xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx_defrag.c (revision a175314c51a4ce5cec2835cc8a8c7dc0c1810915)
1 /*
2  * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "dp_types.h"
20 #include "dp_rx.h"
21 #include "dp_peer.h"
22 #include "hal_api.h"
23 #include "qdf_trace.h"
24 #include "qdf_nbuf.h"
25 #include "dp_rx_defrag.h"
26 #include <enet.h>	/* LLC_SNAP_HDR_LEN */
27 #include "dp_rx_defrag.h"
28 
29 const struct dp_rx_defrag_cipher dp_f_ccmp = {
30 	"AES-CCM",
31 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
32 	IEEE80211_WEP_MICLEN,
33 	0,
34 };
35 
36 const struct dp_rx_defrag_cipher dp_f_tkip = {
37 	"TKIP",
38 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
39 	IEEE80211_WEP_CRCLEN,
40 	IEEE80211_WEP_MICLEN,
41 };
42 
43 const struct dp_rx_defrag_cipher dp_f_wep = {
44 	"WEP",
45 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
46 	IEEE80211_WEP_CRCLEN,
47 	0,
48 };
49 
50 /*
51  * dp_rx_defrag_frames_free(): Free fragment chain
52  * @frames: Fragment chain
53  *
54  * Iterates through the fragment chain and frees them
55  * Returns: None
56  */
57 static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
58 {
59 	qdf_nbuf_t next, frag = frames;
60 
61 	while (frag) {
62 		next = qdf_nbuf_next(frag);
63 		qdf_nbuf_free(frag);
64 		frag = next;
65 	}
66 }
67 
68 /*
69  * dp_rx_clear_saved_desc_info(): Clears descriptor info
70  * @peer: Pointer to the peer data structure
71  * @tid: Transmit ID (TID)
72  *
73  * Saves MPDU descriptor info and MSDU link pointer from REO
74  * ring descriptor. The cache is created per peer, per TID
75  *
76  * Returns: None
77  */
78 static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
79 {
80 	if (peer->rx_tid[tid].dst_ring_desc)
81 		qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
82 
83 	peer->rx_tid[tid].dst_ring_desc = NULL;
84 }
85 
86 static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
87 					unsigned int tid)
88 {
89 	struct dp_soc *soc;
90 	struct dp_pdev *pdev;
91 	struct dp_srng *dp_rxdma_srng;
92 	struct rx_desc_pool *rx_desc_pool;
93 	union dp_rx_desc_list_elem_t *head = NULL;
94 	union dp_rx_desc_list_elem_t *tail = NULL;
95 
96 	if (peer->rx_tid[tid].head_frag_desc) {
97 		pdev = peer->vdev->pdev;
98 		soc = pdev->soc;
99 		dp_rxdma_srng = &pdev->rx_refill_buf_ring;
100 		rx_desc_pool = &soc->rx_desc_buf[pdev->pdev_id];
101 
102 		dp_rx_add_to_free_desc_list(&head, &tail,
103 					    peer->rx_tid[tid].head_frag_desc);
104 		dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
105 					1, &head, &tail);
106 	}
107 }
108 
109 /*
110  * dp_rx_reorder_flush_frag(): Flush the frag list
111  * @peer: Pointer to the peer data structure
112  * @tid: Transmit ID (TID)
113  *
114  * Flush the per-TID frag list
115  *
116  * Returns: None
117  */
118 void dp_rx_reorder_flush_frag(struct dp_peer *peer,
119 			 unsigned int tid)
120 {
121 	struct dp_soc *soc;
122 
123 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
124 				FL("Flushing TID %d"), tid);
125 
126 	if (!peer) {
127 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
128 					"%s: NULL peer\n", __func__);
129 		return;
130 	}
131 
132 	soc = peer->vdev->pdev->soc;
133 
134 	if (peer->rx_tid[tid].dst_ring_desc) {
135 		if (dp_rx_link_desc_return(soc,
136 					peer->rx_tid[tid].dst_ring_desc,
137 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
138 					QDF_STATUS_SUCCESS)
139 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
140 					"%s: Failed to return link desc\n",
141 					__func__);
142 	}
143 
144 	dp_rx_return_head_frag_desc(peer, tid);
145 	dp_rx_defrag_cleanup(peer, tid);
146 }
147 
148 /*
149  * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
150  * @soc: DP SOC
151  *
152  * Flush fragments of all waitlisted TID's
153  *
154  * Returns: None
155  */
156 void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
157 {
158 	struct dp_rx_tid *rx_reorder;
159 	struct dp_rx_tid *tmp;
160 	uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
161 	TAILQ_HEAD(, dp_rx_tid) temp_list;
162 
163 	TAILQ_INIT(&temp_list);
164 
165 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
166 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
167 			   defrag_waitlist_elem, tmp) {
168 		unsigned int tid;
169 
170 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
171 				FL("Current time  %u"), now_ms);
172 
173 		if (rx_reorder->defrag_timeout_ms > now_ms)
174 			break;
175 
176 		tid = rx_reorder->tid;
177 		if (tid >= DP_MAX_TIDS) {
178 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
179 				  "%s: TID out of bounds: %d", __func__, tid);
180 			qdf_assert(0);
181 			continue;
182 		}
183 
184 		TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
185 			     defrag_waitlist_elem);
186 
187 		/* Move to temp list and clean-up later */
188 		TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
189 				  defrag_waitlist_elem);
190 	}
191 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
192 
193 	TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
194 			   defrag_waitlist_elem, tmp) {
195 		struct dp_peer *peer;
196 
197 		/* get address of current peer */
198 		peer =
199 			container_of(rx_reorder, struct dp_peer,
200 				     rx_tid[rx_reorder->tid]);
201 		dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
202 	}
203 }
204 
205 /*
206  * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
207  * @peer: Pointer to the peer data structure
208  * @tid: Transmit ID (TID)
209  *
210  * Appends per-tid fragments to global fragment wait list
211  *
212  * Returns: None
213  */
214 static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
215 {
216 	struct dp_soc *psoc = peer->vdev->pdev->soc;
217 	struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
218 
219 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
220 				FL("Adding TID %u to waitlist for peer %pK"),
221 				tid, peer);
222 
223 	/* TODO: use LIST macros instead of TAIL macros */
224 	qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
225 	TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
226 				defrag_waitlist_elem);
227 	qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
228 }
229 
230 /*
231  * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
232  * @peer: Pointer to the peer data structure
233  * @tid: Transmit ID (TID)
234  *
235  * Remove fragments from waitlist
236  *
237  * Returns: None
238  */
239 void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
240 {
241 	struct dp_pdev *pdev = peer->vdev->pdev;
242 	struct dp_soc *soc = pdev->soc;
243 	struct dp_rx_tid *rx_reorder;
244 
245 	if (tid > DP_MAX_TIDS) {
246 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
247 			"TID out of bounds: %d", tid);
248 		qdf_assert(0);
249 		return;
250 	}
251 
252 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
253 				FL("Remove TID %u from waitlist for peer %pK"),
254 				tid, peer);
255 
256 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
257 	TAILQ_FOREACH(rx_reorder, &soc->rx.defrag.waitlist,
258 			   defrag_waitlist_elem) {
259 		struct dp_peer *peer_on_waitlist;
260 
261 		/* get address of current peer */
262 		peer_on_waitlist =
263 			container_of(rx_reorder, struct dp_peer,
264 				     rx_tid[rx_reorder->tid]);
265 
266 		/* Ensure it is TID for same peer */
267 		if (peer_on_waitlist == peer && rx_reorder->tid == tid)
268 			TAILQ_REMOVE(&soc->rx.defrag.waitlist,
269 				rx_reorder, defrag_waitlist_elem);
270 	}
271 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
272 }
273 
274 /*
275  * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
276  * @peer: Pointer to the peer data structure
277  * @tid: Transmit ID (TID)
278  * @head_addr: Pointer to head list
279  * @tail_addr: Pointer to tail list
280  * @frag: Incoming fragment
281  * @all_frag_present: Flag to indicate whether all fragments are received
282  *
283  * Build a per-tid, per-sequence fragment list.
