xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx_defrag.c (revision 45a38684b07295822dc8eba39e293408f203eec8) !
1 /*
2  * Copyright (c) 2017-2020 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "dp_types.h"
21 #include "dp_rx.h"
22 #include "dp_peer.h"
23 #include "hal_api.h"
24 #include "qdf_trace.h"
25 #include "qdf_nbuf.h"
26 #include "dp_internal.h"
27 #include "dp_rx_defrag.h"
28 #include <enet.h>	/* LLC_SNAP_HDR_LEN */
29 #include "dp_rx_defrag.h"
30 #include "dp_ipa.h"
31 #include "dp_rx_buffer_pool.h"
32 
33 const struct dp_rx_defrag_cipher dp_f_ccmp = {
34 	"AES-CCM",
35 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
36 	IEEE80211_WEP_MICLEN,
37 	0,
38 };
39 
40 const struct dp_rx_defrag_cipher dp_f_tkip = {
41 	"TKIP",
42 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
43 	IEEE80211_WEP_CRCLEN,
44 	IEEE80211_WEP_MICLEN,
45 };
46 
47 const struct dp_rx_defrag_cipher dp_f_wep = {
48 	"WEP",
49 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
50 	IEEE80211_WEP_CRCLEN,
51 	0,
52 };
53 
54 /*
55  * dp_rx_defrag_frames_free(): Free fragment chain
56  * @frames: Fragment chain
57  *
58  * Iterates through the fragment chain and frees them
59  * Returns: None
60  */
61 static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
62 {
63 	qdf_nbuf_t next, frag = frames;
64 
65 	while (frag) {
66 		next = qdf_nbuf_next(frag);
67 		qdf_nbuf_free(frag);
68 		frag = next;
69 	}
70 }
71 
72 /*
73  * dp_rx_clear_saved_desc_info(): Clears descriptor info
74  * @peer: Pointer to the peer data structure
75  * @tid: Transmit ID (TID)
76  *
77  * Saves MPDU descriptor info and MSDU link pointer from REO
78  * ring descriptor. The cache is created per peer, per TID
79  *
80  * Returns: None
81  */
82 static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
83 {
84 	if (peer->rx_tid[tid].dst_ring_desc)
85 		qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
86 
87 	peer->rx_tid[tid].dst_ring_desc = NULL;
88 	peer->rx_tid[tid].head_frag_desc = NULL;
89 }
90 
91 static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
92 					unsigned int tid)
93 {
94 	struct dp_soc *soc;
95 	struct dp_pdev *pdev;
96 	struct dp_srng *dp_rxdma_srng;
97 	struct rx_desc_pool *rx_desc_pool;
98 	union dp_rx_desc_list_elem_t *head = NULL;
99 	union dp_rx_desc_list_elem_t *tail = NULL;
100 	uint8_t pool_id;
101 
102 	pdev = peer->vdev->pdev;
103 	soc = pdev->soc;
104 
105 	if (peer->rx_tid[tid].head_frag_desc) {
106 		pool_id = peer->rx_tid[tid].head_frag_desc->pool_id;
107 		dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
108 		rx_desc_pool = &soc->rx_desc_buf[pool_id];
109 
110 		dp_rx_add_to_free_desc_list(&head, &tail,
111 					    peer->rx_tid[tid].head_frag_desc);
112 		dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
113 					1, &head, &tail);
114 	}
115 
116 	if (peer->rx_tid[tid].dst_ring_desc) {
117 		if (dp_rx_link_desc_return(soc,
118 					   peer->rx_tid[tid].dst_ring_desc,
119 					   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
120 		    QDF_STATUS_SUCCESS)
121 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
122 				  "%s: Failed to return link desc", __func__);
123 	}
124 }
125 
126 /*
127  * dp_rx_reorder_flush_frag(): Flush the frag list
128  * @peer: Pointer to the peer data structure
129  * @tid: Transmit ID (TID)
130  *
131  * Flush the per-TID frag list
132  *
133  * Returns: None
134  */
135 void dp_rx_reorder_flush_frag(struct dp_peer *peer,
136 			 unsigned int tid)
137 {
138 	dp_info_rl("Flushing TID %d", tid);
139 
140 	if (!peer) {
141 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
142 					"%s: NULL peer", __func__);
143 		return;
144 	}
145 
146 	dp_rx_return_head_frag_desc(peer, tid);
147 	dp_rx_defrag_cleanup(peer, tid);
148 }
149 
150 /*
151  * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
152  * @soc: DP SOC
153  *
154  * Flush fragments of all waitlisted TID's
155  *
156  * Returns: None
157  */
158 void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
159 {
160 	struct dp_rx_tid *rx_reorder = NULL;
161 	struct dp_rx_tid *tmp;
162 	uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
163 	TAILQ_HEAD(, dp_rx_tid) temp_list;
164 
165 	TAILQ_INIT(&temp_list);
166 
167 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
168 		  FL("Current time  %u"), now_ms);
169 
170 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
171 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
172 			   defrag_waitlist_elem, tmp) {
173 		uint32_t tid;
174 
175 		if (rx_reorder->defrag_timeout_ms > now_ms)
176 			break;
177 
178 		tid = rx_reorder->tid;
179 		if (tid >= DP_MAX_TIDS) {
180 			qdf_assert(0);
181 			continue;
182 		}
183 
184 		TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
185 			     defrag_waitlist_elem);
186 		DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
187 
188 		/* Move to temp list and clean-up later */
189 		TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
190 				  defrag_waitlist_elem);
191 	}
192 	if (rx_reorder) {
193 		soc->rx.defrag.next_flush_ms =
194 			rx_reorder->defrag_timeout_ms;
195 	} else {
196 		soc->rx.defrag.next_flush_ms =
197 			now_ms + soc->rx.defrag.timeout_ms;
198 	}
199 
200 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
201 
202 	TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
203 			   defrag_waitlist_elem, tmp) {
204 		struct dp_peer *peer, *temp_peer = NULL;
205 
206 		qdf_spin_lock_bh(&rx_reorder->tid_lock);
207 		TAILQ_REMOVE(&temp_list, rx_reorder,
208 			     defrag_waitlist_elem);
209 		/* get address of current peer */
210 		peer =
211 			container_of(rx_reorder, struct dp_peer,
212 				     rx_tid[rx_reorder->tid]);
213 		qdf_spin_unlock_bh(&rx_reorder->tid_lock);
214 
215 		temp_peer = dp_peer_find_by_id(soc, peer->peer_id);
216 		if (temp_peer == peer) {
217 			qdf_spin_lock_bh(&rx_reorder->tid_lock);
218 			dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
219 			qdf_spin_unlock_bh(&rx_reorder->tid_lock);
220 		}
221 
222 		if (temp_peer)
223 			dp_peer_unref_del_find_by_id(temp_peer);
224 
225 	}
226 }
227 
228 /*
229  * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
230  * @peer: Pointer to the peer data structure
231  * @tid: Transmit ID (TID)
232  *
233  * Appends per-tid fragments to global fragment wait list
234  *
235  * Returns: None
236  */
237 static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
238 {
239 	struct dp_soc *psoc = peer->vdev->pdev->soc;
240 	struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
241 
242 	dp_debug("Adding TID %u to waitlist for peer %pK at MAC address %pM",
243 		 tid, peer, peer->mac_addr.raw);
244 
245 	/* TODO: use LIST macros instead of TAIL macros */
246 	qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
247 	if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
248 		psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
249 	TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
250 				defrag_waitlist_elem);
251 	DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
252 	qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
253 }
254 
255 /*
256  * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
257  * @peer: Pointer to the peer data structure
258  * @tid: Transmit ID (TID)
259  *
260  * Remove fragments from waitlist
261  *
262  * Returns: None
263  */
264 void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
265 {
266 	struct dp_pdev *pdev = peer->vdev->pdev;
267 	struct dp_soc *soc = pdev->soc;
268 	struct dp_rx_tid *rx_reorder;
269 	struct dp_rx_tid *tmp;
270 
271 	dp_debug("Removing TID %u to waitlist for peer %pK at MAC address %pM",
272 		 tid, peer, peer->mac_addr.raw);
273 
274 	if (tid >= DP_MAX_TIDS) {
275 		dp_err("TID out of bounds: %d", tid);
276 		qdf_assert_always(0);
277 	}
278 
279 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
280 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
281 			   defrag_waitlist_elem, tmp) {
282 		struct dp_peer *peer_on_waitlist;
283 
284 		/* get address of current peer */
285 		peer_on_waitlist =
286 			container_of(rx_reorder, struct dp_peer,
287 				     rx_tid[rx_reorder->tid]);
288 
289 		/* Ensure it is TID for same peer */
290 		if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
291 			TAILQ_REMOVE(&soc->rx.defrag.waitlist,
292 				rx_reorder, defrag_waitlist_elem);
293 			DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
294 		}
295 	}
296 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
297 }
298 
299 /*
300  * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
301  * @peer: Pointer to the peer data structure
302  * @tid: Transmit ID (TID)
303  * @head_addr: Pointer to head list
304  * @tail_addr: Pointer to tail list
305  * @frag: Incoming fragment
306  * @all_frag_present: Flag to indicate whether all fragments are received
307  *
308  * Build a per-tid, per-sequence fragment list.
