xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx_defrag.c (revision 3149adf58a329e17232a4c0e58d460d025edd55a)
1 /*
2  * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "dp_types.h"
20 #include "dp_rx.h"
21 #include "dp_peer.h"
22 #include "hal_api.h"
23 #include "qdf_trace.h"
24 #include "qdf_nbuf.h"
25 #include "dp_rx_defrag.h"
26 #include <enet.h>	/* LLC_SNAP_HDR_LEN */
27 #include "dp_rx_defrag.h"
28 
29 const struct dp_rx_defrag_cipher dp_f_ccmp = {
30 	"AES-CCM",
31 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
32 	IEEE80211_WEP_MICLEN,
33 	0,
34 };
35 
36 const struct dp_rx_defrag_cipher dp_f_tkip = {
37 	"TKIP",
38 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
39 	IEEE80211_WEP_CRCLEN,
40 	IEEE80211_WEP_MICLEN,
41 };
42 
43 const struct dp_rx_defrag_cipher dp_f_wep = {
44 	"WEP",
45 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
46 	IEEE80211_WEP_CRCLEN,
47 	0,
48 };
49 
50 /*
51  * dp_rx_defrag_frames_free(): Free fragment chain
52  * @frames: Fragment chain
53  *
54  * Iterates through the fragment chain and frees them
55  * Returns: None
56  */
57 static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
58 {
59 	qdf_nbuf_t next, frag = frames;
60 
61 	while (frag) {
62 		next = qdf_nbuf_next(frag);
63 		qdf_nbuf_free(frag);
64 		frag = next;
65 	}
66 }
67 
68 /*
69  * dp_rx_clear_saved_desc_info(): Clears descriptor info
70  * @peer: Pointer to the peer data structure
71  * @tid: Transmit ID (TID)
72  *
73  * Saves MPDU descriptor info and MSDU link pointer from REO
74  * ring descriptor. The cache is created per peer, per TID
75  *
76  * Returns: None
77  */
78 static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
79 {
80 	if (peer->rx_tid[tid].dst_ring_desc)
81 		qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
82 
83 	peer->rx_tid[tid].dst_ring_desc = NULL;
84 }
85 
86 /*
87  * dp_rx_reorder_flush_frag(): Flush the frag list
88  * @peer: Pointer to the peer data structure
89  * @tid: Transmit ID (TID)
90  *
91  * Flush the per-TID frag list
92  *
93  * Returns: None
94  */
95 void dp_rx_reorder_flush_frag(struct dp_peer *peer,
96 			 unsigned int tid)
97 {
98 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
99 
100 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
101 				FL("Flushing TID %d"), tid);
102 
103 	rx_reorder_array_elem = peer->rx_tid[tid].array;
104 	if (rx_reorder_array_elem->head) {
105 		dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
106 		rx_reorder_array_elem->head = NULL;
107 		rx_reorder_array_elem->tail = NULL;
108 	}
109 }
110 
111 /*
112  * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
113  * @soc: DP SOC
114  *
115  * Flush fragments of all waitlisted TID's
116  *
117  * Returns: None
118  */
119 void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
120 {
121 	struct dp_rx_tid *rx_reorder, *tmp;
122 	uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
123 
124 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
125 			   defrag_waitlist_elem, tmp) {
126 		struct dp_peer *peer;
127 		struct dp_rx_tid *rx_reorder_base;
128 		unsigned int tid;
129 
130 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
131 				FL("Current time  %u"), now_ms);
132 
133 		if (rx_reorder->defrag_timeout_ms > now_ms)
134 			break;
135 
136 		tid = rx_reorder->tid;
137 		/* get index 0 of the rx_reorder array */
138 		rx_reorder_base = rx_reorder - tid;
139 		peer =
140 			container_of(rx_reorder_base, struct dp_peer,
141 				     rx_tid[0]);
142 
143 		TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
144 			     defrag_waitlist_elem);
145 		//dp_rx_defrag_waitlist_remove(peer, tid);
146 		dp_rx_reorder_flush_frag(peer, tid);
147 	}
148 }
149 
150 /*
151  * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
152  * @peer: Pointer to the peer data structure
153  * @tid: Transmit ID (TID)
154  *
155  * Appends per-tid fragments to global fragment wait list
156  *
157  * Returns: None
158  */
159 static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
160 {
161 	struct dp_soc *psoc = peer->vdev->pdev->soc;
162 	struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
163 
164 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
165 				FL("Adding TID %u to waitlist"), tid);
166 
167 	/* TODO: use LIST macros instead of TAIL macros */
168 	TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
169 				defrag_waitlist_elem);
170 }
171 
172 /*
173  * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
174  * @peer: Pointer to the peer data structure
175  * @tid: Transmit ID (TID)
176  *
177  * Remove fragments from waitlist
178  *
179  * Returns: None
180  */
181 void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
182 {
183 	struct dp_pdev *pdev = peer->vdev->pdev;
184 	struct dp_soc *soc = pdev->soc;
185 	struct dp_rx_tid *rx_reorder;
