xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx_defrag.c (revision c8e2987f9325baadee03d0265544a08c4a0217b0)
1 /*
2  * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "dp_types.h"
20 #include "dp_rx.h"
21 #include "dp_peer.h"
22 #include "hal_api.h"
23 #include "qdf_trace.h"
24 #include "qdf_nbuf.h"
25 #include "dp_rx_defrag.h"
26 #include <enet.h>	/* LLC_SNAP_HDR_LEN */
27 #include "dp_rx_defrag.h"
28 
29 const struct dp_rx_defrag_cipher dp_f_ccmp = {
30 	"AES-CCM",
31 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
32 	IEEE80211_WEP_MICLEN,
33 	0,
34 };
35 
36 const struct dp_rx_defrag_cipher dp_f_tkip = {
37 	"TKIP",
38 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
39 	IEEE80211_WEP_CRCLEN,
40 	IEEE80211_WEP_MICLEN,
41 };
42 
43 const struct dp_rx_defrag_cipher dp_f_wep = {
44 	"WEP",
45 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
46 	IEEE80211_WEP_CRCLEN,
47 	0,
48 };
49 
50 /*
51  * dp_rx_defrag_frames_free(): Free fragment chain
52  * @frames: Fragment chain
53  *
54  * Iterates through the fragment chain and frees them
55  * Returns: None
56  */
57 static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
58 {
59 	qdf_nbuf_t next, frag = frames;
60 
61 	while (frag) {
62 		next = qdf_nbuf_next(frag);
63 		qdf_nbuf_free(frag);
64 		frag = next;
65 	}
66 }
67 
68 /*
69  * dp_rx_clear_saved_desc_info(): Clears descriptor info
70  * @peer: Pointer to the peer data structure
71  * @tid: Transmit ID (TID)
72  *
73  * Saves MPDU descriptor info and MSDU link pointer from REO
74  * ring descriptor. The cache is created per peer, per TID
75  *
76  * Returns: None
77  */
78 static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
79 {
80 	if (peer->rx_tid[tid].dst_ring_desc)
81 		qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
82 
83 	peer->rx_tid[tid].dst_ring_desc = NULL;
84 }
85 
86 /*
87  * dp_rx_reorder_flush_frag(): Flush the frag list
88  * @peer: Pointer to the peer data structure
89  * @tid: Transmit ID (TID)
90  *
91  * Flush the per-TID frag list
92  *
93  * Returns: None
94  */
95 void dp_rx_reorder_flush_frag(struct dp_peer *peer,
96 			 unsigned int tid)
97 {
98 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
99 
100 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
101 				FL("Flushing TID %d"), tid);
102 
103 	rx_reorder_array_elem = peer->rx_tid[tid].array;
104 	if (rx_reorder_array_elem->head) {
105 		dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
106 		rx_reorder_array_elem->head = NULL;
107 		rx_reorder_array_elem->tail = NULL;
108 	}
109 }
110 
111 /*
112  * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
113  * @soc: DP SOC
114  *
115  * Flush fragments of all waitlisted TID's
116  *
117  * Returns: None
118  */
119 void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
120 {
121 	struct dp_rx_tid *rx_reorder, *tmp;
122 	uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
123 
124 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
125 			   defrag_waitlist_elem, tmp) {
126 		struct dp_peer *peer;
127 		struct dp_rx_tid *rx_reorder_base;
128 		unsigned int tid;
129 
130 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
131 				FL("Current time  %u"), now_ms);
132 
133 		if (rx_reorder->defrag_timeout_ms > now_ms)
134 			break;
135 
136 		tid = rx_reorder->tid;
137 		if (tid >= DP_MAX_TIDS) {
138 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
139 				  "%s: TID out of bounds: %d", __func__, tid);
140 			qdf_assert(0);
141 			continue;
142 		}
143 		/* get index 0 of the rx_reorder array */
144 		rx_reorder_base = rx_reorder - tid;
145 		peer =
146 			container_of(rx_reorder_base, struct dp_peer,
147 				     rx_tid[0]);
148 
149 		TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
150 			     defrag_waitlist_elem);
151 		//dp_rx_defrag_waitlist_remove(peer, tid);
152 		dp_rx_reorder_flush_frag(peer, tid);
153 	}
154 }
155 
156 /*
157  * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
158  * @peer: Pointer to the peer data structure
159  * @tid: Transmit ID (TID)
160  *
161  * Appends per-tid fragments to global fragment wait list
162  *
163  * Returns: None
164  */
165 static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
166 {
167 	struct dp_soc *psoc = peer->vdev->pdev->soc;
168 	struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
169 
170 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
171 				FL("Adding TID %u to waitlist"), tid);
172 
173 	/* TODO: use LIST macros instead of TAIL macros */
174 	TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
175 				defrag_waitlist_elem);
176 }
177 
178 /*
179  * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
180  * @peer: Pointer to the peer data structure
181  * @tid: Transmit ID (TID)
182  *
183  * Remove fragments from waitlist
184  *
185  * Returns: None
186  */
187 void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
188 {
189 	struct dp_pdev *pdev = peer->vdev->pdev;
190 	struct dp_soc *soc = pdev->soc;
191 	struct dp_rx_tid *rx_reorder;
192 
193 	if (tid > DP_MAX_TIDS) {
194 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
195 			"TID out of bounds: %d", tid);
196 		qdf_assert(0);
197 		return;
198 	}
199 
200 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
201 				FL("Remove TID %u from waitlist"), tid);
202 
203 	TAILQ_FOREACH(rx_reorder, &soc->rx.defrag.waitlist,
204 			   defrag_waitlist_elem) {
205 		if (rx_reorder->tid == tid)
206 			TAILQ_REMOVE(&soc->rx.defrag.waitlist,
207 				rx_reorder, defrag_waitlist_elem);
208 	}
209 }
210 
211 /*
212  * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
213  * @peer: Pointer to the peer data structure
214  * @tid: Transmit ID (TID)
215  * @head_addr: Pointer to head list
216  * @tail_addr: Pointer to tail list
217  * @frag: Incoming fragment
218  * @all_frag_present: Flag to indicate whether all fragments are received
219  *
220  * Build a per-tid, per-sequence fragment list.