309  *
310  * Returns: Success, if inserted
311  */
312 static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
313 	qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
314 	uint8_t *all_frag_present)
315 {
316 	qdf_nbuf_t next;
317 	qdf_nbuf_t prev = NULL;
318 	qdf_nbuf_t cur;
319 	uint16_t head_fragno, cur_fragno, next_fragno;
320 	uint8_t last_morefrag = 1, count = 0;
321 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
322 	uint8_t *rx_desc_info;
323 
324 
325 	qdf_assert(frag);
326 	qdf_assert(head_addr);
327 	qdf_assert(tail_addr);
328 
329 	*all_frag_present = 0;
330 	rx_desc_info = qdf_nbuf_data(frag);
331 	cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
332 
333 	dp_debug("cur_fragno %d\n", cur_fragno);
334 	/* If this is the first fragment */
335 	if (!(*head_addr)) {
336 		*head_addr = *tail_addr = frag;
337 		qdf_nbuf_set_next(*tail_addr, NULL);
338 		rx_tid->curr_frag_num = cur_fragno;
339 
340 		goto insert_done;
341 	}
342 
343 	/* In sequence fragment */
344 	if (cur_fragno > rx_tid->curr_frag_num) {
345 		qdf_nbuf_set_next(*tail_addr, frag);
346 		*tail_addr = frag;
347 		qdf_nbuf_set_next(*tail_addr, NULL);
348 		rx_tid->curr_frag_num = cur_fragno;
349 	} else {
350 		/* Out of sequence fragment */
351 		cur = *head_addr;
352 		rx_desc_info = qdf_nbuf_data(cur);
353 		head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
354 
355 		if (cur_fragno == head_fragno) {
356 			qdf_nbuf_free(frag);
357 			goto insert_fail;
358 		} else if (head_fragno > cur_fragno) {
359 			qdf_nbuf_set_next(frag, cur);
360 			cur = frag;
361 			*head_addr = frag; /* head pointer to be updated */
362 		} else {
363 			while ((cur_fragno > head_fragno) && cur) {
364 				prev = cur;
365 				cur = qdf_nbuf_next(cur);
366 				if (cur) {
367 					rx_desc_info = qdf_nbuf_data(cur);
368 					head_fragno =
369 						dp_rx_frag_get_mpdu_frag_number(
370 								rx_desc_info);
371 				}
372 			}
373 
374 			if (cur_fragno == head_fragno) {
375 				qdf_nbuf_free(frag);
376 				goto insert_fail;
377 			}
378 
379 			qdf_nbuf_set_next(prev, frag);
380 			qdf_nbuf_set_next(frag, cur);
381 		}
382 	}
383 
384 	next = qdf_nbuf_next(*head_addr);
385 
386 	rx_desc_info = qdf_nbuf_data(*tail_addr);
387 	last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
388 
389 	/* TODO: optimize the loop */
390 	if (!last_morefrag) {
391 		/* Check if all fragments are present */
392 		do {
393 			rx_desc_info = qdf_nbuf_data(next);
394 			next_fragno =
395 				dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
396 			count++;
397 
398 			if (next_fragno != count)
399 				break;
400 
401 			next = qdf_nbuf_next(next);
402 		} while (next);
403 
404 		if (!next) {
405 			*all_frag_present = 1;
406 			return QDF_STATUS_SUCCESS;
407 		} else {
408 			/* revisit */
409 		}
410 	}
411 
412 insert_done:
413 	return QDF_STATUS_SUCCESS;
414 
415 insert_fail:
416 	return QDF_STATUS_E_FAILURE;
417 }
418 
419 
420 /*
421  * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
422  * @msdu: Pointer to the fragment
423  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
424  *
425  * decap tkip encrypted fragment
426  *
427  * Returns: QDF_STATUS
428  */
429 static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
430 {
431 	uint8_t *ivp, *orig_hdr;
432 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
433 
434 	/* start of 802.11 header info */
435 	orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
436 
437 	/* TKIP header is located post 802.11 header */
438 	ivp = orig_hdr + hdrlen;
439 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
440 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
441 			"IEEE80211_WEP_EXTIV is missing in TKIP fragment");
442 		return QDF_STATUS_E_DEFRAG_ERROR;
443 	}
444 
445 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
446 
447 	return QDF_STATUS_SUCCESS;
448 }
449 
450 /*
451  * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
452  * @nbuf: Pointer to the fragment buffer
453  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
454  *
455  * Remove MIC information from CCMP fragment
456  *
457  * Returns: QDF_STATUS
458  */
459 static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
460 {
461 	uint8_t *ivp, *orig_hdr;
462 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
463 
464 	/* start of the 802.11 header */
465 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
466 
467 	/* CCMP header is located after 802.11 header */
468 	ivp = orig_hdr + hdrlen;
469 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
470 		return QDF_STATUS_E_DEFRAG_ERROR;
471 
472 	qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
473 
474 	return QDF_STATUS_SUCCESS;
475 }
476 
477 /*
478  * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
479  * @nbuf: Pointer to the fragment
480  * @hdrlen: length of the header information
481  *
482  * decap CCMP encrypted fragment
483  *
484  * Returns: QDF_STATUS
485  */
486 static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
487 {
488 	uint8_t *ivp, *origHdr;
489 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
490 
491 	origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
492 	ivp = origHdr + hdrlen;
493 
494 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
495 		return QDF_STATUS_E_DEFRAG_ERROR;
496 
497 	/* Let's pull the header later */
498 
499 	return QDF_STATUS_SUCCESS;
500 }
501 
502 /*
503  * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
504  * @msdu: Pointer to the fragment
505  * @hdrlen: length of the header information
506  *
507  * decap WEP encrypted fragment
508  *
509  * Returns: QDF_STATUS
510  */
511 static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
512 {
513 	uint8_t *origHdr;
514 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
515 
516 	origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
517 	qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
518 
519 	qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
520 
521 	return QDF_STATUS_SUCCESS;
522 }
523 
524 /*
525  * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
526  * @soc: soc handle
527  * @nbuf: Pointer to the fragment
528  *
529  * Calculate the header size of the received fragment
530  *
531  * Returns: header size (uint16_t)
532  */
533 static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
534 {
535 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
536 	uint16_t size = sizeof(struct ieee80211_frame);
537 	uint16_t fc = 0;
538 	uint32_t to_ds, fr_ds;
539 	uint8_t frm_ctrl_valid;
540 	uint16_t frm_ctrl_field;
541 
542 	to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
543 	fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
544 	frm_ctrl_valid =
545 		hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
546 						    rx_tlv_hdr);
547 	frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
548 
549 	if (to_ds && fr_ds)
550 		size += QDF_MAC_ADDR_SIZE;
551 
552 	if (frm_ctrl_valid) {
553 		fc = frm_ctrl_field;
554 
555 		/* use 1-st byte for validation */
556 		if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
557 			size += sizeof(uint16_t);
558 			/* use 2-nd byte for validation */
559 			if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
560 				size += sizeof(struct ieee80211_htc);
561 		}
562 	}
563 
564 	return size;
565 }
566 
567 /*
568  * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
569  * @wh0: Pointer to the wireless header of the fragment
570  * @hdr: Array to hold the pseudo header
571  *
572  * Calculate a pseudo MIC header
573  *
574  * Returns: None
575  */
576 static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
577 				uint8_t hdr[])
578 {
579 	const struct ieee80211_frame_addr4 *wh =
580 		(const struct ieee80211_frame_addr4 *)wh0;
581 
582 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
583 	case IEEE80211_FC1_DIR_NODS:
584 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
585 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
586 					   wh->i_addr2);
587 		break;
588 	case IEEE80211_FC1_DIR_TODS:
589 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
590 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
591 					   wh->i_addr2);
592 		break;
593 	case IEEE80211_FC1_DIR_FROMDS:
594 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
595 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
596 					   wh->i_addr3);
597 		break;
598 	case IEEE80211_FC1_DIR_DSTODS:
599 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
600 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
601 					   wh->i_addr4);
602 		break;
603 	}
604 
605 	/*
606 	 * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
607 	 * it could also be set for deauth, disassoc, action, etc. for
608 	 * a mgt type frame. It comes into picture for MFP.
