xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_tx.c (revision 5bdb2fe470e2f8c4b9d856f913f85ee936437183)
1 /*
2  * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "htt.h"
20 #include "dp_tx.h"
21 #include "dp_tx_desc.h"
22 #include "dp_peer.h"
23 #include "dp_types.h"
24 #include "hal_tx.h"
25 #include "qdf_mem.h"
26 #include "qdf_nbuf.h"
27 #include "qdf_net_types.h"
28 #include <wlan_cfg.h>
29 #ifdef MESH_MODE_SUPPORT
30 #include "if_meta_hdr.h"
31 #endif
32 
33 #ifdef TX_PER_PDEV_DESC_POOL
34 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
35 #define DP_TX_GET_DESC_POOL_ID(vdev) (vdev->vdev_id)
36 #else /* QCA_LL_TX_FLOW_CONTROL_V2 */
37 #define DP_TX_GET_DESC_POOL_ID(vdev) (vdev->pdev->pdev_id)
38 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
39 	#define DP_TX_GET_RING_ID(vdev) (vdev->pdev->pdev_id)
40 #else
41 	#ifdef TX_PER_VDEV_DESC_POOL
42 		#define DP_TX_GET_DESC_POOL_ID(vdev) (vdev->vdev_id)
43 		#define DP_TX_GET_RING_ID(vdev) (vdev->pdev->pdev_id)
44 	#else
45 		#define DP_TX_GET_DESC_POOL_ID(vdev) qdf_get_cpu()
46 		#define DP_TX_GET_RING_ID(vdev) vdev->pdev->soc->tx_ring_map[qdf_get_cpu()]
47 	#endif /* TX_PER_VDEV_DESC_POOL */
48 #endif /* TX_PER_PDEV_DESC_POOL */
49 
50 /* TODO Add support in TSO */
51 #define DP_DESC_NUM_FRAG(x) 0
52 
53 /* disable TQM_BYPASS */
54 #define TQM_BYPASS_WAR 0
55 
56 /* invalid peer id for reinject*/
57 #define DP_INVALID_PEER 0XFFFE
58 
59 /*mapping between hal encrypt type and cdp_sec_type*/
60 #define MAX_CDP_SEC_TYPE 12
61 static const uint8_t sec_type_map[MAX_CDP_SEC_TYPE] = {
62 					HAL_TX_ENCRYPT_TYPE_NO_CIPHER,
63 					HAL_TX_ENCRYPT_TYPE_WEP_128,
64 					HAL_TX_ENCRYPT_TYPE_WEP_104,
65 					HAL_TX_ENCRYPT_TYPE_WEP_40,
66 					HAL_TX_ENCRYPT_TYPE_TKIP_WITH_MIC,
67 					HAL_TX_ENCRYPT_TYPE_TKIP_NO_MIC,
68 					HAL_TX_ENCRYPT_TYPE_AES_CCMP_128,
69 					HAL_TX_ENCRYPT_TYPE_WAPI,
70 					HAL_TX_ENCRYPT_TYPE_AES_CCMP_256,
71 					HAL_TX_ENCRYPT_TYPE_AES_GCMP_128,
72 					HAL_TX_ENCRYPT_TYPE_AES_GCMP_256,
73 					HAL_TX_ENCRYPT_TYPE_WAPI_GCM_SM4};
74 
75 /**
76  * dp_tx_get_queue() - Returns Tx queue IDs to be used for this Tx frame
77  * @vdev: DP Virtual device handle
78  * @nbuf: Buffer pointer
79  * @queue: queue ids container for nbuf
80  *
81  * TX packet queue has 2 instances, software descriptors id and dma ring id
82  * Based on tx feature and hardware configuration queue id combination could be
83  * different.
84  * For example -
85  * With XPS enabled,all TX descriptor pools and dma ring are assigned per cpu id
86  * With no XPS,lock based resource protection, Descriptor pool ids are different
87  * for each vdev, dma ring id will be same as single pdev id
88  *
89  * Return: None
90  */
91 static inline void dp_tx_get_queue(struct dp_vdev *vdev,
92 		qdf_nbuf_t nbuf, struct dp_tx_queue *queue)
93 {
94 	/* get flow id */
95 	queue->desc_pool_id = DP_TX_GET_DESC_POOL_ID(vdev);
96 	queue->ring_id = DP_TX_GET_RING_ID(vdev);
97 
98 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
99 			"%s, pool_id:%d ring_id: %d",
100 			__func__, queue->desc_pool_id, queue->ring_id);
101 
102 	return;
103 }
104 
105 #if defined(FEATURE_TSO)
106 /**
107  * dp_tx_tso_desc_release() - Release the tso segment
108  *                            after unmapping all the fragments
109  *
110  * @pdev - physical device handle
111  * @tx_desc - Tx software descriptor
112  */
113 static void dp_tx_tso_desc_release(struct dp_soc *soc,
114 		struct dp_tx_desc_s *tx_desc)
115 {
116 	TSO_DEBUG("%s: Free the tso descriptor", __func__);
117 	if (qdf_unlikely(tx_desc->tso_desc == NULL)) {
118 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
119 			"%s %d TSO desc is NULL!",
120 			__func__, __LINE__);
121 		qdf_assert(0);
122 	} else if (qdf_unlikely(tx_desc->tso_num_desc == NULL)) {
123 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
124 			"%s %d TSO common info is NULL!",
125 			__func__, __LINE__);
126 		qdf_assert(0);
127 	} else {
128 		struct qdf_tso_num_seg_elem_t *tso_num_desc =
129 			(struct qdf_tso_num_seg_elem_t *) tx_desc->tso_num_desc;
130 
131 		if (tso_num_desc->num_seg.tso_cmn_num_seg > 1) {
132 			tso_num_desc->num_seg.tso_cmn_num_seg--;
133 			qdf_nbuf_unmap_tso_segment(soc->osdev,
134 					tx_desc->tso_desc, false);
135 		} else {
136 			tso_num_desc->num_seg.tso_cmn_num_seg--;
137 			qdf_assert(tso_num_desc->num_seg.tso_cmn_num_seg == 0);
138 			qdf_nbuf_unmap_tso_segment(soc->osdev,
139 					tx_desc->tso_desc, true);
140 			dp_tso_num_seg_free(soc, tx_desc->pool_id,
141 					tx_desc->tso_num_desc);
142 			tx_desc->tso_num_desc = NULL;
143 		}
144 		dp_tx_tso_desc_free(soc,
145 				tx_desc->pool_id, tx_desc->tso_desc);
146 		tx_desc->tso_desc = NULL;
147 	}
148 }
149 #else
150 static void dp_tx_tso_desc_release(struct dp_soc *soc,
151 		struct dp_tx_desc_s *tx_desc)
152 {
153 	return;
154 }
155 #endif
156 /**
157  * dp_tx_desc_release() - Release Tx Descriptor
158  * @tx_desc : Tx Descriptor
159  * @desc_pool_id: Descriptor Pool ID
160  *
161  * Deallocate all resources attached to Tx descriptor and free the Tx
162  * descriptor.
163  *
164  * Return:
165  */
166 static void
167 dp_tx_desc_release(struct dp_tx_desc_s *tx_desc, uint8_t desc_pool_id)
168 {
169 	struct dp_pdev *pdev = tx_desc->pdev;
170 	struct dp_soc *soc;
171 	uint8_t comp_status = 0;
172 
173 	qdf_assert(pdev);
174 
175 	soc = pdev->soc;
176 
177 	if (tx_desc->frm_type == dp_tx_frm_tso)
178 		dp_tx_tso_desc_release(soc, tx_desc);
179 
180 	if (tx_desc->flags & DP_TX_DESC_FLAG_FRAG)
181 		dp_tx_ext_desc_free(soc, tx_desc->msdu_ext_desc, desc_pool_id);
182 
183 	if (tx_desc->flags & DP_TX_DESC_FLAG_ME)
184 		dp_tx_me_free_buf(tx_desc->pdev, tx_desc->me_buffer);
185 
186 	qdf_atomic_dec(&pdev->num_tx_outstanding);
187 
188 	if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)
189 		qdf_atomic_dec(&pdev->num_tx_exception);
190 
191 	if (HAL_TX_COMP_RELEASE_SOURCE_TQM ==
192 				hal_tx_comp_get_buffer_source(&tx_desc->comp))
193 		comp_status = hal_tx_comp_get_release_reason(&tx_desc->comp);
194 	else
195 		comp_status = HAL_TX_COMP_RELEASE_REASON_FW;
196 
197 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
198 		"Tx Completion Release desc %d status %d outstanding %d",
199 		tx_desc->id, comp_status,
200 		qdf_atomic_read(&pdev->num_tx_outstanding));
201 
202 	dp_tx_desc_free(soc, tx_desc, desc_pool_id);
203 	return;
204 }
205 
206 /**
207  * dp_tx_htt_metadata_prepare() - Prepare HTT metadata for special frames
208  * @vdev: DP vdev Handle
209  * @nbuf: skb
210  *
211  * Prepares and fills HTT metadata in the frame pre-header for special frames
212  * that should be transmitted using varying transmit parameters.
213  * There are 2 VDEV modes that currently needs this special metadata -
214  *  1) Mesh Mode
215  *  2) DSRC Mode
216  *
217  * Return: HTT metadata size
218  *
219  */
220 static uint8_t dp_tx_prepare_htt_metadata(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
221 		uint32_t *meta_data)
222 {
223 	struct htt_tx_msdu_desc_ext2_t *desc_ext =
224 				(struct htt_tx_msdu_desc_ext2_t *) meta_data;
225 
226 	uint8_t htt_desc_size;
227 
228 	/* Size rounded of multiple of 8 bytes */
229 	uint8_t htt_desc_size_aligned;
230 
231 	uint8_t *hdr = NULL;
232 
233 	HTT_TX_TCL_METADATA_VALID_HTT_SET(vdev->htt_tcl_metadata, 1);
234 
235 	/*
236 	 * Metadata - HTT MSDU Extension header
237 	 */
238 	htt_desc_size = sizeof(struct htt_tx_msdu_desc_ext2_t);
239 	htt_desc_size_aligned = (htt_desc_size + 7) & ~0x7;
240 
241 	if (vdev->mesh_vdev) {
242 
243 		/* Fill and add HTT metaheader */
244 		hdr = qdf_nbuf_push_head(nbuf, htt_desc_size_aligned);
245 		if (hdr == NULL) {
246 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
247 					"Error in filling HTT metadata\n");
248 
249 			return 0;
250 		}
251 		qdf_mem_copy(hdr, desc_ext, htt_desc_size);
252 
253 	} else if (vdev->opmode == wlan_op_mode_ocb) {
254 		/* Todo - Add support for DSRC */
255 	}
256 
257 	return htt_desc_size_aligned;
258 }
259 
260 /**
261  * dp_tx_prepare_tso_ext_desc() - Prepare MSDU extension descriptor for TSO
262  * @tso_seg: TSO segment to process
263  * @ext_desc: Pointer to MSDU extension descriptor
264  *
265  * Return: void
266  */
267 #if defined(FEATURE_TSO)
268 static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
269 		void *ext_desc)
270 {
271 	uint8_t num_frag;
272 	uint32_t tso_flags;
273 
274 	/*
275 	 * Set tso_en, tcp_flags(NS, CWR, ECE, URG, ACK, PSH, RST, SYN, FIN),
276 	 * tcp_flag_mask
277 	 *
278 	 * Checksum enable flags are set in TCL descriptor and not in Extension
279 	 * Descriptor (H/W ignores checksum_en flags in MSDU ext descriptor)
280 	 */
281 	tso_flags = *(uint32_t *) &tso_seg->tso_flags;
282 
283 	hal_tx_ext_desc_set_tso_flags(ext_desc, tso_flags);
284 
285 	hal_tx_ext_desc_set_msdu_length(ext_desc, tso_seg->tso_flags.l2_len,
286 		tso_seg->tso_flags.ip_len);
287 
288 	hal_tx_ext_desc_set_tcp_seq(ext_desc, tso_seg->tso_flags.tcp_seq_num);
289 	hal_tx_ext_desc_set_ip_id(ext_desc, tso_seg->tso_flags.ip_id);
290 
291 
292 	for (num_frag = 0; num_frag < tso_seg->num_frags; num_frag++) {
293 		uint32_t lo = 0;
294 		uint32_t hi = 0;
295 
296 		qdf_dmaaddr_to_32s(
297 			tso_seg->tso_frags[num_frag].paddr, &lo, &hi);
298 		hal_tx_ext_desc_set_buffer(ext_desc, num_frag, lo, hi,
299 			tso_seg->tso_frags[num_frag].length);
300 	}
301 
302 	return;
303 }
304 #else
305 static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
306 		void *ext_desc)
307 {
308 	return;
309 }
310 #endif
311 
312 #if defined(FEATURE_TSO)
313 /**
314  * dp_tx_free_tso_seg() - Loop through the tso segments
315  *                        allocated and free them
316  *
317  * @soc: soc handle
318  * @free_seg: list of tso segments
319  * @msdu_info: msdu descriptor
320  *
321  * Return - void
322  */
323 static void dp_tx_free_tso_seg(struct dp_soc *soc,
324 	struct qdf_tso_seg_elem_t *free_seg,
325 	struct dp_tx_msdu_info_s *msdu_info)
326 {
327 	struct qdf_tso_seg_elem_t *next_seg;
328 
329 	while (free_seg) {
330 		next_seg = free_seg->next;
331 		dp_tx_tso_desc_free(soc,
332 			msdu_info->tx_queue.desc_pool_id,
333 			free_seg);
334 		free_seg = next_seg;
335 	}
336 }
337 
338 /**
339  * dp_tx_free_tso_num_seg() - Loop through the tso num segments
340  *                            allocated and free them
341  *
342  * @soc:  soc handle
343  * @free_seg: list of tso segments
344  * @msdu_info: msdu descriptor
345  * Return - void
346  */
347 static void dp_tx_free_tso_num_seg(struct dp_soc *soc,
348 	struct qdf_tso_num_seg_elem_t *free_seg,
349 	struct dp_tx_msdu_info_s *msdu_info)
350 {
351 	struct qdf_tso_num_seg_elem_t *next_seg;
352 
353 	while (free_seg) {
354 		next_seg = free_seg->next;
355 		dp_tso_num_seg_free(soc,
356 			msdu_info->tx_queue.desc_pool_id,
357 			free_seg);
358 		free_seg = next_seg;
359 	}
360 }
361 
362 /**
363  * dp_tx_prepare_tso() - Given a jumbo msdu, prepare the TSO info
364  * @vdev: virtual device handle
365  * @msdu: network buffer
366  * @msdu_info: meta data associated with the msdu
367  *
368  * Return: QDF_STATUS_SUCCESS success
369  */
370 static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
371 		qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
372 {
373 	struct qdf_tso_seg_elem_t *tso_seg;
374 	int num_seg = qdf_nbuf_get_tso_num_seg(msdu);
375 	struct dp_soc *soc = vdev->pdev->soc;
376 	struct qdf_tso_info_t *tso_info;
377 	struct qdf_tso_num_seg_elem_t *tso_num_seg;
378 
379 	tso_info = &msdu_info->u.tso_info;
380 	tso_info->curr_seg = NULL;
381 	tso_info->tso_seg_list = NULL;
382 	tso_info->num_segs = num_seg;
383 	msdu_info->frm_type = dp_tx_frm_tso;
384 	tso_info->tso_num_seg_list = NULL;
385 
386 	TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
387 
388 	while (num_seg) {
389 		tso_seg = dp_tx_tso_desc_alloc(
390 				soc, msdu_info->tx_queue.desc_pool_id);
391 		if (tso_seg) {
392 			tso_seg->next = tso_info->tso_seg_list;
393 			tso_info->tso_seg_list = tso_seg;
394 			num_seg--;
395 		} else {
396 			struct qdf_tso_seg_elem_t *free_seg =
397 				tso_info->tso_seg_list;
398 
399 			dp_tx_free_tso_seg(soc, free_seg, msdu_info);
400 
401 			return QDF_STATUS_E_NOMEM;
402 		}
403 	}
404 
405 	TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
406 
407 	tso_num_seg = dp_tso_num_seg_alloc(soc,
408 			msdu_info->tx_queue.desc_pool_id);
409 
410 	if (tso_num_seg) {
411 		tso_num_seg->next = tso_info->tso_num_seg_list;
412 		tso_info->tso_num_seg_list = tso_num_seg;
413 	} else {
414 		/* Bug: free tso_num_seg and tso_seg */
415 		/* Free the already allocated num of segments */
416 		struct qdf_tso_seg_elem_t *free_seg =
417 					tso_info->tso_seg_list;
418 
419 		TSO_DEBUG(" %s: Failed alloc - Number of segs for a TSO packet",
420 			__func__);
421 		dp_tx_free_tso_seg(soc, free_seg, msdu_info);
422 
423 		return QDF_STATUS_E_NOMEM;
424 	}
425 
426 	msdu_info->num_seg =
427 		qdf_nbuf_get_tso_info(soc->osdev, msdu, tso_info);
428 
429 	TSO_DEBUG(" %s: msdu_info->num_seg: %d", __func__,
430 			msdu_info->num_seg);
431 
432 	if (!(msdu_info->num_seg)) {
433 		dp_tx_free_tso_seg(soc, tso_info->tso_seg_list, msdu_info);
434 		dp_tx_free_tso_num_seg(soc, tso_info->tso_num_seg_list,
435 					msdu_info);
436 		return QDF_STATUS_E_INVAL;
437 	}
438 
439 	tso_info->curr_seg = tso_info->tso_seg_list;
440 
441 	return QDF_STATUS_SUCCESS;
442 }
443 #else
444 static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
445 		qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
446 {
447 	return QDF_STATUS_E_NOMEM;
448 }
449 #endif
450 
451 /**
452  * dp_tx_prepare_ext_desc() - Allocate and prepare MSDU extension descriptor
453  * @vdev: DP Vdev handle
454  * @msdu_info: MSDU info to be setup in MSDU extension descriptor
455  * @desc_pool_id: Descriptor Pool ID
456  *
457  * Return:
458  */
459 static
460 struct dp_tx_ext_desc_elem_s *dp_tx_prepare_ext_desc(struct dp_vdev *vdev,
461 		struct dp_tx_msdu_info_s *msdu_info, uint8_t desc_pool_id)
462 {
463 	uint8_t i;
464 	uint8_t cached_ext_desc[HAL_TX_EXT_DESC_WITH_META_DATA];
465 	struct dp_tx_seg_info_s *seg_info;
466 	struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
467 	struct dp_soc *soc = vdev->pdev->soc;
468 
469 	/* Allocate an extension descriptor */
470 	msdu_ext_desc = dp_tx_ext_desc_alloc(soc, desc_pool_id);
471 	qdf_mem_zero(&cached_ext_desc[0], HAL_TX_EXT_DESC_WITH_META_DATA);
472 
473 	if (!msdu_ext_desc) {
474 		DP_STATS_INC(vdev, tx_i.dropped.desc_na, 1);
475 		return NULL;
476 	}
477 
478 	if (msdu_info->exception_fw &&
479 			qdf_unlikely(vdev->mesh_vdev)) {
480 		qdf_mem_copy(&cached_ext_desc[HAL_TX_EXTENSION_DESC_LEN_BYTES],
481 				&msdu_info->meta_data[0],
482 				sizeof(struct htt_tx_msdu_desc_ext2_t));
483 		qdf_atomic_inc(&vdev->pdev->num_tx_exception);
484 		HTT_TX_TCL_METADATA_VALID_HTT_SET(vdev->htt_tcl_metadata, 1);
485 	}
486 
487 	switch (msdu_info->frm_type) {
488 	case dp_tx_frm_sg:
489 	case dp_tx_frm_me:
490 	case dp_tx_frm_raw:
491 		seg_info = msdu_info->u.sg_info.curr_seg;
492 		/* Update the buffer pointers in MSDU Extension Descriptor */
493 		for (i = 0; i < seg_info->frag_cnt; i++) {
494 			hal_tx_ext_desc_set_buffer(&cached_ext_desc[0], i,
495 				seg_info->frags[i].paddr_lo,
496 				seg_info->frags[i].paddr_hi,
497 				seg_info->frags[i].len);
498 		}
499 
500 		break;
501 
502 	case dp_tx_frm_tso:
503 		dp_tx_prepare_tso_ext_desc(&msdu_info->u.tso_info.curr_seg->seg,
504 				&cached_ext_desc[0]);
505 		break;
506 
507 
508 	default:
509 		break;
510 	}
511 
512 	QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
513 			   cached_ext_desc, HAL_TX_EXT_DESC_WITH_META_DATA);
514 
515 	hal_tx_ext_desc_sync(&cached_ext_desc[0],
516 			msdu_ext_desc->vaddr);
517 
518 	return msdu_ext_desc;
519 }
520 
521 /**
522  * dp_tx_desc_prepare_single - Allocate and prepare Tx descriptor
523  * @vdev: DP vdev handle
524  * @nbuf: skb
525  * @desc_pool_id: Descriptor pool ID
526  * @meta_data: Metadata to the fw
527  * @tx_exc_metadata: Handle that holds exception path metadata
528  * Allocate and prepare Tx descriptor with msdu information.
