xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx_defrag.c (revision dd4dc88b837a295134aa9869114a2efee0f4894b)
1 /*
2  * Copyright (c) 2017-2019 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "dp_types.h"
21 #include "dp_rx.h"
22 #include "dp_peer.h"
23 #include "hal_api.h"
24 #include "qdf_trace.h"
25 #include "qdf_nbuf.h"
26 #include "dp_internal.h"
27 #include "dp_rx_defrag.h"
28 #include <enet.h>	/* LLC_SNAP_HDR_LEN */
29 #include "dp_rx_defrag.h"
30 
31 const struct dp_rx_defrag_cipher dp_f_ccmp = {
32 	"AES-CCM",
33 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
34 	IEEE80211_WEP_MICLEN,
35 	0,
36 };
37 
38 const struct dp_rx_defrag_cipher dp_f_tkip = {
39 	"TKIP",
40 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
41 	IEEE80211_WEP_CRCLEN,
42 	IEEE80211_WEP_MICLEN,
43 };
44 
45 const struct dp_rx_defrag_cipher dp_f_wep = {
46 	"WEP",
47 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
48 	IEEE80211_WEP_CRCLEN,
49 	0,
50 };
51 
52 /*
53  * dp_rx_defrag_frames_free(): Free fragment chain
54  * @frames: Fragment chain
55  *
56  * Iterates through the fragment chain and frees them
57  * Returns: None
58  */
59 static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
60 {
61 	qdf_nbuf_t next, frag = frames;
62 
63 	while (frag) {
64 		next = qdf_nbuf_next(frag);
65 		qdf_nbuf_free(frag);
66 		frag = next;
67 	}
68 }
69 
70 /*
71  * dp_rx_clear_saved_desc_info(): Clears descriptor info
72  * @peer: Pointer to the peer data structure
73  * @tid: Transmit ID (TID)
74  *
75  * Saves MPDU descriptor info and MSDU link pointer from REO
76  * ring descriptor. The cache is created per peer, per TID
77  *
78  * Returns: None
79  */
80 static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
81 {
82 	if (peer->rx_tid[tid].dst_ring_desc)
83 		qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
84 
85 	peer->rx_tid[tid].dst_ring_desc = NULL;
86 }
87 
88 static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
89 					unsigned int tid)
90 {
91 	struct dp_soc *soc;
92 	struct dp_pdev *pdev;
93 	struct dp_srng *dp_rxdma_srng;
94 	struct rx_desc_pool *rx_desc_pool;
95 	union dp_rx_desc_list_elem_t *head = NULL;
96 	union dp_rx_desc_list_elem_t *tail = NULL;
97 
98 	pdev = peer->vdev->pdev;
99 	soc = pdev->soc;
100 
101 	if (peer->rx_tid[tid].head_frag_desc) {
102 		dp_rxdma_srng = &pdev->rx_refill_buf_ring;
103 		rx_desc_pool = &soc->rx_desc_buf[pdev->pdev_id];
104 
105 		dp_rx_add_to_free_desc_list(&head, &tail,
106 					    peer->rx_tid[tid].head_frag_desc);
107 		dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
108 					1, &head, &tail);
109 	}
110 
111 	if (peer->rx_tid[tid].dst_ring_desc) {
112 		if (dp_rx_link_desc_return(soc,
113 					   peer->rx_tid[tid].dst_ring_desc,
114 					   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
115 		    QDF_STATUS_SUCCESS)
116 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
117 				  "%s: Failed to return link desc", __func__);
118 	}
119 }
120 
121 /*
122  * dp_rx_reorder_flush_frag(): Flush the frag list
123  * @peer: Pointer to the peer data structure
124  * @tid: Transmit ID (TID)
125  *
126  * Flush the per-TID frag list
127  *
128  * Returns: None
129  */
130 void dp_rx_reorder_flush_frag(struct dp_peer *peer,
131 			 unsigned int tid)
132 {
133 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
134 		  FL("Flushing TID %d"), tid);
135 
136 	if (!peer) {
137 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
138 					"%s: NULL peer", __func__);
139 		return;
140 	}
141 
142 	dp_rx_return_head_frag_desc(peer, tid);
143 	dp_rx_defrag_cleanup(peer, tid);
144 }
145 
146 /*
147  * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
148  * @soc: DP SOC
149  *
150  * Flush fragments of all waitlisted TID's
151  *
152  * Returns: None
153  */
154 void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
155 {
156 	struct dp_rx_tid *rx_reorder = NULL;
157 	struct dp_rx_tid *tmp;
158 	uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
159 	TAILQ_HEAD(, dp_rx_tid) temp_list;
160 
161 	TAILQ_INIT(&temp_list);
162 
163 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
164 		  FL("Current time  %u"), now_ms);
165 
166 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
167 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
168 			   defrag_waitlist_elem, tmp) {
169 		uint32_t tid;
170 
171 		if (rx_reorder->defrag_timeout_ms > now_ms)
172 			break;
173 
174 		tid = rx_reorder->tid;
175 		if (tid >= DP_MAX_TIDS) {
176 			qdf_assert(0);
177 			continue;
178 		}
179 
180 		TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
181 			     defrag_waitlist_elem);
182 		DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
183 
184 		/* Move to temp list and clean-up later */
185 		TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
186 				  defrag_waitlist_elem);
187 	}
188 	if (rx_reorder) {
189 		soc->rx.defrag.next_flush_ms =
190 			rx_reorder->defrag_timeout_ms;
191 	} else {
192 		soc->rx.defrag.next_flush_ms =
193 			now_ms + soc->rx.defrag.timeout_ms;
194 	}
195 
196 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
197 
198 	TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
199 			   defrag_waitlist_elem, tmp) {
200 		struct dp_peer *peer, *temp_peer = NULL;
201 
202 		qdf_spin_lock_bh(&rx_reorder->tid_lock);
203 		TAILQ_REMOVE(&temp_list, rx_reorder,
204 			     defrag_waitlist_elem);
205 		/* get address of current peer */
206 		peer =
207 			container_of(rx_reorder, struct dp_peer,
208 				     rx_tid[rx_reorder->tid]);
209 		qdf_spin_unlock_bh(&rx_reorder->tid_lock);
210 
211 		temp_peer = dp_peer_find_by_id(soc, peer->peer_ids[0]);
212 		if (temp_peer == peer) {
213 			qdf_spin_lock_bh(&rx_reorder->tid_lock);
214 			dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
215 			qdf_spin_unlock_bh(&rx_reorder->tid_lock);
216 		}
217 
218 		if (temp_peer)
219 			dp_peer_unref_del_find_by_id(temp_peer);
220 
221 	}
222 }
223 
224 /*
225  * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
226  * @peer: Pointer to the peer data structure
227  * @tid: Transmit ID (TID)
228  *
229  * Appends per-tid fragments to global fragment wait list
230  *
231  * Returns: None
232  */
233 static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
234 {
235 	struct dp_soc *psoc = peer->vdev->pdev->soc;
236 	struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
237 
238 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
239 		  FL("Adding TID %u to waitlist for peer %pK"),
240 		  tid, peer);
241 
242 	/* TODO: use LIST macros instead of TAIL macros */
243 	qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
244 	if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
245 		psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
246 	TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
247 				defrag_waitlist_elem);
248 	DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
249 	qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
250 }
251 
252 /*
253  * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
254  * @peer: Pointer to the peer data structure
255  * @tid: Transmit ID (TID)
256  *
257  * Remove fragments from waitlist
258  *
259  * Returns: None
260  */
261 void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
262 {
263 	struct dp_pdev *pdev = peer->vdev->pdev;
264 	struct dp_soc *soc = pdev->soc;
265 	struct dp_rx_tid *rx_reorder;
266 	struct dp_rx_tid *tmp;
267 
268 	if (tid > DP_MAX_TIDS) {
269 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
270 			  "TID out of bounds: %d", tid);
271 		qdf_assert(0);
272 		return;
273 	}
274 
275 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
276 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
277 			   defrag_waitlist_elem, tmp) {
278 		struct dp_peer *peer_on_waitlist;
279 
280 		/* get address of current peer */
281 		peer_on_waitlist =
282 			container_of(rx_reorder, struct dp_peer,
283 				     rx_tid[rx_reorder->tid]);
284 
285 		/* Ensure it is TID for same peer */
286 		if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
287 			TAILQ_REMOVE(&soc->rx.defrag.waitlist,
288 				rx_reorder, defrag_waitlist_elem);
289 			DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
290 		}
291 	}
292 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
293 }
294 
295 /*
296  * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
297  * @peer: Pointer to the peer data structure
298  * @tid: Transmit ID (TID)
299  * @head_addr: Pointer to head list
300  * @tail_addr: Pointer to tail list
301  * @frag: Incoming fragment
302  * @all_frag_present: Flag to indicate whether all fragments are received
303  *
304  * Build a per-tid, per-sequence fragment list.
