xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx_defrag.c (revision 6d768494e5ce14eb1603a695c86739d12ecc6ec2)
1 /*
2  * Copyright (c) 2017-2020 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "dp_types.h"
21 #include "dp_rx.h"
22 #include "dp_peer.h"
23 #include "hal_api.h"
24 #include "qdf_trace.h"
25 #include "qdf_nbuf.h"
26 #include "dp_internal.h"
27 #include "dp_rx_defrag.h"
28 #include <enet.h>	/* LLC_SNAP_HDR_LEN */
29 #include "dp_rx_defrag.h"
30 #include "dp_ipa.h"
31 
32 const struct dp_rx_defrag_cipher dp_f_ccmp = {
33 	"AES-CCM",
34 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
35 	IEEE80211_WEP_MICLEN,
36 	0,
37 };
38 
39 const struct dp_rx_defrag_cipher dp_f_tkip = {
40 	"TKIP",
41 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
42 	IEEE80211_WEP_CRCLEN,
43 	IEEE80211_WEP_MICLEN,
44 };
45 
46 const struct dp_rx_defrag_cipher dp_f_wep = {
47 	"WEP",
48 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
49 	IEEE80211_WEP_CRCLEN,
50 	0,
51 };
52 
53 /*
54  * dp_rx_defrag_frames_free(): Free fragment chain
55  * @frames: Fragment chain
56  *
57  * Iterates through the fragment chain and frees them
58  * Returns: None
59  */
60 static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
61 {
62 	qdf_nbuf_t next, frag = frames;
63 
64 	while (frag) {
65 		next = qdf_nbuf_next(frag);
66 		qdf_nbuf_free(frag);
67 		frag = next;
68 	}
69 }
70 
71 /*
72  * dp_rx_clear_saved_desc_info(): Clears descriptor info
73  * @peer: Pointer to the peer data structure
74  * @tid: Transmit ID (TID)
75  *
76  * Saves MPDU descriptor info and MSDU link pointer from REO
77  * ring descriptor. The cache is created per peer, per TID
78  *
79  * Returns: None
80  */
81 static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
82 {
83 	if (peer->rx_tid[tid].dst_ring_desc)
84 		qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
85 
86 	peer->rx_tid[tid].dst_ring_desc = NULL;
87 	peer->rx_tid[tid].head_frag_desc = NULL;
88 }
89 
90 static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
91 					unsigned int tid)
92 {
93 	struct dp_soc *soc;
94 	struct dp_pdev *pdev;
95 	struct dp_srng *dp_rxdma_srng;
96 	struct rx_desc_pool *rx_desc_pool;
97 	union dp_rx_desc_list_elem_t *head = NULL;
98 	union dp_rx_desc_list_elem_t *tail = NULL;
99 	uint8_t pool_id;
100 
101 	pdev = peer->vdev->pdev;
102 	soc = pdev->soc;
103 
104 	if (peer->rx_tid[tid].head_frag_desc) {
105 		pool_id = peer->rx_tid[tid].head_frag_desc->pool_id;
106 		dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
107 		rx_desc_pool = &soc->rx_desc_buf[pool_id];
108 
109 		dp_rx_add_to_free_desc_list(&head, &tail,
110 					    peer->rx_tid[tid].head_frag_desc);
111 		dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
112 					1, &head, &tail);
113 	}
114 
115 	if (peer->rx_tid[tid].dst_ring_desc) {
116 		if (dp_rx_link_desc_return(soc,
117 					   peer->rx_tid[tid].dst_ring_desc,
118 					   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
119 		    QDF_STATUS_SUCCESS)
120 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
121 				  "%s: Failed to return link desc", __func__);
122 	}
123 }
124 
125 /*
126  * dp_rx_reorder_flush_frag(): Flush the frag list
127  * @peer: Pointer to the peer data structure
128  * @tid: Transmit ID (TID)
129  *
130  * Flush the per-TID frag list
131  *
132  * Returns: None
133  */
134 void dp_rx_reorder_flush_frag(struct dp_peer *peer,
135 			 unsigned int tid)
136 {
137 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
138 		  FL("Flushing TID %d"), tid);
139 
140 	if (!peer) {
141 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
142 					"%s: NULL peer", __func__);
143 		return;
144 	}
145 
146 	dp_rx_return_head_frag_desc(peer, tid);
147 	dp_rx_defrag_cleanup(peer, tid);
148 }
149 
150 /*
151  * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
152  * @soc: DP SOC
153  *
154  * Flush fragments of all waitlisted TID's
155  *
156  * Returns: None
157  */
158 void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
159 {
160 	struct dp_rx_tid *rx_reorder = NULL;
161 	struct dp_rx_tid *tmp;
162 	uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
163 	TAILQ_HEAD(, dp_rx_tid) temp_list;
164 
165 	TAILQ_INIT(&temp_list);
166 
167 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
168 		  FL("Current time  %u"), now_ms);
169 
170 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
171 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
172 			   defrag_waitlist_elem, tmp) {
173 		uint32_t tid;
174 
175 		if (rx_reorder->defrag_timeout_ms > now_ms)
176 			break;
177 
178 		tid = rx_reorder->tid;
179 		if (tid >= DP_MAX_TIDS) {
180 			qdf_assert(0);
181 			continue;
182 		}
183 
184 		TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
185 			     defrag_waitlist_elem);
186 		DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
187 
188 		/* Move to temp list and clean-up later */
189 		TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
190 				  defrag_waitlist_elem);
191 	}
192 	if (rx_reorder) {
193 		soc->rx.defrag.next_flush_ms =
194 			rx_reorder->defrag_timeout_ms;
195 	} else {
196 		soc->rx.defrag.next_flush_ms =
197 			now_ms + soc->rx.defrag.timeout_ms;
198 	}
199 
200 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
201 
202 	TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
203 			   defrag_waitlist_elem, tmp) {
204 		struct dp_peer *peer, *temp_peer = NULL;
205 
206 		qdf_spin_lock_bh(&rx_reorder->tid_lock);
207 		TAILQ_REMOVE(&temp_list, rx_reorder,
208 			     defrag_waitlist_elem);
209 		/* get address of current peer */
210 		peer =
211 			container_of(rx_reorder, struct dp_peer,
212 				     rx_tid[rx_reorder->tid]);
213 		qdf_spin_unlock_bh(&rx_reorder->tid_lock);
214 
215 		temp_peer = dp_peer_find_by_id(soc, peer->peer_id);
216 		if (temp_peer == peer) {
217 			qdf_spin_lock_bh(&rx_reorder->tid_lock);
218 			dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
219 			qdf_spin_unlock_bh(&rx_reorder->tid_lock);
220 		}
221 
222 		if (temp_peer)
223 			dp_peer_unref_del_find_by_id(temp_peer);
224 
225 	}
226 }
227 
228 /*
229  * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
230  * @peer: Pointer to the peer data structure
231  * @tid: Transmit ID (TID)
232  *
233  * Appends per-tid fragments to global fragment wait list
234  *
235  * Returns: None
236  */
237 static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
238 {
239 	struct dp_soc *psoc = peer->vdev->pdev->soc;
240 	struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
241 
242 	dp_debug("Adding TID %u to waitlist for peer %pK at MAC address %pM",
243 		 tid, peer, peer->mac_addr.raw);
244 
245 	/* TODO: use LIST macros instead of TAIL macros */
246 	qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
247 	if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
248 		psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
249 	TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
250 				defrag_waitlist_elem);
251 	DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
252 	qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
253 }
254 
255 /*
256  * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
257  * @peer: Pointer to the peer data structure
258  * @tid: Transmit ID (TID)
259  *
260  * Remove fragments from waitlist
261  *
262  * Returns: None
263  */
264 void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
265 {
266 	struct dp_pdev *pdev = peer->vdev->pdev;
267 	struct dp_soc *soc = pdev->soc;
268 	struct dp_rx_tid *rx_reorder;
269 	struct dp_rx_tid *tmp;
270 
271 	dp_debug("Removing TID %u to waitlist for peer %pK at MAC address %pM",
272 		 tid, peer, peer->mac_addr.raw);
273 
274 	if (tid >= DP_MAX_TIDS) {
275 		dp_err("TID out of bounds: %d", tid);
276 		qdf_assert_always(0);
277 	}
278 
279 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
280 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
281 			   defrag_waitlist_elem, tmp) {
282 		struct dp_peer *peer_on_waitlist;
283 
284 		/* get address of current peer */
285 		peer_on_waitlist =
286 			container_of(rx_reorder, struct dp_peer,
287 				     rx_tid[rx_reorder->tid]);
288 
289 		/* Ensure it is TID for same peer */
290 		if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
291 			TAILQ_REMOVE(&soc->rx.defrag.waitlist,
292 				rx_reorder, defrag_waitlist_elem);
293 			DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
294 		}
295 	}
296 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
297 }
298 
299 /*
300  * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
301  * @peer: Pointer to the peer data structure
302  * @tid: Transmit ID (TID)
303  * @head_addr: Pointer to head list
304  * @tail_addr: Pointer to tail list
305  * @frag: Incoming fragment
306  * @all_frag_present: Flag to indicate whether all fragments are received
307  *
308  * Build a per-tid, per-sequence fragment list.
