xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx_defrag.c (revision 6ecd284e5a94a1c96e26d571dd47419ac305990d)
1 /*
2  * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "dp_types.h"
20 #include "dp_rx.h"
21 #include "dp_peer.h"
22 #include "hal_api.h"
23 #include "qdf_trace.h"
24 #include "qdf_nbuf.h"
25 #include "dp_rx_defrag.h"
26 #include <enet.h>	/* LLC_SNAP_HDR_LEN */
27 #include "dp_rx_defrag.h"
28 
29 const struct dp_rx_defrag_cipher dp_f_ccmp = {
30 	"AES-CCM",
31 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
32 	IEEE80211_WEP_MICLEN,
33 	0,
34 };
35 
36 const struct dp_rx_defrag_cipher dp_f_tkip = {
37 	"TKIP",
38 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
39 	IEEE80211_WEP_CRCLEN,
40 	IEEE80211_WEP_MICLEN,
41 };
42 
43 const struct dp_rx_defrag_cipher dp_f_wep = {
44 	"WEP",
45 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
46 	IEEE80211_WEP_CRCLEN,
47 	0,
48 };
49 
50 /*
51  * dp_rx_defrag_frames_free(): Free fragment chain
52  * @frames: Fragment chain
53  *
54  * Iterates through the fragment chain and frees them
55  * Returns: None
56  */
57 static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
58 {
59 	qdf_nbuf_t next, frag = frames;
60 
61 	while (frag) {
62 		next = qdf_nbuf_next(frag);
63 		qdf_nbuf_free(frag);
64 		frag = next;
65 	}
66 }
67 
68 /*
69  * dp_rx_clear_saved_desc_info(): Clears descriptor info
70  * @peer: Pointer to the peer data structure
71  * @tid: Transmit ID (TID)
72  *
73  * Saves MPDU descriptor info and MSDU link pointer from REO
74  * ring descriptor. The cache is created per peer, per TID
75  *
76  * Returns: None
77  */
78 static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
79 {
80 	if (peer->rx_tid[tid].dst_ring_desc)
81 		qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
82 
83 	peer->rx_tid[tid].dst_ring_desc = NULL;
84 }
85 
86 /*
87  * dp_rx_reorder_flush_frag(): Flush the frag list
88  * @peer: Pointer to the peer data structure
89  * @tid: Transmit ID (TID)
90  *
91  * Flush the per-TID frag list
92  *
93  * Returns: None
94  */
95 void dp_rx_reorder_flush_frag(struct dp_peer *peer,
96 			 unsigned int tid)
97 {
98 	struct dp_soc *soc;
99 	struct dp_srng *dp_rxdma_srng;
100 	struct rx_desc_pool *rx_desc_pool;
101 	struct dp_pdev *pdev;
102 	union dp_rx_desc_list_elem_t *head = NULL;
103 	union dp_rx_desc_list_elem_t *tail = NULL;
104 
105 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
106 				FL("Flushing TID %d"), tid);
107 
108 	if (peer == NULL)
109 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
110 					"%s: NULL peer\n", __func__);
111 
112 	pdev = peer->vdev->pdev;
113 	soc = pdev->soc;
114 
115 	if (peer->rx_tid[tid].dst_ring_desc) {
116 		if (dp_rx_link_desc_return(soc,
117 					peer->rx_tid[tid].dst_ring_desc,
118 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
119 					QDF_STATUS_SUCCESS)
120 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
121 					"%s: Failed to return link desc\n",
122 					__func__);
123 	}
124 
125 	if (peer->rx_tid[tid].head_frag_desc) {
126 		dp_rxdma_srng = &pdev->rx_refill_buf_ring;
127 		rx_desc_pool = &soc->rx_desc_buf[0];
128 
129 		dp_rx_add_to_free_desc_list(&head, &tail,
130 				peer->rx_tid[tid].head_frag_desc);
131 		dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
132 			1, &head, &tail);
133 	}
134 
135 	dp_rx_defrag_cleanup(peer, tid);
136 }
137 
138 /*
139  * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
140  * @soc: DP SOC
141  *
142  * Flush fragments of all waitlisted TID's
143  *
144  * Returns: None
145  */
146 void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
147 {
148 	struct dp_rx_tid *rx_reorder, *tmp;
149 	uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
150 
151 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
152 			   defrag_waitlist_elem, tmp) {
153 		struct dp_peer *peer;
154 		struct dp_rx_tid *rx_reorder_base;
155 		unsigned int tid;
156 
157 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
158 				FL("Current time  %u"), now_ms);
159 
160 		if (rx_reorder->defrag_timeout_ms > now_ms)
161 			break;
162 
163 		tid = rx_reorder->tid;
164 		if (tid >= DP_MAX_TIDS) {
165 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
166 				  "%s: TID out of bounds: %d", __func__, tid);
167 			qdf_assert(0);
168 			continue;
169 		}
170 		/* get index 0 of the rx_reorder array */
171 		rx_reorder_base = rx_reorder - tid;
172 		peer =
173 			container_of(rx_reorder_base, struct dp_peer,
174 				     rx_tid[0]);
175 
176 		TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
177 			     defrag_waitlist_elem);
178 		//dp_rx_defrag_waitlist_remove(peer, tid);
179 		dp_rx_reorder_flush_frag(peer, tid);
180 	}
181 }
182 
183 /*
184  * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
185  * @peer: Pointer to the peer data structure
186  * @tid: Transmit ID (TID)
187  *
188  * Appends per-tid fragments to global fragment wait list
189  *
190  * Returns: None
191  */
192 static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
193 {
194 	struct dp_soc *psoc = peer->vdev->pdev->soc;
195 	struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
196 
197 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
198 				FL("Adding TID %u to waitlist"), tid);
199 
200 	/* TODO: use LIST macros instead of TAIL macros */
201 	TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
202 				defrag_waitlist_elem);
203 }
204 
205 /*
206  * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
207  * @peer: Pointer to the peer data structure
208  * @tid: Transmit ID (TID)
209  *
210  * Remove fragments from waitlist
211  *
212  * Returns: None
213  */
214 void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
215 {
216 	struct dp_pdev *pdev = peer->vdev->pdev;
217 	struct dp_soc *soc = pdev->soc;
218 	struct dp_rx_tid *rx_reorder;
219 
220 	if (tid > DP_MAX_TIDS) {
221 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
222 			"TID out of bounds: %d", tid);
223 		qdf_assert(0);
224 		return;
225 	}
226 
227 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
228 				FL("Remove TID %u from waitlist"), tid);
229 
230 	TAILQ_FOREACH(rx_reorder, &soc->rx.defrag.waitlist,
231 			   defrag_waitlist_elem) {
232 		if (rx_reorder->tid == tid)
233 			TAILQ_REMOVE(&soc->rx.defrag.waitlist,
234 				rx_reorder, defrag_waitlist_elem);
235 	}
236 }
237 
238 /*
239  * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
240  * @peer: Pointer to the peer data structure
241  * @tid: Transmit ID (TID)
242  * @head_addr: Pointer to head list
243  * @tail_addr: Pointer to tail list
244  * @frag: Incoming fragment
245  * @all_frag_present: Flag to indicate whether all fragments are received
246  *
247  * Build a per-tid, per-sequence fragment list.