305  *
306  * Returns: Success, if inserted
307  */
308 static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
309 	qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
310 	uint8_t *all_frag_present)
311 {
312 	qdf_nbuf_t next;
313 	qdf_nbuf_t prev = NULL;
314 	qdf_nbuf_t cur;
315 	uint16_t head_fragno, cur_fragno, next_fragno;
316 	uint8_t last_morefrag = 1, count = 0;
317 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
318 	uint8_t *rx_desc_info;
319 
320 
321 	qdf_assert(frag);
322 	qdf_assert(head_addr);
323 	qdf_assert(tail_addr);
324 
325 	*all_frag_present = 0;
326 	rx_desc_info = qdf_nbuf_data(frag);
327 	cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
328 
329 	/* If this is the first fragment */
330 	if (!(*head_addr)) {
331 		*head_addr = *tail_addr = frag;
332 		qdf_nbuf_set_next(*tail_addr, NULL);
333 		rx_tid->curr_frag_num = cur_fragno;
334 
335 		goto insert_done;
336 	}
337 
338 	/* In sequence fragment */
339 	if (cur_fragno > rx_tid->curr_frag_num) {
340 		qdf_nbuf_set_next(*tail_addr, frag);
341 		*tail_addr = frag;
342 		qdf_nbuf_set_next(*tail_addr, NULL);
343 		rx_tid->curr_frag_num = cur_fragno;
344 	} else {
345 		/* Out of sequence fragment */
346 		cur = *head_addr;
347 		rx_desc_info = qdf_nbuf_data(cur);
348 		head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
349 
350 		if (cur_fragno == head_fragno) {
351 			qdf_nbuf_free(frag);
352 			goto insert_fail;
353 		} else if (head_fragno > cur_fragno) {
354 			qdf_nbuf_set_next(frag, cur);
355 			cur = frag;
356 			*head_addr = frag; /* head pointer to be updated */
357 		} else {
358 			while ((cur_fragno > head_fragno) && cur) {
359 				prev = cur;
360 				cur = qdf_nbuf_next(cur);
361 				rx_desc_info = qdf_nbuf_data(cur);
362 				head_fragno =
363 					dp_rx_frag_get_mpdu_frag_number(
364 								rx_desc_info);
365 			}
366 
367 			if (cur_fragno == head_fragno) {
368 				qdf_nbuf_free(frag);
369 				goto insert_fail;
370 			}
371 
372 			qdf_nbuf_set_next(prev, frag);
373 			qdf_nbuf_set_next(frag, cur);
374 		}
375 	}
376 
377 	next = qdf_nbuf_next(*head_addr);
378 
379 	rx_desc_info = qdf_nbuf_data(*tail_addr);
380 	last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
381 
382 	/* TODO: optimize the loop */
383 	if (!last_morefrag) {
384 		/* Check if all fragments are present */
385 		do {
386 			rx_desc_info = qdf_nbuf_data(next);
387 			next_fragno =
388 				dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
389 			count++;
390 
391 			if (next_fragno != count)
392 				break;
393 
394 			next = qdf_nbuf_next(next);
395 		} while (next);
396 
397 		if (!next) {
398 			*all_frag_present = 1;
399 			return QDF_STATUS_SUCCESS;
400 		}
401 	}
402 
403 insert_done:
404 	return QDF_STATUS_SUCCESS;
405 
406 insert_fail:
407 	return QDF_STATUS_E_FAILURE;
408 }
409 
410 
411 /*
412  * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
413  * @msdu: Pointer to the fragment
414  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
415  *
416  * decap tkip encrypted fragment
417  *
418  * Returns: QDF_STATUS
419  */
420 static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
421 {
422 	uint8_t *ivp, *orig_hdr;
423 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
424 
425 	/* start of 802.11 header info */
426 	orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
427 
428 	/* TKIP header is located post 802.11 header */
429 	ivp = orig_hdr + hdrlen;
430 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
431 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
432 			"IEEE80211_WEP_EXTIV is missing in TKIP fragment");
433 		return QDF_STATUS_E_DEFRAG_ERROR;
434 	}
435 
436 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
437 
438 	return QDF_STATUS_SUCCESS;
439 }
440 
441 /*
442  * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
443  * @nbuf: Pointer to the fragment buffer
444  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
445  *
446  * Remove MIC information from CCMP fragment
447  *
448  * Returns: QDF_STATUS
449  */
450 static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
451 {
452 	uint8_t *ivp, *orig_hdr;
453 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
454 
455 	/* start of the 802.11 header */
456 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
457 
458 	/* CCMP header is located after 802.11 header */
459 	ivp = orig_hdr + hdrlen;
460 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
461 		return QDF_STATUS_E_DEFRAG_ERROR;
462 
463 	qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
464 
465 	return QDF_STATUS_SUCCESS;
466 }
467 
468 /*
469  * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
470  * @nbuf: Pointer to the fragment
471  * @hdrlen: length of the header information
472  *
473  * decap CCMP encrypted fragment
474  *
475  * Returns: QDF_STATUS
476  */
477 static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
478 {
479 	uint8_t *ivp, *origHdr;
480 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
481 
482 	origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
483 	ivp = origHdr + hdrlen;
484 
485 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
486 		return QDF_STATUS_E_DEFRAG_ERROR;
487 
488 	/* Let's pull the header later */
489 
490 	return QDF_STATUS_SUCCESS;
491 }
492 
493 /*
494  * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
495  * @msdu: Pointer to the fragment
496  * @hdrlen: length of the header information
497  *
498  * decap WEP encrypted fragment
499  *
500  * Returns: QDF_STATUS
501  */
502 static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
503 {
504 	uint8_t *origHdr;
505 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
506 
507 	origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
508 	qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
509 
510 	qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
511 
512 	return QDF_STATUS_SUCCESS;
513 }
514 
515 /*
516  * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
517  * @nbuf: Pointer to the fragment
