xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx_defrag.c (revision bea437e2293c3d4fb1b5704fcf633aedac996962)
1 /*
2  * Copyright (c) 2017-2019 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "dp_types.h"
21 #include "dp_rx.h"
22 #include "dp_peer.h"
23 #include "hal_api.h"
24 #include "qdf_trace.h"
25 #include "qdf_nbuf.h"
26 #include "dp_internal.h"
27 #include "dp_rx_defrag.h"
28 #include <enet.h>	/* LLC_SNAP_HDR_LEN */
29 #include "dp_rx_defrag.h"
30 #include "dp_ipa.h"
31 
32 const struct dp_rx_defrag_cipher dp_f_ccmp = {
33 	"AES-CCM",
34 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
35 	IEEE80211_WEP_MICLEN,
36 	0,
37 };
38 
39 const struct dp_rx_defrag_cipher dp_f_tkip = {
40 	"TKIP",
41 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
42 	IEEE80211_WEP_CRCLEN,
43 	IEEE80211_WEP_MICLEN,
44 };
45 
46 const struct dp_rx_defrag_cipher dp_f_wep = {
47 	"WEP",
48 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
49 	IEEE80211_WEP_CRCLEN,
50 	0,
51 };
52 
53 /*
54  * dp_rx_defrag_frames_free(): Free fragment chain
55  * @frames: Fragment chain
56  *
57  * Iterates through the fragment chain and frees them
58  * Returns: None
59  */
60 static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
61 {
62 	qdf_nbuf_t next, frag = frames;
63 
64 	while (frag) {
65 		next = qdf_nbuf_next(frag);
66 		qdf_nbuf_free(frag);
67 		frag = next;
68 	}
69 }
70 
71 /*
72  * dp_rx_clear_saved_desc_info(): Clears descriptor info
73  * @peer: Pointer to the peer data structure
74  * @tid: Transmit ID (TID)
75  *
76  * Saves MPDU descriptor info and MSDU link pointer from REO
77  * ring descriptor. The cache is created per peer, per TID
78  *
79  * Returns: None
80  */
81 static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
82 {
83 	if (peer->rx_tid[tid].dst_ring_desc)
84 		qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
85 
86 	peer->rx_tid[tid].dst_ring_desc = NULL;
87 	peer->rx_tid[tid].head_frag_desc = NULL;
88 }
89 
90 static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
91 					unsigned int tid)
92 {
93 	struct dp_soc *soc;
94 	struct dp_pdev *pdev;
95 	struct dp_srng *dp_rxdma_srng;
96 	struct rx_desc_pool *rx_desc_pool;
97 	union dp_rx_desc_list_elem_t *head = NULL;
98 	union dp_rx_desc_list_elem_t *tail = NULL;
99 
100 	pdev = peer->vdev->pdev;
101 	soc = pdev->soc;
102 
103 	if (peer->rx_tid[tid].head_frag_desc) {
104 		dp_rxdma_srng = &pdev->rx_refill_buf_ring;
105 		rx_desc_pool = &soc->rx_desc_buf[pdev->pdev_id];
106 
107 		dp_rx_add_to_free_desc_list(&head, &tail,
108 					    peer->rx_tid[tid].head_frag_desc);
109 		dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
110 					1, &head, &tail);
111 	}
112 
113 	if (peer->rx_tid[tid].dst_ring_desc) {
114 		if (dp_rx_link_desc_return(soc,
115 					   peer->rx_tid[tid].dst_ring_desc,
116 					   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
117 		    QDF_STATUS_SUCCESS)
118 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
119 				  "%s: Failed to return link desc", __func__);
120 	}
121 }
122 
123 /*
124  * dp_rx_reorder_flush_frag(): Flush the frag list
125  * @peer: Pointer to the peer data structure
126  * @tid: Transmit ID (TID)
127  *
128  * Flush the per-TID frag list
129  *
130  * Returns: None
131  */
132 void dp_rx_reorder_flush_frag(struct dp_peer *peer,
133 			 unsigned int tid)
134 {
135 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
136 		  FL("Flushing TID %d"), tid);
137 
138 	if (!peer) {
139 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
140 					"%s: NULL peer", __func__);
141 		return;
142 	}
143 
144 	dp_rx_return_head_frag_desc(peer, tid);
145 	dp_rx_defrag_cleanup(peer, tid);
146 }
147 
148 /*
149  * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
150  * @soc: DP SOC
151  *
152  * Flush fragments of all waitlisted TID's
153  *
154  * Returns: None
155  */
156 void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
157 {
158 	struct dp_rx_tid *rx_reorder = NULL;
159 	struct dp_rx_tid *tmp;
160 	uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
161 	TAILQ_HEAD(, dp_rx_tid) temp_list;
162 
163 	TAILQ_INIT(&temp_list);
164 
165 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
166 		  FL("Current time  %u"), now_ms);
167 
168 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
169 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
170 			   defrag_waitlist_elem, tmp) {
171 		uint32_t tid;
172 
173 		if (rx_reorder->defrag_timeout_ms > now_ms)
174 			break;
175 
176 		tid = rx_reorder->tid;
177 		if (tid >= DP_MAX_TIDS) {
178 			qdf_assert(0);
179 			continue;
180 		}
181 
182 		TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
183 			     defrag_waitlist_elem);
184 		DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
185 
186 		/* Move to temp list and clean-up later */
187 		TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
188 				  defrag_waitlist_elem);
189 	}
190 	if (rx_reorder) {
191 		soc->rx.defrag.next_flush_ms =
192 			rx_reorder->defrag_timeout_ms;
193 	} else {
194 		soc->rx.defrag.next_flush_ms =
195 			now_ms + soc->rx.defrag.timeout_ms;
196 	}
197 
198 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
199 
200 	TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
201 			   defrag_waitlist_elem, tmp) {
202 		struct dp_peer *peer, *temp_peer = NULL;
203 
204 		qdf_spin_lock_bh(&rx_reorder->tid_lock);
205 		TAILQ_REMOVE(&temp_list, rx_reorder,
206 			     defrag_waitlist_elem);
207 		/* get address of current peer */
208 		peer =
209 			container_of(rx_reorder, struct dp_peer,
210 				     rx_tid[rx_reorder->tid]);
211 		qdf_spin_unlock_bh(&rx_reorder->tid_lock);
212 
213 		temp_peer = dp_peer_find_by_id(soc, peer->peer_ids[0]);
214 		if (temp_peer == peer) {
215 			qdf_spin_lock_bh(&rx_reorder->tid_lock);
216 			dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
217 			qdf_spin_unlock_bh(&rx_reorder->tid_lock);
218 		}
219 
220 		if (temp_peer)
221 			dp_peer_unref_del_find_by_id(temp_peer);
222 
223 	}
224 }
225 
226 /*
227  * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
228  * @peer: Pointer to the peer data structure
229  * @tid: Transmit ID (TID)
230  *
231  * Appends per-tid fragments to global fragment wait list
232  *
233  * Returns: None
234  */
235 static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
236 {
237 	struct dp_soc *psoc = peer->vdev->pdev->soc;
238 	struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
239 
240 	dp_debug("Adding TID %u to waitlist for peer %pK at MAC address %pM",
241 		 tid, peer, peer->mac_addr.raw);
242 
243 	/* TODO: use LIST macros instead of TAIL macros */
244 	qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
245 	if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
246 		psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
247 	TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
248 				defrag_waitlist_elem);
249 	DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
250 	qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
251 }
252 
253 /*
254  * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
255  * @peer: Pointer to the peer data structure
256  * @tid: Transmit ID (TID)
257  *
258  * Remove fragments from waitlist
259  *
260  * Returns: None
261  */
262 void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
263 {
264 	struct dp_pdev *pdev = peer->vdev->pdev;
265 	struct dp_soc *soc = pdev->soc;
266 	struct dp_rx_tid *rx_reorder;
267 	struct dp_rx_tid *tmp;
268 
269 	dp_debug("Removing TID %u to waitlist for peer %pK at MAC address %pM",
270 		 tid, peer, peer->mac_addr.raw);
271 
272 	if (tid >= DP_MAX_TIDS) {
273 		dp_err("TID out of bounds: %d", tid);
274 		qdf_assert_always(0);
275 	}
276 
277 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
278 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
279 			   defrag_waitlist_elem, tmp) {
280 		struct dp_peer *peer_on_waitlist;
281 
282 		/* get address of current peer */
283 		peer_on_waitlist =
284 			container_of(rx_reorder, struct dp_peer,
285 				     rx_tid[rx_reorder->tid]);
286 
287 		/* Ensure it is TID for same peer */
288 		if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
289 			TAILQ_REMOVE(&soc->rx.defrag.waitlist,
290 				rx_reorder, defrag_waitlist_elem);
291 			DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
292 		}
293 	}
294 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
295 }
296 
297 /*
298  * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
299  * @peer: Pointer to the peer data structure
300  * @tid: Transmit ID (TID)
301  * @head_addr: Pointer to head list
302  * @tail_addr: Pointer to tail list
303  * @frag: Incoming fragment
304  * @all_frag_present: Flag to indicate whether all fragments are received
305  *
306  * Build a per-tid, per-sequence fragment list.