248  *
249  * Returns: Success, if inserted
250  */
251 static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
252 	qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
253 	uint8_t *all_frag_present)
254 {
255 	qdf_nbuf_t next;
256 	qdf_nbuf_t prev = NULL;
257 	qdf_nbuf_t cur;
258 	uint16_t head_fragno, cur_fragno, next_fragno;
259 	uint8_t last_morefrag = 1, count = 0;
260 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
261 	uint8_t *rx_desc_info;
262 
263 
264 	qdf_assert(frag);
265 	qdf_assert(head_addr);
266 	qdf_assert(tail_addr);
267 
268 	*all_frag_present = 0;
269 	rx_desc_info = qdf_nbuf_data(frag);
270 	cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
271 
272 	/* If this is the first fragment */
273 	if (!(*head_addr)) {
274 		*head_addr = *tail_addr = frag;
275 		qdf_nbuf_set_next(*tail_addr, NULL);
276 		rx_tid->curr_frag_num = cur_fragno;
277 
278 		goto insert_done;
279 	}
280 
281 	/* In sequence fragment */
282 	if (cur_fragno > rx_tid->curr_frag_num) {
283 		qdf_nbuf_set_next(*tail_addr, frag);
284 		*tail_addr = frag;
285 		qdf_nbuf_set_next(*tail_addr, NULL);
286 		rx_tid->curr_frag_num = cur_fragno;
287 	} else {
288 		/* Out of sequence fragment */
289 		cur = *head_addr;
290 		rx_desc_info = qdf_nbuf_data(cur);
291 		head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
292 
293 		if (cur_fragno == head_fragno) {
294 			qdf_nbuf_free(frag);
295 			goto insert_fail;
296 		} else if (head_fragno > cur_fragno) {
297 			qdf_nbuf_set_next(frag, cur);
298 			cur = frag;
299 			*head_addr = frag; /* head pointer to be updated */
300 		} else {
301 			while ((cur_fragno > head_fragno) && cur != NULL) {
302 				prev = cur;
303 				cur = qdf_nbuf_next(cur);
304 				rx_desc_info = qdf_nbuf_data(cur);
305 				head_fragno =
306 					dp_rx_frag_get_mpdu_frag_number(
307 								rx_desc_info);
308 			}
309 
310 			if (cur_fragno == head_fragno) {
311 				qdf_nbuf_free(frag);
312 				goto insert_fail;
313 			}
314 
315 			qdf_nbuf_set_next(prev, frag);
316 			qdf_nbuf_set_next(frag, cur);
317 		}
318 	}
319 
320 	next = qdf_nbuf_next(*head_addr);
321 
322 	rx_desc_info = qdf_nbuf_data(*tail_addr);
323 	last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
324 
325 	/* TODO: optimize the loop */
326 	if (!last_morefrag) {
327 		/* Check if all fragments are present */
328 		do {
329 			rx_desc_info = qdf_nbuf_data(next);
330 			next_fragno =
331 				dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
332 			count++;
333 
334 			if (next_fragno != count)
335 				break;
336 
337 			next = qdf_nbuf_next(next);
338 		} while (next);
339 
340 		if (!next) {
341 			*all_frag_present = 1;
342 			return QDF_STATUS_SUCCESS;
343 		}
344 	}
345 
346 insert_done:
347 	return QDF_STATUS_SUCCESS;
348 
349 insert_fail:
350 	return QDF_STATUS_E_FAILURE;
351 }
352 
353 
354 /*
355  * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
356  * @msdu: Pointer to the fragment
357  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
358  *
359  * decap tkip encrypted fragment
360  *
361  * Returns: QDF_STATUS
362  */
363 static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
364 {
365 	uint8_t *ivp, *orig_hdr;
366 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
367 
368 	/* start of 802.11 header info */
369 	orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
370 
371 	/* TKIP header is located post 802.11 header */
372 	ivp = orig_hdr + hdrlen;
373 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
374 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
375 			"IEEE80211_WEP_EXTIV is missing in TKIP fragment");
376 		return QDF_STATUS_E_DEFRAG_ERROR;
377 	}
378 
379 	qdf_mem_move(orig_hdr + dp_f_tkip.ic_header, orig_hdr, hdrlen);
380 
381 	qdf_nbuf_pull_head(msdu, dp_f_tkip.ic_header);
382 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
383 
384 	return QDF_STATUS_SUCCESS;
385 }
386 
387 /*
388  * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
389  * @nbuf: Pointer to the fragment buffer
390  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
391  *
392  * Remove MIC information from CCMP fragment
393  *
394  * Returns: QDF_STATUS
395  */
396 static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
397 {
398 	uint8_t *ivp, *orig_hdr;
399 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
400 
401 	/* start of the 802.11 header */
402 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
403 
404 	/* CCMP header is located after 802.11 header */
405 	ivp = orig_hdr + hdrlen;
406 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
407 		return QDF_STATUS_E_DEFRAG_ERROR;
408 
409 	qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
410 
411 	return QDF_STATUS_SUCCESS;
412 }
413 
414 /*
415  * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
416  * @nbuf: Pointer to the fragment
417  * @hdrlen: length of the header information
418  *
419  * decap CCMP encrypted fragment
420  *
421  * Returns: QDF_STATUS
422  */
423 static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
424 {
425 	uint8_t *ivp, *origHdr;
426 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
427 
428 	origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
429 	ivp = origHdr + hdrlen;
430 
431 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
432 		return QDF_STATUS_E_DEFRAG_ERROR;
433 
434 	/* Let's pull the header later */
435 
436 	return QDF_STATUS_SUCCESS;
437 }
438 
439 /*
440  * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
441  * @msdu: Pointer to the fragment
442  * @hdrlen: length of the header information
443  *
444  * decap WEP encrypted fragment
445  *
446  * Returns: QDF_STATUS
447  */
448 static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
449 {
450 	uint8_t *origHdr;
451 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
452 
453 	origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
454 	qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
455 
456 	qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