309  *
310  * Returns: Success, if inserted
311  */
312 static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
313 	qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
314 	uint8_t *all_frag_present)
315 {
316 	qdf_nbuf_t next;
317 	qdf_nbuf_t prev = NULL;
318 	qdf_nbuf_t cur;
319 	uint16_t head_fragno, cur_fragno, next_fragno;
320 	uint8_t last_morefrag = 1, count = 0;
321 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
322 	uint8_t *rx_desc_info;
323 
324 
325 	qdf_assert(frag);
326 	qdf_assert(head_addr);
327 	qdf_assert(tail_addr);
328 
329 	*all_frag_present = 0;
330 	rx_desc_info = qdf_nbuf_data(frag);
331 	cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
332 
333 	/* If this is the first fragment */
334 	if (!(*head_addr)) {
335 		*head_addr = *tail_addr = frag;
336 		qdf_nbuf_set_next(*tail_addr, NULL);
337 		rx_tid->curr_frag_num = cur_fragno;
338 
339 		goto insert_done;
340 	}
341 
342 	/* In sequence fragment */
343 	if (cur_fragno > rx_tid->curr_frag_num) {
344 		qdf_nbuf_set_next(*tail_addr, frag);
345 		*tail_addr = frag;
346 		qdf_nbuf_set_next(*tail_addr, NULL);
347 		rx_tid->curr_frag_num = cur_fragno;
348 	} else {
349 		/* Out of sequence fragment */
350 		cur = *head_addr;
351 		rx_desc_info = qdf_nbuf_data(cur);
352 		head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
353 
354 		if (cur_fragno == head_fragno) {
355 			qdf_nbuf_free(frag);
356 			goto insert_fail;
357 		} else if (head_fragno > cur_fragno) {
358 			qdf_nbuf_set_next(frag, cur);
359 			cur = frag;
360 			*head_addr = frag; /* head pointer to be updated */
361 		} else {
362 			while ((cur_fragno > head_fragno) && cur) {
363 				prev = cur;
364 				cur = qdf_nbuf_next(cur);
365 				rx_desc_info = qdf_nbuf_data(cur);
366 				head_fragno =
367 					dp_rx_frag_get_mpdu_frag_number(
368 								rx_desc_info);
369 			}
370 
371 			if (cur_fragno == head_fragno) {
372 				qdf_nbuf_free(frag);
373 				goto insert_fail;
374 			}
375 
376 			qdf_nbuf_set_next(prev, frag);
377 			qdf_nbuf_set_next(frag, cur);
378 		}
379 	}
380 
381 	next = qdf_nbuf_next(*head_addr);
382 
383 	rx_desc_info = qdf_nbuf_data(*tail_addr);
384 	last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
385 
386 	/* TODO: optimize the loop */
387 	if (!last_morefrag) {
388 		/* Check if all fragments are present */
389 		do {
390 			rx_desc_info = qdf_nbuf_data(next);
391 			next_fragno =
392 				dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
393 			count++;
394 
395 			if (next_fragno != count)
396 				break;
397 
398 			next = qdf_nbuf_next(next);
399 		} while (next);
400 
401 		if (!next) {
402 			*all_frag_present = 1;
403 			return QDF_STATUS_SUCCESS;
404 		}
405 	}
406 
407 insert_done:
408 	return QDF_STATUS_SUCCESS;
409 
410 insert_fail:
411 	return QDF_STATUS_E_FAILURE;
412 }
413 
414 
415 /*
416  * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
417  * @msdu: Pointer to the fragment
418  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
419  *
420  * decap tkip encrypted fragment
421  *
422  * Returns: QDF_STATUS
423  */
424 static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
425 {
426 	uint8_t *ivp, *orig_hdr;
427 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
428 
429 	/* start of 802.11 header info */
430 	orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
431 
432 	/* TKIP header is located post 802.11 header */
433 	ivp = orig_hdr + hdrlen;
434 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
435 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
436 			"IEEE80211_WEP_EXTIV is missing in TKIP fragment");
437 		return QDF_STATUS_E_DEFRAG_ERROR;
438 	}
439 
440 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
441 
442 	return QDF_STATUS_SUCCESS;
443 }
444 
445 /*
446  * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
447  * @nbuf: Pointer to the fragment buffer
448  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
449  *
450  * Remove MIC information from CCMP fragment
451  *
452  * Returns: QDF_STATUS
453  */
454 static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
455 {
456 	uint8_t *ivp, *orig_hdr;
457 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
458 
459 	/* start of the 802.11 header */
460 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
461 
462 	/* CCMP header is located after 802.11 header */
463 	ivp = orig_hdr + hdrlen;
464 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
465 		return QDF_STATUS_E_DEFRAG_ERROR;
466 
467 	qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
468 
469 	return QDF_STATUS_SUCCESS;
470 }
471 
472 /*
473  * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
474  * @nbuf: Pointer to the fragment
475  * @hdrlen: length of the header information
476  *
477  * decap CCMP encrypted fragment
478  *
479  * Returns: QDF_STATUS
480  */
481 static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
482 {
483 	uint8_t *ivp, *origHdr;
484 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
485 
486 	origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
487 	ivp = origHdr + hdrlen;
488 
489 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
490 		return QDF_STATUS_E_DEFRAG_ERROR;
491 
492 	/* Let's pull the header later */
493 
494 	return QDF_STATUS_SUCCESS;
495 }
496 
497 /*
498  * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
499  * @msdu: Pointer to the fragment
500  * @hdrlen: length of the header information
501  *
502  * decap WEP encrypted fragment
503  *
504  * Returns: QDF_STATUS
505  */
506 static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
507 {
508 	uint8_t *origHdr;
509 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
510 
511 	origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
512 	qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
513 
514 	qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
515 
516 	return QDF_STATUS_SUCCESS;
517 }
518 
519 /*
520  * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
521  * @soc: soc handle
522  * @nbuf: Pointer to the fragment
523  *
524  * Calculate the header size of the received fragment
525  *
526  * Returns: header size (uint16_t)
527  */
528 static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
529 {
530 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
531 	uint16_t size = sizeof(struct ieee80211_frame);
532 	uint16_t fc = 0;
533 	uint32_t to_ds, fr_ds;
534 	uint8_t frm_ctrl_valid;
535 	uint16_t frm_ctrl_field;
536 
537 	to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
538 	fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
539 	frm_ctrl_valid =
540 		hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
541 						    rx_tlv_hdr);
542 	frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
543 
544 	if (to_ds && fr_ds)
545 		size += QDF_MAC_ADDR_SIZE;
546 
547 	if (frm_ctrl_valid) {
548 		fc = frm_ctrl_field;
549 
550 		/* use 1-st byte for validation */
551 		if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
552 			size += sizeof(uint16_t);
553 			/* use 2-nd byte for validation */
554 			if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
555 				size += sizeof(struct ieee80211_htc);
556 		}
557 	}
558 
559 	return size;
560 }
561 
562 /*
563  * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
564  * @wh0: Pointer to the wireless header of the fragment
565  * @hdr: Array to hold the pseudo header
566  *
567  * Calculate a pseudo MIC header
568  *
569  * Returns: None
570  */
571 static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
572 				uint8_t hdr[])
573 {
574 	const struct ieee80211_frame_addr4 *wh =
575 		(const struct ieee80211_frame_addr4 *)wh0;
576 
577 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
578 	case IEEE80211_FC1_DIR_NODS:
579 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
580 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
581 					   wh->i_addr2);
582 		break;
583 	case IEEE80211_FC1_DIR_TODS:
584 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
585 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
586 					   wh->i_addr2);
587 		break;
588 	case IEEE80211_FC1_DIR_FROMDS:
589 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
590 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
591 					   wh->i_addr3);
592 		break;
593 	case IEEE80211_FC1_DIR_DSTODS:
594 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
595 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
596 					   wh->i_addr4);
597 		break;
598 	}
599 
600 	/*
601 	 * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
602 	 * it could also be set for deauth, disassoc, action, etc. for
603 	 * a mgt type frame. It comes into picture for MFP.