307  *
308  * Returns: Success, if inserted
309  */
310 static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
311 	qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
312 	uint8_t *all_frag_present)
313 {
314 	qdf_nbuf_t next;
315 	qdf_nbuf_t prev = NULL;
316 	qdf_nbuf_t cur;
317 	uint16_t head_fragno, cur_fragno, next_fragno;
318 	uint8_t last_morefrag = 1, count = 0;
319 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
320 	uint8_t *rx_desc_info;
321 
322 
323 	qdf_assert(frag);
324 	qdf_assert(head_addr);
325 	qdf_assert(tail_addr);
326 
327 	*all_frag_present = 0;
328 	rx_desc_info = qdf_nbuf_data(frag);
329 	cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
330 
331 	/* If this is the first fragment */
332 	if (!(*head_addr)) {
333 		*head_addr = *tail_addr = frag;
334 		qdf_nbuf_set_next(*tail_addr, NULL);
335 		rx_tid->curr_frag_num = cur_fragno;
336 
337 		goto insert_done;
338 	}
339 
340 	/* In sequence fragment */
341 	if (cur_fragno > rx_tid->curr_frag_num) {
342 		qdf_nbuf_set_next(*tail_addr, frag);
343 		*tail_addr = frag;
344 		qdf_nbuf_set_next(*tail_addr, NULL);
345 		rx_tid->curr_frag_num = cur_fragno;
346 	} else {
347 		/* Out of sequence fragment */
348 		cur = *head_addr;
349 		rx_desc_info = qdf_nbuf_data(cur);
350 		head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
351 
352 		if (cur_fragno == head_fragno) {
353 			qdf_nbuf_free(frag);
354 			goto insert_fail;
355 		} else if (head_fragno > cur_fragno) {
356 			qdf_nbuf_set_next(frag, cur);
357 			cur = frag;
358 			*head_addr = frag; /* head pointer to be updated */
359 		} else {
360 			while ((cur_fragno > head_fragno) && cur) {
361 				prev = cur;
362 				cur = qdf_nbuf_next(cur);
363 				rx_desc_info = qdf_nbuf_data(cur);
364 				head_fragno =
365 					dp_rx_frag_get_mpdu_frag_number(
366 								rx_desc_info);
367 			}
368 
369 			if (cur_fragno == head_fragno) {
370 				qdf_nbuf_free(frag);
371 				goto insert_fail;
372 			}
373 
374 			qdf_nbuf_set_next(prev, frag);
375 			qdf_nbuf_set_next(frag, cur);
376 		}
377 	}
378 
379 	next = qdf_nbuf_next(*head_addr);
380 
381 	rx_desc_info = qdf_nbuf_data(*tail_addr);
382 	last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
383 
384 	/* TODO: optimize the loop */
385 	if (!last_morefrag) {
386 		/* Check if all fragments are present */
387 		do {
388 			rx_desc_info = qdf_nbuf_data(next);
389 			next_fragno =
390 				dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
391 			count++;
392 
393 			if (next_fragno != count)
394 				break;
395 
396 			next = qdf_nbuf_next(next);
397 		} while (next);
398 
399 		if (!next) {
400 			*all_frag_present = 1;
401 			return QDF_STATUS_SUCCESS;
402 		}
403 	}
404 
405 insert_done:
406 	return QDF_STATUS_SUCCESS;
407 
408 insert_fail:
409 	return QDF_STATUS_E_FAILURE;
410 }
411 
412 
413 /*
414  * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
415  * @msdu: Pointer to the fragment
416  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
417  *
418  * decap tkip encrypted fragment
419  *
420  * Returns: QDF_STATUS
421  */
422 static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
423 {
424 	uint8_t *ivp, *orig_hdr;
425 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
426 
427 	/* start of 802.11 header info */
428 	orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
429 
430 	/* TKIP header is located post 802.11 header */
431 	ivp = orig_hdr + hdrlen;
432 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
433 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
434 			"IEEE80211_WEP_EXTIV is missing in TKIP fragment");
435 		return QDF_STATUS_E_DEFRAG_ERROR;
436 	}
437 
438 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
439 
440 	return QDF_STATUS_SUCCESS;
441 }
442 
443 /*
444  * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
445  * @nbuf: Pointer to the fragment buffer
446  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
447  *
448  * Remove MIC information from CCMP fragment
449  *
450  * Returns: QDF_STATUS
451  */
452 static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
453 {
454 	uint8_t *ivp, *orig_hdr;
455 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
456 
457 	/* start of the 802.11 header */
458 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
459 
460 	/* CCMP header is located after 802.11 header */
461 	ivp = orig_hdr + hdrlen;
462 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
463 		return QDF_STATUS_E_DEFRAG_ERROR;
464 
465 	qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
466 
467 	return QDF_STATUS_SUCCESS;
468 }
469 
470 /*
471  * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
472  * @nbuf: Pointer to the fragment
473  * @hdrlen: length of the header information
474  *
475  * decap CCMP encrypted fragment
476  *
477  * Returns: QDF_STATUS
478  */
479 static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
480 {
481 	uint8_t *ivp, *origHdr;
482 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
483 
484 	origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
485 	ivp = origHdr + hdrlen;
486 
487 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
488 		return QDF_STATUS_E_DEFRAG_ERROR;
489 
490 	/* Let's pull the header later */
491 
492 	return QDF_STATUS_SUCCESS;
493 }
494 
495 /*
496  * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
497  * @msdu: Pointer to the fragment
498  * @hdrlen: length of the header information
499  *
500  * decap WEP encrypted fragment
501  *
502  * Returns: QDF_STATUS
503  */
504 static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
505 {
506 	uint8_t *origHdr;
507 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
508 
509 	origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
510 	qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
511 
512 	qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
513 
514 	return QDF_STATUS_SUCCESS;
515 }
516 
517 /*
518  * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
519  * @soc: soc handle
520  * @nbuf: Pointer to the fragment
521  *
522  * Calculate the header size of the received fragment
523  *
524  * Returns: header size (uint16_t)
525  */
526 static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
527 {
528 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
529 	uint16_t size = sizeof(struct ieee80211_frame);
530 	uint16_t fc = 0;
531 	uint32_t to_ds, fr_ds;
532 	uint8_t frm_ctrl_valid;
533 	uint16_t frm_ctrl_field;
534 
535 	to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
536 	fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
537 	frm_ctrl_valid =
538 		hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
539 						    rx_tlv_hdr);
540 	frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
541 
542 	if (to_ds && fr_ds)
543 		size += QDF_MAC_ADDR_SIZE;
544 
545 	if (frm_ctrl_valid) {
546 		fc = frm_ctrl_field;
547 
548 		/* use 1-st byte for validation */
549 		if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
550 			size += sizeof(uint16_t);
551 			/* use 2-nd byte for validation */
552 			if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
553 				size += sizeof(struct ieee80211_htc);
554 		}
555 	}
556 
557 	return size;
558 }
559 
560 /*
561  * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
562  * @wh0: Pointer to the wireless header of the fragment
563  * @hdr: Array to hold the pseudo header
564  *
565  * Calculate a pseudo MIC header
566  *
567  * Returns: None
568  */
569 static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
570 				uint8_t hdr[])
571 {
572 	const struct ieee80211_frame_addr4 *wh =
573 		(const struct ieee80211_frame_addr4 *)wh0;
574 
575 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
576 	case IEEE80211_FC1_DIR_NODS:
577 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
578 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
579 					   wh->i_addr2);
580 		break;
581 	case IEEE80211_FC1_DIR_TODS:
582 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
583 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
584 					   wh->i_addr2);
585 		break;
586 	case IEEE80211_FC1_DIR_FROMDS:
587 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
588 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
589 					   wh->i_addr3);
590 		break;
591 	case IEEE80211_FC1_DIR_DSTODS:
592 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
593 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
594 					   wh->i_addr4);
595 		break;
596 	}
597 
598 	/*
599 	 * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
600 	 * it could also be set for deauth, disassoc, action, etc. for
601 	 * a mgt type frame. It comes into picture for MFP.
