if (!vdev ||
5113 	    !vdev->osif_vdev ||
5114 	    !vdev->stats_cb)
5115 		return;
5116 
5117 	osif_dev = vdev->osif_vdev;
5118 	stats_cbk = vdev->stats_cb;
5119 
5120 	stats_cbk(tx_desc->nbuf, osif_dev, PKT_TYPE_TX_HOST_FW_SENT, &pkt_type);
5121 	if (status == HAL_TX_TQM_RR_FRAME_ACKED)
5122 		stats_cbk(tx_desc->nbuf, osif_dev, PKT_TYPE_TX_ACK_CNT,
5123 			  &pkt_type);
5124 }
5125 #endif
5126 
5127 #if defined(WLAN_FEATURE_TSF_UPLINK_DELAY) || defined(WLAN_CONFIG_TX_DELAY)
5128 /* Mask for bit29 ~ bit31 */
5129 #define DP_TX_TS_BIT29_31_MASK 0xE0000000
5130 /* Timestamp value (unit us) if bit29 is set */
5131 #define DP_TX_TS_BIT29_SET_VALUE BIT(29)
5132 /**
5133  * dp_tx_adjust_enqueue_buffer_ts() - adjust the enqueue buffer_timestamp
5134  * @ack_ts: OTA ack timestamp, unit us.
5135  * @enqueue_ts: TCL enqueue TX data to TQM timestamp, unit us.
5136  * @base_delta_ts: base timestamp delta for ack_ts and enqueue_ts
5137  *
5138  * this function will restore the bit29 ~ bit31 3 bits value for
5139  * buffer_timestamp in wbm2sw ring entry, currently buffer_timestamp only
5140  * can support 0x7FFF * 1024 us (29 bits), but if the timestamp is >
5141  * 0x7FFF * 1024 us, bit29~ bit31 will be lost.
5142  *
5143  * Return: the adjusted buffer_timestamp value
5144  */
5145 static inline
5146 uint32_t dp_tx_adjust_enqueue_buffer_ts(uint32_t ack_ts,
5147 					uint32_t enqueue_ts,
5148 					uint32_t base_delta_ts)
5149 {
5150 	uint32_t ack_buffer_ts;
5151 	uint32_t ack_buffer_ts_bit29_31;
5152 	uint32_t adjusted_enqueue_ts;
5153 
5154 	/* corresponding buffer_timestamp value when receive OTA Ack */
5155 	ack_buffer_ts = ack_ts - base_delta_ts;
5156 	ack_buffer_ts_bit29_31 = ack_buffer_ts & DP_TX_TS_BIT29_31_MASK;
5157 
5158 	/* restore the bit29 ~ bit31 value */
5159 	adjusted_enqueue_ts = ack_buffer_ts_bit29_31 | enqueue_ts;
5160 
5161 	/*
5162 	 * if actual enqueue_ts value occupied 29 bits only, this enqueue_ts
5163 	 * value + real UL delay overflow 29 bits, then 30th bit (bit-29)
5164 	 * should not be marked, otherwise extra 0x20000000 us is added to
5165 	 * enqueue_ts.
5166 	 */
5167 	if (qdf_unlikely(adjusted_enqueue_ts > ack_buffer_ts))
5168 		adjusted_enqueue_ts -= DP_TX_TS_BIT29_SET_VALUE;
5169 
5170 	return adjusted_enqueue_ts;
5171 }
5172 
5173 QDF_STATUS
5174 dp_tx_compute_hw_delay_us(struct hal_tx_completion_status *ts,
5175 			  uint32_t delta_tsf,
5176 			  uint32_t *delay_us)
5177 {
5178 	uint32_t buffer_ts;
5179 	uint32_t delay;
5180 
5181 	if (!delay_us)
5182 		return QDF_STATUS_E_INVAL;
5183 
5184 	/* Tx_rate_stats_info_valid is 0 and tsf is invalid then */
5185 	if (!ts->valid)
5186 		return QDF_STATUS_E_INVAL;
5187 
5188 	/* buffer_timestamp is in units of 1024 us and is [31:13] of
5189 	 * WBM_RELEASE_RING_4. After left shift 10 bits, it's
5190 	 * valid up to 29 bits.
5191 	 */
5192 	buffer_ts = ts->buffer_timestamp << 10;
5193 	buffer_ts = dp_tx_adjust_enqueue_buffer_ts(ts->tsf,
5194 						   buffer_ts, delta_tsf);
5195 
5196 	delay = ts->tsf - buffer_ts - delta_tsf;
5197 
5198 	if (qdf_unlikely(delay & 0x80000000)) {
5199 		dp_err_rl("delay = 0x%x (-ve)\n"
5200 			  "release_src = %d\n"
5201 			  "ppdu_id = 0x%x\n"
5202 			  "peer_id = 0x%x\n"
5203 			  "tid = 0x%x\n"
5204 			  "release_reason = %d\n"
5205 			  "tsf = %u (0x%x)\n"
5206 			  "buffer_timestamp = %u (0x%x)\n"
5207 			  "delta_tsf = %u (0x%x)\n",
5208 			  delay, ts->release_src, ts->ppdu_id, ts->peer_id,
5209 			  ts->tid, ts->status, ts->tsf, ts->tsf,
5210 			  ts->buffer_timestamp, ts->buffer_timestamp,
5211 			  delta_tsf, delta_tsf);
5212 
5213 		delay = 0;
5214 		goto end;
5215 	}
5216 
5217 	delay &= 0x1FFFFFFF; /* mask 29 BITS */
5218 	if (delay > 0x1000000) {
5219 		dp_info_rl("----------------------\n"
5220 			   "Tx completion status:\n"
5221 			   "----------------------\n"
5222 			   "release_src = %d\n"
5223 			   "ppdu_id = 0x%x\n"
5224 			   "release_reason = %d\n"
5225 			   "tsf = %u (0x%x)\n"
5226 			   "buffer_timestamp = %u (0x%x)\n"
5227 			   "delta_tsf = %u (0x%x)\n",
5228 			   ts->release_src, ts->ppdu_id, ts->status,
5229 			   ts->tsf, ts->tsf, ts->buffer_timestamp,
5230 			   ts->buffer_timestamp, delta_tsf, delta_tsf);
5231 		return QDF_STATUS_E_FAILURE;
5232 	}
5233 
5234 
5235 end:
5236 	*delay_us = delay;
5237 
5238 	return QDF_STATUS_SUCCESS;
5239 }
5240 
5241 void dp_set_delta_tsf(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5242 		      uint32_t delta_tsf)
5243 {
5244 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5245 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5246 						     DP_MOD_ID_CDP);
5247 
5248 	if (!vdev) {
5249 		dp_err_rl("vdev %d does not exist", vdev_id);
5250 		return;
5251 	}
5252 
5253 	vdev->delta_tsf = delta_tsf;
5254 	dp_debug("vdev id %u delta_tsf %u", vdev_id, delta_tsf);
5255 
5256 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5257 }
5258 #endif
5259 #ifdef WLAN_FEATURE_TSF_UPLINK_DELAY
5260 QDF_STATUS dp_set_tsf_ul_delay_report(struct cdp_soc_t *soc_hdl,
5261 				      uint8_t vdev_id, bool enable)
5262 {
5263 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5264 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5265 						     DP_MOD_ID_CDP);
5266 
5267 	if (!vdev) {
5268 		dp_err_rl("vdev %d does not exist", vdev_id);
5269 		return QDF_STATUS_E_FAILURE;
5270 	}
5271 
5272 	qdf_atomic_set(&vdev->ul_delay_report, enable);
5273 
5274 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5275 
5276 	return QDF_STATUS_SUCCESS;
5277 }
5278 
5279 QDF_STATUS dp_get_uplink_delay(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5280 			       uint32_t *val)
5281 {
5282 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5283 	struct dp_vdev *vdev;
5284 	uint32_t delay_accum;
5285 	uint32_t pkts_accum;
5286 
5287 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5288 	if (!vdev) {
5289 		dp_err_rl("vdev %d does not exist", vdev_id);
5290 		return QDF_STATUS_E_FAILURE;
5291 	}
5292 
5293 	if (!qdf_atomic_read(&vdev->ul_delay_report)) {
5294 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5295 		return QDF_STATUS_E_FAILURE;
5296 	}
5297 
5298 	/* Average uplink delay based on current accumulated values */
5299 	delay_accum = qdf_atomic_read(&vdev->ul_delay_accum);
5300 	pkts_accum = qdf_atomic_read(&vdev->ul_pkts_accum);
5301 