457 
458 	return QDF_STATUS_SUCCESS;
459 }
460 
461 /*
462  * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
463  * @nbuf: Pointer to the fragment
464  *
465  * Calculate the header size of the received fragment
466  *
467  * Returns: header size (uint16_t)
468  */
469 static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
470 {
471 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
472 	uint16_t size = sizeof(struct ieee80211_frame);
473 	uint16_t fc = 0;
474 	uint32_t to_ds, fr_ds;
475 	uint8_t frm_ctrl_valid;
476 	uint16_t frm_ctrl_field;
477 
478 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
479 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
480 	frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
481 	frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
482 
483 	if (to_ds && fr_ds)
484 		size += IEEE80211_ADDR_LEN;
485 
486 	if (frm_ctrl_valid) {
487 		fc = frm_ctrl_field;
488 
489 		/* use 1-st byte for validation */
490 		if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
491 			size += sizeof(uint16_t);
492 			/* use 2-nd byte for validation */
493 			if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
494 				size += sizeof(struct ieee80211_htc);
495 		}
496 	}
497 
498 	return size;
499 }
500 
501 /*
502  * dp_rx_defrag_michdr(): Calculate a psuedo MIC header
503  * @wh0: Pointer to the wireless header of the fragment
504  * @hdr: Array to hold the psuedo header
505  *
506  * Calculate a psuedo MIC header
507  *
508  * Returns: None
509  */
510 static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
511 				uint8_t hdr[])
512 {
513 	const struct ieee80211_frame_addr4 *wh =
514 		(const struct ieee80211_frame_addr4 *)wh0;
515 
516 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
517 	case IEEE80211_FC1_DIR_NODS:
518 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
519 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
520 					   wh->i_addr2);
521 		break;
522 	case IEEE80211_FC1_DIR_TODS:
523 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
524 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
525 					   wh->i_addr2);
526 		break;
527 	case IEEE80211_FC1_DIR_FROMDS:
528 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
529 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
530 					   wh->i_addr3);
531 		break;
532 	case IEEE80211_FC1_DIR_DSTODS:
533 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
534 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
535 					   wh->i_addr4);
536 		break;
537 	}
538 
539 	/*
540 	 * Bit 7 is IEEE80211_FC0_SUBTYPE_QOS for data frame, but
541 	 * it could also be set for deauth, disassoc, action, etc. for
542 	 * a mgt type frame. It comes into picture for MFP.
543 	 */
544 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
545 		const struct ieee80211_qosframe *qwh =
546 			(const struct ieee80211_qosframe *)wh;
547 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
548 	} else {
549 		hdr[12] = 0;
550 	}
551 
552 	hdr[13] = hdr[14] = hdr[15] = 0;	/* reserved */
553 }
554 
555 /*
556  * dp_rx_defrag_mic(): Calculate MIC header
557  * @key: Pointer to the key
558  * @wbuf: fragment buffer
559  * @off: Offset
560  * @data_len: Data lengh
561  * @mic: Array to hold MIC
562  *
563  * Calculate a psuedo MIC header
564  *
565  * Returns: QDF_STATUS
566  */
567 static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
568 		uint16_t off, uint16_t data_len, uint8_t mic[])
569 {
570 	uint8_t hdr[16] = { 0, };
571 	uint32_t l, r;
572 	const uint8_t *data;
573 	uint32_t space;
574 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
575 
576 	dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
577 		+ rx_desc_len), hdr);
578 	l = dp_rx_get_le32(key);
579 	r = dp_rx_get_le32(key + 4);
580 
581 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
582 	l ^= dp_rx_get_le32(hdr);
583 	dp_rx_michael_block(l, r);
584 	l ^= dp_rx_get_le32(&hdr[4]);
585 	dp_rx_michael_block(l, r);
586 	l ^= dp_rx_get_le32(&hdr[8]);
587 	dp_rx_michael_block(l, r);
588 	l ^= dp_rx_get_le32(&hdr[12]);
589 	dp_rx_michael_block(l, r);
590 
591 	/* first buffer has special handling */
592 	data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len + off;
593 	space = qdf_nbuf_len(wbuf) - rx_desc_len - off;
594 
595 	for (;; ) {
596 		if (space > data_len)
597 			space = data_len;
598 
599 		/* collect 32-bit blocks from current buffer */
600 		while (space >= sizeof(uint32_t)) {
601 			l ^= dp_rx_get_le32(data);
602 			dp_rx_michael_block(l, r);
603 			data += sizeof(uint32_t);
604 			space -= sizeof(uint32_t);
605 			data_len -= sizeof(uint32_t);
606 		}
607 		if (data_len < sizeof(uint32_t))
608 			break;
609 
610 		wbuf = qdf_nbuf_next(wbuf);
611 		if (wbuf == NULL)
612 			return QDF_STATUS_E_DEFRAG_ERROR;
613 
614 		if (space != 0) {
615 			const uint8_t *data_next;
616 			/*
617 			 * Block straddles buffers, split references.
618 			 */
619 			data_next =
620 				(uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
621 			if ((qdf_nbuf_len(wbuf) - rx_desc_len) <
622 				sizeof(uint32_t) - space) {
623 				return QDF_STATUS_E_DEFRAG_ERROR;
624 			}
625 			switch (space) {
626 			case 1:
627 				l ^= dp_rx_get_le32_split(data[0],
628 					data_next[0], data_next[1],
629 					data_next[2]);
630 				data = data_next + 3;
631 				space = (qdf_nbuf_len(wbuf) - rx_desc_len)
632 					- 3;
633 				break;
634 			case 2:
635 				l ^= dp_rx_get_le32_split(data[0], data[1],
636 						    data_next[0], data_next[1]);
637 				data = data_next + 2;
638 				space = (qdf_nbuf_len(wbuf) - rx_desc_len)
639 					- 2;
640 				break;
641 			case 3:
642 				l ^= dp_rx_get_le32_split(data[0], data[1],
643 					data[2], data_next[0]);
644 				data = data_next + 1;
645 				space = (qdf_nbuf_len(wbuf) - rx_desc_len)
646 					- 1;
647 				break;
648 			}
649 			dp_rx_michael_block(l, r);
650 			data_len -= sizeof(uint32_t);
651 		} else {
652 			/*
653 			 * Setup for next buffer.