602 	 */
603 	if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
604 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
605 				IEEE80211_FC1_DIR_DSTODS) {
606 			const struct ieee80211_qosframe_addr4 *qwh =
607 				(const struct ieee80211_qosframe_addr4 *)wh;
608 			hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
609 		} else {
610 			const struct ieee80211_qosframe *qwh =
611 				(const struct ieee80211_qosframe *)wh;
612 			hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
613 		}
614 	} else {
615 		hdr[12] = 0;
616 	}
617 
618 	hdr[13] = hdr[14] = hdr[15] = 0;	/* reserved */
619 }
620 
621 /*
622  * dp_rx_defrag_mic(): Calculate MIC header
623  * @key: Pointer to the key
624  * @wbuf: fragment buffer
625  * @off: Offset
626  * @data_len: Data length
627  * @mic: Array to hold MIC
628  *
629  * Calculate a pseudo MIC header
630  *
631  * Returns: QDF_STATUS
632  */
633 static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
634 		uint16_t off, uint16_t data_len, uint8_t mic[])
635 {
636 	uint8_t hdr[16] = { 0, };
637 	uint32_t l, r;
638 	const uint8_t *data;
639 	uint32_t space;
640 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
641 
642 	dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
643 		+ rx_desc_len), hdr);
644 
645 	l = dp_rx_get_le32(key);
646 	r = dp_rx_get_le32(key + 4);
647 
648 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
649 	l ^= dp_rx_get_le32(hdr);
650 	dp_rx_michael_block(l, r);
651 	l ^= dp_rx_get_le32(&hdr[4]);
652 	dp_rx_michael_block(l, r);
653 	l ^= dp_rx_get_le32(&hdr[8]);
654 	dp_rx_michael_block(l, r);
655 	l ^= dp_rx_get_le32(&hdr[12]);
656 	dp_rx_michael_block(l, r);
657 
658 	/* first buffer has special handling */
659 	data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
660 	space = qdf_nbuf_len(wbuf) - off;
661 
662 	for (;; ) {
663 		if (space > data_len)
664 			space = data_len;
665 
666 		/* collect 32-bit blocks from current buffer */
667 		while (space >= sizeof(uint32_t)) {
668 			l ^= dp_rx_get_le32(data);
669 			dp_rx_michael_block(l, r);
670 			data += sizeof(uint32_t);
671 			space -= sizeof(uint32_t);
672 			data_len -= sizeof(uint32_t);
673 		}
674 		if (data_len < sizeof(uint32_t))
675 			break;
676 
677 		wbuf = qdf_nbuf_next(wbuf);
678 		if (!wbuf)
679 			return QDF_STATUS_E_DEFRAG_ERROR;
680 
681 		if (space != 0) {
682 			const uint8_t *data_next;
683 			/*
684 			 * Block straddles buffers, split references.
685 			 */
686 			data_next =
687 				(uint8_t *)qdf_nbuf_data(wbuf) + off;
688 			if ((qdf_nbuf_len(wbuf)) <
689 				sizeof(uint32_t) - space) {
690 				return QDF_STATUS_E_DEFRAG_ERROR;
691 			}
692 			switch (space) {
693 			case 1:
694 				l ^= dp_rx_get_le32_split(data[0],
695 					data_next[0], data_next[1],
696 					data_next[2]);
697 				data = data_next + 3;
698 				space = (qdf_nbuf_len(wbuf) - off) - 3;
699 				break;
700 			case 2:
701 				l ^= dp_rx_get_le32_split(data[0], data[1],
702 						    data_next[0], data_next[1]);
703 				data = data_next + 2;
704 				space = (qdf_nbuf_len(wbuf) - off) - 2;
705 				break;
706 			case 3:
707 				l ^= dp_rx_get_le32_split(data[0], data[1],
708 					data[2], data_next[0]);
709 				data = data_next + 1;
710 				space = (qdf_nbuf_len(wbuf) - off) - 1;
711 				break;
712 			}
713 			dp_rx_michael_block(l, r);
714 			data_len -= sizeof(uint32_t);
715 		} else {
716 			/*
717 			 * Setup for next buffer.
