xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx_defrag.c (revision 5c57a8905ee57aab8b10cde048801372f46cc3c0)
1 /*
2  * Copyright (c) 2017 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "dp_types.h"
20 #include "dp_rx.h"
21 #include "dp_peer.h"
22 #include "hal_api.h"
23 #include "qdf_trace.h"
24 #include "qdf_nbuf.h"
25 #include "dp_rx_defrag.h"
26 #include <enet.h>	/* LLC_SNAP_HDR_LEN */
27 #include "dp_rx_defrag.h"
28 
29 const struct dp_rx_defrag_cipher dp_f_ccmp = {
30 	"AES-CCM",
31 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
32 	IEEE80211_WEP_MICLEN,
33 	0,
34 };
35 
36 const struct dp_rx_defrag_cipher dp_f_tkip = {
37 	"TKIP",
38 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
39 	IEEE80211_WEP_CRCLEN,
40 	IEEE80211_WEP_MICLEN,
41 };
42 
43 const struct dp_rx_defrag_cipher dp_f_wep = {
44 	"WEP",
45 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
46 	IEEE80211_WEP_CRCLEN,
47 	0,
48 };
49 
50 /*
51  * dp_rx_defrag_frames_free(): Free fragment chain
52  * @frames: Fragment chain
53  *
54  * Iterates through the fragment chain and frees them
55  * Returns: None
56  */
57 static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
58 {
59 	qdf_nbuf_t next, frag = frames;
60 
61 	while (frag) {
62 		next = qdf_nbuf_next(frag);
63 		qdf_nbuf_free(frag);
64 		frag = next;
65 	}
66 }
67 
68 /*
69  * dp_rx_clear_saved_desc_info(): Clears descriptor info
70  * @peer: Pointer to the peer data structure
71  * @tid: Transmit ID (TID)
72  *
73  * Saves MPDU descriptor info and MSDU link pointer from REO
74  * ring descriptor. The cache is created per peer, per TID
75  *
76  * Returns: None
77  */
78 static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
79 {
80 	hal_rx_clear_mpdu_desc_info(
81 		&peer->rx_tid[tid].transcap_rx_mpdu_desc_info);
82 
83 	hal_rx_clear_msdu_link_ptr(
84 		&peer->rx_tid[tid].transcap_msdu_link_ptr[0],
85 		HAL_RX_MAX_SAVED_RING_DESC);
86 }
87 
88 /*
89  * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
90  * @peer: Pointer to the peer data structure
91  * @tid: Transmit ID (TID)
92  *
93  * Appends per-tid fragments to global fragment wait list
94  *
95  * Returns: None
96  */
97 static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
98 {
99 	struct dp_soc *psoc = peer->vdev->pdev->soc;
100 	struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
101 
102 	/* TODO: use LIST macros instead of TAIL macros */
103 	TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
104 				defrag_waitlist_elem);
105 }
106 
107 /*
108  * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
109  * @peer: Pointer to the peer data structure
110  * @tid: Transmit ID (TID)
111  *
112  * Remove fragments from waitlist
113  *
114  * Returns: None
115  */
116 static void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
117 {
118 	struct dp_pdev *pdev = peer->vdev->pdev;
119 	struct dp_soc *soc = pdev->soc;
120 	struct dp_rx_tid *rx_reorder;
121 
122 	if (tid > DP_MAX_TIDS) {
123 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
124 			"TID out of bounds: %d", tid);
125 		qdf_assert(0);
126 		return;
127 	}
128 
129 	rx_reorder = &peer->rx_tid[tid];
130 
131 	if (rx_reorder->defrag_waitlist_elem.tqe_next != NULL) {
132 
133 		TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
134 				defrag_waitlist_elem);
135 		rx_reorder->defrag_waitlist_elem.tqe_next = NULL;
136 		rx_reorder->defrag_waitlist_elem.tqe_prev = NULL;
137 	} else if (rx_reorder->defrag_waitlist_elem.tqe_prev == NULL) {
138 
139 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
140 			"waitlist->tqe_prev is NULL");
141 		rx_reorder->defrag_waitlist_elem.tqe_next = NULL;
142 		qdf_assert(0);
143 	}
144 }
145 
146 /*
147  * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
148  * @peer: Pointer to the peer data structure
149  * @tid: Transmit ID (TID)
150  * @head_addr: Pointer to head list
151  * @tail_addr: Pointer to tail list
152  * @frag: Incoming fragment
153  * @all_frag_present: Flag to indicate whether all fragments are received
154  *
155  * Build a per-tid, per-sequence fragment list.