518  *
519  * Calculate the header size of the received fragment
520  *
521  * Returns: header size (uint16_t)
522  */
523 static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
524 {
525 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
526 	uint16_t size = sizeof(struct ieee80211_frame);
527 	uint16_t fc = 0;
528 	uint32_t to_ds, fr_ds;
529 	uint8_t frm_ctrl_valid;
530 	uint16_t frm_ctrl_field;
531 
532 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
533 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
534 	frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
535 	frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
536 
537 	if (to_ds && fr_ds)
538 		size += QDF_MAC_ADDR_SIZE;
539 
540 	if (frm_ctrl_valid) {
541 		fc = frm_ctrl_field;
542 
543 		/* use 1-st byte for validation */
544 		if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
545 			size += sizeof(uint16_t);
546 			/* use 2-nd byte for validation */
547 			if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
548 				size += sizeof(struct ieee80211_htc);
549 		}
550 	}
551 
552 	return size;
553 }
554 
555 /*
556  * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
557  * @wh0: Pointer to the wireless header of the fragment
558  * @hdr: Array to hold the pseudo header
559  *
560  * Calculate a pseudo MIC header
561  *
562  * Returns: None
563  */
564 static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
565 				uint8_t hdr[])
566 {
567 	const struct ieee80211_frame_addr4 *wh =
568 		(const struct ieee80211_frame_addr4 *)wh0;
569 
570 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
571 	case IEEE80211_FC1_DIR_NODS:
572 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
573 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
574 					   wh->i_addr2);
575 		break;
576 	case IEEE80211_FC1_DIR_TODS:
577 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
578 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
579 					   wh->i_addr2);
580 		break;
581 	case IEEE80211_FC1_DIR_FROMDS:
582 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
583 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
584 					   wh->i_addr3);
585 		break;
586 	case IEEE80211_FC1_DIR_DSTODS:
587 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
588 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
589 					   wh->i_addr4);
590 		break;
591 	}
592 
593 	/*
594 	 * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
595 	 * it could also be set for deauth, disassoc, action, etc. for
596 	 * a mgt type frame. It comes into picture for MFP.
597 	 */
598 	if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
599 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
600 				IEEE80211_FC1_DIR_DSTODS) {
601 			const struct ieee80211_qosframe_addr4 *qwh =
602 				(const struct ieee80211_qosframe_addr4 *)wh;
603 			hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
604 		} else {
605 			const struct ieee80211_qosframe *qwh =
606 				(const struct ieee80211_qosframe *)wh;
607 			hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
608 		}
609 	} else {
610 		hdr[12] = 0;
611 	}
612 
613 	hdr[13] = hdr[14] = hdr[15] = 0;	/* reserved */
614 }
615 
616 /*
617  * dp_rx_defrag_mic(): Calculate MIC header
618  * @key: Pointer to the key
619  * @wbuf: fragment buffer
620  * @off: Offset
621  * @data_len: Data length
622  * @mic: Array to hold MIC
623  *
624  * Calculate a pseudo MIC header
625  *
626  * Returns: QDF_STATUS
627  */
628 static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
629 		uint16_t off, uint16_t data_len, uint8_t mic[])
630 {
631 	uint8_t hdr[16] = { 0, };
632 	uint32_t l, r;
633 	const uint8_t *data;
634 	uint32_t space;
635 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
636 
637 	dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
638 		+ rx_desc_len), hdr);
639 
640 	l = dp_rx_get_le32(key);
641 	r = dp_rx_get_le32(key + 4);
642 
643 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
644 	l ^= dp_rx_get_le32(hdr);
645 	dp_rx_michael_block(l, r);
646 	l ^= dp_rx_get_le32(&hdr[4]);
647 	dp_rx_michael_block(l, r);
648 	l ^= dp_rx_get_le32(&hdr[8]);
649 	dp_rx_michael_block(l, r);
650 	l ^= dp_rx_get_le32(&hdr[12]);
651 	dp_rx_michael_block(l, r);
652 
653 	/* first buffer has special handling */
654 	data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
655 	space = qdf_nbuf_len(wbuf) - off;
656 
657 	for (;; ) {
658 		if (space > data_len)
659 			space = data_len;
660 
661 		/* collect 32-bit blocks from current buffer */
662 		while (space >= sizeof(uint32_t)) {
663 			l ^= dp_rx_get_le32(data);
664 			dp_rx_michael_block(l, r);
665 			data += sizeof(uint32_t);
666 			space -= sizeof(uint32_t);
667 			data_len -= sizeof(uint32_t);
668 		}
669 		if (data_len < sizeof(uint32_t))
670 			break;
671 
672 		wbuf = qdf_nbuf_next(wbuf);
673 		if (!wbuf)
674 			return QDF_STATUS_E_DEFRAG_ERROR;
675 
676 		if (space != 0) {
677 			const uint8_t *data_next;
678 			/*
679 			 * Block straddles buffers, split references.
680 			 */
681 			data_next =
682 				(uint8_t *)qdf_nbuf_data(wbuf) + off;
683 			if ((qdf_nbuf_len(wbuf)) <
684 				sizeof(uint32_t) - space) {
685 				return QDF_STATUS_E_DEFRAG_ERROR;
686 			}
687 			switch (space) {
688 			case 1:
689 				l ^= dp_rx_get_le32_split(data[0],
690 					data_next[0], data_next[1],
691 					data_next[2]);
692 				data = data_next + 3;
693 				space = (qdf_nbuf_len(wbuf) - off) - 3;
694 				break;
695 			case 2:
696 				l ^= dp_rx_get_le32_split(data[0], data[1],
697 						    data_next[0], data_next[1]);
698 				data = data_next + 2;
699 				space = (qdf_nbuf_len(wbuf) - off) - 2;
700 				break;
701 			case 3:
702 				l ^= dp_rx_get_le32_split(data[0], data[1],
703 					data[2], data_next[0]);
704 				data = data_next + 1;
705 				space = (qdf_nbuf_len(wbuf) - off) - 1;
706 				break;
707 			}
708 			dp_rx_michael_block(l, r);
709 			data_len -= sizeof(uint32_t);
710 		} else {
711 			/*
712 			 * Setup for next buffer.