221  *
222  * Returns: Success, if inserted
223  */
224 static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
225 	qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
226 	uint8_t *all_frag_present)
227 {
228 	qdf_nbuf_t next;
229 	qdf_nbuf_t prev = NULL;
230 	qdf_nbuf_t cur;
231 	uint16_t head_fragno, cur_fragno, next_fragno;
232 	uint8_t last_morefrag = 1, count = 0;
233 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
234 	uint8_t *rx_desc_info;
235 
236 
237 	qdf_assert(frag);
238 	qdf_assert(head_addr);
239 	qdf_assert(tail_addr);
240 
241 	*all_frag_present = 0;
242 	rx_desc_info = qdf_nbuf_data(frag);
243 	cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
244 
245 	/* If this is the first fragment */
246 	if (!(*head_addr)) {
247 		*head_addr = *tail_addr = frag;
248 		qdf_nbuf_set_next(*tail_addr, NULL);
249 		rx_tid->curr_frag_num = cur_fragno;
250 
251 		goto insert_done;
252 	}
253 
254 	/* In sequence fragment */
255 	if (cur_fragno > rx_tid->curr_frag_num) {
256 		qdf_nbuf_set_next(*tail_addr, frag);
257 		*tail_addr = frag;
258 		qdf_nbuf_set_next(*tail_addr, NULL);
259 		rx_tid->curr_frag_num = cur_fragno;
260 	} else {
261 		/* Out of sequence fragment */
262 		cur = *head_addr;
263 		rx_desc_info = qdf_nbuf_data(cur);
264 		head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
265 
266 		if (cur_fragno == head_fragno) {
267 			qdf_nbuf_free(frag);
268 			goto insert_fail;
269 		} else if (head_fragno > cur_fragno) {
270 			qdf_nbuf_set_next(frag, cur);
271 			cur = frag;
272 			*head_addr = frag; /* head pointer to be updated */
273 		} else {
274 			while ((cur_fragno > head_fragno) && cur != NULL) {
275 				prev = cur;
276 				cur = qdf_nbuf_next(cur);
277 				rx_desc_info = qdf_nbuf_data(cur);
278 				head_fragno =
279 					dp_rx_frag_get_mpdu_frag_number(
280 								rx_desc_info);
281 			}
282 
283 			if (cur_fragno == head_fragno) {
284 				qdf_nbuf_free(frag);
285 				goto insert_fail;
286 			}
287 
288 			qdf_nbuf_set_next(prev, frag);
289 			qdf_nbuf_set_next(frag, cur);
290 		}
291 	}
292 
293 	next = qdf_nbuf_next(*head_addr);
294 
295 	rx_desc_info = qdf_nbuf_data(*tail_addr);
296 	last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
297 
298 	/* TODO: optimize the loop */
299 	if (!last_morefrag) {
300 		/* Check if all fragments are present */
301 		do {
302 			rx_desc_info = qdf_nbuf_data(next);
303 			next_fragno =
304 				dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
305 			count++;
306 
307 			if (next_fragno != count)
308 				break;
309 
310 			next = qdf_nbuf_next(next);
311 		} while (next);
312 
313 		if (!next) {
314 			*all_frag_present = 1;
315 			return QDF_STATUS_SUCCESS;
316 		}
317 	}
318 
319 insert_done:
320 	return QDF_STATUS_SUCCESS;
321 
322 insert_fail:
323 	return QDF_STATUS_E_FAILURE;
324 }
325 
326 
327 /*
328  * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
329  * @msdu: Pointer to the fragment
330  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
331  *
332  * decap tkip encrypted fragment
333  *
334  * Returns: QDF_STATUS
335  */
336 static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
337 {
338 	uint8_t *ivp, *orig_hdr;
339 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
340 
341 	/* start of 802.11 header info */
342 	orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
343 
344 	/* TKIP header is located post 802.11 header */
345 	ivp = orig_hdr + hdrlen;
346 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
347 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
348 			"IEEE80211_WEP_EXTIV is missing in TKIP fragment");
349 		return QDF_STATUS_E_DEFRAG_ERROR;
350 	}
351 
352 	qdf_mem_move(orig_hdr + dp_f_tkip.ic_header, orig_hdr, hdrlen);
353 
354 	qdf_nbuf_pull_head(msdu, dp_f_tkip.ic_header);
355 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
356 
357 	return QDF_STATUS_SUCCESS;
358 }
359 
360 /*
361  * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
362  * @nbuf: Pointer to the fragment buffer
363  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
364  *
365  * Remove MIC information from CCMP fragment
366  *
367  * Returns: QDF_STATUS
368  */
369 static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
370 {
371 	uint8_t *ivp, *orig_hdr;
372 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
373 
374 	/* start of the 802.11 header */
375 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
376 
377 	/* CCMP header is located after 802.11 header */
378 	ivp = orig_hdr + hdrlen;
379 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
380 		return QDF_STATUS_E_DEFRAG_ERROR;
381 
382 	qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
383 
384 	return QDF_STATUS_SUCCESS;
385 }
386 
387 /*
388  * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
389  * @nbuf: Pointer to the fragment
390  * @hdrlen: length of the header information
391  *
392  * decap CCMP encrypted fragment
393  *
394  * Returns: QDF_STATUS
395  */
396 static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
397 {
398 	uint8_t *ivp, *origHdr;
399 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
400 
401 	origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
402 	ivp = origHdr + hdrlen;
403 
404 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
405 		return QDF_STATUS_E_DEFRAG_ERROR;
406 
407 	/* Let's pull the header later */
408 
409 	return QDF_STATUS_SUCCESS;
410 }
411 
412 /*
413  * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
414  * @msdu: Pointer to the fragment
415  * @hdrlen: length of the header information
416  *
417  * decap WEP encrypted fragment
418  *
419  * Returns: QDF_STATUS
420  */
421 static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
422 {
423 	uint8_t *origHdr;
424 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
425 
426 	origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
427 	qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
428 
429 	qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
430 
431 	return QDF_STATUS_SUCCESS;
432 }
433 
434 /*
435  * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
436  * @nbuf: Pointer to the fragment
437  *
438  * Calculate the header size of the received fragment
439  *
440  * Returns: header size (uint16_t)
441  */
442 static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
443 {
444 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
445 	uint16_t size = sizeof(struct ieee80211_frame);
446 	uint16_t fc = 0;
447 	uint32_t to_ds, fr_ds;
448 	uint8_t frm_ctrl_valid;
449 	uint16_t frm_ctrl_field;
450 
451 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
452 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
453 	frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
454 	frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
455 
456 	if (to_ds && fr_ds)
457 		size += IEEE80211_ADDR_LEN;
458 
459 	if (frm_ctrl_valid) {
460 		fc = frm_ctrl_field;
461 
462 		/* use 1-st byte for validation */
463 		if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
464 			size += sizeof(uint16_t);
465 			/* use 2-nd byte for validation */
466 			if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
467 				size += sizeof(struct ieee80211_htc);
468 		}
469 	}
470 
471 	return size;
472 }
473 
474 /*
475  * dp_rx_defrag_michdr(): Calculate a psuedo MIC header
476  * @wh0: Pointer to the wireless header of the fragment
477  * @hdr: Array to hold the psuedo header
478  *
479  * Calculate a psuedo MIC header
480  *
481  * Returns: None
482  */
483 static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
484 				uint8_t hdr[])
485 {
486 	const struct ieee80211_frame_addr4 *wh =
487 		(const struct ieee80211_frame_addr4 *)wh0;
488 
489 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
490 	case IEEE80211_FC1_DIR_NODS:
491 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
492 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
493 					   wh->i_addr2);
494 		break;
495 	case IEEE80211_FC1_DIR_TODS:
496 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
497 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
498 					   wh->i_addr2);
499 		break;
500 	case IEEE80211_FC1_DIR_FROMDS:
501 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
502 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
503 					   wh->i_addr3);
504 		break;
505 	case IEEE80211_FC1_DIR_DSTODS:
506 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
507 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
508 					   wh->i_addr4);
509 		break;
510 	}
511 
512 	/*
513 	 * Bit 7 is IEEE80211_FC0_SUBTYPE_QOS for data frame, but
514 	 * it could also be set for deauth, disassoc, action, etc. for
515 	 * a mgt type frame. It comes into picture for MFP.