156  *
157  * Returns: None
158  */
159 static void dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
160 	qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
161 	uint8_t *all_frag_present)
162 {
163 	qdf_nbuf_t next;
164 	qdf_nbuf_t prev = NULL;
165 	qdf_nbuf_t cur;
166 	uint16_t head_fragno, cur_fragno, next_fragno;
167 	uint8_t last_morefrag = 1, count = 0;
168 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
169 	uint8_t *rx_desc_info;
170 
171 	qdf_assert(frag);
172 	qdf_assert(head_addr);
173 	qdf_assert(tail_addr);
174 
175 	rx_desc_info = qdf_nbuf_data(frag);
176 	cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
177 
178 	/* If this is the first fragment */
179 	if (!(*head_addr)) {
180 		*head_addr = *tail_addr = frag;
181 		qdf_nbuf_set_next(*tail_addr, NULL);
182 		rx_tid->curr_frag_num = cur_fragno;
183 
184 		goto end;
185 	}
186 
187 	/* In sequence fragment */
188 	if (cur_fragno > rx_tid->curr_frag_num) {
189 		qdf_nbuf_set_next(*tail_addr, frag);
190 		*tail_addr = frag;
191 		qdf_nbuf_set_next(*tail_addr, NULL);
192 		rx_tid->curr_frag_num = cur_fragno;
193 	} else {
194 		/* Out of sequence fragment */
195 		cur = *head_addr;
196 		rx_desc_info = qdf_nbuf_data(cur);
197 		head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
198 
199 		if (cur_fragno == head_fragno) {
200 			qdf_nbuf_free(frag);
201 			*all_frag_present = 0;
202 		} else if (head_fragno > cur_fragno) {
203 			qdf_nbuf_set_next(frag, cur);
204 			cur = frag;
205 			*head_addr = frag; /* head pointer to be updated */
206 		} else {
207 			while ((cur_fragno > head_fragno) && cur != NULL) {
208 				prev = cur;
209 				cur = qdf_nbuf_next(cur);
210 				rx_desc_info = qdf_nbuf_data(cur);
211 				head_fragno =
212 					dp_rx_frag_get_mpdu_frag_number(
213 								rx_desc_info);
214 			}
215 			qdf_nbuf_set_next(prev, frag);
216 			qdf_nbuf_set_next(frag, cur);
217 		}
218 	}
219 
220 	next = qdf_nbuf_next(*head_addr);
221 
222 	rx_desc_info = qdf_nbuf_data(*tail_addr);
223 	last_morefrag = hal_rx_get_rx_more_frag_bit(rx_desc_info);
224 
225 	/* TODO: optimize the loop */
226 	if (!last_morefrag) {
227 		/* Check if all fragments are present */
228 		do {
229 			rx_desc_info = qdf_nbuf_data(next);
230 			next_fragno =
231 				dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
232 			count++;
233 
234 			if (next_fragno != count)
235 				break;
236 
237 			next = qdf_nbuf_next(next);
238 		} while (next);
239 
240 		if (!next) {
241 			*all_frag_present = 1;
242 			return;
243 		}
244 	}
245 
246 end:
247 	*all_frag_present = 0;
248 }
249 
250 
251 /*
252  * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
253  * @msdu: Pointer to the fragment
254  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
255  *
256  * decap tkip encrypted fragment
257  *
258  * Returns: QDF_STATUS
259  */
260 static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
261 {
262 	uint8_t *ivp, *orig_hdr;
263 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
264 
265 	/* start of 802.11 header info */
266 	orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
267 
268 	/* TKIP header is located post 802.11 header */
269 	ivp = orig_hdr + hdrlen;
270 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
271 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
272 			"IEEE80211_WEP_EXTIV is missing in TKIP fragment");
273 		return QDF_STATUS_E_DEFRAG_ERROR;
274 	}
275 
276 	qdf_mem_move(orig_hdr + dp_f_tkip.ic_header, orig_hdr, hdrlen);
277 
278 	qdf_nbuf_pull_head(msdu, dp_f_tkip.ic_header);
279 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
280 
281 	return QDF_STATUS_SUCCESS;
282 }
283 
284 /*
285  * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
286  * @nbuf: Pointer to the fragment buffer
287  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
288  *
289  * Remove MIC information from CCMP fragment
290  *
291  * Returns: QDF_STATUS
292  */
293 static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
294 {
295 	uint8_t *ivp, *orig_hdr;
296 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
297 
298 	/* start of the 802.11 header */
299 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
300 
301 	/* CCMP header is located after 802.11 header */
302 	ivp = orig_hdr + hdrlen;
303 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
304 		return QDF_STATUS_E_DEFRAG_ERROR;
305 
306 	qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
307 
308 	return QDF_STATUS_SUCCESS;
309 }
310 
311 /*
312  * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
313  * @nbuf: Pointer to the fragment
314  * @hdrlen: length of the header information
315  *
316  * decap CCMP encrypted fragment
317  *
318  * Returns: QDF_STATUS
319  */
320 static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
321 {
322 	uint8_t *ivp, *origHdr;
323 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
324 
325 	origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
326 	ivp = origHdr + hdrlen;
327 
328 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
329 		return QDF_STATUS_E_DEFRAG_ERROR;
330 
331 	qdf_mem_move(origHdr + dp_f_ccmp.ic_header, origHdr, hdrlen);
332 	qdf_nbuf_pull_head(nbuf, dp_f_ccmp.ic_header);
333 
334 	return QDF_STATUS_SUCCESS;
335 }
336 
337 /*
338  * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
339  * @msdu: Pointer to the fragment
340  * @hdrlen: length of the header information
341  *
342  * decap WEP encrypted fragment
343  *
344  * Returns: QDF_STATUS
345  */
346 static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
347 {
348 	uint8_t *origHdr;
349 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
350 
351 	origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
352 	qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
353 
354 	qdf_nbuf_pull_head(msdu, dp_f_wep.ic_header);
355 	qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
356 
357 	return QDF_STATUS_SUCCESS;
358 }
359 
360 /*
361  * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
362  * @nbuf: Pointer to the fragment
363  *
364  * Calculate the header size of the received fragment
365  *
366  * Returns: header size (uint16_t)
367  */
368 static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
369 {
370 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
371 	uint16_t size = sizeof(struct ieee80211_frame);
372 	uint16_t fc = 0;
373 	uint32_t to_ds, fr_ds;
374 	uint8_t frm_ctrl_valid;
375 	uint16_t frm_ctrl_field;
376 
377 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
378 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
379 	frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
380 	frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
381 
382 	if (to_ds && fr_ds)
383 		size += IEEE80211_ADDR_LEN;
384 
385 	if (frm_ctrl_valid) {
386 		fc = frm_ctrl_field;
387 
388 		/* use 1-st byte for validation */
389 		if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
390 			size += sizeof(uint16_t);
391 			/* use 2-nd byte for validation */
392 			if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
393 				size += sizeof(struct ieee80211_htc);
394 		}
395 	}
396 
397 	return size;
398 }
399 
400 /*
401  * dp_rx_defrag_michdr(): Calculate a psuedo MIC header
402  * @wh0: Pointer to the wireless header of the fragment
403  * @hdr: Array to hold the psuedo header
404  *
405  * Calculate a psuedo MIC header
406  *
407  * Returns: None
408  */
409 static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
410 				uint8_t hdr[])
411 {
412 	const struct ieee80211_frame_addr4 *wh =
413 		(const struct ieee80211_frame_addr4 *)wh0;
414 
415 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
416 	case IEEE80211_FC1_DIR_NODS:
417 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
418 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
419 					   wh->i_addr2);
420 		break;
421 	case IEEE80211_FC1_DIR_TODS:
422 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
423 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
424 					   wh->i_addr2);
425 		break;
426 	case IEEE80211_FC1_DIR_FROMDS:
427 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
428 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
429 					   wh->i_addr3);
430 		break;
431 	case IEEE80211_FC1_DIR_DSTODS:
432 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
433 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
434 					   wh->i_addr4);
435 		break;
436 	}
437 
438 	/*
439 	 * Bit 7 is IEEE80211_FC0_SUBTYPE_QOS for data frame, but
440 	 * it could also be set for deauth, disassoc, action, etc. for
441 	 * a mgt type frame. It comes into picture for MFP.