284  *
285  * Returns: Success, if inserted
286  */
287 static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
288 	qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
289 	uint8_t *all_frag_present)
290 {
291 	qdf_nbuf_t next;
292 	qdf_nbuf_t prev = NULL;
293 	qdf_nbuf_t cur;
294 	uint16_t head_fragno, cur_fragno, next_fragno;
295 	uint8_t last_morefrag = 1, count = 0;
296 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
297 	uint8_t *rx_desc_info;
298 
299 
300 	qdf_assert(frag);
301 	qdf_assert(head_addr);
302 	qdf_assert(tail_addr);
303 
304 	*all_frag_present = 0;
305 	rx_desc_info = qdf_nbuf_data(frag);
306 	cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
307 
308 	/* If this is the first fragment */
309 	if (!(*head_addr)) {
310 		*head_addr = *tail_addr = frag;
311 		qdf_nbuf_set_next(*tail_addr, NULL);
312 		rx_tid->curr_frag_num = cur_fragno;
313 
314 		goto insert_done;
315 	}
316 
317 	/* In sequence fragment */
318 	if (cur_fragno > rx_tid->curr_frag_num) {
319 		qdf_nbuf_set_next(*tail_addr, frag);
320 		*tail_addr = frag;
321 		qdf_nbuf_set_next(*tail_addr, NULL);
322 		rx_tid->curr_frag_num = cur_fragno;
323 	} else {
324 		/* Out of sequence fragment */
325 		cur = *head_addr;
326 		rx_desc_info = qdf_nbuf_data(cur);
327 		head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
328 
329 		if (cur_fragno == head_fragno) {
330 			qdf_nbuf_free(frag);
331 			goto insert_fail;
332 		} else if (head_fragno > cur_fragno) {
333 			qdf_nbuf_set_next(frag, cur);
334 			cur = frag;
335 			*head_addr = frag; /* head pointer to be updated */
336 		} else {
337 			while ((cur_fragno > head_fragno) && cur != NULL) {
338 				prev = cur;
339 				cur = qdf_nbuf_next(cur);
340 				rx_desc_info = qdf_nbuf_data(cur);
341 				head_fragno =
342 					dp_rx_frag_get_mpdu_frag_number(
343 								rx_desc_info);
344 			}
345 
346 			if (cur_fragno == head_fragno) {
347 				qdf_nbuf_free(frag);
348 				goto insert_fail;
349 			}
350 
351 			qdf_nbuf_set_next(prev, frag);
352 			qdf_nbuf_set_next(frag, cur);
353 		}
354 	}
355 
356 	next = qdf_nbuf_next(*head_addr);
357 
358 	rx_desc_info = qdf_nbuf_data(*tail_addr);
359 	last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
360 
361 	/* TODO: optimize the loop */
362 	if (!last_morefrag) {
363 		/* Check if all fragments are present */
364 		do {
365 			rx_desc_info = qdf_nbuf_data(next);
366 			next_fragno =
367 				dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
368 			count++;
369 
370 			if (next_fragno != count)
371 				break;
372 
373 			next = qdf_nbuf_next(next);
374 		} while (next);
375 
376 		if (!next) {
377 			*all_frag_present = 1;
378 			return QDF_STATUS_SUCCESS;
379 		}
380 	}
381 
382 insert_done:
383 	return QDF_STATUS_SUCCESS;
384 
385 insert_fail:
386 	return QDF_STATUS_E_FAILURE;
387 }
388 
389 
390 /*
391  * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
392  * @msdu: Pointer to the fragment
393  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
394  *
395  * decap tkip encrypted fragment
396  *
397  * Returns: QDF_STATUS
398  */
399 static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
400 {
401 	uint8_t *ivp, *orig_hdr;
402 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
403 
404 	/* start of 802.11 header info */
405 	orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
406 
407 	/* TKIP header is located post 802.11 header */
408 	ivp = orig_hdr + hdrlen;
409 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
410 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
411 			"IEEE80211_WEP_EXTIV is missing in TKIP fragment");
412 		return QDF_STATUS_E_DEFRAG_ERROR;
413 	}
414 
415 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
416 
417 	return QDF_STATUS_SUCCESS;
418 }
419 
420 /*
421  * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
422  * @nbuf: Pointer to the fragment buffer
423  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
424  *
425  * Remove MIC information from CCMP fragment
426  *
427  * Returns: QDF_STATUS
428  */
429 static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
430 {
431 	uint8_t *ivp, *orig_hdr;
432 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
433 
434 	/* start of the 802.11 header */
435 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
436 
437 	/* CCMP header is located after 802.11 header */
438 	ivp = orig_hdr + hdrlen;
439 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
440 		return QDF_STATUS_E_DEFRAG_ERROR;
441 
442 	qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
443 
444 	return QDF_STATUS_SUCCESS;
445 }
446 
447 /*
448  * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
449  * @nbuf: Pointer to the fragment
450  * @hdrlen: length of the header information
451  *
452  * decap CCMP encrypted fragment
453  *
454  * Returns: QDF_STATUS
455  */
456 static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
457 {
458 	uint8_t *ivp, *origHdr;
459 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
460 
461 	origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
462 	ivp = origHdr + hdrlen;
463 
464 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
465 		return QDF_STATUS_E_DEFRAG_ERROR;
466 
467 	/* Let's pull the header later */
468 
469 	return QDF_STATUS_SUCCESS;
470 }
471 
472 /*
473  * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
474  * @msdu: Pointer to the fragment
475  * @hdrlen: length of the header information
476  *
477  * decap WEP encrypted fragment
478  *
479  * Returns: QDF_STATUS
480  */
481 static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
482 {
483 	uint8_t *origHdr;
484 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
485 
486 	origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
487 	qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
488 
489 	qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
490 
491 	return QDF_STATUS_SUCCESS;
492 }
493 
494 /*
495  * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
496  * @nbuf: Pointer to the fragment
497  *
498  * Calculate the header size of the received fragment
499  *
500  * Returns: header size (uint16_t)
501  */
502 static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
503 {
504 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
505 	uint16_t size = sizeof(struct ieee80211_frame);
506 	uint16_t fc = 0;
507 	uint32_t to_ds, fr_ds;
508 	uint8_t frm_ctrl_valid;
509 	uint16_t frm_ctrl_field;
510 
511 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
512 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
513 	frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
514 	frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
515 
516 	if (to_ds && fr_ds)
517 		size += IEEE80211_ADDR_LEN;
518 
519 	if (frm_ctrl_valid) {
520 		fc = frm_ctrl_field;
521 
522 		/* use 1-st byte for validation */
523 		if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
524 			size += sizeof(uint16_t);
525 			/* use 2-nd byte for validation */
526 			if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
527 				size += sizeof(struct ieee80211_htc);
528 		}
529 	}
530 
531 	return size;
532 }
533 
534 /*
535  * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
536  * @wh0: Pointer to the wireless header of the fragment
537  * @hdr: Array to hold the pseudo header
538  *
539  * Calculate a pseudo MIC header
540  *
541  * Returns: None
542  */
543 static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
544 				uint8_t hdr[])
545 {
546 	const struct ieee80211_frame_addr4 *wh =
547 		(const struct ieee80211_frame_addr4 *)wh0;
548 
549 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
550 	case IEEE80211_FC1_DIR_NODS:
551 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
552 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
553 					   wh->i_addr2);
554 		break;
555 	case IEEE80211_FC1_DIR_TODS:
556 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
557 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
558 					   wh->i_addr2);
559 		break;
560 	case IEEE80211_FC1_DIR_FROMDS:
561 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
562 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
563 					   wh->i_addr3);
564 		break;
565 	case IEEE80211_FC1_DIR_DSTODS:
566 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
567 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
568 					   wh->i_addr4);
569 		break;
570 	}
571 
572 	/*
573 	 * Bit 7 is IEEE80211_FC0_SUBTYPE_QOS for data frame, but
574 	 * it could also be set for deauth, disassoc, action, etc. for
575 	 * a mgt type frame. It comes into picture for MFP.