186 
187 	if (tid > DP_MAX_TIDS) {
188 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
189 			"TID out of bounds: %d", tid);
190 		qdf_assert(0);
191 		return;
192 	}
193 
194 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
195 				FL("Remove TID %u from waitlist"), tid);
196 
197 	TAILQ_FOREACH(rx_reorder, &soc->rx.defrag.waitlist,
198 			   defrag_waitlist_elem) {
199 		if (rx_reorder->tid == tid)
200 			TAILQ_REMOVE(&soc->rx.defrag.waitlist,
201 				rx_reorder, defrag_waitlist_elem);
202 	}
203 }
204 
205 /*
206  * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
207  * @peer: Pointer to the peer data structure
208  * @tid: Transmit ID (TID)
209  * @head_addr: Pointer to head list
210  * @tail_addr: Pointer to tail list
211  * @frag: Incoming fragment
212  * @all_frag_present: Flag to indicate whether all fragments are received
213  *
214  * Build a per-tid, per-sequence fragment list.
215  *
216  * Returns: Success, if inserted
217  */
218 static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
219 	qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
220 	uint8_t *all_frag_present)
221 {
222 	qdf_nbuf_t next;
223 	qdf_nbuf_t prev = NULL;
224 	qdf_nbuf_t cur;
225 	uint16_t head_fragno, cur_fragno, next_fragno;
226 	uint8_t last_morefrag = 1, count = 0;
227 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
228 	uint8_t *rx_desc_info;
229 
230 
231 	qdf_assert(frag);
232 	qdf_assert(head_addr);
233 	qdf_assert(tail_addr);
234 
235 	*all_frag_present = 0;
236 	rx_desc_info = qdf_nbuf_data(frag);
237 	cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
238 
239 	/* If this is the first fragment */
240 	if (!(*head_addr)) {
241 		*head_addr = *tail_addr = frag;
242 		qdf_nbuf_set_next(*tail_addr, NULL);
243 		rx_tid->curr_frag_num = cur_fragno;
244 
245 		goto insert_done;
246 	}
247 
248 	/* In sequence fragment */
249 	if (cur_fragno > rx_tid->curr_frag_num) {
250 		qdf_nbuf_set_next(*tail_addr, frag);
251 		*tail_addr = frag;
252 		qdf_nbuf_set_next(*tail_addr, NULL);
253 		rx_tid->curr_frag_num = cur_fragno;
254 	} else {
255 		/* Out of sequence fragment */
256 		cur = *head_addr;
257 		rx_desc_info = qdf_nbuf_data(cur);
258 		head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
259 
260 		if (cur_fragno == head_fragno) {
261 			qdf_nbuf_free(frag);
262 			goto insert_fail;
263 		} else if (head_fragno > cur_fragno) {
264 			qdf_nbuf_set_next(frag, cur);
265 			cur = frag;
266 			*head_addr = frag; /* head pointer to be updated */
267 		} else {
268 			while ((cur_fragno > head_fragno) && cur != NULL) {
269 				prev = cur;
270 				cur = qdf_nbuf_next(cur);
271 				rx_desc_info = qdf_nbuf_data(cur);
272 				head_fragno =
273 					dp_rx_frag_get_mpdu_frag_number(
274 								rx_desc_info);
275 			}
276 
277 			if (cur_fragno == head_fragno) {
278 				qdf_nbuf_free(frag);
279 				goto insert_fail;
280 			}
281 
282 			qdf_nbuf_set_next(prev, frag);
283 			qdf_nbuf_set_next(frag, cur);
284 		}
285 	}
286 
287 	next = qdf_nbuf_next(*head_addr);
288 
289 	rx_desc_info = qdf_nbuf_data(*tail_addr);
290 	last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
291 
292 	/* TODO: optimize the loop */
293 	if (!last_morefrag) {
294 		/* Check if all fragments are present */
295 		do {
296 			rx_desc_info = qdf_nbuf_data(next);
297 			next_fragno =
298 				dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
299 			count++;
300 
301 			if (next_fragno != count)
302 				break;
303 
304 			next = qdf_nbuf_next(next);
305 		} while (next);
306 
307 		if (!next) {
308 			*all_frag_present = 1;
309 			return QDF_STATUS_SUCCESS;
310 		}
311 	}
312 
313 insert_done:
314 	return QDF_STATUS_SUCCESS;
315 
316 insert_fail:
317 	return QDF_STATUS_E_FAILURE;
318 }
319 
320 
321 /*
322  * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
323  * @msdu: Pointer to the fragment
324  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
325  *
326  * decap tkip encrypted fragment
327  *
328  * Returns: QDF_STATUS
329  */
330 static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
331 {
332 	uint8_t *ivp, *orig_hdr;
333 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
334 
335 	/* start of 802.11 header info */
336 	orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
337 
338 	/* TKIP header is located post 802.11 header */
339 	ivp = orig_hdr + hdrlen;
340 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
341 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
342 			"IEEE80211_WEP_EXTIV is missing in TKIP fragment");
343 		return QDF_STATUS_E_DEFRAG_ERROR;
344 	}
345 
346 	qdf_mem_move(orig_hdr + dp_f_tkip.ic_header, orig_hdr, hdrlen);
347 
348 	qdf_nbuf_pull_head(msdu, dp_f_tkip.ic_header);
349 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
350 
351 	return QDF_STATUS_SUCCESS;
352 }
353 
354 /*