609 	 */
610 	if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
611 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
612 				IEEE80211_FC1_DIR_DSTODS) {
613 			const struct ieee80211_qosframe_addr4 *qwh =
614 				(const struct ieee80211_qosframe_addr4 *)wh;
615 			hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
616 		} else {
617 			const struct ieee80211_qosframe *qwh =
618 				(const struct ieee80211_qosframe *)wh;
619 			hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
620 		}
621 	} else {
622 		hdr[12] = 0;
623 	}
624 
625 	hdr[13] = hdr[14] = hdr[15] = 0;	/* reserved */
626 }
627 
628 /*
629  * dp_rx_defrag_mic(): Calculate MIC header
630  * @key: Pointer to the key
631  * @wbuf: fragment buffer
632  * @off: Offset
633  * @data_len: Data length
634  * @mic: Array to hold MIC
635  *
636  * Calculate a pseudo MIC header
637  *
638  * Returns: QDF_STATUS
639  */
640 static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
641 		uint16_t off, uint16_t data_len, uint8_t mic[])
642 {
643 	uint8_t hdr[16] = { 0, };
644 	uint32_t l, r;
645 	const uint8_t *data;
646 	uint32_t space;
647 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
648 
649 	dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
650 		+ rx_desc_len), hdr);
651 
652 	l = dp_rx_get_le32(key);
653 	r = dp_rx_get_le32(key + 4);
654 
655 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
656 	l ^= dp_rx_get_le32(hdr);
657 	dp_rx_michael_block(l, r);
658 	l ^= dp_rx_get_le32(&hdr[4]);
659 	dp_rx_michael_block(l, r);
660 	l ^= dp_rx_get_le32(&hdr[8]);
661 	dp_rx_michael_block(l, r);
662 	l ^= dp_rx_get_le32(&hdr[12]);
663 	dp_rx_michael_block(l, r);
664 
665 	/* first buffer has special handling */
666 	data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
667 	space = qdf_nbuf_len(wbuf) - off;
668 
669 	for (;; ) {
670 		if (space > data_len)
671 			space = data_len;
672 
673 		/* collect 32-bit blocks from current buffer */
674 		while (space >= sizeof(uint32_t)) {
675 			l ^= dp_rx_get_le32(data);
676 			dp_rx_michael_block(l, r);
677 			data += sizeof(uint32_t);
678 			space -= sizeof(uint32_t);
679 			data_len -= sizeof(uint32_t);
680 		}
681 		if (data_len < sizeof(uint32_t))
682 			break;
683 
684 		wbuf = qdf_nbuf_next(wbuf);
685 		if (!wbuf)
686 			return QDF_STATUS_E_DEFRAG_ERROR;
687 
688 		if (space != 0) {
689 			const uint8_t *data_next;
690 			/*
691 			 * Block straddles buffers, split references.
692 			 */
693 			data_next =
694 				(uint8_t *)qdf_nbuf_data(wbuf) + off;
695 			if ((qdf_nbuf_len(wbuf)) <
696 				sizeof(uint32_t) - space) {
697 				return QDF_STATUS_E_DEFRAG_ERROR;
698 			}
699 			switch (space) {
700 			case 1:
701 				l ^= dp_rx_get_le32_split(data[0],
702 					data_next[0], data_next[1],
703 					data_next[2]);
704 				data = data_next + 3;
705 				space = (qdf_nbuf_len(wbuf) - off) - 3;
706 				break;
707 			case 2:
708 				l ^= dp_rx_get_le32_split(data[0], data[1],
709 						    data_next[0], data_next[1]);
710 				data = data_next + 2;
711 				space = (qdf_nbuf_len(wbuf) - off) - 2;
712 				break;
713 			case 3:
714 				l ^= dp_rx_get_le32_split(data[0], data[1],
715 					data[2], data_next[0]);
716 				data = data_next + 1;
717 				space = (qdf_nbuf_len(wbuf) - off) - 1;
718 				break;
719 			}
720 			dp_rx_michael_block(l, r);
721 			data_len -= sizeof(uint32_t);
722 		} else {
723 			/*
724 			 * Setup for next buffer.
725 			 */
726 			data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
727 			space = qdf_nbuf_len(wbuf) - off;
728 		}
729 	}
730 	/* Last block and padding (0x5a, 4..7 x 0) */
731 	switch (data_len) {
732 	case 0:
733 		l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
734 		break;
735 	case 1:
736 		l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
737 		break;
738 	case 2:
739 		l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
740 		break;
741 	case 3:
742 		l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
743 		break;
744 	}
745 	dp_rx_michael_block(l, r);
746 	dp_rx_michael_block(l, r);
747 	dp_rx_put_le32(mic, l);
748 	dp_rx_put_le32(mic + 4, r);
749 
750 	return QDF_STATUS_SUCCESS;
751 }
752 
753 /*
754  * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
755  * @key: Pointer to the key
756  * @msdu: fragment buffer
757  * @hdrlen: Length of the header information
758  *
759  * Remove MIC information from the TKIP frame
760  *
761  * Returns: QDF_STATUS
762  */
763 static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
764 					qdf_nbuf_t msdu, uint16_t hdrlen)
765 {
766 	QDF_STATUS status;
767 	uint32_t pktlen = 0;
768 	uint8_t mic[IEEE80211_WEP_MICLEN];
769 	uint8_t mic0[IEEE80211_WEP_MICLEN];
770 	qdf_nbuf_t prev = NULL, next;
771 
772 	next = msdu;
773 	while (next) {
774 		pktlen += (qdf_nbuf_len(next) - hdrlen);
775 		prev = next;
776 		dp_debug("%s pktlen %u", __func__,
777 			 (uint32_t)(qdf_nbuf_len(next) - hdrlen));
778 		next = qdf_nbuf_next(next);
779 	}
780 
781 	if (!prev) {
782 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
783 			  "%s Defrag chaining failed !\n", __func__);
784 		return QDF_STATUS_E_DEFRAG_ERROR;
785 	}
786 
787 	qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
788 			   dp_f_tkip.ic_miclen, (caddr_t)mic0);
789 	qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
790 	pktlen -= dp_f_tkip.ic_miclen;
791 
792 	status = dp_rx_defrag_mic(key, msdu, hdrlen,
793 				pktlen, mic);
794 
795 	if (QDF_IS_STATUS_ERROR(status))
796 		return status;
797 
798 	if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
799 		return QDF_STATUS_E_DEFRAG_ERROR;
800 
801 	return QDF_STATUS_SUCCESS;
802 }
803 
804 /*
805  * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
806  * @nbuf: buffer pointer
807  * @hdrsize: size of the header to be pulled
808  *
809  * Pull the RXTLV & the 802.11 headers
810  *
811  * Returns: None
812  */
813 static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
814 {
815 	struct rx_pkt_tlvs *rx_pkt_tlv =
816 				(struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
817 	struct rx_mpdu_info *rx_mpdu_info_details =
818 		&rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
819 
820 	dp_debug("pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
821 		 rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
822 		 rx_mpdu_info_details->pn_95_64,
823 		 rx_mpdu_info_details->pn_127_96);
824 
825 	qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN + hdrsize);
826 
827 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
828 		  "%s: final pktlen %d .11len %d",
829 		  __func__, (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
830 }
831 
832 /*
833  * dp_rx_construct_fraglist(): Construct a nbuf fraglist
834  * @peer: Pointer to the peer
835  * @head: Pointer to list of fragments
836  * @hdrsize: Size of the header to be pulled
837  *
838  * Construct a nbuf fraglist
839  *
840  * Returns: None
841  */
842 static int
843 dp_rx_construct_fraglist(struct dp_peer *peer, int tid, qdf_nbuf_t head,
844 			 uint16_t hdrsize)
845 {
846 	qdf_nbuf_t msdu = qdf_nbuf_next(head);
847 	qdf_nbuf_t rx_nbuf = msdu;
848 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
849 	uint32_t len = 0;
850 	uint64_t cur_pn128[2], prev_pn128[2];
851 	int out_of_order = 0;
852 
853 	prev_pn128[0] = rx_tid->pn128[0];
854 	prev_pn128[1] = rx_tid->pn128[1];
855 
856 	while (msdu) {
857 		struct rx_pkt_tlvs *rx_pkt_tlv =
858 				(struct rx_pkt_tlvs *)qdf_nbuf_data(msdu);
859 		struct rx_mpdu_info *rx_mpdu_info_details =
860 		 &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
861 
862 		cur_pn128[0] = rx_mpdu_info_details->pn_31_0;
863 		cur_pn128[0] |=
864 			((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
865 		cur_pn128[1] = rx_mpdu_info_details->pn_95_64;
866 		cur_pn128[1] |=
867 			((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
868 
869 		dp_debug("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
870 			 cur_pn128[0], cur_pn128[1],
871 			 prev_pn128[0], prev_pn128[1]);
872 		if (cur_pn128[1] == prev_pn128[1])
873 			out_of_order = (cur_pn128[0] <= prev_pn128[0]);
874 		else
875 			out_of_order = (cur_pn128[1] < prev_pn128[1]);
876 
877 		if (out_of_order)
878 			return QDF_STATUS_E_FAILURE;
879 
880 		prev_pn128[0] = cur_pn128[0];
881 		prev_pn128[1] = cur_pn128[1];
882 
883 		dp_rx_frag_pull_hdr(msdu, hdrsize);
884 		len += qdf_nbuf_len(msdu);
885 		msdu = qdf_nbuf_next(msdu);
886 	}
887 
888 	qdf_nbuf_append_ext_list(head, rx_nbuf, len);
889 	qdf_nbuf_set_next(head, NULL);
890 	qdf_nbuf_set_is_frag(head, 1);
891 
892 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