529  *
530  * Return: Pointer to Tx Descriptor on success,
531  *         NULL on failure
532  */
533 static
534 struct dp_tx_desc_s *dp_tx_prepare_desc_single(struct dp_vdev *vdev,
535 		qdf_nbuf_t nbuf, uint8_t desc_pool_id,
536 		struct dp_tx_msdu_info_s *msdu_info,
537 		struct cdp_tx_exception_metadata *tx_exc_metadata)
538 {
539 	uint8_t align_pad;
540 	uint8_t is_exception = 0;
541 	uint8_t htt_hdr_size;
542 	struct ether_header *eh;
543 	struct dp_tx_desc_s *tx_desc;
544 	struct dp_pdev *pdev = vdev->pdev;
545 	struct dp_soc *soc = pdev->soc;
546 
547 	/* Allocate software Tx descriptor */
548 	tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
549 	if (qdf_unlikely(!tx_desc)) {
550 		DP_STATS_INC(vdev, tx_i.dropped.desc_na, 1);
551 		return NULL;
552 	}
553 
554 	/* Flow control/Congestion Control counters */
555 	qdf_atomic_inc(&pdev->num_tx_outstanding);
556 
557 	/* Initialize the SW tx descriptor */
558 	tx_desc->nbuf = nbuf;
559 	tx_desc->frm_type = dp_tx_frm_std;
560 	tx_desc->tx_encap_type = (tx_exc_metadata ?
561 			tx_exc_metadata->tx_encap_type : vdev->tx_encap_type);
562 	tx_desc->vdev = vdev;
563 	tx_desc->pdev = pdev;
564 	tx_desc->msdu_ext_desc = NULL;
565 	tx_desc->pkt_offset = 0;
566 
567 	/*
568 	 * For special modes (vdev_type == ocb or mesh), data frames should be
569 	 * transmitted using varying transmit parameters (tx spec) which include
570 	 * transmit rate, power, priority, channel, channel bandwidth , nss etc.
571 	 * These are filled in HTT MSDU descriptor and sent in frame pre-header.
572 	 * These frames are sent as exception packets to firmware.
573 	 *
574 	 * HW requirement is that metadata should always point to a
575 	 * 8-byte aligned address. So we add alignment pad to start of buffer.
576 	 *  HTT Metadata should be ensured to be multiple of 8-bytes,
577 	 *  to get 8-byte aligned start address along with align_pad added
578 	 *
579 	 *  |-----------------------------|
580 	 *  |                             |
581 	 *  |-----------------------------| <-----Buffer Pointer Address given
582 	 *  |                             |  ^    in HW descriptor (aligned)
583 	 *  |       HTT Metadata          |  |
584 	 *  |                             |  |
585 	 *  |                             |  | Packet Offset given in descriptor
586 	 *  |                             |  |
587 	 *  |-----------------------------|  |
588 	 *  |       Alignment Pad         |  v
589 	 *  |-----------------------------| <----- Actual buffer start address
590 	 *  |        SKB Data             |           (Unaligned)
591 	 *  |                             |
592 	 *  |                             |
593 	 *  |                             |
594 	 *  |                             |
595 	 *  |                             |
596 	 *  |-----------------------------|
597 	 */
598 	if (qdf_unlikely((msdu_info->exception_fw)) ||
599 				(vdev->opmode == wlan_op_mode_ocb)) {
600 		align_pad = ((unsigned long) qdf_nbuf_data(nbuf)) & 0x7;
601 		if (qdf_nbuf_push_head(nbuf, align_pad) == NULL) {
602 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
603 					"qdf_nbuf_push_head failed\n");
604 			goto failure;
605 		}
606 
607 		htt_hdr_size = dp_tx_prepare_htt_metadata(vdev, nbuf,
608 				msdu_info->meta_data);
609 		if (htt_hdr_size == 0)
610 			goto failure;
611 		tx_desc->pkt_offset = align_pad + htt_hdr_size;
612 		tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
613 		is_exception = 1;
614 	}
615 
616 	if (qdf_unlikely(QDF_STATUS_SUCCESS !=
617 				qdf_nbuf_map(soc->osdev, nbuf,
618 					QDF_DMA_TO_DEVICE))) {
619 		/* Handle failure */
620 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
621 				"qdf_nbuf_map failed\n");
622 		DP_STATS_INC(vdev, tx_i.dropped.dma_error, 1);
623 		goto failure;
624 	}
625 
626 	if (qdf_unlikely(vdev->nawds_enabled)) {
627 		eh = (struct ether_header *) qdf_nbuf_data(nbuf);
628 		if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost)) {
629 			tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
630 			is_exception = 1;
631 		}
632 	}
633 
634 #if !TQM_BYPASS_WAR
635 	if (is_exception || tx_exc_metadata)
636 #endif
637 	{
638 		/* Temporary WAR due to TQM VP issues */
639 		tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
640 		qdf_atomic_inc(&pdev->num_tx_exception);
641 	}
642 
643 	return tx_desc;
644 
645 failure:
646 	dp_tx_desc_release(tx_desc, desc_pool_id);
647 	return NULL;
648 }
649 
650 /**
651  * dp_tx_prepare_desc() - Allocate and prepare Tx descriptor for multisegment frame
652  * @vdev: DP vdev handle
653  * @nbuf: skb
654  * @msdu_info: Info to be setup in MSDU descriptor and MSDU extension descriptor
655  * @desc_pool_id : Descriptor Pool ID
656  *
657  * Allocate and prepare Tx descriptor with msdu and fragment descritor
658  * information. For frames wth fragments, allocate and prepare
659  * an MSDU extension descriptor
660  *
661  * Return: Pointer to Tx Descriptor on success,
662  *         NULL on failure
663  */
664 static struct dp_tx_desc_s *dp_tx_prepare_desc(struct dp_vdev *vdev,
665 		qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info,
666 		uint8_t desc_pool_id)
667 {
668 	struct dp_tx_desc_s *tx_desc;
669 	struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
670 	struct dp_pdev *pdev = vdev->pdev;
671 	struct dp_soc *soc = pdev->soc;
672 
673 	/* Allocate software Tx descriptor */
674 	tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
675 	if (!tx_desc) {
676 		DP_STATS_INC(vdev, tx_i.dropped.desc_na, 1);
677 		return NULL;
678 	}
679 
680 	/* Flow control/Congestion Control counters */
681 	qdf_atomic_inc(&pdev->num_tx_outstanding);
682 
683 	/* Initialize the SW tx descriptor */
684 	tx_desc->nbuf = nbuf;
685 	tx_desc->frm_type = msdu_info->frm_type;
686 	tx_desc->tx_encap_type = vdev->tx_encap_type;
687 	tx_desc->vdev = vdev;
688 	tx_desc->pdev = pdev;
689 	tx_desc->pkt_offset = 0;
690 	tx_desc->tso_desc = msdu_info->u.tso_info.curr_seg;
691 	tx_desc->tso_num_desc = msdu_info->u.tso_info.tso_num_seg_list;
692 
693 	/* Handle scattered frames - TSO/SG/ME */
694 	/* Allocate and prepare an extension descriptor for scattered frames */
695 	msdu_ext_desc = dp_tx_prepare_ext_desc(vdev, msdu_info, desc_pool_id);
696 	if (!msdu_ext_desc) {
697 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
698 				"%s Tx Extension Descriptor Alloc Fail\n",
699 				__func__);
700 		goto failure;
701 	}
702 
703 #if TQM_BYPASS_WAR
704 	/* Temporary WAR due to TQM VP issues */
705 	tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
706 	qdf_atomic_inc(&pdev->num_tx_exception);
707 #endif
708 	if (qdf_unlikely(msdu_info->exception_fw))
709 		tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
710 
711 	tx_desc->msdu_ext_desc = msdu_ext_desc;
712 	tx_desc->flags |= DP_TX_DESC_FLAG_FRAG;
713 
714 	return tx_desc;
715 failure:
716 	dp_tx_desc_release(tx_desc, desc_pool_id);
717 	return NULL;
718 }
719 
720 /**
721  * dp_tx_prepare_raw() - Prepare RAW packet TX
722  * @vdev: DP vdev handle
723  * @nbuf: buffer pointer
724  * @seg_info: Pointer to Segment info Descriptor to be prepared
725  * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension
726  *     descriptor
727  *
728  * Return:
729  */
730 static qdf_nbuf_t dp_tx_prepare_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
731 	struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
732 {
733 	qdf_nbuf_t curr_nbuf = NULL;
734 	uint16_t total_len = 0;
735 	qdf_dma_addr_t paddr;
736 	int32_t i;
737 	int32_t mapped_buf_num = 0;
738 
739 	struct dp_tx_sg_info_s *sg_info = &msdu_info->u.sg_info;
740 	qdf_dot3_qosframe_t *qos_wh = (qdf_dot3_qosframe_t *) nbuf->data;
741 
742 	DP_STATS_INC_PKT(vdev, tx_i.raw.raw_pkt, 1, qdf_nbuf_len(nbuf));
743 
744 	/* SWAR for HW: Enable WEP bit in the AMSDU frames for RAW mode */
745 	if (qos_wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS)
746 		qos_wh->i_fc[1] |= IEEE80211_FC1_WEP;
747 
748 	for (curr_nbuf = nbuf, i = 0; curr_nbuf;
749 			curr_nbuf = qdf_nbuf_next(curr_nbuf), i++) {
750 
751 		if (QDF_STATUS_SUCCESS != qdf_nbuf_map(vdev->osdev, curr_nbuf,
752 					QDF_DMA_TO_DEVICE)) {
753 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
754 				"%s dma map error \n", __func__);
755 			DP_STATS_INC(vdev, tx_i.raw.dma_map_error, 1);
756 			mapped_buf_num = i;
757 			goto error;
758 		}
759 
760 		paddr = qdf_nbuf_get_frag_paddr(curr_nbuf, 0);
761 		seg_info->frags[i].paddr_lo = paddr;
762 		seg_info->frags[i].paddr_hi = ((uint64_t)paddr >> 32);
763 		seg_info->frags[i].len = qdf_nbuf_len(curr_nbuf);
764 		seg_info->frags[i].vaddr = (void *) curr_nbuf;
765 		total_len += qdf_nbuf_len(curr_nbuf);
766 	}
767 
768 	seg_info->frag_cnt = i;
769 	seg_info->total_len = total_len;
770 	seg_info->next = NULL;
771 
772 	sg_info->curr_seg = seg_info;
773 
774 	msdu_info->frm_type = dp_tx_frm_raw;
775 	msdu_info->num_seg = 1;
776 
777 	return nbuf;
778 
779 error:
780 	i = 0;
781 	while (nbuf) {
782 		curr_nbuf = nbuf;
783 		if (i < mapped_buf_num) {
784 			qdf_nbuf_unmap(vdev->osdev, curr_nbuf, QDF_DMA_TO_DEVICE);
785 			i++;
786 		}
787 		nbuf = qdf_nbuf_next(nbuf);
788 		qdf_nbuf_free(curr_nbuf);
789 	}
790 	return NULL;
791 
792 }
793 
794 /**
795  * dp_tx_hw_enqueue() - Enqueue to TCL HW for transmit
796  * @soc: DP Soc Handle
797  * @vdev: DP vdev handle
798  * @tx_desc: Tx Descriptor Handle
799  * @tid: TID from HLOS for overriding default DSCP-TID mapping
800  * @fw_metadata: Metadata to send to Target Firmware along with frame
801  * @ring_id: Ring ID of H/W ring to which we enqueue the packet
802  * @tx_exc_metadata: Handle that holds exception path meta data
803  *
804  *  Gets the next free TCL HW DMA descriptor and sets up required parameters
805  *  from software Tx descriptor
806  *
807  * Return:
808  */
809 static QDF_STATUS dp_tx_hw_enqueue(struct dp_soc *soc, struct dp_vdev *vdev,
810 				   struct dp_tx_desc_s *tx_desc, uint8_t tid,
811 				   uint16_t fw_metadata, uint8_t ring_id,
812 				   struct cdp_tx_exception_metadata
813 					*tx_exc_metadata)
814 {
815 	uint8_t type;
816 	uint16_t length;
817 	void *hal_tx_desc, *hal_tx_desc_cached;
818 	qdf_dma_addr_t dma_addr;
819 	uint8_t cached_desc[HAL_TX_DESC_LEN_BYTES];
820 
821 	enum cdp_sec_type sec_type = (tx_exc_metadata ?
822 			tx_exc_metadata->sec_type : vdev->sec_type);
823 
824 	/* Return Buffer Manager ID */
825 	uint8_t bm_id = ring_id;
826 	void *hal_srng = soc->tcl_data_ring[ring_id].hal_srng;
827 
828 	hal_tx_desc_cached = (void *) cached_desc;
829 	qdf_mem_zero_outline(hal_tx_desc_cached, HAL_TX_DESC_LEN_BYTES);
830 
831 	if (tx_desc->flags & DP_TX_DESC_FLAG_FRAG) {
832 		length = HAL_TX_EXT_DESC_WITH_META_DATA;
833 		type = HAL_TX_BUF_TYPE_EXT_DESC;
834 		dma_addr = tx_desc->msdu_ext_desc->paddr;
835 	} else {
836 		length = qdf_nbuf_len(tx_desc->nbuf) - tx_desc->pkt_offset;
837 		type = HAL_TX_BUF_TYPE_BUFFER;
838 		dma_addr = qdf_nbuf_mapped_paddr_get(tx_desc->nbuf);
839 	}
840 
841 	hal_tx_desc_set_fw_metadata(hal_tx_desc_cached, fw_metadata);
842 	hal_tx_desc_set_buf_addr(hal_tx_desc_cached,
843 			dma_addr , bm_id, tx_desc->id, type);
844 	hal_tx_desc_set_buf_length(hal_tx_desc_cached, length);
845 	hal_tx_desc_set_buf_offset(hal_tx_desc_cached, tx_desc->pkt_offset);
846 	hal_tx_desc_set_encap_type(hal_tx_desc_cached, tx_desc->tx_encap_type);
847 	hal_tx_desc_set_lmac_id(hal_tx_desc_cached,
848 					HAL_TX_DESC_DEFAULT_LMAC_ID);
849 	hal_tx_desc_set_dscp_tid_table_id(hal_tx_desc_cached,
850 			vdev->dscp_tid_map_id);
851 	hal_tx_desc_set_encrypt_type(hal_tx_desc_cached,
852 			sec_type_map[sec_type]);
853 
854 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
855 			"%s length:%d , type = %d, dma_addr %llx, offset %d desc id %u",
856 			__func__, length, type, (uint64_t)dma_addr,
857 			tx_desc->pkt_offset, tx_desc->id);
858 
859 	if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)
860 		hal_tx_desc_set_to_fw(hal_tx_desc_cached, 1);
861 
862 	hal_tx_desc_set_addr_search_flags(hal_tx_desc_cached,
863 			vdev->hal_desc_addr_search_flags);
864 
865 	/* verify checksum offload configuration*/
866 	if ((wlan_cfg_get_checksum_offload(soc->wlan_cfg_ctx)) &&
867 		((qdf_nbuf_get_tx_cksum(tx_desc->nbuf) == QDF_NBUF_TX_CKSUM_TCP_UDP)
868 		|| qdf_nbuf_is_tso(tx_desc->nbuf)))  {
869 		hal_tx_desc_set_l3_checksum_en(hal_tx_desc_cached, 1);
870 		hal_tx_desc_set_l4_checksum_en(hal_tx_desc_cached, 1);
871 	}
872 
873 	if (tid != HTT_TX_EXT_TID_INVALID)
874 		hal_tx_desc_set_hlos_tid(hal_tx_desc_cached, tid);
875 
876 	if (tx_desc->flags & DP_TX_DESC_FLAG_MESH)
877 		hal_tx_desc_set_mesh_en(hal_tx_desc_cached, 1);
878 
879 
880 	/* Sync cached descriptor with HW */
881 	hal_tx_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
882 
883 	if (!hal_tx_desc) {
884 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
885 			  "%s TCL ring full ring_id:%d\n", __func__, ring_id);
886 		DP_STATS_INC(soc, tx.tcl_ring_full[ring_id], 1);
887 		DP_STATS_INC(vdev, tx_i.dropped.enqueue_fail, 1);
888 		return QDF_STATUS_E_RESOURCES;
889 	}
890 
891 	tx_desc->flags |= DP_TX_DESC_FLAG_QUEUED_TX;
892 
893 	hal_tx_desc_sync(hal_tx_desc_cached, hal_tx_desc);
894 	DP_STATS_INC_PKT(vdev, tx_i.processed, 1, length);
895 
896 	/*
897 	 * If one packet is enqueued in HW, PM usage count needs to be
898 	 * incremented by one to prevent future runtime suspend. This
899 	 * should be tied with the success of enqueuing. It will be
900 	 * decremented after the packet has been sent.