355  * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
356  * @nbuf: Pointer to the fragment buffer
357  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
358  *
359  * Remove MIC information from CCMP fragment
360  *
361  * Returns: QDF_STATUS
362  */
363 static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
364 {
365 	uint8_t *ivp, *orig_hdr;
366 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
367 
368 	/* start of the 802.11 header */
369 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
370 
371 	/* CCMP header is located after 802.11 header */
372 	ivp = orig_hdr + hdrlen;
373 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
374 		return QDF_STATUS_E_DEFRAG_ERROR;
375 
376 	qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
377 
378 	return QDF_STATUS_SUCCESS;
379 }
380 
381 /*
382  * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
383  * @nbuf: Pointer to the fragment
384  * @hdrlen: length of the header information
385  *
386  * decap CCMP encrypted fragment
387  *
388  * Returns: QDF_STATUS
389  */
390 static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
391 {
392 	uint8_t *ivp, *origHdr;
393 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
394 
395 	origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
396 	ivp = origHdr + hdrlen;
397 
398 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
399 		return QDF_STATUS_E_DEFRAG_ERROR;
400 
401 	/* Let's pull the header later */
402 
403 	return QDF_STATUS_SUCCESS;
404 }
405 
406 /*
407  * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
408  * @msdu: Pointer to the fragment
409  * @hdrlen: length of the header information
410  *
411  * decap WEP encrypted fragment
412  *
413  * Returns: QDF_STATUS
414  */
415 static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
416 {
417 	uint8_t *origHdr;
418 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
419 
420 	origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
421 	qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
422 
423 	qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
424 
425 	return QDF_STATUS_SUCCESS;
426 }
427 
428 /*
429  * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
430  * @nbuf: Pointer to the fragment
431  *
432  * Calculate the header size of the received fragment
433  *
434  * Returns: header size (uint16_t)
435  */
436 static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
437 {
438 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
439 	uint16_t size = sizeof(struct ieee80211_frame);
440 	uint16_t fc = 0;
441 	uint32_t to_ds, fr_ds;
442 	uint8_t frm_ctrl_valid;
443 	uint16_t frm_ctrl_field;
444 
445 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
446 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
447 	frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
448 	frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
449 
450 	if (to_ds && fr_ds)
451 		size += IEEE80211_ADDR_LEN;
452 
453 	if (frm_ctrl_valid) {
454 		fc = frm_ctrl_field;
455 
456 		/* use 1-st byte for validation */
457 		if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
458 			size += sizeof(uint16_t);
459 			/* use 2-nd byte for validation */
460 			if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
461 				size += sizeof(struct ieee80211_htc);
462 		}
463 	}
464 
465 	return size;
466 }
467 
468 /*
469  * dp_rx_defrag_michdr(): Calculate a psuedo MIC header
470  * @wh0: Pointer to the wireless header of the fragment
471  * @hdr: Array to hold the psuedo header
472  *
473  * Calculate a psuedo MIC header
474  *
475  * Returns: None
476  */
477 static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
478 				uint8_t hdr[])
479 {
480 	const struct ieee80211_frame_addr4 *wh =
481 		(const struct ieee80211_frame_addr4 *)wh0;
482 
483 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
484 	case IEEE80211_FC1_DIR_NODS:
485 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
486 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
487 					   wh->i_addr2);
488 		break;
489 	case IEEE80211_FC1_DIR_TODS:
490 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
491 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
492 					   wh->i_addr2);
493 		break;
494 	case IEEE80211_FC1_DIR_FROMDS:
495 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
496 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
497 					   wh->i_addr3);
498 		break;
499 	case IEEE80211_FC1_DIR_DSTODS:
500 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
501 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
502 					   wh->i_addr4);
503 		break;
504 	}
505 
506 	/*
507 	 * Bit 7 is IEEE80211_FC0_SUBTYPE_QOS for data frame, but
508 	 * it could also be set for deauth, disassoc, action, etc. for
509 	 * a mgt type frame. It comes into picture for MFP.
