xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx_defrag.c (revision 97f44cd39e4ff816eaa1710279d28cf6b9e65ad9)
1 /*
2  * Copyright (c) 2017-2020 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "dp_types.h"
21 #include "dp_rx.h"
22 #include "dp_peer.h"
23 #include "hal_api.h"
24 #include "qdf_trace.h"
25 #include "qdf_nbuf.h"
26 #include "dp_internal.h"
27 #include "dp_rx_defrag.h"
28 #include <enet.h>	/* LLC_SNAP_HDR_LEN */
29 #include "dp_rx_defrag.h"
30 #include "dp_ipa.h"
31 #include "dp_rx_buffer_pool.h"
32 
33 const struct dp_rx_defrag_cipher dp_f_ccmp = {
34 	"AES-CCM",
35 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
36 	IEEE80211_WEP_MICLEN,
37 	0,
38 };
39 
40 const struct dp_rx_defrag_cipher dp_f_tkip = {
41 	"TKIP",
42 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
43 	IEEE80211_WEP_CRCLEN,
44 	IEEE80211_WEP_MICLEN,
45 };
46 
47 const struct dp_rx_defrag_cipher dp_f_wep = {
48 	"WEP",
49 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
50 	IEEE80211_WEP_CRCLEN,
51 	0,
52 };
53 
54 /*
55  * dp_rx_defrag_frames_free(): Free fragment chain
56  * @frames: Fragment chain
57  *
58  * Iterates through the fragment chain and frees them
59  * Returns: None
60  */
61 static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
62 {
63 	qdf_nbuf_t next, frag = frames;
64 
65 	while (frag) {
66 		next = qdf_nbuf_next(frag);
67 		qdf_nbuf_free(frag);
68 		frag = next;
69 	}
70 }
71 
72 /*
73  * dp_rx_clear_saved_desc_info(): Clears descriptor info
74  * @peer: Pointer to the peer data structure
75  * @tid: Transmit ID (TID)
76  *
77  * Saves MPDU descriptor info and MSDU link pointer from REO
78  * ring descriptor. The cache is created per peer, per TID
79  *
80  * Returns: None
81  */
82 static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
83 {
84 	if (peer->rx_tid[tid].dst_ring_desc)
85 		qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
86 
87 	peer->rx_tid[tid].dst_ring_desc = NULL;
88 	peer->rx_tid[tid].head_frag_desc = NULL;
89 }
90 
91 static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
92 					unsigned int tid)
93 {
94 	struct dp_soc *soc;
95 	struct dp_pdev *pdev;
96 	struct dp_srng *dp_rxdma_srng;
97 	struct rx_desc_pool *rx_desc_pool;
98 	union dp_rx_desc_list_elem_t *head = NULL;
99 	union dp_rx_desc_list_elem_t *tail = NULL;
100 	uint8_t pool_id;
101 
102 	pdev = peer->vdev->pdev;
103 	soc = pdev->soc;
104 
105 	if (peer->rx_tid[tid].head_frag_desc) {
106 		pool_id = peer->rx_tid[tid].head_frag_desc->pool_id;
107 		dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
108 		rx_desc_pool = &soc->rx_desc_buf[pool_id];
109 
110 		dp_rx_add_to_free_desc_list(&head, &tail,
111 					    peer->rx_tid[tid].head_frag_desc);
112 		dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
113 					1, &head, &tail);
114 	}
115 
116 	if (peer->rx_tid[tid].dst_ring_desc) {
117 		if (dp_rx_link_desc_return(soc,
118 					   peer->rx_tid[tid].dst_ring_desc,
119 					   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
120 		    QDF_STATUS_SUCCESS)
121 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
122 				  "%s: Failed to return link desc", __func__);
123 	}
124 }
125 
126 /*
127  * dp_rx_reorder_flush_frag(): Flush the frag list
128  * @peer: Pointer to the peer data structure
129  * @tid: Transmit ID (TID)
130  *
131  * Flush the per-TID frag list
132  *
133  * Returns: None
134  */
135 void dp_rx_reorder_flush_frag(struct dp_peer *peer,
136 			 unsigned int tid)
137 {
138 	dp_info_rl("Flushing TID %d", tid);
139 
140 	if (!peer) {
141 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
142 					"%s: NULL peer", __func__);
143 		return;
144 	}
145 
146 	dp_rx_return_head_frag_desc(peer, tid);
147 	dp_rx_defrag_cleanup(peer, tid);
148 }
149 
150 /*
151  * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
152  * @soc: DP SOC
153  *
154  * Flush fragments of all waitlisted TID's
155  *
156  * Returns: None
157  */
158 void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
159 {
160 	struct dp_rx_tid *rx_reorder = NULL;
161 	struct dp_rx_tid *tmp;
162 	uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
163 	TAILQ_HEAD(, dp_rx_tid) temp_list;
164 
165 	TAILQ_INIT(&temp_list);
166 
167 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
168 		  FL("Current time  %u"), now_ms);
169 
170 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
171 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
172 			   defrag_waitlist_elem, tmp) {
173 		uint32_t tid;
174 
175 		if (rx_reorder->defrag_timeout_ms > now_ms)
176 			break;
177 
178 		tid = rx_reorder->tid;
179 		if (tid >= DP_MAX_TIDS) {
180 			qdf_assert(0);
181 			continue;
182 		}
183 
184 		TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
185 			     defrag_waitlist_elem);
186 		DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
187 
188 		/* Move to temp list and clean-up later */
189 		TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
190 				  defrag_waitlist_elem);
191 	}
192 	if (rx_reorder) {
193 		soc->rx.defrag.next_flush_ms =
194 			rx_reorder->defrag_timeout_ms;
195 	} else {
196 		soc->rx.defrag.next_flush_ms =
197 			now_ms + soc->rx.defrag.timeout_ms;
198 	}
199 
200 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
201 
202 	TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
203 			   defrag_waitlist_elem, tmp) {
204 		struct dp_peer *peer, *temp_peer = NULL;
205 
206 		qdf_spin_lock_bh(&rx_reorder->tid_lock);
207 		TAILQ_REMOVE(&temp_list, rx_reorder,
208 			     defrag_waitlist_elem);
209 		/* get address of current peer */
210 		peer =
211 			container_of(rx_reorder, struct dp_peer,
212 				     rx_tid[rx_reorder->tid]);
213 		qdf_spin_unlock_bh(&rx_reorder->tid_lock);
214 
215 		temp_peer = dp_peer_get_ref_by_id(soc, peer->peer_id,
216 						  DP_MOD_ID_RX_ERR);
217 		if (temp_peer == peer) {
218 			qdf_spin_lock_bh(&rx_reorder->tid_lock);
219 			dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
220 			qdf_spin_unlock_bh(&rx_reorder->tid_lock);
221 		}
222 
223 		if (temp_peer)
224 			dp_peer_unref_delete(temp_peer, DP_MOD_ID_RX_ERR);
225 
226 	}
227 }
228 
229 /*
230  * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
231  * @peer: Pointer to the peer data structure
232  * @tid: Transmit ID (TID)
233  *
234  * Appends per-tid fragments to global fragment wait list
235  *
236  * Returns: None
237  */
238 static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
239 {
240 	struct dp_soc *psoc = peer->vdev->pdev->soc;
241 	struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
242 
243 	dp_debug("Adding TID %u to waitlist for peer %pK at MAC address "QDF_MAC_ADDR_FMT,
244 		 tid, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
245 
246 	/* TODO: use LIST macros instead of TAIL macros */
247 	qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
248 	if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
249 		psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
250 	TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
251 				defrag_waitlist_elem);
252 	DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
253 	qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
254 }
255 
256 /*
257  * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
258  * @peer: Pointer to the peer data structure
259  * @tid: Transmit ID (TID)
260  *
261  * Remove fragments from waitlist
262  *
263  * Returns: None
264  */
265 void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
266 {
267 	struct dp_pdev *pdev = peer->vdev->pdev;
268 	struct dp_soc *soc = pdev->soc;
269 	struct dp_rx_tid *rx_reorder;
270 	struct dp_rx_tid *tmp;
271 
272 	dp_debug("Removing TID %u to waitlist for peer %pK at MAC address "QDF_MAC_ADDR_FMT,
273 		 tid, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
274 
275 	if (tid >= DP_MAX_TIDS) {
276 		dp_err("TID out of bounds: %d", tid);
277 		qdf_assert_always(0);
278 	}
279 
280 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
281 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
282 			   defrag_waitlist_elem, tmp) {
283 		struct dp_peer *peer_on_waitlist;
284 
285 		/* get address of current peer */
286 		peer_on_waitlist =
287 			container_of(rx_reorder, struct dp_peer,
288 				     rx_tid[rx_reorder->tid]);
289 
290 		/* Ensure it is TID for same peer */
291 		if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
292 			TAILQ_REMOVE(&soc->rx.defrag.waitlist,
293 				rx_reorder, defrag_waitlist_elem);
294 			DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
295 		}
296 	}
297 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
298 }
299 
300 /*
301  * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
302  * @peer: Pointer to the peer data structure
303  * @tid: Transmit ID (TID)
304  * @head_addr: Pointer to head list
305  * @tail_addr: Pointer to tail list
306  * @frag: Incoming fragment
307  * @all_frag_present: Flag to indicate whether all fragments are received
308  *
309  * Build a per-tid, per-sequence fragment list.