901 	 */
902 	hif_pm_runtime_get_noresume(soc->hif_handle);
903 
904 	return QDF_STATUS_SUCCESS;
905 }
906 
907 
908 /**
909  * dp_cce_classify() - Classify the frame based on CCE rules
910  * @vdev: DP vdev handle
911  * @nbuf: skb
912  *
913  * Classify frames based on CCE rules
914  * Return: bool( true if classified,
915  *               else false)
916  */
917 static bool dp_cce_classify(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
918 {
919 	struct ether_header *eh = NULL;
920 	uint16_t   ether_type;
921 	qdf_llc_t *llcHdr;
922 	qdf_nbuf_t nbuf_clone = NULL;
923 	qdf_dot3_qosframe_t *qos_wh = NULL;
924 
925 	/* for mesh packets don't do any classification */
926 	if (qdf_unlikely(vdev->mesh_vdev))
927 		return false;
928 
929 	if (qdf_likely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
930 		eh = (struct ether_header *) qdf_nbuf_data(nbuf);
931 		ether_type = eh->ether_type;
932 		llcHdr = (qdf_llc_t *)(nbuf->data +
933 					sizeof(struct ether_header));
934 	} else {
935 		qos_wh = (qdf_dot3_qosframe_t *) nbuf->data;
936 
937 		if (qdf_unlikely(qos_wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS)) {
938 			if (qdf_unlikely(
939 				qos_wh->i_fc[1] & QDF_IEEE80211_FC1_TODS &&
940 				qos_wh->i_fc[1] & QDF_IEEE80211_FC1_FROMDS)) {
941 
942 				ether_type = *(uint16_t *)(nbuf->data
943 						+ QDF_IEEE80211_4ADDR_HDR_LEN
944 						+ sizeof(qdf_llc_t)
945 						- sizeof(ether_type));
946 				llcHdr = (qdf_llc_t *)(nbuf->data +
947 						QDF_IEEE80211_4ADDR_HDR_LEN);
948 			} else {
949 				ether_type = *(uint16_t *)(nbuf->data
950 						+ QDF_IEEE80211_3ADDR_HDR_LEN
951 						+ sizeof(qdf_llc_t)
952 						- sizeof(ether_type));
953 				llcHdr = (qdf_llc_t *)(nbuf->data +
954 					QDF_IEEE80211_3ADDR_HDR_LEN);
955 			}
956 
957 			if (qdf_unlikely(DP_FRAME_IS_SNAP(llcHdr)
958 				&& (ether_type ==
959 				qdf_htons(QDF_NBUF_TRAC_EAPOL_ETH_TYPE)))) {
960 
961 				DP_STATS_INC(vdev, tx_i.cce_classified_raw, 1);
962 				return true;
963 			}
964 		}
965 
966 		return false;
967 	}
968 
969 	if (qdf_unlikely(DP_FRAME_IS_SNAP(llcHdr))) {
970 		ether_type = *(uint16_t *)(nbuf->data + 2*ETHER_ADDR_LEN +
971 				sizeof(*llcHdr));
972 		nbuf_clone = qdf_nbuf_clone(nbuf);
973 		qdf_nbuf_pull_head(nbuf_clone, sizeof(*llcHdr));
974 
975 		if (ether_type == htons(ETHERTYPE_8021Q)) {
976 			qdf_nbuf_pull_head(nbuf_clone,
977 						sizeof(qdf_net_vlanhdr_t));
978 		}
979 	} else {
980 		if (ether_type == htons(ETHERTYPE_8021Q)) {
981 			nbuf_clone = qdf_nbuf_clone(nbuf);
982 			qdf_nbuf_pull_head(nbuf_clone,
983 					sizeof(qdf_net_vlanhdr_t));
984 		}
985 	}
986 
987 	if (qdf_unlikely(nbuf_clone))
988 		nbuf = nbuf_clone;
989 
990 
991 	if (qdf_unlikely(qdf_nbuf_is_ipv4_eapol_pkt(nbuf)
992 		|| qdf_nbuf_is_ipv4_arp_pkt(nbuf)
993 		|| qdf_nbuf_is_ipv4_wapi_pkt(nbuf)
994 		|| qdf_nbuf_is_ipv4_tdls_pkt(nbuf)
995 		|| (qdf_nbuf_is_ipv4_pkt(nbuf)
996 			&& qdf_nbuf_is_ipv4_dhcp_pkt(nbuf))
997 		|| (qdf_nbuf_is_ipv6_pkt(nbuf) &&
998 			qdf_nbuf_is_ipv6_dhcp_pkt(nbuf)))) {
999 		if (qdf_unlikely(nbuf_clone != NULL))
1000 			qdf_nbuf_free(nbuf_clone);
1001 		return true;
1002 	}
1003 
1004 	if (qdf_unlikely(nbuf_clone != NULL))
1005 		qdf_nbuf_free(nbuf_clone);
1006 
1007 	return false;
1008 }
1009 
1010 /**
1011  * dp_tx_classify_tid() - Obtain TID to be used for this frame
1012  * @vdev: DP vdev handle
1013  * @nbuf: skb
1014  *
1015  * Extract the DSCP or PCP information from frame and map into TID value.
1016  * Software based TID classification is required when more than 2 DSCP-TID
1017  * mapping tables are needed.
1018  * Hardware supports 2 DSCP-TID mapping tables
1019  *
1020  * Return: void
1021  */
1022 static void dp_tx_classify_tid(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1023 		struct dp_tx_msdu_info_s *msdu_info)
1024 {
1025 	uint8_t tos = 0, dscp_tid_override = 0;
1026 	uint8_t *hdr_ptr, *L3datap;
1027 	uint8_t is_mcast = 0;
1028 	struct ether_header *eh = NULL;
1029 	qdf_ethervlan_header_t *evh = NULL;
1030 	uint16_t   ether_type;
1031 	qdf_llc_t *llcHdr;
1032 	struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
1033 
1034 	/* for mesh packets don't do any classification */
1035 	if (qdf_unlikely(vdev->mesh_vdev))
1036 		return;
1037 
1038 	if (qdf_likely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
1039 		eh = (struct ether_header *) nbuf->data;
1040 		hdr_ptr = eh->ether_dhost;
1041 		L3datap = hdr_ptr + sizeof(struct ether_header);
1042 	} else {
1043 		qdf_dot3_qosframe_t *qos_wh =
1044 			(qdf_dot3_qosframe_t *) nbuf->data;
1045 		msdu_info->tid = qos_wh->i_fc[0] & DP_FC0_SUBTYPE_QOS ?
1046 			qos_wh->i_qos[0] & DP_QOS_TID : 0;
1047 		return;
1048 	}
1049 
1050 	is_mcast = DP_FRAME_IS_MULTICAST(hdr_ptr);
1051 	ether_type = eh->ether_type;
1052 
1053 	llcHdr = (qdf_llc_t *)(nbuf->data + sizeof(struct ether_header));
1054 	/*
1055 	 * Check if packet is dot3 or eth2 type.
1056 	 */
1057 	if (DP_FRAME_IS_LLC(ether_type) && DP_FRAME_IS_SNAP(llcHdr)) {
1058 		ether_type = (uint16_t)*(nbuf->data + 2*ETHER_ADDR_LEN +
1059 				sizeof(*llcHdr));
1060 
1061 		if (ether_type == htons(ETHERTYPE_8021Q)) {
1062 			L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t) +
1063 				sizeof(*llcHdr);
1064 			ether_type = (uint16_t)*(nbuf->data + 2*ETHER_ADDR_LEN
1065 					+ sizeof(*llcHdr) +
1066 					sizeof(qdf_net_vlanhdr_t));
1067 		} else {
1068 			L3datap = hdr_ptr + sizeof(struct ether_header) +
1069 				sizeof(*llcHdr);
1070 		}
1071 	} else {
1072 		if (ether_type == htons(ETHERTYPE_8021Q)) {
1073 			evh = (qdf_ethervlan_header_t *) eh;
1074 			ether_type = evh->ether_type;
1075 			L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t);
1076 		}
1077 	}
1078 
1079 	/*
1080 	 * Find priority from IP TOS DSCP field
1081 	 */
1082 	if (qdf_nbuf_is_ipv4_pkt(nbuf)) {
1083 		qdf_net_iphdr_t *ip = (qdf_net_iphdr_t *) L3datap;
1084 		if (qdf_nbuf_is_ipv4_dhcp_pkt(nbuf)) {
1085 			/* Only for unicast frames */
1086 			if (!is_mcast) {
1087 				/* send it on VO queue */
1088 				msdu_info->tid = DP_VO_TID;
1089 			}
1090 		} else {
1091 			/*
1092 			 * IP frame: exclude ECN bits 0-1 and map DSCP bits 2-7
1093 			 * from TOS byte.
1094 			 */
1095 			tos = ip->ip_tos;
1096 			dscp_tid_override = 1;
1097 
1098 		}
1099 	} else if (qdf_nbuf_is_ipv6_pkt(nbuf)) {
1100 		/* TODO
1101 		 * use flowlabel
1102 		 *igmpmld cases to be handled in phase 2
1103 		 */
1104 		unsigned long ver_pri_flowlabel;
1105 		unsigned long pri;
1106 		ver_pri_flowlabel = *(unsigned long *) L3datap;
1107 		pri = (ntohl(ver_pri_flowlabel) & IPV6_FLOWINFO_PRIORITY) >>
1108 			DP_IPV6_PRIORITY_SHIFT;
1109 		tos = pri;
1110 		dscp_tid_override = 1;
1111 	} else if (qdf_nbuf_is_ipv4_eapol_pkt(nbuf))
1112 		msdu_info->tid = DP_VO_TID;
1113 	else if (qdf_nbuf_is_ipv4_arp_pkt(nbuf)) {
1114 		/* Only for unicast frames */
1115 		if (!is_mcast) {
1116 			/* send ucast arp on VO queue */
1117 			msdu_info->tid = DP_VO_TID;
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * Assign all MCAST packets to BE
1123 	 */
1124 	if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
1125 		if (is_mcast) {
1126 			tos = 0;
1127 			dscp_tid_override = 1;
1128 		}
1129 	}
1130 
1131 	if (dscp_tid_override == 1) {
1132 		tos = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
1133 		msdu_info->tid = pdev->dscp_tid_map[vdev->dscp_tid_map_id][tos];
1134 	}
1135 	return;
1136 }
1137 
1138 #ifdef CONVERGED_TDLS_ENABLE
1139 /**
1140  * dp_tx_update_tdls_flags() - Update descriptor flags for TDLS frame
1141  * @tx_desc: TX descriptor
1142  *
1143  * Return: None
1144  */
1145 static void dp_tx_update_tdls_flags(struct dp_tx_desc_s *tx_desc)
1146 {
1147 	if (tx_desc->vdev) {
1148 		if (tx_desc->vdev->is_tdls_frame)
1149 			tx_desc->flags |= DP_TX_DESC_FLAG_TDLS_FRAME;
1150 			tx_desc->vdev->is_tdls_frame = false;
1151 	}
1152 }
1153 
1154 /**
1155  * dp_non_std_tx_comp_free_buff() - Free the non std tx packet buffer
1156  * @tx_desc: TX descriptor
1157  * @vdev: datapath vdev handle
1158  *
1159  * Return: None
1160  */
1161 static void dp_non_std_tx_comp_free_buff(struct dp_tx_desc_s *tx_desc,
1162 				  struct dp_vdev *vdev)
1163 {
1164 	struct hal_tx_completion_status ts = {0};
1165 	qdf_nbuf_t nbuf = tx_desc->nbuf;
1166 
1167 	hal_tx_comp_get_status(&tx_desc->comp, &ts);
1168 	if (vdev->tx_non_std_data_callback.func) {
1169 		qdf_nbuf_set_next(tx_desc->nbuf, NULL);
1170 		vdev->tx_non_std_data_callback.func(
1171 				vdev->tx_non_std_data_callback.ctxt,
1172 				nbuf, ts.status);
1173 		return;
1174 	}
1175 }
1176 #endif
1177 
1178 /**
1179  * dp_tx_send_msdu_single() - Setup descriptor and enqueue single MSDU to TCL
1180  * @vdev: DP vdev handle
1181  * @nbuf: skb
1182  * @tid: TID from HLOS for overriding default DSCP-TID mapping
1183  * @meta_data: Metadata to the fw
1184  * @tx_q: Tx queue to be used for this Tx frame
1185  * @peer_id: peer_id of the peer in case of NAWDS frames
1186  * @tx_exc_metadata: Handle that holds exception path metadata
1187  *
1188  * Return: NULL on success,
1189  *         nbuf when it fails to send
1190  */
1191 static qdf_nbuf_t dp_tx_send_msdu_single(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1192 		struct dp_tx_msdu_info_s *msdu_info, uint16_t peer_id,
1193 		struct cdp_tx_exception_metadata *tx_exc_metadata)
1194 {
1195 	struct dp_pdev *pdev = vdev->pdev;
1196 	struct dp_soc *soc = pdev->soc;
1197 	struct dp_tx_desc_s *tx_desc;
1198 	QDF_STATUS status;
1199 	struct dp_tx_queue *tx_q = &(msdu_info->tx_queue);
1200 	void *hal_srng = soc->tcl_data_ring[tx_q->ring_id].hal_srng;
1201 	uint16_t htt_tcl_metadata = 0;
1202 	uint8_t tid = msdu_info->tid;
1203 
1204 	HTT_TX_TCL_METADATA_VALID_HTT_SET(htt_tcl_metadata, 0);
1205 	/* Setup Tx descriptor for an MSDU, and MSDU extension descriptor */
1206 	tx_desc = dp_tx_prepare_desc_single(vdev, nbuf, tx_q->desc_pool_id,
1207 			msdu_info, tx_exc_metadata);
1208 	if (!tx_desc) {
1209 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1210 			  "%s Tx_desc prepare Fail vdev %pK queue %d\n",
1211 			  __func__, vdev, tx_q->desc_pool_id);
1212 		return nbuf;
1213 	}
1214 
1215 	if (qdf_unlikely(soc->cce_disable)) {
1216 		if (dp_cce_classify(vdev, nbuf) == true) {
1217 			DP_STATS_INC(vdev, tx_i.cce_classified, 1);
1218 			tid = DP_VO_TID;
1219 			tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
1220 		}
1221 	}
1222 
1223 	dp_tx_update_tdls_flags(tx_desc);
1224 
1225 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
1226 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1227 				"%s %d : HAL RING Access Failed -- %pK\n",
1228 				__func__, __LINE__, hal_srng);
1229 		DP_STATS_INC(vdev, tx_i.dropped.ring_full, 1);
1230 		dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
1231 		goto fail_return;
1232 	}
1233 
1234 	if (qdf_unlikely(peer_id == DP_INVALID_PEER)) {
1235 		htt_tcl_metadata = vdev->htt_tcl_metadata;
1236 		HTT_TX_TCL_METADATA_HOST_INSPECTED_SET(htt_tcl_metadata, 1);
1237 	} else if (qdf_unlikely(peer_id != HTT_INVALID_PEER)) {
1238 		HTT_TX_TCL_METADATA_TYPE_SET(htt_tcl_metadata,
1239 				HTT_TCL_METADATA_TYPE_PEER_BASED);
1240 		HTT_TX_TCL_METADATA_PEER_ID_SET(htt_tcl_metadata,
1241 				peer_id);
1242 	} else
1243 		htt_tcl_metadata = vdev->htt_tcl_metadata;
1244 
1245 	/* Enqueue the Tx MSDU descriptor to HW for transmit */
1246 	status = dp_tx_hw_enqueue(soc, vdev, tx_desc, tid,
1247 			htt_tcl_metadata, tx_q->ring_id, tx_exc_metadata);
1248 
1249 	if (status != QDF_STATUS_SUCCESS) {
1250 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1251 			  "%s Tx_hw_enqueue Fail tx_desc %pK queue %d\n",
1252 			  __func__, tx_desc, tx_q->ring_id);
1253 		dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
1254 		goto fail_return;
1255 	}
1256 
1257 	nbuf = NULL;
1258 
1259 fail_return:
1260 	if (hif_pm_runtime_get(soc->hif_handle) == 0) {
1261 		hal_srng_access_end(soc->hal_soc, hal_srng);
1262 		hif_pm_runtime_put(soc->hif_handle);
1263 	} else {
1264 		hal_srng_access_end_reap(soc->hal_soc, hal_srng);
1265 	}
1266 
1267 	return nbuf;
1268 }
1269 
1270 /**
1271  * dp_tx_send_msdu_multiple() - Enqueue multiple MSDUs
1272  * @vdev: DP vdev handle
1273  * @nbuf: skb
1274  * @msdu_info: MSDU info to be setup in MSDU extension descriptor
1275  *
1276  * Prepare descriptors for multiple MSDUs (TSO segments) and enqueue to TCL
1277  *
1278  * Return: NULL on success,
1279  *         nbuf when it fails to send
1280  */
1281 #if QDF_LOCK_STATS
1282 static noinline
1283 #else
1284 static
1285 #endif
1286 qdf_nbuf_t dp_tx_send_msdu_multiple(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1287 				    struct dp_tx_msdu_info_s *msdu_info)
1288 {
1289 	uint8_t i;
1290 	struct dp_pdev *pdev = vdev->pdev;
1291 	struct dp_soc *soc = pdev->soc;
1292 	struct dp_tx_desc_s *tx_desc;
1293 	bool is_cce_classified = false;
1294 	QDF_STATUS status;
1295 
1296 	struct dp_tx_queue *tx_q = &msdu_info->tx_queue;
1297 	void *hal_srng = soc->tcl_data_ring[tx_q->ring_id].hal_srng;
1298 
1299 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
1300 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1301 				"%s %d : HAL RING Access Failed -- %pK\n",
1302 				__func__, __LINE__, hal_srng);
1303 		DP_STATS_INC(vdev, tx_i.dropped.ring_full, 1);
1304 		return nbuf;
1305 	}
1306 
1307 	if (qdf_unlikely(soc->cce_disable)) {
1308 		is_cce_classified = dp_cce_classify(vdev, nbuf);
1309 		if (is_cce_classified) {
1310 			DP_STATS_INC(vdev, tx_i.cce_classified, 1);
1311 			msdu_info->tid = DP_VO_TID;
1312 		}
1313 	}
1314 
1315 	if (msdu_info->frm_type == dp_tx_frm_me)
1316 		nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
1317 
1318 	i = 0;
1319 	/* Print statement to track i and num_seg */
1320 	/*
1321 	 * For each segment (maps to 1 MSDU) , prepare software and hardware
1322 	 * descriptors using information in msdu_info
1323 	 */
1324 	while (i < msdu_info->num_seg) {
1325 		/*
1326 		 * Setup Tx descriptor for an MSDU, and MSDU extension
1327 		 * descriptor
1328 		 */
1329 		tx_desc = dp_tx_prepare_desc(vdev, nbuf, msdu_info,
1330 				tx_q->desc_pool_id);
1331 
1332 		if (!tx_desc) {
1333 			if (msdu_info->frm_type == dp_tx_frm_me) {
1334 				dp_tx_me_free_buf(pdev,
1335 					(void *)(msdu_info->u.sg_info
1336 						.curr_seg->frags[0].vaddr));
1337 			}
1338 			goto done;
1339 		}
1340 
1341 		if (msdu_info->frm_type == dp_tx_frm_me) {
1342 			tx_desc->me_buffer =
1343 				msdu_info->u.sg_info.curr_seg->frags[0].vaddr;
1344 			tx_desc->flags |= DP_TX_DESC_FLAG_ME;
1345 		}
1346 
1347 		if (is_cce_classified)
1348 			tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
1349 
1350 		/*
1351 		 * Enqueue the Tx MSDU descriptor to HW for transmit
1352 		 */
1353 		status = dp_tx_hw_enqueue(soc, vdev, tx_desc, msdu_info->tid,
1354 			vdev->htt_tcl_metadata, tx_q->ring_id, NULL);
1355 
1356 		if (status != QDF_STATUS_SUCCESS) {
1357 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1358 				  "%s Tx_hw_enqueue Fail tx_desc %pK queue %d\n",
1359 				  __func__, tx_desc, tx_q->ring_id);
1360 
1361 			if (tx_desc->flags & DP_TX_DESC_FLAG_ME)
1362 				dp_tx_me_free_buf(pdev, tx_desc->me_buffer);
1363 
1364 			dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
1365 			goto done;
1366 		}
1367 
1368 		/*
1369 		 * TODO
1370 		 * if tso_info structure can be modified to have curr_seg
1371 		 * as first element, following 2 blocks of code (for TSO and SG)
1372 		 * can be combined into 1
1373 		 */
1374 
1375 		/*
1376 		 * For frames with multiple segments (TSO, ME), jump to next
1377 		 * segment.