893 		  "%s: head len %d ext len %d data len %d ",
894 		  __func__,
895 		  (uint32_t)qdf_nbuf_len(head),
896 		  (uint32_t)qdf_nbuf_len(rx_nbuf),
897 		  (uint32_t)(head->data_len));
898 
899 	return QDF_STATUS_SUCCESS;
900 }
901 
902 /**
903  * dp_rx_defrag_err() - rx err handler
904  * @pdev: handle to pdev object
905  * @vdev_id: vdev id
906  * @peer_mac_addr: peer mac address
907  * @tid: TID
908  * @tsf32: TSF
909  * @err_type: error type
910  * @rx_frame: rx frame
911  * @pn: PN Number
912  * @key_id: key id
913  *
914  * This function handles rx error and send MIC error notification
915  *
916  * Return: None
917  */
918 static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
919 {
920 	struct ol_if_ops *tops = NULL;
921 	struct dp_pdev *pdev = vdev->pdev;
922 	int rx_desc_len = SIZE_OF_DATA_RX_TLV;
923 	uint8_t *orig_hdr;
924 	struct ieee80211_frame *wh;
925 	struct cdp_rx_mic_err_info mic_failure_info;
926 
927 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
928 	wh = (struct ieee80211_frame *)orig_hdr;
929 
930 	qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
931 			 (struct qdf_mac_addr *)&wh->i_addr1);
932 	qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
933 			 (struct qdf_mac_addr *)&wh->i_addr2);
934 	mic_failure_info.key_id = 0;
935 	mic_failure_info.multicast =
936 		IEEE80211_IS_MULTICAST(wh->i_addr1);
937 	qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
938 	mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
939 	mic_failure_info.data = (uint8_t *)wh;
940 	mic_failure_info.vdev_id = vdev->vdev_id;
941 
942 	tops = pdev->soc->cdp_soc.ol_ops;
943 	if (tops->rx_mic_error)
944 		tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
945 				   &mic_failure_info);
946 }
947 
948 
949 /*
950  * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
951  * @soc: dp soc handle
952  * @nbuf: Pointer to the fragment buffer
953  * @hdrsize: Size of headers
954  *
955  * Transcap the fragment from 802.11 to 802.3
956  *
957  * Returns: None
958  */
959 static void
960 dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_peer *peer, int tid,
961 			   qdf_nbuf_t nbuf, uint16_t hdrsize)
962 {
963 	struct llc_snap_hdr_t *llchdr;
964 	struct ethernet_hdr_t *eth_hdr;
965 	uint8_t ether_type[2];
966 	uint16_t fc = 0;
967 	union dp_align_mac_addr mac_addr;
968 	uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
969 	struct rx_pkt_tlvs *rx_pkt_tlv =
970 				(struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
971 	struct rx_mpdu_info *rx_mpdu_info_details =
972 		&rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
973 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
974 
975 	dp_debug("head_nbuf pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
976 		 rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
977 		 rx_mpdu_info_details->pn_95_64,
978 		 rx_mpdu_info_details->pn_127_96);
979 
980 	rx_tid->pn128[0] = rx_mpdu_info_details->pn_31_0;
981 	rx_tid->pn128[0] |= ((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
982 	rx_tid->pn128[1] = rx_mpdu_info_details->pn_95_64;
983 	rx_tid->pn128[1] |= ((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
984 
985 	if (!rx_desc_info) {
986 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
987 			"%s: Memory alloc failed ! ", __func__);
988 		QDF_ASSERT(0);
989 		return;
990 	}
991 
992 	qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
993 
994 	llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
995 					RX_PKT_TLVS_LEN + hdrsize);
996 	qdf_mem_copy(ether_type, llchdr->ethertype, 2);
997 
998 	qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
999 				  sizeof(struct llc_snap_hdr_t) -
1000 				  sizeof(struct ethernet_hdr_t)));
1001 
1002 	eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
1003 
1004 	if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
1005 						rx_desc_info))
1006 		fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
1007 
1008 	dp_debug("%s: frame control type: 0x%x", __func__, fc);
1009 
1010 	switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
1011 	case IEEE80211_FC1_DIR_NODS:
1012 		hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
1013 				      &mac_addr.raw[0]);
1014 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
1015 			QDF_MAC_ADDR_SIZE);
1016 		hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
1017 				      &mac_addr.raw[0]);
1018 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
1019 			QDF_MAC_ADDR_SIZE);
1020 		break;
1021 	case IEEE80211_FC1_DIR_TODS:
1022 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
1023 				      &mac_addr.raw[0]);
1024 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
1025 			QDF_MAC_ADDR_SIZE);
1026 		hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
1027 				      &mac_addr.raw[0]);
1028 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
1029 			QDF_MAC_ADDR_SIZE);
1030 		break;
1031 	case IEEE80211_FC1_DIR_FROMDS:
1032 		hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
1033 				      &mac_addr.raw[0]);
1034 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
1035 			QDF_MAC_ADDR_SIZE);
1036 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
1037 				      &mac_addr.raw[0]);
1038 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
1039 			QDF_MAC_ADDR_SIZE);
1040 		break;
1041 
1042 	case IEEE80211_FC1_DIR_DSTODS:
1043 		hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
1044 				      &mac_addr.raw[0]);
1045 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
1046 			QDF_MAC_ADDR_SIZE);
1047 		hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
1048 				      &mac_addr.raw[0]);
1049 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
1050 			QDF_MAC_ADDR_SIZE);
1051 		break;
1052 
1053 	default:
1054 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1055 		"%s: Unknown frame control type: 0x%x", __func__, fc);
1056 	}
1057 
1058 	qdf_mem_copy(eth_hdr->ethertype, ether_type,
1059 			sizeof(ether_type));
1060 
1061 	qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
1062 	qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
1063 	qdf_mem_free(rx_desc_info);
1064 }
1065 
1066 #ifdef RX_DEFRAG_DO_NOT_REINJECT
1067 /*
1068  * dp_rx_defrag_deliver(): Deliver defrag packet to stack
1069  * @peer: Pointer to the peer
1070  * @tid: Transmit Identifier
1071  * @head: Nbuf to be delivered
1072  *
1073  * Returns: None
1074  */
1075 static inline void dp_rx_defrag_deliver(struct dp_peer *peer,
1076 					unsigned int tid,
1077 					qdf_nbuf_t head)
1078 {
1079 	struct dp_vdev *vdev = peer->vdev;
1080 	struct dp_soc *soc = vdev->pdev->soc;
1081 	qdf_nbuf_t deliver_list_head = NULL;
1082 	qdf_nbuf_t deliver_list_tail = NULL;
1083 	uint8_t *rx_tlv_hdr;
1084 
1085 	rx_tlv_hdr = qdf_nbuf_data(head);
1086 
1087 	QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
1088 	qdf_nbuf_set_tid_val(head, tid);
1089 	qdf_nbuf_pull_head(head, RX_PKT_TLVS_LEN);
1090 
1091 	DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
1092 			  head);
1093 	dp_rx_deliver_to_stack(soc, vdev, peer, deliver_list_head,
1094 			       deliver_list_tail);
1095 }
1096 
1097 /*
1098  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
1099  * @peer: Pointer to the peer
1100  * @tid: Transmit Identifier
1101  * @head: Buffer to be reinjected back
1102  *
1103  * Reinject the fragment chain back into REO
1104  *
1105  * Returns: QDF_STATUS
1106  */
1107 static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
1108 					    unsigned int tid, qdf_nbuf_t head)
1109 {
1110 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1111 
1112 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1113 
1114 	dp_rx_defrag_deliver(peer, tid, head);
1115 	rx_reorder_array_elem->head = NULL;
1116 	rx_reorder_array_elem->tail = NULL;
1117 	dp_rx_return_head_frag_desc(peer, tid);
1118 
1119 	return QDF_STATUS_SUCCESS;
1120 }
1121 #else
1122 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
1123 /**
1124  * dp_rx_reinject_ring_record_entry() - Record reinject ring history
1125  * @soc: Datapath soc structure
1126  * @paddr: paddr of the buffer reinjected to SW2REO ring
1127  * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
1128  * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
1129  *
1130  * Returns: None
1131  */
1132 static inline void
1133 dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
1134 				 uint32_t sw_cookie, uint8_t rbm)
1135 {
1136 	struct dp_buf_info_record *record;
1137 	uint32_t idx;
1138 
1139 	if (qdf_unlikely(soc->rx_reinject_ring_history))
1140 		return;
1141 