310  *
311  * Returns: Success, if inserted
312  */
313 static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
314 	qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
315 	uint8_t *all_frag_present)
316 {
317 	qdf_nbuf_t next;
318 	qdf_nbuf_t prev = NULL;
319 	qdf_nbuf_t cur;
320 	uint16_t head_fragno, cur_fragno, next_fragno;
321 	uint8_t last_morefrag = 1, count = 0;
322 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
323 	uint8_t *rx_desc_info;
324 
325 
326 	qdf_assert(frag);
327 	qdf_assert(head_addr);
328 	qdf_assert(tail_addr);
329 
330 	*all_frag_present = 0;
331 	rx_desc_info = qdf_nbuf_data(frag);
332 	cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
333 
334 	dp_debug("cur_fragno %d\n", cur_fragno);
335 	/* If this is the first fragment */
336 	if (!(*head_addr)) {
337 		*head_addr = *tail_addr = frag;
338 		qdf_nbuf_set_next(*tail_addr, NULL);
339 		rx_tid->curr_frag_num = cur_fragno;
340 
341 		goto insert_done;
342 	}
343 
344 	/* In sequence fragment */
345 	if (cur_fragno > rx_tid->curr_frag_num) {
346 		qdf_nbuf_set_next(*tail_addr, frag);
347 		*tail_addr = frag;
348 		qdf_nbuf_set_next(*tail_addr, NULL);
349 		rx_tid->curr_frag_num = cur_fragno;
350 	} else {
351 		/* Out of sequence fragment */
352 		cur = *head_addr;
353 		rx_desc_info = qdf_nbuf_data(cur);
354 		head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
355 
356 		if (cur_fragno == head_fragno) {
357 			qdf_nbuf_free(frag);
358 			goto insert_fail;
359 		} else if (head_fragno > cur_fragno) {
360 			qdf_nbuf_set_next(frag, cur);
361 			cur = frag;
362 			*head_addr = frag; /* head pointer to be updated */
363 		} else {
364 			while ((cur_fragno > head_fragno) && cur) {
365 				prev = cur;
366 				cur = qdf_nbuf_next(cur);
367 				if (cur) {
368 					rx_desc_info = qdf_nbuf_data(cur);
369 					head_fragno =
370 						dp_rx_frag_get_mpdu_frag_number(
371 								rx_desc_info);
372 				}
373 			}
374 
375 			if (cur_fragno == head_fragno) {
376 				qdf_nbuf_free(frag);
377 				goto insert_fail;
378 			}
379 
380 			qdf_nbuf_set_next(prev, frag);
381 			qdf_nbuf_set_next(frag, cur);
382 		}
383 	}
384 
385 	next = qdf_nbuf_next(*head_addr);
386 
387 	rx_desc_info = qdf_nbuf_data(*tail_addr);
388 	last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
389 
390 	/* TODO: optimize the loop */
391 	if (!last_morefrag) {
392 		/* Check if all fragments are present */
393 		do {
394 			rx_desc_info = qdf_nbuf_data(next);
395 			next_fragno =
396 				dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
397 			count++;
398 
399 			if (next_fragno != count)
400 				break;
401 
402 			next = qdf_nbuf_next(next);
403 		} while (next);
404 
405 		if (!next) {
406 			*all_frag_present = 1;
407 			return QDF_STATUS_SUCCESS;
408 		} else {
409 			/* revisit */
410 		}
411 	}
412 
413 insert_done:
414 	return QDF_STATUS_SUCCESS;
415 
416 insert_fail:
417 	return QDF_STATUS_E_FAILURE;
418 }
419 
420 
421 /*
422  * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
423  * @msdu: Pointer to the fragment
424  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
425  *
426  * decap tkip encrypted fragment
427  *
428  * Returns: QDF_STATUS
429  */
430 static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
431 {
432 	uint8_t *ivp, *orig_hdr;
433 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
434 
435 	/* start of 802.11 header info */
436 	orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
437 
438 	/* TKIP header is located post 802.11 header */
439 	ivp = orig_hdr + hdrlen;
440 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
441 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
442 			"IEEE80211_WEP_EXTIV is missing in TKIP fragment");
443 		return QDF_STATUS_E_DEFRAG_ERROR;
444 	}
445 
446 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
447 
448 	return QDF_STATUS_SUCCESS;
449 }
450 
451 /*
452  * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
453  * @nbuf: Pointer to the fragment buffer
454  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
455  *
456  * Remove MIC information from CCMP fragment
457  *
458  * Returns: QDF_STATUS
459  */
460 static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
461 {
462 	uint8_t *ivp, *orig_hdr;
463 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
464 
465 	/* start of the 802.11 header */
466 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
467 
468 	/* CCMP header is located after 802.11 header */
469 	ivp = orig_hdr + hdrlen;
470 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
471 		return QDF_STATUS_E_DEFRAG_ERROR;
472 
473 	qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
474 
475 	return QDF_STATUS_SUCCESS;
476 }
477 
478 /*
479  * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
480  * @nbuf: Pointer to the fragment
481  * @hdrlen: length of the header information
482  *
483  * decap CCMP encrypted fragment
484  *
485  * Returns: QDF_STATUS
486  */
487 static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
488 {
489 	uint8_t *ivp, *origHdr;
490 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
491 
492 	origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
493 	ivp = origHdr + hdrlen;
494 
495 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
496 		return QDF_STATUS_E_DEFRAG_ERROR;
497 
498 	/* Let's pull the header later */
499 
500 	return QDF_STATUS_SUCCESS;
501 }
502 
503 /*
504  * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
505  * @msdu: Pointer to the fragment
506  * @hdrlen: length of the header information
507  *
508  * decap WEP encrypted fragment
509  *
510  * Returns: QDF_STATUS
511  */
512 static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
513 {
514 	uint8_t *origHdr;
515 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
516 
517 	origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
518 	qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
519 
520 	qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
521 
522 	return QDF_STATUS_SUCCESS;
523 }
524 
525 /*
526  * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
527  * @soc: soc handle
528  * @nbuf: Pointer to the fragment
529  *
530  * Calculate the header size of the received fragment
531  *
532  * Returns: header size (uint16_t)
533  */
534 static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
535 {
536 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
537 	uint16_t size = sizeof(struct ieee80211_frame);
538 	uint16_t fc = 0;
539 	uint32_t to_ds, fr_ds;
540 	uint8_t frm_ctrl_valid;
541 	uint16_t frm_ctrl_field;
542 
543 	to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
544 	fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
545 	frm_ctrl_valid =
546 		hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
547 						    rx_tlv_hdr);
548 	frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
549 
550 	if (to_ds && fr_ds)
551 		size += QDF_MAC_ADDR_SIZE;
552 
553 	if (frm_ctrl_valid) {
554 		fc = frm_ctrl_field;
555 
556 		/* use 1-st byte for validation */
557 		if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
558 			size += sizeof(uint16_t);
559 			/* use 2-nd byte for validation */
560 			if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
561 				size += sizeof(struct ieee80211_htc);
562 		}
563 	}
564 
565 	return size;
566 }
567 
568 /*
569  * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
570  * @wh0: Pointer to the wireless header of the fragment
571  * @hdr: Array to hold the pseudo header
572  *
573  * Calculate a pseudo MIC header
574  *
575  * Returns: None
576  */
577 static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
578 				uint8_t hdr[])
579 {
580 	const struct ieee80211_frame_addr4 *wh =
581 		(const struct ieee80211_frame_addr4 *)wh0;
582 
583 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
584 	case IEEE80211_FC1_DIR_NODS:
585 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
586 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
587 					   wh->i_addr2);
588 		break;
589 	case IEEE80211_FC1_DIR_TODS:
590 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
591 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
592 					   wh->i_addr2);
593 		break;
594 	case IEEE80211_FC1_DIR_FROMDS:
595 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
596 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
597 					   wh->i_addr3);
598 		break;
599 	case IEEE80211_FC1_DIR_DSTODS:
600 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
601 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
602 					   wh->i_addr4);
603 		break;
604 	}
605 
606 	/*
607 	 * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
608 	 * it could also be set for deauth, disassoc, action, etc. for
609 	 * a mgt type frame. It comes into picture for MFP.
