xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx_defrag.c (revision d0c05845839e5f2ba5a8dcebe0cd3e4cd4e8dfcf)
1 /*
2  * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "hal_hw_headers.h"
21 #ifndef RX_DEFRAG_DO_NOT_REINJECT
22 #ifndef DP_BE_WAR
23 #include "li/hal_li_rx.h"
24 #endif
25 #endif
26 #include "dp_types.h"
27 #include "dp_rx.h"
28 #include "dp_peer.h"
29 #include "hal_api.h"
30 #include "qdf_trace.h"
31 #include "qdf_nbuf.h"
32 #include "dp_internal.h"
33 #include "dp_rx_defrag.h"
34 #include <enet.h>	/* LLC_SNAP_HDR_LEN */
35 #include "dp_rx_defrag.h"
36 #include "dp_ipa.h"
37 #include "dp_rx_buffer_pool.h"
38 
39 const struct dp_rx_defrag_cipher dp_f_ccmp = {
40 	"AES-CCM",
41 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
42 	IEEE80211_WEP_MICLEN,
43 	0,
44 };
45 
46 const struct dp_rx_defrag_cipher dp_f_tkip = {
47 	"TKIP",
48 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
49 	IEEE80211_WEP_CRCLEN,
50 	IEEE80211_WEP_MICLEN,
51 };
52 
53 const struct dp_rx_defrag_cipher dp_f_wep = {
54 	"WEP",
55 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
56 	IEEE80211_WEP_CRCLEN,
57 	0,
58 };
59 
60 /*
61  * The header and mic length are same for both
62  * GCMP-128 and GCMP-256.
63  */
64 const struct dp_rx_defrag_cipher dp_f_gcmp = {
65 	"AES-GCMP",
66 	WLAN_IEEE80211_GCMP_HEADERLEN,
67 	WLAN_IEEE80211_GCMP_MICLEN,
68 	WLAN_IEEE80211_GCMP_MICLEN,
69 };
70 
71 /*
72  * dp_rx_defrag_frames_free(): Free fragment chain
73  * @frames: Fragment chain
74  *
75  * Iterates through the fragment chain and frees them
76  * Returns: None
77  */
78 static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
79 {
80 	qdf_nbuf_t next, frag = frames;
81 
82 	while (frag) {
83 		next = qdf_nbuf_next(frag);
84 		dp_rx_nbuf_free(frag);
85 		frag = next;
86 	}
87 }
88 
89 /*
90  * dp_rx_clear_saved_desc_info(): Clears descriptor info
91  * @txrx peer: Pointer to the peer data structure
92  * @tid: Transmit ID (TID)
93  *
94  * Saves MPDU descriptor info and MSDU link pointer from REO
95  * ring descriptor. The cache is created per peer, per TID
96  *
97  * Returns: None
98  */
99 static void dp_rx_clear_saved_desc_info(struct dp_txrx_peer *txrx_peer,
100 					unsigned int tid)
101 {
102 	if (txrx_peer->rx_tid[tid].dst_ring_desc)
103 		qdf_mem_free(txrx_peer->rx_tid[tid].dst_ring_desc);
104 
105 	txrx_peer->rx_tid[tid].dst_ring_desc = NULL;
106 	txrx_peer->rx_tid[tid].head_frag_desc = NULL;
107 }
108 
109 static void dp_rx_return_head_frag_desc(struct dp_txrx_peer *txrx_peer,
110 					unsigned int tid)
111 {
112 	struct dp_soc *soc;
113 	struct dp_pdev *pdev;
114 	struct dp_srng *dp_rxdma_srng;
115 	struct rx_desc_pool *rx_desc_pool;
116 	union dp_rx_desc_list_elem_t *head = NULL;
117 	union dp_rx_desc_list_elem_t *tail = NULL;
118 	uint8_t pool_id;
119 
120 	pdev = txrx_peer->vdev->pdev;
121 	soc = pdev->soc;
122 
123 	if (txrx_peer->rx_tid[tid].head_frag_desc) {
124 		pool_id = txrx_peer->rx_tid[tid].head_frag_desc->pool_id;
125 		dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
126 		rx_desc_pool = &soc->rx_desc_buf[pool_id];
127 
128 		dp_rx_add_to_free_desc_list(&head, &tail,
129 					    txrx_peer->rx_tid[tid].head_frag_desc);
130 		dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
131 					1, &head, &tail);
132 	}
133 
134 	if (txrx_peer->rx_tid[tid].dst_ring_desc) {
135 		if (dp_rx_link_desc_return(soc,
136 					   txrx_peer->rx_tid[tid].dst_ring_desc,
137 					   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
138 		    QDF_STATUS_SUCCESS)
139 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
140 				  "%s: Failed to return link desc", __func__);
141 	}
142 }
143 
144 /*
145  * dp_rx_reorder_flush_frag(): Flush the frag list
146  * @txrx_peer: Pointer to the peer data structure
147  * @tid: Transmit ID (TID)
148  *
149  * Flush the per-TID frag list
150  *
151  * Returns: None
152  */
153 void dp_rx_reorder_flush_frag(struct dp_txrx_peer *txrx_peer,
154 			      unsigned int tid)
155 {
156 	dp_info_rl("Flushing TID %d", tid);
157 
158 	if (!txrx_peer) {
159 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
160 					"%s: NULL peer", __func__);
161 		return;
162 	}
163 
164 	dp_rx_return_head_frag_desc(txrx_peer, tid);
165 	dp_rx_defrag_cleanup(txrx_peer, tid);
166 }
167 
168 /*
169  * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
170  * @soc: DP SOC
171  *
172  * Flush fragments of all waitlisted TID's
173  *
174  * Returns: None
175  */
176 void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
177 {
178 	struct dp_rx_tid_defrag *waitlist_elem = NULL;
179 	struct dp_rx_tid_defrag *tmp;
180 	uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
181 	TAILQ_HEAD(, dp_rx_tid_defrag) temp_list;
182 	dp_txrx_ref_handle txrx_ref_handle = NULL;
183 
184 	TAILQ_INIT(&temp_list);
185 
186 	dp_debug("Current time  %u", now_ms);
187 
188 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
189 	TAILQ_FOREACH_SAFE(waitlist_elem, &soc->rx.defrag.waitlist,
190 			   defrag_waitlist_elem, tmp) {
191 		uint32_t tid;
192 
193 		if (waitlist_elem->defrag_timeout_ms > now_ms)
194 			break;
195 
196 		tid = waitlist_elem->tid;
197 		if (tid >= DP_MAX_TIDS) {
198 			qdf_assert(0);
199 			continue;
200 		}
201 
202 		TAILQ_REMOVE(&soc->rx.defrag.waitlist, waitlist_elem,
203 			     defrag_waitlist_elem);
204 		DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
205 
206 		/* Move to temp list and clean-up later */
207 		TAILQ_INSERT_TAIL(&temp_list, waitlist_elem,
208 				  defrag_waitlist_elem);
209 	}
210 	if (waitlist_elem) {
211 		soc->rx.defrag.next_flush_ms =
212 			waitlist_elem->defrag_timeout_ms;
213 	} else {
214 		soc->rx.defrag.next_flush_ms =
215 			now_ms + soc->rx.defrag.timeout_ms;
216 	}
217 
218 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
219 
220 	TAILQ_FOREACH_SAFE(waitlist_elem, &temp_list,
221 			   defrag_waitlist_elem, tmp) {
222 		struct dp_txrx_peer *txrx_peer, *temp_peer = NULL;
223 
224 		qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
225 		TAILQ_REMOVE(&temp_list, waitlist_elem,
226 			     defrag_waitlist_elem);
227 		/* get address of current peer */
228 		txrx_peer = waitlist_elem->defrag_peer;
229 		qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
230 
231 		temp_peer = dp_txrx_peer_get_ref_by_id(soc, txrx_peer->peer_id,
232 						       &txrx_ref_handle,
233 						       DP_MOD_ID_RX_ERR);
234 		if (temp_peer == txrx_peer) {
235 			qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
236 			dp_rx_reorder_flush_frag(txrx_peer, waitlist_elem->tid);
237 			qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
238 		}
239 
240 		if (temp_peer)
241 			dp_txrx_peer_unref_delete(txrx_ref_handle,
242 						  DP_MOD_ID_RX_ERR);
243 
244 	}
245 }
246 
247 /*
248  * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
249  * @txrx_peer: Pointer to the peer data structure
250  * @tid: Transmit ID (TID)
251  *
252  * Appends per-tid fragments to global fragment wait list
253  *
254  * Returns: None
255  */
256 static void dp_rx_defrag_waitlist_add(struct dp_txrx_peer *txrx_peer,
257 				      unsigned int tid)
258 {
259 	struct dp_soc *psoc = txrx_peer->vdev->pdev->soc;
260 	struct dp_rx_tid_defrag *waitlist_elem = &txrx_peer->rx_tid[tid];
261 
262 	dp_debug("Adding TID %u to waitlist for peer %pK with peer_id = %d ",
263 		 tid, txrx_peer, txrx_peer->peer_id);
264 
265 	/* TODO: use LIST macros instead of TAIL macros */
266 	qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
267 	if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
268 		psoc->rx.defrag.next_flush_ms =
269 			waitlist_elem->defrag_timeout_ms;
270 
271 	TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, waitlist_elem,
272 			  defrag_waitlist_elem);
273 	DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
274 	qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
275 }
276 
277 /*
278  * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
279  * @txrx peer: Pointer to the peer data structure
280  * @tid: Transmit ID (TID)
281  *
282  * Remove fragments from waitlist
283  *
284  * Returns: None
285  */
286 void dp_rx_defrag_waitlist_remove(struct dp_txrx_peer *txrx_peer,
287 				  unsigned int tid)
288 {
289 	struct dp_pdev *pdev = txrx_peer->vdev->pdev;
290 	struct dp_soc *soc = pdev->soc;
291 	struct dp_rx_tid_defrag *waitlist_elm;
292 	struct dp_rx_tid_defrag *tmp;
293 
294 	dp_debug("Removing TID %u to waitlist for peer %pK peer_id = %d ",
295 		 tid, txrx_peer, txrx_peer->peer_id);
296 
297 	if (tid >= DP_MAX_TIDS) {
298 		dp_err("TID out of bounds: %d", tid);
299 		qdf_assert_always(0);
300 	}
301 
302 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
303 	TAILQ_FOREACH_SAFE(waitlist_elm, &soc->rx.defrag.waitlist,
304 			   defrag_waitlist_elem, tmp) {
305 		struct dp_txrx_peer *peer_on_waitlist;
306 
307 		/* get address of current peer */
308 		peer_on_waitlist = waitlist_elm->defrag_peer;
309 
310 		/* Ensure it is TID for same peer */
311 		if (peer_on_waitlist == txrx_peer && waitlist_elm->tid == tid) {
312 			TAILQ_REMOVE(&soc->rx.defrag.waitlist,
313 				     waitlist_elm, defrag_waitlist_elem);
314 			DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
315 		}
316 	}
317 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
318 }
319 
320 /*
321  * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
322  * @txrx_peer: Pointer to the peer data structure
323  * @tid: Transmit ID (TID)
324  * @head_addr: Pointer to head list
325  * @tail_addr: Pointer to tail list
326  * @frag: Incoming fragment
327  * @all_frag_present: Flag to indicate whether all fragments are received
328  *
329  * Build a per-tid, per-sequence fragment list.