718 			 */
719 			data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
720 			space = qdf_nbuf_len(wbuf) - off;
721 		}
722 	}
723 	/* Last block and padding (0x5a, 4..7 x 0) */
724 	switch (data_len) {
725 	case 0:
726 		l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
727 		break;
728 	case 1:
729 		l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
730 		break;
731 	case 2:
732 		l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
733 		break;
734 	case 3:
735 		l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
736 		break;
737 	}
738 	dp_rx_michael_block(l, r);
739 	dp_rx_michael_block(l, r);
740 	dp_rx_put_le32(mic, l);
741 	dp_rx_put_le32(mic + 4, r);
742 
743 	return QDF_STATUS_SUCCESS;
744 }
745 
746 /*
747  * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
748  * @key: Pointer to the key
749  * @msdu: fragment buffer
750  * @hdrlen: Length of the header information
751  *
752  * Remove MIC information from the TKIP frame
753  *
754  * Returns: QDF_STATUS
755  */
756 static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
757 					qdf_nbuf_t msdu, uint16_t hdrlen)
758 {
759 	QDF_STATUS status;
760 	uint32_t pktlen = 0;
761 	uint8_t mic[IEEE80211_WEP_MICLEN];
762 	uint8_t mic0[IEEE80211_WEP_MICLEN];
763 	qdf_nbuf_t prev = NULL, next;
764 
765 	next = msdu;
766 	while (next) {
767 		pktlen += (qdf_nbuf_len(next) - hdrlen);
768 		prev = next;
769 		dp_debug("%s pktlen %u", __func__,
770 			 (uint32_t)(qdf_nbuf_len(next) - hdrlen));
771 		next = qdf_nbuf_next(next);
772 	}
773 
774 	if (!prev) {
775 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
776 			  "%s Defrag chaining failed !\n", __func__);
777 		return QDF_STATUS_E_DEFRAG_ERROR;
778 	}
779 
780 	qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
781 			   dp_f_tkip.ic_miclen, (caddr_t)mic0);
782 	qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
783 	pktlen -= dp_f_tkip.ic_miclen;
784 
785 	status = dp_rx_defrag_mic(key, msdu, hdrlen,
786 				pktlen, mic);
787 
788 	if (QDF_IS_STATUS_ERROR(status))
789 		return status;
790 
791 	if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
792 		return QDF_STATUS_E_DEFRAG_ERROR;
793 
794 	return QDF_STATUS_SUCCESS;
795 }
796 
797 /*
798  * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
799  * @nbuf: buffer pointer
800  * @hdrsize: size of the header to be pulled
801  *
802  * Pull the RXTLV & the 802.11 headers
803  *
804  * Returns: None
805  */
806 static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
807 {
808 	qdf_nbuf_pull_head(nbuf,
809 			RX_PKT_TLVS_LEN + hdrsize);
810 
811 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
812 		  "%s: final pktlen %d .11len %d",
813 		  __func__, (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
814 }
815 
816 /*
817  * dp_rx_construct_fraglist(): Construct a nbuf fraglist
818  * @peer: Pointer to the peer
819  * @head: Pointer to list of fragments
820  * @hdrsize: Size of the header to be pulled
821  *
822  * Construct a nbuf fraglist
823  *
824  * Returns: None
825  */
826 static void
827 dp_rx_construct_fraglist(struct dp_peer *peer,
828 		qdf_nbuf_t head, uint16_t hdrsize)
829 {
830 	qdf_nbuf_t msdu = qdf_nbuf_next(head);
831 	qdf_nbuf_t rx_nbuf = msdu;
832 	uint32_t len = 0;
833 
834 	while (msdu) {
835 		dp_rx_frag_pull_hdr(msdu, hdrsize);
836 		len += qdf_nbuf_len(msdu);
837 		msdu = qdf_nbuf_next(msdu);
838 	}
839 
840 	qdf_nbuf_append_ext_list(head, rx_nbuf, len);
841 	qdf_nbuf_set_next(head, NULL);
842 	qdf_nbuf_set_is_frag(head, 1);
843 
844 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
845 		  "%s: head len %d ext len %d data len %d ",
846 		  __func__,
847 		  (uint32_t)qdf_nbuf_len(head),
848 		  (uint32_t)qdf_nbuf_len(rx_nbuf),
849 		  (uint32_t)(head->data_len));
850 }
851 
852 /**
853  * dp_rx_defrag_err() - rx err handler
854  * @pdev: handle to pdev object
855  * @vdev_id: vdev id
856  * @peer_mac_addr: peer mac address
857  * @tid: TID
858  * @tsf32: TSF
859  * @err_type: error type
860  * @rx_frame: rx frame
861  * @pn: PN Number
862  * @key_id: key id
863  *
864  * This function handles rx error and send MIC error notification
865  *
866  * Return: None
867  */
868 static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
869 {
870 	struct ol_if_ops *tops = NULL;
871 	struct dp_pdev *pdev = vdev->pdev;
872 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
873 	uint8_t *orig_hdr;
874 	struct ieee80211_frame *wh;
875 	struct cdp_rx_mic_err_info mic_failure_info;
876 
877 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
878 	wh = (struct ieee80211_frame *)orig_hdr;
879 
880 	qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
881 			 (struct qdf_mac_addr *)&wh->i_addr1);
882 	qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
883 			 (struct qdf_mac_addr *)&wh->i_addr2);
884 	mic_failure_info.key_id = 0;
885 	mic_failure_info.multicast =
886 		IEEE80211_IS_MULTICAST(wh->i_addr1);
887 	qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
888 	mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
889 	mic_failure_info.data = (uint8_t *)wh;
890 	mic_failure_info.vdev_id = vdev->vdev_id;
891 
892 	tops = pdev->soc->cdp_soc.ol_ops;
893 	if (tops->rx_mic_error)
894 		tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
895 				   &mic_failure_info);
896 }
897 
898 
899 /*
900  * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
901  * @soc: dp soc handle
902  * @nbuf: Pointer to the fragment buffer
903  * @hdrsize: Size of headers
904  *
905  * Transcap the fragment from 802.11 to 802.3
906  *
907  * Returns: None
908  */
909 static void
910 dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc,
911 			   qdf_nbuf_t nbuf, uint16_t hdrsize)
912 {
913 	struct llc_snap_hdr_t *llchdr;
914 	struct ethernet_hdr_t *eth_hdr;
915 	uint8_t ether_type[2];
916 	uint16_t fc = 0;
917 	union dp_align_mac_addr mac_addr;
918 	uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
919 
920 	if (!rx_desc_info) {
921 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
922 			"%s: Memory alloc failed ! ", __func__);
923 		QDF_ASSERT(0);
924 		return;
925 	}
926 
927 	qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
928 
929 	llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
930 					RX_PKT_TLVS_LEN + hdrsize);
931 	qdf_mem_copy(ether_type, llchdr->ethertype, 2);
932 
933 	qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
934 				  sizeof(struct llc_snap_hdr_t) -
935 				  sizeof(struct ethernet_hdr_t)));
936 
937 	eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
938 
939 	if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
940 						rx_desc_info))
941 		fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
942 
943 	dp_debug("%s: frame control type: 0x%x", __func__, fc);
944 
945 	switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
946 	case IEEE80211_FC1_DIR_NODS:
947 		hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
948 				      &mac_addr.raw[0]);
949 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
950 			QDF_MAC_ADDR_SIZE);
951 		hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
952 				      &mac_addr.raw[0]);
953 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
954 			QDF_MAC_ADDR_SIZE);
955 		break;
956 	case IEEE80211_FC1_DIR_TODS:
957 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
958 				      &mac_addr.raw[0]);
959 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
960 			QDF_MAC_ADDR_SIZE);
961 		hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
962 				      &mac_addr.raw[0]);
963 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
964 			QDF_MAC_ADDR_SIZE);
965 		break;
966 	case IEEE80211_FC1_DIR_FROMDS:
967 		hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
968 				      &mac_addr.raw[0]);
969 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
970 			QDF_MAC_ADDR_SIZE);
971 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
972 				      &mac_addr.raw[0]);
973 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
974 			QDF_MAC_ADDR_SIZE);