1378 		 */
1379 		if (msdu_info->frm_type == dp_tx_frm_tso) {
1380 			if (msdu_info->u.tso_info.curr_seg->next) {
1381 				msdu_info->u.tso_info.curr_seg =
1382 					msdu_info->u.tso_info.curr_seg->next;
1383 
1384 				/*
1385 				 * If this is a jumbo nbuf, then increment the number of
1386 				 * nbuf users for each additional segment of the msdu.
1387 				 * This will ensure that the skb is freed only after
1388 				 * receiving tx completion for all segments of an nbuf
1389 				 */
1390 				qdf_nbuf_inc_users(nbuf);
1391 
1392 				/* Check with MCL if this is needed */
1393 				/* nbuf = msdu_info->u.tso_info.curr_seg->nbuf; */
1394 			}
1395 		}
1396 
1397 		/*
1398 		 * For Multicast-Unicast converted packets,
1399 		 * each converted frame (for a client) is represented as
1400 		 * 1 segment
1401 		 */
1402 		if ((msdu_info->frm_type == dp_tx_frm_sg) ||
1403 				(msdu_info->frm_type == dp_tx_frm_me)) {
1404 			if (msdu_info->u.sg_info.curr_seg->next) {
1405 				msdu_info->u.sg_info.curr_seg =
1406 					msdu_info->u.sg_info.curr_seg->next;
1407 				nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
1408 			}
1409 		}
1410 		i++;
1411 	}
1412 
1413 	nbuf = NULL;
1414 
1415 done:
1416 	if (hif_pm_runtime_get(soc->hif_handle) == 0) {
1417 		hal_srng_access_end(soc->hal_soc, hal_srng);
1418 		hif_pm_runtime_put(soc->hif_handle);
1419 	} else {
1420 		hal_srng_access_end_reap(soc->hal_soc, hal_srng);
1421 	}
1422 
1423 	return nbuf;
1424 }
1425 
1426 /**
1427  * dp_tx_prepare_sg()- Extract SG info from NBUF and prepare msdu_info
1428  *                     for SG frames
1429  * @vdev: DP vdev handle
1430  * @nbuf: skb
1431  * @seg_info: Pointer to Segment info Descriptor to be prepared
1432  * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
1433  *
1434  * Return: NULL on success,
1435  *         nbuf when it fails to send
1436  */
1437 static qdf_nbuf_t dp_tx_prepare_sg(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1438 	struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
1439 {
1440 	uint32_t cur_frag, nr_frags;
1441 	qdf_dma_addr_t paddr;
1442 	struct dp_tx_sg_info_s *sg_info;
1443 
1444 	sg_info = &msdu_info->u.sg_info;
1445 	nr_frags = qdf_nbuf_get_nr_frags(nbuf);
1446 
1447 	if (QDF_STATUS_SUCCESS != qdf_nbuf_map(vdev->osdev, nbuf,
1448 				QDF_DMA_TO_DEVICE)) {
1449 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1450 				"dma map error\n");
1451 		DP_STATS_INC(vdev, tx_i.sg.dma_map_error, 1);
1452 
1453 		qdf_nbuf_free(nbuf);
1454 		return NULL;
1455 	}
1456 
1457 	paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
1458 	seg_info->frags[0].paddr_lo = paddr;
1459 	seg_info->frags[0].paddr_hi = ((uint64_t) paddr) >> 32;
1460 	seg_info->frags[0].len = qdf_nbuf_headlen(nbuf);
1461 	seg_info->frags[0].vaddr = (void *) nbuf;
1462 
1463 	for (cur_frag = 0; cur_frag < nr_frags; cur_frag++) {
1464 		if (QDF_STATUS_E_FAILURE == qdf_nbuf_frag_map(vdev->osdev,
1465 					nbuf, 0, QDF_DMA_TO_DEVICE, cur_frag)) {
1466 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1467 					"frag dma map error\n");
1468 			DP_STATS_INC(vdev, tx_i.sg.dma_map_error, 1);
1469 			qdf_nbuf_free(nbuf);
1470 			return NULL;
1471 		}
1472 
1473 		paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
1474 		seg_info->frags[cur_frag + 1].paddr_lo = paddr;
1475 		seg_info->frags[cur_frag + 1].paddr_hi =
1476 			((uint64_t) paddr) >> 32;
1477 		seg_info->frags[cur_frag + 1].len =
1478 			qdf_nbuf_get_frag_size(nbuf, cur_frag);
1479 	}
1480 
1481 	seg_info->frag_cnt = (cur_frag + 1);
1482 	seg_info->total_len = qdf_nbuf_len(nbuf);
1483 	seg_info->next = NULL;
1484 
1485 	sg_info->curr_seg = seg_info;
1486 
1487 	msdu_info->frm_type = dp_tx_frm_sg;
1488 	msdu_info->num_seg = 1;
1489 
1490 	return nbuf;
1491 }
1492 
1493 #ifdef MESH_MODE_SUPPORT
1494 
1495 /**
1496  * dp_tx_extract_mesh_meta_data()- Extract mesh meta hdr info from nbuf
1497 				and prepare msdu_info for mesh frames.
1498  * @vdev: DP vdev handle
1499  * @nbuf: skb
1500  * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
1501  *
1502  * Return: NULL on failure,
1503  *         nbuf when extracted successfully
1504  */
1505 static
1506 qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1507 				struct dp_tx_msdu_info_s *msdu_info)
1508 {
1509 	struct meta_hdr_s *mhdr;
1510 	struct htt_tx_msdu_desc_ext2_t *meta_data =
1511 				(struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
1512 
1513 	mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
1514 
1515 	if (CB_FTYPE_MESH_TX_INFO != qdf_nbuf_get_tx_ftype(nbuf)) {
1516 		msdu_info->exception_fw = 0;
1517 		goto remove_meta_hdr;
1518 	}
1519 
1520 	msdu_info->exception_fw = 1;
1521 
1522 	qdf_mem_set(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t), 0);
1523 
1524 	meta_data->host_tx_desc_pool = 1;
1525 	meta_data->update_peer_cache = 1;
1526 	meta_data->learning_frame = 1;
1527 
1528 	if (!(mhdr->flags & METAHDR_FLAG_AUTO_RATE)) {
1529 		meta_data->power = mhdr->power;
1530 
1531 		meta_data->mcs_mask = 1 << mhdr->rate_info[0].mcs;
1532 		meta_data->nss_mask = 1 << mhdr->rate_info[0].nss;
1533 		meta_data->pream_type = mhdr->rate_info[0].preamble_type;
1534 		meta_data->retry_limit = mhdr->rate_info[0].max_tries;
1535 
1536 		meta_data->dyn_bw = 1;
1537 
1538 		meta_data->valid_pwr = 1;
1539 		meta_data->valid_mcs_mask = 1;
1540 		meta_data->valid_nss_mask = 1;
1541 		meta_data->valid_preamble_type  = 1;
1542 		meta_data->valid_retries = 1;
1543 		meta_data->valid_bw_info = 1;
1544 	}
1545 
1546 	if (mhdr->flags & METAHDR_FLAG_NOENCRYPT) {
1547 		meta_data->encrypt_type = 0;
1548 		meta_data->valid_encrypt_type = 1;
1549 		meta_data->learning_frame = 0;
1550 	}
1551 
1552 	meta_data->valid_key_flags = 1;
1553 	meta_data->key_flags = (mhdr->keyix & 0x3);
1554 
1555 remove_meta_hdr:
1556 	if (qdf_nbuf_pull_head(nbuf, sizeof(struct meta_hdr_s)) == NULL) {
1557 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1558 				"qdf_nbuf_pull_head failed\n");
1559 		qdf_nbuf_free(nbuf);
1560 		return NULL;
1561 	}
1562 
1563 	if (mhdr->flags & METAHDR_FLAG_NOQOS)
1564 		msdu_info->tid = HTT_TX_EXT_TID_NON_QOS_MCAST_BCAST;
1565 	else
1566 		msdu_info->tid = qdf_nbuf_get_priority(nbuf);
1567 
1568 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
1569 			"%s , Meta hdr %0x %0x %0x %0x %0x %0x"
1570 			" tid %d to_fw %d\n",
1571 			__func__, msdu_info->meta_data[0],
1572 			msdu_info->meta_data[1],
1573 			msdu_info->meta_data[2],
1574 			msdu_info->meta_data[3],
1575 			msdu_info->meta_data[4],
1576 			msdu_info->meta_data[5],
1577 			msdu_info->tid, msdu_info->exception_fw);
1578 
1579 	return nbuf;
1580 }
1581 #else
1582 static
1583 qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1584 				struct dp_tx_msdu_info_s *msdu_info)
1585 {
1586 	return nbuf;
1587 }
1588 
1589 #endif
1590 
1591 #ifdef DP_FEATURE_NAWDS_TX
1592 /**
1593  * dp_tx_prepare_nawds(): Tramit NAWDS frames
1594  * @vdev: dp_vdev handle
1595  * @nbuf: skb
1596  * @tid: TID from HLOS for overriding default DSCP-TID mapping
1597  * @tx_q: Tx queue to be used for this Tx frame
1598  * @meta_data: Meta date for mesh
1599  * @peer_id: peer_id of the peer in case of NAWDS frames
1600  *
1601  * return: NULL on success nbuf on failure
1602  */
1603 static qdf_nbuf_t dp_tx_prepare_nawds(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1604 		struct dp_tx_msdu_info_s *msdu_info)
1605 {
1606 	struct dp_peer *peer = NULL;
1607 	struct dp_soc *soc = vdev->pdev->soc;
1608 	struct dp_ast_entry *ast_entry = NULL;
1609 	struct ether_header *eh = (struct ether_header *)qdf_nbuf_data(nbuf);
1610 	uint16_t peer_id = HTT_INVALID_PEER;
1611 
1612 	struct dp_peer *sa_peer = NULL;
1613 	qdf_nbuf_t nbuf_copy;
1614 
1615 	qdf_spin_lock_bh(&(soc->ast_lock));
1616 	ast_entry = dp_peer_ast_hash_find(soc, (uint8_t *)(eh->ether_shost));
1617 
1618 	if (ast_entry)
1619 		sa_peer = ast_entry->peer;
1620 
1621 	qdf_spin_unlock_bh(&(soc->ast_lock));
1622 
1623 	TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
1624 		if ((peer->peer_ids[0] != HTT_INVALID_PEER) &&
1625 				(peer->nawds_enabled)) {
1626 			if (sa_peer == peer) {
1627 				QDF_TRACE(QDF_MODULE_ID_DP,
1628 						QDF_TRACE_LEVEL_DEBUG,
1629 						" %s: broadcast multicast packet",
1630 						 __func__);
1631 				DP_STATS_INC(peer, tx.nawds_mcast_drop, 1);
1632 				continue;
1633 			}
1634 
1635 			nbuf_copy = qdf_nbuf_copy(nbuf);
1636 			if (!nbuf_copy) {
1637 				QDF_TRACE(QDF_MODULE_ID_DP,
1638 						QDF_TRACE_LEVEL_ERROR,
1639 						"nbuf copy failed");
1640 			}
1641 
1642 			peer_id = peer->peer_ids[0];
1643 			nbuf_copy = dp_tx_send_msdu_single(vdev, nbuf_copy,
1644 					msdu_info, peer_id, NULL);
1645 			if (nbuf_copy != NULL) {
1646 				qdf_nbuf_free(nbuf_copy);
1647 				continue;
1648 			}
1649 			DP_STATS_INC_PKT(peer, tx.nawds_mcast,
1650 						1, qdf_nbuf_len(nbuf));
1651 		}
1652 	}
1653 	if (peer_id == HTT_INVALID_PEER)
1654 		return nbuf;
1655 
1656 	return NULL;
1657 }
1658 #endif
1659 
1660 /**
1661  * dp_check_exc_metadata() - Checks if parameters are valid
1662  * @tx_exc - holds all exception path parameters
1663  *
1664  * Returns true when all the parameters are valid else false
1665  *
1666  */
1667 static bool dp_check_exc_metadata(struct cdp_tx_exception_metadata *tx_exc)
1668 {
1669 	if ((tx_exc->tid > DP_MAX_TIDS && tx_exc->tid != HTT_INVALID_TID) ||
1670 	    tx_exc->tx_encap_type > htt_cmn_pkt_num_types ||
1671 	    tx_exc->sec_type > cdp_num_sec_types) {
1672 		return false;
1673 	}
1674 
1675 	return true;
1676 }
1677 
1678 /**
1679  * dp_tx_send_exception() - Transmit a frame on a given VAP in exception path
1680  * @vap_dev: DP vdev handle
1681  * @nbuf: skb
1682  * @tx_exc_metadata: Handle that holds exception path meta data
1683  *
1684  * Entry point for Core Tx layer (DP_TX) invoked from
1685  * hard_start_xmit in OSIF/HDD to transmit frames through fw
1686  *
1687  * Return: NULL on success,
1688  *         nbuf when it fails to send
1689  */
1690 qdf_nbuf_t dp_tx_send_exception(void *vap_dev, qdf_nbuf_t nbuf,
1691 		struct cdp_tx_exception_metadata *tx_exc_metadata)
1692 {
1693 	struct ether_header *eh = NULL;
1694 	struct dp_vdev *vdev = (struct dp_vdev *) vap_dev;
1695 	struct dp_tx_msdu_info_s msdu_info;
1696 
1697 	qdf_mem_set(&msdu_info, sizeof(msdu_info), 0x0);
1698 
1699 	msdu_info.tid = tx_exc_metadata->tid;
1700 
1701 	eh = (struct ether_header *)qdf_nbuf_data(nbuf);
1702 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1703 			"%s , skb %pM",
1704 			__func__, nbuf->data);
1705 
1706 	DP_STATS_INC_PKT(vdev, tx_i.rcvd, 1, qdf_nbuf_len(nbuf));
1707 
1708 	if (qdf_unlikely(!dp_check_exc_metadata(tx_exc_metadata))) {
1709 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1710 			"Invalid parameters in exception path");
1711 		goto fail;
1712 	}
1713 
1714 	/* Basic sanity checks for unsupported packets */
1715 
1716 	/* MESH mode */
1717 	if (qdf_unlikely(vdev->mesh_vdev)) {
1718 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1719 			"Mesh mode is not supported in exception path");
1720 		goto fail;
1721 	}
1722 
1723 	/* TSO or SG */
1724 	if (qdf_unlikely(qdf_nbuf_is_tso(nbuf)) ||
1725 	    qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
1726 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1727 			  "TSO and SG are not supported in exception path");
1728 
1729 		goto fail;
1730 	}
1731 
1732 	/* RAW */
1733 	if (qdf_unlikely(tx_exc_metadata->tx_encap_type == htt_cmn_pkt_type_raw)) {
1734 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1735 			  "Raw frame is not supported in exception path");
1736 		goto fail;
1737 	}
1738 
1739 
1740 	/* Mcast enhancement*/
1741 	if (qdf_unlikely(vdev->mcast_enhancement_en > 0)) {
1742 		if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost)) {
1743 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1744 					  "Ignoring mcast_enhancement_en which is set and sending the mcast packet to the FW\n");
1745 		}
1746 	}
1747 
1748 	/*
1749 	 * Get HW Queue to use for this frame.