5302 	*val = delay_accum / pkts_accum;
5303 	dp_debug("uplink_delay %u delay_accum %u pkts_accum %u", *val,
5304 		 delay_accum, pkts_accum);
5305 
5306 	/* Reset accumulated values to 0 */
5307 	qdf_atomic_set(&vdev->ul_delay_accum, 0);
5308 	qdf_atomic_set(&vdev->ul_pkts_accum, 0);
5309 
5310 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5311 
5312 	return QDF_STATUS_SUCCESS;
5313 }
5314 
5315 static void dp_tx_update_uplink_delay(struct dp_soc *soc, struct dp_vdev *vdev,
5316 				      struct hal_tx_completion_status *ts)
5317 {
5318 	uint32_t ul_delay;
5319 
5320 	if (qdf_unlikely(!vdev)) {
5321 		dp_info_rl("vdev is null or delete in progress");
5322 		return;
5323 	}
5324 
5325 	if (!qdf_atomic_read(&vdev->ul_delay_report))
5326 		return;
5327 
5328 	if (QDF_IS_STATUS_ERROR(dp_tx_compute_hw_delay_us(ts,
5329 							  vdev->delta_tsf,
5330 							  &ul_delay)))
5331 		return;
5332 
5333 	ul_delay /= 1000; /* in unit of ms */
5334 
5335 	qdf_atomic_add(ul_delay, &vdev->ul_delay_accum);
5336 	qdf_atomic_inc(&vdev->ul_pkts_accum);
5337 }
5338 #else /* !WLAN_FEATURE_TSF_UPLINK_DELAY */
5339 static inline
5340 void dp_tx_update_uplink_delay(struct dp_soc *soc, struct dp_vdev *vdev,
5341 			       struct hal_tx_completion_status *ts)
5342 {
5343 }
5344 #endif /* WLAN_FEATURE_TSF_UPLINK_DELAY */
5345 
5346 /**
5347  * dp_tx_comp_process_tx_status() - Parse and Dump Tx completion status info
5348  * @soc: DP soc handle
5349  * @tx_desc: software descriptor head pointer
5350  * @ts: Tx completion status
5351  * @txrx_peer: txrx peer handle
5352  * @ring_id: ring number
5353  *
5354  * Return: none
5355  */
5356 void dp_tx_comp_process_tx_status(struct dp_soc *soc,
5357 				  struct dp_tx_desc_s *tx_desc,
5358 				  struct hal_tx_completion_status *ts,
5359 				  struct dp_txrx_peer *txrx_peer,
5360 				  uint8_t ring_id)
5361 {
5362 	uint32_t length;
5363 	qdf_ether_header_t *eh;
5364 	struct dp_vdev *vdev = NULL;
5365 	qdf_nbuf_t nbuf = tx_desc->nbuf;
5366 	enum qdf_dp_tx_rx_status dp_status;
5367 
5368 	if (!nbuf) {
5369 		dp_info_rl("invalid tx descriptor. nbuf NULL");
5370 		goto out;
5371 	}
5372 
5373 	eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
5374 	length = dp_tx_get_pkt_len(tx_desc);
5375 
5376 	dp_status = dp_tx_hw_to_qdf(ts->status);
5377 	DPTRACE(qdf_dp_trace_ptr(tx_desc->nbuf,
5378 				 QDF_DP_TRACE_LI_DP_FREE_PACKET_PTR_RECORD,
5379 				 QDF_TRACE_DEFAULT_PDEV_ID,
5380 				 qdf_nbuf_data_addr(nbuf),
5381 				 sizeof(qdf_nbuf_data(nbuf)),
5382 				 tx_desc->id, ts->status, dp_status));
5383 
5384 	dp_tx_comp_debug("-------------------- \n"
5385 			 "Tx Completion Stats: \n"
5386 			 "-------------------- \n"
5387 			 "ack_frame_rssi = %d \n"
5388 			 "first_msdu = %d \n"
5389 			 "last_msdu = %d \n"
5390 			 "msdu_part_of_amsdu = %d \n"
5391 			 "rate_stats valid = %d \n"
5392 			 "bw = %d \n"
5393 			 "pkt_type = %d \n"
5394 			 "stbc = %d \n"
5395 			 "ldpc = %d \n"
5396 			 "sgi = %d \n"
5397 			 "mcs = %d \n"
5398 			 "ofdma = %d \n"
5399 			 "tones_in_ru = %d \n"
5400 			 "tsf = %d \n"
5401 			 "ppdu_id = %d \n"
5402 			 "transmit_cnt = %d \n"
5403 			 "tid = %d \n"
5404 			 "peer_id = %d\n"
5405 			 "tx_status = %d\n",
5406 			 ts->ack_frame_rssi, ts->first_msdu,
5407 			 ts->last_msdu, ts->msdu_part_of_amsdu,
5408 			 ts->valid, ts->bw, ts->pkt_type, ts->stbc,
5409 			 ts->ldpc, ts->sgi, ts->mcs, ts->ofdma,
5410 			 ts->tones_in_ru, ts->tsf, ts->ppdu_id,
5411 			 ts->transmit_cnt, ts->tid, ts->peer_id,
5412 			 ts->status);
5413 
5414 	/* Update SoC level stats */
5415 	DP_STATS_INCC(soc, tx.dropped_fw_removed, 1,
5416 			(ts->status == HAL_TX_TQM_RR_REM_CMD_REM));
5417 
5418 	if (!txrx_peer) {
5419 		dp_info_rl("peer is null or deletion in progress");
5420 		DP_STATS_INC_PKT(soc, tx.tx_invalid_peer, 1, length);
5421 		goto out;
5422 	}
5423 	vdev = txrx_peer->vdev;
5424 
5425 	dp_tx_update_connectivity_stats(soc, vdev, tx_desc, ts->status);
5426 	dp_tx_update_uplink_delay(soc, vdev, ts);
5427 
5428 	/* check tx complete notification */
5429 	if (qdf_nbuf_tx_notify_comp_get(nbuf))
5430 		dp_tx_notify_completion(soc, vdev, tx_desc,
5431 					nbuf, ts->status);
5432 
5433 	/* Update per-packet stats for mesh mode */
5434 	if (qdf_unlikely(vdev->mesh_vdev) &&
5435 			!(tx_desc->flags & DP_TX_DESC_FLAG_TO_FW))
5436 		dp_tx_comp_fill_tx_completion_stats(tx_desc, ts);
5437 
5438 	/* Update peer level stats */
5439 	if (qdf_unlikely(txrx_peer->bss_peer &&
5440 			 vdev->opmode == wlan_op_mode_ap)) {
5441 		if (ts->status != HAL_TX_TQM_RR_REM_CMD_REM) {
5442 			DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.mcast, 1,
5443 						      length);
5444 
5445 			if (txrx_peer->vdev->tx_encap_type ==
5446 				htt_cmn_pkt_type_ethernet &&
5447 				QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
5448 				DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer,
5449 							      tx.bcast, 1,
5450 							      length);
5451 			}
5452 		}
5453 	} else {
5454 		DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.ucast, 1, length);
5455 		if (ts->status == HAL_TX_TQM_RR_FRAME_ACKED) {
5456 			DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.tx_success,
5457 						      1, length);
5458 			if (qdf_unlikely(txrx_peer->in_twt)) {
5459 				DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer,
5460 							      tx.tx_success_twt,
5461 							      1, length);
5462 			}
5463 		}
5464 	}
5465 
5466 	dp_tx_update_peer_stats(tx_desc, ts, txrx_peer, ring_id);
5467 	dp_tx_update_peer_delay_stats(txrx_peer, tx_desc, ts, ring_id);
5468 	dp_tx_update_peer_jitter_stats(txrx_peer, tx_desc, ts, ring_id);
5469 	dp_tx_update_peer_sawf_stats(soc, vdev, txrx_peer, tx_desc,
5470 				     ts, ts->tid);
5471 	dp_tx_send_pktlog(soc, vdev->pdev, tx_desc, nbuf, dp_status);
5472 
5473 #ifdef QCA_SUPPORT_RDK_STATS
5474 	if (soc->peerstats_enabled)
5475 		dp_tx_sojourn_stats_process(vdev->pdev, txrx_peer, ts->tid,
5476 					    qdf_ktime_to_ms(tx_desc->timestamp),
5477 					    ts->ppdu_id);
5478 #endif
5479 
5480 out:
5481 	return;
5482 }
5483 
5484 #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
5485 	defined(QCA_ENHANCED_STATS_SUPPORT)
5486 /*
5487  * dp_tx_update_peer_basic_stats(): Update peer basic stats
5488  * @txrx_peer: Datapath txrx_peer handle
5489  * @length: Length of the packet