576 	 */
577 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
578 		const struct ieee80211_qosframe *qwh =
579 			(const struct ieee80211_qosframe *)wh;
580 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
581 	} else {
582 		hdr[12] = 0;
583 	}
584 
585 	hdr[13] = hdr[14] = hdr[15] = 0;	/* reserved */
586 }
587 
588 /*
589  * dp_rx_defrag_mic(): Calculate MIC header
590  * @key: Pointer to the key
591  * @wbuf: fragment buffer
592  * @off: Offset
593  * @data_len: Data length
594  * @mic: Array to hold MIC
595  *
596  * Calculate a pseudo MIC header
597  *
598  * Returns: QDF_STATUS
599  */
600 static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
601 		uint16_t off, uint16_t data_len, uint8_t mic[])
602 {
603 	uint8_t hdr[16] = { 0, };
604 	uint32_t l, r;
605 	const uint8_t *data;
606 	uint32_t space;
607 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
608 
609 	dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
610 		+ rx_desc_len), hdr);
611 
612 	l = dp_rx_get_le32(key);
613 	r = dp_rx_get_le32(key + 4);
614 
615 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
616 	l ^= dp_rx_get_le32(hdr);
617 	dp_rx_michael_block(l, r);
618 	l ^= dp_rx_get_le32(&hdr[4]);
619 	dp_rx_michael_block(l, r);
620 	l ^= dp_rx_get_le32(&hdr[8]);
621 	dp_rx_michael_block(l, r);
622 	l ^= dp_rx_get_le32(&hdr[12]);
623 	dp_rx_michael_block(l, r);
624 
625 	/* first buffer has special handling */
626 	data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
627 	space = qdf_nbuf_len(wbuf) - off;
628 
629 	for (;; ) {
630 		if (space > data_len)
631 			space = data_len;
632 
633 		/* collect 32-bit blocks from current buffer */
634 		while (space >= sizeof(uint32_t)) {
635 			l ^= dp_rx_get_le32(data);
636 			dp_rx_michael_block(l, r);
637 			data += sizeof(uint32_t);
638 			space -= sizeof(uint32_t);
639 			data_len -= sizeof(uint32_t);
640 		}
641 		if (data_len < sizeof(uint32_t))
642 			break;
643 
644 		wbuf = qdf_nbuf_next(wbuf);
645 		if (wbuf == NULL)
646 			return QDF_STATUS_E_DEFRAG_ERROR;
647 
648 		if (space != 0) {
649 			const uint8_t *data_next;
650 			/*
651 			 * Block straddles buffers, split references.
652 			 */
653 			data_next =
654 				(uint8_t *)qdf_nbuf_data(wbuf) + off;
655 			if ((qdf_nbuf_len(wbuf)) <
656 				sizeof(uint32_t) - space) {
657 				return QDF_STATUS_E_DEFRAG_ERROR;
658 			}
659 			switch (space) {
660 			case 1:
661 				l ^= dp_rx_get_le32_split(data[0],
662 					data_next[0], data_next[1],
663 					data_next[2]);
664 				data = data_next + 3;
665 				space = (qdf_nbuf_len(wbuf) - off) - 3;
666 				break;
667 			case 2:
668 				l ^= dp_rx_get_le32_split(data[0], data[1],
669 						    data_next[0], data_next[1]);
670 				data = data_next + 2;
671 				space = (qdf_nbuf_len(wbuf) - off) - 2;
672 				break;
673 			case 3:
674 				l ^= dp_rx_get_le32_split(data[0], data[1],
675 					data[2], data_next[0]);
676 				data = data_next + 1;
677 				space = (qdf_nbuf_len(wbuf) - off) - 1;
678 				break;
679 			}
680 			dp_rx_michael_block(l, r);
681 			data_len -= sizeof(uint32_t);
682 		} else {
683 			/*
684 			 * Setup for next buffer.