330  *
331  * Returns: Success, if inserted
332  */
333 static QDF_STATUS
334 dp_rx_defrag_fraglist_insert(struct dp_txrx_peer *txrx_peer, unsigned int tid,
335 			     qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr,
336 			     qdf_nbuf_t frag, uint8_t *all_frag_present)
337 {
338 	struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
339 	qdf_nbuf_t next;
340 	qdf_nbuf_t prev = NULL;
341 	qdf_nbuf_t cur;
342 	uint16_t head_fragno, cur_fragno, next_fragno;
343 	uint8_t last_morefrag = 1, count = 0;
344 	struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
345 	uint8_t *rx_desc_info;
346 
347 	qdf_assert(frag);
348 	qdf_assert(head_addr);
349 	qdf_assert(tail_addr);
350 
351 	*all_frag_present = 0;
352 	rx_desc_info = qdf_nbuf_data(frag);
353 	cur_fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc_info);
354 
355 	dp_debug("cur_fragno %d\n", cur_fragno);
356 	/* If this is the first fragment */
357 	if (!(*head_addr)) {
358 		*head_addr = *tail_addr = frag;
359 		qdf_nbuf_set_next(*tail_addr, NULL);
360 		rx_tid->curr_frag_num = cur_fragno;
361 
362 		goto insert_done;
363 	}
364 
365 	/* In sequence fragment */
366 	if (cur_fragno > rx_tid->curr_frag_num) {
367 		qdf_nbuf_set_next(*tail_addr, frag);
368 		*tail_addr = frag;
369 		qdf_nbuf_set_next(*tail_addr, NULL);
370 		rx_tid->curr_frag_num = cur_fragno;
371 	} else {
372 		/* Out of sequence fragment */
373 		cur = *head_addr;
374 		rx_desc_info = qdf_nbuf_data(cur);
375 		head_fragno = dp_rx_frag_get_mpdu_frag_number(soc,
376 							      rx_desc_info);
377 
378 		if (cur_fragno == head_fragno) {
379 			dp_rx_nbuf_free(frag);
380 			goto insert_fail;
381 		} else if (head_fragno > cur_fragno) {
382 			qdf_nbuf_set_next(frag, cur);
383 			cur = frag;
384 			*head_addr = frag; /* head pointer to be updated */
385 		} else {
386 			while ((cur_fragno > head_fragno) && cur) {
387 				prev = cur;
388 				cur = qdf_nbuf_next(cur);
389 				if (cur) {
390 					rx_desc_info = qdf_nbuf_data(cur);
391 					head_fragno =
392 						dp_rx_frag_get_mpdu_frag_number(
393 								soc,
394 								rx_desc_info);
395 				}
396 			}
397 
398 			if (cur_fragno == head_fragno) {
399 				dp_rx_nbuf_free(frag);
400 				goto insert_fail;
401 			}
402 
403 			qdf_nbuf_set_next(prev, frag);
404 			qdf_nbuf_set_next(frag, cur);
405 		}
406 	}
407 
408 	next = qdf_nbuf_next(*head_addr);
409 
410 	rx_desc_info = qdf_nbuf_data(*tail_addr);
411 	last_morefrag = dp_rx_frag_get_more_frag_bit(soc, rx_desc_info);
412 
413 	/* TODO: optimize the loop */
414 	if (!last_morefrag) {
415 		/* Check if all fragments are present */
416 		do {
417 			rx_desc_info = qdf_nbuf_data(next);
418 			next_fragno =
419 				dp_rx_frag_get_mpdu_frag_number(soc,
420 								rx_desc_info);
421 			count++;
422 
423 			if (next_fragno != count)
424 				break;
425 
426 			next = qdf_nbuf_next(next);
427 		} while (next);
428 
429 		if (!next) {
430 			*all_frag_present = 1;
431 			return QDF_STATUS_SUCCESS;
432 		} else {
433 			/* revisit */
434 		}
435 	}
436 
437 insert_done:
438 	return QDF_STATUS_SUCCESS;
439 
440 insert_fail:
441 	return QDF_STATUS_E_FAILURE;
442 }
443 
444 
445 /*
446  * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
447  * @msdu: Pointer to the fragment
448  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
449  *
450  * decap tkip encrypted fragment
451  *
452  * Returns: QDF_STATUS
453  */
454 static QDF_STATUS
455 dp_rx_defrag_tkip_decap(struct dp_soc *soc,
456 			qdf_nbuf_t msdu, uint16_t hdrlen)
457 {
458 	uint8_t *ivp, *orig_hdr;
459 	int rx_desc_len = soc->rx_pkt_tlv_size;
460 
461 	/* start of 802.11 header info */
462 	orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
463 
464 	/* TKIP header is located post 802.11 header */
465 	ivp = orig_hdr + hdrlen;
466 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
467 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
468 			"IEEE80211_WEP_EXTIV is missing in TKIP fragment");
469 		return QDF_STATUS_E_DEFRAG_ERROR;
470 	}
471 
472 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
473 
474 	return QDF_STATUS_SUCCESS;
475 }
476 
477 /*
478  * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
479  * @nbuf: Pointer to the fragment buffer
480  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
481  *
482  * Remove MIC information from CCMP fragment
483  *
484  * Returns: QDF_STATUS
485  */
486 static QDF_STATUS
487 dp_rx_defrag_ccmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
488 {
489 	uint8_t *ivp, *orig_hdr;
490 	int rx_desc_len = soc->rx_pkt_tlv_size;
491 
492 	/* start of the 802.11 header */
493 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
494 
495 	/* CCMP header is located after 802.11 header */
496 	ivp = orig_hdr + hdrlen;
497 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
498 		return QDF_STATUS_E_DEFRAG_ERROR;
499 
500 	qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
501 
502 	return QDF_STATUS_SUCCESS;
503 }
504 
505 /*
506  * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
507  * @nbuf: Pointer to the fragment
508  * @hdrlen: length of the header information
509  *
510  * decap CCMP encrypted fragment
511  *
512  * Returns: QDF_STATUS
513  */
514 static QDF_STATUS
515 dp_rx_defrag_ccmp_decap(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
516 {
517 	uint8_t *ivp, *origHdr;
518 	int rx_desc_len = soc->rx_pkt_tlv_size;
519 
520 	origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
521 	ivp = origHdr + hdrlen;
522 
523 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
524 		return QDF_STATUS_E_DEFRAG_ERROR;
525 
526 	qdf_mem_move(nbuf->data + dp_f_ccmp.ic_header, nbuf->data,
527 		     rx_desc_len + hdrlen);
528 	qdf_nbuf_pull_head(nbuf, dp_f_ccmp.ic_header);
529 
530 	return QDF_STATUS_SUCCESS;
531 }
532 
533 /*
534  * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
535  * @msdu: Pointer to the fragment
536  * @hdrlen: length of the header information
537  *
538  * decap WEP encrypted fragment
539  *
540  * Returns: QDF_STATUS
541  */
542 static QDF_STATUS
543 dp_rx_defrag_wep_decap(struct dp_soc *soc, qdf_nbuf_t msdu, uint16_t hdrlen)
544 {
545 	uint8_t *origHdr;
546 	int rx_desc_len = soc->rx_pkt_tlv_size;
547 
548 	origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
549 	qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
550 
551 	qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
552 
553 	return QDF_STATUS_SUCCESS;
554 }
555 
556 /*
557  * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
558  * @soc: soc handle
559  * @nbuf: Pointer to the fragment
560  *
561  * Calculate the header size of the received fragment
562  *
563  * Returns: header size (uint16_t)
564  */
565 static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
566 {
567 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
568 	uint16_t size = sizeof(struct ieee80211_frame);
569 	uint16_t fc = 0;
570 	uint32_t to_ds, fr_ds;
571 	uint8_t frm_ctrl_valid;
572 	uint16_t frm_ctrl_field;
573 
574 	to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
575 	fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
576 	frm_ctrl_valid =
577 		hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
578 						    rx_tlv_hdr);
579 	frm_ctrl_field = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_tlv_hdr);
580 
581 	if (to_ds && fr_ds)
582 		size += QDF_MAC_ADDR_SIZE;
583 
584 	if (frm_ctrl_valid) {
585 		fc = frm_ctrl_field;
586 
587 		/* use 1-st byte for validation */
588 		if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
589 			size += sizeof(uint16_t);
590 			/* use 2-nd byte for validation */
591 			if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
592 				size += sizeof(struct ieee80211_htc);
593 		}
594 	}
595 
596 	return size;
597 }
598 
599 /*
600  * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
601  * @wh0: Pointer to the wireless header of the fragment
602  * @hdr: Array to hold the pseudo header
603  *
604  * Calculate a pseudo MIC header
605  *
606  * Returns: None
607  */
608 static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
609 				uint8_t hdr[])
610 {
611 	const struct ieee80211_frame_addr4 *wh =
612 		(const struct ieee80211_frame_addr4 *)wh0;
613 
614 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
615 	case IEEE80211_FC1_DIR_NODS:
616 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
617 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
618 					   wh->i_addr2);
619 		break;
620 	case IEEE80211_FC1_DIR_TODS:
621 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
622 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
623 					   wh->i_addr2);
624 		break;
625 	case IEEE80211_FC1_DIR_FROMDS:
626 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
627 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
628 					   wh->i_addr3);
629 		break;
630 	case IEEE80211_FC1_DIR_DSTODS:
631 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
632 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
633 					   wh->i_addr4);
634 		break;
635 	}
636 
637 	/*
638 	 * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
639 	 * it could also be set for deauth, disassoc, action, etc. for
640 	 * a mgt type frame. It comes into picture for MFP.