516 	 */
517 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
518 		const struct ieee80211_qosframe *qwh =
519 			(const struct ieee80211_qosframe *)wh;
520 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
521 	} else {
522 		hdr[12] = 0;
523 	}
524 
525 	hdr[13] = hdr[14] = hdr[15] = 0;	/* reserved */
526 }
527 
528 /*
529  * dp_rx_defrag_mic(): Calculate MIC header
530  * @key: Pointer to the key
531  * @wbuf: fragment buffer
532  * @off: Offset
533  * @data_len: Data lengh
534  * @mic: Array to hold MIC
535  *
536  * Calculate a psuedo MIC header
537  *
538  * Returns: QDF_STATUS
539  */
540 static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
541 		uint16_t off, uint16_t data_len, uint8_t mic[])
542 {
543 	uint8_t hdr[16] = { 0, };
544 	uint32_t l, r;
545 	const uint8_t *data;
546 	uint32_t space;
547 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
548 
549 	dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
550 		+ rx_desc_len), hdr);
551 	l = dp_rx_get_le32(key);
552 	r = dp_rx_get_le32(key + 4);
553 
554 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
555 	l ^= dp_rx_get_le32(hdr);
556 	dp_rx_michael_block(l, r);
557 	l ^= dp_rx_get_le32(&hdr[4]);
558 	dp_rx_michael_block(l, r);
559 	l ^= dp_rx_get_le32(&hdr[8]);
560 	dp_rx_michael_block(l, r);
561 	l ^= dp_rx_get_le32(&hdr[12]);
562 	dp_rx_michael_block(l, r);
563 
564 	/* first buffer has special handling */
565 	data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len + off;
566 	space = qdf_nbuf_len(wbuf) - rx_desc_len - off;
567 
568 	for (;; ) {
569 		if (space > data_len)
570 			space = data_len;
571 
572 		/* collect 32-bit blocks from current buffer */
573 		while (space >= sizeof(uint32_t)) {
574 			l ^= dp_rx_get_le32(data);
575 			dp_rx_michael_block(l, r);
576 			data += sizeof(uint32_t);
577 			space -= sizeof(uint32_t);
578 			data_len -= sizeof(uint32_t);
579 		}
580 		if (data_len < sizeof(uint32_t))
581 			break;
582 
583 		wbuf = qdf_nbuf_next(wbuf);
584 		if (wbuf == NULL)
585 			return QDF_STATUS_E_DEFRAG_ERROR;
586 
587 		if (space != 0) {
588 			const uint8_t *data_next;
589 			/*
590 			 * Block straddles buffers, split references.
591 			 */
592 			data_next =
593 				(uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
594 			if ((qdf_nbuf_len(wbuf) - rx_desc_len) <
595 				sizeof(uint32_t) - space) {
596 				return QDF_STATUS_E_DEFRAG_ERROR;
597 			}
598 			switch (space) {
599 			case 1:
600 				l ^= dp_rx_get_le32_split(data[0],
601 					data_next[0], data_next[1],
602 					data_next[2]);
603 				data = data_next + 3;
604 				space = (qdf_nbuf_len(wbuf) - rx_desc_len)
605 					- 3;
606 				break;
607 			case 2:
608 				l ^= dp_rx_get_le32_split(data[0], data[1],
609 						    data_next[0], data_next[1]);
610 				data = data_next + 2;
611 				space = (qdf_nbuf_len(wbuf) - rx_desc_len)
612 					- 2;
613 				break;
614 			case 3:
615 				l ^= dp_rx_get_le32_split(data[0], data[1],
616 					data[2], data_next[0]);
617 				data = data_next + 1;
618 				space = (qdf_nbuf_len(wbuf) - rx_desc_len)
619 					- 1;
620 				break;
621 			}
622 			dp_rx_michael_block(l, r);
623 			data_len -= sizeof(uint32_t);
624 		} else {
625 			/*
626 			 * Setup for next buffer.