975 		break;
976 
977 	case IEEE80211_FC1_DIR_DSTODS:
978 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
979 				      &mac_addr.raw[0]);
980 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
981 			QDF_MAC_ADDR_SIZE);
982 		hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
983 				      &mac_addr.raw[0]);
984 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
985 			QDF_MAC_ADDR_SIZE);
986 		break;
987 
988 	default:
989 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
990 		"%s: Unknown frame control type: 0x%x", __func__, fc);
991 	}
992 
993 	qdf_mem_copy(eth_hdr->ethertype, ether_type,
994 			sizeof(ether_type));
995 
996 	qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
997 	qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
998 	qdf_mem_free(rx_desc_info);
999 }
1000 
1001 /*
1002  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
1003  * @peer: Pointer to the peer
1004  * @tid: Transmit Identifier
1005  * @head: Buffer to be reinjected back
1006  *
1007  * Reinject the fragment chain back into REO
1008  *
1009  * Returns: QDF_STATUS
1010  */
1011 static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
1012 					    unsigned int tid, qdf_nbuf_t head)
1013 {
1014 	struct dp_pdev *pdev = peer->vdev->pdev;
1015 	struct dp_soc *soc = pdev->soc;
1016 	struct hal_buf_info buf_info;
1017 	void *link_desc_va;
1018 	void *msdu0, *msdu_desc_info;
1019 	void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
1020 	void *dst_mpdu_desc_info, *dst_qdesc_addr;
1021 	qdf_dma_addr_t paddr;
1022 	uint32_t nbuf_len, seq_no, dst_ind;
1023 	uint32_t *mpdu_wrd;
1024 	uint32_t ret, cookie;
1025 	hal_ring_desc_t dst_ring_desc =
1026 		peer->rx_tid[tid].dst_ring_desc;
1027 	hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
1028 	struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
1029 
1030 	head = dp_ipa_handle_rx_reo_reinject(soc, head);
1031 	if (qdf_unlikely(!head)) {
1032 		dp_err_rl("IPA RX REO reinject failed");
1033 		return QDF_STATUS_E_FAILURE;
1034 	}
1035 
1036 	ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
1037 	if (!ent_ring_desc) {
1038 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1039 			  "HAL src ring next entry NULL");
1040 		return QDF_STATUS_E_FAILURE;
1041 	}
1042 
1043 	hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
1044 
1045 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
1046 
1047 	qdf_assert(link_desc_va);
1048 
1049 	msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
1050 	nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
1051 
1052 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
1053 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
1054 			UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
1055 
1056 	/* msdu reconfig */
1057 	msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
1058 
1059 	dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
1060 
1061 	qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
1062 
1063 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1064 			FIRST_MSDU_IN_MPDU_FLAG, 1);
1065 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1066 			LAST_MSDU_IN_MPDU_FLAG, 1);
1067 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1068 			MSDU_CONTINUATION, 0x0);
1069 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1070 			REO_DESTINATION_INDICATION, dst_ind);
1071 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1072 			MSDU_LENGTH, nbuf_len);
1073 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1074 			SA_IS_VALID, 1);
1075 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1076 			DA_IS_VALID, 1);
1077 
1078 	/* change RX TLV's */
1079 	hal_rx_msdu_start_msdu_len_set(
1080 			qdf_nbuf_data(head), nbuf_len);
1081 
1082 	cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
1083 
1084 	/* map the nbuf before reinject it into HW */
1085 	ret = qdf_nbuf_map_single(soc->osdev, head,
1086 				  QDF_DMA_FROM_DEVICE);
1087 	if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
1088 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1089 				"%s: nbuf map failed !", __func__);
1090 		return QDF_STATUS_E_FAILURE;
1091 	}
1092 
1093 	/*
1094 	 * As part of rx frag handler bufffer was unmapped and rx desc
1095 	 * unmapped is set to 1. So again for defrag reinject frame reset
1096 	 * it back to 0.
1097 	 */
1098 	rx_desc->unmapped = 0;
1099 
1100 	dp_ipa_handle_rx_buf_smmu_mapping(soc, head, true);
1101 
1102 	paddr = qdf_nbuf_get_frag_paddr(head, 0);
1103 
1104 	ret = check_x86_paddr(soc, &head, &paddr, pdev);
1105 
1106 	if (ret == QDF_STATUS_E_FAILURE) {
1107 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1108 				"%s: x86 check failed !", __func__);
1109 		return QDF_STATUS_E_FAILURE;
1110 	}
1111 
1112 	hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_DEFRAG_RBM);
1113 
1114 	/* Lets fill entrance ring now !!! */
1115 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
1116 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1117 		"HAL RING Access For REO entrance SRNG Failed: %pK",
1118 		hal_srng);
1119 
1120 		return QDF_STATUS_E_FAILURE;
1121 	}
1122 
1123 	paddr = (uint64_t)buf_info.paddr;
1124 	/* buf addr */
1125 	hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
1126 				     buf_info.sw_cookie,
1127 				     HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
1128 	/* mpdu desc info */
1129 	ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
1130 						    ent_ring_desc);
1131 	dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
1132 						    dst_ring_desc);
1133 
1134 	qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
1135 				sizeof(struct rx_mpdu_desc_info));
1136 	qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
1137 
1138 	mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
1139 	seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
1140 
1141 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1142 			MSDU_COUNT, 0x1);
1143 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1144 				  MPDU_SEQUENCE_NUMBER, seq_no);
1145 	/* unset frag bit */
1146 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1147 			FRAGMENT_FLAG, 0x0);
1148 	/* set sa/da valid bits */
1149 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1150 			SA_IS_VALID, 0x1);
1151 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1152 			DA_IS_VALID, 0x1);
1153 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1154 			RAW_MPDU, 0x0);
1155 
1156 	/* qdesc addr */
1157 	ent_qdesc_addr = (uint8_t *)ent_ring_desc +
1158 		REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1159 
1160 	dst_qdesc_addr = (uint8_t *)dst_ring_desc +
1161 		REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1162 
1163 	qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
1164 
1165 	HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
1166 			REO_DESTINATION_INDICATION, dst_ind);
1167 
1168 	hal_srng_access_end(soc->hal_soc, hal_srng);
1169 
1170 	DP_STATS_INC(soc, rx.reo_reinject, 1);
1171 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1172 		  "%s: reinjection done !", __func__);
1173 	return QDF_STATUS_SUCCESS;
1174 }
1175 
1176 /*
1177  * dp_rx_defrag(): Defragment the fragment chain
1178  * @peer: Pointer to the peer
1179  * @tid: Transmit Identifier
1180  * @frag_list_head: Pointer to head list
1181  * @frag_list_tail: Pointer to tail list
1182  *
1183  * Defragment the fragment chain
1184  *
1185  * Returns: QDF_STATUS
1186  */
1187 static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
1188 			qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
1189 {
1190 	qdf_nbuf_t tmp_next, prev;
1191 	qdf_nbuf_t cur = frag_list_head, msdu;
1192 	uint32_t index, tkip_demic = 0;
1193 	uint16_t hdr_space;
1194 	uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
1195 	struct dp_vdev *vdev = peer->vdev;
1196 	struct dp_soc *soc = vdev->pdev->soc;
1197 	uint8_t status = 0;
1198 
1199 	hdr_space = dp_rx_defrag_hdrsize(soc, cur);
1200 	index = hal_rx_msdu_is_wlan_mcast(cur) ?