685 			 */
686 			data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
687 			space = qdf_nbuf_len(wbuf) - off;
688 		}
689 	}
690 	/* Last block and padding (0x5a, 4..7 x 0) */
691 	switch (data_len) {
692 	case 0:
693 		l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
694 		break;
695 	case 1:
696 		l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
697 		break;
698 	case 2:
699 		l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
700 		break;
701 	case 3:
702 		l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
703 		break;
704 	}
705 	dp_rx_michael_block(l, r);
706 	dp_rx_michael_block(l, r);
707 	dp_rx_put_le32(mic, l);
708 	dp_rx_put_le32(mic + 4, r);
709 
710 	return QDF_STATUS_SUCCESS;
711 }
712 
713 /*
714  * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
715  * @key: Pointer to the key
716  * @msdu: fragment buffer
717  * @hdrlen: Length of the header information
718  *
719  * Remove MIC information from the TKIP frame
720  *
721  * Returns: QDF_STATUS
722  */
723 static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
724 					qdf_nbuf_t msdu, uint16_t hdrlen)
725 {
726 	QDF_STATUS status;
727 	uint32_t pktlen = 0;
728 	uint8_t mic[IEEE80211_WEP_MICLEN];
729 	uint8_t mic0[IEEE80211_WEP_MICLEN];
730 	qdf_nbuf_t prev = NULL, next;
731 
732 	next = msdu;
733 	while (next) {
734 		pktlen += (qdf_nbuf_len(next) - hdrlen);
735 		prev = next;
736 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
737 			  "%s pktlen %ld\n", __func__,
738 				qdf_nbuf_len(next) - hdrlen);
739 		next = qdf_nbuf_next(next);
740 	}
741 
742 	qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
743 			   dp_f_tkip.ic_miclen, (caddr_t)mic0);
744 	qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
745 	pktlen -= dp_f_tkip.ic_miclen;
746 
747 	status = dp_rx_defrag_mic(key, msdu, hdrlen,
748 				pktlen, mic);
749 
750 	if (QDF_IS_STATUS_ERROR(status))
751 		return status;
752 
753 	if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
754 		return QDF_STATUS_E_DEFRAG_ERROR;
755 
756 	return QDF_STATUS_SUCCESS;
757 }
758 
759 /*
760  * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
761  * @nbuf: buffer pointer
762  * @hdrsize: size of the header to be pulled
763  *
764  * Pull the RXTLV & the 802.11 headers
765  *
766  * Returns: None
767  */
768 static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
769 {
770 	qdf_nbuf_pull_head(nbuf,
771 			RX_PKT_TLVS_LEN + hdrsize);
772 
773 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
774 			"%s: final pktlen %d .11len %d\n",
775 			__func__,
776 			(uint32_t)qdf_nbuf_len(nbuf), hdrsize);
777 }
778 
779 /*
780  * dp_rx_construct_fraglist(): Construct a nbuf fraglist
781  * @peer: Pointer to the peer
782  * @head: Pointer to list of fragments
783  * @hdrsize: Size of the header to be pulled
784  *
785  * Construct a nbuf fraglist
786  *
787  * Returns: None
788  */
789 static void
790 dp_rx_construct_fraglist(struct dp_peer *peer,
791 		qdf_nbuf_t head, uint16_t hdrsize)
792 {
793 	qdf_nbuf_t msdu = qdf_nbuf_next(head);
794 	qdf_nbuf_t rx_nbuf = msdu;
795 	uint32_t len = 0;
796 
797 	while (msdu) {
798 		dp_rx_frag_pull_hdr(msdu, hdrsize);
799 		len += qdf_nbuf_len(msdu);
800 		msdu = qdf_nbuf_next(msdu);
801 	}
802 
803 	qdf_nbuf_append_ext_list(head, rx_nbuf, len);
804 	qdf_nbuf_set_next(head, NULL);
805 
806 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
807 			"%s: head len %d ext len %d data len %d \n",
808 			__func__,
809 			(uint32_t)qdf_nbuf_len(head),
810 			(uint32_t)qdf_nbuf_len(rx_nbuf),
811 			(uint32_t)(head->data_len));
812 }
813 
814 /**
815  * dp_rx_defrag_err() - rx err handler
816  * @pdev: handle to pdev object
817  * @vdev_id: vdev id
818  * @peer_mac_addr: peer mac address
819  * @tid: TID
820  * @tsf32: TSF
821  * @err_type: error type
822  * @rx_frame: rx frame
823  * @pn: PN Number
824  * @key_id: key id
825  *
826  * This function handles rx error and send MIC error notification
827  *
828  * Return: None
829  */
830 static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
831 {
832 	struct ol_if_ops *tops = NULL;
833 	struct dp_pdev *pdev = vdev->pdev;
834 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
835 	uint8_t *orig_hdr;
836 	struct ieee80211_frame *wh;
837 
838 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
839 	wh = (struct ieee80211_frame *)orig_hdr;
840 
841 	tops = pdev->soc->cdp_soc.ol_ops;
842 	if (tops->rx_mic_error)
843 		tops->rx_mic_error(pdev->ctrl_pdev, vdev->vdev_id, wh);
844 }
845 
846 
847 /*
848  * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
849  * @nbuf: Pointer to the fragment buffer
850  * @hdrsize: Size of headers
851  *
852  * Transcap the fragment from 802.11 to 802.3
853  *
854  * Returns: None
855  */
856 static void
857 dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
858 {
859 	struct llc_snap_hdr_t *llchdr;
860 	struct ethernet_hdr_t *eth_hdr;
861 	uint8_t ether_type[2];
862 	uint16_t fc = 0;
863 	union dp_align_mac_addr mac_addr;
864 	uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
865 
866 	if (rx_desc_info == NULL) {
867 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
868 			"%s: Memory alloc failed ! \n", __func__);
869 		QDF_ASSERT(0);
870 		return;
871 	}
872 
873 	qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
874 
875 	llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
876 					RX_PKT_TLVS_LEN + hdrsize);
877 	qdf_mem_copy(ether_type, llchdr->ethertype, 2);
878 
879 	qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
880 				  sizeof(struct llc_snap_hdr_t) -
881 				  sizeof(struct ethernet_hdr_t)));
882 
883 	eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
884 
885 	if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
886 		fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
887 
888 	switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
889 
890 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
891 		"%s: frame control type: 0x%x", __func__, fc);
892 
893 	case IEEE80211_FC1_DIR_NODS:
894 		hal_rx_mpdu_get_addr1(rx_desc_info,
895 			&mac_addr.raw[0]);
896 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
897 			IEEE80211_ADDR_LEN);
898 		hal_rx_mpdu_get_addr2(rx_desc_info,
899 			&mac_addr.raw[0]);
900 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
901 			IEEE80211_ADDR_LEN);
902 		break;
903 	case IEEE80211_FC1_DIR_TODS:
904 		hal_rx_mpdu_get_addr3(rx_desc_info,
905 			&mac_addr.raw[0]);
906 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
907 			IEEE80211_ADDR_LEN);
908 		hal_rx_mpdu_get_addr2(rx_desc_info,
909 			&mac_addr.raw[0]);
910 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
911 			IEEE80211_ADDR_LEN);
912 		break;
913 	case IEEE80211_FC1_DIR_FROMDS:
914 		hal_rx_mpdu_get_addr1(rx_desc_info,
915 			&mac_addr.raw[0]);
916 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
917 			IEEE80211_ADDR_LEN);
918 		hal_rx_mpdu_get_addr3(rx_desc_info,
919 			&mac_addr.raw[0]);
920 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
921 			IEEE80211_ADDR_LEN);
922 		break;
923 
924 	case IEEE80211_FC1_DIR_DSTODS:
925 		hal_rx_mpdu_get_addr3(rx_desc_info,
926 			&mac_addr.raw[0]);
927 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