442 	 */
443 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
444 		const struct ieee80211_qosframe *qwh =
445 			(const struct ieee80211_qosframe *)wh;
446 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
447 	} else {
448 		hdr[12] = 0;
449 	}
450 
451 	hdr[13] = hdr[14] = hdr[15] = 0;	/* reserved */
452 }
453 
454 /*
455  * dp_rx_defrag_mic(): Calculate MIC header
456  * @key: Pointer to the key
457  * @wbuf: fragment buffer
458  * @off: Offset
459  * @data_len: Data lengh
460  * @mic: Array to hold MIC
461  *
462  * Calculate a psuedo MIC header
463  *
464  * Returns: QDF_STATUS
465  */
466 static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
467 		uint16_t off, uint16_t data_len, uint8_t mic[])
468 {
469 	uint8_t hdr[16] = { 0, };
470 	uint32_t l, r;
471 	const uint8_t *data;
472 	uint32_t space;
473 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
474 
475 	dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
476 		+ rx_desc_len), hdr);
477 	l = dp_rx_get_le32(key);
478 	r = dp_rx_get_le32(key + 4);
479 
480 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
481 	l ^= dp_rx_get_le32(hdr);
482 	dp_rx_michael_block(l, r);
483 	l ^= dp_rx_get_le32(&hdr[4]);
484 	dp_rx_michael_block(l, r);
485 	l ^= dp_rx_get_le32(&hdr[8]);
486 	dp_rx_michael_block(l, r);
487 	l ^= dp_rx_get_le32(&hdr[12]);
488 	dp_rx_michael_block(l, r);
489 
490 	/* first buffer has special handling */
491 	data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len + off;
492 	space = qdf_nbuf_len(wbuf) - rx_desc_len - off;
493 
494 	for (;; ) {
495 		if (space > data_len)
496 			space = data_len;
497 
498 		/* collect 32-bit blocks from current buffer */
499 		while (space >= sizeof(uint32_t)) {
500 			l ^= dp_rx_get_le32(data);
501 			dp_rx_michael_block(l, r);
502 			data += sizeof(uint32_t);
503 			space -= sizeof(uint32_t);
504 			data_len -= sizeof(uint32_t);
505 		}
506 		if (data_len < sizeof(uint32_t))
507 			break;
508 
509 		wbuf = qdf_nbuf_next(wbuf);
510 		if (wbuf == NULL)
511 			return QDF_STATUS_E_DEFRAG_ERROR;
512 
513 		if (space != 0) {
514 			const uint8_t *data_next;
515 			/*
516 			 * Block straddles buffers, split references.
517 			 */
518 			data_next =
519 				(uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
520 			if ((qdf_nbuf_len(wbuf) - rx_desc_len) <
521 				sizeof(uint32_t) - space) {
522 				return QDF_STATUS_E_DEFRAG_ERROR;
523 			}
524 			switch (space) {
525 			case 1:
526 				l ^= dp_rx_get_le32_split(data[0],
527 					data_next[0], data_next[1],
528 					data_next[2]);
529 				data = data_next + 3;
530 				space = (qdf_nbuf_len(wbuf) - rx_desc_len)
531 					- 3;
532 				break;
533 			case 2:
534 				l ^= dp_rx_get_le32_split(data[0], data[1],
535 						    data_next[0], data_next[1]);
536 				data = data_next + 2;
537 				space = (qdf_nbuf_len(wbuf) - rx_desc_len)
538 					- 2;
539 				break;
540 			case 3:
541 				l ^= dp_rx_get_le32_split(data[0], data[1],
542 					data[2], data_next[0]);
543 				data = data_next + 1;
544 				space = (qdf_nbuf_len(wbuf) - rx_desc_len)
545 					- 1;
546 				break;
547 			}
548 			dp_rx_michael_block(l, r);
549 			data_len -= sizeof(uint32_t);
550 		} else {
551 			/*
552 			 * Setup for next buffer.