5490  * @tx_status: Tx status from TQM/FW
5491  * @update: enhanced flag value present in dp_pdev
5492  *
5493  * Return: none
5494  */
5495 void dp_tx_update_peer_basic_stats(struct dp_txrx_peer *txrx_peer,
5496 				   uint32_t length, uint8_t tx_status,
5497 				   bool update)
5498 {
5499 	if (update || (!txrx_peer->hw_txrx_stats_en)) {
5500 		DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
5501 
5502 		if (tx_status != HAL_TX_TQM_RR_FRAME_ACKED)
5503 			DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
5504 	}
5505 }
5506 #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
5507 void dp_tx_update_peer_basic_stats(struct dp_txrx_peer *txrx_peer,
5508 				   uint32_t length, uint8_t tx_status,
5509 				   bool update)
5510 {
5511 	if (!txrx_peer->hw_txrx_stats_en) {
5512 		DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
5513 
5514 		if (tx_status != HAL_TX_TQM_RR_FRAME_ACKED)
5515 			DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
5516 	}
5517 }
5518 
5519 #else
5520 void dp_tx_update_peer_basic_stats(struct dp_txrx_peer *txrx_peer,
5521 				   uint32_t length, uint8_t tx_status,
5522 				   bool update)
5523 {
5524 	DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
5525 
5526 	if (tx_status != HAL_TX_TQM_RR_FRAME_ACKED)
5527 		DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
5528 }
5529 #endif
5530 
5531 /*
5532  * dp_tx_prefetch_next_nbuf_data(): Prefetch nbuf and nbuf data
5533  * @nbuf: skb buffer
5534  *
5535  * Return: none
5536  */
5537 #ifdef QCA_DP_RX_NBUF_AND_NBUF_DATA_PREFETCH
5538 static inline
5539 void dp_tx_prefetch_next_nbuf_data(struct dp_tx_desc_s *next)
5540 {
5541 	qdf_nbuf_t nbuf = NULL;
5542 
5543 	if (next)
5544 		nbuf = next->nbuf;
5545 	if (nbuf)
5546 		qdf_prefetch(nbuf);
5547 }
5548 #else
5549 static inline
5550 void dp_tx_prefetch_next_nbuf_data(struct dp_tx_desc_s *next)
5551 {
5552 }
5553 #endif
5554 
5555 /**
5556  * dp_tx_mcast_reinject_handler() - Tx reinjected multicast packets handler
5557  * @soc: core txrx main context
5558  * @desc: software descriptor
5559  *
5560  * Return: true when packet is reinjected
5561  */
5562 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
5563 	defined(WLAN_MCAST_MLO)
5564 static inline bool
5565 dp_tx_mcast_reinject_handler(struct dp_soc *soc, struct dp_tx_desc_s *desc)
5566 {
5567 	struct dp_vdev *vdev = NULL;
5568 
5569 	if (desc->tx_status == HAL_TX_TQM_RR_MULTICAST_DROP) {
5570 		if (!soc->arch_ops.dp_tx_mcast_handler ||
5571 		    !soc->arch_ops.dp_tx_is_mcast_primary)
5572 			return false;
5573 
5574 		vdev = dp_vdev_get_ref_by_id(soc, desc->vdev_id,
5575 					     DP_MOD_ID_REINJECT);
5576 
5577 		if (qdf_unlikely(!vdev)) {
5578 			dp_tx_comp_info_rl("Unable to get vdev ref  %d",
5579 					   desc->id);
5580 			return false;
5581 		}
5582 
5583 		if (!(soc->arch_ops.dp_tx_is_mcast_primary(soc, vdev))) {
5584 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_REINJECT);
5585 			return false;
5586 		}
5587 		DP_STATS_INC_PKT(vdev, tx_i.reinject_pkts, 1,
5588 				 qdf_nbuf_len(desc->nbuf));
5589 		soc->arch_ops.dp_tx_mcast_handler(soc, vdev, desc->nbuf);
5590 		dp_tx_desc_release(desc, desc->pool_id);
5591 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_REINJECT);
5592 		return true;
5593 	}
5594 
5595 	return false;
5596 }
5597 #else
5598 static inline bool
5599 dp_tx_mcast_reinject_handler(struct dp_soc *soc, struct dp_tx_desc_s *desc)
5600 {
5601 	return false;
5602 }
5603 #endif
5604 
5605 #ifdef QCA_DP_TX_NBUF_LIST_FREE
5606 static inline void
5607 dp_tx_nbuf_queue_head_init(qdf_nbuf_queue_head_t *nbuf_queue_head)
5608 {
5609 	qdf_nbuf_queue_head_init(nbuf_queue_head);
5610 }
5611 
5612 static inline void
5613 dp_tx_nbuf_dev_queue_free(qdf_nbuf_queue_head_t *nbuf_queue_head,
5614 			  struct dp_tx_desc_s *desc)
5615 {
5616 	qdf_nbuf_t nbuf = NULL;
5617 
5618 	nbuf = desc->nbuf;
5619 	if (qdf_likely(desc->flags & DP_TX_DESC_FLAG_FAST))
5620 		qdf_nbuf_dev_queue_head(nbuf_queue_head, nbuf);
5621 	else
5622 		qdf_nbuf_free(nbuf);
5623 }
5624 
5625 static inline void
5626 dp_tx_nbuf_dev_kfree_list(qdf_nbuf_queue_head_t *nbuf_queue_head)
5627 {
5628 	qdf_nbuf_dev_kfree_list(nbuf_queue_head);
5629 }
5630 #else
5631 static inline void
5632 dp_tx_nbuf_queue_head_init(qdf_nbuf_queue_head_t *nbuf_queue_head)
5633 {
5634 }
5635 
5636 static inline void
5637 dp_tx_nbuf_dev_queue_free(qdf_nbuf_queue_head_t *nbuf_queue_head,
5638 			  struct dp_tx_desc_s *desc)
5639 {
5640 	qdf_nbuf_free(desc->nbuf);
5641 }
5642 
5643 static inline void
5644 dp_tx_nbuf_dev_kfree_list(qdf_nbuf_queue_head_t *nbuf_queue_head)
5645 {
5646 }
5647 #endif
5648 
5649 /**
5650  * dp_tx_comp_process_desc_list() - Tx complete software descriptor handler
5651  * @soc: core txrx main context
5652  * @comp_head: software descriptor head pointer
5653  * @ring_id: ring number
5654  *
5655  * This function will process batch of descriptors reaped by dp_tx_comp_handler
5656  * and release the software descriptors after processing is complete
5657  *
5658  * Return: none
5659  */
5660 void
5661 dp_tx_comp_process_desc_list(struct dp_soc *soc,
5662 			     struct dp_tx_desc_s *comp_head, uint8_t ring_id)
5663 {
5664 	struct dp_tx_desc_s *desc;
5665 	struct dp_tx_desc_s *next;
5666 	struct hal_tx_completion_status ts;
5667 	struct dp_txrx_peer *txrx_peer = NULL;
5668 	uint16_t peer_id = DP_INVALID_PEER;
5669 	dp_txrx_ref_handle txrx_ref_handle = NULL;
5670 	qdf_nbuf_queue_head_t h;
5671 
5672 	desc = comp_head;
5673 
5674 	dp_tx_nbuf_queue_head_init(&h);
5675 
5676 	while (desc) {
5677 		next = desc->next;
5678 		dp_tx_prefetch_next_nbuf_data(next);
5679 
5680 		if (peer_id != desc->peer_id) {
5681 			if (txrx_peer)
5682 				dp_txrx_peer_unref_delete(txrx_ref_handle,
5683 							  DP_MOD_ID_TX_COMP);
5684 			peer_id = desc->peer_id;
5685 			txrx_peer =
5686 				dp_txrx_peer_get_ref_by_id(soc, peer_id,
5687 							   &txrx_ref_handle,
5688 							   DP_MOD_ID_TX_COMP);
5689 		}
5690 
5691 		if (dp_tx_mcast_reinject_handler(soc, desc)) {
5692 			desc = next;
5693 			continue;
5694 		}
5695 
5696 		if (desc->flags & DP_TX_DESC_FLAG_PPEDS) {
5697 			if (qdf_likely(txrx_peer))
5698 				dp_tx_update_peer_basic_stats(txrx_peer,
5699 							      desc->length,
5700 							      desc->tx_status,
5701 							      false);
5702 			dp_tx_nbuf_dev_queue_free(&h, desc);