610 	 */
611 	if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
612 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
613 				IEEE80211_FC1_DIR_DSTODS) {
614 			const struct ieee80211_qosframe_addr4 *qwh =
615 				(const struct ieee80211_qosframe_addr4 *)wh;
616 			hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
617 		} else {
618 			const struct ieee80211_qosframe *qwh =
619 				(const struct ieee80211_qosframe *)wh;
620 			hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
621 		}
622 	} else {
623 		hdr[12] = 0;
624 	}
625 
626 	hdr[13] = hdr[14] = hdr[15] = 0;	/* reserved */
627 }
628 
629 /*
630  * dp_rx_defrag_mic(): Calculate MIC header
631  * @key: Pointer to the key
632  * @wbuf: fragment buffer
633  * @off: Offset
634  * @data_len: Data length
635  * @mic: Array to hold MIC
636  *
637  * Calculate a pseudo MIC header
638  *
639  * Returns: QDF_STATUS
640  */
641 static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
642 		uint16_t off, uint16_t data_len, uint8_t mic[])
643 {
644 	uint8_t hdr[16] = { 0, };
645 	uint32_t l, r;
646 	const uint8_t *data;
647 	uint32_t space;
648 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
649 
650 	dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
651 		+ rx_desc_len), hdr);
652 
653 	l = dp_rx_get_le32(key);
654 	r = dp_rx_get_le32(key + 4);
655 
656 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
657 	l ^= dp_rx_get_le32(hdr);
658 	dp_rx_michael_block(l, r);
659 	l ^= dp_rx_get_le32(&hdr[4]);
660 	dp_rx_michael_block(l, r);
661 	l ^= dp_rx_get_le32(&hdr[8]);
662 	dp_rx_michael_block(l, r);
663 	l ^= dp_rx_get_le32(&hdr[12]);
664 	dp_rx_michael_block(l, r);
665 
666 	/* first buffer has special handling */
667 	data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
668 	space = qdf_nbuf_len(wbuf) - off;
669 
670 	for (;; ) {
671 		if (space > data_len)
672 			space = data_len;
673 
674 		/* collect 32-bit blocks from current buffer */
675 		while (space >= sizeof(uint32_t)) {
676 			l ^= dp_rx_get_le32(data);
677 			dp_rx_michael_block(l, r);
678 			data += sizeof(uint32_t);
679 			space -= sizeof(uint32_t);
680 			data_len -= sizeof(uint32_t);
681 		}
682 		if (data_len < sizeof(uint32_t))
683 			break;
684 
685 		wbuf = qdf_nbuf_next(wbuf);
686 		if (!wbuf)
687 			return QDF_STATUS_E_DEFRAG_ERROR;
688 
689 		if (space != 0) {
690 			const uint8_t *data_next;
691 			/*
692 			 * Block straddles buffers, split references.
693 			 */
694 			data_next =
695 				(uint8_t *)qdf_nbuf_data(wbuf) + off;
696 			if ((qdf_nbuf_len(wbuf)) <
697 				sizeof(uint32_t) - space) {
698 				return QDF_STATUS_E_DEFRAG_ERROR;
699 			}
700 			switch (space) {
701 			case 1:
702 				l ^= dp_rx_get_le32_split(data[0],
703 					data_next[0], data_next[1],
704 					data_next[2]);
705 				data = data_next + 3;
706 				space = (qdf_nbuf_len(wbuf) - off) - 3;
707 				break;
708 			case 2:
709 				l ^= dp_rx_get_le32_split(data[0], data[1],
710 						    data_next[0], data_next[1]);
711 				data = data_next + 2;
712 				space = (qdf_nbuf_len(wbuf) - off) - 2;
713 				break;
714 			case 3:
715 				l ^= dp_rx_get_le32_split(data[0], data[1],
716 					data[2], data_next[0]);
717 				data = data_next + 1;
718 				space = (qdf_nbuf_len(wbuf) - off) - 1;
719 				break;
720 			}
721 			dp_rx_michael_block(l, r);
722 			data_len -= sizeof(uint32_t);
723 		} else {
724 			/*
725 			 * Setup for next buffer.
726 			 */
727 			data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
728 			space = qdf_nbuf_len(wbuf) - off;
729 		}
730 	}
731 	/* Last block and padding (0x5a, 4..7 x 0) */
732 	switch (data_len) {
733 	case 0:
734 		l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
735 		break;
736 	case 1:
737 		l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
738 		break;
739 	case 2:
740 		l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
741 		break;
742 	case 3:
743 		l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
744 		break;
745 	}
746 	dp_rx_michael_block(l, r);
747 	dp_rx_michael_block(l, r);
748 	dp_rx_put_le32(mic, l);
749 	dp_rx_put_le32(mic + 4, r);
750 
751 	return QDF_STATUS_SUCCESS;
752 }
753 
754 /*
755  * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
756  * @key: Pointer to the key
757  * @msdu: fragment buffer
758  * @hdrlen: Length of the header information
759  *
760  * Remove MIC information from the TKIP frame
761  *
762  * Returns: QDF_STATUS
763  */
764 static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
765 					qdf_nbuf_t msdu, uint16_t hdrlen)
766 {
767 	QDF_STATUS status;
768 	uint32_t pktlen = 0, prev_data_len;
769 	uint8_t mic[IEEE80211_WEP_MICLEN];
770 	uint8_t mic0[IEEE80211_WEP_MICLEN];
771 	qdf_nbuf_t prev = NULL, prev0, next;
772 	uint8_t len0 = 0;
773 
774 	next = msdu;
775 	prev0 = msdu;
776 	while (next) {
777 		pktlen += (qdf_nbuf_len(next) - hdrlen);
778 		prev = next;
779 		dp_debug("pktlen %u",
780 			 (uint32_t)(qdf_nbuf_len(next) - hdrlen));
781 		next = qdf_nbuf_next(next);
782 		if (next && !qdf_nbuf_next(next))
783 			prev0 = prev;
784 	}
785 
786 	if (!prev) {
787 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
788 			  "%s Defrag chaining failed !\n", __func__);
789 		return QDF_STATUS_E_DEFRAG_ERROR;
790 	}
791 
792 	prev_data_len = qdf_nbuf_len(prev) - hdrlen;
793 	if (prev_data_len < dp_f_tkip.ic_miclen) {
794 		if (prev0 == prev) {
795 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
796 				  "%s Fragments don't have MIC header !\n", __func__);
797 			return QDF_STATUS_E_DEFRAG_ERROR;
798 		}
799 		len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len;
800 		qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0,
801 				   (caddr_t)mic0);
802 		qdf_nbuf_trim_tail(prev0, len0);
803 	}
804 
805 	qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) -
806 			   (dp_f_tkip.ic_miclen - len0)),
807 			   (dp_f_tkip.ic_miclen - len0),
808 			   (caddr_t)(&mic0[len0]));
809 	qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0));
810 	pktlen -= dp_f_tkip.ic_miclen;
811 
812 	if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) {
813 		qdf_nbuf_free(prev);
814 		qdf_nbuf_set_next(prev0, NULL);
815 	}
816 
817 	status = dp_rx_defrag_mic(key, msdu, hdrlen,
818 				pktlen, mic);
819 
820 	if (QDF_IS_STATUS_ERROR(status))
821 		return status;
822 
823 	if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
824 		return QDF_STATUS_E_DEFRAG_ERROR;
825 
826 	return QDF_STATUS_SUCCESS;
827 }
828 
829 /*
830  * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
831  * @nbuf: buffer pointer
832  * @hdrsize: size of the header to be pulled
833  *
834  * Pull the RXTLV & the 802.11 headers
835  *
836  * Returns: None
837  */
838 static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
839 {
840 	struct rx_pkt_tlvs *rx_pkt_tlv =
841 				(struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
842 	struct rx_mpdu_info *rx_mpdu_info_details =
843 		&rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
844 
845 	dp_debug("pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
846 		 rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
847 		 rx_mpdu_info_details->pn_95_64,
848 		 rx_mpdu_info_details->pn_127_96);
849 
850 	qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN + hdrsize);
851 
852 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
853 		  "%s: final pktlen %d .11len %d",
854 		  __func__, (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
855 }
856 
857 /*
858  * dp_rx_defrag_pn_check(): Check the PN of current fragmented with prev PN
859  * @msdu: msdu to get the current PN
860  * @cur_pn128: PN extracted from current msdu
861  * @prev_pn128: Prev PN
862  *
863  * Returns: 0 on success, non zero on failure
864  */
865 static int dp_rx_defrag_pn_check(qdf_nbuf_t msdu,
866 				 uint64_t *cur_pn128, uint64_t *prev_pn128)
867 {
868 	struct rx_pkt_tlvs *rx_pkt_tlv =