1201 		dp_sec_mcast : dp_sec_ucast;
1202 
1203 	/* Remove FCS from all fragments */
1204 	while (cur) {
1205 		tmp_next = qdf_nbuf_next(cur);
1206 		qdf_nbuf_set_next(cur, NULL);
1207 		qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
1208 		prev = cur;
1209 		qdf_nbuf_set_next(cur, tmp_next);
1210 		cur = tmp_next;
1211 	}
1212 	cur = frag_list_head;
1213 
1214 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1215 		  "%s: index %d Security type: %d", __func__,
1216 		  index, peer->security[index].sec_type);
1217 
1218 	switch (peer->security[index].sec_type) {
1219 	case cdp_sec_type_tkip:
1220 		tkip_demic = 1;
1221 
1222 	case cdp_sec_type_tkip_nomic:
1223 		while (cur) {
1224 			tmp_next = qdf_nbuf_next(cur);
1225 			if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
1226 
1227 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1228 					QDF_TRACE_LEVEL_ERROR,
1229 					"dp_rx_defrag: TKIP decap failed");
1230 
1231 				return QDF_STATUS_E_DEFRAG_ERROR;
1232 			}
1233 			cur = tmp_next;
1234 		}
1235 
1236 		/* If success, increment header to be stripped later */
1237 		hdr_space += dp_f_tkip.ic_header;
1238 		break;
1239 
1240 	case cdp_sec_type_aes_ccmp:
1241 		while (cur) {
1242 			tmp_next = qdf_nbuf_next(cur);
1243 			if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
1244 
1245 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1246 					QDF_TRACE_LEVEL_ERROR,
1247 					"dp_rx_defrag: CCMP demic failed");
1248 
1249 				return QDF_STATUS_E_DEFRAG_ERROR;
1250 			}
1251 			if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
1252 
1253 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1254 					QDF_TRACE_LEVEL_ERROR,
1255 					"dp_rx_defrag: CCMP decap failed");
1256 
1257 				return QDF_STATUS_E_DEFRAG_ERROR;
1258 			}
1259 			cur = tmp_next;
1260 		}
1261 
1262 		/* If success, increment header to be stripped later */
1263 		hdr_space += dp_f_ccmp.ic_header;
1264 		break;
1265 
1266 	case cdp_sec_type_wep40:
1267 	case cdp_sec_type_wep104:
1268 	case cdp_sec_type_wep128:
1269 		while (cur) {
1270 			tmp_next = qdf_nbuf_next(cur);
1271 			if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
1272 
1273 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1274 					QDF_TRACE_LEVEL_ERROR,
1275 					"dp_rx_defrag: WEP decap failed");
1276 
1277 				return QDF_STATUS_E_DEFRAG_ERROR;
1278 			}
1279 			cur = tmp_next;
1280 		}
1281 
1282 		/* If success, increment header to be stripped later */
1283 		hdr_space += dp_f_wep.ic_header;
1284 		break;
1285 	default:
1286 		QDF_TRACE(QDF_MODULE_ID_TXRX,
1287 			QDF_TRACE_LEVEL_ERROR,
1288 			"dp_rx_defrag: Did not match any security type");
1289 		break;
1290 	}
1291 
1292 	if (tkip_demic) {
1293 		msdu = frag_list_head;
1294 		qdf_mem_copy(key,
1295 			     &peer->security[index].michael_key[0],
1296 			     IEEE80211_WEP_MICLEN);
1297 		status = dp_rx_defrag_tkip_demic(key, msdu,
1298 						 RX_PKT_TLVS_LEN +
1299 						 hdr_space);
1300 
1301 		if (status) {
1302 			dp_rx_defrag_err(vdev, frag_list_head);
1303 
1304 			QDF_TRACE(QDF_MODULE_ID_TXRX,
1305 				  QDF_TRACE_LEVEL_ERROR,
1306 				  "%s: TKIP demic failed status %d",
1307 				   __func__, status);
1308 
1309 			return QDF_STATUS_E_DEFRAG_ERROR;
1310 		}
1311 	}
1312 
1313 	/* Convert the header to 802.3 header */
1314 	dp_rx_defrag_nwifi_to_8023(soc, frag_list_head, hdr_space);
1315 	dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
1316 
1317 	return QDF_STATUS_SUCCESS;
1318 }
1319 
1320 /*
1321  * dp_rx_defrag_cleanup(): Clean up activities
1322  * @peer: Pointer to the peer
1323  * @tid: Transmit Identifier
1324  *
1325  * Returns: None
1326  */
1327 void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
1328 {
1329 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1330 				peer->rx_tid[tid].array;
1331 
1332 	if (rx_reorder_array_elem) {
1333 		/* Free up nbufs */
1334 		dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1335 		rx_reorder_array_elem->head = NULL;
1336 		rx_reorder_array_elem->tail = NULL;
1337 	} else {
1338 		dp_info("Cleanup self peer %pK and TID %u at MAC address %pM",
1339 			peer, tid, peer->mac_addr.raw);
1340 	}
1341 
1342 	/* Free up saved ring descriptors */
1343 	dp_rx_clear_saved_desc_info(peer, tid);
1344 
1345 	peer->rx_tid[tid].defrag_timeout_ms = 0;
1346 	peer->rx_tid[tid].curr_frag_num = 0;
1347 	peer->rx_tid[tid].curr_seq_num = 0;
1348 }
1349 
1350 /*
1351  * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
1352  * @ring_desc: Pointer to the dst ring descriptor
1353  * @peer: Pointer to the peer
1354  * @tid: Transmit Identifier
1355  *
1356  * Returns: None
1357  */
1358 static QDF_STATUS
1359 dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
1360 				      struct dp_rx_desc *rx_desc,
1361 				      struct dp_peer *peer,
1362 				      unsigned int tid)
1363 {
1364 	void *dst_ring_desc = qdf_mem_malloc(
1365 			sizeof(struct reo_destination_ring));
1366 
1367 	if (!dst_ring_desc) {
1368 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1369 			"%s: Memory alloc failed !", __func__);
1370 		QDF_ASSERT(0);
1371 		return QDF_STATUS_E_NOMEM;
1372 	}
1373 
1374 	qdf_mem_copy(dst_ring_desc, ring_desc,
1375 		       sizeof(struct reo_destination_ring));
1376 
1377 	peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
1378 	peer->rx_tid[tid].head_frag_desc = rx_desc;
1379 
1380 	return QDF_STATUS_SUCCESS;
1381 }
1382 
1383 /*
1384  * dp_rx_defrag_store_fragment(): Store incoming fragments
1385  * @soc: Pointer to the SOC data structure
1386  * @ring_desc: Pointer to the ring descriptor
1387  * @mpdu_desc_info: MPDU descriptor info
1388  * @tid: Traffic Identifier
1389  * @rx_desc: Pointer to rx descriptor
1390  * @rx_bfs: Number of bfs consumed
1391  *
1392  * Returns: QDF_STATUS
1393  */
1394 static QDF_STATUS
1395 dp_rx_defrag_store_fragment(struct dp_soc *soc,
1396 			    hal_ring_desc_t ring_desc,
1397 			    union dp_rx_desc_list_elem_t **head,
1398 			    union dp_rx_desc_list_elem_t **tail,
1399 			    struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1400 			    unsigned int tid, struct dp_rx_desc *rx_desc,
1401 			    uint32_t *rx_bfs)
1402 {
1403 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1404 	struct dp_pdev *pdev;
1405 	struct dp_peer *peer = NULL;
1406 	uint16_t peer_id;
1407 	uint8_t fragno, more_frag, all_frag_present = 0;
1408 	uint16_t rxseq = mpdu_desc_info->mpdu_seq;
1409 	QDF_STATUS status;
1410 	struct dp_rx_tid *rx_tid;
1411 	uint8_t mpdu_sequence_control_valid;
1412 	uint8_t mpdu_frame_control_valid;
1413 	qdf_nbuf_t frag = rx_desc->nbuf;
1414 	uint32_t msdu_len;
1415 
1416 	if (qdf_nbuf_len(frag) > 0) {
1417 		dp_info("Dropping unexpected packet with skb_len: %d,"
1418 			"data len: %d, cookie: %d",
1419 			(uint32_t)qdf_nbuf_len(frag), frag->data_len,
1420 			rx_desc->cookie);
1421 		DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
1422 		goto discard_frag;
1423 	}
1424 
1425 	msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
1426 
1427 	qdf_nbuf_set_pktlen(frag, (msdu_len + RX_PKT_TLVS_LEN));
1428 	qdf_nbuf_append_ext_list(frag, NULL, 0);
1429 
1430 	/* Check if the packet is from a valid peer */
1431 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1432 					mpdu_desc_info->peer_meta_data);
1433 	peer = dp_peer_find_by_id(soc, peer_id);
1434 
1435 	if (!peer) {
1436 		/* We should not receive anything from unknown peer
1437 		 * however, that might happen while we are in the monitor mode.