654 			 */
655 			data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
656 			space = qdf_nbuf_len(wbuf) - rx_desc_len;
657 		}
658 	}
659 	/* Last block and padding (0x5a, 4..7 x 0) */
660 	switch (data_len) {
661 	case 0:
662 		l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
663 		break;
664 	case 1:
665 		l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
666 		break;
667 	case 2:
668 		l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
669 		break;
670 	case 3:
671 		l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
672 		break;
673 	}
674 	dp_rx_michael_block(l, r);
675 	dp_rx_michael_block(l, r);
676 	dp_rx_put_le32(mic, l);
677 	dp_rx_put_le32(mic + 4, r);
678 
679 	return QDF_STATUS_SUCCESS;
680 }
681 
682 /*
683  * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
684  * @key: Pointer to the key
685  * @msdu: fragment buffer
686  * @hdrlen: Length of the header information
687  *
688  * Remove MIC information from the TKIP frame
689  *
690  * Returns: QDF_STATUS
691  */
692 static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
693 					qdf_nbuf_t msdu, uint16_t hdrlen)
694 {
695 	QDF_STATUS status;
696 	uint32_t pktlen;
697 	uint8_t mic[IEEE80211_WEP_MICLEN];
698 	uint8_t mic0[IEEE80211_WEP_MICLEN];
699 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
700 
701 	pktlen = qdf_nbuf_len(msdu) - rx_desc_len;
702 
703 	status = dp_rx_defrag_mic(key, msdu, hdrlen,
704 				pktlen - (hdrlen + dp_f_tkip.ic_miclen), mic);
705 
706 	if (QDF_IS_STATUS_ERROR(status))
707 		return status;
708 
709 	qdf_nbuf_copy_bits(msdu, pktlen - dp_f_tkip.ic_miclen + rx_desc_len,
710 				dp_f_tkip.ic_miclen, (caddr_t)mic0);
711 
712 	if (!qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
713 		return QDF_STATUS_E_DEFRAG_ERROR;
714 
715 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_miclen);
716 
717 	return QDF_STATUS_SUCCESS;
718 }
719 
720 /*
721  * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
722  * @nbuf: buffer pointer
723  * @hdrsize: size of the header to be pulled
724  *
725  * Pull the RXTLV & the 802.11 headers
726  *
727  * Returns: None
728  */
729 static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
730 {
731 	qdf_nbuf_pull_head(nbuf,
732 			RX_PKT_TLVS_LEN + hdrsize);
733 
734 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
735 			"%s: final pktlen %d .11len %d\n",
736 			__func__,
737 			(uint32_t)qdf_nbuf_len(nbuf), hdrsize);
738 }
739 
740 /*
741  * dp_rx_construct_fraglist(): Construct a nbuf fraglist
742  * @peer: Pointer to the peer
743  * @head: Pointer to list of fragments
744  * @hdrsize: Size of the header to be pulled
745  *
746  * Construct a nbuf fraglist
747  *
748  * Returns: None
749  */
750 static void
751 dp_rx_construct_fraglist(struct dp_peer *peer,
752 		qdf_nbuf_t head, uint16_t hdrsize)
753 {
754 	qdf_nbuf_t msdu = qdf_nbuf_next(head);
755 	qdf_nbuf_t rx_nbuf = msdu;
756 	uint32_t len = 0;
757 
758 	while (msdu) {
759 		dp_rx_frag_pull_hdr(msdu, hdrsize);
760 		len += qdf_nbuf_len(msdu);
761 		msdu = qdf_nbuf_next(msdu);
762 	}
763 
764 	qdf_nbuf_append_ext_list(head, rx_nbuf, len);
765 	qdf_nbuf_set_next(head, NULL);
766 
767 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
768 			"%s: head len %d ext len %d data len %d \n",
769 			__func__,
770 			(uint32_t)qdf_nbuf_len(head),
771 			(uint32_t)qdf_nbuf_len(rx_nbuf),
772 			(uint32_t)(head->data_len));
773 }
774 
775 /**
776  * dp_rx_defrag_err() - rx err handler
777  * @pdev: handle to pdev object
778  * @vdev_id: vdev id
779  * @peer_mac_addr: peer mac address
780  * @tid: TID
781  * @tsf32: TSF
782  * @err_type: error type
783  * @rx_frame: rx frame
784  * @pn: PN Number
785  * @key_id: key id
786  *
787  * This function handles rx error and send MIC error notification
788  *
789  * Return: None
790  */
791 static void dp_rx_defrag_err(uint8_t vdev_id, uint8_t *peer_mac_addr,
792 	int tid, uint32_t tsf32, uint32_t err_type, qdf_nbuf_t rx_frame,
793 	uint64_t *pn, uint8_t key_id)
794 {
795 	/* TODO: Who needs to know about the TKIP MIC error */
796 }
797 
798 
799 /*
800  * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
801  * @nbuf: Pointer to the fragment buffer
802  * @hdrsize: Size of headers
803  *
804  * Transcap the fragment from 802.11 to 802.3
805  *
806  * Returns: None
807  */
808 static void
809 dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
810 {
811 	struct llc_snap_hdr_t *llchdr;
812 	struct ethernet_hdr_t *eth_hdr;
813 	uint8_t ether_type[2];
814 	uint16_t fc = 0;
815 	union dp_align_mac_addr mac_addr;
816 	uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
817 
818 	if (rx_desc_info == NULL) {
819 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
820 			"%s: Memory alloc failed ! \n", __func__);
821 		QDF_ASSERT(0);
822 		return;
823 	}
824 
825 	qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
826 
827 	llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
828 					RX_PKT_TLVS_LEN + hdrsize);
829 	qdf_mem_copy(ether_type, llchdr->ethertype, 2);
830 
831 	qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
832 				  sizeof(struct llc_snap_hdr_t) -
833 				  sizeof(struct ethernet_hdr_t)));
834 
835 	eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
836 
837 	if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
838 		fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
839 
840 	switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
841 
842 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
843 		"%s: frame control type: 0x%x", __func__, fc);
844 
845 	case IEEE80211_FC1_DIR_NODS:
846 		hal_rx_mpdu_get_addr1(rx_desc_info,
847 			&mac_addr.raw[0]);
848 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
849 			IEEE80211_ADDR_LEN);
850 		hal_rx_mpdu_get_addr2(rx_desc_info,
851 			&mac_addr.raw[0]);
852 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
853 			IEEE80211_ADDR_LEN);
854 		break;
855 	case IEEE80211_FC1_DIR_TODS:
856 		hal_rx_mpdu_get_addr3(rx_desc_info,
857 			&mac_addr.raw[0]);
858 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
859 			IEEE80211_ADDR_LEN);
860 		hal_rx_mpdu_get_addr2(rx_desc_info,
861 			&mac_addr.raw[0]);
862 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
863 			IEEE80211_ADDR_LEN);
864 		break;
865 	case IEEE80211_FC1_DIR_FROMDS:
866 		hal_rx_mpdu_get_addr1(rx_desc_info,
867 			&mac_addr.raw[0]);
868 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
869 			IEEE80211_ADDR_LEN);
870 		hal_rx_mpdu_get_addr3(rx_desc_info,
871 			&mac_addr.raw[0]);
872 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
873 			IEEE80211_ADDR_LEN);
874 		break;
875 
876 	case IEEE80211_FC1_DIR_DSTODS:
877 		hal_rx_mpdu_get_addr3(rx_desc_info,
878 			&mac_addr.raw[0]);
879 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
880 			IEEE80211_ADDR_LEN);
881 		hal_rx_mpdu_get_addr4(rx_desc_info,
882 			&mac_addr.raw[0]);
883 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