1142 	idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
1143 					DP_RX_REINJECT_HIST_MAX);
1144 
1145 	/* No NULL check needed for record since its an array */
1146 	record = &soc->rx_reinject_ring_history->entry[idx];
1147 
1148 	record->timestamp = qdf_get_log_timestamp();
1149 	record->hbi.paddr = paddr;
1150 	record->hbi.sw_cookie = sw_cookie;
1151 	record->hbi.rbm = rbm;
1152 }
1153 #else
1154 static inline void
1155 dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
1156 				 uint32_t sw_cookie, uint8_t rbm)
1157 {
1158 }
1159 #endif
1160 
1161 /*
1162  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
1163  * @peer: Pointer to the peer
1164  * @tid: Transmit Identifier
1165  * @head: Buffer to be reinjected back
1166  *
1167  * Reinject the fragment chain back into REO
1168  *
1169  * Returns: QDF_STATUS
1170  */
1171 static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
1172 					    unsigned int tid, qdf_nbuf_t head)
1173 {
1174 	struct dp_pdev *pdev = peer->vdev->pdev;
1175 	struct dp_soc *soc = pdev->soc;
1176 	struct hal_buf_info buf_info;
1177 	void *link_desc_va;
1178 	void *msdu0, *msdu_desc_info;
1179 	void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
1180 	void *dst_mpdu_desc_info, *dst_qdesc_addr;
1181 	qdf_dma_addr_t paddr;
1182 	uint32_t nbuf_len, seq_no, dst_ind;
1183 	uint32_t *mpdu_wrd;
1184 	uint32_t ret, cookie;
1185 	hal_ring_desc_t dst_ring_desc =
1186 		peer->rx_tid[tid].dst_ring_desc;
1187 	hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
1188 	struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
1189 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1190 						peer->rx_tid[tid].array;
1191 	qdf_nbuf_t nbuf_head;
1192 	struct rx_desc_pool *rx_desc_pool = NULL;
1193 	void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
1194 
1195 	/* do duplicate link desc address check */
1196 	dp_rx_link_desc_refill_duplicate_check(
1197 				soc,
1198 				&soc->last_op_info.reo_reinject_link_desc,
1199 				buf_addr_info);
1200 
1201 	nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
1202 	if (qdf_unlikely(!nbuf_head)) {
1203 		dp_err_rl("IPA RX REO reinject failed");
1204 		return QDF_STATUS_E_FAILURE;
1205 	}
1206 
1207 	/* update new allocated skb in case IPA is enabled */
1208 	if (nbuf_head != head) {
1209 		head = nbuf_head;
1210 		rx_desc->nbuf = head;
1211 		rx_reorder_array_elem->head = head;
1212 	}
1213 
1214 	ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
1215 	if (!ent_ring_desc) {
1216 		dp_err_rl("HAL src ring next entry NULL");
1217 		return QDF_STATUS_E_FAILURE;
1218 	}
1219 
1220 	hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
1221 
1222 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
1223 
1224 	qdf_assert_always(link_desc_va);
1225 
1226 	msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
1227 	nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
1228 
1229 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
1230 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
1231 			UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
1232 
1233 	/* msdu reconfig */
1234 	msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
1235 
1236 	dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
1237 
1238 	qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
1239 
1240 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1241 			FIRST_MSDU_IN_MPDU_FLAG, 1);
1242 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1243 			LAST_MSDU_IN_MPDU_FLAG, 1);
1244 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1245 			MSDU_CONTINUATION, 0x0);
1246 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1247 			REO_DESTINATION_INDICATION, dst_ind);
1248 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1249 			MSDU_LENGTH, nbuf_len);
1250 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1251 			SA_IS_VALID, 1);
1252 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1253 			DA_IS_VALID, 1);
1254 
1255 	/* change RX TLV's */
1256 	hal_rx_msdu_start_msdu_len_set(
1257 			qdf_nbuf_data(head), nbuf_len);
1258 
1259 	cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
1260 	rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
1261 
1262 	/* map the nbuf before reinject it into HW */
1263 	ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
1264 					 QDF_DMA_FROM_DEVICE,
1265 					 rx_desc_pool->buf_size);
1266 	if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
1267 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1268 				"%s: nbuf map failed !", __func__);
1269 		return QDF_STATUS_E_FAILURE;
1270 	}
1271 
1272 	/*
1273 	 * As part of rx frag handler bufffer was unmapped and rx desc
1274 	 * unmapped is set to 1. So again for defrag reinject frame reset
1275 	 * it back to 0.
1276 	 */
1277 	rx_desc->unmapped = 0;
1278 
1279 	dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
1280 					  rx_desc_pool->buf_size,
1281 					  true);
1282 
1283 	paddr = qdf_nbuf_get_frag_paddr(head, 0);
1284 
1285 	ret = check_x86_paddr(soc, &head, &paddr, rx_desc_pool);
1286 
1287 	if (ret == QDF_STATUS_E_FAILURE) {
1288 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1289 				"%s: x86 check failed !", __func__);
1290 		return QDF_STATUS_E_FAILURE;
1291 	}
1292 
1293 	hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_DEFRAG_RBM);
1294 
1295 	/* Lets fill entrance ring now !!! */
1296 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
1297 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1298 		"HAL RING Access For REO entrance SRNG Failed: %pK",
1299 		hal_srng);
1300 
1301 		return QDF_STATUS_E_FAILURE;
1302 	}
1303 
1304 	dp_rx_reinject_ring_record_entry(soc, paddr, cookie, DP_DEFRAG_RBM);
1305 	paddr = (uint64_t)buf_info.paddr;
1306 	/* buf addr */
1307 	hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
1308 				     buf_info.sw_cookie,
1309 				     HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
1310 	/* mpdu desc info */
1311 	ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
1312 						    ent_ring_desc);
1313 	dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
1314 						    dst_ring_desc);
1315 
1316 	qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
1317 				sizeof(struct rx_mpdu_desc_info));
1318 	qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
1319 
1320 	mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
1321 	seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
1322 
1323 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1324 			MSDU_COUNT, 0x1);
1325 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1326 				  MPDU_SEQUENCE_NUMBER, seq_no);
1327 	/* unset frag bit */
1328 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1329 			FRAGMENT_FLAG, 0x0);
1330 	/* set sa/da valid bits */
1331 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1332 			SA_IS_VALID, 0x1);
1333 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1334 			DA_IS_VALID, 0x1);
1335 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1336 			RAW_MPDU, 0x0);
1337 
1338 	/* qdesc addr */
1339 	ent_qdesc_addr = (uint8_t *)ent_ring_desc +
1340 		REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1341 
1342 	dst_qdesc_addr = (uint8_t *)dst_ring_desc +
1343 		REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1344 
1345 	qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
1346 
1347 	HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
1348 			REO_DESTINATION_INDICATION, dst_ind);
1349 
1350 	hal_srng_access_end(soc->hal_soc, hal_srng);
1351 
1352 	DP_STATS_INC(soc, rx.reo_reinject, 1);
1353 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1354 		  "%s: reinjection done !", __func__);
1355 	return QDF_STATUS_SUCCESS;
1356 }
1357 #endif
1358 
1359 /*
1360  * dp_rx_defrag(): Defragment the fragment chain
1361  * @peer: Pointer to the peer
1362  * @tid: Transmit Identifier
1363  * @frag_list_head: Pointer to head list
1364  * @frag_list_tail: Pointer to tail list
1365  *
1366  * Defragment the fragment chain
1367  *
1368  * Returns: QDF_STATUS
1369  */
1370 static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
1371 			qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
1372 {
1373 	qdf_nbuf_t tmp_next, prev;
1374 	qdf_nbuf_t cur = frag_list_head, msdu;
1375 	uint32_t index, tkip_demic = 0;
1376 	uint16_t hdr_space;
1377 	uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
1378 	struct dp_vdev *vdev = peer->vdev;
1379 	struct dp_soc *soc = vdev->pdev->soc;
1380 	uint8_t status = 0;
1381 
1382 	hdr_space = dp_rx_defrag_hdrsize(soc, cur);
1383 	index = hal_rx_msdu_is_wlan_mcast(cur) ?