1438 		 * We don't need to handle that here
1439 		 */
1440 		dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
1441 			   peer_id);
1442 		DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
1443 		goto discard_frag;
1444 	}
1445 
1446 	if (tid >= DP_MAX_TIDS) {
1447 		dp_info("TID out of bounds: %d", tid);
1448 		qdf_assert_always(0);
1449 	}
1450 
1451 	pdev = peer->vdev->pdev;
1452 	rx_tid = &peer->rx_tid[tid];
1453 
1454 	mpdu_sequence_control_valid =
1455 		hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
1456 						       rx_desc->rx_buf_start);
1457 
1458 	/* Invalid MPDU sequence control field, MPDU is of no use */
1459 	if (!mpdu_sequence_control_valid) {
1460 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1461 			"Invalid MPDU seq control field, dropping MPDU");
1462 
1463 		qdf_assert(0);
1464 		goto discard_frag;
1465 	}
1466 
1467 	mpdu_frame_control_valid =
1468 		hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
1469 						    rx_desc->rx_buf_start);
1470 
1471 	/* Invalid frame control field */
1472 	if (!mpdu_frame_control_valid) {
1473 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1474 			"Invalid frame control field, dropping MPDU");
1475 
1476 		qdf_assert(0);
1477 		goto discard_frag;
1478 	}
1479 
1480 	/* Current mpdu sequence */
1481 	more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
1482 
1483 	/* HW does not populate the fragment number as of now
1484 	 * need to get from the 802.11 header
1485 	 */
1486 	fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
1487 
1488 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1489 	if (!rx_reorder_array_elem) {
1490 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1491 			  "Rcvd Fragmented pkt before peer_tid is setup");
1492 		goto discard_frag;
1493 	}
1494 
1495 	/*
1496 	 * !more_frag: no more fragments to be delivered
1497 	 * !frag_no: packet is not fragmented
1498 	 * !rx_reorder_array_elem->head: no saved fragments so far
1499 	 */
1500 	if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
1501 		/* We should not get into this situation here.
1502 		 * It means an unfragmented packet with fragment flag
1503 		 * is delivered over the REO exception ring.
1504 		 * Typically it follows normal rx path.
1505 		 */
1506 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1507 			"Rcvd unfragmented pkt on REO Err srng, dropping");
1508 
1509 		qdf_assert(0);
1510 		goto discard_frag;
1511 	}
1512 
1513 	/* Check if the fragment is for the same sequence or a different one */
1514 	if (rx_reorder_array_elem->head) {
1515 		if (rxseq != rx_tid->curr_seq_num) {
1516 
1517 			/* Drop stored fragments if out of sequence
1518 			 * fragment is received
1519 			 */
1520 			dp_rx_reorder_flush_frag(peer, tid);
1521 
1522 			DP_STATS_INC(soc, rx.rx_frag_err, 1);
1523 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1524 				"%s mismatch, dropping earlier sequence ",
1525 				(rxseq == rx_tid->curr_seq_num)
1526 				? "address"
1527 				: "seq number");
1528 
1529 			/*
1530 			 * The sequence number for this fragment becomes the
1531 			 * new sequence number to be processed
1532 			 */
1533 			rx_tid->curr_seq_num = rxseq;
1534 		}
1535 	} else {
1536 		/* Start of a new sequence */
1537 		dp_rx_defrag_cleanup(peer, tid);
1538 		rx_tid->curr_seq_num = rxseq;
1539 	}
1540 
1541 	/*
1542 	 * If the earlier sequence was dropped, this will be the fresh start.
1543 	 * Else, continue with next fragment in a given sequence
1544 	 */
1545 	status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
1546 			&rx_reorder_array_elem->tail, frag,
1547 			&all_frag_present);
1548 
1549 	/*
1550 	 * Currently, we can have only 6 MSDUs per-MPDU, if the current
1551 	 * packet sequence has more than 6 MSDUs for some reason, we will
1552 	 * have to use the next MSDU link descriptor and chain them together
1553 	 * before reinjection
1554 	 */
1555 	if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
1556 			(rx_reorder_array_elem->head == frag)) {
1557 
1558 		qdf_assert_always(ring_desc);
1559 		status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
1560 					rx_desc, peer, tid);
1561 
1562 		if (status != QDF_STATUS_SUCCESS) {
1563 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1564 				"%s: Unable to store ring desc !", __func__);
1565 			goto discard_frag;
1566 		}
1567 	} else {
1568 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1569 		*rx_bfs = 1;
1570 
1571 		/* Return the non-head link desc */
1572 		if (ring_desc &&
1573 		    dp_rx_link_desc_return(soc, ring_desc,
1574 					   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1575 		    QDF_STATUS_SUCCESS)
1576 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1577 				  "%s: Failed to return link desc", __func__);
1578 
1579 	}
1580 
1581 	if (pdev->soc->rx.flags.defrag_timeout_check)
1582 		dp_rx_defrag_waitlist_remove(peer, tid);
1583 
1584 	/* Yet to receive more fragments for this sequence number */
1585 	if (!all_frag_present) {
1586 		uint32_t now_ms =
1587 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1588 
1589 		peer->rx_tid[tid].defrag_timeout_ms =
1590 			now_ms + pdev->soc->rx.defrag.timeout_ms;
1591 
1592 		dp_rx_defrag_waitlist_add(peer, tid);
1593 		dp_peer_unref_del_find_by_id(peer);
1594 
1595 		return QDF_STATUS_SUCCESS;
1596 	}
1597 
1598 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1599 		  "All fragments received for sequence: %d", rxseq);
1600 
1601 	/* Process the fragments */
1602 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1603 		rx_reorder_array_elem->tail);
1604 	if (QDF_IS_STATUS_ERROR(status)) {
1605 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1606 			"Fragment processing failed");
1607 
1608 		dp_rx_add_to_free_desc_list(head, tail,
1609 				peer->rx_tid[tid].head_frag_desc);
1610 		*rx_bfs = 1;
1611 
1612 		if (dp_rx_link_desc_return(soc,
1613 					peer->rx_tid[tid].dst_ring_desc,
1614 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1615 				QDF_STATUS_SUCCESS)
1616 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1617 					"%s: Failed to return link desc",
1618 					__func__);
1619 		dp_rx_defrag_cleanup(peer, tid);
1620 		goto end;
1621 	}
1622 
1623 	/* Re-inject the fragments back to REO for further processing */
1624 	status = dp_rx_defrag_reo_reinject(peer, tid,
1625 			rx_reorder_array_elem->head);
1626 	if (QDF_IS_STATUS_SUCCESS(status)) {
1627 		rx_reorder_array_elem->head = NULL;
1628 		rx_reorder_array_elem->tail = NULL;
1629 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1630 			  "Fragmented sequence successfully reinjected");
1631 	} else {
1632 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1633 		"Fragmented sequence reinjection failed");
1634 		dp_rx_return_head_frag_desc(peer, tid);
1635 	}
1636 
1637 	dp_rx_defrag_cleanup(peer, tid);
1638 
1639 	dp_peer_unref_del_find_by_id(peer);
1640 
1641 	return QDF_STATUS_SUCCESS;
1642 
1643 discard_frag:
1644 	qdf_nbuf_free(frag);
1645 	dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1646 	if (dp_rx_link_desc_return(soc, ring_desc,
1647 				   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1648 	    QDF_STATUS_SUCCESS)
1649 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1650 			  "%s: Failed to return link desc", __func__);
1651 	*rx_bfs = 1;
1652 
1653 end:
1654 	if (peer)
1655 		dp_peer_unref_del_find_by_id(peer);
1656 
1657 	DP_STATS_INC(soc, rx.rx_frag_err, 1);
1658 	return QDF_STATUS_E_DEFRAG_ERROR;
1659 }
1660 
1661 /**
1662  * dp_rx_frag_handle() - Handles fragmented Rx frames
1663  *
1664  * @soc: core txrx main context
1665  * @ring_desc: opaque pointer to the REO error ring descriptor
1666  * @mpdu_desc_info: MPDU descriptor information from ring descriptor
1667  * @head: head of the local descriptor free-list
1668  * @tail: tail of the local descriptor free-list
1669  * @quota: No. of units (packets) that can be serviced in one shot.