641 	 */
642 	if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
643 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
644 				IEEE80211_FC1_DIR_DSTODS) {
645 			const struct ieee80211_qosframe_addr4 *qwh =
646 				(const struct ieee80211_qosframe_addr4 *)wh;
647 			hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
648 		} else {
649 			const struct ieee80211_qosframe *qwh =
650 				(const struct ieee80211_qosframe *)wh;
651 			hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
652 		}
653 	} else {
654 		hdr[12] = 0;
655 	}
656 
657 	hdr[13] = hdr[14] = hdr[15] = 0;	/* reserved */
658 }
659 
660 /*
661  * dp_rx_defrag_mic(): Calculate MIC header
662  * @key: Pointer to the key
663  * @wbuf: fragment buffer
664  * @off: Offset
665  * @data_len: Data length
666  * @mic: Array to hold MIC
667  *
668  * Calculate a pseudo MIC header
669  *
670  * Returns: QDF_STATUS
671  */
672 static QDF_STATUS dp_rx_defrag_mic(struct dp_soc *soc, const uint8_t *key,
673 				   qdf_nbuf_t wbuf, uint16_t off,
674 				   uint16_t data_len, uint8_t mic[])
675 {
676 	uint8_t hdr[16] = { 0, };
677 	uint32_t l, r;
678 	const uint8_t *data;
679 	uint32_t space;
680 	int rx_desc_len = soc->rx_pkt_tlv_size;
681 
682 	dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
683 		+ rx_desc_len), hdr);
684 
685 	l = dp_rx_get_le32(key);
686 	r = dp_rx_get_le32(key + 4);
687 
688 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
689 	l ^= dp_rx_get_le32(hdr);
690 	dp_rx_michael_block(l, r);
691 	l ^= dp_rx_get_le32(&hdr[4]);
692 	dp_rx_michael_block(l, r);
693 	l ^= dp_rx_get_le32(&hdr[8]);
694 	dp_rx_michael_block(l, r);
695 	l ^= dp_rx_get_le32(&hdr[12]);
696 	dp_rx_michael_block(l, r);
697 
698 	/* first buffer has special handling */
699 	data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
700 	space = qdf_nbuf_len(wbuf) - off;
701 
702 	for (;; ) {
703 		if (space > data_len)
704 			space = data_len;
705 
706 		/* collect 32-bit blocks from current buffer */
707 		while (space >= sizeof(uint32_t)) {
708 			l ^= dp_rx_get_le32(data);
709 			dp_rx_michael_block(l, r);
710 			data += sizeof(uint32_t);
711 			space -= sizeof(uint32_t);
712 			data_len -= sizeof(uint32_t);
713 		}
714 		if (data_len < sizeof(uint32_t))
715 			break;
716 
717 		wbuf = qdf_nbuf_next(wbuf);
718 		if (!wbuf)
719 			return QDF_STATUS_E_DEFRAG_ERROR;
720 
721 		if (space != 0) {
722 			const uint8_t *data_next;
723 			/*
724 			 * Block straddles buffers, split references.
725 			 */
726 			data_next =
727 				(uint8_t *)qdf_nbuf_data(wbuf) + off;
728 			if ((qdf_nbuf_len(wbuf)) <
729 				sizeof(uint32_t) - space) {
730 				return QDF_STATUS_E_DEFRAG_ERROR;
731 			}
732 			switch (space) {
733 			case 1:
734 				l ^= dp_rx_get_le32_split(data[0],
735 					data_next[0], data_next[1],
736 					data_next[2]);
737 				data = data_next + 3;
738 				space = (qdf_nbuf_len(wbuf) - off) - 3;
739 				break;
740 			case 2:
741 				l ^= dp_rx_get_le32_split(data[0], data[1],
742 						    data_next[0], data_next[1]);
743 				data = data_next + 2;
744 				space = (qdf_nbuf_len(wbuf) - off) - 2;
745 				break;
746 			case 3:
747 				l ^= dp_rx_get_le32_split(data[0], data[1],
748 					data[2], data_next[0]);
749 				data = data_next + 1;
750 				space = (qdf_nbuf_len(wbuf) - off) - 1;
751 				break;
752 			}
753 			dp_rx_michael_block(l, r);
754 			data_len -= sizeof(uint32_t);
755 		} else {
756 			/*
757 			 * Setup for next buffer.
758 			 */
759 			data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
760 			space = qdf_nbuf_len(wbuf) - off;
761 		}
762 	}
763 	/* Last block and padding (0x5a, 4..7 x 0) */
764 	switch (data_len) {
765 	case 0:
766 		l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
767 		break;
768 	case 1:
769 		l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
770 		break;
771 	case 2:
772 		l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
773 		break;
774 	case 3:
775 		l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
776 		break;
777 	}
778 	dp_rx_michael_block(l, r);
779 	dp_rx_michael_block(l, r);
780 	dp_rx_put_le32(mic, l);
781 	dp_rx_put_le32(mic + 4, r);
782 
783 	return QDF_STATUS_SUCCESS;
784 }
785 
786 /*
787  * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
788  * @key: Pointer to the key
789  * @msdu: fragment buffer
790  * @hdrlen: Length of the header information
791  *
792  * Remove MIC information from the TKIP frame
793  *
794  * Returns: QDF_STATUS
795  */
796 static QDF_STATUS dp_rx_defrag_tkip_demic(struct dp_soc *soc,
797 					  const uint8_t *key,
798 					  qdf_nbuf_t msdu, uint16_t hdrlen)
799 {
800 	QDF_STATUS status;
801 	uint32_t pktlen = 0, prev_data_len;
802 	uint8_t mic[IEEE80211_WEP_MICLEN];
803 	uint8_t mic0[IEEE80211_WEP_MICLEN];
804 	qdf_nbuf_t prev = NULL, prev0, next;
805 	uint8_t len0 = 0;
806 
807 	next = msdu;
808 	prev0 = msdu;
809 	while (next) {
810 		pktlen += (qdf_nbuf_len(next) - hdrlen);
811 		prev = next;
812 		dp_debug("pktlen %u",
813 			 (uint32_t)(qdf_nbuf_len(next) - hdrlen));
814 		next = qdf_nbuf_next(next);
815 		if (next && !qdf_nbuf_next(next))
816 			prev0 = prev;
817 	}
818 
819 	if (!prev) {
820 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
821 			  "%s Defrag chaining failed !\n", __func__);
822 		return QDF_STATUS_E_DEFRAG_ERROR;
823 	}
824 
825 	prev_data_len = qdf_nbuf_len(prev) - hdrlen;
826 	if (prev_data_len < dp_f_tkip.ic_miclen) {
827 		if (prev0 == prev) {
828 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
829 				  "%s Fragments don't have MIC header !\n", __func__);
830 			return QDF_STATUS_E_DEFRAG_ERROR;
831 		}
832 		len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len;
833 		qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0,
834 				   (caddr_t)mic0);
835 		qdf_nbuf_trim_tail(prev0, len0);
836 	}
837 
838 	qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) -
839 			   (dp_f_tkip.ic_miclen - len0)),
840 			   (dp_f_tkip.ic_miclen - len0),
841 			   (caddr_t)(&mic0[len0]));
842 	qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0));
843 	pktlen -= dp_f_tkip.ic_miclen;
844 
845 	if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) {
846 		dp_rx_nbuf_free(prev);
847 		qdf_nbuf_set_next(prev0, NULL);
848 	}
849 
850 	status = dp_rx_defrag_mic(soc, key, msdu, hdrlen,
851 				  pktlen, mic);
852 
853 	if (QDF_IS_STATUS_ERROR(status))
854 		return status;
855 
856 	if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
857 		return QDF_STATUS_E_DEFRAG_ERROR;
858 
859 	return QDF_STATUS_SUCCESS;
860 }
861 
862 /*
863  * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
864  * @nbuf: buffer pointer
865  * @hdrsize: size of the header to be pulled
866  *
867  * Pull the RXTLV & the 802.11 headers
868  *
869  * Returns: None
870  */
871 static void dp_rx_frag_pull_hdr(struct dp_soc *soc,
872 				qdf_nbuf_t nbuf, uint16_t hdrsize)
873 {
874 	hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
875 
876 	qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + hdrsize);
877 
878 	dp_debug("final pktlen %d .11len %d",
879 		 (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
880 }
881 
882 /*
883  * dp_rx_defrag_pn_check(): Check the PN of current fragmented with prev PN
884  * @msdu: msdu to get the current PN
885  * @cur_pn128: PN extracted from current msdu
886  * @prev_pn128: Prev PN
887  *
888  * Returns: 0 on success, non zero on failure
889  */
890 static int dp_rx_defrag_pn_check(struct dp_soc *soc, qdf_nbuf_t msdu,
891 				 uint64_t *cur_pn128, uint64_t *prev_pn128)
892 {
893 	int out_of_order = 0;
894 
895 	hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(msdu), cur_pn128);
896 
897 	if (cur_pn128[1] == prev_pn128[1])
898 		out_of_order = (cur_pn128[0] - prev_pn128[0] != 1);
899 	else
900 		out_of_order = (cur_pn128[1] - prev_pn128[1] != 1);
901 
902 	return out_of_order;
903 }
904 
905 /*
906  * dp_rx_construct_fraglist(): Construct a nbuf fraglist
907  * @txrx peer: Pointer to the txrx peer
908  * @head: Pointer to list of fragments
909  * @hdrsize: Size of the header to be pulled
910  *
911  * Construct a nbuf fraglist
912  *
913  * Returns: None
914  */
915 static int
916 dp_rx_construct_fraglist(struct dp_txrx_peer *txrx_peer, int tid,
917 			 qdf_nbuf_t head,
918 			 uint16_t hdrsize)
919 {
920 	struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
921 	qdf_nbuf_t msdu = qdf_nbuf_next(head);
922 	qdf_nbuf_t rx_nbuf = msdu;
923 	struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
924 	uint32_t len = 0;
925 	uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
926 	int out_of_order = 0;
927 	int index;
928 	int needs_pn_check = 0;
929 	enum cdp_sec_type sec_type;
930 
931 	prev_pn128[0] = rx_tid->pn128[0];
932 	prev_pn128[1] = rx_tid->pn128[1];
933 
934 	index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu) ? dp_sec_mcast :
935 				dp_sec_ucast;
936 	sec_type = txrx_peer->security[index].sec_type;
937 
938 	if (!(sec_type == cdp_sec_type_none || sec_type == cdp_sec_type_wep128 ||
939 	      sec_type == cdp_sec_type_wep104 || sec_type == cdp_sec_type_wep40))
940 		needs_pn_check = 1;
941 
942 	while (msdu) {
943 		if (qdf_likely(needs_pn_check))
944 			out_of_order = dp_rx_defrag_pn_check(soc, msdu,
945 							     &cur_pn128[0],
946 							     &prev_pn128[0]);
947 
948 		if (qdf_unlikely(out_of_order)) {
949 			dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
950 				   cur_pn128[0], cur_pn128[1],
951 				   prev_pn128[0], prev_pn128[1]);
952 			return QDF_STATUS_E_FAILURE;
953 		}
954 
955 		prev_pn128[0] = cur_pn128[0];
956 		prev_pn128[1] = cur_pn128[1];
957 
958 		/*
959 		 * Broadcast and multicast frames should never be fragmented.