1384 		dp_sec_mcast : dp_sec_ucast;
1385 
1386 	/* Remove FCS from all fragments */
1387 	while (cur) {
1388 		tmp_next = qdf_nbuf_next(cur);
1389 		qdf_nbuf_set_next(cur, NULL);
1390 		qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
1391 		prev = cur;
1392 		qdf_nbuf_set_next(cur, tmp_next);
1393 		cur = tmp_next;
1394 	}
1395 	cur = frag_list_head;
1396 
1397 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1398 		  "%s: index %d Security type: %d", __func__,
1399 		  index, peer->security[index].sec_type);
1400 
1401 	switch (peer->security[index].sec_type) {
1402 	case cdp_sec_type_tkip:
1403 		tkip_demic = 1;
1404 
1405 	case cdp_sec_type_tkip_nomic:
1406 		while (cur) {
1407 			tmp_next = qdf_nbuf_next(cur);
1408 			if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
1409 
1410 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1411 					QDF_TRACE_LEVEL_ERROR,
1412 					"dp_rx_defrag: TKIP decap failed");
1413 
1414 				return QDF_STATUS_E_DEFRAG_ERROR;
1415 			}
1416 			cur = tmp_next;
1417 		}
1418 
1419 		/* If success, increment header to be stripped later */
1420 		hdr_space += dp_f_tkip.ic_header;
1421 		break;
1422 
1423 	case cdp_sec_type_aes_ccmp:
1424 		while (cur) {
1425 			tmp_next = qdf_nbuf_next(cur);
1426 			if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
1427 
1428 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1429 					QDF_TRACE_LEVEL_ERROR,
1430 					"dp_rx_defrag: CCMP demic failed");
1431 
1432 				return QDF_STATUS_E_DEFRAG_ERROR;
1433 			}
1434 			if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
1435 
1436 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1437 					QDF_TRACE_LEVEL_ERROR,
1438 					"dp_rx_defrag: CCMP decap failed");
1439 
1440 				return QDF_STATUS_E_DEFRAG_ERROR;
1441 			}
1442 			cur = tmp_next;
1443 		}
1444 
1445 		/* If success, increment header to be stripped later */
1446 		hdr_space += dp_f_ccmp.ic_header;
1447 		break;
1448 
1449 	case cdp_sec_type_wep40:
1450 	case cdp_sec_type_wep104:
1451 	case cdp_sec_type_wep128:
1452 		while (cur) {
1453 			tmp_next = qdf_nbuf_next(cur);
1454 			if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
1455 
1456 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1457 					QDF_TRACE_LEVEL_ERROR,
1458 					"dp_rx_defrag: WEP decap failed");
1459 
1460 				return QDF_STATUS_E_DEFRAG_ERROR;
1461 			}
1462 			cur = tmp_next;
1463 		}
1464 
1465 		/* If success, increment header to be stripped later */
1466 		hdr_space += dp_f_wep.ic_header;
1467 		break;
1468 	default:
1469 		break;
1470 	}
1471 
1472 	if (tkip_demic) {
1473 		msdu = frag_list_head;
1474 		qdf_mem_copy(key,
1475 			     &peer->security[index].michael_key[0],
1476 			     IEEE80211_WEP_MICLEN);
1477 		status = dp_rx_defrag_tkip_demic(key, msdu,
1478 						 RX_PKT_TLVS_LEN +
1479 						 hdr_space);
1480 
1481 		if (status) {
1482 			dp_rx_defrag_err(vdev, frag_list_head);
1483 
1484 			QDF_TRACE(QDF_MODULE_ID_TXRX,
1485 				  QDF_TRACE_LEVEL_ERROR,
1486 				  "%s: TKIP demic failed status %d",
1487 				   __func__, status);
1488 
1489 			return QDF_STATUS_E_DEFRAG_ERROR;
1490 		}
1491 	}
1492 
1493 	/* Convert the header to 802.3 header */
1494 	dp_rx_defrag_nwifi_to_8023(soc, peer, tid, frag_list_head, hdr_space);
1495 	if (dp_rx_construct_fraglist(peer, tid, frag_list_head, hdr_space))
1496 		return QDF_STATUS_E_DEFRAG_ERROR;
1497 
1498 	return QDF_STATUS_SUCCESS;
1499 }
1500 
1501 /*
1502  * dp_rx_defrag_cleanup(): Clean up activities
1503  * @peer: Pointer to the peer
1504  * @tid: Transmit Identifier
1505  *
1506  * Returns: None
1507  */
1508 void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
1509 {
1510 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1511 				peer->rx_tid[tid].array;
1512 
1513 	if (rx_reorder_array_elem) {
1514 		/* Free up nbufs */
1515 		dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1516 		rx_reorder_array_elem->head = NULL;
1517 		rx_reorder_array_elem->tail = NULL;
1518 	} else {
1519 		dp_info("Cleanup self peer %pK and TID %u at MAC address %pM",
1520 			peer, tid, peer->mac_addr.raw);
1521 	}
1522 
1523 	/* Free up saved ring descriptors */
1524 	dp_rx_clear_saved_desc_info(peer, tid);
1525 
1526 	peer->rx_tid[tid].defrag_timeout_ms = 0;
1527 	peer->rx_tid[tid].curr_frag_num = 0;
1528 	peer->rx_tid[tid].curr_seq_num = 0;
1529 }
1530 
1531 /*
1532  * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
1533  * @ring_desc: Pointer to the dst ring descriptor
1534  * @peer: Pointer to the peer
1535  * @tid: Transmit Identifier
1536  *
1537  * Returns: None
1538  */
1539 static QDF_STATUS
1540 dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
1541 				      struct dp_rx_desc *rx_desc,
1542 				      struct dp_peer *peer,
1543 				      unsigned int tid)
1544 {
1545 	void *dst_ring_desc = qdf_mem_malloc(
1546 			sizeof(struct reo_destination_ring));
1547 
1548 	if (!dst_ring_desc) {
1549 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1550 			"%s: Memory alloc failed !", __func__);
1551 		QDF_ASSERT(0);
1552 		return QDF_STATUS_E_NOMEM;
1553 	}
1554 
1555 	qdf_mem_copy(dst_ring_desc, ring_desc,
1556 		       sizeof(struct reo_destination_ring));
1557 
1558 	peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
1559 	peer->rx_tid[tid].head_frag_desc = rx_desc;
1560 
1561 	return QDF_STATUS_SUCCESS;
1562 }
1563 
1564 /*
1565  * dp_rx_defrag_store_fragment(): Store incoming fragments
1566  * @soc: Pointer to the SOC data structure
1567  * @ring_desc: Pointer to the ring descriptor
1568  * @mpdu_desc_info: MPDU descriptor info
1569  * @tid: Traffic Identifier
1570  * @rx_desc: Pointer to rx descriptor
1571  * @rx_bfs: Number of bfs consumed
1572  *
1573  * Returns: QDF_STATUS
1574  */
1575 static QDF_STATUS
1576 dp_rx_defrag_store_fragment(struct dp_soc *soc,
1577 			    hal_ring_desc_t ring_desc,
1578 			    union dp_rx_desc_list_elem_t **head,
1579 			    union dp_rx_desc_list_elem_t **tail,
1580 			    struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1581 			    unsigned int tid, struct dp_rx_desc *rx_desc,
1582 			    uint32_t *rx_bfs)
1583 {
1584 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1585 	struct dp_pdev *pdev;
1586 	struct dp_peer *peer = NULL;
1587 	uint16_t peer_id;
1588 	uint8_t fragno, more_frag, all_frag_present = 0;
1589 	uint16_t rxseq = mpdu_desc_info->mpdu_seq;
1590 	QDF_STATUS status;
1591 	struct dp_rx_tid *rx_tid;
1592 	uint8_t mpdu_sequence_control_valid;
1593 	uint8_t mpdu_frame_control_valid;
1594 	qdf_nbuf_t frag = rx_desc->nbuf;
1595 	uint32_t msdu_len;
1596 
1597 	if (qdf_nbuf_len(frag) > 0) {
1598 		dp_info("Dropping unexpected packet with skb_len: %d,"
1599 			"data len: %d, cookie: %d",
1600 			(uint32_t)qdf_nbuf_len(frag), frag->data_len,
1601 			rx_desc->cookie);
1602 		DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
1603 		goto discard_frag;
1604 	}
1605 
1606 	if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
1607 		/* fragment queued back to the pool, free the link desc */
1608 		goto err_free_desc;
1609 	}
1610 
1611 	msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
1612 
1613 	qdf_nbuf_set_pktlen(frag, (msdu_len + RX_PKT_TLVS_LEN));
1614 	qdf_nbuf_append_ext_list(frag, NULL, 0);
1615 
1616 	/* Check if the packet is from a valid peer */
1617 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1618 					mpdu_desc_info->peer_meta_data);
1619 	peer = dp_peer_find_by_id(soc, peer_id);
1620 
1621 	if (!peer) {
1622 		/* We should not receive anything from unknown peer
1623 		 * however, that might happen while we are in the monitor mode.