1670  *
1671  * This function implements RX 802.11 fragmentation handling
1672  * The handling is mostly same as legacy fragmentation handling.
1673  * If required, this function can re-inject the frames back to
1674  * REO ring (with proper setting to by-pass fragmentation check
1675  * but use duplicate detection / re-ordering and routing these frames
1676  * to a different core.
1677  *
1678  * Return: uint32_t: No. of elements processed
1679  */
1680 uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
1681 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1682 			   struct dp_rx_desc *rx_desc,
1683 			   uint8_t *mac_id,
1684 			   uint32_t quota)
1685 {
1686 	uint32_t rx_bufs_used = 0;
1687 	qdf_nbuf_t msdu = NULL;
1688 	uint32_t tid;
1689 	int rx_bfs = 0;
1690 	struct dp_pdev *pdev;
1691 	QDF_STATUS status = QDF_STATUS_SUCCESS;
1692 
1693 	qdf_assert(soc);
1694 	qdf_assert(mpdu_desc_info);
1695 	qdf_assert(rx_desc);
1696 
1697 	dp_debug("Number of MSDUs to process, num_msdus: %d",
1698 		 mpdu_desc_info->msdu_count);
1699 
1700 
1701 	if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
1702 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1703 			"Not sufficient MSDUs to process");
1704 		return rx_bufs_used;
1705 	}
1706 
1707 	/* all buffers in MSDU link belong to same pdev */
1708 	pdev = soc->pdev_list[rx_desc->pool_id];
1709 	*mac_id = rx_desc->pool_id;
1710 
1711 	msdu = rx_desc->nbuf;
1712 
1713 	qdf_nbuf_unmap_single(soc->osdev, msdu,	QDF_DMA_FROM_DEVICE);
1714 	rx_desc->unmapped = 1;
1715 
1716 	rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
1717 
1718 	tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
1719 
1720 	/* Process fragment-by-fragment */
1721 	status = dp_rx_defrag_store_fragment(soc, ring_desc,
1722 					     &pdev->free_list_head,
1723 					     &pdev->free_list_tail,
1724 					     mpdu_desc_info,
1725 					     tid, rx_desc, &rx_bfs);
1726 
1727 	if (rx_bfs)
1728 		rx_bufs_used++;
1729 
1730 	if (!QDF_IS_STATUS_SUCCESS(status))
1731 		dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
1732 			   mpdu_desc_info->mpdu_seq,
1733 			   mpdu_desc_info->msdu_count,
1734 			   mpdu_desc_info->mpdu_flags);
1735 
1736 	return rx_bufs_used;
1737 }
1738 
1739 QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
1740 				      struct dp_peer *peer, uint16_t tid,
1741 				      uint16_t rxseq, qdf_nbuf_t nbuf)
1742 {
1743 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1744 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1745 	uint8_t all_frag_present;
1746 	uint32_t msdu_len;
1747 	QDF_STATUS status;
1748 
1749 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1750 
1751 	/*
1752 	 * HW may fill in unexpected peer_id in RX PKT TLV,
1753 	 * if this peer_id related peer is valid by coincidence,
1754 	 * but actually this peer won't do dp_peer_rx_init(like SAP vdev
1755 	 * self peer), then invalid access to rx_reorder_array_elem happened.
1756 	 */
1757 	if (!rx_reorder_array_elem) {
1758 		dp_verbose_debug(
1759 			"peer id:%d mac:" QDF_MAC_ADDR_STR "drop rx frame!",
1760 			peer->peer_ids[0],
1761 			QDF_MAC_ADDR_ARRAY(peer->mac_addr.raw));
1762 		DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
1763 		qdf_nbuf_free(nbuf);
1764 		goto fail;
1765 	}
1766 
1767 	if (rx_reorder_array_elem->head &&
1768 	    rxseq != rx_tid->curr_seq_num) {
1769 		/* Drop stored fragments if out of sequence
1770 		 * fragment is received
1771 		 */
1772 		dp_rx_reorder_flush_frag(peer, tid);
1773 
1774 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1775 			  "%s: No list found for TID %d Seq# %d",
1776 				__func__, tid, rxseq);
1777 		qdf_nbuf_free(nbuf);
1778 		goto fail;
1779 	}
1780 
1781 	msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
1782 
1783 	qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
1784 
1785 	status = dp_rx_defrag_fraglist_insert(peer, tid,
1786 					      &rx_reorder_array_elem->head,
1787 			&rx_reorder_array_elem->tail, nbuf,
1788 			&all_frag_present);
1789 
1790 	if (QDF_IS_STATUS_ERROR(status)) {
1791 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1792 			  "%s Fragment insert failed", __func__);
1793 
1794 		goto fail;
1795 	}
1796 
1797 	if (soc->rx.flags.defrag_timeout_check)
1798 		dp_rx_defrag_waitlist_remove(peer, tid);
1799 
1800 	if (!all_frag_present) {
1801 		uint32_t now_ms =
1802 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1803 
1804 		peer->rx_tid[tid].defrag_timeout_ms =
1805 			now_ms + soc->rx.defrag.timeout_ms;
1806 
1807 		dp_rx_defrag_waitlist_add(peer, tid);
1808 
1809 		return QDF_STATUS_SUCCESS;
1810 	}
1811 
1812 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1813 			      rx_reorder_array_elem->tail);
1814 
1815 	if (QDF_IS_STATUS_ERROR(status)) {
1816 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1817 			  "%s Fragment processing failed", __func__);
1818 
1819 		dp_rx_return_head_frag_desc(peer, tid);
1820 		dp_rx_defrag_cleanup(peer, tid);
1821 
1822 		goto fail;
1823 	}
1824 
1825 	/* Re-inject the fragments back to REO for further processing */
1826 	status = dp_rx_defrag_reo_reinject(peer, tid,
1827 					   rx_reorder_array_elem->head);
1828 	if (QDF_IS_STATUS_SUCCESS(status)) {
1829 		rx_reorder_array_elem->head = NULL;
1830 		rx_reorder_array_elem->tail = NULL;
1831 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1832 			  "%s: Frag seq successfully reinjected",
1833 			__func__);
1834 	} else {
1835 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1836 			  "%s: Frag seq reinjection failed", __func__);
1837 		dp_rx_return_head_frag_desc(peer, tid);
1838 	}
1839 
1840 	dp_rx_defrag_cleanup(peer, tid);
1841 	return QDF_STATUS_SUCCESS;
1842 
1843 fail:
1844 	return QDF_STATUS_E_DEFRAG_ERROR;
1845 }
1846