960 		 * Iterating through all msdus and dropping fragments if even
961 		 * one of them has mcast/bcast destination address.
962 		 */
963 		if (hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu)) {
964 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
965 				  "Dropping multicast/broadcast fragments");
966 			return QDF_STATUS_E_FAILURE;
967 		}
968 
969 		dp_rx_frag_pull_hdr(soc, msdu, hdrsize);
970 		len += qdf_nbuf_len(msdu);
971 		msdu = qdf_nbuf_next(msdu);
972 	}
973 
974 	qdf_nbuf_append_ext_list(head, rx_nbuf, len);
975 	qdf_nbuf_set_next(head, NULL);
976 	qdf_nbuf_set_is_frag(head, 1);
977 
978 	dp_debug("head len %d ext len %d data len %d ",
979 		 (uint32_t)qdf_nbuf_len(head),
980 		 (uint32_t)qdf_nbuf_len(rx_nbuf),
981 		 (uint32_t)(head->data_len));
982 
983 	return QDF_STATUS_SUCCESS;
984 }
985 
986 /**
987  * dp_rx_defrag_err() - rx err handler
988  * @pdev: handle to pdev object
989  * @vdev_id: vdev id
990  * @peer_mac_addr: peer mac address
991  * @tid: TID
992  * @tsf32: TSF
993  * @err_type: error type
994  * @rx_frame: rx frame
995  * @pn: PN Number
996  * @key_id: key id
997  *
998  * This function handles rx error and send MIC error notification
999  *
1000  * Return: None
1001  */
1002 static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
1003 {
1004 	struct ol_if_ops *tops = NULL;
1005 	struct dp_pdev *pdev = vdev->pdev;
1006 	int rx_desc_len = pdev->soc->rx_pkt_tlv_size;
1007 	uint8_t *orig_hdr;
1008 	struct ieee80211_frame *wh;
1009 	struct cdp_rx_mic_err_info mic_failure_info;
1010 
1011 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
1012 	wh = (struct ieee80211_frame *)orig_hdr;
1013 
1014 	qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
1015 			 (struct qdf_mac_addr *)&wh->i_addr1);
1016 	qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
1017 			 (struct qdf_mac_addr *)&wh->i_addr2);
1018 	mic_failure_info.key_id = 0;
1019 	mic_failure_info.multicast =
1020 		IEEE80211_IS_MULTICAST(wh->i_addr1);
1021 	qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
1022 	mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
1023 	mic_failure_info.data = (uint8_t *)wh;
1024 	mic_failure_info.vdev_id = vdev->vdev_id;
1025 
1026 	tops = pdev->soc->cdp_soc.ol_ops;
1027 	if (tops->rx_mic_error)
1028 		tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
1029 				   &mic_failure_info);
1030 }
1031 
1032 
1033 /*
1034  * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
1035  * @soc: dp soc handle
1036  * @txrx_peer: txrx_peer handle
1037  * @nbuf: Pointer to the fragment buffer
1038  * @hdrsize: Size of headers
1039  *
1040  * Transcap the fragment from 802.11 to 802.3
1041  *
1042  * Returns: None
1043  */
1044 static void
1045 dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_txrx_peer *txrx_peer,
1046 			   int tid, qdf_nbuf_t nbuf, uint16_t hdrsize)
1047 {
1048 	struct llc_snap_hdr_t *llchdr;
1049 	struct ethernet_hdr_t *eth_hdr;
1050 	uint8_t ether_type[2];
1051 	uint16_t fc = 0;
1052 	union dp_align_mac_addr mac_addr;
1053 	uint8_t *rx_desc_info = qdf_mem_malloc(soc->rx_pkt_tlv_size);
1054 	struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
1055 
1056 	hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(nbuf), rx_tid->pn128);
1057 
1058 	hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
1059 
1060 	if (!rx_desc_info) {
1061 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1062 			"%s: Memory alloc failed ! ", __func__);
1063 		QDF_ASSERT(0);
1064 		return;
1065 	}
1066 
1067 	qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), soc->rx_pkt_tlv_size);
1068 
1069 	llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
1070 					soc->rx_pkt_tlv_size + hdrsize);
1071 	qdf_mem_copy(ether_type, llchdr->ethertype, 2);
1072 
1073 	qdf_nbuf_pull_head(nbuf, (soc->rx_pkt_tlv_size + hdrsize +
1074 				  sizeof(struct llc_snap_hdr_t) -
1075 				  sizeof(struct ethernet_hdr_t)));
1076 
1077 	eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
1078 
1079 	if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
1080 						rx_desc_info))
1081 		fc = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_desc_info);
1082 
1083 	dp_debug("Frame control type: 0x%x", fc);
1084 
1085 	switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
1086 	case IEEE80211_FC1_DIR_NODS:
1087 		hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
1088 				      &mac_addr.raw[0]);
1089 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
1090 			QDF_MAC_ADDR_SIZE);
1091 		hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
1092 				      &mac_addr.raw[0]);
1093 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
1094 			QDF_MAC_ADDR_SIZE);
1095 		break;
1096 	case IEEE80211_FC1_DIR_TODS:
1097 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
1098 				      &mac_addr.raw[0]);
1099 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
1100 			QDF_MAC_ADDR_SIZE);
1101 		hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
1102 				      &mac_addr.raw[0]);
1103 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
1104 			QDF_MAC_ADDR_SIZE);
1105 		break;
1106 	case IEEE80211_FC1_DIR_FROMDS:
1107 		hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
1108 				      &mac_addr.raw[0]);
1109 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
1110 			QDF_MAC_ADDR_SIZE);
1111 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
1112 				      &mac_addr.raw[0]);
1113 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
1114 			QDF_MAC_ADDR_SIZE);
1115 		break;
1116 
1117 	case IEEE80211_FC1_DIR_DSTODS:
1118 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
1119 				      &mac_addr.raw[0]);
1120 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
1121 			QDF_MAC_ADDR_SIZE);
1122 		hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
1123 				      &mac_addr.raw[0]);
1124 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
1125 			QDF_MAC_ADDR_SIZE);
1126 		break;
1127 
1128 	default:
1129 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1130 		"%s: Unknown frame control type: 0x%x", __func__, fc);
1131 	}
1132 
1133 	qdf_mem_copy(eth_hdr->ethertype, ether_type,
1134 			sizeof(ether_type));
1135 
1136 	qdf_nbuf_push_head(nbuf, soc->rx_pkt_tlv_size);
1137 	qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, soc->rx_pkt_tlv_size);
1138 	qdf_mem_free(rx_desc_info);
1139 }
1140 
1141 #ifdef RX_DEFRAG_DO_NOT_REINJECT
1142 /*
1143  * dp_rx_defrag_deliver(): Deliver defrag packet to stack
1144  * @peer: Pointer to the peer
1145  * @tid: Transmit Identifier
1146  * @head: Nbuf to be delivered
1147  *
1148  * Returns: None
1149  */
1150 static inline void dp_rx_defrag_deliver(struct dp_txrx_peer *txrx_peer,
1151 					unsigned int tid,
1152 					qdf_nbuf_t head)
1153 {
1154 	struct dp_vdev *vdev = txrx_peer->vdev;
1155 	struct dp_soc *soc = vdev->pdev->soc;
1156 	qdf_nbuf_t deliver_list_head = NULL;
1157 	qdf_nbuf_t deliver_list_tail = NULL;
1158 	uint8_t *rx_tlv_hdr;
1159 
1160 	rx_tlv_hdr = qdf_nbuf_data(head);
1161 
1162 	QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
1163 	qdf_nbuf_set_tid_val(head, tid);
1164 	qdf_nbuf_pull_head(head, soc->rx_pkt_tlv_size);
1165 
1166 	DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
1167 			  head);
1168 	dp_rx_deliver_to_stack(soc, vdev, txrx_peer, deliver_list_head,
1169 			       deliver_list_tail);
1170 }
1171 
1172 /*
1173  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
1174  * @txrx peer: Pointer to the peer
1175  * @tid: Transmit Identifier
1176  * @head: Buffer to be reinjected back
1177  *
1178  * Reinject the fragment chain back into REO
1179  *
1180  * Returns: QDF_STATUS
1181  */
1182 static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
1183 					    unsigned int tid, qdf_nbuf_t head)
1184 {
1185 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1186 
1187 	rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
1188 
1189 	dp_rx_defrag_deliver(txrx_peer, tid, head);
1190 	rx_reorder_array_elem->head = NULL;
1191 	rx_reorder_array_elem->tail = NULL;
1192 	dp_rx_return_head_frag_desc(txrx_peer, tid);
1193 
1194 	return QDF_STATUS_SUCCESS;
1195 }
1196 #else
1197 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
1198 /**
1199  * dp_rx_reinject_ring_record_entry() - Record reinject ring history
1200  * @soc: Datapath soc structure