5703 			dp_ppeds_tx_desc_free(soc, desc);
5704 			desc = next;
5705 			continue;
5706 		}
5707 
5708 		if (qdf_likely(desc->flags & DP_TX_DESC_FLAG_SIMPLE)) {
5709 			struct dp_pdev *pdev = desc->pdev;
5710 
5711 			if (qdf_likely(txrx_peer))
5712 				dp_tx_update_peer_basic_stats(txrx_peer,
5713 							      desc->length,
5714 							      desc->tx_status,
5715 							      false);
5716 			qdf_assert(pdev);
5717 			dp_tx_outstanding_dec(pdev);
5718 
5719 			/*
5720 			 * Calling a QDF WRAPPER here is creating significant
5721 			 * performance impact so avoided the wrapper call here
5722 			 */
5723 			dp_tx_desc_history_add(soc, desc->dma_addr, desc->nbuf,
5724 					       desc->id, DP_TX_COMP_UNMAP);
5725 			dp_tx_nbuf_unmap(soc, desc);
5726 			dp_tx_nbuf_dev_queue_free(&h, desc);
5727 			dp_tx_desc_free(soc, desc, desc->pool_id);
5728 			desc = next;
5729 			continue;
5730 		}
5731 
5732 		hal_tx_comp_get_status(&desc->comp, &ts, soc->hal_soc);
5733 
5734 		dp_tx_comp_process_tx_status(soc, desc, &ts, txrx_peer,
5735 					     ring_id);
5736 
5737 		dp_tx_comp_process_desc(soc, desc, &ts, txrx_peer);
5738 
5739 		dp_tx_desc_release(desc, desc->pool_id);
5740 		desc = next;
5741 	}
5742 	dp_tx_nbuf_dev_kfree_list(&h);
5743 	if (txrx_peer)
5744 		dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_TX_COMP);
5745 }
5746 
5747 #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
5748 static inline
5749 bool dp_tx_comp_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped,
5750 				   int max_reap_limit)
5751 {
5752 	bool limit_hit = false;
5753 
5754 	limit_hit =
5755 		(num_reaped >= max_reap_limit) ? true : false;
5756 
5757 	if (limit_hit)
5758 		DP_STATS_INC(soc, tx.tx_comp_loop_pkt_limit_hit, 1);
5759 
5760 	return limit_hit;
5761 }
5762 
5763 static inline bool dp_tx_comp_enable_eol_data_check(struct dp_soc *soc)
5764 {
5765 	return soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check;
5766 }
5767 
5768 static inline int dp_tx_comp_get_loop_pkt_limit(struct dp_soc *soc)
5769 {
5770 	struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
5771 
5772 	return cfg->tx_comp_loop_pkt_limit;
5773 }
5774 #else
5775 static inline
5776 bool dp_tx_comp_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped,
5777 				   int max_reap_limit)
5778 {
5779 	return false;
5780 }
5781 
5782 static inline bool dp_tx_comp_enable_eol_data_check(struct dp_soc *soc)
5783 {
5784 	return false;
5785 }
5786 
5787 static inline int dp_tx_comp_get_loop_pkt_limit(struct dp_soc *soc)
5788 {
5789 	return 0;
5790 }
5791 #endif
5792 
5793 #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
5794 static inline int
5795 dp_srng_test_and_update_nf_params(struct dp_soc *soc, struct dp_srng *dp_srng,
5796 				  int *max_reap_limit)
5797 {
5798 	return soc->arch_ops.dp_srng_test_and_update_nf_params(soc, dp_srng,
5799 							       max_reap_limit);
5800 }
5801 #else
5802 static inline int
5803 dp_srng_test_and_update_nf_params(struct dp_soc *soc, struct dp_srng *dp_srng,
5804 				  int *max_reap_limit)
5805 {
5806 	return 0;
5807 }
5808 #endif
5809 
5810 #ifdef DP_TX_TRACKING
5811 void dp_tx_desc_check_corruption(struct dp_tx_desc_s *tx_desc)
5812 {
5813 	if ((tx_desc->magic != DP_TX_MAGIC_PATTERN_INUSE) &&
5814 	    (tx_desc->magic != DP_TX_MAGIC_PATTERN_FREE)) {
5815 		dp_err_rl("tx_desc %u is corrupted", tx_desc->id);
5816 		qdf_trigger_self_recovery(NULL, QDF_TX_DESC_LEAK);
5817 	}
5818 }
5819 #endif
5820 
5821 uint32_t dp_tx_comp_handler(struct dp_intr *int_ctx, struct dp_soc *soc,
5822 			    hal_ring_handle_t hal_ring_hdl, uint8_t ring_id,
5823 			    uint32_t quota)
5824 {
5825 	void *tx_comp_hal_desc;
5826 	void *last_prefetched_hw_desc = NULL;
5827 	struct dp_tx_desc_s *last_prefetched_sw_desc = NULL;
5828 	hal_soc_handle_t hal_soc;
5829 	uint8_t buffer_src;
5830 	struct dp_tx_desc_s *tx_desc = NULL;
5831 	struct dp_tx_desc_s *head_desc = NULL;
5832 	struct dp_tx_desc_s *tail_desc = NULL;
5833 	uint32_t num_processed = 0;
5834 	uint32_t count;
5835 	uint32_t num_avail_for_reap = 0;
5836 	bool force_break = false;
5837 	struct dp_srng *tx_comp_ring = &soc->tx_comp_ring[ring_id];
5838 	int max_reap_limit, ring_near_full;
5839 	uint32_t num_entries;
5840 
5841 	DP_HIST_INIT();
5842 
5843 	num_entries = hal_srng_get_num_entries(soc->hal_soc, hal_ring_hdl);
5844 
5845 more_data:
5846 
5847 	hal_soc = soc->hal_soc;
5848 	/* Re-initialize local variables to be re-used */
5849 	head_desc = NULL;
5850 	tail_desc = NULL;
5851 	count = 0;
5852 	max_reap_limit = dp_tx_comp_get_loop_pkt_limit(soc);
5853 
5854 	ring_near_full = dp_srng_test_and_update_nf_params(soc, tx_comp_ring,
5855 							   &max_reap_limit);
5856 
5857 	if (qdf_unlikely(dp_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
5858 		dp_err("HAL RING Access Failed -- %pK", hal_ring_hdl);
5859 		return 0;
5860 	}
5861 
5862 	if (!num_avail_for_reap)
5863 		num_avail_for_reap = hal_srng_dst_num_valid(hal_soc,
5864 							    hal_ring_hdl, 0);
5865 
5866 	if (num_avail_for_reap >= quota)
5867 		num_avail_for_reap = quota;
5868 
5869 	dp_srng_dst_inv_cached_descs(soc, hal_ring_hdl, num_avail_for_reap);
5870 	last_prefetched_hw_desc = dp_srng_dst_prefetch_32_byte_desc(hal_soc,
5871 							    hal_ring_hdl,
5872 							    num_avail_for_reap);
5873 
5874 	/* Find head descriptor from completion ring */
5875 	while (qdf_likely(num_avail_for_reap--)) {
5876 
5877 		tx_comp_hal_desc =  dp_srng_dst_get_next(soc, hal_ring_hdl);
5878 		if (qdf_unlikely(!tx_comp_hal_desc))
5879 			break;
5880 		buffer_src = hal_tx_comp_get_buffer_source(hal_soc,
5881 							   tx_comp_hal_desc);
5882 
5883 		/* If this buffer was not released by TQM or FW, then it is not
5884 		 * Tx completion indication, assert */
5885 		if (qdf_unlikely(buffer_src !=
5886 					HAL_TX_COMP_RELEASE_SOURCE_TQM) &&
5887 				 (qdf_unlikely(buffer_src !=
5888 					HAL_TX_COMP_RELEASE_SOURCE_FW))) {
5889 			uint8_t wbm_internal_error;
5890 
5891 			dp_err_rl(
5892 				"Tx comp release_src != TQM | FW but from %d",
5893 				buffer_src);
5894 			hal_dump_comp_desc(tx_comp_hal_desc);
5895 			DP_STATS_INC(soc, tx.invalid_release_source, 1);
5896 
5897 			/* When WBM sees NULL buffer_addr_info in any of
5898 			 * ingress rings it sends an error indication,
5899 			 * with wbm_internal_error=1, to a specific ring.