1750 	 * TCL supports upto 4 DMA rings, out of which 3 rings are
1751 	 * dedicated for data and 1 for command.
1752 	 * "queue_id" maps to one hardware ring.
1753 	 *  With each ring, we also associate a unique Tx descriptor pool
1754 	 *  to minimize lock contention for these resources.
1755 	 */
1756 	dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
1757 
1758 	/* Reset the control block */
1759 	qdf_nbuf_reset_ctxt(nbuf);
1760 
1761 	/*  Single linear frame */
1762 	/*
1763 	 * If nbuf is a simple linear frame, use send_single function to
1764 	 * prepare direct-buffer type TCL descriptor and enqueue to TCL
1765 	 * SRNG. There is no need to setup a MSDU extension descriptor.
1766 	 */
1767 	nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info,
1768 			tx_exc_metadata->peer_id, tx_exc_metadata);
1769 
1770 	return nbuf;
1771 
1772 fail:
1773 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1774 			"pkt send failed");
1775 	return nbuf;
1776 }
1777 
1778 /**
1779  * dp_tx_send_mesh() - Transmit mesh frame on a given VAP
1780  * @vap_dev: DP vdev handle
1781  * @nbuf: skb
1782  *
1783  * Entry point for Core Tx layer (DP_TX) invoked from
1784  * hard_start_xmit in OSIF/HDD
1785  *
1786  * Return: NULL on success,
1787  *         nbuf when it fails to send
1788  */
1789 #ifdef MESH_MODE_SUPPORT
1790 qdf_nbuf_t dp_tx_send_mesh(void *vap_dev, qdf_nbuf_t nbuf)
1791 {
1792 	struct meta_hdr_s *mhdr;
1793 	qdf_nbuf_t nbuf_mesh = NULL;
1794 	qdf_nbuf_t nbuf_clone = NULL;
1795 	struct dp_vdev *vdev = (struct dp_vdev *) vap_dev;
1796 	uint8_t no_enc_frame = 0;
1797 
1798 	nbuf_mesh = qdf_nbuf_unshare(nbuf);
1799 	if (nbuf_mesh == NULL) {
1800 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1801 				"qdf_nbuf_unshare failed\n");
1802 		return nbuf;
1803 	}
1804 	nbuf = nbuf_mesh;
1805 
1806 	mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
1807 
1808 	if ((vdev->sec_type != cdp_sec_type_none) &&
1809 			(mhdr->flags & METAHDR_FLAG_NOENCRYPT))
1810 		no_enc_frame = 1;
1811 
1812 	if ((mhdr->flags & METAHDR_FLAG_INFO_UPDATED) &&
1813 		       !no_enc_frame) {
1814 		nbuf_clone = qdf_nbuf_clone(nbuf);
1815 		if (nbuf_clone == NULL) {
1816 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1817 				"qdf_nbuf_clone failed\n");
1818 			return nbuf;
1819 		}
1820 		qdf_nbuf_set_tx_ftype(nbuf_clone, CB_FTYPE_MESH_TX_INFO);
1821 	}
1822 
1823 	if (nbuf_clone) {
1824 		if (!dp_tx_send(vap_dev, nbuf_clone)) {
1825 			DP_STATS_INC(vdev, tx_i.mesh.exception_fw, 1);
1826 		} else
1827 			qdf_nbuf_free(nbuf_clone);
1828 	}
1829 
1830 	if (no_enc_frame)
1831 		qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_MESH_TX_INFO);
1832 	else
1833 		qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_INVALID);
1834 
1835 	nbuf = dp_tx_send(vap_dev, nbuf);
1836 	if ((nbuf == NULL) && no_enc_frame) {
1837 		DP_STATS_INC(vdev, tx_i.mesh.exception_fw, 1);
1838 	}
1839 
1840 	return nbuf;
1841 }
1842 
1843 #else
1844 
1845 qdf_nbuf_t dp_tx_send_mesh(void *vap_dev, qdf_nbuf_t nbuf)
1846 {
1847 	return dp_tx_send(vap_dev, nbuf);
1848 }
1849 
1850 #endif
1851 
1852 /**
1853  * dp_tx_send() - Transmit a frame on a given VAP
1854  * @vap_dev: DP vdev handle
1855  * @nbuf: skb
1856  *
1857  * Entry point for Core Tx layer (DP_TX) invoked from
1858  * hard_start_xmit in OSIF/HDD or from dp_rx_process for intravap forwarding
1859  * cases
1860  *
1861  * Return: NULL on success,
1862  *         nbuf when it fails to send
1863  */
1864 qdf_nbuf_t dp_tx_send(void *vap_dev, qdf_nbuf_t nbuf)
1865 {
1866 	struct ether_header *eh = NULL;
1867 	struct dp_tx_msdu_info_s msdu_info;
1868 	struct dp_tx_seg_info_s seg_info;
1869 	struct dp_vdev *vdev = (struct dp_vdev *) vap_dev;
1870 	uint16_t peer_id = HTT_INVALID_PEER;
1871 	qdf_nbuf_t nbuf_mesh = NULL;
1872 
1873 	qdf_mem_set(&msdu_info, sizeof(msdu_info), 0x0);
1874 	qdf_mem_set(&seg_info, sizeof(seg_info), 0x0);
1875 
1876 	eh = (struct ether_header *)qdf_nbuf_data(nbuf);
1877 
1878 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1879 			"%s , skb %pM",
1880 			__func__, nbuf->data);
1881 
1882 	/*
1883 	 * Set Default Host TID value to invalid TID
1884 	 * (TID override disabled)
1885 	 */
1886 	msdu_info.tid = HTT_TX_EXT_TID_INVALID;
1887 	DP_STATS_INC_PKT(vdev, tx_i.rcvd, 1, qdf_nbuf_len(nbuf));
1888 
1889 	if (qdf_unlikely(vdev->mesh_vdev)) {
1890 		nbuf_mesh = dp_tx_extract_mesh_meta_data(vdev, nbuf,
1891 								&msdu_info);
1892 		if (nbuf_mesh == NULL) {
1893 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1894 					"Extracting mesh metadata failed\n");
1895 			return nbuf;
1896 		}
1897 		nbuf = nbuf_mesh;
1898 	}
1899 
1900 	/*
1901 	 * Get HW Queue to use for this frame.
1902 	 * TCL supports upto 4 DMA rings, out of which 3 rings are
1903 	 * dedicated for data and 1 for command.
1904 	 * "queue_id" maps to one hardware ring.
1905 	 *  With each ring, we also associate a unique Tx descriptor pool
1906 	 *  to minimize lock contention for these resources.
1907 	 */
1908 	dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
1909 
1910 	/*
1911 	 * TCL H/W supports 2 DSCP-TID mapping tables.
1912 	 *  Table 1 - Default DSCP-TID mapping table
1913 	 *  Table 2 - 1 DSCP-TID override table
1914 	 *
1915 	 * If we need a different DSCP-TID mapping for this vap,
1916 	 * call tid_classify to extract DSCP/ToS from frame and
1917 	 * map to a TID and store in msdu_info. This is later used
1918 	 * to fill in TCL Input descriptor (per-packet TID override).
1919 	 */
1920 	if (vdev->dscp_tid_map_id > 1)
1921 		dp_tx_classify_tid(vdev, nbuf, &msdu_info);
1922 
1923 	/* Reset the control block */
1924 	qdf_nbuf_reset_ctxt(nbuf);
1925 
1926 	/*
1927 	 * Classify the frame and call corresponding
1928 	 * "prepare" function which extracts the segment (TSO)
1929 	 * and fragmentation information (for TSO , SG, ME, or Raw)
1930 	 * into MSDU_INFO structure which is later used to fill
1931 	 * SW and HW descriptors.
1932 	 */
1933 	if (qdf_nbuf_is_tso(nbuf)) {
1934 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1935 			  "%s TSO frame %pK\n", __func__, vdev);
1936 		DP_STATS_INC_PKT(vdev, tx_i.tso.tso_pkt, 1,
1937 				qdf_nbuf_len(nbuf));
1938 
1939 		if (dp_tx_prepare_tso(vdev, nbuf, &msdu_info)) {
1940 			DP_STATS_INC(vdev, tx_i.tso.dropped_host, 1);
1941 			return nbuf;
1942 		}
1943 
1944 		goto send_multiple;
1945 	}
1946 
1947 	/* SG */
1948 	if (qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
1949 		nbuf = dp_tx_prepare_sg(vdev, nbuf, &seg_info, &msdu_info);
1950 
1951 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1952 			 "%s non-TSO SG frame %pK\n", __func__, vdev);
1953 
1954 		DP_STATS_INC_PKT(vdev, tx_i.sg.sg_pkt, 1,
1955 				qdf_nbuf_len(nbuf));
1956 
1957 		goto send_multiple;
1958 	}
1959 
1960 #ifdef ATH_SUPPORT_IQUE
1961 	/* Mcast to Ucast Conversion*/
1962 	if (qdf_unlikely(vdev->mcast_enhancement_en > 0)) {
1963 		eh = (struct ether_header *)qdf_nbuf_data(nbuf);
1964 		if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost)) {
1965 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1966 				  "%s Mcast frm for ME %pK\n", __func__, vdev);
1967 
1968 			DP_STATS_INC_PKT(vdev,
1969 					tx_i.mcast_en.mcast_pkt, 1,
1970 					qdf_nbuf_len(nbuf));
1971 			if (dp_tx_prepare_send_me(vdev, nbuf) ==
1972 					QDF_STATUS_SUCCESS) {
1973 				return NULL;
1974 			}
1975 		}
1976 	}
1977 #endif
1978 
1979 	/* RAW */
1980 	if (qdf_unlikely(vdev->tx_encap_type == htt_cmn_pkt_type_raw)) {
1981 		nbuf = dp_tx_prepare_raw(vdev, nbuf, &seg_info, &msdu_info);
1982 		if (nbuf == NULL)
1983 			return NULL;
1984 
1985 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1986 			  "%s Raw frame %pK\n", __func__, vdev);
1987 
1988 		goto send_multiple;
1989 
1990 	}
1991 
1992 	/*  Single linear frame */
1993 	/*
1994 	 * If nbuf is a simple linear frame, use send_single function to
1995 	 * prepare direct-buffer type TCL descriptor and enqueue to TCL
1996 	 * SRNG. There is no need to setup a MSDU extension descriptor.
1997 	 */
1998 	nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info, peer_id, NULL);
1999 
2000 	return nbuf;
2001 
2002 send_multiple:
2003 	nbuf = dp_tx_send_msdu_multiple(vdev, nbuf, &msdu_info);
2004 
2005 	return nbuf;
2006 }
2007 
2008 /**
2009  * dp_tx_reinject_handler() - Tx Reinject Handler
2010  * @tx_desc: software descriptor head pointer
2011  * @status : Tx completion status from HTT descriptor
2012  *
2013  * This function reinjects frames back to Target.
2014  * Todo - Host queue needs to be added
2015  *
2016  * Return: none
2017  */
2018 static
2019 void dp_tx_reinject_handler(struct dp_tx_desc_s *tx_desc, uint8_t *status)
2020 {
2021 	struct dp_vdev *vdev;
2022 	struct dp_peer *peer = NULL;
2023 	uint32_t peer_id = HTT_INVALID_PEER;
2024 	qdf_nbuf_t nbuf = tx_desc->nbuf;
2025 	qdf_nbuf_t nbuf_copy = NULL;
2026 	struct dp_tx_msdu_info_s msdu_info;
2027 	struct dp_peer *sa_peer = NULL;
2028 	struct dp_ast_entry *ast_entry = NULL;
2029 	struct dp_soc *soc = NULL;
2030 	struct ether_header *eh = (struct ether_header *)qdf_nbuf_data(nbuf);
2031 #ifdef WDS_VENDOR_EXTENSION
2032 	int is_mcast = 0, is_ucast = 0;
2033 	int num_peers_3addr = 0;
2034 	struct ether_header *eth_hdr = (struct ether_header *)(qdf_nbuf_data(nbuf));
2035 	struct ieee80211_frame_addr4 *wh = (struct ieee80211_frame_addr4 *)(qdf_nbuf_data(nbuf));
2036 #endif
2037 
2038 	vdev = tx_desc->vdev;
2039 	soc = vdev->pdev->soc;
2040 
2041 	qdf_assert(vdev);
2042 
2043 	qdf_mem_set(&msdu_info, sizeof(msdu_info), 0x0);
2044 
2045 	dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
2046 
2047 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2048 			"%s Tx reinject path\n", __func__);
2049 
2050 	DP_STATS_INC_PKT(vdev, tx_i.reinject_pkts, 1,
2051 			qdf_nbuf_len(tx_desc->nbuf));
2052 
2053 	qdf_spin_lock_bh(&(soc->ast_lock));
2054 
2055 	ast_entry = dp_peer_ast_hash_find(soc, (uint8_t *)(eh->ether_shost));
2056 
2057 	if (ast_entry)
2058 		sa_peer = ast_entry->peer;
2059 
2060 	qdf_spin_unlock_bh(&(soc->ast_lock));
2061 
2062 #ifdef WDS_VENDOR_EXTENSION
2063 	if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
2064 		is_mcast = (IS_MULTICAST(wh->i_addr1)) ? 1 : 0;
2065 	} else {
2066 		is_mcast = (IS_MULTICAST(eth_hdr->ether_dhost)) ? 1 : 0;
2067 	}
2068 	is_ucast = !is_mcast;
2069 
2070 	TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
2071 		if (peer->bss_peer)
2072 			continue;
2073 
2074 		/* Detect wds peers that use 3-addr framing for mcast.
2075 		 * if there are any, the bss_peer is used to send the
2076 		 * the mcast frame using 3-addr format. all wds enabled
2077 		 * peers that use 4-addr framing for mcast frames will
2078 		 * be duplicated and sent as 4-addr frames below.