1624 		 * We don't need to handle that here
1625 		 */
1626 		dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
1627 			   peer_id);
1628 		DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
1629 		goto discard_frag;
1630 	}
1631 
1632 	if (tid >= DP_MAX_TIDS) {
1633 		dp_info("TID out of bounds: %d", tid);
1634 		qdf_assert_always(0);
1635 	}
1636 
1637 	pdev = peer->vdev->pdev;
1638 	rx_tid = &peer->rx_tid[tid];
1639 
1640 	mpdu_sequence_control_valid =
1641 		hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
1642 						       rx_desc->rx_buf_start);
1643 
1644 	/* Invalid MPDU sequence control field, MPDU is of no use */
1645 	if (!mpdu_sequence_control_valid) {
1646 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1647 			"Invalid MPDU seq control field, dropping MPDU");
1648 
1649 		qdf_assert(0);
1650 		goto discard_frag;
1651 	}
1652 
1653 	mpdu_frame_control_valid =
1654 		hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
1655 						    rx_desc->rx_buf_start);
1656 
1657 	/* Invalid frame control field */
1658 	if (!mpdu_frame_control_valid) {
1659 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1660 			"Invalid frame control field, dropping MPDU");
1661 
1662 		qdf_assert(0);
1663 		goto discard_frag;
1664 	}
1665 
1666 	/* Current mpdu sequence */
1667 	more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
1668 
1669 	/* HW does not populate the fragment number as of now
1670 	 * need to get from the 802.11 header
1671 	 */
1672 	fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
1673 
1674 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1675 	if (!rx_reorder_array_elem) {
1676 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1677 			  "Rcvd Fragmented pkt before peer_tid is setup");
1678 		goto discard_frag;
1679 	}
1680 
1681 	/*
1682 	 * !more_frag: no more fragments to be delivered
1683 	 * !frag_no: packet is not fragmented
1684 	 * !rx_reorder_array_elem->head: no saved fragments so far
1685 	 */
1686 	if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
1687 		/* We should not get into this situation here.
1688 		 * It means an unfragmented packet with fragment flag
1689 		 * is delivered over the REO exception ring.
1690 		 * Typically it follows normal rx path.
1691 		 */
1692 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1693 			"Rcvd unfragmented pkt on REO Err srng, dropping");
1694 
1695 		qdf_assert(0);
1696 		goto discard_frag;
1697 	}
1698 
1699 	/* Check if the fragment is for the same sequence or a different one */
1700 	dp_debug("rx_tid %d", tid);
1701 	if (rx_reorder_array_elem->head) {
1702 		dp_debug("rxseq %d\n", rxseq);
1703 		if (rxseq != rx_tid->curr_seq_num) {
1704 
1705 			dp_debug("mismatch cur_seq %d rxseq %d\n",
1706 				 rx_tid->curr_seq_num, rxseq);
1707 			/* Drop stored fragments if out of sequence
1708 			 * fragment is received
1709 			 */
1710 			dp_rx_reorder_flush_frag(peer, tid);
1711 
1712 			DP_STATS_INC(soc, rx.rx_frag_oor, 1);
1713 
1714 			dp_debug("cur rxseq %d\n", rxseq);
1715 			/*
1716 			 * The sequence number for this fragment becomes the
1717 			 * new sequence number to be processed
1718 			 */
1719 			rx_tid->curr_seq_num = rxseq;
1720 		}
1721 	} else {
1722 		dp_debug("cur rxseq %d\n", rxseq);
1723 		/* Start of a new sequence */
1724 		dp_rx_defrag_cleanup(peer, tid);
1725 		rx_tid->curr_seq_num = rxseq;
1726 		/* store PN number also */
1727 	}
1728 
1729 	/*
1730 	 * If the earlier sequence was dropped, this will be the fresh start.
1731 	 * Else, continue with next fragment in a given sequence
1732 	 */
1733 	status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
1734 			&rx_reorder_array_elem->tail, frag,
1735 			&all_frag_present);
1736 
1737 	/*
1738 	 * Currently, we can have only 6 MSDUs per-MPDU, if the current
1739 	 * packet sequence has more than 6 MSDUs for some reason, we will
1740 	 * have to use the next MSDU link descriptor and chain them together
1741 	 * before reinjection
1742 	 */
1743 	if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
1744 			(rx_reorder_array_elem->head == frag)) {
1745 
1746 		qdf_assert_always(ring_desc);
1747 		status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
1748 					rx_desc, peer, tid);
1749 
1750 		if (status != QDF_STATUS_SUCCESS) {
1751 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1752 				"%s: Unable to store ring desc !", __func__);
1753 			goto discard_frag;
1754 		}
1755 	} else {
1756 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1757 		(*rx_bfs)++;
1758 
1759 		/* Return the non-head link desc */
1760 		if (ring_desc &&
1761 		    dp_rx_link_desc_return(soc, ring_desc,
1762 					   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1763 		    QDF_STATUS_SUCCESS)
1764 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1765 				  "%s: Failed to return link desc", __func__);
1766 
1767 	}
1768 
1769 	if (pdev->soc->rx.flags.defrag_timeout_check)
1770 		dp_rx_defrag_waitlist_remove(peer, tid);
1771 
1772 	/* Yet to receive more fragments for this sequence number */
1773 	if (!all_frag_present) {
1774 		uint32_t now_ms =
1775 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1776 
1777 		peer->rx_tid[tid].defrag_timeout_ms =
1778 			now_ms + pdev->soc->rx.defrag.timeout_ms;
1779 
1780 		dp_rx_defrag_waitlist_add(peer, tid);
1781 		dp_peer_unref_del_find_by_id(peer);
1782 
1783 		return QDF_STATUS_SUCCESS;
1784 	}
1785 
1786 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1787 		  "All fragments received for sequence: %d", rxseq);
1788 
1789 	/* Process the fragments */
1790 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1791 		rx_reorder_array_elem->tail);
1792 	if (QDF_IS_STATUS_ERROR(status)) {
1793 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1794 			"Fragment processing failed");
1795 
1796 		dp_rx_add_to_free_desc_list(head, tail,
1797 				peer->rx_tid[tid].head_frag_desc);
1798 		(*rx_bfs)++;
1799 
1800 		if (dp_rx_link_desc_return(soc,
1801 					peer->rx_tid[tid].dst_ring_desc,
1802 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1803 				QDF_STATUS_SUCCESS)
1804 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1805 					"%s: Failed to return link desc",
1806 					__func__);
1807 		dp_rx_defrag_cleanup(peer, tid);
1808 		goto end;
1809 	}
1810 
1811 	/* Re-inject the fragments back to REO for further processing */
1812 	status = dp_rx_defrag_reo_reinject(peer, tid,
1813 			rx_reorder_array_elem->head);
1814 	if (QDF_IS_STATUS_SUCCESS(status)) {
1815 		rx_reorder_array_elem->head = NULL;
1816 		rx_reorder_array_elem->tail = NULL;
1817 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1818 			  "Fragmented sequence successfully reinjected");
1819 	} else {
1820 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1821 		"Fragmented sequence reinjection failed");
1822 		dp_rx_return_head_frag_desc(peer, tid);
1823 	}
1824 
1825 	dp_rx_defrag_cleanup(peer, tid);
1826 
1827 	dp_peer_unref_del_find_by_id(peer);
1828 
1829 	return QDF_STATUS_SUCCESS;
1830 
1831 discard_frag:
1832 	qdf_nbuf_free(frag);
1833 err_free_desc:
1834 	dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1835 	if (dp_rx_link_desc_return(soc, ring_desc,
1836 				   HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1837 	    QDF_STATUS_SUCCESS)
1838 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1839 			  "%s: Failed to return link desc", __func__);
1840 	(*rx_bfs)++;
1841 
1842 end:
1843 	if (peer)
1844 		dp_peer_unref_del_find_by_id(peer);
1845 
1846 	DP_STATS_INC(soc, rx.rx_frag_err, 1);
1847 	return QDF_STATUS_E_DEFRAG_ERROR;
1848 }
1849 
1850 /**
1851  * dp_rx_frag_handle() - Handles fragmented Rx frames
1852  *
1853  * @soc: core txrx main context
1854  * @ring_desc: opaque pointer to the REO error ring descriptor
1855  * @mpdu_desc_info: MPDU descriptor information from ring descriptor
1856  * @head: head of the local descriptor free-list
1857  * @tail: tail of the local descriptor free-list
1858  * @quota: No. of units (packets) that can be serviced in one shot.