604 	 */
605 	if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
606 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
607 				IEEE80211_FC1_DIR_DSTODS) {
608 			const struct ieee80211_qosframe_addr4 *qwh =
609 				(const struct ieee80211_qosframe_addr4 *)wh;
610 			hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
611 		} else {
612 			const struct ieee80211_qosframe *qwh =
613 				(const struct ieee80211_qosframe *)wh;
614 			hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
615 		}
616 	} else {
617 		hdr[12] = 0;
618 	}
619 
620 	hdr[13] = hdr[14] = hdr[15] = 0;	/* reserved */
621 }
622 
623 /*
624  * dp_rx_defrag_mic(): Calculate MIC header
625  * @key: Pointer to the key
626  * @wbuf: fragment buffer
627  * @off: Offset
628  * @data_len: Data length
629  * @mic: Array to hold MIC
630  *
631  * Calculate a pseudo MIC header
632  *
633  * Returns: QDF_STATUS
634  */
635 static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
636 		uint16_t off, uint16_t data_len, uint8_t mic[])
637 {
638 	uint8_t hdr[16] = { 0, };
639 	uint32_t l, r;
640 	const uint8_t *data;
641 	uint32_t space;
642 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
643 
644 	dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
645 		+ rx_desc_len), hdr);
646 
647 	l = dp_rx_get_le32(key);
648 	r = dp_rx_get_le32(key + 4);
649 
650 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
651 	l ^= dp_rx_get_le32(hdr);
652 	dp_rx_michael_block(l, r);
653 	l ^= dp_rx_get_le32(&hdr[4]);
654 	dp_rx_michael_block(l, r);
655 	l ^= dp_rx_get_le32(&hdr[8]);
656 	dp_rx_michael_block(l, r);
657 	l ^= dp_rx_get_le32(&hdr[12]);
658 	dp_rx_michael_block(l, r);
659 
660 	/* first buffer has special handling */
661 	data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
662 	space = qdf_nbuf_len(wbuf) - off;
663 
664 	for (;; ) {
665 		if (space > data_len)
666 			space = data_len;
667 
668 		/* collect 32-bit blocks from current buffer */
669 		while (space >= sizeof(uint32_t)) {
670 			l ^= dp_rx_get_le32(data);
671 			dp_rx_michael_block(l, r);
672 			data += sizeof(uint32_t);
673 			space -= sizeof(uint32_t);
674 			data_len -= sizeof(uint32_t);
675 		}
676 		if (data_len < sizeof(uint32_t))
677 			break;
678 
679 		wbuf = qdf_nbuf_next(wbuf);
680 		if (!wbuf)
681 			return QDF_STATUS_E_DEFRAG_ERROR;
682 
683 		if (space != 0) {
684 			const uint8_t *data_next;
685 			/*
686 			 * Block straddles buffers, split references.
687 			 */
688 			data_next =
689 				(uint8_t *)qdf_nbuf_data(wbuf) + off;
690 			if ((qdf_nbuf_len(wbuf)) <
691 				sizeof(uint32_t) - space) {
692 				return QDF_STATUS_E_DEFRAG_ERROR;
693 			}
694 			switch (space) {
695 			case 1:
696 				l ^= dp_rx_get_le32_split(data[0],
697 					data_next[0], data_next[1],
698 					data_next[2]);
699 				data = data_next + 3;
700 				space = (qdf_nbuf_len(wbuf) - off) - 3;
701 				break;
702 			case 2:
703 				l ^= dp_rx_get_le32_split(data[0], data[1],
704 						    data_next[0], data_next[1]);
705 				data = data_next + 2;
706 				space = (qdf_nbuf_len(wbuf) - off) - 2;
707 				break;
708 			case 3:
709 				l ^= dp_rx_get_le32_split(data[0], data[1],
710 					data[2], data_next[0]);
711 				data = data_next + 1;
712 				space = (qdf_nbuf_len(wbuf) - off) - 1;
713 				break;
714 			}
715 			dp_rx_michael_block(l, r);
716 			data_len -= sizeof(uint32_t);
717 		} else {
718 			/*
719 			 * Setup for next buffer.