510 	 */
511 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
512 		const struct ieee80211_qosframe *qwh =
513 			(const struct ieee80211_qosframe *)wh;
514 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
515 	} else {
516 		hdr[12] = 0;
517 	}
518 
519 	hdr[13] = hdr[14] = hdr[15] = 0;	/* reserved */
520 }
521 
522 /*
523  * dp_rx_defrag_mic(): Calculate MIC header
524  * @key: Pointer to the key
525  * @wbuf: fragment buffer
526  * @off: Offset
527  * @data_len: Data lengh
528  * @mic: Array to hold MIC
529  *
530  * Calculate a psuedo MIC header
531  *
532  * Returns: QDF_STATUS
533  */
534 static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
535 		uint16_t off, uint16_t data_len, uint8_t mic[])
536 {
537 	uint8_t hdr[16] = { 0, };
538 	uint32_t l, r;
539 	const uint8_t *data;
540 	uint32_t space;
541 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
542 
543 	dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
544 		+ rx_desc_len), hdr);
545 	l = dp_rx_get_le32(key);
546 	r = dp_rx_get_le32(key + 4);
547 
548 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
549 	l ^= dp_rx_get_le32(hdr);
550 	dp_rx_michael_block(l, r);
551 	l ^= dp_rx_get_le32(&hdr[4]);
552 	dp_rx_michael_block(l, r);
553 	l ^= dp_rx_get_le32(&hdr[8]);
554 	dp_rx_michael_block(l, r);
555 	l ^= dp_rx_get_le32(&hdr[12]);
556 	dp_rx_michael_block(l, r);
557 
558 	/* first buffer has special handling */
559 	data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len + off;
560 	space = qdf_nbuf_len(wbuf) - rx_desc_len - off;
561 
562 	for (;; ) {
563 		if (space > data_len)
564 			space = data_len;
565 
566 		/* collect 32-bit blocks from current buffer */
567 		while (space >= sizeof(uint32_t)) {
568 			l ^= dp_rx_get_le32(data);
569 			dp_rx_michael_block(l, r);
570 			data += sizeof(uint32_t);
571 			space -= sizeof(uint32_t);
572 			data_len -= sizeof(uint32_t);
573 		}
574 		if (data_len < sizeof(uint32_t))
575 			break;
576 
577 		wbuf = qdf_nbuf_next(wbuf);
578 		if (wbuf == NULL)
579 			return QDF_STATUS_E_DEFRAG_ERROR;
580 
581 		if (space != 0) {
582 			const uint8_t *data_next;
583 			/*
584 			 * Block straddles buffers, split references.