5900 			 * The WBM2SW ring used to indicate these errors is
5901 			 * fixed in HW, and that ring is being used as Tx
5902 			 * completion ring. These errors are not related to
5903 			 * Tx completions, and should just be ignored
5904 			 */
5905 			wbm_internal_error = hal_get_wbm_internal_error(
5906 							hal_soc,
5907 							tx_comp_hal_desc);
5908 
5909 			if (wbm_internal_error) {
5910 				dp_err_rl("Tx comp wbm_internal_error!!");
5911 				DP_STATS_INC(soc, tx.wbm_internal_error[WBM_INT_ERROR_ALL], 1);
5912 
5913 				if (HAL_TX_COMP_RELEASE_SOURCE_REO ==
5914 								buffer_src)
5915 					dp_handle_wbm_internal_error(
5916 						soc,
5917 						tx_comp_hal_desc,
5918 						hal_tx_comp_get_buffer_type(
5919 							tx_comp_hal_desc));
5920 
5921 			} else {
5922 				dp_err_rl("Tx comp wbm_internal_error false");
5923 				DP_STATS_INC(soc, tx.non_wbm_internal_err, 1);
5924 			}
5925 			continue;
5926 		}
5927 
5928 		soc->arch_ops.tx_comp_get_params_from_hal_desc(soc,
5929 							       tx_comp_hal_desc,
5930 							       &tx_desc);
5931 		if (qdf_unlikely(!tx_desc)) {
5932 			dp_err("unable to retrieve tx_desc!");
5933 			hal_dump_comp_desc(tx_comp_hal_desc);
5934 			DP_STATS_INC(soc, tx.invalid_tx_comp_desc, 1);
5935 			QDF_BUG(0);
5936 			continue;
5937 		}
5938 		tx_desc->buffer_src = buffer_src;
5939 
5940 		if (tx_desc->flags & DP_TX_DESC_FLAG_PPEDS)
5941 			goto add_to_pool2;
5942 
5943 		/*
5944 		 * If the release source is FW, process the HTT status
5945 		 */
5946 		if (qdf_unlikely(buffer_src ==
5947 					HAL_TX_COMP_RELEASE_SOURCE_FW)) {
5948 			uint8_t htt_tx_status[HAL_TX_COMP_HTT_STATUS_LEN];
5949 
5950 			hal_tx_comp_get_htt_desc(tx_comp_hal_desc,
5951 					htt_tx_status);
5952 			/* Collect hw completion contents */
5953 			hal_tx_comp_desc_sync(tx_comp_hal_desc,
5954 					      &tx_desc->comp, 1);
5955 			soc->arch_ops.dp_tx_process_htt_completion(
5956 							soc,
5957 							tx_desc,
5958 							htt_tx_status,
5959 							ring_id);
5960 		} else {
5961 			tx_desc->tx_status =
5962 				hal_tx_comp_get_tx_status(tx_comp_hal_desc);
5963 			tx_desc->buffer_src = buffer_src;
5964 			/*
5965 			 * If the fast completion mode is enabled extended
5966 			 * metadata from descriptor is not copied
5967 			 */
5968 			if (qdf_likely(tx_desc->flags &
5969 						DP_TX_DESC_FLAG_SIMPLE))
5970 				goto add_to_pool;
5971 
5972 			/*
5973 			 * If the descriptor is already freed in vdev_detach,
5974 			 * continue to next descriptor
5975 			 */
5976 			if (qdf_unlikely
5977 				((tx_desc->vdev_id == DP_INVALID_VDEV_ID) &&
5978 				 !tx_desc->flags)) {
5979 				dp_tx_comp_info_rl("Descriptor freed in vdev_detach %d",
5980 						   tx_desc->id);
5981 				DP_STATS_INC(soc, tx.tx_comp_exception, 1);
5982 				dp_tx_desc_check_corruption(tx_desc);
5983 				continue;
5984 			}
5985 
5986 			if (qdf_unlikely(tx_desc->pdev->is_pdev_down)) {
5987 				dp_tx_comp_info_rl("pdev in down state %d",
5988 						   tx_desc->id);
5989 				tx_desc->flags |= DP_TX_DESC_FLAG_TX_COMP_ERR;
5990 				dp_tx_comp_free_buf(soc, tx_desc, false);
5991 				dp_tx_desc_release(tx_desc, tx_desc->pool_id);
5992 				goto next_desc;
5993 			}
5994 
5995 			if (!(tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED) ||
5996 				!(tx_desc->flags & DP_TX_DESC_FLAG_QUEUED_TX)) {
5997 				dp_tx_comp_alert("Txdesc invalid, flgs = %x,id = %d",
5998 						 tx_desc->flags, tx_desc->id);
5999 				qdf_assert_always(0);
6000 			}
6001 
6002 			/* Collect hw completion contents */
6003 			hal_tx_comp_desc_sync(tx_comp_hal_desc,
6004 					      &tx_desc->comp, 1);
6005 add_to_pool:
6006 			DP_HIST_PACKET_COUNT_INC(tx_desc->pdev->pdev_id);
6007 
6008 add_to_pool2:
6009 			/* First ring descriptor on the cycle */
6010 			if (!head_desc) {
6011 				head_desc = tx_desc;
6012 				tail_desc = tx_desc;
6013 			}
6014 
6015 			tail_desc->next = tx_desc;
6016 			tx_desc->next = NULL;
6017 			tail_desc = tx_desc;
6018 		}
6019 next_desc:
6020 		num_processed += !(count & DP_TX_NAPI_BUDGET_DIV_MASK);
6021 
6022 		/*
6023 		 * Processed packet count is more than given quota
6024 		 * stop to processing
6025 		 */
6026 
6027 		count++;
6028 
6029 		dp_tx_prefetch_hw_sw_nbuf_desc(soc, hal_soc,
6030 					       num_avail_for_reap,
6031 					       hal_ring_hdl,
6032 					       &last_prefetched_hw_desc,
6033 					       &last_prefetched_sw_desc);
6034 
6035 		if (dp_tx_comp_loop_pkt_limit_hit(soc, count, max_reap_limit))
6036 			break;
6037 	}
6038 
6039 	dp_srng_access_end(int_ctx, soc, hal_ring_hdl);
6040 
6041 	/* Process the reaped descriptors */
6042 	if (head_desc)
6043 		dp_tx_comp_process_desc_list(soc, head_desc, ring_id);
6044 
6045 	DP_STATS_INC(soc, tx.tx_comp[ring_id], count);
6046 
6047 	/*
6048 	 * If we are processing in near-full condition, there are 3 scenario
6049 	 * 1) Ring entries has reached critical state
6050 	 * 2) Ring entries are still near high threshold
6051 	 * 3) Ring entries are below the safe level
6052 	 *
6053 	 * One more loop will move the state to normal processing and yield
6054 	 */
6055 	if (ring_near_full)
6056 		goto more_data;
6057 
6058 	if (dp_tx_comp_enable_eol_data_check(soc)) {
6059 
6060 		if (num_processed >= quota)
6061 			force_break = true;
6062 
6063 		if (!force_break &&
6064 		    hal_srng_dst_peek_sync_locked(soc->hal_soc,
6065 						  hal_ring_hdl)) {
6066 			DP_STATS_INC(soc, tx.hp_oos2, 1);
6067 			if (!hif_exec_should_yield(soc->hif_handle,
6068 						   int_ctx->dp_intr_id))
6069 				goto more_data;
6070 
6071 			num_avail_for_reap =
6072 				hal_srng_dst_num_valid_locked(soc->hal_soc,
6073 							      hal_ring_hdl,
6074 							      true);
6075 			if (qdf_unlikely(num_entries &&
6076 					 (num_avail_for_reap >=
6077 					  num_entries >> 1))) {
6078 				DP_STATS_INC(soc, tx.near_full, 1);
6079 				goto more_data;
6080 			}
6081 		}
6082 	}
6083 	DP_TX_HIST_STATS_PER_PDEV();
6084 
6085 	return num_processed;
6086 }
6087 
6088 #ifdef FEATURE_WLAN_TDLS
6089 qdf_nbuf_t dp_tx_non_std(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6090 			 enum ol_tx_spec tx_spec, qdf_nbuf_t msdu_list)
6091 {
6092 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6093 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6094 						     DP_MOD_ID_TDLS);
6095 
6096 	if (!vdev) {
6097 		dp_err("vdev handle for id %d is NULL", vdev_id);
6098 		return NULL;
6099 	}
6100 
6101 	if (tx_spec & OL_TX_SPEC_NO_FREE)
6102 		vdev->is_tdls_frame = true;
6103 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TDLS);
6104 
6105 	return dp_tx_send(soc_hdl, vdev_id, msdu_list);
6106 }
6107 #endif
6108 
6109 /**
6110  * dp_tx_vdev_attach() - attach vdev to dp tx
6111  * @vdev: virtual device instance
6112  *
6113  * Return: QDF_STATUS_SUCCESS: success
6114  *         QDF_STATUS_E_RESOURCES: Error return
6115  */
6116 QDF_STATUS dp_tx_vdev_attach(struct dp_vdev *vdev)
6117 {
6118 	int pdev_id;
6119 	/*
6120 	 * Fill HTT TCL Metadata with Vdev ID and MAC ID
6121 	 */
6122 	DP_TX_TCL_METADATA_TYPE_SET(vdev->htt_tcl_metadata,
6123 				    DP_TCL_METADATA_TYPE_VDEV_BASED);
6124 
6125 	DP_TX_TCL_METADATA_VDEV_ID_SET(vdev->htt_tcl_metadata,
6126 				       vdev->vdev_id);
6127 
6128 	pdev_id =
6129 		dp_get_target_pdev_id_for_host_pdev_id(vdev->pdev->soc,
6130 						       vdev->pdev->pdev_id);
6131 	DP_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata, pdev_id);
6132 
6133 	/*
6134 	 * Set HTT Extension Valid bit to 0 by default
6135 	 */
6136 	DP_TX_TCL_METADATA_VALID_HTT_SET(vdev->htt_tcl_metadata, 0);
6137 
6138 	dp_tx_vdev_update_search_flags(vdev);
6139 
6140 	return QDF_STATUS_SUCCESS;
6141 }
6142 
6143 #ifndef FEATURE_WDS
6144 static inline bool dp_tx_da_search_override(struct dp_vdev *vdev)
6145 {
6146 	return false;
6147 }
6148 #endif
6149 
6150 /**
6151  * dp_tx_vdev_update_search_flags() - Update vdev flags as per opmode
6152  * @vdev: virtual device instance
6153  *
6154  * Return: void
6155  *
6156  */
6157 void dp_tx_vdev_update_search_flags(struct dp_vdev *vdev)
6158 {
6159 	struct dp_soc *soc = vdev->pdev->soc;
6160 
6161 	/*
6162 	 * Enable both AddrY (SA based search) and AddrX (Da based search)
6163 	 * for TDLS link
6164 	 *
6165 	 * Enable AddrY (SA based search) only for non-WDS STA and
6166 	 * ProxySTA VAP (in HKv1) modes.