928 			IEEE80211_ADDR_LEN);
929 		hal_rx_mpdu_get_addr4(rx_desc_info,
930 			&mac_addr.raw[0]);
931 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
932 			IEEE80211_ADDR_LEN);
933 		break;
934 
935 	default:
936 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
937 		"%s: Unknown frame control type: 0x%x", __func__, fc);
938 	}
939 
940 	qdf_mem_copy(eth_hdr->ethertype, ether_type,
941 			sizeof(ether_type));
942 
943 	qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
944 	qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
945 	qdf_mem_free(rx_desc_info);
946 }
947 
948 /*
949  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
950  * @peer: Pointer to the peer
951  * @tid: Transmit Identifier
952  * @head: Buffer to be reinjected back
953  *
954  * Reinject the fragment chain back into REO
955  *
956  * Returns: QDF_STATUS
957  */
958  static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
959 					unsigned tid, qdf_nbuf_t head)
960 {
961 	struct dp_pdev *pdev = peer->vdev->pdev;
962 	struct dp_soc *soc = pdev->soc;
963 	struct hal_buf_info buf_info;
964 	void *link_desc_va;
965 	void *msdu0, *msdu_desc_info;
966 	void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
967 	void *dst_mpdu_desc_info, *dst_qdesc_addr;
968 	qdf_dma_addr_t paddr;
969 	uint32_t nbuf_len, seq_no, dst_ind;
970 	uint32_t *mpdu_wrd;
971 	uint32_t ret, cookie;
972 
973 	void *dst_ring_desc =
974 		peer->rx_tid[tid].dst_ring_desc;
975 	void *hal_srng = soc->reo_reinject_ring.hal_srng;
976 
977 	hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
978 
979 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
980 
981 	qdf_assert(link_desc_va);
982 
983 	msdu0 = (uint8_t *)link_desc_va +
984 		RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
985 
986 	nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
987 
988 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
989 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
990 			UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
991 
992 	/* msdu reconfig */
993 	msdu_desc_info = (uint8_t *)msdu0 +
994 		RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
995 
996 	dst_ind = hal_rx_msdu_reo_dst_ind_get(link_desc_va);
997 
998 	qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
999 
1000 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1001 			FIRST_MSDU_IN_MPDU_FLAG, 1);
1002 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1003 			LAST_MSDU_IN_MPDU_FLAG, 1);
1004 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1005 			MSDU_CONTINUATION, 0x0);
1006 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1007 			REO_DESTINATION_INDICATION, dst_ind);
1008 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1009 			MSDU_LENGTH, nbuf_len);
1010 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1011 			SA_IS_VALID, 1);
1012 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1013 			DA_IS_VALID, 1);
1014 
1015 	/* change RX TLV's */
1016 	hal_rx_msdu_start_msdu_len_set(
1017 			qdf_nbuf_data(head), nbuf_len);
1018 
1019 	cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
1020 
1021 	/* map the nbuf before reinject it into HW */
1022 	ret = qdf_nbuf_map_single(soc->osdev, head,
1023 					QDF_DMA_BIDIRECTIONAL);
1024 
1025 	if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
1026 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1027 				"%s: nbuf map failed !\n", __func__);
1028 		qdf_nbuf_free(head);
1029 		return QDF_STATUS_E_FAILURE;
1030 	}
1031 
1032 	paddr = qdf_nbuf_get_frag_paddr(head, 0);
1033 
1034 	ret = check_x86_paddr(soc, &head, &paddr, pdev);
1035 
1036 	if (ret == QDF_STATUS_E_FAILURE) {
1037 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1038 				"%s: x86 check failed !\n", __func__);
1039 		return QDF_STATUS_E_FAILURE;
1040 	}
1041 
1042 	hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_WBM2SW_RBM);
1043 
1044 	/* Lets fill entrance ring now !!! */
1045 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
1046 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1047 		"HAL RING Access For REO entrance SRNG Failed: %pK",
1048 		hal_srng);
1049 
1050 		return QDF_STATUS_E_FAILURE;
1051 	}
1052 
1053 	ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
1054 
1055 	qdf_assert(ent_ring_desc);
1056 
1057 	paddr = (uint64_t)buf_info.paddr;
1058 	/* buf addr */
1059 	hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
1060 					buf_info.sw_cookie,
1061 					HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
1062 	/* mpdu desc info */
1063 	ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
1064 	RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
1065 
1066 	dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
1067 	REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
1068 
1069 	qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
1070 				sizeof(struct rx_mpdu_desc_info));
1071 	qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
1072 
1073 	mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
1074 	seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
1075 
1076 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1077 			MSDU_COUNT, 0x1);
1078 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1079 			MPDU_SEQUENCE_NUMBER, seq_no);
1080 
1081 	/* unset frag bit */
1082 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1083 			FRAGMENT_FLAG, 0x0);
1084 
1085 	/* set sa/da valid bits */
1086 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1087 			SA_IS_VALID, 0x1);
1088 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1089 			DA_IS_VALID, 0x1);
1090 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1091 			RAW_MPDU, 0x0);
1092 
1093 	/* qdesc addr */
1094 	ent_qdesc_addr = (uint8_t *)ent_ring_desc +
1095 		REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1096 
1097 	dst_qdesc_addr = (uint8_t *)dst_ring_desc +
1098 		REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1099 
1100 	qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
1101 
1102 	HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
1103 			REO_DESTINATION_INDICATION, dst_ind);
1104 
1105 	hal_srng_access_end(soc->hal_soc, hal_srng);
1106 
1107 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1108 				"%s: reinjection done !\n", __func__);
1109 	return QDF_STATUS_SUCCESS;
1110 }
1111 
1112 /*
1113  * dp_rx_defrag(): Defragment the fragment chain
1114  * @peer: Pointer to the peer
1115  * @tid: Transmit Identifier
1116  * @frag_list_head: Pointer to head list
1117  * @frag_list_tail: Pointer to tail list
1118  *
1119  * Defragment the fragment chain
1120  *
1121  * Returns: QDF_STATUS
1122  */
1123 static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
1124 			qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
1125 {
1126 	qdf_nbuf_t tmp_next, prev;
1127 	qdf_nbuf_t cur = frag_list_head, msdu;
1128 	uint32_t index, tkip_demic = 0;
1129 	uint16_t hdr_space;
1130 	uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
1131 	struct dp_vdev *vdev = peer->vdev;
1132 	struct dp_soc *soc = vdev->pdev->soc;
1133 	uint8_t status = 0;
1134 
1135 	hdr_space = dp_rx_defrag_hdrsize(cur);
1136 	index = hal_rx_msdu_is_wlan_mcast(cur) ?