1201  * @paddr: paddr of the buffer reinjected to SW2REO ring
1202  * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
1203  * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
1204  *
1205  * Returns: None
1206  */
1207 static inline void
1208 dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
1209 				 uint32_t sw_cookie, uint8_t rbm)
1210 {
1211 	struct dp_buf_info_record *record;
1212 	uint32_t idx;
1213 
1214 	if (qdf_unlikely(!soc->rx_reinject_ring_history))
1215 		return;
1216 
1217 	idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
1218 					DP_RX_REINJECT_HIST_MAX);
1219 
1220 	/* No NULL check needed for record since its an array */
1221 	record = &soc->rx_reinject_ring_history->entry[idx];
1222 
1223 	record->timestamp = qdf_get_log_timestamp();
1224 	record->hbi.paddr = paddr;
1225 	record->hbi.sw_cookie = sw_cookie;
1226 	record->hbi.rbm = rbm;
1227 }
1228 #else
1229 static inline void
1230 dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
1231 				 uint32_t sw_cookie, uint8_t rbm)
1232 {
1233 }
1234 #endif
1235 
1236 /*
1237  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
1238  * @txrx_peer: Pointer to the txrx_peer
1239  * @tid: Transmit Identifier
1240  * @head: Buffer to be reinjected back
1241  *
1242  * Reinject the fragment chain back into REO
1243  *
1244  * Returns: QDF_STATUS
1245  */
1246 static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
1247 					    unsigned int tid, qdf_nbuf_t head)
1248 {
1249 	struct dp_pdev *pdev = txrx_peer->vdev->pdev;
1250 	struct dp_soc *soc = pdev->soc;
1251 	struct hal_buf_info buf_info;
1252 	struct hal_buf_info temp_buf_info;
1253 	void *link_desc_va;
1254 	void *msdu0, *msdu_desc_info;
1255 	void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
1256 	void *dst_mpdu_desc_info;
1257 	uint64_t dst_qdesc_addr;
1258 	qdf_dma_addr_t paddr;
1259 	uint32_t nbuf_len, seq_no, dst_ind;
1260 	uint32_t *mpdu_wrd;
1261 	uint32_t ret, cookie;
1262 	hal_ring_desc_t dst_ring_desc =
1263 		txrx_peer->rx_tid[tid].dst_ring_desc;
1264 	hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
1265 	struct dp_rx_desc *rx_desc = txrx_peer->rx_tid[tid].head_frag_desc;
1266 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1267 						txrx_peer->rx_tid[tid].array;
1268 	qdf_nbuf_t nbuf_head;
1269 	struct rx_desc_pool *rx_desc_pool = NULL;
1270 	void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
1271 	uint8_t rx_defrag_rbm_id = dp_rx_get_defrag_bm_id(soc);
1272 
1273 	/* do duplicate link desc address check */
1274 	dp_rx_link_desc_refill_duplicate_check(
1275 				soc,
1276 				&soc->last_op_info.reo_reinject_link_desc,
1277 				buf_addr_info);
1278 
1279 	nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
1280 	if (qdf_unlikely(!nbuf_head)) {
1281 		dp_err_rl("IPA RX REO reinject failed");
1282 		return QDF_STATUS_E_FAILURE;
1283 	}
1284 
1285 	/* update new allocated skb in case IPA is enabled */
1286 	if (nbuf_head != head) {
1287 		head = nbuf_head;
1288 		rx_desc->nbuf = head;
1289 		rx_reorder_array_elem->head = head;
1290 	}
1291 
1292 	ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
1293 	if (!ent_ring_desc) {
1294 		dp_err_rl("HAL src ring next entry NULL");
1295 		return QDF_STATUS_E_FAILURE;
1296 	}
1297 
1298 	hal_rx_reo_buf_paddr_get(soc->hal_soc, dst_ring_desc, &buf_info);
1299 
1300 	/* buffer_addr_info is the first element of ring_desc */
1301 	hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)dst_ring_desc,
1302 				  &buf_info);
1303 
1304 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
1305 
1306 	qdf_assert_always(link_desc_va);
1307 
1308 	msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
1309 	nbuf_len = qdf_nbuf_len(head) - soc->rx_pkt_tlv_size;
1310 
1311 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
1312 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
1313 			UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
1314 
1315 	/* msdu reconfig */
1316 	msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
1317 
1318 	dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
1319 
1320 	qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
1321 
1322 	hal_msdu_desc_info_set(soc->hal_soc, msdu_desc_info, dst_ind, nbuf_len);
1323 
1324 	/* change RX TLV's */
1325 	hal_rx_tlv_msdu_len_set(soc->hal_soc, qdf_nbuf_data(head), nbuf_len);
1326 
1327 	hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)msdu0,
1328 				  &temp_buf_info);
1329 
1330 	cookie = temp_buf_info.sw_cookie;
1331 	rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
1332 
1333 	/* map the nbuf before reinject it into HW */
1334 	ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
1335 					 QDF_DMA_FROM_DEVICE,
1336 					 rx_desc_pool->buf_size);
1337 	if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
1338 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1339 				"%s: nbuf map failed !", __func__);
1340 		return QDF_STATUS_E_FAILURE;
1341 	}
1342 
1343 	dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
1344 					  rx_desc_pool->buf_size,
1345 					  true);
1346 
1347 	/*
1348 	 * As part of rx frag handler bufffer was unmapped and rx desc
1349 	 * unmapped is set to 1. So again for defrag reinject frame reset
1350 	 * it back to 0.
1351 	 */
1352 	rx_desc->unmapped = 0;
1353 
1354 	paddr = qdf_nbuf_get_frag_paddr(head, 0);
1355 
1356 	ret = dp_check_paddr(soc, &head, &paddr, rx_desc_pool);
1357 
1358 	if (ret == QDF_STATUS_E_FAILURE) {
1359 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1360 				"%s: x86 check failed !", __func__);
1361 		return QDF_STATUS_E_FAILURE;
1362 	}
1363 
1364 	hal_rxdma_buff_addr_info_set(soc->hal_soc, msdu0, paddr, cookie,
1365 				     rx_defrag_rbm_id);
1366 
1367 	/* Lets fill entrance ring now !!! */
1368 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
1369 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1370 		"HAL RING Access For REO entrance SRNG Failed: %pK",
1371 		hal_srng);
1372 
1373 		return QDF_STATUS_E_FAILURE;
1374 	}
1375 
1376 	dp_rx_reinject_ring_record_entry(soc, paddr, cookie,
1377 					 rx_defrag_rbm_id);
1378 	paddr = (uint64_t)buf_info.paddr;
1379 	/* buf addr */
1380 	hal_rxdma_buff_addr_info_set(soc->hal_soc, ent_ring_desc, paddr,
1381 				     buf_info.sw_cookie,
1382 				     soc->idle_link_bm_id);
1383 	/* mpdu desc info */
1384 	ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
1385 						    ent_ring_desc);
1386 	dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
1387 						    dst_ring_desc);
1388 
1389 	qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
1390 				sizeof(struct rx_mpdu_desc_info));
1391 	qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
1392 
1393 	mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
1394 	seq_no = hal_rx_get_rx_sequence(soc->hal_soc, qdf_nbuf_data(head));
1395 
1396 	hal_mpdu_desc_info_set(soc->hal_soc, ent_mpdu_desc_info, seq_no);
1397 	/* qdesc addr */
1398 	ent_qdesc_addr = hal_get_reo_ent_desc_qdesc_addr(soc->hal_soc,
1399 						(uint8_t *)ent_ring_desc);
1400 
1401 	dst_qdesc_addr = hal_rx_get_qdesc_addr(soc->hal_soc,
1402 					       (uint8_t *)dst_ring_desc,
1403 					       qdf_nbuf_data(head));
1404 
1405 	qdf_mem_copy(ent_qdesc_addr, &dst_qdesc_addr, 5);
1406 
1407 	hal_set_reo_ent_desc_reo_dest_ind(soc->hal_soc,
1408 					  (uint8_t *)ent_ring_desc, dst_ind);
1409 
1410 	hal_srng_access_end(soc->hal_soc, hal_srng);
1411 
1412 	DP_STATS_INC(soc, rx.reo_reinject, 1);
1413 	dp_debug("reinjection done !");
1414 	return QDF_STATUS_SUCCESS;
1415 }
1416 #endif
1417 
1418 /*
1419  * dp_rx_defrag_gcmp_demic(): Remove MIC information from GCMP fragment
1420  * @soc: Datapath soc structure
1421  * @nbuf: Pointer to the fragment buffer
1422  * @hdrlen: 802.11 header length
1423  *
1424  * Remove MIC information from GCMP fragment
1425  *
1426  * Returns: QDF_STATUS
1427  */
1428 static QDF_STATUS dp_rx_defrag_gcmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf,
1429 					  uint16_t hdrlen)
1430 {
1431 	uint8_t *ivp, *orig_hdr;
1432 	int rx_desc_len = soc->rx_pkt_tlv_size;
1433 
1434 	/* start of the 802.11 header */
1435 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
1436 
1437 	/*
1438 	 * GCMP header is located after 802.11 header and EXTIV
1439 	 * field should always be set to 1 for GCMP protocol.