6167 	 *
6168 	 * In all other VAP modes, only DA based search should be
6169 	 * enabled
6170 	 */
6171 	if (vdev->opmode == wlan_op_mode_sta &&
6172 	    vdev->tdls_link_connected)
6173 		vdev->hal_desc_addr_search_flags =
6174 			(HAL_TX_DESC_ADDRX_EN | HAL_TX_DESC_ADDRY_EN);
6175 	else if ((vdev->opmode == wlan_op_mode_sta) &&
6176 		 !dp_tx_da_search_override(vdev))
6177 		vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRY_EN;
6178 	else
6179 		vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRX_EN;
6180 
6181 	if (vdev->opmode == wlan_op_mode_sta && !vdev->tdls_link_connected)
6182 		vdev->search_type = soc->sta_mode_search_policy;
6183 	else
6184 		vdev->search_type = HAL_TX_ADDR_SEARCH_DEFAULT;
6185 }
6186 
6187 static inline bool
6188 dp_is_tx_desc_flush_match(struct dp_pdev *pdev,
6189 			  struct dp_vdev *vdev,
6190 			  struct dp_tx_desc_s *tx_desc)
6191 {
6192 	if (!(tx_desc && (tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED)))
6193 		return false;
6194 
6195 	/*
6196 	 * if vdev is given, then only check whether desc
6197 	 * vdev match. if vdev is NULL, then check whether
6198 	 * desc pdev match.
6199 	 */
6200 	return vdev ? (tx_desc->vdev_id == vdev->vdev_id) :
6201 		(tx_desc->pdev == pdev);
6202 }
6203 
6204 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
6205 /**
6206  * dp_tx_desc_flush() - release resources associated
6207  *                      to TX Desc
6208  *
6209  * @dp_pdev: Handle to DP pdev structure
6210  * @vdev: virtual device instance
6211  * NULL: no specific Vdev is required and check all allcated TX desc
6212  * on this pdev.
6213  * Non-NULL: only check the allocated TX Desc associated to this Vdev.
6214  *
6215  * @force_free:
6216  * true: flush the TX desc.
6217  * false: only reset the Vdev in each allocated TX desc
6218  * that associated to current Vdev.
6219  *
6220  * This function will go through the TX desc pool to flush
6221  * the outstanding TX data or reset Vdev to NULL in associated TX
6222  * Desc.
6223  */
6224 void dp_tx_desc_flush(struct dp_pdev *pdev, struct dp_vdev *vdev,
6225 		      bool force_free)
6226 {
6227 	uint8_t i;
6228 	uint32_t j;
6229 	uint32_t num_desc, page_id, offset;
6230 	uint16_t num_desc_per_page;
6231 	struct dp_soc *soc = pdev->soc;
6232 	struct dp_tx_desc_s *tx_desc = NULL;
6233 	struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
6234 
6235 	if (!vdev && !force_free) {
6236 		dp_err("Reset TX desc vdev, Vdev param is required!");
6237 		return;
6238 	}
6239 
6240 	for (i = 0; i < MAX_TXDESC_POOLS; i++) {
6241 		tx_desc_pool = &soc->tx_desc[i];
6242 		if (!(tx_desc_pool->pool_size) ||
6243 		    IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
6244 		    !(tx_desc_pool->desc_pages.cacheable_pages))
6245 			continue;
6246 
6247 		/*
6248 		 * Add flow pool lock protection in case pool is freed
6249 		 * due to all tx_desc is recycled when handle TX completion.
6250 		 * this is not necessary when do force flush as:
6251 		 * a. double lock will happen if dp_tx_desc_release is
6252 		 *    also trying to acquire it.
6253 		 * b. dp interrupt has been disabled before do force TX desc
6254 		 *    flush in dp_pdev_deinit().
6255 		 */
6256 		if (!force_free)
6257 			qdf_spin_lock_bh(&tx_desc_pool->flow_pool_lock);
6258 		num_desc = tx_desc_pool->pool_size;
6259 		num_desc_per_page =
6260 			tx_desc_pool->desc_pages.num_element_per_page;
6261 		for (j = 0; j < num_desc; j++) {
6262 			page_id = j / num_desc_per_page;
6263 			offset = j % num_desc_per_page;
6264 
6265 			if (qdf_unlikely(!(tx_desc_pool->
6266 					 desc_pages.cacheable_pages)))
6267 				break;
6268 
6269 			tx_desc = dp_tx_desc_find(soc, i, page_id, offset);
6270 
6271 			if (dp_is_tx_desc_flush_match(pdev, vdev, tx_desc)) {
6272 				/*
6273 				 * Free TX desc if force free is
6274 				 * required, otherwise only reset vdev
6275 				 * in this TX desc.