720 			 */
721 			data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
722 			space = qdf_nbuf_len(wbuf) - off;
723 		}
724 	}
725 	/* Last block and padding (0x5a, 4..7 x 0) */
726 	switch (data_len) {
727 	case 0:
728 		l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
729 		break;
730 	case 1:
731 		l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
732 		break;
733 	case 2:
734 		l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
735 		break;
736 	case 3:
737 		l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
738 		break;
739 	}
740 	dp_rx_michael_block(l, r);
741 	dp_rx_michael_block(l, r);
742 	dp_rx_put_le32(mic, l);
743 	dp_rx_put_le32(mic + 4, r);
744 
745 	return QDF_STATUS_SUCCESS;
746 }
747 
748 /*
749  * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
750  * @key: Pointer to the key
751  * @msdu: fragment buffer
752  * @hdrlen: Length of the header information
753  *
754  * Remove MIC information from the TKIP frame
755  *
756  * Returns: QDF_STATUS
757  */
758 static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
759 					qdf_nbuf_t msdu, uint16_t hdrlen)
760 {
761 	QDF_STATUS status;
762 	uint32_t pktlen = 0;
763 	uint8_t mic[IEEE80211_WEP_MICLEN];
764 	uint8_t mic0[IEEE80211_WEP_MICLEN];
765 	qdf_nbuf_t prev = NULL, next;
766 
767 	next = msdu;
768 	while (next) {
769 		pktlen += (qdf_nbuf_len(next) - hdrlen);
770 		prev = next;
771 		dp_debug("%s pktlen %u", __func__,
772 			 (uint32_t)(qdf_nbuf_len(next) - hdrlen));
773 		next = qdf_nbuf_next(next);
774 	}
775 
776 	if (!prev) {
777 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
778 			  "%s Defrag chaining failed !\n", __func__);
779 		return QDF_STATUS_E_DEFRAG_ERROR;
780 	}
781 
782 	qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
783 			   dp_f_tkip.ic_miclen, (caddr_t)mic0);
784 	qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
785 	pktlen -= dp_f_tkip.ic_miclen;
786 
787 	status = dp_rx_defrag_mic(key, msdu, hdrlen,
788 				pktlen, mic);
789 
790 	if (QDF_IS_STATUS_ERROR(status))
791 		return status;
792 
793 	if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
794 		return QDF_STATUS_E_DEFRAG_ERROR;
795 
796 	return QDF_STATUS_SUCCESS;
797 }
798 
799 /*
800  * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
801  * @nbuf: buffer pointer
802  * @hdrsize: size of the header to be pulled
803  *
804  * Pull the RXTLV & the 802.11 headers
805  *
806  * Returns: None
807  */
808 static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
809 {
810 	qdf_nbuf_pull_head(nbuf,
811 			RX_PKT_TLVS_LEN + hdrsize);
812 
813 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
814 		  "%s: final pktlen %d .11len %d",
815 		  __func__, (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
816 }
817 
818 /*
819  * dp_rx_construct_fraglist(): Construct a nbuf fraglist
820  * @peer: Pointer to the peer
821  * @head: Pointer to list of fragments
822  * @hdrsize: Size of the header to be pulled
823  *
824  * Construct a nbuf fraglist
825  *
826  * Returns: None
827  */
828 static void
829 dp_rx_construct_fraglist(struct dp_peer *peer,
830 		qdf_nbuf_t head, uint16_t hdrsize)
831 {
832 	qdf_nbuf_t msdu = qdf_nbuf_next(head);
833 	qdf_nbuf_t rx_nbuf = msdu;
834 	uint32_t len = 0;
835 
836 	while (msdu) {
837 		dp_rx_frag_pull_hdr(msdu, hdrsize);
838 		len += qdf_nbuf_len(msdu);
839 		msdu = qdf_nbuf_next(msdu);
840 	}
841 
842 	qdf_nbuf_append_ext_list(head, rx_nbuf, len);
843 	qdf_nbuf_set_next(head, NULL);
844 	qdf_nbuf_set_is_frag(head, 1);
845 
846 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
847 		  "%s: head len %d ext len %d data len %d ",
848 		  __func__,
849 		  (uint32_t)qdf_nbuf_len(head),
850 		  (uint32_t)qdf_nbuf_len(rx_nbuf),
851 		  (uint32_t)(head->data_len));
852 }
853 
854 /**
855  * dp_rx_defrag_err() - rx err handler
856  * @pdev: handle to pdev object
857  * @vdev_id: vdev id
858  * @peer_mac_addr: peer mac address
859  * @tid: TID
860  * @tsf32: TSF
861  * @err_type: error type
862  * @rx_frame: rx frame
863  * @pn: PN Number
864  * @key_id: key id
865  *
866  * This function handles rx error and send MIC error notification
867  *
868  * Return: None
869  */
870 static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
871 {
872 	struct ol_if_ops *tops = NULL;
873 	struct dp_pdev *pdev = vdev->pdev;
874 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
875 	uint8_t *orig_hdr;
876 	struct ieee80211_frame *wh;
877 	struct cdp_rx_mic_err_info mic_failure_info;
878 
879 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
880 	wh = (struct ieee80211_frame *)orig_hdr;
881 
882 	qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
883 			 (struct qdf_mac_addr *)&wh->i_addr1);
884 	qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
885 			 (struct qdf_mac_addr *)&wh->i_addr2);
886 	mic_failure_info.key_id = 0;
887 	mic_failure_info.multicast =
888 		IEEE80211_IS_MULTICAST(wh->i_addr1);
889 	qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
890 	mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
891 	mic_failure_info.data = (uint8_t *)wh;
892 	mic_failure_info.vdev_id = vdev->vdev_id;
893 
894 	tops = pdev->soc->cdp_soc.ol_ops;
895 	if (tops->rx_mic_error)
896 		tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
897 				   &mic_failure_info);
898 }
899 
900 
901 /*
902  * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
903  * @soc: dp soc handle
904  * @nbuf: Pointer to the fragment buffer
905  * @hdrsize: Size of headers
906  *
907  * Transcap the fragment from 802.11 to 802.3
908  *
909  * Returns: None
910  */
911 static void
912 dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc,
913 			   qdf_nbuf_t nbuf, uint16_t hdrsize)
914 {
915 	struct llc_snap_hdr_t *llchdr;
916 	struct ethernet_hdr_t *eth_hdr;
917 	uint8_t ether_type[2];
918 	uint16_t fc = 0;
919 	union dp_align_mac_addr mac_addr;
920 	uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
921 
922 	if (!rx_desc_info) {
923 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
924 			"%s: Memory alloc failed ! ", __func__);
925 		QDF_ASSERT(0);
926 		return;
927 	}
928 
929 	qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
930 
931 	llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
932 					RX_PKT_TLVS_LEN + hdrsize);
933 	qdf_mem_copy(ether_type, llchdr->ethertype, 2);
934 
935 	qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
936 				  sizeof(struct llc_snap_hdr_t) -
937 				  sizeof(struct ethernet_hdr_t)));
938 
939 	eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
940 
941 	if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
942 						rx_desc_info))
943 		fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
944 
945 	dp_debug("%s: frame control type: 0x%x", __func__, fc);
946 
947 	switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
948 	case IEEE80211_FC1_DIR_NODS:
949 		hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
950 				      &mac_addr.raw[0]);
951 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
952 			QDF_MAC_ADDR_SIZE);
953 		hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
954 				      &mac_addr.raw[0]);
955 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
956 			QDF_MAC_ADDR_SIZE);
957 		break;
958 	case IEEE80211_FC1_DIR_TODS:
959 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
960 				      &mac_addr.raw[0]);
961 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
962 			QDF_MAC_ADDR_SIZE);
963 		hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
964 				      &mac_addr.raw[0]);
965 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
966 			QDF_MAC_ADDR_SIZE);
967 		break;
968 	case IEEE80211_FC1_DIR_FROMDS:
969 		hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
970 				      &mac_addr.raw[0]);
971 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
972 			QDF_MAC_ADDR_SIZE);
973 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
974 				      &mac_addr.raw[0]);
975 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
976 			QDF_MAC_ADDR_SIZE);
977 		break;
978 
979 	case IEEE80211_FC1_DIR_DSTODS:
980 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
981 				      &mac_addr.raw[0]);
982 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
983 			QDF_MAC_ADDR_SIZE);