1440 	 */
1441 	ivp = orig_hdr + hdrlen;
1442 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
1443 		return QDF_STATUS_E_DEFRAG_ERROR;
1444 
1445 	qdf_nbuf_trim_tail(nbuf, dp_f_gcmp.ic_trailer);
1446 
1447 	return QDF_STATUS_SUCCESS;
1448 }
1449 
1450 /*
1451  * dp_rx_defrag(): Defragment the fragment chain
1452  * @txrx peer: Pointer to the peer
1453  * @tid: Transmit Identifier
1454  * @frag_list_head: Pointer to head list
1455  * @frag_list_tail: Pointer to tail list
1456  *
1457  * Defragment the fragment chain
1458  *
1459  * Returns: QDF_STATUS
1460  */
1461 static QDF_STATUS dp_rx_defrag(struct dp_txrx_peer *txrx_peer, unsigned int tid,
1462 			       qdf_nbuf_t frag_list_head,
1463 			       qdf_nbuf_t frag_list_tail)
1464 {
1465 	qdf_nbuf_t tmp_next, prev;
1466 	qdf_nbuf_t cur = frag_list_head, msdu;
1467 	uint32_t index, tkip_demic = 0;
1468 	uint16_t hdr_space;
1469 	uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
1470 	struct dp_vdev *vdev = txrx_peer->vdev;
1471 	struct dp_soc *soc = vdev->pdev->soc;
1472 	uint8_t status = 0;
1473 
1474 	if (!cur)
1475 		return QDF_STATUS_E_DEFRAG_ERROR;
1476 
1477 	hdr_space = dp_rx_defrag_hdrsize(soc, cur);
1478 	index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, cur) ?
1479 		dp_sec_mcast : dp_sec_ucast;
1480 
1481 	/* Remove FCS from all fragments */
1482 	while (cur) {
1483 		tmp_next = qdf_nbuf_next(cur);
1484 		qdf_nbuf_set_next(cur, NULL);
1485 		qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
1486 		prev = cur;
1487 		qdf_nbuf_set_next(cur, tmp_next);
1488 		cur = tmp_next;
1489 	}
1490 	cur = frag_list_head;
1491 
1492 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1493 		  "%s: index %d Security type: %d", __func__,
1494 		  index, txrx_peer->security[index].sec_type);
1495 
1496 	switch (txrx_peer->security[index].sec_type) {
1497 	case cdp_sec_type_tkip:
1498 		tkip_demic = 1;
1499 		fallthrough;
1500 	case cdp_sec_type_tkip_nomic:
1501 		while (cur) {
1502 			tmp_next = qdf_nbuf_next(cur);
1503 			if (dp_rx_defrag_tkip_decap(soc, cur, hdr_space)) {
1504 
1505 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1506 					QDF_TRACE_LEVEL_ERROR,
1507 					"dp_rx_defrag: TKIP decap failed");
1508 
1509 				return QDF_STATUS_E_DEFRAG_ERROR;
1510 			}
1511 			cur = tmp_next;
1512 		}
1513 
1514 		/* If success, increment header to be stripped later */
1515 		hdr_space += dp_f_tkip.ic_header;
1516 		break;
1517 
1518 	case cdp_sec_type_aes_ccmp:
1519 		while (cur) {
1520 			tmp_next = qdf_nbuf_next(cur);
1521 			if (dp_rx_defrag_ccmp_demic(soc, cur, hdr_space)) {
1522 
1523 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1524 					QDF_TRACE_LEVEL_ERROR,
1525 					"dp_rx_defrag: CCMP demic failed");
1526 
1527 				return QDF_STATUS_E_DEFRAG_ERROR;
1528 			}
1529 			if (dp_rx_defrag_ccmp_decap(soc, cur, hdr_space)) {
1530 
1531 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1532 					QDF_TRACE_LEVEL_ERROR,
1533 					"dp_rx_defrag: CCMP decap failed");
1534 
1535 				return QDF_STATUS_E_DEFRAG_ERROR;
1536 			}
1537 			cur = tmp_next;
1538 		}
1539 
1540 		/* If success, increment header to be stripped later */
1541 		hdr_space += dp_f_ccmp.ic_header;
1542 		break;
1543 
1544 	case cdp_sec_type_wep40:
1545 	case cdp_sec_type_wep104:
1546 	case cdp_sec_type_wep128:
1547 		while (cur) {
1548 			tmp_next = qdf_nbuf_next(cur);
1549 			if (dp_rx_defrag_wep_decap(soc, cur, hdr_space)) {
1550 
1551 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1552 					QDF_TRACE_LEVEL_ERROR,
1553 					"dp_rx_defrag: WEP decap failed");
1554 
1555 				return QDF_STATUS_E_DEFRAG_ERROR;
1556 			}
1557 			cur = tmp_next;
1558 		}
1559 
1560 		/* If success, increment header to be stripped later */
1561 		hdr_space += dp_f_wep.ic_header;
1562 		break;
1563 	case cdp_sec_type_aes_gcmp:
1564 	case cdp_sec_type_aes_gcmp_256:
1565 		while (cur) {
1566 			tmp_next = qdf_nbuf_next(cur);
1567 			if (dp_rx_defrag_gcmp_demic(soc, cur, hdr_space)) {
1568 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1569 					  QDF_TRACE_LEVEL_ERROR,
1570 					  "dp_rx_defrag: GCMP demic failed");
1571 
1572 				return QDF_STATUS_E_DEFRAG_ERROR;
1573 			}
1574 			cur = tmp_next;
1575 		}
1576 
1577 		hdr_space += dp_f_gcmp.ic_header;
1578 		break;
1579 	default:
1580 		break;
1581 	}
1582 
1583 	if (tkip_demic) {
1584 		msdu = frag_list_head;
1585 		qdf_mem_copy(key,
1586 			     &txrx_peer->security[index].michael_key[0],
1587 			     IEEE80211_WEP_MICLEN);
1588 		status = dp_rx_defrag_tkip_demic(soc, key, msdu,
1589 						 soc->rx_pkt_tlv_size +
1590 						 hdr_space);
1591 
1592 		if (status) {
1593 			dp_rx_defrag_err(vdev, frag_list_head);
1594 
1595 			QDF_TRACE(QDF_MODULE_ID_TXRX,
1596 				  QDF_TRACE_LEVEL_ERROR,
1597 				  "%s: TKIP demic failed status %d",
1598 				   __func__, status);
1599 
1600 			return QDF_STATUS_E_DEFRAG_ERROR;
1601 		}
1602 	}
1603 
1604 	/* Convert the header to 802.3 header */
1605 	dp_rx_defrag_nwifi_to_8023(soc, txrx_peer, tid, frag_list_head,
1606 				   hdr_space);
1607 	if (qdf_nbuf_next(frag_list_head)) {
1608 		if (dp_rx_construct_fraglist(txrx_peer, tid, frag_list_head,
1609 					     hdr_space))
1610 			return QDF_STATUS_E_DEFRAG_ERROR;
1611 	}
1612 
1613 	return QDF_STATUS_SUCCESS;
1614 }
1615 
1616 /*
1617  * dp_rx_defrag_cleanup(): Clean up activities
1618  * @txrx_peer: Pointer to the peer
1619  * @tid: Transmit Identifier
1620  *
1621  * Returns: None
1622  */
1623 void dp_rx_defrag_cleanup(struct dp_txrx_peer *txrx_peer, unsigned int tid)
1624 {
1625 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1626 				txrx_peer->rx_tid[tid].array;
1627 
1628 	if (rx_reorder_array_elem) {
1629 		/* Free up nbufs */
1630 		dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1631 		rx_reorder_array_elem->head = NULL;
1632 		rx_reorder_array_elem->tail = NULL;
1633 	} else {
1634 		dp_info("Cleanup self peer %pK and TID %u",
1635 			txrx_peer, tid);
1636 	}
1637 
1638 	/* Free up saved ring descriptors */
1639 	dp_rx_clear_saved_desc_info(txrx_peer, tid);
1640 
1641 	txrx_peer->rx_tid[tid].defrag_timeout_ms = 0;
1642 	txrx_peer->rx_tid[tid].curr_frag_num = 0;
1643 	txrx_peer->rx_tid[tid].curr_seq_num = 0;
1644 }
1645 
1646 /*
1647  * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
1648  * @ring_desc: Pointer to the dst ring descriptor
1649  * @txrx_peer: Pointer to the peer
1650  * @tid: Transmit Identifier
1651  *
1652  * Returns: None
1653  */
1654 static QDF_STATUS
1655 dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
1656 				      struct dp_rx_desc *rx_desc,
1657 				      struct dp_txrx_peer *txrx_peer,
1658 				      unsigned int tid)
1659 {
1660 	void *dst_ring_desc = qdf_mem_malloc(
1661 			sizeof(struct reo_destination_ring));
1662 
1663 	if (!dst_ring_desc) {
1664 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1665 			"%s: Memory alloc failed !", __func__);
1666 		QDF_ASSERT(0);
1667 		return QDF_STATUS_E_NOMEM;
1668 	}
1669 
1670 	qdf_mem_copy(dst_ring_desc, ring_desc,
1671 		       sizeof(struct reo_destination_ring));
1672 
1673 	txrx_peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
1674 	txrx_peer->rx_tid[tid].head_frag_desc = rx_desc;