869 			(struct rx_pkt_tlvs *)qdf_nbuf_data(msdu);
870 	struct rx_mpdu_info *rx_mpdu_info_details =
871 	 &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
872 	int out_of_order = 0;
873 
874 	cur_pn128[0] = rx_mpdu_info_details->pn_31_0;
875 	cur_pn128[0] |=
876 		((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
877 	cur_pn128[1] = rx_mpdu_info_details->pn_95_64;
878 	cur_pn128[1] |=
879 		((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
880 
881 	if (cur_pn128[1] == prev_pn128[1])
882 		out_of_order = (cur_pn128[0] <= prev_pn128[0]);
883 	else
884 		out_of_order = (cur_pn128[1] < prev_pn128[1]);
885 
886 	return out_of_order;
887 }
888 
889 /*
890  * dp_rx_construct_fraglist(): Construct a nbuf fraglist
891  * @peer: Pointer to the peer
892  * @head: Pointer to list of fragments
893  * @hdrsize: Size of the header to be pulled
894  *
895  * Construct a nbuf fraglist
896  *
897  * Returns: None
898  */
899 static int
900 dp_rx_construct_fraglist(struct dp_peer *peer, int tid, qdf_nbuf_t head,
901 			 uint16_t hdrsize)
902 {
903 	qdf_nbuf_t msdu = qdf_nbuf_next(head);
904 	qdf_nbuf_t rx_nbuf = msdu;
905 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
906 	uint32_t len = 0;
907 	uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
908 	int out_of_order = 0;
909 	int index;
910 	int needs_pn_check = 0;
911 
912 	prev_pn128[0] = rx_tid->pn128[0];
913 	prev_pn128[1] = rx_tid->pn128[1];
914 
915 	index = hal_rx_msdu_is_wlan_mcast(msdu) ? dp_sec_mcast : dp_sec_ucast;
916 	if (qdf_likely(peer->security[index].sec_type != cdp_sec_type_none))
917 		needs_pn_check = 1;
918 
919 	while (msdu) {
920 		if (qdf_likely(needs_pn_check))
921 			out_of_order = dp_rx_defrag_pn_check(msdu,
922 							     &cur_pn128[0],
923 							     &prev_pn128[0]);
924 
925 		if (qdf_unlikely(out_of_order)) {
926 			dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
927 				   cur_pn128[0], cur_pn128[1],
928 				   prev_pn128[0], prev_pn128[1]);
929 			return QDF_STATUS_E_FAILURE;
930 		}
931 
932 		prev_pn128[0] = cur_pn128[0];
933 		prev_pn128[1] = cur_pn128[1];
934 
935 		dp_rx_frag_pull_hdr(msdu, hdrsize);
936 		len += qdf_nbuf_len(msdu);
937 		msdu = qdf_nbuf_next(msdu);
938 	}
939 
940 	qdf_nbuf_append_ext_list(head, rx_nbuf, len);
941 	qdf_nbuf_set_next(head, NULL);
942 	qdf_nbuf_set_is_frag(head, 1);
943 
944 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
945 		  "%s: head len %d ext len %d data len %d ",
946 		  __func__,
947 		  (uint32_t)qdf_nbuf_len(head),
948 		  (uint32_t)qdf_nbuf_len(rx_nbuf),
949 		  (uint32_t)(head->data_len));
950 
951 	return QDF_STATUS_SUCCESS;
952 }
953 
954 /**
955  * dp_rx_defrag_err() - rx err handler
956  * @pdev: handle to pdev object
957  * @vdev_id: vdev id
958  * @peer_mac_addr: peer mac address
959  * @tid: TID
960  * @tsf32: TSF
961  * @err_type: error type
962  * @rx_frame: rx frame
963  * @pn: PN Number
964  * @key_id: key id
965  *
966  * This function handles rx error and send MIC error notification
967  *
968  * Return: None
969  */
970 static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
971 {
972 	struct ol_if_ops *tops = NULL;
973 	struct dp_pdev *pdev = vdev->pdev;
974 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
975 	uint8_t *orig_hdr;
976 	struct ieee80211_frame *wh;
977 	struct cdp_rx_mic_err_info mic_failure_info;
978 
979 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
980 	wh = (struct ieee80211_frame *)orig_hdr;
981 
982 	qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
983 			 (struct qdf_mac_addr *)&wh->i_addr1);
984 	qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
985 			 (struct qdf_mac_addr *)&wh->i_addr2);
986 	mic_failure_info.key_id = 0;
987 	mic_failure_info.multicast =
988 		IEEE80211_IS_MULTICAST(wh->i_addr1);
989 	qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
990 	mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
991 	mic_failure_info.data = (uint8_t *)wh;
992 	mic_failure_info.vdev_id = vdev->vdev_id;
993 
994 	tops = pdev->soc->cdp_soc.ol_ops;
995 	if (tops->rx_mic_error)
996 		tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
997 				   &mic_failure_info);
998 }
999 
1000 
1001 /*
1002  * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
1003  * @soc: dp soc handle
1004  * @nbuf: Pointer to the fragment buffer
1005  * @hdrsize: Size of headers
1006  *
1007  * Transcap the fragment from 802.11 to 802.3
1008  *
1009  * Returns: None
1010  */
1011 static void
1012 dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_peer *peer, int tid,
1013 			   qdf_nbuf_t nbuf, uint16_t hdrsize)
1014 {
1015 	struct llc_snap_hdr_t *llchdr;
1016 	struct ethernet_hdr_t *eth_hdr;
1017 	uint8_t ether_type[2];
1018 	uint16_t fc = 0;
1019 	union dp_align_mac_addr mac_addr;
1020 	uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
1021 	struct rx_pkt_tlvs *rx_pkt_tlv =
1022 				(struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
1023 	struct rx_mpdu_info *rx_mpdu_info_details =
1024 		&rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
1025 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1026 
1027 	dp_debug("head_nbuf pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
1028 		 rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
1029 		 rx_mpdu_info_details->pn_95_64,
1030 		 rx_mpdu_info_details->pn_127_96);
1031 
1032 	rx_tid->pn128[0] = rx_mpdu_info_details->pn_31_0;
1033 	rx_tid->pn128[0] |= ((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
1034 	rx_tid->pn128[1] = rx_mpdu_info_details->pn_95_64;
1035 	rx_tid->pn128[1] |= ((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
1036 
1037 	if (!rx_desc_info) {
1038 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1039 			"%s: Memory alloc failed ! ", __func__);
1040 		QDF_ASSERT(0);
1041 		return;
1042 	}
1043 
1044 	qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
1045 
1046 	llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
1047 					RX_PKT_TLVS_LEN + hdrsize);
1048 	qdf_mem_copy(ether_type, llchdr->ethertype, 2);
1049 
1050 	qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
1051 				  sizeof(struct llc_snap_hdr_t) -
1052 				  sizeof(struct ethernet_hdr_t)));
1053 
1054 	eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
1055 
1056 	if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
1057 						rx_desc_info))
1058 		fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
1059 
1060 	dp_debug("Frame control type: 0x%x", fc);
1061 
1062 	switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
1063 	case IEEE80211_FC1_DIR_NODS:
1064 		hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
1065 				      &mac_addr.raw[0]);
1066 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
1067 			QDF_MAC_ADDR_SIZE);
1068 		hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
1069 				      &mac_addr.raw[0]);
1070 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
1071 			QDF_MAC_ADDR_SIZE);
1072 		break;
1073 	case IEEE80211_FC1_DIR_TODS:
1074 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
1075 				      &mac_addr.raw[0]);
1076 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
1077 			QDF_MAC_ADDR_SIZE);
1078 		hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
1079 				      &mac_addr.raw[0]);
1080 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
1081 			QDF_MAC_ADDR_SIZE);
1082 		break;
1083 	case IEEE80211_FC1_DIR_FROMDS:
1084 		hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
1085 				      &mac_addr.raw[0]);
1086 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
1087 			QDF_MAC_ADDR_SIZE);
1088 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
1089 				      &mac_addr.raw[0]);
1090 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
1091 			QDF_MAC_ADDR_SIZE);
1092 		break;
1093 
1094 	case IEEE80211_FC1_DIR_DSTODS:
1095 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
1096 				      &mac_addr.raw[0]);