553 			 */
554 			data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
555 			space = qdf_nbuf_len(wbuf) - rx_desc_len;
556 		}
557 	}
558 	/* Last block and padding (0x5a, 4..7 x 0) */
559 	switch (data_len) {
560 	case 0:
561 		l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
562 		break;
563 	case 1:
564 		l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
565 		break;
566 	case 2:
567 		l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
568 		break;
569 	case 3:
570 		l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
571 		break;
572 	}
573 	dp_rx_michael_block(l, r);
574 	dp_rx_michael_block(l, r);
575 	dp_rx_put_le32(mic, l);
576 	dp_rx_put_le32(mic + 4, r);
577 
578 	return QDF_STATUS_SUCCESS;
579 }
580 
581 /*
582  * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
583  * @key: Pointer to the key
584  * @msdu: fragment buffer
585  * @hdrlen: Length of the header information
586  *
587  * Remove MIC information from the TKIP frame
588  *
589  * Returns: QDF_STATUS
590  */
591 static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
592 					qdf_nbuf_t msdu, uint16_t hdrlen)
593 {
594 	QDF_STATUS status;
595 	uint32_t pktlen;
596 	uint8_t mic[IEEE80211_WEP_MICLEN];
597 	uint8_t mic0[IEEE80211_WEP_MICLEN];
598 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
599 
600 	pktlen = qdf_nbuf_len(msdu) - rx_desc_len;
601 
602 	status = dp_rx_defrag_mic(key, msdu, hdrlen,
603 				pktlen - (hdrlen + dp_f_tkip.ic_miclen), mic);
604 
605 	if (QDF_IS_STATUS_ERROR(status))
606 		return status;
607 
608 	qdf_nbuf_copy_bits(msdu, pktlen - dp_f_tkip.ic_miclen + rx_desc_len,
609 				dp_f_tkip.ic_miclen, (caddr_t)mic0);
610 
611 	if (!qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
612 		return QDF_STATUS_E_DEFRAG_ERROR;
613 
614 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_miclen);
615 
616 	return QDF_STATUS_SUCCESS;
617 }
618 
619 /*
620  * dp_rx_defrag_decap_recombine(): Recombine the fragments
621  * @peer: Pointer to the peer
622  * @frag_list: list of fragments
623  * @tid: Transmit identifier
624  * @hdrsize: Header size
625  *
626  * Recombine fragments
627  *
628  * Returns: QDF_STATUS
629  */
630 static QDF_STATUS dp_rx_defrag_decap_recombine(struct dp_peer *peer,
631 			qdf_nbuf_t head_msdu, unsigned tid, uint16_t hdrsize)
632 {
633 	qdf_nbuf_t msdu = head_msdu;
634 	uint8_t i;
635 	uint8_t num_ring_desc_saved = peer->rx_tid[tid].curr_ring_desc_idx;
636 	uint8_t num_msdus;
637 
638 	/* Stitch fragments together */
639 	for (i = 0; (i < num_ring_desc_saved) && msdu; i++) {
640 
641 		struct hal_rx_msdu_link_ptr_info *msdu_link_ptr_info =
642 			&peer->rx_tid[tid].transcap_msdu_link_ptr[i];
643 
644 		struct hal_rx_mpdu_desc_info *mpdu_desc_info =
645 			&peer->rx_tid[tid].transcap_rx_mpdu_desc_info;
646 
647 		num_msdus = hal_rx_chain_msdu_links(msdu, msdu_link_ptr_info,
648 				mpdu_desc_info);
649 
650 		msdu = qdf_nbuf_next(msdu);
651 	}
652 
653 	return QDF_STATUS_SUCCESS;
654 }
655 
656 /**
657  * dp_rx_defrag_err() - rx err handler
658  * @pdev: handle to pdev object
659  * @vdev_id: vdev id
660  * @peer_mac_addr: peer mac address
661  * @tid: TID
662  * @tsf32: TSF
663  * @err_type: error type
664  * @rx_frame: rx frame
665  * @pn: PN Number
666  * @key_id: key id
667  *
668  * This function handles rx error and send MIC error notification
669  *
670  * Return: None
671  */
672 static void dp_rx_defrag_err(uint8_t vdev_id, uint8_t *peer_mac_addr,
673 	int tid, uint32_t tsf32, uint32_t err_type, qdf_nbuf_t rx_frame,
674 	uint64_t *pn, uint8_t key_id)
675 {
676 	/* TODO: Who needs to know about the TKIP MIC error */
677 }
678 
679 /*
680  * dp_rx_defrag_qos_decap(): Remove QOS header from the frame
681  * @nbuf: Pointer to the frame buffer
682  * @hdrlen: Length of the header information
683  *
684  * Recombine fragments
685  *
686  * Returns: None
687  */
688 static void dp_rx_defrag_qos_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
689 {
690 	struct ieee80211_frame *wh;
691 	uint16_t qoslen;
692 	int pkt_tlv_size = sizeof(struct rx_pkt_tlvs); /* pkt TLV hdr size */
693 	uint16_t fc = 0;
694 
695 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
696 
697 	/* Get the frame control field if it is valid */
698 	if (hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr))
699 		fc = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
700 
701 	wh = (struct ieee80211_frame *)(qdf_nbuf_data(nbuf) + pkt_tlv_size);
702 
703 	if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
704 		qoslen = sizeof(struct ieee80211_qoscntl);
705 
706 		/* Qos frame with Order bit set indicates a HTC frame */
707 		if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
708 			qoslen += sizeof(struct ieee80211_htc);
709 
710 		/* remove QoS field from header */
711 		hdrlen -= qoslen;
712 		qdf_mem_move((uint8_t *)wh + qoslen, wh, hdrlen);
713 
714 		wh = (struct ieee80211_frame *)qdf_nbuf_pull_head(nbuf,
715 							pkt_tlv_size +
716 							qoslen);
717 		/* clear QoS bit */
718 		if (wh)
719 			wh->i_fc[0] &= ~IEEE80211_FC0_SUBTYPE_QOS;
720 	}
721 }
722 
723 /*
724  * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
725  * @msdu: Pointer to the fragment buffer
726  *
727  * Transcap the fragment from 802.11 to 802.3
728  *
729  * Returns: None
730  */
731 static void dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t msdu)
732 {
733 	struct ieee80211_frame wh;
734 	uint32_t hdrsize;
735 	struct llc_snap_hdr_t llchdr;
736 	struct ethernet_hdr_t *eth_hdr;
737 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
738 	struct ieee80211_frame *wh_ptr;
739 
740 	wh_ptr = (struct ieee80211_frame *)(qdf_nbuf_data(msdu) +
741 		rx_desc_len);
742 	qdf_mem_copy(&wh, wh_ptr, sizeof(wh));
743 	hdrsize = sizeof(struct ieee80211_frame);
744 	qdf_mem_copy(&llchdr, ((uint8_t *) (qdf_nbuf_data(msdu) +
745 		rx_desc_len)) + hdrsize,
746 		sizeof(struct llc_snap_hdr_t));
747 
748 	/*
749 	 * Now move the data pointer to the beginning of the mac header :
750 	 * new-header = old-hdr + (wifihdrsize + llchdrsize - ethhdrsize)
751 	 */
752 	qdf_nbuf_pull_head(msdu, (rx_desc_len + hdrsize +
753 		sizeof(struct llc_snap_hdr_t) -
754 		sizeof(struct ethernet_hdr_t)));
755 	eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(msdu));
756 
757 	switch (wh.i_fc[1] & IEEE80211_FC1_DIR_MASK) {
758 	case IEEE80211_FC1_DIR_NODS:
759 		qdf_mem_copy(eth_hdr->dest_addr, wh.i_addr1,
760 			IEEE80211_ADDR_LEN);
761 		qdf_mem_copy(eth_hdr->src_addr, wh.i_addr2,
762 			IEEE80211_ADDR_LEN);
763 		break;
764 	case IEEE80211_FC1_DIR_TODS:
765 		qdf_mem_copy(eth_hdr->dest_addr, wh.i_addr3,
766 			IEEE80211_ADDR_LEN);
767 		qdf_mem_copy(eth_hdr->src_addr, wh.i_addr2,
768 			IEEE80211_ADDR_LEN);
769 		break;
770 	case IEEE80211_FC1_DIR_FROMDS:
771 		qdf_mem_copy(eth_hdr->dest_addr, wh.i_addr1,
772 			IEEE80211_ADDR_LEN);
773 		qdf_mem_copy(eth_hdr->src_addr, wh.i_addr3,
774 			IEEE80211_ADDR_LEN);
775 		break;
776 	case IEEE80211_FC1_DIR_DSTODS:
777 		break;
778 	}
779 
780 	/* TODO: Is it requried to copy rx_pkt_tlvs
781 	 * to the start of data buffer?