713 			 */
714 			data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
715 			space = qdf_nbuf_len(wbuf) - off;
716 		}
717 	}
718 	/* Last block and padding (0x5a, 4..7 x 0) */
719 	switch (data_len) {
720 	case 0:
721 		l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
722 		break;
723 	case 1:
724 		l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
725 		break;
726 	case 2:
727 		l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
728 		break;
729 	case 3:
730 		l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
731 		break;
732 	}
733 	dp_rx_michael_block(l, r);
734 	dp_rx_michael_block(l, r);
735 	dp_rx_put_le32(mic, l);
736 	dp_rx_put_le32(mic + 4, r);
737 
738 	return QDF_STATUS_SUCCESS;
739 }
740 
741 /*
742  * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
743  * @key: Pointer to the key
744  * @msdu: fragment buffer
745  * @hdrlen: Length of the header information
746  *
747  * Remove MIC information from the TKIP frame
748  *
749  * Returns: QDF_STATUS
750  */
751 static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
752 					qdf_nbuf_t msdu, uint16_t hdrlen)
753 {
754 	QDF_STATUS status;
755 	uint32_t pktlen = 0;
756 	uint8_t mic[IEEE80211_WEP_MICLEN];
757 	uint8_t mic0[IEEE80211_WEP_MICLEN];
758 	qdf_nbuf_t prev = NULL, next;
759 
760 	next = msdu;
761 	while (next) {
762 		pktlen += (qdf_nbuf_len(next) - hdrlen);
763 		prev = next;
764 		dp_debug("%s pktlen %u", __func__,
765 			 (uint32_t)(qdf_nbuf_len(next) - hdrlen));
766 		next = qdf_nbuf_next(next);
767 	}
768 
769 	if (!prev) {
770 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
771 			  "%s Defrag chaining failed !\n", __func__);
772 		return QDF_STATUS_E_DEFRAG_ERROR;
773 	}
774 
775 	qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
776 			   dp_f_tkip.ic_miclen, (caddr_t)mic0);
777 	qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
778 	pktlen -= dp_f_tkip.ic_miclen;
779 
780 	status = dp_rx_defrag_mic(key, msdu, hdrlen,
781 				pktlen, mic);
782 
783 	if (QDF_IS_STATUS_ERROR(status))
784 		return status;
785 
786 	if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
787 		return QDF_STATUS_E_DEFRAG_ERROR;
788 
789 	return QDF_STATUS_SUCCESS;
790 }
791 
792 /*
793  * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
794  * @nbuf: buffer pointer
795  * @hdrsize: size of the header to be pulled
796  *
797  * Pull the RXTLV & the 802.11 headers
798  *
799  * Returns: None
800  */
801 static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
802 {
803 	qdf_nbuf_pull_head(nbuf,
804 			RX_PKT_TLVS_LEN + hdrsize);
805 
806 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
807 		  "%s: final pktlen %d .11len %d",
808 		  __func__, (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
809 }
810 
811 /*
812  * dp_rx_construct_fraglist(): Construct a nbuf fraglist
813  * @peer: Pointer to the peer
814  * @head: Pointer to list of fragments
815  * @hdrsize: Size of the header to be pulled
816  *
817  * Construct a nbuf fraglist
818  *
819  * Returns: None
820  */
821 static void
822 dp_rx_construct_fraglist(struct dp_peer *peer,
823 		qdf_nbuf_t head, uint16_t hdrsize)
824 {
825 	qdf_nbuf_t msdu = qdf_nbuf_next(head);
826 	qdf_nbuf_t rx_nbuf = msdu;
827 	uint32_t len = 0;
828 
829 	while (msdu) {
830 		dp_rx_frag_pull_hdr(msdu, hdrsize);
831 		len += qdf_nbuf_len(msdu);
832 		msdu = qdf_nbuf_next(msdu);
833 	}
834 
835 	qdf_nbuf_append_ext_list(head, rx_nbuf, len);
836 	qdf_nbuf_set_next(head, NULL);
837 	qdf_nbuf_set_is_frag(head, 1);
838 
839 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
840 		  "%s: head len %d ext len %d data len %d ",
841 		  __func__,
842 		  (uint32_t)qdf_nbuf_len(head),
843 		  (uint32_t)qdf_nbuf_len(rx_nbuf),
844 		  (uint32_t)(head->data_len));
845 }
846 
847 /**
848  * dp_rx_defrag_err() - rx err handler
849  * @pdev: handle to pdev object
850  * @vdev_id: vdev id
851  * @peer_mac_addr: peer mac address
852  * @tid: TID
853  * @tsf32: TSF
854  * @err_type: error type
855  * @rx_frame: rx frame
856  * @pn: PN Number
857  * @key_id: key id
858  *
859  * This function handles rx error and send MIC error notification
860  *
861  * Return: None
862  */
863 static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
864 {
865 	struct ol_if_ops *tops = NULL;
866 	struct dp_pdev *pdev = vdev->pdev;
867 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
868 	uint8_t *orig_hdr;
869 	struct ieee80211_frame *wh;
870 
871 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
872 	wh = (struct ieee80211_frame *)orig_hdr;
873 
874 	tops = pdev->soc->cdp_soc.ol_ops;
875 	if (tops->rx_mic_error)
876 		tops->rx_mic_error(pdev->ctrl_pdev, vdev->vdev_id, wh);
877 }
878 
879 
880 /*
881  * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
882  * @nbuf: Pointer to the fragment buffer
883  * @hdrsize: Size of headers
884  *
885  * Transcap the fragment from 802.11 to 802.3
886  *
887  * Returns: None
888  */
889 static void
890 dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
891 {
892 	struct llc_snap_hdr_t *llchdr;
893 	struct ethernet_hdr_t *eth_hdr;
894 	uint8_t ether_type[2];
895 	uint16_t fc = 0;
896 	union dp_align_mac_addr mac_addr;
897 	uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
898 
899 	if (!rx_desc_info) {
900 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
901 			"%s: Memory alloc failed ! ", __func__);
902 		QDF_ASSERT(0);
903 		return;
904 	}
905 
906 	qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
907 
908 	llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
909 					RX_PKT_TLVS_LEN + hdrsize);
910 	qdf_mem_copy(ether_type, llchdr->ethertype, 2);
911 
912 	qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
913 				  sizeof(struct llc_snap_hdr_t) -
914 				  sizeof(struct ethernet_hdr_t)));
915 
916 	eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
917 
918 	if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
919 		fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
920 
921 	dp_debug("%s: frame control type: 0x%x", __func__, fc);
922 
923 	switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
924 	case IEEE80211_FC1_DIR_NODS:
925 		hal_rx_mpdu_get_addr1(rx_desc_info,
926 			&mac_addr.raw[0]);
927 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
928 			QDF_MAC_ADDR_SIZE);
929 		hal_rx_mpdu_get_addr2(rx_desc_info,
930 			&mac_addr.raw[0]);
931 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
932 			QDF_MAC_ADDR_SIZE);
933 		break;
934 	case IEEE80211_FC1_DIR_TODS:
935 		hal_rx_mpdu_get_addr3(rx_desc_info,
936 			&mac_addr.raw[0]);
937 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
938 			QDF_MAC_ADDR_SIZE);
939 		hal_rx_mpdu_get_addr2(rx_desc_info,
940 			&mac_addr.raw[0]);
941 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
942 			QDF_MAC_ADDR_SIZE);
943 		break;
944 	case IEEE80211_FC1_DIR_FROMDS:
945 		hal_rx_mpdu_get_addr1(rx_desc_info,
946 			&mac_addr.raw[0]);
947 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
948 			QDF_MAC_ADDR_SIZE);
949 		hal_rx_mpdu_get_addr3(rx_desc_info,
950 			&mac_addr.raw[0]);
951 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
952 			QDF_MAC_ADDR_SIZE);
953 		break;
954 
955 	case IEEE80211_FC1_DIR_DSTODS:
956 		hal_rx_mpdu_get_addr3(rx_desc_info,
957 			&mac_addr.raw[0]);
958 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
959 			QDF_MAC_ADDR_SIZE);