1675 
1676 	return QDF_STATUS_SUCCESS;
1677 }
1678 
1679 /*
1680  * dp_rx_defrag_store_fragment(): Store incoming fragments
1681  * @soc: Pointer to the SOC data structure
1682  * @ring_desc: Pointer to the ring descriptor
1683  * @mpdu_desc_info: MPDU descriptor info
1684  * @tid: Traffic Identifier
1685  * @rx_desc: Pointer to rx descriptor
1686  * @rx_bfs: Number of bfs consumed
1687  *
1688  * Returns: QDF_STATUS
1689  */
1690 static QDF_STATUS
1691 dp_rx_defrag_store_fragment(struct dp_soc *soc,
1692 			    hal_ring_desc_t ring_desc,
1693 			    union dp_rx_desc_list_elem_t **head,
1694 			    union dp_rx_desc_list_elem_t **tail,
1695 			    struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1696 			    unsigned int tid, struct dp_rx_desc *rx_desc,
1697 			    uint32_t *rx_bfs)
1698 {
1699 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1700 	struct dp_pdev *pdev;
1701 	struct dp_txrx_peer *txrx_peer = NULL;
1702 	dp_txrx_ref_handle txrx_ref_handle = NULL;
1703 	uint16_t peer_id;
1704 	uint8_t fragno, more_frag, all_frag_present = 0;
1705 	uint16_t rxseq = mpdu_desc_info->mpdu_seq;
1706 	QDF_STATUS status;
1707 	struct dp_rx_tid_defrag *rx_tid;
1708 	uint8_t mpdu_sequence_control_valid;
1709 	uint8_t mpdu_frame_control_valid;
1710 	qdf_nbuf_t frag = rx_desc->nbuf;
1711 	uint32_t msdu_len;
1712 
1713 	if (qdf_nbuf_len(frag) > 0) {
1714 		dp_info("Dropping unexpected packet with skb_len: %d,"
1715 			"data len: %d, cookie: %d",
1716 			(uint32_t)qdf_nbuf_len(frag), frag->data_len,
1717 			rx_desc->cookie);
1718 		DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
1719 		goto discard_frag;
1720 	}
1721 
1722 	if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
1723 		/* fragment queued back to the pool, free the link desc */
1724 		goto err_free_desc;
1725 	}
1726 
1727 	msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
1728 						  rx_desc->rx_buf_start);
1729 
1730 	qdf_nbuf_set_pktlen(frag, (msdu_len + soc->rx_pkt_tlv_size));
1731 	qdf_nbuf_append_ext_list(frag, NULL, 0);
1732 
1733 	/* Check if the packet is from a valid peer */
1734 	peer_id = dp_rx_peer_metadata_peer_id_get(soc,
1735 					       mpdu_desc_info->peer_meta_data);
1736 	txrx_peer = dp_txrx_peer_get_ref_by_id(soc, peer_id, &txrx_ref_handle,
1737 					       DP_MOD_ID_RX_ERR);
1738 
1739 	if (!txrx_peer) {
1740 		/* We should not receive anything from unknown peer
1741 		 * however, that might happen while we are in the monitor mode.
1742 		 * We don't need to handle that here
1743 		 */
1744 		dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
1745 			   peer_id);
1746 		DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
1747 		goto discard_frag;
1748 	}
1749 
1750 	if (tid >= DP_MAX_TIDS) {
1751 		dp_info("TID out of bounds: %d", tid);
1752 		qdf_assert_always(0);
1753 		goto discard_frag;
1754 	}
1755 
1756 	mpdu_sequence_control_valid =
1757 		hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
1758 						       rx_desc->rx_buf_start);
1759 
1760 	/* Invalid MPDU sequence control field, MPDU is of no use */
1761 	if (!mpdu_sequence_control_valid) {
1762 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1763 			"Invalid MPDU seq control field, dropping MPDU");
1764 
1765 		qdf_assert(0);
1766 		goto discard_frag;
1767 	}
1768 
1769 	mpdu_frame_control_valid =
1770 		hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
1771 						    rx_desc->rx_buf_start);
1772 
1773 	/* Invalid frame control field */
1774 	if (!mpdu_frame_control_valid) {
1775 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1776 			"Invalid frame control field, dropping MPDU");
1777 
1778 		qdf_assert(0);
1779 		goto discard_frag;
1780 	}
1781 
1782 	/* Current mpdu sequence */
1783 	more_frag = dp_rx_frag_get_more_frag_bit(soc, rx_desc->rx_buf_start);
1784 
1785 	/* HW does not populate the fragment number as of now
1786 	 * need to get from the 802.11 header
1787 	 */
1788 	fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc->rx_buf_start);
1789 
1790 	pdev = txrx_peer->vdev->pdev;
1791 	rx_tid = &txrx_peer->rx_tid[tid];
1792 
1793 	dp_rx_err_send_pktlog(soc, pdev, mpdu_desc_info, frag,
1794 			      QDF_TX_RX_STATUS_OK, false);
1795 
1796 	qdf_spin_lock_bh(&rx_tid->defrag_tid_lock);
1797 	rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
1798 	if (!rx_reorder_array_elem) {
1799 		dp_err_rl("Rcvd Fragmented pkt before tid setup for peer %pK",
1800 			  txrx_peer);
1801 		qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
1802 		goto discard_frag;
1803 	}
1804 
1805 	/*
1806 	 * !more_frag: no more fragments to be delivered
1807 	 * !frag_no: packet is not fragmented
1808 	 * !rx_reorder_array_elem->head: no saved fragments so far
1809 	 */
1810 	if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
1811 		/* We should not get into this situation here.
1812 		 * It means an unfragmented packet with fragment flag
1813 		 * is delivered over the REO exception ring.
1814 		 * Typically it follows normal rx path.
1815 		 */
1816 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1817 			"Rcvd unfragmented pkt on REO Err srng, dropping");
1818 
1819 		qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
1820 		qdf_assert(0);
1821 		goto discard_frag;
1822 	}
1823 
1824 	/* Check if the fragment is for the same sequence or a different one */
1825 	dp_debug("rx_tid %d", tid);
1826 	if (rx_reorder_array_elem->head) {
1827 		dp_debug("rxseq %d\n", rxseq);
1828 		if (rxseq != rx_tid->curr_seq_num) {
1829 
1830 			dp_debug("mismatch cur_seq %d rxseq %d\n",
1831 				 rx_tid->curr_seq_num, rxseq);
1832 			/* Drop stored fragments if out of sequence
1833 			 * fragment is received
1834 			 */
1835 			dp_rx_reorder_flush_frag(txrx_peer, tid);
1836 
1837 			DP_STATS_INC(soc, rx.rx_frag_oor, 1);
1838 
1839 			dp_debug("cur rxseq %d\n", rxseq);
1840 			/*
1841 			 * The sequence number for this fragment becomes the
1842 			 * new sequence number to be processed
1843 			 */
1844 			rx_tid->curr_seq_num = rxseq;
1845 		}
1846 	} else {
1847 		/* Check if we are processing first fragment if it is
1848 		 * not first fragment discard fragment.
1849 		 */
1850 		if (fragno) {
1851 			qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
1852 			goto discard_frag;
1853 		}
1854 		dp_debug("cur rxseq %d\n", rxseq);
1855 		/* Start of a new sequence */
1856 		dp_rx_defrag_cleanup(txrx_peer, tid);
1857 		rx_tid->curr_seq_num = rxseq;
1858 		/* store PN number also */
1859 	}
1860 
1861 	/*
1862 	 * If the earlier sequence was dropped, this will be the fresh start.
1863 	 * Else, continue with next fragment in a given sequence
1864 	 */
1865 	status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
1866 					      &rx_reorder_array_elem->head,
1867 					      &rx_reorder_array_elem->tail,
1868 					      frag, &all_frag_present);
1869 
1870 	/*
1871 	 * Currently, we can have only 6 MSDUs per-MPDU, if the current
1872 	 * packet sequence has more than 6 MSDUs for some reason, we will
1873 	 * have to use the next MSDU link descriptor and chain them together
1874 	 * before reinjection.
1875 	 * ring_desc is validated in dp_rx_err_process.