1097 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
1098 			QDF_MAC_ADDR_SIZE);
1099 		hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
1100 				      &mac_addr.raw[0]);
1101 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
1102 			QDF_MAC_ADDR_SIZE);
1103 		break;
1104 
1105 	default:
1106 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1107 		"%s: Unknown frame control type: 0x%x", __func__, fc);
1108 	}
1109 
1110 	qdf_mem_copy(eth_hdr->ethertype, ether_type,
1111 			sizeof(ether_type));
1112 
1113 	qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
1114 	qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
1115 	qdf_mem_free(rx_desc_info);
1116 }
1117 
1118 #ifdef RX_DEFRAG_DO_NOT_REINJECT
1119 /*
1120  * dp_rx_defrag_deliver(): Deliver defrag packet to stack
1121  * @peer: Pointer to the peer
1122  * @tid: Transmit Identifier
1123  * @head: Nbuf to be delivered
1124  *
1125  * Returns: None
1126  */
1127 static inline void dp_rx_defrag_deliver(struct dp_peer *peer,
1128 					unsigned int tid,
1129 					qdf_nbuf_t head)
1130 {
1131 	struct dp_vdev *vdev = peer->vdev;
1132 	struct dp_soc *soc = vdev->pdev->soc;
1133 	qdf_nbuf_t deliver_list_head = NULL;
1134 	qdf_nbuf_t deliver_list_tail = NULL;
1135 	uint8_t *rx_tlv_hdr;
1136 
1137 	rx_tlv_hdr = qdf_nbuf_data(head);
1138 
1139 	QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
1140 	qdf_nbuf_set_tid_val(head, tid);
1141 	qdf_nbuf_pull_head(head, RX_PKT_TLVS_LEN);
1142 
1143 	DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
1144 			  head);
1145 	dp_rx_deliver_to_stack(soc, vdev, peer, deliver_list_head,
1146 			       deliver_list_tail);
1147 }
1148 
1149 /*
1150  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
1151  * @peer: Pointer to the peer
1152  * @tid: Transmit Identifier
1153  * @head: Buffer to be reinjected back
1154  *
1155  * Reinject the fragment chain back into REO
1156  *
1157  * Returns: QDF_STATUS
1158  */
1159 static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
1160 					    unsigned int tid, qdf_nbuf_t head)
1161 {
1162 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1163 
1164 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1165 
1166 	dp_rx_defrag_deliver(peer, tid, head);
1167 	rx_reorder_array_elem->head = NULL;
1168 	rx_reorder_array_elem->tail = NULL;
1169 	dp_rx_return_head_frag_desc(peer, tid);
1170 
1171 	return QDF_STATUS_SUCCESS;
1172 }
1173 #else
1174 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
1175 /**
1176  * dp_rx_reinject_ring_record_entry() - Record reinject ring history
1177  * @soc: Datapath soc structure
1178  * @paddr: paddr of the buffer reinjected to SW2REO ring
1179  * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
1180  * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
1181  *
1182  * Returns: None
1183  */
1184 static inline void
1185 dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
1186 				 uint32_t sw_cookie, uint8_t rbm)
1187 {
1188 	struct dp_buf_info_record *record;
1189 	uint32_t idx;
1190 
1191 	if (qdf_unlikely(!soc->rx_reinject_ring_history))
1192 		return;
1193 
1194 	idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
1195 					DP_RX_REINJECT_HIST_MAX);
1196 
1197 	/* No NULL check needed for record since its an array */
1198 	record = &soc->rx_reinject_ring_history->entry[idx];
1199 
1200 	record->timestamp = qdf_get_log_timestamp();
1201 	record->hbi.paddr = paddr;
1202 	record->hbi.sw_cookie = sw_cookie;
1203 	record->hbi.rbm = rbm;
1204 }
1205 #else
1206 static inline void
1207 dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
1208 				 uint32_t sw_cookie, uint8_t rbm)
1209 {
1210 }
1211 #endif
1212 
1213 /*
1214  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
1215  * @peer: Pointer to the peer
1216  * @tid: Transmit Identifier
1217  * @head: Buffer to be reinjected back
1218  *
1219  * Reinject the fragment chain back into REO
1220  *
1221  * Returns: QDF_STATUS
1222  */
1223 static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
1224 					    unsigned int tid, qdf_nbuf_t head)
1225 {
1226 	struct dp_pdev *pdev = peer->vdev->pdev;
1227 	struct dp_soc *soc = pdev->soc;
1228 	struct hal_buf_info buf_info;
1229 	void *link_desc_va;
1230 	void *msdu0, *msdu_desc_info;
1231 	void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
1232 	void *dst_mpdu_desc_info, *dst_qdesc_addr;
1233 	qdf_dma_addr_t paddr;
1234 	uint32_t nbuf_len, seq_no, dst_ind;
1235 	uint32_t *mpdu_wrd;
1236 	uint32_t ret, cookie;
1237 	hal_ring_desc_t dst_ring_desc =
1238 		peer->rx_tid[tid].dst_ring_desc;
1239 	hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
1240 	struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
1241 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1242 						peer->rx_tid[tid].array;
1243 	qdf_nbuf_t nbuf_head;
1244 	struct rx_desc_pool *rx_desc_pool = NULL;
1245 	void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
1246 
1247 	/* do duplicate link desc address check */
1248 	dp_rx_link_desc_refill_duplicate_check(
1249 				soc,
1250 				&soc->last_op_info.reo_reinject_link_desc,
1251 				buf_addr_info);
1252 
1253 	nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
1254 	if (qdf_unlikely(!nbuf_head)) {
1255 		dp_err_rl("IPA RX REO reinject failed");
1256 		return QDF_STATUS_E_FAILURE;
1257 	}
1258 
1259 	/* update new allocated skb in case IPA is enabled */
1260 	if (nbuf_head != head) {
1261 		head = nbuf_head;
1262 		rx_desc->nbuf = head;
1263 		rx_reorder_array_elem->head = head;
1264 	}
1265 
1266 	ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
1267 	if (!ent_ring_desc) {
1268 		dp_err_rl("HAL src ring next entry NULL");
1269 		return QDF_STATUS_E_FAILURE;
1270 	}
1271 
1272 	hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
1273 
1274 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
1275 
1276 	qdf_assert_always(link_desc_va);
1277 
1278 	msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
1279 	nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
1280 
1281 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
1282 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
1283 			UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
1284 
1285 	/* msdu reconfig */
1286 	msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
1287 
1288 	dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
1289 
1290 	qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
1291 
1292 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1293 			FIRST_MSDU_IN_MPDU_FLAG, 1);
1294 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1295 			LAST_MSDU_IN_MPDU_FLAG, 1);
1296 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1297 			MSDU_CONTINUATION, 0x0);
1298 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1299 			REO_DESTINATION_INDICATION, dst_ind);
1300 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1301 			MSDU_LENGTH, nbuf_len);
1302 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1303 			SA_IS_VALID, 1);
1304 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1305 			DA_IS_VALID, 1);
1306 
1307 	/* change RX TLV's */
1308 	hal_rx_msdu_start_msdu_len_set(
1309 			qdf_nbuf_data(head), nbuf_len);
1310 
1311 	cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
1312 	rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
1313 
1314 	/* map the nbuf before reinject it into HW */
1315 	ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
1316 					 QDF_DMA_FROM_DEVICE,
1317 					 rx_desc_pool->buf_size);
1318 	if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
1319 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1320 				"%s: nbuf map failed !", __func__);
1321 		return QDF_STATUS_E_FAILURE;
1322 	}
1323 
1324 	/*
1325 	 * As part of rx frag handler bufffer was unmapped and rx desc
1326 	 * unmapped is set to 1. So again for defrag reinject frame reset
1327 	 * it back to 0.