884 			IEEE80211_ADDR_LEN);
885 		break;
886 
887 	default:
888 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
889 		"%s: Unknown frame control type: 0x%x", __func__, fc);
890 	}
891 
892 	qdf_mem_copy(eth_hdr->ethertype, ether_type,
893 			sizeof(ether_type));
894 
895 	qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
896 	qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
897 	qdf_mem_free(rx_desc_info);
898 }
899 
900 /*
901  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
902  * @peer: Pointer to the peer
903  * @tid: Transmit Identifier
904  * @head: Buffer to be reinjected back
905  *
906  * Reinject the fragment chain back into REO
907  *
908  * Returns: QDF_STATUS
909  */
910  static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
911 					unsigned tid, qdf_nbuf_t head)
912 {
913 	struct dp_pdev *pdev = peer->vdev->pdev;
914 	struct dp_soc *soc = pdev->soc;
915 	struct hal_buf_info buf_info;
916 	void *link_desc_va;
917 	void *msdu0, *msdu_desc_info;
918 	void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
919 	void *dst_mpdu_desc_info, *dst_qdesc_addr;
920 	qdf_dma_addr_t paddr;
921 	uint32_t nbuf_len, seq_no, dst_ind;
922 	uint32_t *mpdu_wrd;
923 	uint32_t ret, cookie;
924 
925 	void *dst_ring_desc =
926 		peer->rx_tid[tid].dst_ring_desc;
927 	void *hal_srng = soc->reo_reinject_ring.hal_srng;
928 
929 	hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
930 
931 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
932 
933 	qdf_assert(link_desc_va);
934 
935 	msdu0 = (uint8_t *)link_desc_va +
936 		RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
937 
938 	nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
939 
940 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
941 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
942 			UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
943 
944 	/* msdu reconfig */
945 	msdu_desc_info = (uint8_t *)msdu0 +
946 		RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
947 
948 	dst_ind = hal_rx_msdu_reo_dst_ind_get(link_desc_va);
949 
950 	qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
951 
952 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
953 			FIRST_MSDU_IN_MPDU_FLAG, 1);
954 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
955 			LAST_MSDU_IN_MPDU_FLAG, 1);
956 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
957 			MSDU_CONTINUATION, 0x0);
958 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
959 			REO_DESTINATION_INDICATION, dst_ind);
960 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
961 			MSDU_LENGTH, nbuf_len);
962 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
963 			SA_IS_VALID, 1);
964 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
965 			DA_IS_VALID, 1);
966 
967 	/* change RX TLV's */
968 	hal_rx_msdu_start_msdu_len_set(
969 			qdf_nbuf_data(head), nbuf_len);
970 
971 	cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
972 
973 	/* map the nbuf before reinject it into HW */
974 	ret = qdf_nbuf_map_single(soc->osdev, head,
975 					QDF_DMA_BIDIRECTIONAL);
976 
977 	if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
978 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
979 				"%s: nbuf map failed !\n", __func__);
980 		qdf_nbuf_free(head);
981 		return QDF_STATUS_E_FAILURE;
982 	}
983 
984 	paddr = qdf_nbuf_get_frag_paddr(head, 0);
985 
986 	ret = check_x86_paddr(soc, &head, &paddr, pdev);
987 
988 	if (ret == QDF_STATUS_E_FAILURE) {
989 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
990 				"%s: x86 check failed !\n", __func__);
991 		return QDF_STATUS_E_FAILURE;
992 	}
993 
994 	hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie,
995 					HAL_RX_BUF_RBM_SW3_BM);
996 
997 	/* Lets fill entrance ring now !!! */
998 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
999 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1000 		"HAL RING Access For REO entrance SRNG Failed: %pK",
1001 		hal_srng);
1002 
1003 		return QDF_STATUS_E_FAILURE;
1004 	}
1005 
1006 	ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
1007 
1008 	qdf_assert(ent_ring_desc);
1009 
1010 	paddr = (uint64_t)buf_info.paddr;
1011 	/* buf addr */
1012 	hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
1013 					buf_info.sw_cookie,
1014 					HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
1015 	/* mpdu desc info */
1016 	ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
1017 	RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
1018 
1019 	dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
1020 	REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
1021 
1022 	qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
1023 				sizeof(struct rx_mpdu_desc_info));
1024 	qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
1025 
1026 	mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
1027 	seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
1028 
1029 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1030 			MSDU_COUNT, 0x1);
1031 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1032 			MPDU_SEQUENCE_NUMBER, seq_no);
1033 
1034 	/* unset frag bit */
1035 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1036 			FRAGMENT_FLAG, 0x0);
1037 
1038 	/* set sa/da valid bits */
1039 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1040 			SA_IS_VALID, 0x1);
1041 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1042 			DA_IS_VALID, 0x1);
1043 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1044 			RAW_MPDU, 0x0);
1045 
1046 	/* qdesc addr */
1047 	ent_qdesc_addr = (uint8_t *)ent_ring_desc +
1048 		REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1049 
1050 	dst_qdesc_addr = (uint8_t *)dst_ring_desc +
1051 		REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1052 
1053 	qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
1054 
1055 	HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
1056 			REO_DESTINATION_INDICATION, dst_ind);
1057 
1058 	hal_srng_access_end(soc->hal_soc, hal_srng);
1059 
1060 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1061 				"%s: reinjection done !\n", __func__);
1062 	return QDF_STATUS_SUCCESS;
1063 }
1064 
1065 /*
1066  * dp_rx_defrag(): Defragment the fragment chain
1067  * @peer: Pointer to the peer
1068  * @tid: Transmit Identifier
1069  * @frag_list_head: Pointer to head list
1070  * @frag_list_tail: Pointer to tail list
1071  *
1072  * Defragment the fragment chain
1073  *
1074  * Returns: QDF_STATUS
1075  */
1076 static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
1077 			qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
1078 {
1079 	qdf_nbuf_t tmp_next, prev;
1080 	qdf_nbuf_t cur = frag_list_head, msdu;
1081 	uint32_t index, tkip_demic = 0;
1082 	uint16_t hdr_space;
1083 	uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
1084 	struct dp_vdev *vdev = peer->vdev;
1085 
1086 	hdr_space = dp_rx_defrag_hdrsize(cur);
1087 	index = hal_rx_msdu_is_wlan_mcast(cur) ?