960 		hal_rx_mpdu_get_addr4(rx_desc_info,
961 			&mac_addr.raw[0]);
962 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
963 			QDF_MAC_ADDR_SIZE);
964 		break;
965 
966 	default:
967 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
968 		"%s: Unknown frame control type: 0x%x", __func__, fc);
969 	}
970 
971 	qdf_mem_copy(eth_hdr->ethertype, ether_type,
972 			sizeof(ether_type));
973 
974 	qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
975 	qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
976 	qdf_mem_free(rx_desc_info);
977 }
978 
979 /*
980  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
981  * @peer: Pointer to the peer
982  * @tid: Transmit Identifier
983  * @head: Buffer to be reinjected back
984  *
985  * Reinject the fragment chain back into REO
986  *
987  * Returns: QDF_STATUS
988  */
989  static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
990 					unsigned tid, qdf_nbuf_t head)
991 {
992 	struct dp_pdev *pdev = peer->vdev->pdev;
993 	struct dp_soc *soc = pdev->soc;
994 	struct hal_buf_info buf_info;
995 	void *link_desc_va;
996 	void *msdu0, *msdu_desc_info;
997 	void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
998 	void *dst_mpdu_desc_info, *dst_qdesc_addr;
999 	qdf_dma_addr_t paddr;
1000 	uint32_t nbuf_len, seq_no, dst_ind;
1001 	uint32_t *mpdu_wrd;
1002 	uint32_t ret, cookie;
1003 
1004 	void *dst_ring_desc =
1005 		peer->rx_tid[tid].dst_ring_desc;
1006 	void *hal_srng = soc->reo_reinject_ring.hal_srng;
1007 
1008 	ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
1009 	if (!ent_ring_desc) {
1010 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1011 			  "HAL src ring next entry NULL");
1012 		return QDF_STATUS_E_FAILURE;
1013 	}
1014 
1015 	hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
1016 
1017 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
1018 
1019 	qdf_assert(link_desc_va);
1020 
1021 	msdu0 = (uint8_t *)link_desc_va +
1022 		RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
1023 
1024 	nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
1025 
1026 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
1027 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
1028 			UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
1029 
1030 	/* msdu reconfig */
1031 	msdu_desc_info = (uint8_t *)msdu0 +
1032 		RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
1033 
1034 	dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
1035 
1036 	qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
1037 
1038 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1039 			FIRST_MSDU_IN_MPDU_FLAG, 1);
1040 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1041 			LAST_MSDU_IN_MPDU_FLAG, 1);
1042 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1043 			MSDU_CONTINUATION, 0x0);
1044 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1045 			REO_DESTINATION_INDICATION, dst_ind);
1046 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1047 			MSDU_LENGTH, nbuf_len);
1048 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1049 			SA_IS_VALID, 1);
1050 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1051 			DA_IS_VALID, 1);
1052 
1053 	/* change RX TLV's */
1054 	hal_rx_msdu_start_msdu_len_set(
1055 			qdf_nbuf_data(head), nbuf_len);
1056 
1057 	cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
1058 
1059 	/* map the nbuf before reinject it into HW */
1060 	ret = qdf_nbuf_map_single(soc->osdev, head,
1061 					QDF_DMA_FROM_DEVICE);
1062 
1063 	if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
1064 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1065 				"%s: nbuf map failed !", __func__);
1066 		return QDF_STATUS_E_FAILURE;
1067 	}
1068 
1069 	paddr = qdf_nbuf_get_frag_paddr(head, 0);
1070 
1071 	ret = check_x86_paddr(soc, &head, &paddr, pdev);
1072 
1073 	if (ret == QDF_STATUS_E_FAILURE) {
1074 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1075 				"%s: x86 check failed !", __func__);
1076 		return QDF_STATUS_E_FAILURE;
1077 	}
1078 
1079 	hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_WBM2SW_RBM);
1080 
1081 	/* Lets fill entrance ring now !!! */
1082 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
1083 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1084 		"HAL RING Access For REO entrance SRNG Failed: %pK",
1085 		hal_srng);
1086 
1087 		return QDF_STATUS_E_FAILURE;
1088 	}
1089 
1090 	paddr = (uint64_t)buf_info.paddr;
1091 	/* buf addr */
1092 	hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
1093 				     buf_info.sw_cookie,
1094 				     HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
1095 	/* mpdu desc info */
1096 	ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
1097 	RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
1098 
1099 	dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
1100 	REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
1101 
1102 	qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
1103 				sizeof(struct rx_mpdu_desc_info));
1104 	qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
1105 
1106 	mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
1107 	seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
1108 
1109 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1110 			MSDU_COUNT, 0x1);
1111 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1112 			MPDU_SEQUENCE_NUMBER, seq_no);
1113 
1114 	/* unset frag bit */
1115 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1116 			FRAGMENT_FLAG, 0x0);
1117 
1118 	/* set sa/da valid bits */
1119 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1120 			SA_IS_VALID, 0x1);
1121 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1122 			DA_IS_VALID, 0x1);
1123 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1124 			RAW_MPDU, 0x0);
1125 
1126 	/* qdesc addr */
1127 	ent_qdesc_addr = (uint8_t *)ent_ring_desc +
1128 		REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1129 
1130 	dst_qdesc_addr = (uint8_t *)dst_ring_desc +
1131 		REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1132 
1133 	qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
1134 
1135 	HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
1136 			REO_DESTINATION_INDICATION, dst_ind);
1137 
1138 	hal_srng_access_end(soc->hal_soc, hal_srng);
1139 
1140 	DP_STATS_INC(soc, rx.reo_reinject, 1);
1141 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1142 		  "%s: reinjection done !", __func__);
1143 	return QDF_STATUS_SUCCESS;
1144 }
1145 
1146 /*
1147  * dp_rx_defrag(): Defragment the fragment chain
1148  * @peer: Pointer to the peer
1149  * @tid: Transmit Identifier
1150  * @frag_list_head: Pointer to head list
1151  * @frag_list_tail: Pointer to tail list
1152  *
1153  * Defragment the fragment chain
1154  *
1155  * Returns: QDF_STATUS
1156  */
1157 static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
1158 			qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
1159 {
1160 	qdf_nbuf_t tmp_next, prev;
1161 	qdf_nbuf_t cur = frag_list_head, msdu;
1162 	uint32_t index, tkip_demic = 0;
1163 	uint16_t hdr_space;
1164 	uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
1165 	struct dp_vdev *vdev = peer->vdev;
1166 	struct dp_soc *soc = vdev->pdev->soc;
1167 	uint8_t status = 0;
1168 
1169 	hdr_space = dp_rx_defrag_hdrsize(cur);
1170 	index = hal_rx_msdu_is_wlan_mcast(cur) ?