2079 		 */
2080 		if (!peer->wds_enabled || !peer->wds_ecm.wds_tx_mcast_4addr) {
2081 			num_peers_3addr = 1;
2082 			break;
2083 		}
2084 	}
2085 #endif
2086 
2087 	if (qdf_unlikely(vdev->mesh_vdev)) {
2088 		DP_TX_FREE_SINGLE_BUF(vdev->pdev->soc, tx_desc->nbuf);
2089 	} else {
2090 		TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
2091 			if ((peer->peer_ids[0] != HTT_INVALID_PEER) &&
2092 #ifdef WDS_VENDOR_EXTENSION
2093 			/*
2094 			 * . if 3-addr STA, then send on BSS Peer
2095 			 * . if Peer WDS enabled and accept 4-addr mcast,
2096 			 * send mcast on that peer only
2097 			 * . if Peer WDS enabled and accept 4-addr ucast,
2098 			 * send ucast on that peer only
2099 			 */
2100 			((peer->bss_peer && num_peers_3addr && is_mcast) ||
2101 			 (peer->wds_enabled &&
2102 				  ((is_mcast && peer->wds_ecm.wds_tx_mcast_4addr) ||
2103 				   (is_ucast && peer->wds_ecm.wds_tx_ucast_4addr))))) {
2104 #else
2105 			((peer->bss_peer &&
2106 			  !(vdev->osif_proxy_arp(vdev->osif_vdev, nbuf))) ||
2107 				 peer->nawds_enabled)) {
2108 #endif
2109 				peer_id = DP_INVALID_PEER;
2110 
2111 				if (peer->nawds_enabled) {
2112 					peer_id = peer->peer_ids[0];
2113 					if (sa_peer == peer) {
2114 						QDF_TRACE(
2115 							QDF_MODULE_ID_DP,
2116 							QDF_TRACE_LEVEL_DEBUG,
2117 							" %s: multicast packet",
2118 							__func__);
2119 						DP_STATS_INC(peer,
2120 							tx.nawds_mcast_drop, 1);
2121 						continue;
2122 					}
2123 				}
2124 
2125 				nbuf_copy = qdf_nbuf_copy(nbuf);
2126 
2127 				if (!nbuf_copy) {
2128 					QDF_TRACE(QDF_MODULE_ID_DP,
2129 						QDF_TRACE_LEVEL_DEBUG,
2130 						FL("nbuf copy failed"));
2131 					break;
2132 				}
2133 
2134 				nbuf_copy = dp_tx_send_msdu_single(vdev,
2135 						nbuf_copy,
2136 						&msdu_info,
2137 						peer_id,
2138 						NULL);
2139 
2140 				if (nbuf_copy) {
2141 					QDF_TRACE(QDF_MODULE_ID_DP,
2142 						QDF_TRACE_LEVEL_DEBUG,
2143 						FL("pkt send failed"));
2144 					qdf_nbuf_free(nbuf_copy);
2145 				} else {
2146 					if (peer_id != DP_INVALID_PEER)
2147 						DP_STATS_INC_PKT(peer,
2148 							tx.nawds_mcast,
2149 							1, qdf_nbuf_len(nbuf));
2150 				}
2151 			}
2152 		}
2153 	}
2154 
2155 	if (vdev->nawds_enabled) {
2156 		peer_id = DP_INVALID_PEER;
2157 
2158 		DP_STATS_INC_PKT(vdev, tx_i.nawds_mcast,
2159 					1, qdf_nbuf_len(nbuf));
2160 
2161 		nbuf = dp_tx_send_msdu_single(vdev,
2162 				nbuf,
2163 				&msdu_info,
2164 				peer_id, NULL);
2165 
2166 		if (nbuf) {
2167 			QDF_TRACE(QDF_MODULE_ID_DP,
2168 				QDF_TRACE_LEVEL_DEBUG,
2169 				FL("pkt send failed"));
2170 			qdf_nbuf_free(nbuf);
2171 		}
2172 	} else
2173 		qdf_nbuf_free(nbuf);
2174 
2175 	dp_tx_desc_release(tx_desc, tx_desc->pool_id);
2176 }
2177 
2178 /**
2179  * dp_tx_inspect_handler() - Tx Inspect Handler
2180  * @tx_desc: software descriptor head pointer
2181  * @status : Tx completion status from HTT descriptor
2182  *
2183  * Handles Tx frames sent back to Host for inspection
2184  * (ProxyARP)
2185  *
2186  * Return: none
2187  */
2188 static void dp_tx_inspect_handler(struct dp_tx_desc_s *tx_desc, uint8_t *status)
2189 {
2190 
2191 	struct dp_soc *soc;
2192 	struct dp_pdev *pdev = tx_desc->pdev;
2193 
2194 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
2195 			"%s Tx inspect path\n",
2196 			__func__);
2197 
2198 	qdf_assert(pdev);
2199 
2200 	soc = pdev->soc;
2201 
2202 	DP_STATS_INC_PKT(tx_desc->vdev, tx_i.inspect_pkts, 1,
2203 			qdf_nbuf_len(tx_desc->nbuf));
2204 
2205 	DP_TX_FREE_SINGLE_BUF(soc, tx_desc->nbuf);
2206 	dp_tx_desc_release(tx_desc, tx_desc->pool_id);
2207 }
2208 
2209 #ifdef FEATURE_PERPKT_INFO
2210 /**
2211  * dp_get_completion_indication_for_stack() - send completion to stack
2212  * @soc :  dp_soc handle
2213  * @pdev:  dp_pdev handle
2214  * @peer_id: peer_id of the peer for which completion came
2215  * @ppdu_id: ppdu_id
2216  * @first_msdu: first msdu
2217  * @last_msdu: last msdu
2218  * @netbuf: Buffer pointer for free
2219  *
2220  * This function is used for indication whether buffer needs to be
2221  * send to stack for free or not
2222 */
2223 QDF_STATUS
2224 dp_get_completion_indication_for_stack(struct dp_soc *soc,  struct dp_pdev *pdev,
2225 		      uint16_t peer_id, uint32_t ppdu_id, uint8_t first_msdu,
2226 		      uint8_t last_msdu, qdf_nbuf_t netbuf)
2227 {
2228 	struct tx_capture_hdr *ppdu_hdr;
2229 	struct dp_peer *peer = NULL;
2230 
2231 	if (qdf_unlikely(!pdev->tx_sniffer_enable && !pdev->mcopy_mode))
2232 		return QDF_STATUS_E_NOSUPPORT;
2233 
2234 	peer = (peer_id == HTT_INVALID_PEER) ? NULL :
2235 			dp_peer_find_by_id(soc, peer_id);
2236 
2237 	if (!peer) {
2238 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2239 				FL("Peer Invalid"));
2240 		return QDF_STATUS_E_INVAL;
2241 	}
2242 
2243 	if (pdev->mcopy_mode) {
2244 		if ((pdev->m_copy_id.tx_ppdu_id == ppdu_id) &&
2245 			(pdev->m_copy_id.tx_peer_id == peer_id)) {
2246 			return QDF_STATUS_E_INVAL;
2247 		}
2248 
2249 		pdev->m_copy_id.tx_ppdu_id = ppdu_id;
2250 		pdev->m_copy_id.tx_peer_id = peer_id;
2251 	}
2252 
2253 	if (!qdf_nbuf_push_head(netbuf, sizeof(struct tx_capture_hdr))) {
2254 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2255 				FL("No headroom"));
2256 		return QDF_STATUS_E_NOMEM;
2257 	}
2258 
2259 	ppdu_hdr = (struct tx_capture_hdr *)qdf_nbuf_data(netbuf);
2260 	qdf_mem_copy(ppdu_hdr->ta, peer->vdev->mac_addr.raw,
2261 					IEEE80211_ADDR_LEN);
2262 	ppdu_hdr->ppdu_id = ppdu_id;
2263 	qdf_mem_copy(ppdu_hdr->ra, peer->mac_addr.raw,
2264 			IEEE80211_ADDR_LEN);
2265 	ppdu_hdr->peer_id = peer_id;
2266 	ppdu_hdr->first_msdu = first_msdu;
2267 	ppdu_hdr->last_msdu = last_msdu;
2268 
2269 	return QDF_STATUS_SUCCESS;
2270 }
2271 
2272 
2273 /**
2274  * dp_send_completion_to_stack() - send completion to stack
2275  * @soc :  dp_soc handle
2276  * @pdev:  dp_pdev handle
2277  * @peer_id: peer_id of the peer for which completion came
2278  * @ppdu_id: ppdu_id
2279  * @netbuf: Buffer pointer for free
2280  *
2281  * This function is used to send completion to stack
2282  * to free buffer
2283 */
2284 void  dp_send_completion_to_stack(struct dp_soc *soc,  struct dp_pdev *pdev,
2285 					uint16_t peer_id, uint32_t ppdu_id,
2286 					qdf_nbuf_t netbuf)
2287 {
2288 	dp_wdi_event_handler(WDI_EVENT_TX_DATA, soc,
2289 				netbuf, peer_id,
2290 				WDI_NO_VAL, pdev->pdev_id);
2291 }
2292 #else
2293 static QDF_STATUS
2294 dp_get_completion_indication_for_stack(struct dp_soc *soc,  struct dp_pdev *pdev,
2295 		      uint16_t peer_id, uint32_t ppdu_id, uint8_t first_msdu,
2296 		      uint8_t last_msdu, qdf_nbuf_t netbuf)
2297 {
2298 	return QDF_STATUS_E_NOSUPPORT;
2299 }
2300 
2301 static void
2302 dp_send_completion_to_stack(struct dp_soc *soc,  struct dp_pdev *pdev,
2303 		      uint16_t peer_id, uint32_t ppdu_id, qdf_nbuf_t netbuf)
2304 {
2305 }
2306 #endif
2307 
2308 /**
2309  * dp_tx_comp_free_buf() - Free nbuf associated with the Tx Descriptor
2310  * @soc: Soc handle
2311  * @desc: software Tx descriptor to be processed
2312  *
2313  * Return: none
2314  */
2315 static inline void dp_tx_comp_free_buf(struct dp_soc *soc,
2316 		struct dp_tx_desc_s *desc)
2317 {
2318 	struct dp_vdev *vdev = desc->vdev;
2319 	qdf_nbuf_t nbuf = desc->nbuf;
2320 
2321 	/* If it is TDLS mgmt, don't unmap or free the frame */
2322 	if (desc->flags & DP_TX_DESC_FLAG_TDLS_FRAME)
2323 		return dp_non_std_tx_comp_free_buff(desc, vdev);
2324 
2325 	/* 0 : MSDU buffer, 1 : MLE */
2326 	if (desc->msdu_ext_desc) {
2327 		/* TSO free */
2328 		if (hal_tx_ext_desc_get_tso_enable(
2329 					desc->msdu_ext_desc->vaddr)) {
2330 			/* If remaining number of segment is 0
2331 			 * actual TSO may unmap and free */
2332 			if (qdf_nbuf_get_users(nbuf) == 1)
2333 				__qdf_nbuf_unmap_single(soc->osdev,
2334 						nbuf,
2335 						QDF_DMA_TO_DEVICE);
2336 
2337 			qdf_nbuf_free(nbuf);
2338 			return;
2339 		}
2340 	}
2341 
2342 	qdf_nbuf_unmap(soc->osdev, nbuf, QDF_DMA_TO_DEVICE);
2343 
2344 	if (qdf_likely(!vdev->mesh_vdev))
2345 		qdf_nbuf_free(nbuf);
2346 	else {
2347 		if (desc->flags & DP_TX_DESC_FLAG_TO_FW) {
2348 			qdf_nbuf_free(nbuf);
2349 			DP_STATS_INC(vdev, tx_i.mesh.completion_fw, 1);
2350 		} else
2351 			vdev->osif_tx_free_ext((nbuf));
2352 	}
2353 }
2354 
2355 /**
2356  * dp_tx_mec_handler() - Tx  MEC Notify Handler
2357  * @vdev: pointer to dp dev handler
2358  * @status : Tx completion status from HTT descriptor
2359  *
2360  * Handles MEC notify event sent from fw to Host
2361  *
2362  * Return: none
2363  */
2364 #ifdef FEATURE_WDS
2365 void dp_tx_mec_handler(struct dp_vdev *vdev, uint8_t *status)
2366 {
2367 
2368 	struct dp_soc *soc;
2369 	uint32_t flags = IEEE80211_NODE_F_WDS_HM;
2370 	struct dp_peer *peer;
2371 	uint8_t mac_addr[DP_MAC_ADDR_LEN], i;
2372 
2373 	if (!vdev->wds_enabled)
2374 		return;
2375 
2376 	soc = vdev->pdev->soc;
2377 	qdf_spin_lock_bh(&soc->peer_ref_mutex);
2378 	peer = TAILQ_FIRST(&vdev->peer_list);
2379 	qdf_spin_unlock_bh(&soc->peer_ref_mutex);
2380 
2381 	if (!peer) {
2382 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2383 				FL("peer is NULL"));
2384 		return;
2385 	}
2386 
2387 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2388 			"%s Tx MEC Handler\n",
2389 			__func__);
2390 
2391 	for (i = 0; i < DP_MAC_ADDR_LEN; i++)
2392 		mac_addr[(DP_MAC_ADDR_LEN - 1) - i] =
2393 					status[(DP_MAC_ADDR_LEN - 2) + i];
2394 
2395 	if (qdf_mem_cmp(mac_addr, vdev->mac_addr.raw, DP_MAC_ADDR_LEN))
2396 		dp_peer_add_ast(soc,
2397 				peer,
2398 				mac_addr,
2399 				CDP_TXRX_AST_TYPE_MEC,
2400 				flags);
2401 }
2402 #else
2403 static void dp_tx_mec_handler(struct dp_vdev *vdev, uint8_t *status)
2404 {
2405 }
2406 #endif
2407 
2408 /**
2409  * dp_tx_process_htt_completion() - Tx HTT Completion Indication Handler
2410  * @tx_desc: software descriptor head pointer
2411  * @status : Tx completion status from HTT descriptor
2412  *
2413  * This function will process HTT Tx indication messages from Target
2414  *
2415  * Return: none
2416  */
2417 static
2418 void dp_tx_process_htt_completion(struct dp_tx_desc_s *tx_desc, uint8_t *status)
2419 {
2420 	uint8_t tx_status;
2421 	struct dp_pdev *pdev;
2422 	struct dp_vdev *vdev;
2423 	struct dp_soc *soc;
2424 	uint32_t *htt_status_word = (uint32_t *) status;
2425 
2426 	qdf_assert(tx_desc->pdev);
2427 
2428 	pdev = tx_desc->pdev;
2429 	vdev = tx_desc->vdev;
2430 	soc = pdev->soc;
2431 
2432 	tx_status = HTT_TX_WBM_COMPLETION_V2_TX_STATUS_GET(htt_status_word[0]);
2433 
2434 	switch (tx_status) {
2435 	case HTT_TX_FW2WBM_TX_STATUS_OK:
2436 	case HTT_TX_FW2WBM_TX_STATUS_DROP:
2437 	case HTT_TX_FW2WBM_TX_STATUS_TTL:
2438 	{
2439 		dp_tx_comp_free_buf(soc, tx_desc);
2440 		dp_tx_desc_release(tx_desc, tx_desc->pool_id);
2441 		break;
2442 	}
2443 	case HTT_TX_FW2WBM_TX_STATUS_REINJECT:
2444 	{
2445 		dp_tx_reinject_handler(tx_desc, status);
2446 		break;
2447 	}
2448 	case HTT_TX_FW2WBM_TX_STATUS_INSPECT:
2449 	{
2450 		dp_tx_inspect_handler(tx_desc, status);
2451 		break;
2452 	}
2453 	case HTT_TX_FW2WBM_TX_STATUS_MEC_NOTIFY:
2454 	{
2455 		dp_tx_mec_handler(vdev, status);
2456 		break;
2457 	}
2458 	default:
2459 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2460 				"%s Invalid HTT tx_status %d\n",
2461 				__func__, tx_status);
2462 		break;
2463 	}
2464 }
2465 
2466 #ifdef MESH_MODE_SUPPORT
2467 /**
2468  * dp_tx_comp_fill_tx_completion_stats() - Fill per packet Tx completion stats
2469  *                                         in mesh meta header
2470  * @tx_desc: software descriptor head pointer
2471  * @ts: pointer to tx completion stats
2472  * Return: none
2473  */
2474 static
2475 void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
2476 		struct hal_tx_completion_status *ts)
2477 {
2478 	struct meta_hdr_s *mhdr;
2479 	qdf_nbuf_t netbuf = tx_desc->nbuf;
2480 
2481 	if (!tx_desc->msdu_ext_desc) {
2482 		if (qdf_nbuf_pull_head(netbuf, tx_desc->pkt_offset) == NULL) {
2483 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2484 				"netbuf %pK offset %d\n",
2485 				netbuf, tx_desc->pkt_offset);
2486 			return;
2487 		}
2488 	}
2489 	if (qdf_nbuf_push_head(netbuf, sizeof(struct meta_hdr_s)) == NULL) {
2490 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2491 			"netbuf %pK offset %d\n", netbuf,
2492 			sizeof(struct meta_hdr_s));
2493 		return;
2494 	}
2495 
2496 	mhdr = (struct meta_hdr_s *)qdf_nbuf_data(netbuf);
2497 	mhdr->rssi = ts->ack_frame_rssi;
2498 	mhdr->channel = tx_desc->pdev->operating_channel;
2499 }
2500 
2501 #else
2502 static
2503 void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
2504 		struct hal_tx_completion_status *ts)
2505 {
2506 }
2507 
2508 #endif
2509 
2510 /**
2511  * dp_tx_update_peer_stats() - Update peer stats from Tx completion indications
2512  * @peer: Handle to DP peer
2513  * @ts: pointer to HAL Tx completion stats
2514  * @length: MSDU length
2515  *
2516  * Return: None
2517  */
2518 static void dp_tx_update_peer_stats(struct dp_peer *peer,
2519 		struct hal_tx_completion_status *ts, uint32_t length)
2520 {
2521 	struct dp_pdev *pdev = peer->vdev->pdev;
2522 	struct dp_soc *soc = pdev->soc;
2523 	uint8_t mcs, pkt_type;
2524 
2525 	mcs = ts->mcs;
2526 	pkt_type = ts->pkt_type;
2527 
2528 	if (!ts->release_src == HAL_TX_COMP_RELEASE_SOURCE_TQM)
2529 		return;
2530 
2531 	if (peer->bss_peer) {
2532 		DP_STATS_INC_PKT(peer, tx.mcast, 1, length);
2533 		DP_STATS_INC_PKT(peer, tx.tx_success, 1, length);
2534 	} else {
2535 		if (ts->status == HAL_TX_TQM_RR_FRAME_ACKED) {
2536 			DP_STATS_INC_PKT(peer, tx.ucast, 1, length);
2537 			DP_STATS_INC_PKT(peer, tx.tx_success, 1, length);
2538 		}
2539 	}
2540 
2541 	DP_STATS_INCC(peer, tx.dropped.age_out, 1,
2542 			(ts->status == HAL_TX_TQM_RR_REM_CMD_AGED));
2543 
2544 	DP_STATS_INCC(peer, tx.dropped.fw_rem, 1,
2545 			(ts->status == HAL_TX_TQM_RR_REM_CMD_REM));
2546 
2547 	DP_STATS_INCC(peer, tx.dropped.fw_rem_notx, 1,
2548 			(ts->status == HAL_TX_TQM_RR_REM_CMD_NOTX));
2549 
2550 	DP_STATS_INCC(peer, tx.dropped.fw_rem_tx, 1,
2551 			(ts->status == HAL_TX_TQM_RR_REM_CMD_TX));
2552 
2553 	DP_STATS_INCC(peer, tx.dropped.fw_reason1, 1,
2554 			(ts->status == HAL_TX_TQM_RR_FW_REASON1));
2555 
2556 	DP_STATS_INCC(peer, tx.dropped.fw_reason2, 1,
2557 			(ts->status == HAL_TX_TQM_RR_FW_REASON2));
2558 
2559 	DP_STATS_INCC(peer, tx.dropped.fw_reason3, 1,
2560 			(ts->status == HAL_TX_TQM_RR_FW_REASON3));
2561 
2562 	if (!ts->status == HAL_TX_TQM_RR_FRAME_ACKED)
2563 		return;
2564 
2565 	DP_STATS_INCC(peer, tx.ofdma, 1, ts->ofdma);
2566 
2567 	DP_STATS_INCC(peer, tx.amsdu_cnt, 1, ts->msdu_part_of_amsdu);
2568 
2569 	if (!(soc->process_tx_status))
2570 		return;
2571 
2572 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
2573 			((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
2574 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
2575 			((mcs < (MAX_MCS_11A)) && (pkt_type == DOT11_A)));
2576 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
2577 			((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
2578 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
2579 			((mcs < MAX_MCS_11B) && (pkt_type == DOT11_B)));
2580 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
2581 			((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
2582 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
2583 			((mcs < MAX_MCS_11A) && (pkt_type == DOT11_N)));
2584 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
2585 			((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