1137 		dp_sec_mcast : dp_sec_ucast;
1138 
1139 	/* Remove FCS from all fragments */
1140 	while (cur) {
1141 		tmp_next = qdf_nbuf_next(cur);
1142 		qdf_nbuf_set_next(cur, NULL);
1143 		qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
1144 		prev = cur;
1145 		qdf_nbuf_set_next(cur, tmp_next);
1146 		cur = tmp_next;
1147 	}
1148 	cur = frag_list_head;
1149 
1150 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1151 			"%s: index %d Security type: %d\n", __func__,
1152 			index, peer->security[index].sec_type);
1153 
1154 	switch (peer->security[index].sec_type) {
1155 	case htt_sec_type_tkip:
1156 		tkip_demic = 1;
1157 
1158 	case htt_sec_type_tkip_nomic:
1159 		while (cur) {
1160 			tmp_next = qdf_nbuf_next(cur);
1161 			if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
1162 
1163 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1164 					QDF_TRACE_LEVEL_ERROR,
1165 					"dp_rx_defrag: TKIP decap failed");
1166 
1167 				return QDF_STATUS_E_DEFRAG_ERROR;
1168 			}
1169 			cur = tmp_next;
1170 		}
1171 
1172 		/* If success, increment header to be stripped later */
1173 		hdr_space += dp_f_tkip.ic_header;
1174 		break;
1175 
1176 	case htt_sec_type_aes_ccmp:
1177 		while (cur) {
1178 			tmp_next = qdf_nbuf_next(cur);
1179 			if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
1180 
1181 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1182 					QDF_TRACE_LEVEL_ERROR,
1183 					"dp_rx_defrag: CCMP demic failed");
1184 
1185 				return QDF_STATUS_E_DEFRAG_ERROR;
1186 			}
1187 			if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
1188 
1189 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1190 					QDF_TRACE_LEVEL_ERROR,
1191 					"dp_rx_defrag: CCMP decap failed");
1192 
1193 				return QDF_STATUS_E_DEFRAG_ERROR;
1194 			}
1195 			cur = tmp_next;
1196 		}
1197 
1198 		/* If success, increment header to be stripped later */
1199 		hdr_space += dp_f_ccmp.ic_header;
1200 		break;
1201 
1202 	case htt_sec_type_wep40:
1203 	case htt_sec_type_wep104:
1204 	case htt_sec_type_wep128:
1205 		while (cur) {
1206 			tmp_next = qdf_nbuf_next(cur);
1207 			if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
1208 
1209 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1210 					QDF_TRACE_LEVEL_ERROR,
1211 					"dp_rx_defrag: WEP decap failed");
1212 
1213 				return QDF_STATUS_E_DEFRAG_ERROR;
1214 			}
1215 			cur = tmp_next;
1216 		}
1217 
1218 		/* If success, increment header to be stripped later */
1219 		hdr_space += dp_f_wep.ic_header;
1220 		break;
1221 	default:
1222 		QDF_TRACE(QDF_MODULE_ID_TXRX,
1223 			QDF_TRACE_LEVEL_ERROR,
1224 			"dp_rx_defrag: Did not match any security type");
1225 		break;
1226 	}
1227 
1228 	if (tkip_demic) {
1229 		msdu = frag_list_head;
1230 		if (soc->cdp_soc.ol_ops->rx_frag_tkip_demic) {
1231 			status = soc->cdp_soc.ol_ops->rx_frag_tkip_demic(
1232 				(void *)peer->ctrl_peer, msdu, hdr_space);
1233 		} else {
1234 			qdf_mem_copy(key,
1235 				     &peer->security[index].michael_key[0],
1236 				IEEE80211_WEP_MICLEN);
1237 			status = dp_rx_defrag_tkip_demic(key, msdu,
1238 							 RX_PKT_TLVS_LEN +
1239 							 hdr_space);
1240 
1241 			if (status) {
1242 				dp_rx_defrag_err(vdev, frag_list_head);
1243 
1244 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1245 					  QDF_TRACE_LEVEL_ERROR,
1246 					  "%s: TKIP demic failed status %d\n",
1247 					  __func__, status);
1248 
1249 				return QDF_STATUS_E_DEFRAG_ERROR;
1250 			}
1251 		}
1252 	}
1253 
1254 	/* Convert the header to 802.3 header */
1255 	dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
1256 	dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
1257 
1258 	return QDF_STATUS_SUCCESS;
1259 }
1260 
1261 /*
1262  * dp_rx_defrag_cleanup(): Clean up activities
1263  * @peer: Pointer to the peer
1264  * @tid: Transmit Identifier
1265  *
1266  * Returns: None
1267  */
1268 void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
1269 {
1270 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1271 				peer->rx_tid[tid].array;
1272 
1273 	if (!rx_reorder_array_elem) {
1274 		/*
1275 		 * if this condition is hit then somebody
1276 		 * must have reset this pointer to NULL.
1277 		 * array pointer usually points to base variable
1278 		 * of TID queue structure: "struct dp_rx_tid"
1279 		 */
1280 		QDF_ASSERT(0);
1281 		return;
1282 	}
1283 	/* Free up nbufs */
1284 	dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1285 
1286 	/* Free up saved ring descriptors */
1287 	dp_rx_clear_saved_desc_info(peer, tid);
1288 
1289 	rx_reorder_array_elem->head = NULL;
1290 	rx_reorder_array_elem->tail = NULL;
1291 	peer->rx_tid[tid].defrag_timeout_ms = 0;
1292 	peer->rx_tid[tid].curr_frag_num = 0;
1293 	peer->rx_tid[tid].curr_seq_num = 0;
1294 	peer->rx_tid[tid].head_frag_desc = NULL;
1295 }
1296 
1297 /*
1298  * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
1299  * @ring_desc: Pointer to the dst ring descriptor
1300  * @peer: Pointer to the peer
1301  * @tid: Transmit Identifier
1302  *
1303  * Returns: None
1304  */
1305 static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
1306 	struct dp_rx_desc *rx_desc, struct dp_peer *peer, unsigned tid)
1307 {
1308 	void *dst_ring_desc = qdf_mem_malloc(
1309 			sizeof(struct reo_destination_ring));
1310 
1311 	if (dst_ring_desc == NULL) {
1312 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1313 			"%s: Memory alloc failed !\n", __func__);
1314 		QDF_ASSERT(0);
1315 		return QDF_STATUS_E_NOMEM;
1316 	}
1317 
1318 	qdf_mem_copy(dst_ring_desc, ring_desc,
1319 		       sizeof(struct reo_destination_ring));
1320 
1321 	peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
1322 	peer->rx_tid[tid].head_frag_desc = rx_desc;
1323 
1324 	return QDF_STATUS_SUCCESS;
1325 }
1326 
1327 /*
1328  * dp_rx_defrag_store_fragment(): Store incoming fragments
1329  * @soc: Pointer to the SOC data structure
1330  * @ring_desc: Pointer to the ring descriptor
1331  * @mpdu_desc_info: MPDU descriptor info
1332  * @tid: Traffic Identifier
1333  * @rx_desc: Pointer to rx descriptor
1334  * @rx_bfs: Number of bfs consumed
1335  *
1336  * Returns: QDF_STATUS
1337  */
1338 static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
1339 			void *ring_desc,
1340 			union dp_rx_desc_list_elem_t **head,
1341 			union dp_rx_desc_list_elem_t **tail,
1342 			struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1343 			unsigned tid, struct dp_rx_desc *rx_desc,
1344 			uint32_t *rx_bfs)
1345 {
1346 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1347 	struct dp_pdev *pdev;
1348 	struct dp_peer *peer;
1349 	uint16_t peer_id;
1350 	uint8_t fragno, more_frag, all_frag_present = 0;
1351 	uint16_t rxseq = mpdu_desc_info->mpdu_seq;
1352 	QDF_STATUS status;
1353 	struct dp_rx_tid *rx_tid;
1354 	uint8_t mpdu_sequence_control_valid;
1355 	uint8_t mpdu_frame_control_valid;
1356 	qdf_nbuf_t frag = rx_desc->nbuf;
1357 
1358 	/* Check if the packet is from a valid peer */
1359 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1360 					mpdu_desc_info->peer_meta_data);
1361 	peer = dp_peer_find_by_id(soc, peer_id);
1362 
1363 	if (!peer) {
1364 		/* We should not receive anything from unknown peer
1365 		 * however, that might happen while we are in the monitor mode.