627 			 */
628 			data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
629 			space = qdf_nbuf_len(wbuf) - rx_desc_len;
630 		}
631 	}
632 	/* Last block and padding (0x5a, 4..7 x 0) */
633 	switch (data_len) {
634 	case 0:
635 		l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
636 		break;
637 	case 1:
638 		l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
639 		break;
640 	case 2:
641 		l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
642 		break;
643 	case 3:
644 		l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
645 		break;
646 	}
647 	dp_rx_michael_block(l, r);
648 	dp_rx_michael_block(l, r);
649 	dp_rx_put_le32(mic, l);
650 	dp_rx_put_le32(mic + 4, r);
651 
652 	return QDF_STATUS_SUCCESS;
653 }
654 
655 /*
656  * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
657  * @key: Pointer to the key
658  * @msdu: fragment buffer
659  * @hdrlen: Length of the header information
660  *
661  * Remove MIC information from the TKIP frame
662  *
663  * Returns: QDF_STATUS
664  */
665 static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
666 					qdf_nbuf_t msdu, uint16_t hdrlen)
667 {
668 	QDF_STATUS status;
669 	uint32_t pktlen;
670 	uint8_t mic[IEEE80211_WEP_MICLEN];
671 	uint8_t mic0[IEEE80211_WEP_MICLEN];
672 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
673 
674 	pktlen = qdf_nbuf_len(msdu) - rx_desc_len;
675 
676 	status = dp_rx_defrag_mic(key, msdu, hdrlen,
677 				pktlen - (hdrlen + dp_f_tkip.ic_miclen), mic);
678 
679 	if (QDF_IS_STATUS_ERROR(status))
680 		return status;
681 
682 	qdf_nbuf_copy_bits(msdu, pktlen - dp_f_tkip.ic_miclen + rx_desc_len,
683 				dp_f_tkip.ic_miclen, (caddr_t)mic0);
684 
685 	if (!qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
686 		return QDF_STATUS_E_DEFRAG_ERROR;
687 
688 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_miclen);
689 
690 	return QDF_STATUS_SUCCESS;
691 }
692 
693 /*
694  * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
695  * @nbuf: buffer pointer
696  * @hdrsize: size of the header to be pulled
697  *
698  * Pull the RXTLV & the 802.11 headers
699  *
700  * Returns: None
701  */
702 static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
703 {
704 	qdf_nbuf_pull_head(nbuf,
705 			RX_PKT_TLVS_LEN + hdrsize);
706 
707 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
708 			"%s: final pktlen %d .11len %d\n",
709 			__func__,
710 			(uint32_t)qdf_nbuf_len(nbuf), hdrsize);
711 }
712 
713 /*
714  * dp_rx_construct_fraglist(): Construct a nbuf fraglist
715  * @peer: Pointer to the peer
716  * @head: Pointer to list of fragments
717  * @hdrsize: Size of the header to be pulled
718  *
719  * Construct a nbuf fraglist
720  *
721  * Returns: None
722  */
723 static void
724 dp_rx_construct_fraglist(struct dp_peer *peer,
725 		qdf_nbuf_t head, uint16_t hdrsize)
726 {
727 	qdf_nbuf_t msdu = qdf_nbuf_next(head);
728 	qdf_nbuf_t rx_nbuf = msdu;
729 	uint32_t len = 0;
730 
731 	while (msdu) {
732 		dp_rx_frag_pull_hdr(msdu, hdrsize);
733 		len += qdf_nbuf_len(msdu);
734 		msdu = qdf_nbuf_next(msdu);
735 	}
736 
737 	qdf_nbuf_append_ext_list(head, rx_nbuf, len);
738 	qdf_nbuf_set_next(head, NULL);
739 
740 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
741 			"%s: head len %d ext len %d data len %d \n",
742 			__func__,
743 			(uint32_t)qdf_nbuf_len(head),
744 			(uint32_t)qdf_nbuf_len(rx_nbuf),
745 			(uint32_t)(head->data_len));
746 }
747 
748 /**
749  * dp_rx_defrag_err() - rx err handler
750  * @pdev: handle to pdev object
751  * @vdev_id: vdev id
752  * @peer_mac_addr: peer mac address
753  * @tid: TID
754  * @tsf32: TSF
755  * @err_type: error type
756  * @rx_frame: rx frame
757  * @pn: PN Number
758  * @key_id: key id
759  *
760  * This function handles rx error and send MIC error notification
761  *
762  * Return: None
763  */
764 static void dp_rx_defrag_err(uint8_t vdev_id, uint8_t *peer_mac_addr,
765 	int tid, uint32_t tsf32, uint32_t err_type, qdf_nbuf_t rx_frame,
766 	uint64_t *pn, uint8_t key_id)
767 {
768 	/* TODO: Who needs to know about the TKIP MIC error */
769 }
770 
771 
772 /*
773  * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
774  * @nbuf: Pointer to the fragment buffer
775  * @hdrsize: Size of headers
776  *
777  * Transcap the fragment from 802.11 to 802.3
778  *
779  * Returns: None
780  */
781 static void
782 dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
783 {
784 	struct llc_snap_hdr_t *llchdr;
785 	struct ethernet_hdr_t *eth_hdr;
786 	uint8_t ether_type[2];
787 	uint16_t fc = 0;
788 	union dp_align_mac_addr mac_addr;
789 	uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
790 
791 	if (rx_desc_info == NULL) {
792 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
793 			"%s: Memory alloc failed ! \n", __func__);
794 		QDF_ASSERT(0);
795 		return;
796 	}
797 
798 	qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
799 
800 	llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
801 					RX_PKT_TLVS_LEN + hdrsize);
802 	qdf_mem_copy(ether_type, llchdr->ethertype, 2);
803 
804 	qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
805 				  sizeof(struct llc_snap_hdr_t) -
806 				  sizeof(struct ethernet_hdr_t)));
807 
808 	eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
809 
810 	if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
811 		fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
812 
813 	switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
814 
815 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
816 		"%s: frame control type: 0x%x", __func__, fc);
817 
818 	case IEEE80211_FC1_DIR_NODS:
819 		hal_rx_mpdu_get_addr1(rx_desc_info,
820 			&mac_addr.raw[0]);
821 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
822 			IEEE80211_ADDR_LEN);
823 		hal_rx_mpdu_get_addr2(rx_desc_info,
824 			&mac_addr.raw[0]);
825 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
826 			IEEE80211_ADDR_LEN);
827 		break;
828 	case IEEE80211_FC1_DIR_TODS:
829 		hal_rx_mpdu_get_addr3(rx_desc_info,
830 			&mac_addr.raw[0]);
831 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
832 			IEEE80211_ADDR_LEN);
833 		hal_rx_mpdu_get_addr2(rx_desc_info,
834 			&mac_addr.raw[0]);
835 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
836 			IEEE80211_ADDR_LEN);
837 		break;
838 	case IEEE80211_FC1_DIR_FROMDS:
839 		hal_rx_mpdu_get_addr1(rx_desc_info,
840 			&mac_addr.raw[0]);
841 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
842 			IEEE80211_ADDR_LEN);
843 		hal_rx_mpdu_get_addr3(rx_desc_info,
844 			&mac_addr.raw[0]);
845 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
846 			IEEE80211_ADDR_LEN);
847 		break;
848 
849 	case IEEE80211_FC1_DIR_DSTODS:
850 		hal_rx_mpdu_get_addr3(rx_desc_info,
851 			&mac_addr.raw[0]);
852 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
853 			IEEE80211_ADDR_LEN);
854 		hal_rx_mpdu_get_addr4(rx_desc_info,
855 			&mac_addr.raw[0]);
856 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