1088 		dp_sec_mcast : dp_sec_ucast;
1089 
1090 	/* Remove FCS from all fragments */
1091 	while (cur) {
1092 		tmp_next = qdf_nbuf_next(cur);
1093 		qdf_nbuf_set_next(cur, NULL);
1094 		qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
1095 		prev = cur;
1096 		qdf_nbuf_set_next(cur, tmp_next);
1097 		cur = tmp_next;
1098 	}
1099 	cur = frag_list_head;
1100 
1101 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1102 			"%s: Security type: %d\n", __func__,
1103 			peer->security[index].sec_type);
1104 
1105 	/* Temporary fix to drop TKIP encrypted packets */
1106 	if (peer->security[index].sec_type ==
1107 			htt_sec_type_tkip) {
1108 		return QDF_STATUS_E_DEFRAG_ERROR;
1109 	}
1110 
1111 	switch (peer->security[index].sec_type) {
1112 	case htt_sec_type_tkip:
1113 		tkip_demic = 1;
1114 
1115 	case htt_sec_type_tkip_nomic:
1116 		while (cur) {
1117 			tmp_next = qdf_nbuf_next(cur);
1118 			if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
1119 
1120 				/* TKIP decap failed, discard frags */
1121 				dp_rx_defrag_frames_free(frag_list_head);
1122 
1123 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1124 					QDF_TRACE_LEVEL_ERROR,
1125 					"dp_rx_defrag: TKIP decap failed");
1126 
1127 				return QDF_STATUS_E_DEFRAG_ERROR;
1128 			}
1129 			cur = tmp_next;
1130 		}
1131 		break;
1132 
1133 	case htt_sec_type_aes_ccmp:
1134 		while (cur) {
1135 			tmp_next = qdf_nbuf_next(cur);
1136 			if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
1137 
1138 				/* CCMP demic failed, discard frags */
1139 				dp_rx_defrag_frames_free(frag_list_head);
1140 
1141 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1142 					QDF_TRACE_LEVEL_ERROR,
1143 					"dp_rx_defrag: CCMP demic failed");
1144 
1145 				return QDF_STATUS_E_DEFRAG_ERROR;
1146 			}
1147 			if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
1148 
1149 				/* CCMP decap failed, discard frags */
1150 				dp_rx_defrag_frames_free(frag_list_head);
1151 
1152 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1153 					QDF_TRACE_LEVEL_ERROR,
1154 					"dp_rx_defrag: CCMP decap failed");
1155 
1156 				return QDF_STATUS_E_DEFRAG_ERROR;
1157 			}
1158 			cur = tmp_next;
1159 		}
1160 
1161 		/* If success, increment header to be stripped later */
1162 		hdr_space += dp_f_ccmp.ic_header;
1163 		break;
1164 	case htt_sec_type_wep40:
1165 	case htt_sec_type_wep104:
1166 	case htt_sec_type_wep128:
1167 		while (cur) {
1168 			tmp_next = qdf_nbuf_next(cur);
1169 			if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
1170 
1171 				/* WEP decap failed, discard frags */
1172 				dp_rx_defrag_frames_free(frag_list_head);
1173 
1174 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1175 					QDF_TRACE_LEVEL_ERROR,
1176 					"dp_rx_defrag: WEP decap failed");
1177 
1178 				return QDF_STATUS_E_DEFRAG_ERROR;
1179 			}
1180 			cur = tmp_next;
1181 		}
1182 
1183 		/* If success, increment header to be stripped later */
1184 		hdr_space += dp_f_wep.ic_header;
1185 		break;
1186 	default:
1187 		QDF_TRACE(QDF_MODULE_ID_TXRX,
1188 			QDF_TRACE_LEVEL_ERROR,
1189 			"dp_rx_defrag: Did not match any security type");
1190 		break;
1191 	}
1192 
1193 	if (tkip_demic) {
1194 		msdu = frag_list_tail; /* Only last fragment has the MIC */
1195 
1196 		qdf_mem_copy(key,
1197 			peer->security[index].michael_key,
1198 			sizeof(peer->security[index].michael_key));
1199 		if (dp_rx_defrag_tkip_demic(key, msdu, hdr_space)) {
1200 			qdf_nbuf_free(msdu);
1201 			dp_rx_defrag_err(vdev->vdev_id, peer->mac_addr.raw,
1202 				tid, 0, QDF_STATUS_E_DEFRAG_ERROR, msdu,
1203 				NULL, 0);
1204 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1205 				"dp_rx_defrag: TKIP demic failed");
1206 			return QDF_STATUS_E_DEFRAG_ERROR;
1207 		}
1208 	}
1209 
1210 	/* Convert the header to 802.3 header */
1211 	dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
1212 	dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
1213 
1214 	return QDF_STATUS_SUCCESS;
1215 }
1216 
1217 /*
1218  * dp_rx_defrag_cleanup(): Clean up activities
1219  * @peer: Pointer to the peer
1220  * @tid: Transmit Identifier
1221  *
1222  * Returns: None
1223  */
1224 void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
1225 {
1226 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1227 				peer->rx_tid[tid].array;
1228 
1229 	/* Free up nbufs */
1230 	dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1231 
1232 	/* Free up saved ring descriptors */
1233 	dp_rx_clear_saved_desc_info(peer, tid);
1234 
1235 	rx_reorder_array_elem->head = NULL;
1236 	rx_reorder_array_elem->tail = NULL;
1237 	peer->rx_tid[tid].defrag_timeout_ms = 0;
1238 	peer->rx_tid[tid].curr_frag_num = 0;
1239 	peer->rx_tid[tid].curr_seq_num = 0;
1240 	peer->rx_tid[tid].head_frag_desc = NULL;
1241 }
1242 
1243 /*
1244  * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
1245  * @ring_desc: Pointer to the dst ring descriptor
1246  * @peer: Pointer to the peer
1247  * @tid: Transmit Identifier
1248  *
1249  * Returns: None
1250  */
1251 static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
1252 	struct dp_rx_desc *rx_desc, struct dp_peer *peer, unsigned tid)
1253 {
1254 	void *dst_ring_desc = qdf_mem_malloc(
1255 			sizeof(struct reo_destination_ring));
1256 
1257 	if (dst_ring_desc == NULL) {
1258 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1259 			"%s: Memory alloc failed !\n", __func__);