782 	 */
783 	qdf_mem_copy(eth_hdr->ethertype, llchdr.ethertype,
784 			sizeof(llchdr.ethertype));
785 }
786 
787 /*
788  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
789  * @peer: Pointer to the peer
790  * @tid: Transmit Identifier
791  *
792  * Reinject the fragment chain back into REO
793  *
794  * Returns: QDF_STATUS
795  */
796 static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
797 					unsigned tid)
798 {
799 	struct dp_pdev *pdev = peer->vdev->pdev;
800 	struct dp_soc *soc = pdev->soc;
801 	QDF_STATUS status = QDF_STATUS_E_FAILURE;
802 	void *ring_desc;
803 	enum hal_reo_error_status error;
804 	struct hal_rx_mpdu_desc_info *saved_mpdu_desc_info;
805 	void *hal_srng = soc->reo_reinject_ring.hal_srng;
806 	struct hal_rx_msdu_link_ptr_info *saved_msdu_link_ptr;
807 
808 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
809 
810 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
811 			"HAL RING Access For WBM Release SRNG Failed: %pK",
812 			hal_srng);
813 		goto done;
814 	}
815 
816 	ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
817 
818 	qdf_assert(ring_desc);
819 
820 	error = HAL_RX_ERROR_STATUS_GET(ring_desc);
821 
822 	if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
823 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
824 			"HAL RING 0x%pK:error %d", hal_srng, error);
825 
826 		/* Don't know how to deal with this condition -- assert */
827 		qdf_assert(0);
828 		goto done;
829 	}
830 
831 	saved_mpdu_desc_info =
832 		&peer->rx_tid[tid].transcap_rx_mpdu_desc_info;
833 
834 	/* first msdu link pointer */
835 	saved_msdu_link_ptr =
836 		&peer->rx_tid[tid].transcap_msdu_link_ptr[0];
837 
838 	hal_rx_defrag_update_src_ring_desc(ring_desc,
839 		saved_mpdu_desc_info, saved_msdu_link_ptr);
840 
841 	status = QDF_STATUS_SUCCESS;
842 done:
843 	hal_srng_access_end(soc->hal_soc, hal_srng);
844 	return status;
845 }
846 
847 /*
848  * dp_rx_defrag(): Defragment the fragment chain
849  * @peer: Pointer to the peer
850  * @tid: Transmit Identifier
851  * @frag_list: Pointer to head list
852  * @frag_list_tail: Pointer to tail list
853  *
854  * Defragment the fragment chain
855  *
856  * Returns: QDF_STATUS
857  */
858 static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
859 			qdf_nbuf_t frag_list, qdf_nbuf_t frag_list_tail)
860 {
861 	qdf_nbuf_t tmp_next;
862 	qdf_nbuf_t cur = frag_list, msdu;
863 
864 	uint32_t index, tkip_demic = 0;
865 	uint16_t hdr_space;
866 	QDF_STATUS status;
867 	uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
868 	struct dp_vdev *vdev = peer->vdev;
869 
870 	cur = frag_list;
871 	hdr_space = dp_rx_defrag_hdrsize(cur);
872 	index = hal_rx_msdu_is_wlan_mcast(cur) ?