857 			IEEE80211_ADDR_LEN);
858 		break;
859 
860 	default:
861 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
862 		"%s: Unknown frame control type: 0x%x", __func__, fc);
863 	}
864 
865 	qdf_mem_copy(eth_hdr->ethertype, ether_type,
866 			sizeof(ether_type));
867 
868 	qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
869 	qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
870 	qdf_mem_free(rx_desc_info);
871 }
872 
873 /*
874  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
875  * @peer: Pointer to the peer
876  * @tid: Transmit Identifier
877  * @head: Buffer to be reinjected back
878  *
879  * Reinject the fragment chain back into REO
880  *
881  * Returns: QDF_STATUS
882  */
883  static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
884 					unsigned tid, qdf_nbuf_t head)
885 {
886 	struct dp_pdev *pdev = peer->vdev->pdev;
887 	struct dp_soc *soc = pdev->soc;
888 	struct hal_buf_info buf_info;
889 	void *link_desc_va;
890 	void *msdu0, *msdu_desc_info;
891 	void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
892 	void *dst_mpdu_desc_info, *dst_qdesc_addr;
893 	qdf_dma_addr_t paddr;
894 	uint32_t nbuf_len, seq_no, dst_ind;
895 	uint32_t *mpdu_wrd;
896 	uint32_t ret, cookie;
897 
898 	void *dst_ring_desc =
899 		peer->rx_tid[tid].dst_ring_desc;
900 	void *hal_srng = soc->reo_reinject_ring.hal_srng;
901 
902 	hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
903 
904 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
905 
906 	qdf_assert(link_desc_va);
907 
908 	msdu0 = (uint8_t *)link_desc_va +
909 		RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
910 
911 	nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
912 
913 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
914 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
915 			UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
916 
917 	/* msdu reconfig */
918 	msdu_desc_info = (uint8_t *)msdu0 +
919 		RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
920 
921 	dst_ind = hal_rx_msdu_reo_dst_ind_get(link_desc_va);
922 
923 	qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
924 
925 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
926 			FIRST_MSDU_IN_MPDU_FLAG, 1);
927 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
928 			LAST_MSDU_IN_MPDU_FLAG, 1);
929 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
930 			MSDU_CONTINUATION, 0x0);
931 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
932 			REO_DESTINATION_INDICATION, dst_ind);
933 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
934 			MSDU_LENGTH, nbuf_len);
935 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
936 			SA_IS_VALID, 1);
937 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
938 			DA_IS_VALID, 1);
939 
940 	/* change RX TLV's */
941 	hal_rx_msdu_start_msdu_len_set(
942 			qdf_nbuf_data(head), nbuf_len);
943 
944 	cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
945 
946 	/* map the nbuf before reinject it into HW */
947 	ret = qdf_nbuf_map_single(soc->osdev, head,
948 					QDF_DMA_BIDIRECTIONAL);
949 
950 	if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
951 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
952 				"%s: nbuf map failed !\n", __func__);
953 		qdf_nbuf_free(head);
954 		return QDF_STATUS_E_FAILURE;
955 	}
956 
957 	paddr = qdf_nbuf_get_frag_paddr(head, 0);
958 
959 	ret = check_x86_paddr(soc, &head, &paddr, pdev);
960 
961 	if (ret == QDF_STATUS_E_FAILURE) {
962 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
963 				"%s: x86 check failed !\n", __func__);
964 		return QDF_STATUS_E_FAILURE;
965 	}
966 
967 	hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie,
968 					HAL_RX_BUF_RBM_SW3_BM);
969 
970 	/* Lets fill entrance ring now !!! */
971 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
972 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
973 		"HAL RING Access For REO entrance SRNG Failed: %pK",
974 		hal_srng);
975 
976 		return QDF_STATUS_E_FAILURE;
977 	}
978 
979 	ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
980 
981 	qdf_assert(ent_ring_desc);
982 
983 	paddr = (uint64_t)buf_info.paddr;
984 	/* buf addr */
985 	hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
986 					buf_info.sw_cookie,
987 					HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
988 	/* mpdu desc info */
989 	ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
990 	RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
991 
992 	dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
993 	REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
994 
995 	qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
996 				sizeof(struct rx_mpdu_desc_info));
997 	qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
998 
999 	mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
1000 	seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
1001 
1002 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1003 			MSDU_COUNT, 0x1);
1004 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1005 			MPDU_SEQUENCE_NUMBER, seq_no);
1006 
1007 	/* unset frag bit */
1008 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1009 			FRAGMENT_FLAG, 0x0);
1010 
1011 	/* set sa/da valid bits */
1012 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1013 			SA_IS_VALID, 0x1);
1014 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1015 			DA_IS_VALID, 0x1);
1016 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1017 			RAW_MPDU, 0x0);
1018 
1019 	/* qdesc addr */
1020 	ent_qdesc_addr = (uint8_t *)ent_ring_desc +
1021 		REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1022 
1023 	dst_qdesc_addr = (uint8_t *)dst_ring_desc +
1024 		REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1025 
1026 	qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
1027 
1028 	HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
1029 			REO_DESTINATION_INDICATION, dst_ind);
1030 
1031 	hal_srng_access_end(soc->hal_soc, hal_srng);
1032 
1033 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1034 				"%s: reinjection done !\n", __func__);
1035 	return QDF_STATUS_SUCCESS;
1036 }
1037 
1038 /*
1039  * dp_rx_defrag(): Defragment the fragment chain
1040  * @peer: Pointer to the peer
1041  * @tid: Transmit Identifier
1042  * @frag_list_head: Pointer to head list
1043  * @frag_list_tail: Pointer to tail list
1044  *
1045  * Defragment the fragment chain
1046  *
1047  * Returns: QDF_STATUS
1048  */
1049 static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
1050 			qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
1051 {
1052 	qdf_nbuf_t tmp_next, prev;
1053 	qdf_nbuf_t cur = frag_list_head, msdu;
1054 	uint32_t index, tkip_demic = 0;
1055 	uint16_t hdr_space;
1056 	uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
1057 	struct dp_vdev *vdev = peer->vdev;
1058 
1059 	hdr_space = dp_rx_defrag_hdrsize(cur);
1060 	index = hal_rx_msdu_is_wlan_mcast(cur) ?