984 		hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
985 				      &mac_addr.raw[0]);
986 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
987 			QDF_MAC_ADDR_SIZE);
988 		break;
989 
990 	default:
991 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
992 		"%s: Unknown frame control type: 0x%x", __func__, fc);
993 	}
994 
995 	qdf_mem_copy(eth_hdr->ethertype, ether_type,
996 			sizeof(ether_type));
997 
998 	qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
999 	qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
1000 	qdf_mem_free(rx_desc_info);
1001 }
1002 
1003 /*
1004  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
1005  * @peer: Pointer to the peer
1006  * @tid: Transmit Identifier
1007  * @head: Buffer to be reinjected back
1008  *
1009  * Reinject the fragment chain back into REO
1010  *
1011  * Returns: QDF_STATUS
1012  */
1013 static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
1014 					    unsigned int tid, qdf_nbuf_t head)
1015 {
1016 	struct dp_pdev *pdev = peer->vdev->pdev;
1017 	struct dp_soc *soc = pdev->soc;
1018 	struct hal_buf_info buf_info;
1019 	void *link_desc_va;
1020 	void *msdu0, *msdu_desc_info;
1021 	void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
1022 	void *dst_mpdu_desc_info, *dst_qdesc_addr;
1023 	qdf_dma_addr_t paddr;
1024 	uint32_t nbuf_len, seq_no, dst_ind;
1025 	uint32_t *mpdu_wrd;
1026 	uint32_t ret, cookie;
1027 	hal_ring_desc_t dst_ring_desc =
1028 		peer->rx_tid[tid].dst_ring_desc;
1029 	hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
1030 	struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
1031 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1032 						peer->rx_tid[tid].array;
1033 	qdf_nbuf_t nbuf_head;
1034 	struct rx_desc_pool *rx_desc_pool = NULL;
1035 
1036 	nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
1037 	if (qdf_unlikely(!nbuf_head)) {
1038 		dp_err_rl("IPA RX REO reinject failed");
1039 		return QDF_STATUS_E_FAILURE;
1040 	}
1041 
1042 	/* update new allocated skb in case IPA is enabled */
1043 	if (nbuf_head != head) {
1044 		head = nbuf_head;
1045 		rx_desc->nbuf = head;
1046 		rx_reorder_array_elem->head = head;
1047 	}
1048 
1049 	ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
1050 	if (!ent_ring_desc) {
1051 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1052 			  "HAL src ring next entry NULL");
1053 		return QDF_STATUS_E_FAILURE;
1054 	}
1055 
1056 	hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
1057 
1058 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
1059 
1060 	qdf_assert_always(link_desc_va);
1061 
1062 	msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
1063 	nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
1064 
1065 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
1066 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
1067 			UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
1068 
1069 	/* msdu reconfig */
1070 	msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
1071 
1072 	dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
1073 
1074 	qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
1075 
1076 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1077 			FIRST_MSDU_IN_MPDU_FLAG, 1);
1078 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1079 			LAST_MSDU_IN_MPDU_FLAG, 1);
1080 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1081 			MSDU_CONTINUATION, 0x0);
1082 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1083 			REO_DESTINATION_INDICATION, dst_ind);
1084 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1085 			MSDU_LENGTH, nbuf_len);
1086 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1087 			SA_IS_VALID, 1);
1088 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1089 			DA_IS_VALID, 1);
1090 
1091 	/* change RX TLV's */
1092 	hal_rx_msdu_start_msdu_len_set(
1093 			qdf_nbuf_data(head), nbuf_len);
1094 
1095 	cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
1096 
1097 	/* map the nbuf before reinject it into HW */
1098 	ret = qdf_nbuf_map_single(soc->osdev, head,
1099 				  QDF_DMA_FROM_DEVICE);
1100 	if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
1101 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1102 				"%s: nbuf map failed !", __func__);
1103 		return QDF_STATUS_E_FAILURE;
1104 	}
1105 
1106 	/*
1107 	 * As part of rx frag handler bufffer was unmapped and rx desc
1108 	 * unmapped is set to 1. So again for defrag reinject frame reset
1109 	 * it back to 0.
1110 	 */
1111 	rx_desc->unmapped = 0;
1112 
1113 	dp_ipa_handle_rx_buf_smmu_mapping(soc, head, true);
1114 
1115 	paddr = qdf_nbuf_get_frag_paddr(head, 0);
1116 	rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
1117 
1118 	ret = check_x86_paddr(soc, &head, &paddr, rx_desc_pool);
1119 
1120 	if (ret == QDF_STATUS_E_FAILURE) {
1121 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1122 				"%s: x86 check failed !", __func__);
1123 		return QDF_STATUS_E_FAILURE;
1124 	}
1125 
1126 	hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_DEFRAG_RBM);
1127 
1128 	/* Lets fill entrance ring now !!! */
1129 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
1130 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1131 		"HAL RING Access For REO entrance SRNG Failed: %pK",
1132 		hal_srng);
1133 
1134 		return QDF_STATUS_E_FAILURE;
1135 	}
1136 
1137 	paddr = (uint64_t)buf_info.paddr;
1138 	/* buf addr */
1139 	hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
1140 				     buf_info.sw_cookie,
1141 				     HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
1142 	/* mpdu desc info */
1143 	ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
1144 						    ent_ring_desc);
1145 	dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
1146 						    dst_ring_desc);
1147 
1148 	qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
1149 				sizeof(struct rx_mpdu_desc_info));
1150 	qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
1151 
1152 	mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
1153 	seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
1154 
1155 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1156 			MSDU_COUNT, 0x1);
1157 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1158 				  MPDU_SEQUENCE_NUMBER, seq_no);
1159 	/* unset frag bit */
1160 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1161 			FRAGMENT_FLAG, 0x0);
1162 	/* set sa/da valid bits */
1163 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1164 			SA_IS_VALID, 0x1);
1165 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1166 			DA_IS_VALID, 0x1);
1167 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1168 			RAW_MPDU, 0x0);
1169 
1170 	/* qdesc addr */
1171 	ent_qdesc_addr = (uint8_t *)ent_ring_desc +
1172 		REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1173 
1174 	dst_qdesc_addr = (uint8_t *)dst_ring_desc +
1175 		REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1176 
1177 	qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
1178 
1179 	HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
1180 			REO_DESTINATION_INDICATION, dst_ind);
1181 
1182 	hal_srng_access_end(soc->hal_soc, hal_srng);
1183 
1184 	DP_STATS_INC(soc, rx.reo_reinject, 1);
1185 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1186 		  "%s: reinjection done !", __func__);
1187 	return QDF_STATUS_SUCCESS;
1188 }
1189 
1190 /*
1191  * dp_rx_defrag(): Defragment the fragment chain
1192  * @peer: Pointer to the peer
1193  * @tid: Transmit Identifier
1194  * @frag_list_head: Pointer to head list
1195  * @frag_list_tail: Pointer to tail list
1196  *
1197  * Defragment the fragment chain
1198  *
1199  * Returns: QDF_STATUS
1200  */
1201 static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
1202 			qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
1203 {
1204 	qdf_nbuf_t tmp_next, prev;
1205 	qdf_nbuf_t cur = frag_list_head, msdu;
1206 	uint32_t index, tkip_demic = 0;
1207 	uint16_t hdr_space;
1208 	uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
1209 	struct dp_vdev *vdev = peer->vdev;
1210 	struct dp_soc *soc = vdev->pdev->soc;
1211 	uint8_t status = 0;
1212 
1213 	hdr_space = dp_rx_defrag_hdrsize(soc, cur);
1214 	index = hal_rx_msdu_is_wlan_mcast(cur) ?