1328 	 */
1329 	rx_desc->unmapped = 0;
1330 
1331 	dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
1332 					  rx_desc_pool->buf_size,
1333 					  true);
1334 
1335 	paddr = qdf_nbuf_get_frag_paddr(head, 0);
1336 
1337 	ret = check_x86_paddr(soc, &head, &paddr, rx_desc_pool);
1338 
1339 	if (ret == QDF_STATUS_E_FAILURE) {
1340 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1341 				"%s: x86 check failed !", __func__);
1342 		return QDF_STATUS_E_FAILURE;
1343 	}
1344 
1345 	hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_DEFRAG_RBM);
1346 
1347 	/* Lets fill entrance ring now !!! */
1348 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
1349 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1350 		"HAL RING Access For REO entrance SRNG Failed: %pK",
1351 		hal_srng);
1352 
1353 		return QDF_STATUS_E_FAILURE;
1354 	}
1355 
1356 	dp_rx_reinject_ring_record_entry(soc, paddr, cookie, DP_DEFRAG_RBM);
1357 	paddr = (uint64_t)buf_info.paddr;
1358 	/* buf addr */
1359 	hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
1360 				     buf_info.sw_cookie,
1361 				     HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
1362 	/* mpdu desc info */
1363 	ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
1364 						    ent_ring_desc);
1365 	dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
1366 						    dst_ring_desc);
1367 
1368 	qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
1369 				sizeof(struct rx_mpdu_desc_info));
1370 	qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
1371 
1372 	mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
1373 	seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
1374 
1375 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1376 			MSDU_COUNT, 0x1);
1377 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1378 				  MPDU_SEQUENCE_NUMBER, seq_no);
1379 	/* unset frag bit */
1380 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1381 			FRAGMENT_FLAG, 0x0);
1382 	/* set sa/da valid bits */
1383 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1384 			SA_IS_VALID, 0x1);
1385 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1386 			DA_IS_VALID, 0x1);
1387 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1388 			RAW_MPDU, 0x0);
1389 
1390 	/* qdesc addr */
1391 	ent_qdesc_addr = (uint8_t *)ent_ring_desc +
1392 		REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1393 
1394 	dst_qdesc_addr = (uint8_t *)dst_ring_desc +
1395 		REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1396 
1397 	qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
1398 
1399 	HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
1400 			REO_DESTINATION_INDICATION, dst_ind);
1401 
1402 	hal_srng_access_end(soc->hal_soc, hal_srng);
1403 
1404 	DP_STATS_INC(soc, rx.reo_reinject, 1);
1405 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1406 		  "%s: reinjection done !", __func__);
1407 	return QDF_STATUS_SUCCESS;
1408 }
1409 #endif
1410 
1411 /*
1412  * dp_rx_defrag(): Defragment the fragment chain
1413  * @peer: Pointer to the peer
1414  * @tid: Transmit Identifier
1415  * @frag_list_head: Pointer to head list
1416  * @frag_list_tail: Pointer to tail list
1417  *
1418  * Defragment the fragment chain
1419  *
1420  * Returns: QDF_STATUS
1421  */
1422 static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
1423 			qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
1424 {
1425 	qdf_nbuf_t tmp_next, prev;
1426 	qdf_nbuf_t cur = frag_list_head, msdu;
1427 	uint32_t index, tkip_demic = 0;
1428 	uint16_t hdr_space;
1429 	uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
1430 	struct dp_vdev *vdev = peer->vdev;
1431 	struct dp_soc *soc = vdev->pdev->soc;
1432 	uint8_t status = 0;
1433 
1434 	hdr_space = dp_rx_defrag_hdrsize(soc, cur);
1435 	index = hal_rx_msdu_is_wlan_mcast(cur) ?
1436 		dp_sec_mcast : dp_sec_ucast;
1437 
1438 	/* Remove FCS from all fragments */
1439 	while (cur) {
1440 		tmp_next = qdf_nbuf_next(cur);
1441 		qdf_nbuf_set_next(cur, NULL);
1442 		qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
1443 		prev = cur;
1444 		qdf_nbuf_set_next(cur, tmp_next);
1445 		cur = tmp_next;
1446 	}
1447 	cur = frag_list_head;
1448 
1449 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1450 		  "%s: index %d Security type: %d", __func__,
1451 		  index, peer->security[index].sec_type);
1452 
1453 	switch (peer->security[index].sec_type) {
1454 	case cdp_sec_type_tkip:
1455 		tkip_demic = 1;
1456 
1457 	case cdp_sec_type_tkip_nomic:
1458 		while (cur) {
1459 			tmp_next = qdf_nbuf_next(cur);
1460 			if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
1461 
1462 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1463 					QDF_TRACE_LEVEL_ERROR,
1464 					"dp_rx_defrag: TKIP decap failed");
1465 
1466 				return QDF_STATUS_E_DEFRAG_ERROR;
1467 			}
1468 			cur = tmp_next;
1469 		}
1470 
1471 		/* If success, increment header to be stripped later */
1472 		hdr_space += dp_f_tkip.ic_header;
1473 		break;
1474 
1475 	case cdp_sec_type_aes_ccmp:
1476 		while (cur) {
1477 			tmp_next = qdf_nbuf_next(cur);
1478 			if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
1479 
1480 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1481 					QDF_TRACE_LEVEL_ERROR,
1482 					"dp_rx_defrag: CCMP demic failed");
1483 
1484 				return QDF_STATUS_E_DEFRAG_ERROR;
1485 			}
1486 			if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
1487 
1488 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1489 					QDF_TRACE_LEVEL_ERROR,
1490 					"dp_rx_defrag: CCMP decap failed");
1491 
1492 				return QDF_STATUS_E_DEFRAG_ERROR;
1493 			}
1494 			cur = tmp_next;
1495 		}
1496 
1497 		/* If success, increment header to be stripped later */
1498 		hdr_space += dp_f_ccmp.ic_header;
1499 		break;
1500 
1501 	case cdp_sec_type_wep40:
1502 	case cdp_sec_type_wep104:
1503 	case cdp_sec_type_wep128:
1504 		while (cur) {
1505 			tmp_next = qdf_nbuf_next(cur);
1506 			if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
1507 
1508 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1509 					QDF_TRACE_LEVEL_ERROR,
1510 					"dp_rx_defrag: WEP decap failed");
1511 
1512 				return QDF_STATUS_E_DEFRAG_ERROR;
1513 			}
1514 			cur = tmp_next;
1515 		}
1516 
1517 		/* If success, increment header to be stripped later */
1518 		hdr_space += dp_f_wep.ic_header;
1519 		break;
1520 	default:
1521 		break;
1522 	}
1523 
1524 	if (tkip_demic) {
1525 		msdu = frag_list_head;
1526 		qdf_mem_copy(key,
1527 			     &peer->security[index].michael_key[0],
1528 			     IEEE80211_WEP_MICLEN);
1529 		status = dp_rx_defrag_tkip_demic(key, msdu,
1530 						 RX_PKT_TLVS_LEN +
1531 						 hdr_space);
1532 
1533 		if (status) {
1534 			dp_rx_defrag_err(vdev, frag_list_head);
1535 
1536 			QDF_TRACE(QDF_MODULE_ID_TXRX,
1537 				  QDF_TRACE_LEVEL_ERROR,
1538 				  "%s: TKIP demic failed status %d",
1539 				   __func__, status);
1540 
1541 			return QDF_STATUS_E_DEFRAG_ERROR;
1542 		}
1543 	}
1544 
1545 	/* Convert the header to 802.3 header */
1546 	dp_rx_defrag_nwifi_to_8023(soc, peer, tid, frag_list_head, hdr_space);
1547 	if (qdf_nbuf_next(frag_list_head)) {
1548 		if (dp_rx_construct_fraglist(peer, tid, frag_list_head, hdr_space))
1549 			return QDF_STATUS_E_DEFRAG_ERROR;
1550 	}
1551 
1552 	return QDF_STATUS_SUCCESS;
1553 }
1554 
1555 /*
1556  * dp_rx_defrag_cleanup(): Clean up activities
1557  * @peer: Pointer to the peer
1558  * @tid: Transmit Identifier
1559  *
1560  * Returns: None
1561  */
1562 void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
1563 {
1564 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1565 				peer->rx_tid[tid].array;
1566 
1567 	if (rx_reorder_array_elem) {
1568 		/* Free up nbufs */
1569 		dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1570 		rx_reorder_array_elem->head = NULL;
1571 		rx_reorder_array_elem->tail = NULL;
1572 	} else {
1573 		dp_info("Cleanup self peer %pK and TID %u at MAC address "QDF_MAC_ADDR_FMT,
1574 			peer, tid, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
1575 	}
1576 
1577 	/* Free up saved ring descriptors */
1578 	dp_rx_clear_saved_desc_info(peer, tid);
1579 
1580 	peer->rx_tid[tid].defrag_timeout_ms = 0;
1581 	peer->rx_tid[tid].curr_frag_num = 0;
1582 	peer->rx_tid[tid].curr_seq_num = 0;
1583 }
1584 
1585 /*
1586  * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
1587  * @ring_desc: Pointer to the dst ring descriptor
1588  * @peer: Pointer to the peer
1589  * @tid: Transmit Identifier
1590  *
1591  * Returns: None
1592  */
1593 static QDF_STATUS
1594 dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
1595 				      struct dp_rx_desc *rx_desc,
1596 				      struct dp_peer *peer,
1597 				      unsigned int tid)
1598 {
1599 	void *dst_ring_desc = qdf_mem_malloc(
1600 			sizeof(struct reo_destination_ring));
1601 
1602 	if (!dst_ring_desc) {
1603 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1604 			"%s: Memory alloc failed !", __func__);
1605 		QDF_ASSERT(0);
1606 		return QDF_STATUS_E_NOMEM;
1607 	}
1608 
1609 	qdf_mem_copy(dst_ring_desc, ring_desc,
1610 		       sizeof(struct reo_destination_ring));
1611 
1612 	peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
1613 	peer->rx_tid[tid].head_frag_desc = rx_desc;
1614 
1615 	return QDF_STATUS_SUCCESS;
1616 }
1617 
1618 /*
1619  * dp_rx_defrag_store_fragment(): Store incoming fragments
1620  * @soc: Pointer to the SOC data structure
1621  * @ring_desc: Pointer to the ring descriptor
1622  * @mpdu_desc_info: MPDU descriptor info
1623  * @tid: Traffic Identifier
1624  * @rx_desc: Pointer to rx descriptor
1625  * @rx_bfs: Number of bfs consumed
1626  *
1627  * Returns: QDF_STATUS
1628  */
1629 static QDF_STATUS
1630 dp_rx_defrag_store_fragment(struct dp_soc *soc,
1631 			    hal_ring_desc_t ring_desc,
1632 			    union dp_rx_desc_list_elem_t **head,
1633 			    union dp_rx_desc_list_elem_t **tail,
1634 			    struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1635 			    unsigned int tid, struct dp_rx_desc *rx_desc,
1636 			    uint32_t *rx_bfs)
1637 {
1638 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1639 	struct dp_pdev *pdev;
1640 	struct dp_peer *peer = NULL;
1641 	uint16_t peer_id;
1642 	uint8_t fragno, more_frag, all_frag_present = 0;
1643 	uint16_t rxseq = mpdu_desc_info->mpdu_seq;
1644 	QDF_STATUS status;
1645 	struct dp_rx_tid *rx_tid;
1646 	uint8_t mpdu_sequence_control_valid;
1647 	uint8_t mpdu_frame_control_valid;
1648 	qdf_nbuf_t frag = rx_desc->nbuf;
1649 	uint32_t msdu_len;
1650 
1651 	if (qdf_nbuf_len(frag) > 0) {
1652 		dp_info("Dropping unexpected packet with skb_len: %d,"
1653 			"data len: %d, cookie: %d",
1654 			(uint32_t)qdf_nbuf_len(frag), frag->data_len,
1655 			rx_desc->cookie);
1656 		DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
1657 		goto discard_frag;
1658 	}
1659 
1660 	if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
1661 		/* fragment queued back to the pool, free the link desc */
1662 		goto err_free_desc;
1663 	}
1664 
1665 	msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
1666 
1667 	qdf_nbuf_set_pktlen(frag, (msdu_len + RX_PKT_TLVS_LEN));
1668 	qdf_nbuf_append_ext_list(frag, NULL, 0);
1669 
1670 	/* Check if the packet is from a valid peer */
1671 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1672 					mpdu_desc_info->peer_meta_data);
1673 	peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_RX_ERR);
1674 
1675 	if (!peer) {
1676 		/* We should not receive anything from unknown peer
1677 		 * however, that might happen while we are in the monitor mode.