1859  *
1860  * This function implements RX 802.11 fragmentation handling
1861  * The handling is mostly same as legacy fragmentation handling.
1862  * If required, this function can re-inject the frames back to
1863  * REO ring (with proper setting to by-pass fragmentation check
1864  * but use duplicate detection / re-ordering and routing these frames
1865  * to a different core.
1866  *
1867  * Return: uint32_t: No. of elements processed
1868  */
1869 uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
1870 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1871 			   struct dp_rx_desc *rx_desc,
1872 			   uint8_t *mac_id,
1873 			   uint32_t quota)
1874 {
1875 	uint32_t rx_bufs_used = 0;
1876 	qdf_nbuf_t msdu = NULL;
1877 	uint32_t tid;
1878 	uint32_t rx_bfs = 0;
1879 	struct dp_pdev *pdev;
1880 	QDF_STATUS status = QDF_STATUS_SUCCESS;
1881 	struct rx_desc_pool *rx_desc_pool;
1882 
1883 	qdf_assert(soc);
1884 	qdf_assert(mpdu_desc_info);
1885 	qdf_assert(rx_desc);
1886 
1887 	dp_debug("Number of MSDUs to process, num_msdus: %d",
1888 		 mpdu_desc_info->msdu_count);
1889 
1890 
1891 	if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
1892 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1893 			"Not sufficient MSDUs to process");
1894 		return rx_bufs_used;
1895 	}
1896 
1897 	/* all buffers in MSDU link belong to same pdev */
1898 	pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
1899 	if (!pdev) {
1900 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1901 			  "pdev is null for pool_id = %d", rx_desc->pool_id);
1902 		return rx_bufs_used;
1903 	}
1904 
1905 	*mac_id = rx_desc->pool_id;
1906 
1907 	msdu = rx_desc->nbuf;
1908 
1909 	rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
1910 
1911 	if (rx_desc->unmapped)
1912 		return rx_bufs_used;
1913 
1914 	dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
1915 					  rx_desc_pool->buf_size,
1916 					  false);
1917 	qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
1918 				     QDF_DMA_FROM_DEVICE,
1919 				     rx_desc_pool->buf_size);
1920 	rx_desc->unmapped = 1;
1921 
1922 	rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
1923 
1924 	tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
1925 
1926 	/* Process fragment-by-fragment */
1927 	status = dp_rx_defrag_store_fragment(soc, ring_desc,
1928 					     &pdev->free_list_head,
1929 					     &pdev->free_list_tail,
1930 					     mpdu_desc_info,
1931 					     tid, rx_desc, &rx_bfs);
1932 
1933 	if (rx_bfs)
1934 		rx_bufs_used += rx_bfs;
1935 
1936 	if (!QDF_IS_STATUS_SUCCESS(status))
1937 		dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
1938 			   mpdu_desc_info->mpdu_seq,
1939 			   mpdu_desc_info->msdu_count,
1940 			   mpdu_desc_info->mpdu_flags);
1941 
1942 	return rx_bufs_used;
1943 }
1944 
1945 QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
1946 				      struct dp_peer *peer, uint16_t tid,
1947 				      uint16_t rxseq, qdf_nbuf_t nbuf)
1948 {
1949 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1950 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1951 	uint8_t all_frag_present;
1952 	uint32_t msdu_len;
1953 	QDF_STATUS status;
1954 
1955 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1956 
1957 	/*
1958 	 * HW may fill in unexpected peer_id in RX PKT TLV,
1959 	 * if this peer_id related peer is valid by coincidence,
1960 	 * but actually this peer won't do dp_peer_rx_init(like SAP vdev
1961 	 * self peer), then invalid access to rx_reorder_array_elem happened.
1962 	 */
1963 	if (!rx_reorder_array_elem) {
1964 		dp_verbose_debug(
1965 			"peer id:%d mac: %pM drop rx frame!",
1966 			peer->peer_id,
1967 			peer->mac_addr.raw);
1968 		DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
1969 		qdf_nbuf_free(nbuf);
1970 		goto fail;
1971 	}
1972 
1973 	if (rx_reorder_array_elem->head &&
1974 	    rxseq != rx_tid->curr_seq_num) {
1975 		/* Drop stored fragments if out of sequence
1976 		 * fragment is received
1977 		 */
1978 		dp_rx_reorder_flush_frag(peer, tid);
1979 
1980 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1981 			  "%s: No list found for TID %d Seq# %d",
1982 				__func__, tid, rxseq);
1983 		qdf_nbuf_free(nbuf);
1984 		goto fail;
1985 	}
1986 
1987 	msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
1988 
1989 	qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
1990 
1991 	status = dp_rx_defrag_fraglist_insert(peer, tid,
1992 					      &rx_reorder_array_elem->head,
1993 			&rx_reorder_array_elem->tail, nbuf,
1994 			&all_frag_present);
1995 
1996 	if (QDF_IS_STATUS_ERROR(status)) {
1997 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1998 			  "%s Fragment insert failed", __func__);
1999 
2000 		goto fail;
2001 	}
2002 
2003 	if (soc->rx.flags.defrag_timeout_check)
2004 		dp_rx_defrag_waitlist_remove(peer, tid);
2005 
2006 	if (!all_frag_present) {
2007 		uint32_t now_ms =
2008 			qdf_system_ticks_to_msecs(qdf_system_ticks());
2009 
2010 		peer->rx_tid[tid].defrag_timeout_ms =
2011 			now_ms + soc->rx.defrag.timeout_ms;
2012 
2013 		dp_rx_defrag_waitlist_add(peer, tid);
2014 
2015 		return QDF_STATUS_SUCCESS;
2016 	}
2017 
2018 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
2019 			      rx_reorder_array_elem->tail);
2020 
2021 	if (QDF_IS_STATUS_ERROR(status)) {
2022 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2023 			  "%s Fragment processing failed", __func__);
2024 
2025 		dp_rx_return_head_frag_desc(peer, tid);
2026 		dp_rx_defrag_cleanup(peer, tid);
2027 
2028 		goto fail;
2029 	}
2030 
2031 	/* Re-inject the fragments back to REO for further processing */
2032 	status = dp_rx_defrag_reo_reinject(peer, tid,
2033 					   rx_reorder_array_elem->head);
2034 	if (QDF_IS_STATUS_SUCCESS(status)) {
2035 		rx_reorder_array_elem->head = NULL;
2036 		rx_reorder_array_elem->tail = NULL;
2037 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
2038 			  "%s: Frag seq successfully reinjected",
2039 			__func__);
2040 	} else {
2041 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2042 			  "%s: Frag seq reinjection failed", __func__);
2043 		dp_rx_return_head_frag_desc(peer, tid);
2044 	}
2045 
2046 	dp_rx_defrag_cleanup(peer, tid);
2047 	return QDF_STATUS_SUCCESS;
2048 
2049 fail:
2050 	return QDF_STATUS_E_DEFRAG_ERROR;
2051 }
2052