873 		dp_sec_mcast : dp_sec_ucast;
874 
875 	switch (peer->security[index].sec_type) {
876 	case htt_sec_type_tkip:
877 		tkip_demic = 1;
878 
879 	case htt_sec_type_tkip_nomic:
880 		while (cur) {
881 			tmp_next = qdf_nbuf_next(cur);
882 			if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
883 
884 				/* TKIP decap failed, discard frags */
885 				dp_rx_defrag_frames_free(frag_list);
886 
887 				QDF_TRACE(QDF_MODULE_ID_TXRX,
888 					QDF_TRACE_LEVEL_ERROR,
889 					"dp_rx_defrag: TKIP decap failed");
890 
891 				return QDF_STATUS_E_DEFRAG_ERROR;
892 			}
893 			cur = tmp_next;
894 		}
895 		break;
896 
897 	case htt_sec_type_aes_ccmp:
898 		while (cur) {
899 			tmp_next = qdf_nbuf_next(cur);
900 			if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
901 
902 				/* CCMP demic failed, discard frags */
903 				dp_rx_defrag_frames_free(frag_list);
904 
905 				QDF_TRACE(QDF_MODULE_ID_TXRX,
906 					QDF_TRACE_LEVEL_ERROR,
907 					"dp_rx_defrag: CCMP demic failed");
908 
909 				return QDF_STATUS_E_DEFRAG_ERROR;
910 			}
911 			if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
912 
913 				/* CCMP decap failed, discard frags */
914 				dp_rx_defrag_frames_free(frag_list);
915 
916 				QDF_TRACE(QDF_MODULE_ID_TXRX,
917 					QDF_TRACE_LEVEL_ERROR,
918 					"dp_rx_defrag: CCMP decap failed");
919 
920 				return QDF_STATUS_E_DEFRAG_ERROR;
921 			}
922 			cur = tmp_next;
923 		}
924 		break;
925 	case htt_sec_type_wep40:
926 	case htt_sec_type_wep104:
927 	case htt_sec_type_wep128:
928 		while (cur) {
929 			tmp_next = qdf_nbuf_next(cur);
930 			if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
931 
932 				/* WEP decap failed, discard frags */
933 				dp_rx_defrag_frames_free(frag_list);
934 
935 				QDF_TRACE(QDF_MODULE_ID_TXRX,
936 					QDF_TRACE_LEVEL_ERROR,
937 					"dp_rx_defrag: WEP decap failed");
938 
939 				return QDF_STATUS_E_DEFRAG_ERROR;
940 			}
941 			cur = tmp_next;
942 		}
943 		break;
944 	default:
945 		QDF_TRACE(QDF_MODULE_ID_TXRX,
946 			QDF_TRACE_LEVEL_ERROR,
947 			"dp_rx_defrag: Did not match any security type");
948 		break;
949 	}
950 
951 	if (tkip_demic) {
952 		msdu = frag_list_tail; /* Only last fragment has the MIC */
953 
954 		qdf_mem_copy(key,
955 			peer->security[index].michael_key,
956 			sizeof(peer->security[index].michael_key));
957 		if (dp_rx_defrag_tkip_demic(key, msdu, hdr_space)) {
958 			qdf_nbuf_free(msdu);
959 			dp_rx_defrag_err(vdev->vdev_id, peer->mac_addr.raw,
960 				tid, 0, QDF_STATUS_E_DEFRAG_ERROR, msdu,
961 				NULL, 0);
962 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
963 				"dp_rx_defrag: TKIP demic failed");
964 			return QDF_STATUS_E_DEFRAG_ERROR;
965 		}
966 	}
967 
968 	dp_rx_defrag_qos_decap(cur, hdr_space);
969 
970 	/* Convert the header to 802.3 header */
971 	dp_rx_defrag_nwifi_to_8023(cur);
972 
973 	status = dp_rx_defrag_decap_recombine(peer, cur, tid, hdr_space);
974 
975 	if (QDF_IS_STATUS_ERROR(status)) {
976 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
977 		"dp_rx_defrag_decap_recombine failed");
978 
979 		qdf_assert(0);
980 	}
981 
982 	return status;
983 }
984 
985 /*
986  * dp_rx_defrag_cleanup(): Clean up activities
987  * @peer: Pointer to the peer
988  * @tid: Transmit Identifier
989  * @seq: Sequence number
990  *
991  * Returns: None
992  */
993 static void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid,
994 							uint16_t seq)
995 {
996 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
997 				&peer->rx_tid[tid].array[seq];
998 
999 	/* Free up nbufs */
1000 	dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1001 
1002 	/* Free up saved ring descriptors */
1003 	dp_rx_clear_saved_desc_info(peer, tid);
1004 
1005 	rx_reorder_array_elem->head = NULL;
1006 	rx_reorder_array_elem->tail = NULL;
1007 	peer->rx_tid[tid].defrag_timeout_ms = 0;
1008 	peer->rx_tid[tid].curr_frag_num = 0;
1009 	peer->rx_tid[tid].curr_seq_num = 0;
1010 	peer->rx_tid[tid].curr_ring_desc_idx = 0;
1011 }
1012 
1013 /*
1014  * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
1015  * @ring_desc: Pointer to the ring descriptor
1016  * @peer: Pointer to the peer
1017  * @tid: Transmit Identifier
1018  * @mpdu_desc_info: MPDU descriptor info
1019  *
1020  * Returns: None
1021  */
1022 static void dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
1023 	struct dp_peer *peer, unsigned tid,
1024 	struct hal_rx_mpdu_desc_info *mpdu_desc_info)
1025 {
1026 	struct dp_pdev *pdev = peer->vdev->pdev;
1027 	void *msdu_link_desc_va = NULL;
1028 	uint8_t idx = peer->rx_tid[tid].curr_ring_desc_idx;
1029 	uint8_t rbm;
1030 
1031 	struct hal_rx_msdu_link_ptr_info *msdu_link_ptr_info =
1032 		&peer->rx_tid[tid].transcap_msdu_link_ptr[++idx];
1033 	struct hal_rx_mpdu_desc_info *tmp_mpdu_desc_info =
1034 		&peer->rx_tid[tid].transcap_rx_mpdu_desc_info;
1035 	struct hal_buf_info hbi;
1036 
1037 	rbm = hal_rx_ret_buf_manager_get(ring_desc);
1038 	if (qdf_unlikely(rbm != HAL_RX_BUF_RBM_SW3_BM)) {
1039 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1040 			"Invalid RBM while chaining frag MSDUs");
1041 		return;
1042 	}
1043 
1044 	hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
1045 
1046 	msdu_link_desc_va =
1047 		dp_rx_cookie_2_link_desc_va(pdev->soc, &hbi);
1048 
1049 	hal_rx_defrag_save_info_from_ring_desc(msdu_link_desc_va,
1050 		msdu_link_ptr_info, &hbi);
1051 
1052 	qdf_mem_copy(tmp_mpdu_desc_info, mpdu_desc_info,
1053 		sizeof(*tmp_mpdu_desc_info));
1054 }
1055 
1056 /*
1057  * dp_rx_defrag_store_fragment(): Store incoming fragments
1058  * @soc: Pointer to the SOC data structure
1059  * @ring_desc: Pointer to the ring descriptor
1060  * @mpdu_desc_info: MPDU descriptor info
1061  * @msdu_info: Pointer to MSDU descriptor info
1062  * @tid: Traffic Identifier
1063  * @rx_desc: Pointer to rx descriptor
1064   *
1065  * Returns: QDF_STATUS
1066  */
1067 static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
1068 			void *ring_desc,
1069 			union dp_rx_desc_list_elem_t **head,
1070 			union dp_rx_desc_list_elem_t **tail,
1071 			struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1072 			struct hal_rx_msdu_desc_info *msdu_info,
1073 			unsigned tid, struct dp_rx_desc *rx_desc)
1074 {
1075 	uint8_t idx;
1076 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1077 	struct dp_pdev *pdev;
1078 	struct dp_peer *peer;
1079 	uint16_t peer_id;
1080 	uint16_t rxseq, seq;
1081 	uint8_t fragno, more_frag, all_frag_present = 0;
1082 	uint16_t seq_num = mpdu_desc_info->mpdu_seq;
1083 	QDF_STATUS status;
1084 	struct dp_rx_tid *rx_tid;
1085 	uint8_t mpdu_sequence_control_valid;
1086 	uint8_t mpdu_frame_control_valid;
1087 	qdf_nbuf_t frag = rx_desc->nbuf;
1088 	uint8_t *rx_desc_info;
1089 
1090 	/* Check if the packet is from a valid peer */
1091 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1092 					mpdu_desc_info->peer_meta_data);
1093 	peer = dp_peer_find_by_id(soc, peer_id);
1094 
1095 	if (!peer) {
1096 		/* We should not recieve anything from unknown peer
1097 		 * however, that might happen while we are in the monitor mode.