1366 		 * We don't need to handle that here
1367 		 */
1368 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1369 			"Unknown peer, dropping the fragment");
1370 
1371 		qdf_nbuf_free(frag);
1372 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1373 		*rx_bfs = 1;
1374 
1375 		return QDF_STATUS_E_DEFRAG_ERROR;
1376 	}
1377 
1378 	pdev = peer->vdev->pdev;
1379 	rx_tid = &peer->rx_tid[tid];
1380 
1381 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1382 
1383 	mpdu_sequence_control_valid =
1384 		hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
1385 
1386 	/* Invalid MPDU sequence control field, MPDU is of no use */
1387 	if (!mpdu_sequence_control_valid) {
1388 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1389 			"Invalid MPDU seq control field, dropping MPDU");
1390 		qdf_nbuf_free(frag);
1391 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1392 		*rx_bfs = 1;
1393 
1394 		qdf_assert(0);
1395 		goto end;
1396 	}
1397 
1398 	mpdu_frame_control_valid =
1399 		hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
1400 
1401 	/* Invalid frame control field */
1402 	if (!mpdu_frame_control_valid) {
1403 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1404 			"Invalid frame control field, dropping MPDU");
1405 		qdf_nbuf_free(frag);
1406 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1407 		*rx_bfs = 1;
1408 
1409 		qdf_assert(0);
1410 		goto end;
1411 	}
1412 
1413 	/* Current mpdu sequence */
1414 	more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
1415 
1416 	/* HW does not populate the fragment number as of now
1417 	 * need to get from the 802.11 header
1418 	 */
1419 	fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
1420 
1421 	/*
1422 	 * !more_frag: no more fragments to be delivered
1423 	 * !frag_no: packet is not fragmented
1424 	 * !rx_reorder_array_elem->head: no saved fragments so far
1425 	 */
1426 	if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
1427 		/* We should not get into this situation here.
1428 		 * It means an unfragmented packet with fragment flag
1429 		 * is delivered over the REO exception ring.
1430 		 * Typically it follows normal rx path.
1431 		 */
1432 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1433 			"Rcvd unfragmented pkt on REO Err srng, dropping");
1434 		qdf_nbuf_free(frag);
1435 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1436 		*rx_bfs = 1;
1437 
1438 		qdf_assert(0);
1439 		goto end;
1440 	}
1441 
1442 	/* Check if the fragment is for the same sequence or a different one */
1443 	if (rx_reorder_array_elem->head) {
1444 		if (rxseq != rx_tid->curr_seq_num) {
1445 
1446 			/* Drop stored fragments if out of sequence
1447 			 * fragment is received
1448 			 */
1449 			dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1450 
1451 			rx_reorder_array_elem->head = NULL;
1452 			rx_reorder_array_elem->tail = NULL;
1453 
1454 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1455 				"%s mismatch, dropping earlier sequence ",
1456 				(rxseq == rx_tid->curr_seq_num)
1457 				? "address"
1458 				: "seq number");
1459 
1460 			/*
1461 			 * The sequence number for this fragment becomes the
1462 			 * new sequence number to be processed
1463 			 */
1464 			rx_tid->curr_seq_num = rxseq;
1465 
1466 		}
1467 	} else {
1468 		/* Start of a new sequence */
1469 		dp_rx_defrag_cleanup(peer, tid);
1470 		rx_tid->curr_seq_num = rxseq;
1471 	}
1472 
1473 	/*
1474 	 * If the earlier sequence was dropped, this will be the fresh start.
1475 	 * Else, continue with next fragment in a given sequence
1476 	 */
1477 	status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
1478 			&rx_reorder_array_elem->tail, frag,
1479 			&all_frag_present);
1480 
1481 	/*
1482 	 * Currently, we can have only 6 MSDUs per-MPDU, if the current
1483 	 * packet sequence has more than 6 MSDUs for some reason, we will
1484 	 * have to use the next MSDU link descriptor and chain them together
1485 	 * before reinjection
1486 	 */
1487 	if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
1488 			(rx_reorder_array_elem->head == frag)) {
1489 
1490 		status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
1491 					rx_desc, peer, tid);
1492 
1493 		if (status != QDF_STATUS_SUCCESS) {
1494 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1495 				"%s: Unable to store ring desc !\n", __func__);
1496 			goto end;
1497 		}
1498 	} else {
1499 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1500 		*rx_bfs = 1;
1501 
1502 		/* Return the non-head link desc */
1503 		if (dp_rx_link_desc_return(soc, ring_desc,
1504 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1505 				QDF_STATUS_SUCCESS)
1506 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1507 					"%s: Failed to return link desc\n",
1508 					__func__);
1509 
1510 	}
1511 
1512 	if (pdev->soc->rx.flags.defrag_timeout_check)
1513 		dp_rx_defrag_waitlist_remove(peer, tid);
1514 
1515 	/* Yet to receive more fragments for this sequence number */
1516 	if (!all_frag_present) {
1517 		uint32_t now_ms =
1518 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1519 
1520 		peer->rx_tid[tid].defrag_timeout_ms =
1521 			now_ms + pdev->soc->rx.defrag.timeout_ms;
1522 
1523 		dp_rx_defrag_waitlist_add(peer, tid);
1524 
1525 		return QDF_STATUS_SUCCESS;
1526 	}
1527 
1528 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1529 		"All fragments received for sequence: %d", rxseq);
1530 
1531 	/* Process the fragments */
1532 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1533 		rx_reorder_array_elem->tail);
1534 	if (QDF_IS_STATUS_ERROR(status)) {
1535 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1536 			"Fragment processing failed");
1537 
1538 		dp_rx_add_to_free_desc_list(head, tail,
1539 				peer->rx_tid[tid].head_frag_desc);
1540 		*rx_bfs = 1;
1541 
1542 		if (dp_rx_link_desc_return(soc,
1543 					peer->rx_tid[tid].dst_ring_desc,
1544 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1545 				QDF_STATUS_SUCCESS)
1546 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1547 					"%s: Failed to return link desc\n",
1548 					__func__);
1549 		dp_rx_defrag_cleanup(peer, tid);
1550 		goto end;
1551 	}
1552 
1553 	/* Re-inject the fragments back to REO for further processing */
1554 	status = dp_rx_defrag_reo_reinject(peer, tid,
1555 			rx_reorder_array_elem->head);
1556 	if (QDF_IS_STATUS_SUCCESS(status)) {
1557 		rx_reorder_array_elem->head = NULL;
1558 		rx_reorder_array_elem->tail = NULL;
1559 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1560 		"Fragmented sequence successfully reinjected");
1561 	} else {
1562 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1563 		"Fragmented sequence reinjection failed");
1564 		dp_rx_return_head_frag_desc(peer, tid);
1565 	}
1566 
1567 	dp_rx_defrag_cleanup(peer, tid);
1568 	return QDF_STATUS_SUCCESS;
1569 
1570 end:
1571 	return QDF_STATUS_E_DEFRAG_ERROR;
1572 }
1573 
1574 /**
1575  * dp_rx_frag_handle() - Handles fragmented Rx frames
1576  *
1577  * @soc: core txrx main context
1578  * @ring_desc: opaque pointer to the REO error ring descriptor
1579  * @mpdu_desc_info: MPDU descriptor information from ring descriptor
1580  * @head: head of the local descriptor free-list
1581  * @tail: tail of the local descriptor free-list
1582  * @quota: No. of units (packets) that can be serviced in one shot.