1061 		dp_sec_mcast : dp_sec_ucast;
1062 
1063 	/* Remove FCS from all fragments */
1064 	while (cur) {
1065 		tmp_next = qdf_nbuf_next(cur);
1066 		qdf_nbuf_set_next(cur, NULL);
1067 		qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
1068 		prev = cur;
1069 		qdf_nbuf_set_next(cur, tmp_next);
1070 		cur = tmp_next;
1071 	}
1072 	cur = frag_list_head;
1073 
1074 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1075 			"%s: Security type: %d\n", __func__,
1076 			peer->security[index].sec_type);
1077 
1078 	/* Temporary fix to drop TKIP encrypted packets */
1079 	if (peer->security[index].sec_type ==
1080 			htt_sec_type_tkip) {
1081 		return QDF_STATUS_E_DEFRAG_ERROR;
1082 	}
1083 
1084 	switch (peer->security[index].sec_type) {
1085 	case htt_sec_type_tkip:
1086 		tkip_demic = 1;
1087 
1088 	case htt_sec_type_tkip_nomic:
1089 		while (cur) {
1090 			tmp_next = qdf_nbuf_next(cur);
1091 			if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
1092 
1093 				/* TKIP decap failed, discard frags */
1094 				dp_rx_defrag_frames_free(frag_list_head);
1095 
1096 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1097 					QDF_TRACE_LEVEL_ERROR,
1098 					"dp_rx_defrag: TKIP decap failed");
1099 
1100 				return QDF_STATUS_E_DEFRAG_ERROR;
1101 			}
1102 			cur = tmp_next;
1103 		}
1104 		break;
1105 
1106 	case htt_sec_type_aes_ccmp:
1107 		while (cur) {
1108 			tmp_next = qdf_nbuf_next(cur);
1109 			if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
1110 
1111 				/* CCMP demic failed, discard frags */
1112 				dp_rx_defrag_frames_free(frag_list_head);
1113 
1114 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1115 					QDF_TRACE_LEVEL_ERROR,
1116 					"dp_rx_defrag: CCMP demic failed");
1117 
1118 				return QDF_STATUS_E_DEFRAG_ERROR;
1119 			}
1120 			if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
1121 
1122 				/* CCMP decap failed, discard frags */
1123 				dp_rx_defrag_frames_free(frag_list_head);
1124 
1125 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1126 					QDF_TRACE_LEVEL_ERROR,
1127 					"dp_rx_defrag: CCMP decap failed");
1128 
1129 				return QDF_STATUS_E_DEFRAG_ERROR;
1130 			}
1131 			cur = tmp_next;
1132 		}
1133 
1134 		/* If success, increment header to be stripped later */
1135 		hdr_space += dp_f_ccmp.ic_header;
1136 		break;
1137 	case htt_sec_type_wep40:
1138 	case htt_sec_type_wep104:
1139 	case htt_sec_type_wep128:
1140 		while (cur) {
1141 			tmp_next = qdf_nbuf_next(cur);
1142 			if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
1143 
1144 				/* WEP decap failed, discard frags */
1145 				dp_rx_defrag_frames_free(frag_list_head);
1146 
1147 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1148 					QDF_TRACE_LEVEL_ERROR,
1149 					"dp_rx_defrag: WEP decap failed");
1150 
1151 				return QDF_STATUS_E_DEFRAG_ERROR;
1152 			}
1153 			cur = tmp_next;
1154 		}
1155 
1156 		/* If success, increment header to be stripped later */
1157 		hdr_space += dp_f_wep.ic_header;
1158 		break;
1159 	default:
1160 		QDF_TRACE(QDF_MODULE_ID_TXRX,
1161 			QDF_TRACE_LEVEL_ERROR,
1162 			"dp_rx_defrag: Did not match any security type");
1163 		break;
1164 	}
1165 
1166 	if (tkip_demic) {
1167 		msdu = frag_list_tail; /* Only last fragment has the MIC */
1168 
1169 		qdf_mem_copy(key,
1170 			peer->security[index].michael_key,
1171 			sizeof(peer->security[index].michael_key));
1172 		if (dp_rx_defrag_tkip_demic(key, msdu, hdr_space)) {
1173 			qdf_nbuf_free(msdu);
1174 			dp_rx_defrag_err(vdev->vdev_id, peer->mac_addr.raw,
1175 				tid, 0, QDF_STATUS_E_DEFRAG_ERROR, msdu,
1176 				NULL, 0);
1177 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1178 				"dp_rx_defrag: TKIP demic failed");
1179 			return QDF_STATUS_E_DEFRAG_ERROR;
1180 		}
1181 	}
1182 
1183 	/* Convert the header to 802.3 header */
1184 	dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
1185 	dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
1186 
1187 	return QDF_STATUS_SUCCESS;
1188 }
1189 
1190 /*
1191  * dp_rx_defrag_cleanup(): Clean up activities
1192  * @peer: Pointer to the peer
1193  * @tid: Transmit Identifier
1194  *
1195  * Returns: None
1196  */
1197 static void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
1198 {
1199 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1200 				peer->rx_tid[tid].array;
1201 
1202 	/* Free up nbufs */
1203 	dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1204 
1205 	/* Free up saved ring descriptors */
1206 	dp_rx_clear_saved_desc_info(peer, tid);
1207 
1208 	rx_reorder_array_elem->head = NULL;
1209 	rx_reorder_array_elem->tail = NULL;
1210 	peer->rx_tid[tid].defrag_timeout_ms = 0;
1211 	peer->rx_tid[tid].curr_frag_num = 0;
1212 	peer->rx_tid[tid].curr_seq_num = 0;
1213 }
1214 
1215 /*
1216  * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
1217  * @ring_desc: Pointer to the dst ring descriptor
1218  * @peer: Pointer to the peer
1219  * @tid: Transmit Identifier
1220  *
1221  * Returns: None
1222  */
1223 static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
1224 	struct dp_peer *peer, unsigned tid)
1225 {
1226 	void *dst_ring_desc = qdf_mem_malloc(
1227 			sizeof(struct reo_destination_ring));
1228 
1229 	if (dst_ring_desc == NULL) {