1260 		QDF_ASSERT(0);
1261 		return QDF_STATUS_E_NOMEM;
1262 	}
1263 
1264 	qdf_mem_copy(dst_ring_desc, ring_desc,
1265 		       sizeof(struct reo_destination_ring));
1266 
1267 	peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
1268 	peer->rx_tid[tid].head_frag_desc = rx_desc;
1269 
1270 	return QDF_STATUS_SUCCESS;
1271 }
1272 
1273 /*
1274  * dp_rx_defrag_store_fragment(): Store incoming fragments
1275  * @soc: Pointer to the SOC data structure
1276  * @ring_desc: Pointer to the ring descriptor
1277  * @mpdu_desc_info: MPDU descriptor info
1278  * @tid: Traffic Identifier
1279  * @rx_desc: Pointer to rx descriptor
1280  * @rx_bfs: Number of bfs consumed
1281  *
1282  * Returns: QDF_STATUS
1283  */
1284 static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
1285 			void *ring_desc,
1286 			union dp_rx_desc_list_elem_t **head,
1287 			union dp_rx_desc_list_elem_t **tail,
1288 			struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1289 			unsigned tid, struct dp_rx_desc *rx_desc,
1290 			uint32_t *rx_bfs)
1291 {
1292 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1293 	struct dp_pdev *pdev;
1294 	struct dp_peer *peer;
1295 	uint16_t peer_id;
1296 	uint8_t fragno, more_frag, all_frag_present = 0;
1297 	uint16_t rxseq = mpdu_desc_info->mpdu_seq;
1298 	QDF_STATUS status;
1299 	struct dp_rx_tid *rx_tid;
1300 	uint8_t mpdu_sequence_control_valid;
1301 	uint8_t mpdu_frame_control_valid;
1302 	qdf_nbuf_t frag = rx_desc->nbuf;
1303 
1304 	/* Check if the packet is from a valid peer */
1305 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1306 					mpdu_desc_info->peer_meta_data);
1307 	peer = dp_peer_find_by_id(soc, peer_id);
1308 
1309 	if (!peer) {
1310 		/* We should not recieve anything from unknown peer
1311 		 * however, that might happen while we are in the monitor mode.
1312 		 * We don't need to handle that here
1313 		 */
1314 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1315 			"Unknown peer, dropping the fragment");
1316 
1317 		qdf_nbuf_free(frag);
1318 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1319 		*rx_bfs = 1;
1320 
1321 		return QDF_STATUS_E_DEFRAG_ERROR;
1322 	}
1323 
1324 	pdev = peer->vdev->pdev;
1325 	rx_tid = &peer->rx_tid[tid];
1326 
1327 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1328 
1329 	mpdu_sequence_control_valid =
1330 		hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
1331 
1332 	/* Invalid MPDU sequence control field, MPDU is of no use */
1333 	if (!mpdu_sequence_control_valid) {
1334 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1335 			"Invalid MPDU seq control field, dropping MPDU");
1336 		qdf_nbuf_free(frag);
1337 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1338 		*rx_bfs = 1;
1339 
1340 		qdf_assert(0);
1341 		goto end;
1342 	}
1343 
1344 	mpdu_frame_control_valid =
1345 		hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
1346 
1347 	/* Invalid frame control field */
1348 	if (!mpdu_frame_control_valid) {
1349 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1350 			"Invalid frame control field, dropping MPDU");
1351 		qdf_nbuf_free(frag);
1352 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1353 		*rx_bfs = 1;
1354 
1355 		qdf_assert(0);
1356 		goto end;
1357 	}
1358 
1359 	/* Current mpdu sequence */
1360 	more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
1361 
1362 	/* HW does not populate the fragment number as of now
1363 	 * need to get from the 802.11 header
1364 	 */
1365 	fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
1366 
1367 	/*
1368 	 * !more_frag: no more fragments to be delivered
1369 	 * !frag_no: packet is not fragmented
1370 	 * !rx_reorder_array_elem->head: no saved fragments so far
1371 	 */
1372 	if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
1373 		/* We should not get into this situation here.
1374 		 * It means an unfragmented packet with fragment flag
1375 		 * is delivered over the REO exception ring.
1376 		 * Typically it follows normal rx path.
1377 		 */
1378 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1379 			"Rcvd unfragmented pkt on REO Err srng, dropping");
1380 		qdf_nbuf_free(frag);
1381 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1382 		*rx_bfs = 1;
1383 
1384 		qdf_assert(0);
1385 		goto end;
1386 	}
1387 
1388 	/* Check if the fragment is for the same sequence or a different one */
1389 	if (rx_reorder_array_elem->head) {
1390 		if (rxseq != rx_tid->curr_seq_num) {
1391 
1392 			/* Drop stored fragments if out of sequence
1393 			 * fragment is received
1394 			 */
1395 			dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1396 
1397 			rx_reorder_array_elem->head = NULL;
1398 			rx_reorder_array_elem->tail = NULL;
1399 
1400 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1401 				"%s mismatch, dropping earlier sequence ",
1402 				(rxseq == rx_tid->curr_seq_num)
1403 				? "address"
1404 				: "seq number");
1405 
1406 			/*
1407 			 * The sequence number for this fragment becomes the
1408 			 * new sequence number to be processed
1409 			 */
1410 			rx_tid->curr_seq_num = rxseq;
1411 
1412 		}
1413 	} else {
1414 		/* Start of a new sequence */
1415 		dp_rx_defrag_cleanup(peer, tid);
1416 		rx_tid->curr_seq_num = rxseq;
1417 	}
1418 
1419 	/*
1420 	 * If the earlier sequence was dropped, this will be the fresh start.