1098 		 * We don't need to handle that here
1099 		 */
1100 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1101 			"Unknown peer, dropping the fragment");
1102 
1103 		qdf_nbuf_free(frag);
1104 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1105 
1106 		return QDF_STATUS_E_DEFRAG_ERROR;
1107 	}
1108 
1109 	pdev = peer->vdev->pdev;
1110 	rx_tid = &peer->rx_tid[tid];
1111 
1112 	seq = seq_num & (peer->rx_tid[tid].ba_win_size - 1);
1113 	qdf_assert(seq == 0);
1114 	rx_reorder_array_elem = &peer->rx_tid[tid].array[seq];
1115 
1116 	rx_desc_info = qdf_nbuf_data(frag);
1117 	mpdu_sequence_control_valid =
1118 		hal_rx_get_mpdu_sequence_control_valid(rx_desc_info);
1119 
1120 	/* Invalid MPDU sequence control field, MPDU is of no use */
1121 	if (!mpdu_sequence_control_valid) {
1122 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1123 			"Invalid MPDU seq control field, dropping MPDU");
1124 		qdf_nbuf_free(frag);
1125 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1126 
1127 		qdf_assert(0);
1128 		goto end;
1129 	}
1130 
1131 	mpdu_frame_control_valid =
1132 		hal_rx_get_mpdu_frame_control_valid(rx_desc_info);
1133 
1134 	/* Invalid frame control field */
1135 	if (!mpdu_frame_control_valid) {
1136 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1137 			"Invalid frame control field, dropping MPDU");
1138 		qdf_nbuf_free(frag);
1139 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1140 
1141 		qdf_assert(0);
1142 		goto end;
1143 	}
1144 
1145 	/* Current mpdu sequence */
1146 	rxseq = hal_rx_get_rx_sequence(rx_desc_info);
1147 	more_frag = hal_rx_get_rx_more_frag_bit(rx_desc_info);
1148 
1149 	/* HW does not populate the fragment number as of now
1150 	 * need to get from the 802.11 header
1151 	 */
1152 	fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
1153 
1154 	/*
1155 	 * !more_frag: no more fragments to be delivered
1156 	 * !frag_no: packet is not fragmented
1157 	 * !rx_reorder_array_elem->head: no saved fragments so far
1158 	 */
1159 	if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
1160 		/* We should not get into this situation here.
1161 		 * It means an unfragmented packet with fragment flag
1162 		 * is delivered over the REO exception ring.
1163 		 * Typically it follows normal rx path.
1164 		 */
1165 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1166 			"Rcvd unfragmented pkt on REO Err srng, dropping");
1167 		qdf_nbuf_free(frag);
1168 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1169 
1170 		qdf_assert(0);
1171 		goto end;
1172 	}
1173 
1174 	/* Check if the fragment is for the same sequence or a different one */
1175 	if (rx_reorder_array_elem->head) {
1176 
1177 		if (rxseq != rx_tid->curr_seq_num) {
1178 
1179 			/* Drop stored fragments if out of sequence
1180 			 * fragment is received
1181 			 */
1182 			dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1183 
1184 			rx_reorder_array_elem->head = NULL;
1185 			rx_reorder_array_elem->tail = NULL;
1186 
1187 			/*
1188 			 * The sequence number for this fragment becomes the
1189 			 * new sequence number to be processed
1190 			 */
1191 			rx_tid->curr_seq_num = rxseq;
1192 
1193 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1194 				"%s mismatch, dropping earlier sequence ",
1195 				(rxseq == rx_tid->curr_seq_num)
1196 				? "address"
1197 				: "seq number");
1198 		}
1199 	} else {
1200 		/* Start of a new sequence */
1201 		rx_tid->curr_seq_num = rxseq;
1202 	}
1203 
1204 	/*
1205 	 * If the earlier sequence was dropped, this will be the fresh start.