1230 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1231 			"%s: Memory alloc failed !\n", __func__);
1232 		QDF_ASSERT(0);
1233 		return QDF_STATUS_E_NOMEM;
1234 	}
1235 
1236 	qdf_mem_copy(dst_ring_desc, ring_desc,
1237 		       sizeof(struct reo_destination_ring));
1238 
1239 	peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
1240 
1241 	return QDF_STATUS_SUCCESS;
1242 }
1243 
1244 /*
1245  * dp_rx_defrag_store_fragment(): Store incoming fragments
1246  * @soc: Pointer to the SOC data structure
1247  * @ring_desc: Pointer to the ring descriptor
1248  * @mpdu_desc_info: MPDU descriptor info
1249  * @tid: Traffic Identifier
1250  * @rx_desc: Pointer to rx descriptor
1251  * @rx_bfs: Number of bfs consumed
1252  *
1253  * Returns: QDF_STATUS
1254  */
1255 static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
1256 			void *ring_desc,
1257 			union dp_rx_desc_list_elem_t **head,
1258 			union dp_rx_desc_list_elem_t **tail,
1259 			struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1260 			unsigned tid, struct dp_rx_desc *rx_desc,
1261 			uint32_t *rx_bfs)
1262 {
1263 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1264 	struct dp_pdev *pdev;
1265 	struct dp_peer *peer;
1266 	uint16_t peer_id;
1267 	uint8_t fragno, more_frag, all_frag_present = 0;
1268 	uint16_t rxseq = mpdu_desc_info->mpdu_seq;
1269 	QDF_STATUS status;
1270 	struct dp_rx_tid *rx_tid;
1271 	uint8_t mpdu_sequence_control_valid;
1272 	uint8_t mpdu_frame_control_valid;
1273 	qdf_nbuf_t frag = rx_desc->nbuf;
1274 
1275 	/* Check if the packet is from a valid peer */
1276 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1277 					mpdu_desc_info->peer_meta_data);
1278 	peer = dp_peer_find_by_id(soc, peer_id);
1279 
1280 	if (!peer) {
1281 		/* We should not recieve anything from unknown peer
1282 		 * however, that might happen while we are in the monitor mode.
1283 		 * We don't need to handle that here
1284 		 */
1285 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1286 			"Unknown peer, dropping the fragment");
1287 
1288 		qdf_nbuf_free(frag);
1289 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1290 
1291 		return QDF_STATUS_E_DEFRAG_ERROR;
1292 	}
1293 
1294 	pdev = peer->vdev->pdev;
1295 	rx_tid = &peer->rx_tid[tid];
1296 
1297 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1298 
1299 	mpdu_sequence_control_valid =
1300 		hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
1301 
1302 	/* Invalid MPDU sequence control field, MPDU is of no use */
1303 	if (!mpdu_sequence_control_valid) {
1304 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1305 			"Invalid MPDU seq control field, dropping MPDU");
1306 		qdf_nbuf_free(frag);
1307 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1308 
1309 		qdf_assert(0);
1310 		goto end;
1311 	}
1312 
1313 	mpdu_frame_control_valid =
1314 		hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
1315 
1316 	/* Invalid frame control field */
1317 	if (!mpdu_frame_control_valid) {
1318 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1319 			"Invalid frame control field, dropping MPDU");
1320 		qdf_nbuf_free(frag);
1321 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1322 
1323 		qdf_assert(0);
1324 		goto end;
1325 	}
1326 
1327 	/* Current mpdu sequence */
1328 	more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
1329 
1330 	/* HW does not populate the fragment number as of now
1331 	 * need to get from the 802.11 header
1332 	 */
1333 	fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
1334 
1335 	/*
1336 	 * !more_frag: no more fragments to be delivered
1337 	 * !frag_no: packet is not fragmented
1338 	 * !rx_reorder_array_elem->head: no saved fragments so far
1339 	 */
1340 	if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
1341 		/* We should not get into this situation here.
1342 		 * It means an unfragmented packet with fragment flag
1343 		 * is delivered over the REO exception ring.
1344 		 * Typically it follows normal rx path.
1345 		 */
1346 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1347 			"Rcvd unfragmented pkt on REO Err srng, dropping");
1348 		qdf_nbuf_free(frag);
1349 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1350 
1351 		qdf_assert(0);
1352 		goto end;
1353 	}
1354 
1355 	/* Check if the fragment is for the same sequence or a different one */
1356 	if (rx_reorder_array_elem->head) {
1357 		if (rxseq != rx_tid->curr_seq_num) {
1358 
1359 			/* Drop stored fragments if out of sequence
1360 			 * fragment is received
1361 			 */
1362 			dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1363 
1364 			rx_reorder_array_elem->head = NULL;
1365 			rx_reorder_array_elem->tail = NULL;
1366 
1367 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1368 				"%s mismatch, dropping earlier sequence ",
1369 				(rxseq == rx_tid->curr_seq_num)
1370 				? "address"
1371 				: "seq number");
1372 
1373 			/*
1374 			 * The sequence number for this fragment becomes the
1375 			 * new sequence number to be processed
1376 			 */
1377 			rx_tid->curr_seq_num = rxseq;
1378 
1379 		}
1380 	} else {
1381 		/* Start of a new sequence */
1382 		dp_rx_defrag_cleanup(peer, tid);
1383 		rx_tid->curr_seq_num = rxseq;
1384 	}
1385 
1386 	/*
1387 	 * If the earlier sequence was dropped, this will be the fresh start.