1421 	 * Else, continue with next fragment in a given sequence
1422 	 */
1423 	status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
1424 			&rx_reorder_array_elem->tail, frag,
1425 			&all_frag_present);
1426 
1427 	/*
1428 	 * Currently, we can have only 6 MSDUs per-MPDU, if the current
1429 	 * packet sequence has more than 6 MSDUs for some reason, we will
1430 	 * have to use the next MSDU link descriptor and chain them together
1431 	 * before reinjection
1432 	 */
1433 	if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
1434 			(rx_reorder_array_elem->head == frag)) {
1435 
1436 		status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
1437 					rx_desc, peer, tid);
1438 
1439 		if (status != QDF_STATUS_SUCCESS) {
1440 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1441 				"%s: Unable to store ring desc !\n", __func__);
1442 			goto end;
1443 		}
1444 	} else {
1445 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1446 		*rx_bfs = 1;
1447 
1448 		/* Return the non-head link desc */
1449 		if (dp_rx_link_desc_return(soc, ring_desc,
1450 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1451 				QDF_STATUS_SUCCESS)
1452 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1453 					"%s: Failed to return link desc\n",
1454 					__func__);
1455 
1456 	}
1457 
1458 	if (pdev->soc->rx.flags.defrag_timeout_check)
1459 		dp_rx_defrag_waitlist_remove(peer, tid);
1460 
1461 	/* Yet to receive more fragments for this sequence number */
1462 	if (!all_frag_present) {
1463 		uint32_t now_ms =
1464 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1465 
1466 		peer->rx_tid[tid].defrag_timeout_ms =
1467 			now_ms + pdev->soc->rx.defrag.timeout_ms;
1468 
1469 		dp_rx_defrag_waitlist_add(peer, tid);
1470 
1471 		return QDF_STATUS_SUCCESS;
1472 	}
1473 
1474 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1475 		"All fragments received for sequence: %d", rxseq);
1476 
1477 	/* Process the fragments */
1478 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1479 		rx_reorder_array_elem->tail);
1480 	if (QDF_IS_STATUS_ERROR(status)) {
1481 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1482 			"Fragment processing failed");
1483 
1484 		dp_rx_add_to_free_desc_list(head, tail,
1485 				peer->rx_tid[tid].head_frag_desc);
1486 		*rx_bfs = 1;
1487 
1488 		if (dp_rx_link_desc_return(soc,
1489 					peer->rx_tid[tid].dst_ring_desc,
1490 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1491 				QDF_STATUS_SUCCESS)
1492 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1493 					"%s: Failed to return link desc\n",
1494 					__func__);
1495 		dp_rx_defrag_cleanup(peer, tid);
1496 		goto end;
1497 	}
1498 
1499 	/* Re-inject the fragments back to REO for further processing */
1500 	status = dp_rx_defrag_reo_reinject(peer, tid,
1501 			rx_reorder_array_elem->head);
1502 	if (QDF_IS_STATUS_SUCCESS(status)) {
1503 		rx_reorder_array_elem->head = NULL;
1504 		rx_reorder_array_elem->tail = NULL;
1505 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1506 		"Fragmented sequence successfully reinjected");
1507 	}
1508 	else
1509 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1510 		"Fragmented sequence reinjection failed");
1511 
1512 	dp_rx_defrag_cleanup(peer, tid);
1513 	return QDF_STATUS_SUCCESS;
1514 
1515 end:
1516 	return QDF_STATUS_E_DEFRAG_ERROR;
1517 }
1518 
1519 /**
1520  * dp_rx_frag_handle() - Handles fragmented Rx frames
1521  *
1522  * @soc: core txrx main context
1523  * @ring_desc: opaque pointer to the REO error ring descriptor
1524  * @mpdu_desc_info: MPDU descriptor information from ring descriptor
1525  * @head: head of the local descriptor free-list
1526  * @tail: tail of the local descriptor free-list
1527  * @quota: No. of units (packets) that can be serviced in one shot.
1528  *
1529  * This function implements RX 802.11 fragmentation handling
1530  * The handling is mostly same as legacy fragmentation handling.
1531  * If required, this function can re-inject the frames back to
1532  * REO ring (with proper setting to by-pass fragmentation check
1533  * but use duplicate detection / re-ordering and routing these frames
1534  * to a different core.
1535  *
1536  * Return: uint32_t: No. of elements processed
1537  */
1538 uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
1539 		struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1540 		union dp_rx_desc_list_elem_t **head,
1541 		union dp_rx_desc_list_elem_t **tail,
1542 		uint32_t quota)
1543 {
1544 	uint32_t rx_bufs_used = 0;
1545 	void *link_desc_va;
1546 	struct hal_buf_info buf_info;
1547 	struct hal_rx_msdu_list msdu_list; /* per MPDU list of MSDUs */
1548 	qdf_nbuf_t msdu = NULL;
1549 	uint32_t tid, msdu_len;
1550 	int idx, rx_bfs = 0;
1551 	QDF_STATUS status;
1552 
1553 	qdf_assert(soc);
1554 	qdf_assert(mpdu_desc_info);
1555 
1556 	/* Fragment from a valid peer */
1557 	hal_rx_reo_buf_paddr_get(ring_desc, &buf_info);
1558 
1559 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
1560 
1561 	qdf_assert(link_desc_va);
1562 
1563 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1564 		"Number of MSDUs to process, num_msdus: %d",
1565 		mpdu_desc_info->msdu_count);
1566 
1567 
1568 	if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
1569 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1570 			"Not sufficient MSDUs to process");
1571 		return rx_bufs_used;
1572 	}
1573 
1574 	/* Get msdu_list for the given MPDU */
1575 	hal_rx_msdu_list_get(link_desc_va, &msdu_list,
1576 		&mpdu_desc_info->msdu_count);
1577 
1578 	/* Process all MSDUs in the current MPDU */
1579 	for (idx = 0; (idx < mpdu_desc_info->msdu_count) && quota--; idx++) {
1580 		struct dp_rx_desc *rx_desc =
1581 			dp_rx_cookie_2_va_rxdma_buf(soc,
1582 				msdu_list.sw_cookie[idx]);
1583 
1584 		qdf_assert(rx_desc);
1585 
1586 		msdu = rx_desc->nbuf;
1587 
1588 		qdf_nbuf_unmap_single(soc->osdev, msdu,
1589 				QDF_DMA_BIDIRECTIONAL);
1590 
1591 		rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
1592 
1593 		msdu_len = hal_rx_msdu_start_msdu_len_get(
1594 				rx_desc->rx_buf_start);
1595 
1596 		qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
1597 
1598 		tid = hal_rx_mpdu_start_tid_get(rx_desc->rx_buf_start);
1599 
1600 		/* Process fragment-by-fragment */
1601 		status = dp_rx_defrag_store_fragment(soc, ring_desc,
1602 				head, tail, mpdu_desc_info,
1603 				tid, rx_desc, &rx_bfs);
1604 
1605 		if (rx_bfs)
1606 			rx_bufs_used++;
1607 
1608 		if (!QDF_IS_STATUS_SUCCESS(status)) {
1609 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1610 				"Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
1611 				mpdu_desc_info->mpdu_seq,
1612 				mpdu_desc_info->msdu_count,
1613 				mpdu_desc_info->mpdu_flags);
1614 
1615 			/* No point in processing rest of the fragments */
1616 			break;
1617 		}
1618 	}
1619 
1620 	return rx_bufs_used;
1621 }
1622