1171 		dp_sec_mcast : dp_sec_ucast;
1172 
1173 	/* Remove FCS from all fragments */
1174 	while (cur) {
1175 		tmp_next = qdf_nbuf_next(cur);
1176 		qdf_nbuf_set_next(cur, NULL);
1177 		qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
1178 		prev = cur;
1179 		qdf_nbuf_set_next(cur, tmp_next);
1180 		cur = tmp_next;
1181 	}
1182 	cur = frag_list_head;
1183 
1184 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1185 		  "%s: index %d Security type: %d", __func__,
1186 		  index, peer->security[index].sec_type);
1187 
1188 	switch (peer->security[index].sec_type) {
1189 	case cdp_sec_type_tkip:
1190 		tkip_demic = 1;
1191 
1192 	case cdp_sec_type_tkip_nomic:
1193 		while (cur) {
1194 			tmp_next = qdf_nbuf_next(cur);
1195 			if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
1196 
1197 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1198 					QDF_TRACE_LEVEL_ERROR,
1199 					"dp_rx_defrag: TKIP decap failed");
1200 
1201 				return QDF_STATUS_E_DEFRAG_ERROR;
1202 			}
1203 			cur = tmp_next;
1204 		}
1205 
1206 		/* If success, increment header to be stripped later */
1207 		hdr_space += dp_f_tkip.ic_header;
1208 		break;
1209 
1210 	case cdp_sec_type_aes_ccmp:
1211 		while (cur) {
1212 			tmp_next = qdf_nbuf_next(cur);
1213 			if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
1214 
1215 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1216 					QDF_TRACE_LEVEL_ERROR,
1217 					"dp_rx_defrag: CCMP demic failed");
1218 
1219 				return QDF_STATUS_E_DEFRAG_ERROR;
1220 			}
1221 			if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
1222 
1223 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1224 					QDF_TRACE_LEVEL_ERROR,
1225 					"dp_rx_defrag: CCMP decap failed");
1226 
1227 				return QDF_STATUS_E_DEFRAG_ERROR;
1228 			}
1229 			cur = tmp_next;
1230 		}
1231 
1232 		/* If success, increment header to be stripped later */
1233 		hdr_space += dp_f_ccmp.ic_header;
1234 		break;
1235 
1236 	case cdp_sec_type_wep40:
1237 	case cdp_sec_type_wep104:
1238 	case cdp_sec_type_wep128:
1239 		while (cur) {
1240 			tmp_next = qdf_nbuf_next(cur);
1241 			if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
1242 
1243 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1244 					QDF_TRACE_LEVEL_ERROR,
1245 					"dp_rx_defrag: WEP decap failed");
1246 
1247 				return QDF_STATUS_E_DEFRAG_ERROR;
1248 			}
1249 			cur = tmp_next;
1250 		}
1251 
1252 		/* If success, increment header to be stripped later */
1253 		hdr_space += dp_f_wep.ic_header;
1254 		break;
1255 	default:
1256 		QDF_TRACE(QDF_MODULE_ID_TXRX,
1257 			QDF_TRACE_LEVEL_ERROR,
1258 			"dp_rx_defrag: Did not match any security type");
1259 		break;
1260 	}
1261 
1262 	if (tkip_demic) {
1263 		msdu = frag_list_head;
1264 		if (soc->cdp_soc.ol_ops->rx_frag_tkip_demic) {
1265 			status = soc->cdp_soc.ol_ops->rx_frag_tkip_demic(
1266 				(void *)peer->ctrl_peer, msdu, hdr_space);
1267 		} else {
1268 			qdf_mem_copy(key,
1269 				     &peer->security[index].michael_key[0],
1270 				IEEE80211_WEP_MICLEN);
1271 			status = dp_rx_defrag_tkip_demic(key, msdu,
1272 							 RX_PKT_TLVS_LEN +
1273 							 hdr_space);
1274 
1275 			if (status) {
1276 				dp_rx_defrag_err(vdev, frag_list_head);
1277 
1278 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1279 					  QDF_TRACE_LEVEL_ERROR,
1280 					  "%s: TKIP demic failed status %d",
1281 					  __func__, status);
1282 
1283 				return QDF_STATUS_E_DEFRAG_ERROR;
1284 			}
1285 		}
1286 	}
1287 
1288 	/* Convert the header to 802.3 header */
1289 	dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
1290 	dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
1291 
1292 	return QDF_STATUS_SUCCESS;
1293 }
1294 
1295 /*
1296  * dp_rx_defrag_cleanup(): Clean up activities
1297  * @peer: Pointer to the peer
1298  * @tid: Transmit Identifier
1299  *
1300  * Returns: None
1301  */
1302 void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
1303 {
1304 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1305 				peer->rx_tid[tid].array;
1306 
1307 	if (!rx_reorder_array_elem) {
1308 		/*
1309 		 * if this condition is hit then somebody
1310 		 * must have reset this pointer to NULL.
1311 		 * array pointer usually points to base variable
1312 		 * of TID queue structure: "struct dp_rx_tid"
1313 		 */
1314 		QDF_ASSERT(0);
1315 		return;
1316 	}
1317 	/* Free up nbufs */
1318 	dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1319 
1320 	/* Free up saved ring descriptors */
1321 	dp_rx_clear_saved_desc_info(peer, tid);
1322 
1323 	rx_reorder_array_elem->head = NULL;
1324 	rx_reorder_array_elem->tail = NULL;
1325 	peer->rx_tid[tid].defrag_timeout_ms = 0;
1326 	peer->rx_tid[tid].curr_frag_num = 0;
1327 	peer->rx_tid[tid].curr_seq_num = 0;
1328 	peer->rx_tid[tid].head_frag_desc = NULL;
1329 }
1330 
1331 /*
1332  * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
1333  * @ring_desc: Pointer to the dst ring descriptor
1334  * @peer: Pointer to the peer
1335  * @tid: Transmit Identifier
1336  *
1337  * Returns: None
1338  */
1339 static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
1340 	struct dp_rx_desc *rx_desc, struct dp_peer *peer, unsigned tid)
1341 {
1342 	void *dst_ring_desc = qdf_mem_malloc(
1343 			sizeof(struct reo_destination_ring));
1344 
1345 	if (!dst_ring_desc) {
1346 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1347 			"%s: Memory alloc failed !", __func__);
1348 		QDF_ASSERT(0);
1349 		return QDF_STATUS_E_NOMEM;
1350 	}
1351 
1352 	qdf_mem_copy(dst_ring_desc, ring_desc,
1353 		       sizeof(struct reo_destination_ring));
1354 
1355 	peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
1356 	peer->rx_tid[tid].head_frag_desc = rx_desc;
1357 
1358 	return QDF_STATUS_SUCCESS;
1359 }
1360 
1361 /*
1362  * dp_rx_defrag_store_fragment(): Store incoming fragments
1363  * @soc: Pointer to the SOC data structure
1364  * @ring_desc: Pointer to the ring descriptor
1365  * @mpdu_desc_info: MPDU descriptor info
1366  * @tid: Traffic Identifier
1367  * @rx_desc: Pointer to rx descriptor
1368  * @rx_bfs: Number of bfs consumed
1369  *
1370  * Returns: QDF_STATUS
1371  */
1372 static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
1373 			void *ring_desc,
1374 			union dp_rx_desc_list_elem_t **head,
1375 			union dp_rx_desc_list_elem_t **tail,
1376 			struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1377 			unsigned tid, struct dp_rx_desc *rx_desc,
1378 			uint32_t *rx_bfs)
1379 {
1380 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1381 	struct dp_pdev *pdev;
1382 	struct dp_peer *peer;
1383 	uint16_t peer_id;
1384 	uint8_t fragno, more_frag, all_frag_present = 0;
1385 	uint16_t rxseq = mpdu_desc_info->mpdu_seq;
1386 	QDF_STATUS status;
1387 	struct dp_rx_tid *rx_tid;
1388 	uint8_t mpdu_sequence_control_valid;
1389 	uint8_t mpdu_frame_control_valid;
1390 	qdf_nbuf_t frag = rx_desc->nbuf;
1391 
1392 	/* Check if the packet is from a valid peer */
1393 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1394 					mpdu_desc_info->peer_meta_data);
1395 	peer = dp_peer_find_by_id(soc, peer_id);
1396 
1397 	if (!peer) {
1398 		/* We should not receive anything from unknown peer
1399 		 * however, that might happen while we are in the monitor mode.