1215 		dp_sec_mcast : dp_sec_ucast;
1216 
1217 	/* Remove FCS from all fragments */
1218 	while (cur) {
1219 		tmp_next = qdf_nbuf_next(cur);
1220 		qdf_nbuf_set_next(cur, NULL);
1221 		qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
1222 		prev = cur;
1223 		qdf_nbuf_set_next(cur, tmp_next);
1224 		cur = tmp_next;
1225 	}
1226 	cur = frag_list_head;
1227 
1228 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1229 		  "%s: index %d Security type: %d", __func__,
1230 		  index, peer->security[index].sec_type);
1231 
1232 	switch (peer->security[index].sec_type) {
1233 	case cdp_sec_type_tkip:
1234 		tkip_demic = 1;
1235 
1236 	case cdp_sec_type_tkip_nomic:
1237 		while (cur) {
1238 			tmp_next = qdf_nbuf_next(cur);
1239 			if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
1240 
1241 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1242 					QDF_TRACE_LEVEL_ERROR,
1243 					"dp_rx_defrag: TKIP decap failed");
1244 
1245 				return QDF_STATUS_E_DEFRAG_ERROR;
1246 			}
1247 			cur = tmp_next;
1248 		}
1249 
1250 		/* If success, increment header to be stripped later */
1251 		hdr_space += dp_f_tkip.ic_header;
1252 		break;
1253 
1254 	case cdp_sec_type_aes_ccmp:
1255 		while (cur) {
1256 			tmp_next = qdf_nbuf_next(cur);
1257 			if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
1258 
1259 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1260 					QDF_TRACE_LEVEL_ERROR,
1261 					"dp_rx_defrag: CCMP demic failed");
1262 
1263 				return QDF_STATUS_E_DEFRAG_ERROR;
1264 			}
1265 			if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
1266 
1267 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1268 					QDF_TRACE_LEVEL_ERROR,
1269 					"dp_rx_defrag: CCMP decap failed");
1270 
1271 				return QDF_STATUS_E_DEFRAG_ERROR;
1272 			}
1273 			cur = tmp_next;
1274 		}
1275 
1276 		/* If success, increment header to be stripped later */
1277 		hdr_space += dp_f_ccmp.ic_header;
1278 		break;
1279 
1280 	case cdp_sec_type_wep40:
1281 	case cdp_sec_type_wep104:
1282 	case cdp_sec_type_wep128:
1283 		while (cur) {
1284 			tmp_next = qdf_nbuf_next(cur);
1285 			if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
1286 
1287 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1288 					QDF_TRACE_LEVEL_ERROR,
1289 					"dp_rx_defrag: WEP decap failed");
1290 
1291 				return QDF_STATUS_E_DEFRAG_ERROR;
1292 			}
1293 			cur = tmp_next;
1294 		}
1295 
1296 		/* If success, increment header to be stripped later */
1297 		hdr_space += dp_f_wep.ic_header;
1298 		break;
1299 	default:
1300 		QDF_TRACE(QDF_MODULE_ID_TXRX,
1301 			QDF_TRACE_LEVEL_ERROR,
1302 			"dp_rx_defrag: Did not match any security type");
1303 		break;
1304 	}
1305 
1306 	if (tkip_demic) {
1307 		msdu = frag_list_head;
1308 		qdf_mem_copy(key,
1309 			     &peer->security[index].michael_key[0],
1310 			     IEEE80211_WEP_MICLEN);
1311 		status = dp_rx_defrag_tkip_demic(key, msdu,
1312 						 RX_PKT_TLVS_LEN +
1313 						 hdr_space);
1314 
1315 		if (status) {
1316 			dp_rx_defrag_err(vdev, frag_list_head);
1317 
1318 			QDF_TRACE(QDF_MODULE_ID_TXRX,
1319 				  QDF_TRACE_LEVEL_ERROR,
1320 				  "%s: TKIP demic failed status %d",
1321 				   __func__, status);
1322 
1323 			return QDF_STATUS_E_DEFRAG_ERROR;
1324 		}
1325 	}
1326 
1327 	/* Convert the header to 802.3 header */
1328 	dp_rx_defrag_nwifi_to_8023(soc, frag_list_head, hdr_space);
1329 	dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
1330 
1331 	return QDF_STATUS_SUCCESS;
1332 }
1333 
1334 /*
1335  * dp_rx_defrag_cleanup(): Clean up activities
1336  * @peer: Pointer to the peer
1337  * @tid: Transmit Identifier
1338  *
1339  * Returns: None
1340  */
1341 void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
1342 {
1343 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1344 				peer->rx_tid[tid].array;
1345 
1346 	if (rx_reorder_array_elem) {
1347 		/* Free up nbufs */
1348 		dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1349 		rx_reorder_array_elem->head = NULL;
1350 		rx_reorder_array_elem->tail = NULL;
1351 	} else {
1352 		dp_info("Cleanup self peer %pK and TID %u at MAC address %pM",
1353 			peer, tid, peer->mac_addr.raw);
1354 	}
1355 
1356 	/* Free up saved ring descriptors */
1357 	dp_rx_clear_saved_desc_info(peer, tid);
1358 
1359 	peer->rx_tid[tid].defrag_timeout_ms = 0;
1360 	peer->rx_tid[tid].curr_frag_num = 0;
1361 	peer->rx_tid[tid].curr_seq_num = 0;
1362 }
1363 
1364 /*
1365  * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
1366  * @ring_desc: Pointer to the dst ring descriptor
1367  * @peer: Pointer to the peer
1368  * @tid: Transmit Identifier
1369  *
1370  * Returns: None
1371  */
1372 static QDF_STATUS
1373 dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
1374 				      struct dp_rx_desc *rx_desc,
1375 				      struct dp_peer *peer,
1376 				      unsigned int tid)
1377 {
1378 	void *dst_ring_desc = qdf_mem_malloc(
1379 			sizeof(struct reo_destination_ring));
1380 
1381 	if (!dst_ring_desc) {
1382 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1383 			"%s: Memory alloc failed !", __func__);
1384 		QDF_ASSERT(0);
1385 		return QDF_STATUS_E_NOMEM;
1386 	}
1387 
1388 	qdf_mem_copy(dst_ring_desc, ring_desc,
1389 		       sizeof(struct reo_destination_ring));
1390 
1391 	peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
1392 	peer->rx_tid[tid].head_frag_desc = rx_desc;
1393 
1394 	return QDF_STATUS_SUCCESS;
1395 }
1396 
1397 /*
1398  * dp_rx_defrag_store_fragment(): Store incoming fragments
1399  * @soc: Pointer to the SOC data structure
1400  * @ring_desc: Pointer to the ring descriptor
1401  * @mpdu_desc_info: MPDU descriptor info
1402  * @tid: Traffic Identifier
1403  * @rx_desc: Pointer to rx descriptor
1404  * @rx_bfs: Number of bfs consumed
1405  *
1406  * Returns: QDF_STATUS
1407  */
1408 static QDF_STATUS
1409 dp_rx_defrag_store_fragment(struct dp_soc *soc,
1410 			    hal_ring_desc_t ring_desc,
1411 			    union dp_rx_desc_list_elem_t **head,
1412 			    union dp_rx_desc_list_elem_t **tail,
1413 			    struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1414 			    unsigned int tid, struct dp_rx_desc *rx_desc,
1415 			    uint32_t *rx_bfs)
1416 {
1417 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1418 	struct dp_pdev *pdev;
1419 	struct dp_peer *peer = NULL;
1420 	uint16_t peer_id;
1421 	uint8_t fragno, more_frag, all_frag_present = 0;
1422 	uint16_t rxseq = mpdu_desc_info->mpdu_seq;
1423 	QDF_STATUS status;
1424 	struct dp_rx_tid *rx_tid;
1425 	uint8_t mpdu_sequence_control_valid;
1426 	uint8_t mpdu_frame_control_valid;
1427 	qdf_nbuf_t frag = rx_desc->nbuf;
1428 	uint32_t msdu_len;
1429 
1430 	if (qdf_nbuf_len(frag) > 0) {
1431 		dp_info("Dropping unexpected packet with skb_len: %d,"
1432 			"data len: %d, cookie: %d",
1433 			(uint32_t)qdf_nbuf_len(frag), frag->data_len,
1434 			rx_desc->cookie);
1435 		DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
1436 		goto discard_frag;
1437 	}
1438 
1439 	msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
1440 
1441 	qdf_nbuf_set_pktlen(frag, (msdu_len + RX_PKT_TLVS_LEN));
1442 	qdf_nbuf_append_ext_list(frag, NULL, 0);
1443 
1444 	/* Check if the packet is from a valid peer */
1445 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1446 					mpdu_desc_info->peer_meta_data);
1447 	peer = dp_peer_find_by_id(soc, peer_id);
1448 
1449 	if (!peer) {
1450 		/* We should not receive anything from unknown peer
1451 		 * however, that might happen while we are in the monitor mode.