1678 		 * We don't need to handle that here
1679 		 */
1680 		dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
1681 			   peer_id);
1682 		DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
1683 		goto discard_frag;
1684 	}
1685 
1686 	if (tid >= DP_MAX_TIDS) {
1687 		dp_info("TID out of bounds: %d", tid);
1688 		qdf_assert_always(0);
1689 		goto discard_frag;
1690 	}
1691 
1692 	pdev = peer->vdev->pdev;
1693 	rx_tid = &peer->rx_tid[tid];
1694 
1695 	mpdu_sequence_control_valid =
1696 		hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
1697 						       rx_desc->rx_buf_start);
1698 
1699 	/* Invalid MPDU sequence control field, MPDU is of no use */
1700 	if (!mpdu_sequence_control_valid) {
1701 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1702 			"Invalid MPDU seq control field, dropping MPDU");
1703 
1704 		qdf_assert(0);
1705 		goto discard_frag;
1706 	}
1707 
1708 	mpdu_frame_control_valid =
1709 		hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
1710 						    rx_desc->rx_buf_start);
1711 
1712 	/* Invalid frame control field */
1713 	if (!mpdu_frame_control_valid) {
1714 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1715 			"Invalid frame control field, dropping MPDU");
1716 
1717 		qdf_assert(0);
1718 		goto discard_frag;
1719 	}
1720 
1721 	/* Current mpdu sequence */
1722 	more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
1723 
1724 	/* HW does not populate the fragment number as of now
1725 	 * need to get from the 802.11 header
1726 	 */
1727 	fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
1728 
1729 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1730 	if (!rx_reorder_array_elem) {
1731 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1732 			  "Rcvd Fragmented pkt before peer_tid is setup");
1733 		goto discard_frag;
1734 	}
1735 
1736 	/*
1737 	 * !more_frag: no more fragments to be delivered
1738 	 * !frag_no: packet is not fragmented
1739 	 * !rx_reorder_array_elem->head: no saved fragments so far
1740 	 */
1741 	if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
1742 		/* We should not get into this situation here.
1743 		 * It means an unfragmented packet with fragment flag
1744 		 * is delivered over the REO exception ring.
1745 		 * Typically it follows normal rx path.
1746 		 */
1747 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1748 			"Rcvd unfragmented pkt on REO Err srng, dropping");
1749 
1750 		qdf_assert(0);
1751 		goto discard_frag;
1752 	}
1753 
1754 	/* Check if the fragment is for the same sequence or a different one */
1755 	dp_debug("rx_tid %d", tid);
1756 	if (rx_reorder_array_elem->head) {
1757 		dp_debug("rxseq %d\n", rxseq);
1758 		if (rxseq != rx_tid->curr_seq_num) {
1759 
1760 			dp_debug("mismatch cur_seq %d rxseq %d\n",
1761 				 rx_tid->curr_seq_num, rxseq);
1762 			/* Drop stored fragments if out of sequence
1763 			 * fragment is received
1764 			 */
1765 			dp_rx_reorder_flush_frag(peer, tid);
1766 
1767 			DP_STATS_INC(soc, rx.rx_frag_oor, 1);
1768 
1769 			dp_debug("cur rxseq %d\n", rxseq);
1770 			/*
1771 			 * The sequence number for this fragment becomes the
1772 			 * new sequence number to be processed
1773 			 */
1774 			rx_tid->curr_seq_num = rxseq;
1775 		}
1776 	} else {
1777 		dp_debug("cur rxseq %d\n", rxseq);
1778 		/* Start of a new sequence */
1779 		dp_rx_defrag_cleanup(peer, tid);
1780 		rx_tid->curr_seq_num = rxseq;
1781 		/* store PN number also */
1782 	}
1783 
1784 	/*
1785 	 * If the earlier sequence was dropped, this will be the fresh start.
1786 	 * Else, continue with next fragment in a given sequence
1787 	 */
1788 	status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
1789 			&rx_reorder_array_elem->tail, frag,
1790 			&all_frag_present);
1791 
1792 	/*
1793 	 * Currently, we can have only 6 MSDUs per-MPDU, if the current
1794 	 * packet sequence has more than 6 MSDUs for some reason, we will
1795 	 * have to use the next MSDU link descriptor and chain them together
1796 	 * before reinjection.
1797 	 * ring_desc is validated in dp_rx_err_process.
1798 	 */
1799 	if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
1800 			(rx_reorder_array_elem->head == frag)) {
1801 
1802 		status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
1803 					rx_desc, peer, tid);
1804 
1805 		if (status != QDF_STATUS_SUCCESS) {
1806 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1807 				"%s: Unable to store ring desc !", __func__);
1808 			goto discard_frag;
1809 		}
1810 	} else {
1811 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1812 		(*rx_bfs)++;
1813 
1814 		/* Return the non-head link desc */
1815 		if (dp_rx_link_desc_return(soc, ring_desc,
1816 					   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1817 		    QDF_STATUS_SUCCESS)
1818 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1819 				  "%s: Failed to return link desc", __func__);
1820 
1821 	}
1822 
1823 	if (pdev->soc->rx.flags.defrag_timeout_check)
1824 		dp_rx_defrag_waitlist_remove(peer, tid);
1825 
1826 	/* Yet to receive more fragments for this sequence number */
1827 	if (!all_frag_present) {
1828 		uint32_t now_ms =
1829 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1830 
1831 		peer->rx_tid[tid].defrag_timeout_ms =
1832 			now_ms + pdev->soc->rx.defrag.timeout_ms;
1833 
1834 		dp_rx_defrag_waitlist_add(peer, tid);
1835 		dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
1836 
1837 		return QDF_STATUS_SUCCESS;
1838 	}
1839 
1840 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1841 		  "All fragments received for sequence: %d", rxseq);
1842 
1843 	/* Process the fragments */
1844 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1845 		rx_reorder_array_elem->tail);
1846 	if (QDF_IS_STATUS_ERROR(status)) {
1847 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1848 			"Fragment processing failed");
1849 
1850 		dp_rx_add_to_free_desc_list(head, tail,
1851 				peer->rx_tid[tid].head_frag_desc);
1852 		(*rx_bfs)++;
1853 
1854 		if (dp_rx_link_desc_return(soc,
1855 					peer->rx_tid[tid].dst_ring_desc,
1856 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1857 				QDF_STATUS_SUCCESS)
1858 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1859 					"%s: Failed to return link desc",
1860 					__func__);
1861 		dp_rx_defrag_cleanup(peer, tid);
1862 		goto end;
1863 	}
1864 
1865 	/* Re-inject the fragments back to REO for further processing */
1866 	status = dp_rx_defrag_reo_reinject(peer, tid,
1867 			rx_reorder_array_elem->head);
1868 	if (QDF_IS_STATUS_SUCCESS(status)) {
1869 		rx_reorder_array_elem->head = NULL;
1870 		rx_reorder_array_elem->tail = NULL;
1871 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1872 			  "Fragmented sequence successfully reinjected");
1873 	} else {
1874 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1875 		"Fragmented sequence reinjection failed");
1876 		dp_rx_return_head_frag_desc(peer, tid);
1877 	}
1878 
1879 	dp_rx_defrag_cleanup(peer, tid);
1880 
1881 	dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
1882 
1883 	return QDF_STATUS_SUCCESS;
1884 
1885 discard_frag:
1886 	qdf_nbuf_free(frag);
1887 err_free_desc:
1888 	dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1889 	if (dp_rx_link_desc_return(soc, ring_desc,
1890 				   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1891 	    QDF_STATUS_SUCCESS)
1892 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1893 			  "%s: Failed to return link desc", __func__);
1894 	(*rx_bfs)++;
1895 
1896 end:
1897 	if (peer)
1898 		dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
1899 
1900 	DP_STATS_INC(soc, rx.rx_frag_err, 1);
1901 	return QDF_STATUS_E_DEFRAG_ERROR;
1902 }
1903 
1904 /**
1905  * dp_rx_frag_handle() - Handles fragmented Rx frames
1906  *
1907  * @soc: core txrx main context
1908  * @ring_desc: opaque pointer to the REO error ring descriptor
1909  * @mpdu_desc_info: MPDU descriptor information from ring descriptor
1910  * @head: head of the local descriptor free-list
1911  * @tail: tail of the local descriptor free-list
1912  * @quota: No. of units (packets) that can be serviced in one shot.