1400 		 * We don't need to handle that here
1401 		 */
1402 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1403 			"Unknown peer, dropping the fragment");
1404 
1405 		goto discard_frag;
1406 	}
1407 
1408 	pdev = peer->vdev->pdev;
1409 	rx_tid = &peer->rx_tid[tid];
1410 
1411 	mpdu_sequence_control_valid =
1412 		hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
1413 
1414 	/* Invalid MPDU sequence control field, MPDU is of no use */
1415 	if (!mpdu_sequence_control_valid) {
1416 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1417 			"Invalid MPDU seq control field, dropping MPDU");
1418 
1419 		qdf_assert(0);
1420 		goto discard_frag;
1421 	}
1422 
1423 	mpdu_frame_control_valid =
1424 		hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
1425 
1426 	/* Invalid frame control field */
1427 	if (!mpdu_frame_control_valid) {
1428 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1429 			"Invalid frame control field, dropping MPDU");
1430 
1431 		qdf_assert(0);
1432 		goto discard_frag;
1433 	}
1434 
1435 	/* Current mpdu sequence */
1436 	more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
1437 
1438 	/* HW does not populate the fragment number as of now
1439 	 * need to get from the 802.11 header
1440 	 */
1441 	fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
1442 
1443 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1444 	if (!rx_reorder_array_elem) {
1445 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1446 			  "Rcvd Fragmented pkt before peer_tid is setup");
1447 		goto discard_frag;
1448 	}
1449 
1450 	/*
1451 	 * !more_frag: no more fragments to be delivered
1452 	 * !frag_no: packet is not fragmented
1453 	 * !rx_reorder_array_elem->head: no saved fragments so far
1454 	 */
1455 	if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
1456 		/* We should not get into this situation here.
1457 		 * It means an unfragmented packet with fragment flag
1458 		 * is delivered over the REO exception ring.
1459 		 * Typically it follows normal rx path.
1460 		 */
1461 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1462 			"Rcvd unfragmented pkt on REO Err srng, dropping");
1463 
1464 		qdf_assert(0);
1465 		goto discard_frag;
1466 	}
1467 
1468 	/* Check if the fragment is for the same sequence or a different one */
1469 	if (rx_reorder_array_elem->head) {
1470 		if (rxseq != rx_tid->curr_seq_num) {
1471 
1472 			/* Drop stored fragments if out of sequence
1473 			 * fragment is received
1474 			 */
1475 			dp_rx_reorder_flush_frag(peer, tid);
1476 
1477 			DP_STATS_INC(soc, rx.rx_frag_err, 1);
1478 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1479 				"%s mismatch, dropping earlier sequence ",
1480 				(rxseq == rx_tid->curr_seq_num)
1481 				? "address"
1482 				: "seq number");
1483 
1484 			/*
1485 			 * The sequence number for this fragment becomes the
1486 			 * new sequence number to be processed
1487 			 */
1488 			rx_tid->curr_seq_num = rxseq;
1489 		}
1490 	} else {
1491 		/* Start of a new sequence */
1492 		dp_rx_defrag_cleanup(peer, tid);
1493 		rx_tid->curr_seq_num = rxseq;
1494 	}
1495 
1496 	/*
1497 	 * If the earlier sequence was dropped, this will be the fresh start.
1498 	 * Else, continue with next fragment in a given sequence
1499 	 */
1500 	status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
1501 			&rx_reorder_array_elem->tail, frag,
1502 			&all_frag_present);
1503 
1504 	/*
1505 	 * Currently, we can have only 6 MSDUs per-MPDU, if the current
1506 	 * packet sequence has more than 6 MSDUs for some reason, we will
1507 	 * have to use the next MSDU link descriptor and chain them together
1508 	 * before reinjection
1509 	 */
1510 	if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
1511 			(rx_reorder_array_elem->head == frag)) {
1512 
1513 		qdf_assert_always(ring_desc);
1514 		status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
1515 					rx_desc, peer, tid);
1516 
1517 		if (status != QDF_STATUS_SUCCESS) {
1518 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1519 				"%s: Unable to store ring desc !", __func__);
1520 			goto discard_frag;
1521 		}
1522 	} else {
1523 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1524 		*rx_bfs = 1;
1525 
1526 		/* Return the non-head link desc */
1527 		if (ring_desc &&
1528 		    dp_rx_link_desc_return(soc, ring_desc,
1529 					   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1530 		    QDF_STATUS_SUCCESS)
1531 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1532 				  "%s: Failed to return link desc", __func__);
1533 
1534 	}
1535 
1536 	if (pdev->soc->rx.flags.defrag_timeout_check)
1537 		dp_rx_defrag_waitlist_remove(peer, tid);
1538 
1539 	/* Yet to receive more fragments for this sequence number */
1540 	if (!all_frag_present) {
1541 		uint32_t now_ms =
1542 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1543 
1544 		peer->rx_tid[tid].defrag_timeout_ms =
1545 			now_ms + pdev->soc->rx.defrag.timeout_ms;
1546 
1547 		dp_rx_defrag_waitlist_add(peer, tid);
1548 		dp_peer_unref_del_find_by_id(peer);
1549 
1550 		return QDF_STATUS_SUCCESS;
1551 	}
1552 
1553 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1554 		  "All fragments received for sequence: %d", rxseq);
1555 
1556 	/* Process the fragments */
1557 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1558 		rx_reorder_array_elem->tail);
1559 	if (QDF_IS_STATUS_ERROR(status)) {
1560 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1561 			"Fragment processing failed");
1562 
1563 		dp_rx_add_to_free_desc_list(head, tail,
1564 				peer->rx_tid[tid].head_frag_desc);
1565 		*rx_bfs = 1;
1566 
1567 		if (dp_rx_link_desc_return(soc,
1568 					peer->rx_tid[tid].dst_ring_desc,
1569 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1570 				QDF_STATUS_SUCCESS)
1571 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1572 					"%s: Failed to return link desc",
1573 					__func__);
1574 		dp_rx_defrag_cleanup(peer, tid);
1575 		goto end;
1576 	}
1577 
1578 	/* Re-inject the fragments back to REO for further processing */
1579 	status = dp_rx_defrag_reo_reinject(peer, tid,
1580 			rx_reorder_array_elem->head);
1581 	if (QDF_IS_STATUS_SUCCESS(status)) {
1582 		rx_reorder_array_elem->head = NULL;
1583 		rx_reorder_array_elem->tail = NULL;
1584 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1585 			  "Fragmented sequence successfully reinjected");
1586 	} else {
1587 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1588 		"Fragmented sequence reinjection failed");
1589 		dp_rx_return_head_frag_desc(peer, tid);
1590 	}
1591 
1592 	dp_rx_defrag_cleanup(peer, tid);
1593 
1594 	dp_peer_unref_del_find_by_id(peer);
1595 
1596 	return QDF_STATUS_SUCCESS;
1597 
1598 discard_frag:
1599 	qdf_nbuf_free(frag);
1600 	dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1601 	if (dp_rx_link_desc_return(soc, ring_desc,
1602 				   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1603 	    QDF_STATUS_SUCCESS)
1604 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1605 			  "%s: Failed to return link desc", __func__);
1606 	*rx_bfs = 1;
1607 
1608 end:
1609 	if (peer)
1610 		dp_peer_unref_del_find_by_id(peer);
1611 
1612 	DP_STATS_INC(soc, rx.rx_frag_err, 1);
1613 	return QDF_STATUS_E_DEFRAG_ERROR;
1614 }
1615 
1616 /**
1617  * dp_rx_frag_handle() - Handles fragmented Rx frames
1618  *
1619  * @soc: core txrx main context
1620  * @ring_desc: opaque pointer to the REO error ring descriptor
1621  * @mpdu_desc_info: MPDU descriptor information from ring descriptor
1622  * @head: head of the local descriptor free-list
1623  * @tail: tail of the local descriptor free-list
1624  * @quota: No. of units (packets) that can be serviced in one shot.