1583  *
1584  * This function implements RX 802.11 fragmentation handling
1585  * The handling is mostly same as legacy fragmentation handling.
1586  * If required, this function can re-inject the frames back to
1587  * REO ring (with proper setting to by-pass fragmentation check
1588  * but use duplicate detection / re-ordering and routing these frames
1589  * to a different core.
1590  *
1591  * Return: uint32_t: No. of elements processed
1592  */
1593 uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
1594 		struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1595 		union dp_rx_desc_list_elem_t **head,
1596 		union dp_rx_desc_list_elem_t **tail,
1597 		uint32_t quota)
1598 {
1599 	uint32_t rx_bufs_used = 0;
1600 	void *link_desc_va;
1601 	struct hal_buf_info buf_info;
1602 	struct hal_rx_msdu_list msdu_list; /* per MPDU list of MSDUs */
1603 	qdf_nbuf_t msdu = NULL;
1604 	uint32_t tid, msdu_len;
1605 	int idx, rx_bfs = 0;
1606 	QDF_STATUS status;
1607 
1608 	qdf_assert(soc);
1609 	qdf_assert(mpdu_desc_info);
1610 
1611 	/* Fragment from a valid peer */
1612 	hal_rx_reo_buf_paddr_get(ring_desc, &buf_info);
1613 
1614 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
1615 
1616 	qdf_assert(link_desc_va);
1617 
1618 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1619 		"Number of MSDUs to process, num_msdus: %d",
1620 		mpdu_desc_info->msdu_count);
1621 
1622 
1623 	if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
1624 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1625 			"Not sufficient MSDUs to process");
1626 		return rx_bufs_used;
1627 	}
1628 
1629 	/* Get msdu_list for the given MPDU */
1630 	hal_rx_msdu_list_get(link_desc_va, &msdu_list,
1631 		&mpdu_desc_info->msdu_count);
1632 
1633 	/* Process all MSDUs in the current MPDU */
1634 	for (idx = 0; (idx < mpdu_desc_info->msdu_count) && quota--; idx++) {
1635 		struct dp_rx_desc *rx_desc =
1636 			dp_rx_cookie_2_va_rxdma_buf(soc,
1637 				msdu_list.sw_cookie[idx]);
1638 
1639 		qdf_assert(rx_desc);
1640 
1641 		msdu = rx_desc->nbuf;
1642 
1643 		qdf_nbuf_unmap_single(soc->osdev, msdu,
1644 				QDF_DMA_BIDIRECTIONAL);
1645 
1646 		rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
1647 
1648 		msdu_len = hal_rx_msdu_start_msdu_len_get(
1649 				rx_desc->rx_buf_start);
1650 
1651 		qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
1652 
1653 		tid = hal_rx_mpdu_start_tid_get(rx_desc->rx_buf_start);
1654 
1655 		/* Process fragment-by-fragment */
1656 		status = dp_rx_defrag_store_fragment(soc, ring_desc,
1657 				head, tail, mpdu_desc_info,
1658 				tid, rx_desc, &rx_bfs);
1659 
1660 		if (rx_bfs)
1661 			rx_bufs_used++;
1662 
1663 		if (!QDF_IS_STATUS_SUCCESS(status)) {
1664 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1665 				"Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
1666 				mpdu_desc_info->mpdu_seq,
1667 				mpdu_desc_info->msdu_count,
1668 				mpdu_desc_info->mpdu_flags);
1669 
1670 			/* No point in processing rest of the fragments */
1671 			break;
1672 		}
1673 	}
1674 
1675 	return rx_bufs_used;
1676 }
1677 
1678 QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
1679 				      struct dp_peer *peer, uint16_t tid,
1680 		uint16_t rxseq, qdf_nbuf_t nbuf)
1681 {
1682 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1683 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1684 	uint8_t all_frag_present;
1685 	uint32_t msdu_len;
1686 	QDF_STATUS status;
1687 
1688 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1689 
1690 	if (rx_reorder_array_elem->head &&
1691 	    rxseq != rx_tid->curr_seq_num) {
1692 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1693 			  "%s: No list found for TID %d Seq# %d\n",
1694 				__func__, tid, rxseq);
1695 		qdf_nbuf_free(nbuf);
1696 		goto fail;
1697 	}
1698 
1699 	msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
1700 
1701 	qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
1702 
1703 	status = dp_rx_defrag_fraglist_insert(peer, tid,
1704 					      &rx_reorder_array_elem->head,
1705 			&rx_reorder_array_elem->tail, nbuf,
1706 			&all_frag_present);
1707 
1708 	if (QDF_IS_STATUS_ERROR(status)) {
1709 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1710 			  "%s Fragment insert failed\n", __func__);
1711 
1712 		goto fail;
1713 	}
1714 
1715 	if (soc->rx.flags.defrag_timeout_check)
1716 		dp_rx_defrag_waitlist_remove(peer, tid);
1717 
1718 	if (!all_frag_present) {
1719 		uint32_t now_ms =
1720 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1721 
1722 		peer->rx_tid[tid].defrag_timeout_ms =
1723 			now_ms + soc->rx.defrag.timeout_ms;
1724 
1725 		dp_rx_defrag_waitlist_add(peer, tid);
1726 
1727 		return QDF_STATUS_SUCCESS;
1728 	}
1729 
1730 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1731 			      rx_reorder_array_elem->tail);
1732 
1733 	if (QDF_IS_STATUS_ERROR(status)) {
1734 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1735 			  "%s Fragment processing failed\n", __func__);
1736 
1737 		dp_rx_return_head_frag_desc(peer, tid);
1738 		dp_rx_defrag_cleanup(peer, tid);
1739 
1740 		goto fail;
1741 	}
1742 
1743 	/* Re-inject the fragments back to REO for further processing */
1744 	status = dp_rx_defrag_reo_reinject(peer, tid,
1745 					   rx_reorder_array_elem->head);
1746 	if (QDF_IS_STATUS_SUCCESS(status)) {
1747 		rx_reorder_array_elem->head = NULL;
1748 		rx_reorder_array_elem->tail = NULL;
1749 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1750 			  "%s: Frag seq successfully reinjected\n",
1751 			__func__);
1752 	} else {
1753 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1754 			  "%s: Frag seq reinjection failed\n",
1755 			__func__);
1756 		dp_rx_return_head_frag_desc(peer, tid);
1757 	}
1758 
1759 	dp_rx_defrag_cleanup(peer, tid);
1760 	return QDF_STATUS_SUCCESS;
1761 
1762 fail:
1763 	return QDF_STATUS_E_DEFRAG_ERROR;
1764 }
1765