2586 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
2587 			((mcs < MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
2588 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
2589 			((mcs >= (MAX_MCS - 1)) && (pkt_type == DOT11_AX)));
2590 	DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
2591 			((mcs < (MAX_MCS - 1)) && (pkt_type == DOT11_AX)));
2592 	DP_STATS_INC(peer, tx.sgi_count[ts->sgi], 1);
2593 	DP_STATS_INC(peer, tx.bw[ts->bw], 1);
2594 	DP_STATS_UPD(peer, tx.last_ack_rssi, ts->ack_frame_rssi);
2595 	DP_STATS_INC(peer, tx.wme_ac_type[TID_TO_WME_AC(ts->tid)], 1);
2596 	DP_STATS_INCC(peer, tx.stbc, 1, ts->stbc);
2597 	DP_STATS_INCC(peer, tx.ldpc, 1, ts->ldpc);
2598 	DP_STATS_INC_PKT(peer, tx.tx_success, 1, length);
2599 	DP_STATS_INCC(peer, tx.retries, 1, ts->transmit_cnt > 1);
2600 
2601 	if (soc->cdp_soc.ol_ops->update_dp_stats) {
2602 		soc->cdp_soc.ol_ops->update_dp_stats(pdev->osif_pdev,
2603 				&peer->stats, ts->peer_id,
2604 				UPDATE_PEER_STATS);
2605 	}
2606 }
2607 
2608 /**
2609  * dp_tx_comp_process_tx_status() - Parse and Dump Tx completion status info
2610  * @tx_desc: software descriptor head pointer
2611  * @length: packet length
2612  *
2613  * Return: none
2614  */
2615 static inline void dp_tx_comp_process_tx_status(struct dp_tx_desc_s *tx_desc,
2616 		uint32_t length)
2617 {
2618 	struct hal_tx_completion_status ts;
2619 	struct dp_soc *soc = NULL;
2620 	struct dp_vdev *vdev = tx_desc->vdev;
2621 	struct dp_peer *peer = NULL;
2622 	struct ether_header *eh =
2623 		(struct ether_header *)qdf_nbuf_data(tx_desc->nbuf);
2624 
2625 	hal_tx_comp_get_status(&tx_desc->comp, &ts);
2626 
2627 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2628 				"-------------------- \n"
2629 				"Tx Completion Stats: \n"
2630 				"-------------------- \n"
2631 				"ack_frame_rssi = %d \n"
2632 				"first_msdu = %d \n"
2633 				"last_msdu = %d \n"
2634 				"msdu_part_of_amsdu = %d \n"
2635 				"rate_stats valid = %d \n"
2636 				"bw = %d \n"
2637 				"pkt_type = %d \n"
2638 				"stbc = %d \n"
2639 				"ldpc = %d \n"
2640 				"sgi = %d \n"
2641 				"mcs = %d \n"
2642 				"ofdma = %d \n"
2643 				"tones_in_ru = %d \n"
2644 				"tsf = %d \n"
2645 				"ppdu_id = %d \n"
2646 				"transmit_cnt = %d \n"
2647 				"tid = %d \n"
2648 				"peer_id = %d \n",
2649 				ts.ack_frame_rssi, ts.first_msdu, ts.last_msdu,
2650 				ts.msdu_part_of_amsdu, ts.valid, ts.bw,
2651 				ts.pkt_type, ts.stbc, ts.ldpc, ts.sgi,
2652 				ts.mcs, ts.ofdma, ts.tones_in_ru, ts.tsf,
2653 				ts.ppdu_id, ts.transmit_cnt, ts.tid,
2654 				ts.peer_id);
2655 
2656 	if (!vdev) {
2657 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
2658 				"invalid vdev");
2659 		goto out;
2660 	}
2661 
2662 	soc = vdev->pdev->soc;
2663 
2664 	/* Update SoC level stats */
2665 	DP_STATS_INCC(soc, tx.dropped_fw_removed, 1,
2666 			(ts.status == HAL_TX_TQM_RR_REM_CMD_REM));
2667 
2668 	/* Update per-packet stats */
2669 	if (qdf_unlikely(vdev->mesh_vdev) &&
2670 			!(tx_desc->flags & DP_TX_DESC_FLAG_TO_FW))
2671 		dp_tx_comp_fill_tx_completion_stats(tx_desc, &ts);
2672 
2673 	/* Update peer level stats */
2674 	peer = dp_peer_find_by_id(soc, ts.peer_id);
2675 	if (!peer) {
2676 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
2677 				"invalid peer");
2678 		DP_STATS_INC_PKT(soc, tx.tx_invalid_peer, 1, length);
2679 		goto out;
2680 	}
2681 
2682 	if (qdf_likely(peer->vdev->tx_encap_type ==
2683 				htt_cmn_pkt_type_ethernet)) {
2684 		if (peer->bss_peer && IEEE80211_IS_BROADCAST(eh->ether_dhost))
2685 			DP_STATS_INC_PKT(peer, tx.bcast, 1, length);
2686 	}
2687 
2688 	dp_tx_update_peer_stats(peer, &ts, length);
2689 
2690 out:
2691 	return;
2692 }
2693 
2694 /**
2695  * dp_tx_comp_process_desc() - Tx complete software descriptor handler
2696  * @soc: core txrx main context
2697  * @comp_head: software descriptor head pointer
2698  *
2699  * This function will process batch of descriptors reaped by dp_tx_comp_handler
2700  * and release the software descriptors after processing is complete
2701  *
2702  * Return: none
2703  */
2704 static void dp_tx_comp_process_desc(struct dp_soc *soc,
2705 		struct dp_tx_desc_s *comp_head)
2706 {
2707 	struct dp_tx_desc_s *desc;
2708 	struct dp_tx_desc_s *next;
2709 	struct hal_tx_completion_status ts = {0};
2710 	uint32_t length;
2711 	struct dp_peer *peer;
2712 
2713 	DP_HIST_INIT();
2714 	desc = comp_head;
2715 
2716 	while (desc) {
2717 		hal_tx_comp_get_status(&desc->comp, &ts);
2718 		peer = dp_peer_find_by_id(soc, ts.peer_id);
2719 		length = qdf_nbuf_len(desc->nbuf);
2720 
2721 		dp_tx_comp_process_tx_status(desc, length);
2722 
2723 		/*currently m_copy/tx_capture is not supported for scatter gather packets*/
2724 		if (!(desc->msdu_ext_desc) && (dp_get_completion_indication_for_stack(soc,
2725 					desc->pdev, ts.peer_id, ts.ppdu_id,
2726 					ts.first_msdu, ts.last_msdu,
2727 					desc->nbuf) == QDF_STATUS_SUCCESS)) {
2728 			qdf_nbuf_unmap(soc->osdev, desc->nbuf,
2729 						QDF_DMA_TO_DEVICE);
2730 
2731 			dp_send_completion_to_stack(soc, desc->pdev, ts.peer_id,
2732 				ts.ppdu_id, desc->nbuf);
2733 		} else {
2734 			dp_tx_comp_free_buf(soc, desc);
2735 		}
2736 
2737 		DP_HIST_PACKET_COUNT_INC(desc->pdev->pdev_id);
2738 
2739 		next = desc->next;
2740 		dp_tx_desc_release(desc, desc->pool_id);
2741 		desc = next;
2742 	}
2743 	DP_TX_HIST_STATS_PER_PDEV();
2744 }
2745 
2746 /**
2747  * dp_tx_comp_handler() - Tx completion handler
2748  * @soc: core txrx main context
2749  * @ring_id: completion ring id
2750  * @quota: No. of packets/descriptors that can be serviced in one loop
2751  *
2752  * This function will collect hardware release ring element contents and
2753  * handle descriptor contents. Based on contents, free packet or handle error
2754  * conditions
2755  *
2756  * Return: none
2757  */
2758 uint32_t dp_tx_comp_handler(struct dp_soc *soc, void *hal_srng, uint32_t quota)
2759 {
2760 	void *tx_comp_hal_desc;
2761 	uint8_t buffer_src;
2762 	uint8_t pool_id;
2763 	uint32_t tx_desc_id;
2764 	struct dp_tx_desc_s *tx_desc = NULL;
2765 	struct dp_tx_desc_s *head_desc = NULL;
2766 	struct dp_tx_desc_s *tail_desc = NULL;
2767 	uint32_t num_processed;
2768 	uint32_t count;
2769 
2770 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
2771 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2772 				"%s %d : HAL RING Access Failed -- %pK\n",
2773 				__func__, __LINE__, hal_srng);
2774 		return 0;
2775 	}
2776 
2777 	num_processed = 0;
2778 	count = 0;
2779 
2780 	/* Find head descriptor from completion ring */
2781 	while (qdf_likely(tx_comp_hal_desc =
2782 			hal_srng_dst_get_next(soc->hal_soc, hal_srng))) {
2783 
2784 		buffer_src = hal_tx_comp_get_buffer_source(tx_comp_hal_desc);
2785 
2786 		/* If this buffer was not released by TQM or FW, then it is not
2787 		 * Tx completion indication, assert */
2788 		if ((buffer_src != HAL_TX_COMP_RELEASE_SOURCE_TQM) &&
2789 				(buffer_src != HAL_TX_COMP_RELEASE_SOURCE_FW)) {
2790 
2791 			QDF_TRACE(QDF_MODULE_ID_DP,
2792 					QDF_TRACE_LEVEL_FATAL,
2793 					"Tx comp release_src != TQM | FW");
2794 
2795 			qdf_assert_always(0);
2796 		}
2797 
2798 		/* Get descriptor id */
2799 		tx_desc_id = hal_tx_comp_get_desc_id(tx_comp_hal_desc);
2800 		pool_id = (tx_desc_id & DP_TX_DESC_ID_POOL_MASK) >>
2801 			DP_TX_DESC_ID_POOL_OS;
2802 
2803 		/* Pool ID is out of limit. Error */
2804 		if (pool_id > wlan_cfg_get_num_tx_desc_pool(
2805 					soc->wlan_cfg_ctx)) {
2806 			QDF_TRACE(QDF_MODULE_ID_DP,
2807 					QDF_TRACE_LEVEL_FATAL,
2808 					"Tx Comp pool id %d not valid",
2809 					pool_id);
2810 
2811 			qdf_assert_always(0);
2812 		}
2813 
2814 		/* Find Tx descriptor */
2815 		tx_desc = dp_tx_desc_find(soc, pool_id,
2816 				(tx_desc_id & DP_TX_DESC_ID_PAGE_MASK) >>
2817 				DP_TX_DESC_ID_PAGE_OS,
2818 				(tx_desc_id & DP_TX_DESC_ID_OFFSET_MASK) >>
2819 				DP_TX_DESC_ID_OFFSET_OS);
2820 
2821 		/*
2822 		 * If the release source is FW, process the HTT status
2823 		 */
2824 		if (qdf_unlikely(buffer_src ==
2825 					HAL_TX_COMP_RELEASE_SOURCE_FW)) {
2826 			uint8_t htt_tx_status[HAL_TX_COMP_HTT_STATUS_LEN];
2827 			hal_tx_comp_get_htt_desc(tx_comp_hal_desc,
2828 					htt_tx_status);
2829 			dp_tx_process_htt_completion(tx_desc,
2830 					htt_tx_status);
2831 		} else {
2832 			/* Pool id is not matching. Error */
2833 			if (tx_desc->pool_id != pool_id) {
2834 				QDF_TRACE(QDF_MODULE_ID_DP,
2835 					QDF_TRACE_LEVEL_FATAL,
2836 					"Tx Comp pool id %d not matched %d",
2837 					pool_id, tx_desc->pool_id);
2838 
2839 				qdf_assert_always(0);
2840 			}
2841 
2842 			if (!(tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED) ||
2843 				!(tx_desc->flags & DP_TX_DESC_FLAG_QUEUED_TX)) {
2844 				QDF_TRACE(QDF_MODULE_ID_DP,
2845 					QDF_TRACE_LEVEL_FATAL,
2846 					"Txdesc invalid, flgs = %x,id = %d",
2847 					tx_desc->flags,	tx_desc_id);
2848 				qdf_assert_always(0);
2849 			}
2850 
2851 			/* First ring descriptor on the cycle */
2852 			if (!head_desc) {
2853 				head_desc = tx_desc;
2854 				tail_desc = tx_desc;
2855 			}
2856 
2857 			tail_desc->next = tx_desc;
2858 			tx_desc->next = NULL;
2859 			tail_desc = tx_desc;
2860 
2861 			/* Collect hw completion contents */
2862 			hal_tx_comp_desc_sync(tx_comp_hal_desc,
2863 					&tx_desc->comp, 1);
2864 
2865 		}
2866 
2867 		num_processed += !(count & DP_TX_NAPI_BUDGET_DIV_MASK);
2868 		/* Decrement PM usage count if the packet has been sent.*/
2869 		hif_pm_runtime_put(soc->hif_handle);
2870 
2871 		/*
2872 		 * Processed packet count is more than given quota
2873 		 * stop to processing
2874 		 */
2875 		if ((num_processed >= quota))
2876 			break;
2877 
2878 		count++;
2879 	}
2880 
2881 	hal_srng_access_end(soc->hal_soc, hal_srng);
2882 
2883 	/* Process the reaped descriptors */
2884 	if (head_desc)
2885 		dp_tx_comp_process_desc(soc, head_desc);
2886 
2887 	return num_processed;
2888 }
2889 
2890 #ifdef CONVERGED_TDLS_ENABLE
2891 /**
2892  * dp_tx_non_std() - Allow the control-path SW to send data frames
2893  *
2894  * @data_vdev - which vdev should transmit the tx data frames
2895  * @tx_spec - what non-standard handling to apply to the tx data frames
2896  * @msdu_list - NULL-terminated list of tx MSDUs
2897  *
2898  * Return: NULL on success,
2899  *         nbuf when it fails to send
2900  */
2901 qdf_nbuf_t dp_tx_non_std(struct cdp_vdev *vdev_handle,
2902 			enum ol_tx_spec tx_spec, qdf_nbuf_t msdu_list)
2903 {
2904 	struct dp_vdev *vdev = (struct dp_vdev *) vdev_handle;
2905 
2906 	if (tx_spec & OL_TX_SPEC_NO_FREE)
2907 		vdev->is_tdls_frame = true;
2908 	return dp_tx_send(vdev_handle, msdu_list);
2909 }
2910 #endif
2911 
2912 /**
2913  * dp_tx_vdev_attach() - attach vdev to dp tx
2914  * @vdev: virtual device instance
2915  *
2916  * Return: QDF_STATUS_SUCCESS: success
2917  *         QDF_STATUS_E_RESOURCES: Error return
2918  */
2919 QDF_STATUS dp_tx_vdev_attach(struct dp_vdev *vdev)
2920 {
2921 	/*
2922 	 * Fill HTT TCL Metadata with Vdev ID and MAC ID
2923 	 */
2924 	HTT_TX_TCL_METADATA_TYPE_SET(vdev->htt_tcl_metadata,
2925 			HTT_TCL_METADATA_TYPE_VDEV_BASED);
2926 
2927 	HTT_TX_TCL_METADATA_VDEV_ID_SET(vdev->htt_tcl_metadata,
2928 			vdev->vdev_id);
2929 
2930 	HTT_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata,
2931 			DP_SW2HW_MACID(vdev->pdev->pdev_id));
2932 
2933 	/*
2934 	 * Set HTT Extension Valid bit to 0 by default
2935 	 */
2936 	HTT_TX_TCL_METADATA_VALID_HTT_SET(vdev->htt_tcl_metadata, 0);
2937 
2938 	dp_tx_vdev_update_search_flags(vdev);
2939 
2940 	return QDF_STATUS_SUCCESS;
2941 }
2942 
2943 /**
2944  * dp_tx_vdev_update_search_flags() - Update vdev flags as per opmode
2945  * @vdev: virtual device instance
2946  *
2947  * Return: void
2948  *
2949  */
2950 void dp_tx_vdev_update_search_flags(struct dp_vdev *vdev)
2951 {
2952 	/*
2953 	 * Enable both AddrY (SA based search) and AddrX (Da based search)
2954 	 * for TDLS link
2955 	 *
2956 	 * Enable AddrY (SA based search) only for non-WDS STA and
2957 	 * ProxySTA VAP modes.
2958 	 *
2959 	 * In all other VAP modes, only DA based search should be
2960 	 * enabled
2961 	 */
2962 	if (vdev->opmode == wlan_op_mode_sta &&
2963 	    vdev->tdls_link_connected)
2964 		vdev->hal_desc_addr_search_flags =
2965 			(HAL_TX_DESC_ADDRX_EN | HAL_TX_DESC_ADDRY_EN);
2966 	else if ((vdev->opmode == wlan_op_mode_sta &&
2967 				(!vdev->wds_enabled || vdev->proxysta_vdev)))
2968 		vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRY_EN;
2969 	else
2970 		vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRX_EN;
2971 }
2972 
2973 /**
2974  * dp_tx_vdev_detach() - detach vdev from dp tx
2975  * @vdev: virtual device instance
2976  *
2977  * Return: QDF_STATUS_SUCCESS: success
2978  *         QDF_STATUS_E_RESOURCES: Error return
2979  */
2980 QDF_STATUS dp_tx_vdev_detach(struct dp_vdev *vdev)
2981 {
2982 	return QDF_STATUS_SUCCESS;
2983 }
2984 
2985 /**
2986  * dp_tx_pdev_attach() - attach pdev to dp tx
2987  * @pdev: physical device instance
2988  *
2989  * Return: QDF_STATUS_SUCCESS: success
2990  *         QDF_STATUS_E_RESOURCES: Error return
2991  */
2992 QDF_STATUS dp_tx_pdev_attach(struct dp_pdev *pdev)
2993 {
2994 	struct dp_soc *soc = pdev->soc;
2995 
2996 	/* Initialize Flow control counters */
2997 	qdf_atomic_init(&pdev->num_tx_exception);
2998 	qdf_atomic_init(&pdev->num_tx_outstanding);
2999 
3000 	if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
3001 		/* Initialize descriptors in TCL Ring */
3002 		hal_tx_init_data_ring(soc->hal_soc,
3003 				soc->tcl_data_ring[pdev->pdev_id].hal_srng);
3004 	}
3005 
3006 	return QDF_STATUS_SUCCESS;
3007 }
3008 
3009 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
3010 /* Pools will be allocated dynamically */
3011 static int dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
3012 					int num_desc)
3013 {
3014 	uint8_t i;
3015 
3016 	for (i = 0; i < num_pool; i++) {
3017 		qdf_spinlock_create(&soc->tx_desc[i].flow_pool_lock);
3018 		soc->tx_desc[i].status = FLOW_POOL_INACTIVE;
3019 	}
3020 
3021 	return 0;
3022 }
3023 
3024 static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
3025 {
3026 	uint8_t i;
3027 
3028 	for (i = 0; i < num_pool; i++)
3029 		qdf_spinlock_destroy(&soc->tx_desc[i].flow_pool_lock);
3030 }
3031 
3032 static void dp_tx_desc_flush(struct dp_pdev *pdev)
3033 {
3034 }
3035 #else /* QCA_LL_TX_FLOW_CONTROL_V2! */
3036 static int dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
3037 					int num_desc)
3038 {
3039 	uint8_t i;
3040 
3041 	/* Allocate software Tx descriptor pools */
3042 	for (i = 0; i < num_pool; i++) {
3043 		if (dp_tx_desc_pool_alloc(soc, i, num_desc)) {
3044 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
3045 					"%s Tx Desc Pool alloc %d failed %pK\n",
3046 					__func__, i, soc);
3047 			return ENOMEM;
3048 		}
3049 	}
3050 	return 0;
3051 }
3052 
3053 static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
3054 {
3055 	uint8_t i;
3056 
3057 	for (i = 0; i < num_pool; i++) {
3058 		if (dp_tx_desc_pool_free(soc, i)) {
3059 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
3060 				"%s Tx Desc Pool Free failed\n", __func__);
3061 		}
3062 	}
3063 }
3064 
3065 /* dp_tx_desc_flush() - release resources associated
3066  *                      to tx_desc
3067  * @pdev: physical device instance
3068  *
3069  * This function will free all outstanding Tx buffers,
3070  * including ME buffer for which either free during
3071  * completion didn't happened or completion is not
3072  * received.