1452 		 * We don't need to handle that here
1453 		 */
1454 		dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
1455 			   peer_id);
1456 		DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
1457 		goto discard_frag;
1458 	}
1459 
1460 	if (tid >= DP_MAX_TIDS) {
1461 		dp_info("TID out of bounds: %d", tid);
1462 		qdf_assert_always(0);
1463 	}
1464 
1465 	pdev = peer->vdev->pdev;
1466 	rx_tid = &peer->rx_tid[tid];
1467 
1468 	mpdu_sequence_control_valid =
1469 		hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
1470 						       rx_desc->rx_buf_start);
1471 
1472 	/* Invalid MPDU sequence control field, MPDU is of no use */
1473 	if (!mpdu_sequence_control_valid) {
1474 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1475 			"Invalid MPDU seq control field, dropping MPDU");
1476 
1477 		qdf_assert(0);
1478 		goto discard_frag;
1479 	}
1480 
1481 	mpdu_frame_control_valid =
1482 		hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
1483 						    rx_desc->rx_buf_start);
1484 
1485 	/* Invalid frame control field */
1486 	if (!mpdu_frame_control_valid) {
1487 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1488 			"Invalid frame control field, dropping MPDU");
1489 
1490 		qdf_assert(0);
1491 		goto discard_frag;
1492 	}
1493 
1494 	/* Current mpdu sequence */
1495 	more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
1496 
1497 	/* HW does not populate the fragment number as of now
1498 	 * need to get from the 802.11 header
1499 	 */
1500 	fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
1501 
1502 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1503 	if (!rx_reorder_array_elem) {
1504 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1505 			  "Rcvd Fragmented pkt before peer_tid is setup");
1506 		goto discard_frag;
1507 	}
1508 
1509 	/*
1510 	 * !more_frag: no more fragments to be delivered
1511 	 * !frag_no: packet is not fragmented
1512 	 * !rx_reorder_array_elem->head: no saved fragments so far
1513 	 */
1514 	if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
1515 		/* We should not get into this situation here.
1516 		 * It means an unfragmented packet with fragment flag
1517 		 * is delivered over the REO exception ring.
1518 		 * Typically it follows normal rx path.
1519 		 */
1520 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1521 			"Rcvd unfragmented pkt on REO Err srng, dropping");
1522 
1523 		qdf_assert(0);
1524 		goto discard_frag;
1525 	}
1526 
1527 	/* Check if the fragment is for the same sequence or a different one */
1528 	if (rx_reorder_array_elem->head) {
1529 		if (rxseq != rx_tid->curr_seq_num) {
1530 
1531 			/* Drop stored fragments if out of sequence
1532 			 * fragment is received
1533 			 */
1534 			dp_rx_reorder_flush_frag(peer, tid);
1535 
1536 			DP_STATS_INC(soc, rx.rx_frag_err, 1);
1537 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1538 				"%s mismatch, dropping earlier sequence ",
1539 				(rxseq == rx_tid->curr_seq_num)
1540 				? "address"
1541 				: "seq number");
1542 
1543 			/*
1544 			 * The sequence number for this fragment becomes the
1545 			 * new sequence number to be processed
1546 			 */
1547 			rx_tid->curr_seq_num = rxseq;
1548 		}
1549 	} else {
1550 		/* Start of a new sequence */
1551 		dp_rx_defrag_cleanup(peer, tid);
1552 		rx_tid->curr_seq_num = rxseq;
1553 	}
1554 
1555 	/*
1556 	 * If the earlier sequence was dropped, this will be the fresh start.
1557 	 * Else, continue with next fragment in a given sequence
1558 	 */
1559 	status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
1560 			&rx_reorder_array_elem->tail, frag,
1561 			&all_frag_present);
1562 
1563 	/*
1564 	 * Currently, we can have only 6 MSDUs per-MPDU, if the current
1565 	 * packet sequence has more than 6 MSDUs for some reason, we will
1566 	 * have to use the next MSDU link descriptor and chain them together
1567 	 * before reinjection
1568 	 */
1569 	if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
1570 			(rx_reorder_array_elem->head == frag)) {
1571 
1572 		qdf_assert_always(ring_desc);
1573 		status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
1574 					rx_desc, peer, tid);
1575 
1576 		if (status != QDF_STATUS_SUCCESS) {
1577 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1578 				"%s: Unable to store ring desc !", __func__);
1579 			goto discard_frag;
1580 		}
1581 	} else {
1582 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1583 		(*rx_bfs)++;
1584 
1585 		/* Return the non-head link desc */
1586 		if (ring_desc &&
1587 		    dp_rx_link_desc_return(soc, ring_desc,
1588 					   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1589 		    QDF_STATUS_SUCCESS)
1590 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1591 				  "%s: Failed to return link desc", __func__);
1592 
1593 	}
1594 
1595 	if (pdev->soc->rx.flags.defrag_timeout_check)
1596 		dp_rx_defrag_waitlist_remove(peer, tid);
1597 
1598 	/* Yet to receive more fragments for this sequence number */
1599 	if (!all_frag_present) {
1600 		uint32_t now_ms =
1601 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1602 
1603 		peer->rx_tid[tid].defrag_timeout_ms =
1604 			now_ms + pdev->soc->rx.defrag.timeout_ms;
1605 
1606 		dp_rx_defrag_waitlist_add(peer, tid);
1607 		dp_peer_unref_del_find_by_id(peer);
1608 
1609 		return QDF_STATUS_SUCCESS;
1610 	}
1611 
1612 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1613 		  "All fragments received for sequence: %d", rxseq);
1614 
1615 	/* Process the fragments */
1616 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1617 		rx_reorder_array_elem->tail);
1618 	if (QDF_IS_STATUS_ERROR(status)) {
1619 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1620 			"Fragment processing failed");
1621 
1622 		dp_rx_add_to_free_desc_list(head, tail,
1623 				peer->rx_tid[tid].head_frag_desc);
1624 		(*rx_bfs)++;
1625 
1626 		if (dp_rx_link_desc_return(soc,
1627 					peer->rx_tid[tid].dst_ring_desc,
1628 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1629 				QDF_STATUS_SUCCESS)
1630 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1631 					"%s: Failed to return link desc",
1632 					__func__);
1633 		dp_rx_defrag_cleanup(peer, tid);
1634 		goto end;
1635 	}
1636 
1637 	/* Re-inject the fragments back to REO for further processing */
1638 	status = dp_rx_defrag_reo_reinject(peer, tid,
1639 			rx_reorder_array_elem->head);
1640 	if (QDF_IS_STATUS_SUCCESS(status)) {
1641 		rx_reorder_array_elem->head = NULL;
1642 		rx_reorder_array_elem->tail = NULL;
1643 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1644 			  "Fragmented sequence successfully reinjected");
1645 	} else {
1646 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1647 		"Fragmented sequence reinjection failed");
1648 		dp_rx_return_head_frag_desc(peer, tid);
1649 	}
1650 
1651 	dp_rx_defrag_cleanup(peer, tid);
1652 
1653 	dp_peer_unref_del_find_by_id(peer);
1654 
1655 	return QDF_STATUS_SUCCESS;
1656 
1657 discard_frag:
1658 	qdf_nbuf_free(frag);
1659 	dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1660 	if (dp_rx_link_desc_return(soc, ring_desc,
1661 				   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1662 	    QDF_STATUS_SUCCESS)
1663 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1664 			  "%s: Failed to return link desc", __func__);
1665 	(*rx_bfs)++;
1666 
1667 end:
1668 	if (peer)
1669 		dp_peer_unref_del_find_by_id(peer);
1670 
1671 	DP_STATS_INC(soc, rx.rx_frag_err, 1);
1672 	return QDF_STATUS_E_DEFRAG_ERROR;
1673 }
1674 
1675 /**
1676  * dp_rx_frag_handle() - Handles fragmented Rx frames
1677  *
1678  * @soc: core txrx main context
1679  * @ring_desc: opaque pointer to the REO error ring descriptor
1680  * @mpdu_desc_info: MPDU descriptor information from ring descriptor
1681  * @head: head of the local descriptor free-list
1682  * @tail: tail of the local descriptor free-list
1683  * @quota: No. of units (packets) that can be serviced in one shot.