6276 				 */
6277 				if (force_free) {
6278 					tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
6279 					dp_tx_comp_free_buf(soc, tx_desc,
6280 							    false);
6281 					dp_tx_desc_release(tx_desc, i);
6282 				} else {
6283 					tx_desc->vdev_id = DP_INVALID_VDEV_ID;
6284 				}
6285 			}
6286 		}
6287 		if (!force_free)
6288 			qdf_spin_unlock_bh(&tx_desc_pool->flow_pool_lock);
6289 	}
6290 }
6291 #else /* QCA_LL_TX_FLOW_CONTROL_V2! */
6292 /**
6293  * dp_tx_desc_reset_vdev() - reset vdev to NULL in TX Desc
6294  *
6295  * @soc: Handle to DP soc structure
6296  * @tx_desc: pointer of one TX desc
6297  * @desc_pool_id: TX Desc pool id
6298  */
6299 static inline void
6300 dp_tx_desc_reset_vdev(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
6301 		      uint8_t desc_pool_id)
6302 {
6303 	TX_DESC_LOCK_LOCK(&soc->tx_desc[desc_pool_id].lock);
6304 
6305 	tx_desc->vdev_id = DP_INVALID_VDEV_ID;
6306 
6307 	TX_DESC_LOCK_UNLOCK(&soc->tx_desc[desc_pool_id].lock);
6308 }
6309 
6310 void dp_tx_desc_flush(struct dp_pdev *pdev, struct dp_vdev *vdev,
6311 		      bool force_free)
6312 {
6313 	uint8_t i, num_pool;
6314 	uint32_t j;
6315 	uint32_t num_desc, page_id, offset;
6316 	uint16_t num_desc_per_page;
6317 	struct dp_soc *soc = pdev->soc;
6318 	struct dp_tx_desc_s *tx_desc = NULL;
6319 	struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
6320 
6321 	if (!vdev && !force_free) {
6322 		dp_err("Reset TX desc vdev, Vdev param is required!");
6323 		return;
6324 	}
6325 
6326 	num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
6327 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
6328 
6329 	for (i = 0; i < num_pool; i++) {
6330 		tx_desc_pool = &soc->tx_desc[i];
6331 		if (!tx_desc_pool->desc_pages.cacheable_pages)
6332 			continue;
6333 
6334 		num_desc_per_page =
6335 			tx_desc_pool->desc_pages.num_element_per_page;
6336 		for (j = 0; j < num_desc; j++) {
6337 			page_id = j / num_desc_per_page;
6338 			offset = j % num_desc_per_page;
6339 			tx_desc = dp_tx_desc_find(soc, i, page_id, offset);
6340 
6341 			if (dp_is_tx_desc_flush_match(pdev, vdev, tx_desc)) {
6342 				if (force_free) {
6343 					tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
6344 					dp_tx_comp_free_buf(soc, tx_desc,
6345 							    false);
6346 					dp_tx_desc_release(tx_desc, i);
6347 				} else {
6348 					dp_tx_desc_reset_vdev(soc, tx_desc,
6349 							      i);
6350 				}
6351 			}
6352 		}
6353 	}
6354 }
6355 #endif /* !QCA_LL_TX_FLOW_CONTROL_V2 */
6356 
6357 /**
6358  * dp_tx_vdev_detach() - detach vdev from dp tx
6359  * @vdev: virtual device instance
6360  *
6361  * Return: QDF_STATUS_SUCCESS: success
6362  *         QDF_STATUS_E_RESOURCES: Error return
6363  */
6364 QDF_STATUS dp_tx_vdev_detach(struct dp_vdev *vdev)
6365 {
6366 	struct dp_pdev *pdev = vdev->pdev;
6367 
6368 	/* Reset TX desc associated to this Vdev as NULL */
6369 	dp_tx_desc_flush(pdev, vdev, false);
6370 
6371 	return QDF_STATUS_SUCCESS;
6372 }
6373 
6374 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
6375 /* Pools will be allocated dynamically */
6376 static QDF_STATUS dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
6377 					   int num_desc)
6378 {
6379 	uint8_t i;
6380 
6381 	for (i = 0; i < num_pool; i++) {
6382 		qdf_spinlock_create(&soc->tx_desc[i].flow_pool_lock);
6383 		soc->tx_desc[i].status = FLOW_POOL_INACTIVE;
6384 	}
6385 
6386 	return QDF_STATUS_SUCCESS;
6387 }
6388 
6389 static QDF_STATUS dp_tx_init_static_pools(struct dp_soc *soc, int num_pool,
6390 					  uint32_t num_desc)
6391 {
6392 	return QDF_STATUS_SUCCESS;
6393 }
6394 
6395 static void dp_tx_deinit_static_pools(struct dp_soc *soc, int num_pool)
6396 {
6397 }
6398 
6399 static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
6400 {
6401 	uint8_t i;
6402 
6403 	for (i = 0; i < num_pool; i++)
6404 		qdf_spinlock_destroy(&soc->tx_desc[i].flow_pool_lock);
6405 }
6406 #else /* QCA_LL_TX_FLOW_CONTROL_V2! */
6407 static QDF_STATUS dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
6408 					   uint32_t num_desc)
6409 {
6410 	uint8_t i, count;
6411 
6412 	/* Allocate software Tx descriptor pools */
6413 	for (i = 0; i < num_pool; i++) {
6414 		if (dp_tx_desc_pool_alloc(soc, i, num_desc)) {
6415 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
6416 				  FL("Tx Desc Pool alloc %d failed %pK"),
6417 				  i, soc);
6418 			goto fail;
6419 		}
6420 	}
6421 	return QDF_STATUS_SUCCESS;
6422 
6423 fail:
6424 	for (count = 0; count < i; count++)
6425 		dp_tx_desc_pool_free(soc, count);
6426 
6427 	return QDF_STATUS_E_NOMEM;
6428 }
6429 
6430 static QDF_STATUS dp_tx_init_static_pools(struct dp_soc *soc, int num_pool,
6431 					  uint32_t num_desc)
6432 {
6433 	uint8_t i;
6434 	for (i = 0; i < num_pool; i++) {
6435 		if (dp_tx_desc_pool_init(soc, i, num_desc)) {
6436 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
6437 				  FL("Tx Desc Pool init %d failed %pK"),
6438 				  i, soc);
6439 			return QDF_STATUS_E_NOMEM;
6440 		}
6441 	}
6442 	return QDF_STATUS_SUCCESS;
6443 }
6444 
6445 static void dp_tx_deinit_static_pools(struct dp_soc *soc, int num_pool)
6446 {
6447 	uint8_t i;
6448 
6449 	for (i = 0; i < num_pool; i++)
6450 		dp_tx_desc_pool_deinit(soc, i);
6451 }
6452 
6453 static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
6454 {
6455 	uint8_t i;
6456 
6457 	for (i = 0; i < num_pool; i++)
6458 		dp_tx_desc_pool_free(soc, i);
6459 }
6460 
6461 #endif /* !QCA_LL_TX_FLOW_CONTROL_V2 */
6462 
6463 /**
6464  * dp_tx_tso_cmn_desc_pool_deinit() - de-initialize TSO descriptors
6465  * @soc: core txrx main context
6466  * @num_pool: number of pools
6467  *
6468  */
6469 static void dp_tx_tso_cmn_desc_pool_deinit(struct dp_soc *soc, uint8_t num_pool)
6470 {
6471 	dp_tx_tso_desc_pool_deinit(soc, num_pool);
6472 	dp_tx_tso_num_seg_pool_deinit(soc, num_pool);
6473 }
6474 
6475 /**
6476  * dp_tx_tso_cmn_desc_pool_free() - free TSO descriptors
6477  * @soc: core txrx main context
6478  * @num_pool: number of pools
6479  *
6480  */
6481 static void dp_tx_tso_cmn_desc_pool_free(struct dp_soc *soc, uint8_t num_pool)
6482 {
6483 	dp_tx_tso_desc_pool_free(soc, num_pool);
6484 	dp_tx_tso_num_seg_pool_free(soc, num_pool);
6485 }
6486 
6487 /**
6488  * dp_soc_tx_desc_sw_pools_free() - free all TX descriptors
6489  * @soc: core txrx main context
6490  *
6491  * This function frees all tx related descriptors as below
6492  * 1. Regular TX descriptors (static pools)
6493  * 2. extension TX descriptors (used for ME, RAW, TSO etc...)
6494  * 3. TSO descriptors
6495  *
6496  */
6497 void dp_soc_tx_desc_sw_pools_free(struct dp_soc *soc)
6498 {
6499 	uint8_t num_pool;
6500 
6501 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
6502 
6503 	dp_tx_tso_cmn_desc_pool_free(soc, num_pool);
6504 	dp_tx_ext_desc_pool_free(soc, num_pool);
6505 	dp_tx_delete_static_pools(soc, num_pool);
6506 }
6507 
6508 /**
6509  * dp_soc_tx_desc_sw_pools_deinit() - de-initialize all TX descriptors
6510  * @soc: core txrx main context
6511  *
6512  * This function de-initializes all tx related descriptors as below
6513  * 1. Regular TX descriptors (static pools)
6514  * 2. extension TX descriptors (used for ME, RAW, TSO etc...)