3073 */
3074 static void dp_tx_desc_flush(struct dp_pdev *pdev)
3075 {
3076 	uint8_t i, num_pool;
3077 	uint32_t j;
3078 	uint32_t num_desc;
3079 	struct dp_soc *soc = pdev->soc;
3080 	struct dp_tx_desc_s *tx_desc = NULL;
3081 	struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
3082 
3083 	num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
3084 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
3085 
3086 	for (i = 0; i < num_pool; i++) {
3087 		for (j = 0; j < num_desc; j++) {
3088 			tx_desc_pool = &((soc)->tx_desc[(i)]);
3089 			if (tx_desc_pool &&
3090 				tx_desc_pool->desc_pages.cacheable_pages) {
3091 				tx_desc = dp_tx_desc_find(soc, i,
3092 					(j & DP_TX_DESC_ID_PAGE_MASK) >>
3093 					DP_TX_DESC_ID_PAGE_OS,
3094 					(j & DP_TX_DESC_ID_OFFSET_MASK) >>
3095 					DP_TX_DESC_ID_OFFSET_OS);
3096 
3097 				if (tx_desc && (tx_desc->pdev == pdev) &&
3098 					(tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED)) {
3099 					dp_tx_comp_free_buf(soc, tx_desc);
3100 					dp_tx_desc_release(tx_desc, i);
3101 				}
3102 			}
3103 		}
3104 	}
3105 }
3106 #endif /* !QCA_LL_TX_FLOW_CONTROL_V2 */
3107 
3108 /**
3109  * dp_tx_pdev_detach() - detach pdev from dp tx
3110  * @pdev: physical device instance
3111  *
3112  * Return: QDF_STATUS_SUCCESS: success
3113  *         QDF_STATUS_E_RESOURCES: Error return
3114  */
3115 QDF_STATUS dp_tx_pdev_detach(struct dp_pdev *pdev)
3116 {
3117 	dp_tx_desc_flush(pdev);
3118 	dp_tx_me_exit(pdev);
3119 	return QDF_STATUS_SUCCESS;
3120 }
3121 
3122 /**
3123  * dp_tx_soc_detach() - detach soc from dp tx
3124  * @soc: core txrx main context
3125  *
3126  * This function will detach dp tx into main device context
3127  * will free dp tx resource and initialize resources
3128  *
3129  * Return: QDF_STATUS_SUCCESS: success
3130  *         QDF_STATUS_E_RESOURCES: Error return
3131  */
3132 QDF_STATUS dp_tx_soc_detach(struct dp_soc *soc)
3133 {
3134 	uint8_t num_pool;
3135 	uint16_t num_desc;
3136 	uint16_t num_ext_desc;
3137 	uint8_t i;
3138 
3139 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
3140 	num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
3141 	num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
3142 
3143 	dp_tx_flow_control_deinit(soc);
3144 	dp_tx_delete_static_pools(soc, num_pool);
3145 
3146 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
3147 			"%s Tx Desc Pool Free num_pool = %d, descs = %d\n",
3148 			__func__, num_pool, num_desc);
3149 
3150 	for (i = 0; i < num_pool; i++) {
3151 		if (dp_tx_ext_desc_pool_free(soc, i)) {
3152 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
3153 					"%s Tx Ext Desc Pool Free failed\n",
3154 					__func__);
3155 			return QDF_STATUS_E_RESOURCES;
3156 		}
3157 	}
3158 
3159 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
3160 			"%s MSDU Ext Desc Pool %d Free descs = %d\n",
3161 			__func__, num_pool, num_ext_desc);
3162 
3163 	for (i = 0; i < num_pool; i++) {
3164 		dp_tx_tso_desc_pool_free(soc, i);
3165 	}
3166 
3167 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
3168 			"%s TSO Desc Pool %d Free descs = %d\n",
3169 			__func__, num_pool, num_desc);
3170 
3171 
3172 	for (i = 0; i < num_pool; i++)
3173 		dp_tx_tso_num_seg_pool_free(soc, i);
3174 
3175 
3176 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
3177 		"%s TSO Num of seg Desc Pool %d Free descs = %d\n",
3178 		__func__, num_pool, num_desc);
3179 
3180 	return QDF_STATUS_SUCCESS;
3181 }
3182 
3183 /**
3184  * dp_tx_soc_attach() - attach soc to dp tx
3185  * @soc: core txrx main context
3186  *
3187  * This function will attach dp tx into main device context
3188  * will allocate dp tx resource and initialize resources
3189  *
3190  * Return: QDF_STATUS_SUCCESS: success
3191  *         QDF_STATUS_E_RESOURCES: Error return
3192  */
3193 QDF_STATUS dp_tx_soc_attach(struct dp_soc *soc)
3194 {
3195 	uint8_t i;
3196 	uint8_t num_pool;
3197 	uint32_t num_desc;
3198 	uint32_t num_ext_desc;
3199 
3200 	num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
3201 	num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
3202 	num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
3203 
3204 	if (dp_tx_alloc_static_pools(soc, num_pool, num_desc))
3205 		goto fail;
3206 
3207 	dp_tx_flow_control_init(soc);
3208 
3209 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
3210 			"%s Tx Desc Alloc num_pool = %d, descs = %d\n",
3211 			__func__, num_pool, num_desc);
3212 
3213 	/* Allocate extension tx descriptor pools */
3214 	for (i = 0; i < num_pool; i++) {
3215 		if (dp_tx_ext_desc_pool_alloc(soc, i, num_ext_desc)) {
3216 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
3217 				"MSDU Ext Desc Pool alloc %d failed %pK\n",
3218 				i, soc);
3219 
3220 			goto fail;
3221 		}
3222 	}
3223 
3224 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
3225 			"%s MSDU Ext Desc Alloc %d, descs = %d\n",
3226 			__func__, num_pool, num_ext_desc);
3227 
3228 	for (i = 0; i < num_pool; i++) {
3229 		if (dp_tx_tso_desc_pool_alloc(soc, i, num_desc)) {
3230 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
3231 				"TSO Desc Pool alloc %d failed %pK\n",
3232 				i, soc);
3233 
3234 			goto fail;
3235 		}
3236 	}
3237 
3238 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
3239 			"%s TSO Desc Alloc %d, descs = %d\n",
3240 			__func__, num_pool, num_desc);
3241 
3242 	for (i = 0; i < num_pool; i++) {
3243 		if (dp_tx_tso_num_seg_pool_alloc(soc, i, num_desc)) {
3244 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
3245 				"TSO Num of seg Pool alloc %d failed %pK\n",
3246 				i, soc);
3247 
3248 			goto fail;
3249 		}
3250 	}
3251 
3252 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
3253 			"%s TSO Num of seg pool Alloc %d, descs = %d\n",
3254 			__func__, num_pool, num_desc);
3255 
3256 	/* Initialize descriptors in TCL Rings */
3257 	if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
3258 		for (i = 0; i < soc->num_tcl_data_rings; i++) {
3259 			hal_tx_init_data_ring(soc->hal_soc,
3260 					soc->tcl_data_ring[i].hal_srng);
3261 		}
3262 	}
3263 
3264 	/*
3265 	 * todo - Add a runtime config option to enable this.
3266 	 */
3267 	/*
3268 	 * Due to multiple issues on NPR EMU, enable it selectively
3269 	 * only for NPR EMU, should be removed, once NPR platforms
3270 	 * are stable.
3271 	 */
3272 	soc->process_tx_status = CONFIG_PROCESS_TX_STATUS;
3273 
3274 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
3275 			"%s HAL Tx init Success\n", __func__);
3276 
3277 	return QDF_STATUS_SUCCESS;
3278 
3279 fail:
3280 	/* Detach will take care of freeing only allocated resources */
3281 	dp_tx_soc_detach(soc);
3282 	return QDF_STATUS_E_RESOURCES;
3283 }
3284 
3285 /*
3286  * dp_tx_me_mem_free(): Function to free allocated memory in mcast enahncement
3287  * pdev: pointer to DP PDEV structure
3288  * seg_info_head: Pointer to the head of list
3289  *
3290  * return: void
3291  */
3292 static void dp_tx_me_mem_free(struct dp_pdev *pdev,
3293 		struct dp_tx_seg_info_s *seg_info_head)
3294 {
3295 	struct dp_tx_me_buf_t *mc_uc_buf;
3296 	struct dp_tx_seg_info_s *seg_info_new = NULL;
3297 	qdf_nbuf_t nbuf = NULL;
3298 	uint64_t phy_addr;
3299 
3300 	while (seg_info_head) {
3301 		nbuf = seg_info_head->nbuf;
3302 		mc_uc_buf = (struct dp_tx_me_buf_t *)
3303 			seg_info_head->frags[0].vaddr;
3304 		phy_addr = seg_info_head->frags[0].paddr_hi;
3305 		phy_addr =  (phy_addr << 32) | seg_info_head->frags[0].paddr_lo;
3306 		qdf_mem_unmap_nbytes_single(pdev->soc->osdev,
3307 				phy_addr,
3308 				QDF_DMA_TO_DEVICE , DP_MAC_ADDR_LEN);
3309 		dp_tx_me_free_buf(pdev, mc_uc_buf);
3310 		qdf_nbuf_free(nbuf);
3311 		seg_info_new = seg_info_head;
3312 		seg_info_head = seg_info_head->next;
3313 		qdf_mem_free(seg_info_new);
3314 	}
3315 }
3316 
3317 /**
3318  * dp_tx_me_send_convert_ucast(): fuction to convert multicast to unicast
3319  * @vdev: DP VDEV handle
3320  * @nbuf: Multicast nbuf
3321  * @newmac: Table of the clients to which packets have to be sent
3322  * @new_mac_cnt: No of clients
3323  *
3324  * return: no of converted packets
3325  */
3326 uint16_t
3327 dp_tx_me_send_convert_ucast(struct cdp_vdev *vdev_handle, qdf_nbuf_t nbuf,
3328 		uint8_t newmac[][DP_MAC_ADDR_LEN], uint8_t new_mac_cnt)
3329 {
3330 	struct dp_vdev *vdev = (struct dp_vdev *) vdev_handle;
3331 	struct dp_pdev *pdev = vdev->pdev;
3332 	struct ether_header *eh;
3333 	uint8_t *data;
3334 	uint16_t len;
3335 
3336 	/* reference to frame dst addr */
3337 	uint8_t *dstmac;
3338 	/* copy of original frame src addr */
3339 	uint8_t srcmac[DP_MAC_ADDR_LEN];
3340 
3341 	/* local index into newmac */
3342 	uint8_t new_mac_idx = 0;
3343 	struct dp_tx_me_buf_t *mc_uc_buf;
3344 	qdf_nbuf_t  nbuf_clone;
3345 	struct dp_tx_msdu_info_s msdu_info;
3346 	struct dp_tx_seg_info_s *seg_info_head = NULL;
3347 	struct dp_tx_seg_info_s *seg_info_tail = NULL;
3348 	struct dp_tx_seg_info_s *seg_info_new;
3349 	struct dp_tx_frag_info_s data_frag;
3350 	qdf_dma_addr_t paddr_data;
3351 	qdf_dma_addr_t paddr_mcbuf = 0;
3352 	uint8_t empty_entry_mac[DP_MAC_ADDR_LEN] = {0};
3353 	QDF_STATUS status;
3354 
3355 	qdf_mem_set(&msdu_info, sizeof(msdu_info), 0x0);
3356 
3357 	dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
3358 
3359 	eh = (struct ether_header *) nbuf;
3360 	qdf_mem_copy(srcmac, eh->ether_shost, DP_MAC_ADDR_LEN);
3361 
3362 	len = qdf_nbuf_len(nbuf);
3363 
3364 	data = qdf_nbuf_data(nbuf);
3365 
3366 	status = qdf_nbuf_map(vdev->osdev, nbuf,
3367 			QDF_DMA_TO_DEVICE);
3368 
3369 	if (status) {
3370 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
3371 				"Mapping failure Error:%d", status);
3372 		DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error, 1);
3373 		qdf_nbuf_free(nbuf);
3374 		return 1;
3375 	}
3376 
3377 	paddr_data = qdf_nbuf_get_frag_paddr(nbuf, 0) + IEEE80211_ADDR_LEN;
3378 
3379 	/*preparing data fragment*/
3380 	data_frag.vaddr = qdf_nbuf_data(nbuf) + IEEE80211_ADDR_LEN;
3381 	data_frag.paddr_lo = (uint32_t)paddr_data;
3382 	data_frag.paddr_hi = (((uint64_t) paddr_data)  >> 32);
3383 	data_frag.len = len - DP_MAC_ADDR_LEN;
3384 
3385 	for (new_mac_idx = 0; new_mac_idx < new_mac_cnt; new_mac_idx++) {
3386 		dstmac = newmac[new_mac_idx];
3387 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
3388 				"added mac addr (%pM)", dstmac);
3389 
3390 		/* Check for NULL Mac Address */
3391 		if (!qdf_mem_cmp(dstmac, empty_entry_mac, DP_MAC_ADDR_LEN))
3392 			continue;
3393 
3394 		/* frame to self mac. skip */
3395 		if (!qdf_mem_cmp(dstmac, srcmac, DP_MAC_ADDR_LEN))
3396 			continue;
3397 
3398 		/*
3399 		 * TODO: optimize to avoid malloc in per-packet path
3400 		 * For eg. seg_pool can be made part of vdev structure
3401 		 */
3402 		seg_info_new = qdf_mem_malloc(sizeof(*seg_info_new));
3403 
3404 		if (!seg_info_new) {
3405 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
3406 					"alloc failed");
3407 			DP_STATS_INC(vdev, tx_i.mcast_en.fail_seg_alloc, 1);
3408 			goto fail_seg_alloc;
3409 		}
3410 
3411 		mc_uc_buf = dp_tx_me_alloc_buf(pdev);
3412 		if (mc_uc_buf == NULL)
3413 			goto fail_buf_alloc;
3414 
3415 		/*
3416 		 * TODO: Check if we need to clone the nbuf
3417 		 * Or can we just use the reference for all cases
3418 		 */
3419 		if (new_mac_idx < (new_mac_cnt - 1)) {
3420 			nbuf_clone = qdf_nbuf_clone((qdf_nbuf_t)nbuf);
3421 			if (nbuf_clone == NULL) {
3422 				DP_STATS_INC(vdev, tx_i.mcast_en.clone_fail, 1);
3423 				goto fail_clone;
3424 			}
3425 		} else {
3426 			/*
3427 			 * Update the ref
3428 			 * to account for frame sent without cloning
3429 			 */
3430 			qdf_nbuf_ref(nbuf);
3431 			nbuf_clone = nbuf;
3432 		}
3433 
3434 		qdf_mem_copy(mc_uc_buf->data, dstmac, DP_MAC_ADDR_LEN);
3435 
3436 		status = qdf_mem_map_nbytes_single(vdev->osdev, mc_uc_buf->data,
3437 				QDF_DMA_TO_DEVICE, DP_MAC_ADDR_LEN,
3438 				&paddr_mcbuf);
3439 
3440 		if (status) {
3441 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
3442 					"Mapping failure Error:%d", status);
3443 			DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error, 1);
3444 			goto fail_map;
3445 		}
3446 
3447 		seg_info_new->frags[0].vaddr =  (uint8_t *)mc_uc_buf;
3448 		seg_info_new->frags[0].paddr_lo = (uint32_t) paddr_mcbuf;
3449 		seg_info_new->frags[0].paddr_hi =
3450 			((uint64_t) paddr_mcbuf >> 32);
3451 		seg_info_new->frags[0].len = DP_MAC_ADDR_LEN;
3452 
3453 		seg_info_new->frags[1] = data_frag;
3454 		seg_info_new->nbuf = nbuf_clone;
3455 		seg_info_new->frag_cnt = 2;
3456 		seg_info_new->total_len = len;
3457 
3458 		seg_info_new->next = NULL;
3459 
3460 		if (seg_info_head == NULL)
3461 			seg_info_head = seg_info_new;
3462 		else
3463 			seg_info_tail->next = seg_info_new;
3464 
3465 		seg_info_tail = seg_info_new;
3466 	}
3467 
3468 	if (!seg_info_head) {
3469 		goto free_return;
3470 	}
3471 
3472 	msdu_info.u.sg_info.curr_seg = seg_info_head;
3473 	msdu_info.num_seg = new_mac_cnt;
3474 	msdu_info.frm_type = dp_tx_frm_me;
3475 
3476 	DP_STATS_INC(vdev, tx_i.mcast_en.ucast, new_mac_cnt);
3477 	dp_tx_send_msdu_multiple(vdev, nbuf, &msdu_info);
3478 
3479 	while (seg_info_head->next) {
3480 		seg_info_new = seg_info_head;
3481 		seg_info_head = seg_info_head->next;
3482 		qdf_mem_free(seg_info_new);
3483 	}
3484 	qdf_mem_free(seg_info_head);
3485 
3486 	qdf_nbuf_unmap(pdev->soc->osdev, nbuf, QDF_DMA_TO_DEVICE);
3487 	qdf_nbuf_free(nbuf);
3488 	return new_mac_cnt;
3489 
3490 fail_map:
3491 	qdf_nbuf_free(nbuf_clone);
3492 
3493 fail_clone:
3494 	dp_tx_me_free_buf(pdev, mc_uc_buf);
3495 
3496 fail_buf_alloc:
3497 	qdf_mem_free(seg_info_new);
3498 
3499 fail_seg_alloc:
3500 	dp_tx_me_mem_free(pdev, seg_info_head);
3501 
3502 free_return:
3503 	qdf_nbuf_unmap(pdev->soc->osdev, nbuf, QDF_DMA_TO_DEVICE);
3504 	qdf_nbuf_free(nbuf);
3505 	return 1;
3506 }
3507 
3508