1206 	 * Else, continue with next fragment in a given sequence
1207 	 */
1208 	dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
1209 			&rx_reorder_array_elem->tail, frag,
1210 			&all_frag_present);
1211 
1212 	/*
1213 	 * Currently, we can have only 6 MSDUs per-MPDU, if the current
1214 	 * packet sequence has more than 6 MSDUs for some reason, we will
1215 	 * have to use the next MSDU link descriptor and chain them together
1216 	 * before reinjection
1217 	 */
1218 	if (more_frag == 0 || fragno == HAL_RX_NUM_MSDU_DESC) {
1219 		/*
1220 		 * Deep copy of MSDU link pointer and msdu descriptor structs
1221 		 */
1222 		idx = peer->rx_tid[tid].curr_ring_desc_idx;
1223 		if (idx < HAL_RX_MAX_SAVED_RING_DESC) {
1224 			dp_rx_defrag_save_info_from_ring_desc(ring_desc,
1225 				peer, tid, mpdu_desc_info);
1226 
1227 			peer->rx_tid[tid].curr_ring_desc_idx++;
1228 		} else {
1229 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1230 				"Max ring descr saved, dropping fragment");
1231 			/*
1232 			 * Free up saved fragments and ring descriptors if any
1233 			 */
1234 			goto end;
1235 		}
1236 	}
1237 
1238 	/* TODO: handle fragment timeout gracefully */
1239 	if (pdev->soc->rx.flags.defrag_timeout_check) {
1240 		dp_rx_defrag_waitlist_remove(peer, tid);
1241 		goto end;
1242 	}
1243 
1244 	/* Yet to receive more fragments for this sequence number */
1245 	if (!all_frag_present) {
1246 		uint32_t now_ms =
1247 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1248 
1249 		peer->rx_tid[tid].defrag_timeout_ms =
1250 			now_ms + pdev->soc->rx.defrag.timeout_ms;
1251 
1252 		dp_rx_defrag_waitlist_add(peer, tid);
1253 		goto end;
1254 	}
1255 
1256 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1257 		"All fragments received for sequence: %d", rxseq);
1258 
1259 	/* Process the fragments */
1260 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1261 		rx_reorder_array_elem->tail);
1262 	if (QDF_IS_STATUS_ERROR(status)) {
1263 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1264 			"Fragment processing failed");
1265 		goto end;
1266 	}
1267 
1268 	/* Re-inject the fragments back to REO for further processing */
1269 	status = dp_rx_defrag_reo_reinject(peer, tid);
1270 	if (QDF_IS_STATUS_SUCCESS(status))
1271 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1272 		"Fragmented sequence successfully reinjected");
1273 	else
1274 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1275 		"Fragmented sequence reinjection failed");
1276 
1277 end:
1278 	dp_rx_defrag_cleanup(peer, tid, seq);
1279 	return QDF_STATUS_E_DEFRAG_ERROR;
1280 }
1281 
1282 /**
1283  * dp_rx_frag_handle() - Handles fragmented Rx frames
1284  *
1285  * @soc: core txrx main context
1286  * @ring_desc: opaque pointer to the REO error ring descriptor
1287  * @mpdu_desc_info: MPDU descriptor information from ring descriptor
1288  * @head: head of the local descriptor free-list
1289  * @tail: tail of the local descriptor free-list
1290  * @quota: No. of units (packets) that can be serviced in one shot.
1291  *
1292  * This function implements RX 802.11 fragmentation handling
1293  * The handling is mostly same as legacy fragmentation handling.
1294  * If required, this function can re-inject the frames back to
1295  * REO ring (with proper setting to by-pass fragmentation check
1296  * but use duplicate detection / re-ordering and routing these frames
1297  * to a different core.
1298  *
1299  * Return: uint32_t: No. of elements processed
1300  */
1301 uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
1302 		struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1303 		union dp_rx_desc_list_elem_t **head,
1304 		union dp_rx_desc_list_elem_t **tail,
1305 		uint32_t quota)
1306 {
1307 	uint32_t rx_bufs_used = 0;
1308 	void *link_desc_va;
1309 	struct hal_buf_info buf_info;
1310 	struct hal_rx_msdu_list msdu_list; /* per MPDU list of MSDUs */
1311 	uint32_t tid;
1312 	int idx;
1313 	QDF_STATUS status;
1314 
1315 	qdf_assert(soc);
1316 	qdf_assert(mpdu_desc_info);
1317 
1318 	/* Fragment from a valid peer */
1319 	hal_rx_reo_buf_paddr_get(ring_desc, &buf_info);
1320 
1321 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
1322 
1323 	qdf_assert(link_desc_va);
1324 
1325 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1326 		"Number of MSDUs to process, num_msdus: %d",
1327 		mpdu_desc_info->msdu_count);
1328 
1329 
1330 	if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
1331 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1332 			"Not sufficient MSDUs to process");
1333 		return rx_bufs_used;
1334 	}
1335 
1336 	/* Get msdu_list for the given MPDU */
1337 	hal_rx_msdu_list_get(link_desc_va, &msdu_list,
1338 		&mpdu_desc_info->msdu_count);
1339 
1340 	/* Process all MSDUs in the current MPDU */
1341 	for (idx = 0; (idx < mpdu_desc_info->msdu_count) && quota--; idx++) {
1342 		struct dp_rx_desc *rx_desc =
1343 			dp_rx_cookie_2_va_rxdma_buf(soc,
1344 				msdu_list.sw_cookie[idx]);
1345 
1346 		qdf_assert(rx_desc);
1347 
1348 		tid = hal_rx_mpdu_start_tid_get(rx_desc->rx_buf_start);
1349 
1350 		/* Process fragment-by-fragment */
1351 		status = dp_rx_defrag_store_fragment(soc, ring_desc,
1352 				head, tail, mpdu_desc_info,
1353 				&msdu_list.msdu_info[idx], tid,
1354 				rx_desc);
1355 		if (QDF_IS_STATUS_SUCCESS(status))
1356 			rx_bufs_used++;
1357 		else
1358 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1359 			"Rx Defragmentation error. mpdu_seq: 0x%x msdu_count: %d mpdu_flags: %d",
1360 			mpdu_desc_info->mpdu_seq, mpdu_desc_info->msdu_count,
1361 			mpdu_desc_info->mpdu_flags);
1362 	}
1363 
1364 	return rx_bufs_used;
1365 }
1366