1684  *
1685  * This function implements RX 802.11 fragmentation handling
1686  * The handling is mostly same as legacy fragmentation handling.
1687  * If required, this function can re-inject the frames back to
1688  * REO ring (with proper setting to by-pass fragmentation check
1689  * but use duplicate detection / re-ordering and routing these frames
1690  * to a different core.
1691  *
1692  * Return: uint32_t: No. of elements processed
1693  */
1694 uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
1695 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1696 			   struct dp_rx_desc *rx_desc,
1697 			   uint8_t *mac_id,
1698 			   uint32_t quota)
1699 {
1700 	uint32_t rx_bufs_used = 0;
1701 	qdf_nbuf_t msdu = NULL;
1702 	uint32_t tid;
1703 	uint32_t rx_bfs = 0;
1704 	struct dp_pdev *pdev;
1705 	QDF_STATUS status = QDF_STATUS_SUCCESS;
1706 	struct rx_desc_pool *rx_desc_pool;
1707 
1708 	qdf_assert(soc);
1709 	qdf_assert(mpdu_desc_info);
1710 	qdf_assert(rx_desc);
1711 
1712 	dp_debug("Number of MSDUs to process, num_msdus: %d",
1713 		 mpdu_desc_info->msdu_count);
1714 
1715 
1716 	if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
1717 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1718 			"Not sufficient MSDUs to process");
1719 		return rx_bufs_used;
1720 	}
1721 
1722 	/* all buffers in MSDU link belong to same pdev */
1723 	pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
1724 	if (!pdev) {
1725 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1726 			  "pdev is null for pool_id = %d", rx_desc->pool_id);
1727 		return rx_bufs_used;
1728 	}
1729 
1730 	*mac_id = rx_desc->pool_id;
1731 
1732 	msdu = rx_desc->nbuf;
1733 
1734 	rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
1735 	qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
1736 				     QDF_DMA_FROM_DEVICE,
1737 				     rx_desc_pool->buf_size);
1738 	rx_desc->unmapped = 1;
1739 
1740 	rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
1741 
1742 	tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
1743 
1744 	/* Process fragment-by-fragment */
1745 	status = dp_rx_defrag_store_fragment(soc, ring_desc,
1746 					     &pdev->free_list_head,
1747 					     &pdev->free_list_tail,
1748 					     mpdu_desc_info,
1749 					     tid, rx_desc, &rx_bfs);
1750 
1751 	if (rx_bfs)
1752 		rx_bufs_used += rx_bfs;
1753 
1754 	if (!QDF_IS_STATUS_SUCCESS(status))
1755 		dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
1756 			   mpdu_desc_info->mpdu_seq,
1757 			   mpdu_desc_info->msdu_count,
1758 			   mpdu_desc_info->mpdu_flags);
1759 
1760 	return rx_bufs_used;
1761 }
1762 
1763 QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
1764 				      struct dp_peer *peer, uint16_t tid,
1765 				      uint16_t rxseq, qdf_nbuf_t nbuf)
1766 {
1767 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1768 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1769 	uint8_t all_frag_present;
1770 	uint32_t msdu_len;
1771 	QDF_STATUS status;
1772 
1773 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1774 
1775 	/*
1776 	 * HW may fill in unexpected peer_id in RX PKT TLV,
1777 	 * if this peer_id related peer is valid by coincidence,
1778 	 * but actually this peer won't do dp_peer_rx_init(like SAP vdev
1779 	 * self peer), then invalid access to rx_reorder_array_elem happened.
1780 	 */
1781 	if (!rx_reorder_array_elem) {
1782 		dp_verbose_debug(
1783 			"peer id:%d mac: %pM drop rx frame!",
1784 			peer->peer_id,
1785 			peer->mac_addr.raw);
1786 		DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
1787 		qdf_nbuf_free(nbuf);
1788 		goto fail;
1789 	}
1790 
1791 	if (rx_reorder_array_elem->head &&
1792 	    rxseq != rx_tid->curr_seq_num) {
1793 		/* Drop stored fragments if out of sequence
1794 		 * fragment is received
1795 		 */
1796 		dp_rx_reorder_flush_frag(peer, tid);
1797 
1798 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1799 			  "%s: No list found for TID %d Seq# %d",
1800 				__func__, tid, rxseq);
1801 		qdf_nbuf_free(nbuf);
1802 		goto fail;
1803 	}
1804 
1805 	msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
1806 
1807 	qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
1808 
1809 	status = dp_rx_defrag_fraglist_insert(peer, tid,
1810 					      &rx_reorder_array_elem->head,
1811 			&rx_reorder_array_elem->tail, nbuf,
1812 			&all_frag_present);
1813 
1814 	if (QDF_IS_STATUS_ERROR(status)) {
1815 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1816 			  "%s Fragment insert failed", __func__);
1817 
1818 		goto fail;
1819 	}
1820 
1821 	if (soc->rx.flags.defrag_timeout_check)
1822 		dp_rx_defrag_waitlist_remove(peer, tid);
1823 
1824 	if (!all_frag_present) {
1825 		uint32_t now_ms =
1826 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1827 
1828 		peer->rx_tid[tid].defrag_timeout_ms =
1829 			now_ms + soc->rx.defrag.timeout_ms;
1830 
1831 		dp_rx_defrag_waitlist_add(peer, tid);
1832 
1833 		return QDF_STATUS_SUCCESS;
1834 	}
1835 
1836 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1837 			      rx_reorder_array_elem->tail);
1838 
1839 	if (QDF_IS_STATUS_ERROR(status)) {
1840 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1841 			  "%s Fragment processing failed", __func__);
1842 
1843 		dp_rx_return_head_frag_desc(peer, tid);
1844 		dp_rx_defrag_cleanup(peer, tid);
1845 
1846 		goto fail;
1847 	}
1848 
1849 	/* Re-inject the fragments back to REO for further processing */
1850 	status = dp_rx_defrag_reo_reinject(peer, tid,
1851 					   rx_reorder_array_elem->head);
1852 	if (QDF_IS_STATUS_SUCCESS(status)) {
1853 		rx_reorder_array_elem->head = NULL;
1854 		rx_reorder_array_elem->tail = NULL;
1855 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1856 			  "%s: Frag seq successfully reinjected",
1857 			__func__);
1858 	} else {
1859 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1860 			  "%s: Frag seq reinjection failed", __func__);
1861 		dp_rx_return_head_frag_desc(peer, tid);
1862 	}
1863 
1864 	dp_rx_defrag_cleanup(peer, tid);
1865 	return QDF_STATUS_SUCCESS;
1866 
1867 fail:
1868 	return QDF_STATUS_E_DEFRAG_ERROR;
1869 }
1870