1913  *
1914  * This function implements RX 802.11 fragmentation handling
1915  * The handling is mostly same as legacy fragmentation handling.
1916  * If required, this function can re-inject the frames back to
1917  * REO ring (with proper setting to by-pass fragmentation check
1918  * but use duplicate detection / re-ordering and routing these frames
1919  * to a different core.
1920  *
1921  * Return: uint32_t: No. of elements processed
1922  */
1923 uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
1924 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1925 			   struct dp_rx_desc *rx_desc,
1926 			   uint8_t *mac_id,
1927 			   uint32_t quota)
1928 {
1929 	uint32_t rx_bufs_used = 0;
1930 	qdf_nbuf_t msdu = NULL;
1931 	uint32_t tid;
1932 	uint32_t rx_bfs = 0;
1933 	struct dp_pdev *pdev;
1934 	QDF_STATUS status = QDF_STATUS_SUCCESS;
1935 	struct rx_desc_pool *rx_desc_pool;
1936 
1937 	qdf_assert(soc);
1938 	qdf_assert(mpdu_desc_info);
1939 	qdf_assert(rx_desc);
1940 
1941 	dp_debug("Number of MSDUs to process, num_msdus: %d",
1942 		 mpdu_desc_info->msdu_count);
1943 
1944 
1945 	if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
1946 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1947 			"Not sufficient MSDUs to process");
1948 		return rx_bufs_used;
1949 	}
1950 
1951 	/* all buffers in MSDU link belong to same pdev */
1952 	pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
1953 	if (!pdev) {
1954 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1955 			  "pdev is null for pool_id = %d", rx_desc->pool_id);
1956 		return rx_bufs_used;
1957 	}
1958 
1959 	*mac_id = rx_desc->pool_id;
1960 
1961 	msdu = rx_desc->nbuf;
1962 
1963 	rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
1964 
1965 	if (rx_desc->unmapped)
1966 		return rx_bufs_used;
1967 
1968 	dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
1969 					  rx_desc_pool->buf_size,
1970 					  false);
1971 	qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
1972 				     QDF_DMA_FROM_DEVICE,
1973 				     rx_desc_pool->buf_size);
1974 	rx_desc->unmapped = 1;
1975 
1976 	rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
1977 
1978 	tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
1979 
1980 	/* Process fragment-by-fragment */
1981 	status = dp_rx_defrag_store_fragment(soc, ring_desc,
1982 					     &pdev->free_list_head,
1983 					     &pdev->free_list_tail,
1984 					     mpdu_desc_info,
1985 					     tid, rx_desc, &rx_bfs);
1986 
1987 	if (rx_bfs)
1988 		rx_bufs_used += rx_bfs;
1989 
1990 	if (!QDF_IS_STATUS_SUCCESS(status))
1991 		dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
1992 			   mpdu_desc_info->mpdu_seq,
1993 			   mpdu_desc_info->msdu_count,
1994 			   mpdu_desc_info->mpdu_flags);
1995 
1996 	return rx_bufs_used;
1997 }
1998 
1999 QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
2000 				      struct dp_peer *peer, uint16_t tid,
2001 				      uint16_t rxseq, qdf_nbuf_t nbuf)
2002 {
2003 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
2004 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
2005 	uint8_t all_frag_present;
2006 	uint32_t msdu_len;
2007 	QDF_STATUS status;
2008 
2009 	rx_reorder_array_elem = peer->rx_tid[tid].array;
2010 
2011 	/*
2012 	 * HW may fill in unexpected peer_id in RX PKT TLV,
2013 	 * if this peer_id related peer is valid by coincidence,
2014 	 * but actually this peer won't do dp_peer_rx_init(like SAP vdev
2015 	 * self peer), then invalid access to rx_reorder_array_elem happened.
2016 	 */
2017 	if (!rx_reorder_array_elem) {
2018 		dp_verbose_debug(
2019 			"peer id:%d mac: "QDF_MAC_ADDR_FMT" drop rx frame!",
2020 			peer->peer_id,
2021 			QDF_MAC_ADDR_REF(peer->mac_addr.raw));
2022 		DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
2023 		qdf_nbuf_free(nbuf);
2024 		goto fail;
2025 	}
2026 
2027 	if (rx_reorder_array_elem->head &&
2028 	    rxseq != rx_tid->curr_seq_num) {
2029 		/* Drop stored fragments if out of sequence
2030 		 * fragment is received
2031 		 */
2032 		dp_rx_reorder_flush_frag(peer, tid);
2033 
2034 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2035 			  "%s: No list found for TID %d Seq# %d",
2036 				__func__, tid, rxseq);
2037 		qdf_nbuf_free(nbuf);
2038 		goto fail;
2039 	}
2040 
2041 	msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
2042 
2043 	qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
2044 
2045 	status = dp_rx_defrag_fraglist_insert(peer, tid,
2046 					      &rx_reorder_array_elem->head,
2047 			&rx_reorder_array_elem->tail, nbuf,
2048 			&all_frag_present);
2049 
2050 	if (QDF_IS_STATUS_ERROR(status)) {
2051 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2052 			  "%s Fragment insert failed", __func__);
2053 
2054 		goto fail;
2055 	}
2056 
2057 	if (soc->rx.flags.defrag_timeout_check)
2058 		dp_rx_defrag_waitlist_remove(peer, tid);
2059 
2060 	if (!all_frag_present) {
2061 		uint32_t now_ms =
2062 			qdf_system_ticks_to_msecs(qdf_system_ticks());
2063 
2064 		peer->rx_tid[tid].defrag_timeout_ms =
2065 			now_ms + soc->rx.defrag.timeout_ms;
2066 
2067 		dp_rx_defrag_waitlist_add(peer, tid);
2068 
2069 		return QDF_STATUS_SUCCESS;
2070 	}
2071 
2072 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
2073 			      rx_reorder_array_elem->tail);
2074 
2075 	if (QDF_IS_STATUS_ERROR(status)) {
2076 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2077 			  "%s Fragment processing failed", __func__);
2078 
2079 		dp_rx_return_head_frag_desc(peer, tid);
2080 		dp_rx_defrag_cleanup(peer, tid);
2081 
2082 		goto fail;
2083 	}
2084 
2085 	/* Re-inject the fragments back to REO for further processing */
2086 	status = dp_rx_defrag_reo_reinject(peer, tid,
2087 					   rx_reorder_array_elem->head);
2088 	if (QDF_IS_STATUS_SUCCESS(status)) {
2089 		rx_reorder_array_elem->head = NULL;
2090 		rx_reorder_array_elem->tail = NULL;
2091 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
2092 			  "%s: Frag seq successfully reinjected",
2093 			__func__);
2094 	} else {
2095 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2096 			  "%s: Frag seq reinjection failed", __func__);
2097 		dp_rx_return_head_frag_desc(peer, tid);
2098 	}
2099 
2100 	dp_rx_defrag_cleanup(peer, tid);
2101 	return QDF_STATUS_SUCCESS;
2102 
2103 fail:
2104 	return QDF_STATUS_E_DEFRAG_ERROR;
2105 }
2106