1388 	 * Else, continue with next fragment in a given sequence
1389 	 */
1390 	status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
1391 			&rx_reorder_array_elem->tail, frag,
1392 			&all_frag_present);
1393 
1394 	/*
1395 	 * Currently, we can have only 6 MSDUs per-MPDU, if the current
1396 	 * packet sequence has more than 6 MSDUs for some reason, we will
1397 	 * have to use the next MSDU link descriptor and chain them together
1398 	 * before reinjection
1399 	 */
1400 	if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
1401 			(rx_reorder_array_elem->head == frag)) {
1402 
1403 		status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
1404 					peer, tid);
1405 
1406 		if (status != QDF_STATUS_SUCCESS) {
1407 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1408 				"%s: Unable to store ring desc !\n", __func__);
1409 			goto end;
1410 		}
1411 	} else {
1412 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1413 		*rx_bfs = 1;
1414 
1415 		/* Return the non-head link desc */
1416 		if (dp_rx_link_desc_return(soc, ring_desc,
1417 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1418 				QDF_STATUS_SUCCESS)
1419 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1420 					"%s: Failed to return link desc\n",
1421 					__func__);
1422 
1423 	}
1424 
1425 	if (pdev->soc->rx.flags.defrag_timeout_check)
1426 		dp_rx_defrag_waitlist_remove(peer, tid);
1427 
1428 	/* Yet to receive more fragments for this sequence number */
1429 	if (!all_frag_present) {
1430 		uint32_t now_ms =
1431 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1432 
1433 		peer->rx_tid[tid].defrag_timeout_ms =
1434 			now_ms + pdev->soc->rx.defrag.timeout_ms;
1435 
1436 		dp_rx_defrag_waitlist_add(peer, tid);
1437 
1438 		return QDF_STATUS_SUCCESS;
1439 	}
1440 
1441 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1442 		"All fragments received for sequence: %d", rxseq);
1443 
1444 	/* Process the fragments */
1445 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1446 		rx_reorder_array_elem->tail);
1447 	if (QDF_IS_STATUS_ERROR(status)) {
1448 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1449 			"Fragment processing failed");
1450 		if (dp_rx_link_desc_return(soc,
1451 					peer->rx_tid[tid].dst_ring_desc,
1452 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1453 				QDF_STATUS_SUCCESS)
1454 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1455 					"%s: Failed to return link desc\n",
1456 					__func__);
1457 		dp_rx_defrag_cleanup(peer, tid);
1458 		goto end;
1459 	}
1460 
1461 	/* Re-inject the fragments back to REO for further processing */
1462 	status = dp_rx_defrag_reo_reinject(peer, tid,
1463 			rx_reorder_array_elem->head);
1464 	if (QDF_IS_STATUS_SUCCESS(status)) {
1465 		rx_reorder_array_elem->head = NULL;
1466 		rx_reorder_array_elem->tail = NULL;
1467 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1468 		"Fragmented sequence successfully reinjected");
1469 	}
1470 	else
1471 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1472 		"Fragmented sequence reinjection failed");
1473 
1474 	dp_rx_defrag_cleanup(peer, tid);
1475 	return QDF_STATUS_SUCCESS;
1476 
1477 end:
1478 	return QDF_STATUS_E_DEFRAG_ERROR;
1479 }
1480 
1481 /**
1482  * dp_rx_frag_handle() - Handles fragmented Rx frames
1483  *
1484  * @soc: core txrx main context
1485  * @ring_desc: opaque pointer to the REO error ring descriptor
1486  * @mpdu_desc_info: MPDU descriptor information from ring descriptor
1487  * @head: head of the local descriptor free-list
1488  * @tail: tail of the local descriptor free-list
1489  * @quota: No. of units (packets) that can be serviced in one shot.
1490  *
1491  * This function implements RX 802.11 fragmentation handling
1492  * The handling is mostly same as legacy fragmentation handling.
1493  * If required, this function can re-inject the frames back to
1494  * REO ring (with proper setting to by-pass fragmentation check
1495  * but use duplicate detection / re-ordering and routing these frames
1496  * to a different core.
1497  *
1498  * Return: uint32_t: No. of elements processed
1499  */
1500 uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
1501 		struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1502 		union dp_rx_desc_list_elem_t **head,
1503 		union dp_rx_desc_list_elem_t **tail,
1504 		uint32_t quota)
1505 {
1506 	uint32_t rx_bufs_used = 0;
1507 	void *link_desc_va;
1508 	struct hal_buf_info buf_info;
1509 	struct hal_rx_msdu_list msdu_list; /* per MPDU list of MSDUs */
1510 	qdf_nbuf_t msdu = NULL;
1511 	uint32_t tid, msdu_len;
1512 	int idx, rx_bfs = 0;
1513 	QDF_STATUS status;
1514 
1515 	qdf_assert(soc);
1516 	qdf_assert(mpdu_desc_info);
1517 
1518 	/* Fragment from a valid peer */
1519 	hal_rx_reo_buf_paddr_get(ring_desc, &buf_info);
1520 
1521 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
1522 
1523 	qdf_assert(link_desc_va);
1524 
1525 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1526 		"Number of MSDUs to process, num_msdus: %d",
1527 		mpdu_desc_info->msdu_count);
1528 
1529 
1530 	if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
1531 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1532 			"Not sufficient MSDUs to process");
1533 		return rx_bufs_used;
1534 	}
1535 
1536 	/* Get msdu_list for the given MPDU */
1537 	hal_rx_msdu_list_get(link_desc_va, &msdu_list,
1538 		&mpdu_desc_info->msdu_count);
1539 
1540 	/* Process all MSDUs in the current MPDU */
1541 	for (idx = 0; (idx < mpdu_desc_info->msdu_count) && quota--; idx++) {
1542 		struct dp_rx_desc *rx_desc =
1543 			dp_rx_cookie_2_va_rxdma_buf(soc,
1544 				msdu_list.sw_cookie[idx]);
1545 
1546 		qdf_assert(rx_desc);
1547 
1548 		msdu = rx_desc->nbuf;
1549 
1550 		qdf_nbuf_unmap_single(soc->osdev, msdu,
1551 				QDF_DMA_BIDIRECTIONAL);
1552 
1553 		rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
1554 
1555 		msdu_len = hal_rx_msdu_start_msdu_len_get(
1556 				rx_desc->rx_buf_start);
1557 
1558 		qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
1559 
1560 		tid = hal_rx_mpdu_start_tid_get(rx_desc->rx_buf_start);
1561 
1562 		/* Process fragment-by-fragment */
1563 		status = dp_rx_defrag_store_fragment(soc, ring_desc,
1564 				head, tail, mpdu_desc_info,
1565 				tid, rx_desc, &rx_bfs);
1566 
1567 		if (QDF_IS_STATUS_SUCCESS(status)) {
1568 			if (rx_bfs)
1569 				rx_bufs_used++;
1570 		} else {
1571 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1572 				"Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
1573 				mpdu_desc_info->mpdu_seq,
1574 				mpdu_desc_info->msdu_count,
1575 				mpdu_desc_info->mpdu_flags);
1576 
1577 			/* No point in processing rest of the fragments */
1578 			break;
1579 		}
1580 	}
1581 
1582 	return rx_bufs_used;
1583 }
1584