1625  *
1626  * This function implements RX 802.11 fragmentation handling
1627  * The handling is mostly same as legacy fragmentation handling.
1628  * If required, this function can re-inject the frames back to
1629  * REO ring (with proper setting to by-pass fragmentation check
1630  * but use duplicate detection / re-ordering and routing these frames
1631  * to a different core.
1632  *
1633  * Return: uint32_t: No. of elements processed
1634  */
1635 uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
1636 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1637 			   struct dp_rx_desc *rx_desc,
1638 			   uint8_t *mac_id,
1639 			   uint32_t quota)
1640 {
1641 	uint32_t rx_bufs_used = 0;
1642 	qdf_nbuf_t msdu = NULL;
1643 	uint32_t tid, msdu_len;
1644 	int rx_bfs = 0;
1645 	struct dp_pdev *pdev;
1646 	QDF_STATUS status = QDF_STATUS_SUCCESS;
1647 
1648 	qdf_assert(soc);
1649 	qdf_assert(mpdu_desc_info);
1650 	qdf_assert(rx_desc);
1651 
1652 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1653 		"Number of MSDUs to process, num_msdus: %d",
1654 		mpdu_desc_info->msdu_count);
1655 
1656 
1657 	if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
1658 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1659 			"Not sufficient MSDUs to process");
1660 		return rx_bufs_used;
1661 	}
1662 
1663 	/* all buffers in MSDU link belong to same pdev */
1664 	pdev = soc->pdev_list[rx_desc->pool_id];
1665 	*mac_id = rx_desc->pool_id;
1666 
1667 	msdu = rx_desc->nbuf;
1668 
1669 	qdf_nbuf_unmap_single(soc->osdev, msdu,	QDF_DMA_FROM_DEVICE);
1670 
1671 	rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
1672 
1673 	msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
1674 
1675 	qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
1676 	qdf_nbuf_append_ext_list(msdu, NULL, 0);
1677 
1678 	tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
1679 
1680 	/* Process fragment-by-fragment */
1681 	status = dp_rx_defrag_store_fragment(soc, ring_desc,
1682 					     &pdev->free_list_head,
1683 					     &pdev->free_list_tail,
1684 					     mpdu_desc_info,
1685 					     tid, rx_desc, &rx_bfs);
1686 
1687 	if (rx_bfs)
1688 		rx_bufs_used++;
1689 
1690 	if (!QDF_IS_STATUS_SUCCESS(status))
1691 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1692 			  "Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
1693 			  mpdu_desc_info->mpdu_seq,
1694 			  mpdu_desc_info->msdu_count,
1695 			  mpdu_desc_info->mpdu_flags);
1696 
1697 	return rx_bufs_used;
1698 }
1699 
1700 QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
1701 				      struct dp_peer *peer, uint16_t tid,
1702 		uint16_t rxseq, qdf_nbuf_t nbuf)
1703 {
1704 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1705 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1706 	uint8_t all_frag_present;
1707 	uint32_t msdu_len;
1708 	QDF_STATUS status;
1709 
1710 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1711 
1712 	if (rx_reorder_array_elem->head &&
1713 	    rxseq != rx_tid->curr_seq_num) {
1714 		/* Drop stored fragments if out of sequence
1715 		 * fragment is received
1716 		 */
1717 		dp_rx_reorder_flush_frag(peer, tid);
1718 
1719 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1720 			  "%s: No list found for TID %d Seq# %d",
1721 				__func__, tid, rxseq);
1722 		qdf_nbuf_free(nbuf);
1723 		goto fail;
1724 	}
1725 
1726 	msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
1727 
1728 	qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
1729 
1730 	status = dp_rx_defrag_fraglist_insert(peer, tid,
1731 					      &rx_reorder_array_elem->head,
1732 			&rx_reorder_array_elem->tail, nbuf,
1733 			&all_frag_present);
1734 
1735 	if (QDF_IS_STATUS_ERROR(status)) {
1736 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1737 			  "%s Fragment insert failed", __func__);
1738 
1739 		goto fail;
1740 	}
1741 
1742 	if (soc->rx.flags.defrag_timeout_check)
1743 		dp_rx_defrag_waitlist_remove(peer, tid);
1744 
1745 	if (!all_frag_present) {
1746 		uint32_t now_ms =
1747 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1748 
1749 		peer->rx_tid[tid].defrag_timeout_ms =
1750 			now_ms + soc->rx.defrag.timeout_ms;
1751 
1752 		dp_rx_defrag_waitlist_add(peer, tid);
1753 
1754 		return QDF_STATUS_SUCCESS;
1755 	}
1756 
1757 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1758 			      rx_reorder_array_elem->tail);
1759 
1760 	if (QDF_IS_STATUS_ERROR(status)) {
1761 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1762 			  "%s Fragment processing failed", __func__);
1763 
1764 		dp_rx_return_head_frag_desc(peer, tid);
1765 		dp_rx_defrag_cleanup(peer, tid);
1766 
1767 		goto fail;
1768 	}
1769 
1770 	/* Re-inject the fragments back to REO for further processing */
1771 	status = dp_rx_defrag_reo_reinject(peer, tid,
1772 					   rx_reorder_array_elem->head);
1773 	if (QDF_IS_STATUS_SUCCESS(status)) {
1774 		rx_reorder_array_elem->head = NULL;
1775 		rx_reorder_array_elem->tail = NULL;
1776 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1777 			  "%s: Frag seq successfully reinjected",
1778 			__func__);
1779 	} else {
1780 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1781 			  "%s: Frag seq reinjection failed", __func__);
1782 		dp_rx_return_head_frag_desc(peer, tid);
1783 	}
1784 
1785 	dp_rx_defrag_cleanup(peer, tid);
1786 	return QDF_STATUS_SUCCESS;
1787 
1788 fail:
1789 	return QDF_STATUS_E_DEFRAG_ERROR;
1790 }
1791