1876 	 */
1877 	if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
1878 			(rx_reorder_array_elem->head == frag)) {
1879 
1880 		status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
1881 					rx_desc, txrx_peer, tid);
1882 
1883 		if (status != QDF_STATUS_SUCCESS) {
1884 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1885 				"%s: Unable to store ring desc !", __func__);
1886 			qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
1887 			goto discard_frag;
1888 		}
1889 	} else {
1890 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1891 		(*rx_bfs)++;
1892 
1893 		/* Return the non-head link desc */
1894 		if (dp_rx_link_desc_return(soc, ring_desc,
1895 					   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1896 		    QDF_STATUS_SUCCESS)
1897 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1898 				  "%s: Failed to return link desc", __func__);
1899 
1900 	}
1901 
1902 	if (pdev->soc->rx.flags.defrag_timeout_check)
1903 		dp_rx_defrag_waitlist_remove(txrx_peer, tid);
1904 
1905 	/* Yet to receive more fragments for this sequence number */
1906 	if (!all_frag_present) {
1907 		uint32_t now_ms =
1908 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1909 
1910 		txrx_peer->rx_tid[tid].defrag_timeout_ms =
1911 			now_ms + pdev->soc->rx.defrag.timeout_ms;
1912 
1913 		dp_rx_defrag_waitlist_add(txrx_peer, tid);
1914 		dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
1915 		qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
1916 
1917 		return QDF_STATUS_SUCCESS;
1918 	}
1919 
1920 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1921 		  "All fragments received for sequence: %d", rxseq);
1922 
1923 	/* Process the fragments */
1924 	status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
1925 			      rx_reorder_array_elem->tail);
1926 	if (QDF_IS_STATUS_ERROR(status)) {
1927 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1928 			"Fragment processing failed");
1929 
1930 		dp_rx_add_to_free_desc_list(head, tail,
1931 				txrx_peer->rx_tid[tid].head_frag_desc);
1932 		(*rx_bfs)++;
1933 
1934 		if (dp_rx_link_desc_return(soc,
1935 					txrx_peer->rx_tid[tid].dst_ring_desc,
1936 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1937 				QDF_STATUS_SUCCESS)
1938 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1939 					"%s: Failed to return link desc",
1940 					__func__);
1941 		dp_rx_defrag_cleanup(txrx_peer, tid);
1942 		qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
1943 		goto end;
1944 	}
1945 
1946 	/* Re-inject the fragments back to REO for further processing */
1947 	status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
1948 					   rx_reorder_array_elem->head);
1949 	if (QDF_IS_STATUS_SUCCESS(status)) {
1950 		rx_reorder_array_elem->head = NULL;
1951 		rx_reorder_array_elem->tail = NULL;
1952 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1953 			  "Fragmented sequence successfully reinjected");
1954 	} else {
1955 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1956 		"Fragmented sequence reinjection failed");
1957 		dp_rx_return_head_frag_desc(txrx_peer, tid);
1958 	}
1959 
1960 	dp_rx_defrag_cleanup(txrx_peer, tid);
1961 	qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
1962 
1963 	dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
1964 
1965 	return QDF_STATUS_SUCCESS;
1966 
1967 discard_frag:
1968 	dp_rx_nbuf_free(frag);
1969 err_free_desc:
1970 	dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1971 	if (dp_rx_link_desc_return(soc, ring_desc,
1972 				   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1973 	    QDF_STATUS_SUCCESS)
1974 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1975 			  "%s: Failed to return link desc", __func__);
1976 	(*rx_bfs)++;
1977 
1978 end:
1979 	if (txrx_peer)
1980 		dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
1981 
1982 	DP_STATS_INC(soc, rx.rx_frag_err, 1);
1983 	return QDF_STATUS_E_DEFRAG_ERROR;
1984 }
1985 
1986 /**
1987  * dp_rx_frag_handle() - Handles fragmented Rx frames
1988  *
1989  * @soc: core txrx main context
1990  * @ring_desc: opaque pointer to the REO error ring descriptor
1991  * @mpdu_desc_info: MPDU descriptor information from ring descriptor
1992  * @head: head of the local descriptor free-list
1993  * @tail: tail of the local descriptor free-list
1994  * @quota: No. of units (packets) that can be serviced in one shot.
1995  *
1996  * This function implements RX 802.11 fragmentation handling
1997  * The handling is mostly same as legacy fragmentation handling.
1998  * If required, this function can re-inject the frames back to
1999  * REO ring (with proper setting to by-pass fragmentation check
2000  * but use duplicate detection / re-ordering and routing these frames
2001  * to a different core.
2002  *
2003  * Return: uint32_t: No. of elements processed
2004  */
2005 uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
2006 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
2007 			   struct dp_rx_desc *rx_desc,
2008 			   uint8_t *mac_id,
2009 			   uint32_t quota)
2010 {
2011 	uint32_t rx_bufs_used = 0;
2012 	qdf_nbuf_t msdu = NULL;
2013 	uint32_t tid;
2014 	uint32_t rx_bfs = 0;
2015 	struct dp_pdev *pdev;
2016 	QDF_STATUS status = QDF_STATUS_SUCCESS;
2017 	struct rx_desc_pool *rx_desc_pool;
2018 
2019 	qdf_assert(soc);
2020 	qdf_assert(mpdu_desc_info);
2021 	qdf_assert(rx_desc);
2022 
2023 	dp_debug("Number of MSDUs to process, num_msdus: %d",
2024 		 mpdu_desc_info->msdu_count);
2025 
2026 
2027 	if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
2028 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2029 			"Not sufficient MSDUs to process");
2030 		return rx_bufs_used;
2031 	}
2032 
2033 	/* all buffers in MSDU link belong to same pdev */
2034 	pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
2035 	if (!pdev) {
2036 		dp_nofl_debug("pdev is null for pool_id = %d",
2037 			      rx_desc->pool_id);
2038 		return rx_bufs_used;
2039 	}
2040 
2041 	*mac_id = rx_desc->pool_id;
2042 
2043 	msdu = rx_desc->nbuf;
2044 
2045 	rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
2046 
2047 	if (rx_desc->unmapped)
2048 		return rx_bufs_used;
2049 
2050 	dp_ipa_rx_buf_smmu_mapping_lock(soc);
2051 	dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, rx_desc->nbuf);
2052 	rx_desc->unmapped = 1;
2053 	dp_ipa_rx_buf_smmu_mapping_unlock(soc);
2054 
2055 	rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
2056 
2057 	tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
2058 
2059 	/* Process fragment-by-fragment */
2060 	status = dp_rx_defrag_store_fragment(soc, ring_desc,
2061 					     &pdev->free_list_head,
2062 					     &pdev->free_list_tail,
2063 					     mpdu_desc_info,
2064 					     tid, rx_desc, &rx_bfs);
2065 
2066 	if (rx_bfs)
2067 		rx_bufs_used += rx_bfs;
2068 
2069 	if (!QDF_IS_STATUS_SUCCESS(status))
2070 		dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
2071 			   mpdu_desc_info->mpdu_seq,
2072 			   mpdu_desc_info->msdu_count,
2073 			   mpdu_desc_info->mpdu_flags);
2074 
2075 	return rx_bufs_used;
2076 }
2077 
2078 QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
2079 				      struct dp_txrx_peer *txrx_peer,
2080 				      uint16_t tid,
2081 				      uint16_t rxseq, qdf_nbuf_t nbuf)
2082 {
2083 	struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
2084 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
2085 	uint8_t all_frag_present;
2086 	uint32_t msdu_len;
2087 	QDF_STATUS status;
2088 
2089 	rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
2090 
2091 	/*
2092 	 * HW may fill in unexpected peer_id in RX PKT TLV,
2093 	 * if this peer_id related peer is valid by coincidence,
2094 	 * but actually this peer won't do dp_peer_rx_init(like SAP vdev
2095 	 * self peer), then invalid access to rx_reorder_array_elem happened.
2096 	 */
2097 	if (!rx_reorder_array_elem) {
2098 		dp_verbose_debug(
2099 			"peer id:%d drop rx frame!",
2100 			txrx_peer->peer_id);
2101 		DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
2102 		dp_rx_nbuf_free(nbuf);
2103 		goto fail;
2104 	}
2105 
2106 	if (rx_reorder_array_elem->head &&
2107 	    rxseq != rx_tid->curr_seq_num) {
2108 		/* Drop stored fragments if out of sequence
2109 		 * fragment is received
2110 		 */
2111 		dp_rx_reorder_flush_frag(txrx_peer, tid);
2112 
2113 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2114 			  "%s: No list found for TID %d Seq# %d",
2115 				__func__, tid, rxseq);
2116 		dp_rx_nbuf_free(nbuf);
2117 		goto fail;
2118 	}
2119 
2120 	msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
2121 						  qdf_nbuf_data(nbuf));
2122 
2123 	qdf_nbuf_set_pktlen(nbuf, (msdu_len + soc->rx_pkt_tlv_size));
2124 
2125 	status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
2126 					      &rx_reorder_array_elem->head,
2127 			&rx_reorder_array_elem->tail, nbuf,
2128 			&all_frag_present);
2129 
2130 	if (QDF_IS_STATUS_ERROR(status)) {
2131 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2132 			  "%s Fragment insert failed", __func__);
2133 
2134 		goto fail;
2135 	}
2136 
2137 	if (soc->rx.flags.defrag_timeout_check)
2138 		dp_rx_defrag_waitlist_remove(txrx_peer, tid);
2139 
2140 	if (!all_frag_present) {
2141 		uint32_t now_ms =
2142 			qdf_system_ticks_to_msecs(qdf_system_ticks());
2143 
2144 		txrx_peer->rx_tid[tid].defrag_timeout_ms =
2145 			now_ms + soc->rx.defrag.timeout_ms;
2146 
2147 		dp_rx_defrag_waitlist_add(txrx_peer, tid);
2148 
2149 		return QDF_STATUS_SUCCESS;
2150 	}
2151 
2152 	status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
2153 			      rx_reorder_array_elem->tail);
2154 
2155 	if (QDF_IS_STATUS_ERROR(status)) {
2156 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2157 			  "%s Fragment processing failed", __func__);
2158 
2159 		dp_rx_return_head_frag_desc(txrx_peer, tid);
2160 		dp_rx_defrag_cleanup(txrx_peer, tid);
2161 
2162 		goto fail;
2163 	}
2164 
2165 	/* Re-inject the fragments back to REO for further processing */
2166 	status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
2167 					   rx_reorder_array_elem->head);
2168 	if (QDF_IS_STATUS_SUCCESS(status)) {
2169 		rx_reorder_array_elem->head = NULL;
2170 		rx_reorder_array_elem->tail = NULL;
2171 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
2172 			  "%s: Frag seq successfully reinjected",
2173 			__func__);
2174 	} else {
2175 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2176 			  "%s: Frag seq reinjection failed", __func__);
2177 		dp_rx_return_head_frag_desc(txrx_peer, tid);
2178 	}
2179 
2180 	dp_rx_defrag_cleanup(txrx_peer, tid);
2181 	return QDF_STATUS_SUCCESS;
2182 
2183 fail:
2184 	return QDF_STATUS_E_DEFRAG_ERROR;
2185 }
2186