6515  * 3. TSO descriptors
6516  *
6517  */
6518 void dp_soc_tx_desc_sw_pools_deinit(struct dp_soc *soc)
6519 {
6520 	uint8_t num_pool;
6521 
6522 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
6523 
6524 	dp_tx_flow_control_deinit(soc);
6525 	dp_tx_tso_cmn_desc_pool_deinit(soc, num_pool);
6526 	dp_tx_ext_desc_pool_deinit(soc, num_pool);
6527 	dp_tx_deinit_static_pools(soc, num_pool);
6528 }
6529 
6530 /**
6531  * dp_tx_tso_cmn_desc_pool_alloc() - TSO cmn desc pool allocator
6532  * @soc: DP soc handle
6533  * @num_pool: Number of pools
6534  * @num_desc: Number of descriptors
6535  *
6536  * Reserve TSO descriptor buffers
6537  *
6538  * Return: QDF_STATUS_E_FAILURE on failure or
6539  *         QDF_STATUS_SUCCESS on success
6540  */
6541 static QDF_STATUS dp_tx_tso_cmn_desc_pool_alloc(struct dp_soc *soc,
6542 						uint8_t num_pool,
6543 						uint32_t num_desc)
6544 {
6545 	if (dp_tx_tso_desc_pool_alloc(soc, num_pool, num_desc)) {
6546 		dp_err("TSO Desc Pool alloc %d failed %pK", num_pool, soc);
6547 		return QDF_STATUS_E_FAILURE;
6548 	}
6549 
6550 	if (dp_tx_tso_num_seg_pool_alloc(soc, num_pool, num_desc)) {
6551 		dp_err("TSO Num of seg Pool alloc %d failed %pK",
6552 		       num_pool, soc);
6553 		return QDF_STATUS_E_FAILURE;
6554 	}
6555 	return QDF_STATUS_SUCCESS;
6556 }
6557 
6558 /**
6559  * dp_tx_tso_cmn_desc_pool_init() - TSO cmn desc pool init
6560  * @soc: DP soc handle
6561  * @num_pool: Number of pools
6562  * @num_desc: Number of descriptors
6563  *
6564  * Initialize TSO descriptor pools
6565  *
6566  * Return: QDF_STATUS_E_FAILURE on failure or
6567  *         QDF_STATUS_SUCCESS on success
6568  */
6569 
6570 static QDF_STATUS dp_tx_tso_cmn_desc_pool_init(struct dp_soc *soc,
6571 					       uint8_t num_pool,
6572 					       uint32_t num_desc)
6573 {
6574 	if (dp_tx_tso_desc_pool_init(soc, num_pool, num_desc)) {
6575 		dp_err("TSO Desc Pool alloc %d failed %pK", num_pool, soc);
6576 		return QDF_STATUS_E_FAILURE;
6577 	}
6578 
6579 	if (dp_tx_tso_num_seg_pool_init(soc, num_pool, num_desc)) {
6580 		dp_err("TSO Num of seg Pool alloc %d failed %pK",
6581 		       num_pool, soc);
6582 		return QDF_STATUS_E_FAILURE;
6583 	}
6584 	return QDF_STATUS_SUCCESS;
6585 }
6586 
6587 /**
6588  * dp_soc_tx_desc_sw_pools_alloc() - Allocate tx descriptor pool memory
6589  * @soc: core txrx main context
6590  *
6591  * This function allocates memory for following descriptor pools
6592  * 1. regular sw tx descriptor pools (static pools)
6593  * 2. TX extension descriptor pools (ME, RAW, TSO etc...)
6594  * 3. TSO descriptor pools
6595  *
6596  * Return: QDF_STATUS_SUCCESS: success
6597  *         QDF_STATUS_E_RESOURCES: Error return
6598  */
6599 QDF_STATUS dp_soc_tx_desc_sw_pools_alloc(struct dp_soc *soc)
6600 {
6601 	uint8_t num_pool;
6602 	uint32_t num_desc;
6603 	uint32_t num_ext_desc;
6604 
6605 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
6606 	num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
6607 	num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
6608 
6609 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
6610 		  "%s Tx Desc Alloc num_pool = %d, descs = %d",
6611 		  __func__, num_pool, num_desc);
6612 
6613 	if ((num_pool > MAX_TXDESC_POOLS) ||
6614 	    (num_desc > WLAN_CFG_NUM_TX_DESC_MAX))
6615 		goto fail1;
6616 
6617 	if (dp_tx_alloc_static_pools(soc, num_pool, num_desc))
6618 		goto fail1;
6619 
6620 	if (dp_tx_ext_desc_pool_alloc(soc, num_pool, num_ext_desc))
6621 		goto fail2;
6622 
6623 	if (wlan_cfg_is_tso_desc_attach_defer(soc->wlan_cfg_ctx))
6624 		return QDF_STATUS_SUCCESS;
6625 
6626 	if (dp_tx_tso_cmn_desc_pool_alloc(soc, num_pool, num_ext_desc))
6627 		goto fail3;
6628 
6629 	return QDF_STATUS_SUCCESS;
6630 
6631 fail3:
6632 	dp_tx_ext_desc_pool_free(soc, num_pool);
6633 fail2:
6634 	dp_tx_delete_static_pools(soc, num_pool);
6635 fail1:
6636 	return QDF_STATUS_E_RESOURCES;
6637 }
6638 
6639 /**
6640  * dp_soc_tx_desc_sw_pools_init() - Initialise TX descriptor pools
6641  * @soc: core txrx main context
6642  *
6643  * This function initializes the following TX descriptor pools
6644  * 1. regular sw tx descriptor pools (static pools)
6645  * 2. TX extension descriptor pools (ME, RAW, TSO etc...)
6646  * 3. TSO descriptor pools
6647  *
6648  * Return: QDF_STATUS_SUCCESS: success
6649  *	   QDF_STATUS_E_RESOURCES: Error return
6650  */
6651 QDF_STATUS dp_soc_tx_desc_sw_pools_init(struct dp_soc *soc)
6652 {
6653 	uint8_t num_pool;
6654 	uint32_t num_desc;
6655 	uint32_t num_ext_desc;
6656 
6657 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
6658 	num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
6659 	num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
6660 
6661 	if (dp_tx_init_static_pools(soc, num_pool, num_desc))
6662 		goto fail1;
6663 
6664 	if (dp_tx_ext_desc_pool_init(soc, num_pool, num_ext_desc))
6665 		goto fail2;
6666 
6667 	if (wlan_cfg_is_tso_desc_attach_defer(soc->wlan_cfg_ctx))
6668 		return QDF_STATUS_SUCCESS;
6669 
6670 	if (dp_tx_tso_cmn_desc_pool_init(soc, num_pool, num_ext_desc))
6671 		goto fail3;
6672 
6673 	dp_tx_flow_control_init(soc);
6674 	soc->process_tx_status = CONFIG_PROCESS_TX_STATUS;
6675 	return QDF_STATUS_SUCCESS;
6676 
6677 fail3:
6678 	dp_tx_ext_desc_pool_deinit(soc, num_pool);
6679 fail2:
6680 	dp_tx_deinit_static_pools(soc, num_pool);
6681 fail1:
6682 	return QDF_STATUS_E_RESOURCES;
6683 }
6684 
6685 /**
6686  * dp_tso_soc_attach() - Allocate and initialize TSO descriptors
6687  * @txrx_soc: dp soc handle
6688  *
6689  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
6690  *			QDF_STATUS_E_FAILURE
6691  */
6692 QDF_STATUS dp_tso_soc_attach(struct cdp_soc_t *txrx_soc)
6693 {
6694 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
6695 	uint8_t num_pool;
6696 	uint32_t num_ext_desc;
6697 
6698 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
6699 	num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
6700 
6701 	if (dp_tx_tso_cmn_desc_pool_alloc(soc, num_pool, num_ext_desc))
6702 		return QDF_STATUS_E_FAILURE;
6703 
6704 	if (dp_tx_tso_cmn_desc_pool_init(soc, num_pool, num_ext_desc))
6705 		return QDF_STATUS_E_FAILURE;
6706 
6707 	return QDF_STATUS_SUCCESS;
6708 }
6709 
6710 /**
6711  * dp_tso_soc_detach() - de-initialize and free the TSO descriptors
6712  * @txrx_soc: dp soc handle
6713  *
6714  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
6715  */
6716 QDF_STATUS dp_tso_soc_detach(struct cdp_soc_t *txrx_soc)
6717 {
6718 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
6719 	uint8_t num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
6720 
6721 	dp_tx_tso_cmn_desc_pool_deinit(soc, num_pool);
6722 	dp_tx_tso_cmn_desc_pool_free(soc, num_pool);
6723 
6724 	return QDF_STATUS_SUCCESS;
6725 }
6726 
6727 #ifdef CONFIG_DP_PKT_ADD_TIMESTAMP
6728 void dp_pkt_add_timestamp(struct dp_vdev *vdev,
6729 			  enum qdf_pkt_timestamp_index index, uint64_t time,
6730 			  qdf_nbuf_t nbuf)
6731 {
6732 	if (qdf_unlikely(qdf_is_dp_pkt_timestamp_enabled())) {
6733 		uint64_t tsf_time;
6734 
6735 		if (vdev->get_tsf_time) {
6736 			vdev->get_tsf_time(vdev->osif_vdev, time, &tsf_time);
6737 			qdf_add_dp_pkt_timestamp(nbuf, index, tsf_time);
6738 		}
6739 	}
6740 }
6741 
6742 void dp_pkt_get_timestamp(uint64_t *time)
6743 {
6744 	if (qdf_unlikely(qdf_is_dp_pkt_timestamp_enabled()))
6745 		*time = qdf_get_log_timestamp();
6746 }
6747 #endif
6748 
6749