585 			 */
586 			data_next =
587 				(uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
588 			if ((qdf_nbuf_len(wbuf) - rx_desc_len) <
589 				sizeof(uint32_t) - space) {
590 				return QDF_STATUS_E_DEFRAG_ERROR;
591 			}
592 			switch (space) {
593 			case 1:
594 				l ^= dp_rx_get_le32_split(data[0],
595 					data_next[0], data_next[1],
596 					data_next[2]);
597 				data = data_next + 3;
598 				space = (qdf_nbuf_len(wbuf) - rx_desc_len)
599 					- 3;
600 				break;
601 			case 2:
602 				l ^= dp_rx_get_le32_split(data[0], data[1],
603 						    data_next[0], data_next[1]);
604 				data = data_next + 2;
605 				space = (qdf_nbuf_len(wbuf) - rx_desc_len)
606 					- 2;
607 				break;
608 			case 3:
609 				l ^= dp_rx_get_le32_split(data[0], data[1],
610 					data[2], data_next[0]);
611 				data = data_next + 1;
612 				space = (qdf_nbuf_len(wbuf) - rx_desc_len)
613 					- 1;
614 				break;
615 			}
616 			dp_rx_michael_block(l, r);
617 			data_len -= sizeof(uint32_t);
618 		} else {
619 			/*
620 			 * Setup for next buffer.
621 			 */
622 			data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
623 			space = qdf_nbuf_len(wbuf) - rx_desc_len;
624 		}
625 	}
626 	/* Last block and padding (0x5a, 4..7 x 0) */
627 	switch (data_len) {
628 	case 0:
629 		l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
630 		break;
631 	case 1:
632 		l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
633 		break;
634 	case 2:
635 		l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
636 		break;
637 	case 3:
638 		l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
639 		break;
640 	}
641 	dp_rx_michael_block(l, r);
642 	dp_rx_michael_block(l, r);
643 	dp_rx_put_le32(mic, l);
644 	dp_rx_put_le32(mic + 4, r);
645 
646 	return QDF_STATUS_SUCCESS;
647 }
648 
649 /*
650  * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
651  * @key: Pointer to the key
652  * @msdu: fragment buffer
653  * @hdrlen: Length of the header information
654  *
655  * Remove MIC information from the TKIP frame
656  *
657  * Returns: QDF_STATUS
658  */
659 static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
660 					qdf_nbuf_t msdu, uint16_t hdrlen)
661 {
662 	QDF_STATUS status;
663 	uint32_t pktlen;
664 	uint8_t mic[IEEE80211_WEP_MICLEN];
665 	uint8_t mic0[IEEE80211_WEP_MICLEN];
666 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
667 
668 	pktlen = qdf_nbuf_len(msdu) - rx_desc_len;
669 
670 	status = dp_rx_defrag_mic(key, msdu, hdrlen,
671 				pktlen - (hdrlen + dp_f_tkip.ic_miclen), mic);
672 
673 	if (QDF_IS_STATUS_ERROR(status))
674 		return status;
675 
676 	qdf_nbuf_copy_bits(msdu, pktlen - dp_f_tkip.ic_miclen + rx_desc_len,
677 				dp_f_tkip.ic_miclen, (caddr_t)mic0);
678 
679 	if (!qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
680 		return QDF_STATUS_E_DEFRAG_ERROR;
681 
682 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_miclen);
683 
684 	return QDF_STATUS_SUCCESS;
685 }
686 
687 /*
688  * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
689  * @nbuf: buffer pointer
690  * @hdrsize: size of the header to be pulled
691  *
692  * Pull the RXTLV & the 802.11 headers
693  *
694  * Returns: None
695  */
696 static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
697 {
698 	qdf_nbuf_pull_head(nbuf,
699 			RX_PKT_TLVS_LEN + hdrsize);
700 
701 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
702 			"%s: final pktlen %d .11len %d\n",
703 			__func__,
704 			(uint32_t)qdf_nbuf_len(nbuf), hdrsize);
705 }
706 
707 /*
708  * dp_rx_construct_fraglist(): Construct a nbuf fraglist
709  * @peer: Pointer to the peer
710  * @head: Pointer to list of fragments
711  * @hdrsize: Size of the header to be pulled
712  *
713  * Construct a nbuf fraglist
714  *
715  * Returns: None
716  */
717 static void
718 dp_rx_construct_fraglist(struct dp_peer *peer,
719 		qdf_nbuf_t head, uint16_t hdrsize)
720 {
721 	qdf_nbuf_t msdu = qdf_nbuf_next(head);
722 	qdf_nbuf_t rx_nbuf = msdu;
723 	uint32_t len = 0;
724 
725 	while (msdu) {
726 		dp_rx_frag_pull_hdr(msdu, hdrsize);
727 		len += qdf_nbuf_len(msdu);
728 		msdu = qdf_nbuf_next(msdu);
729 	}
730 
731 	qdf_nbuf_append_ext_list(head, rx_nbuf, len);
732 	qdf_nbuf_set_next(head, NULL);
733 
734 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
735 			"%s: head len %d ext len %d data len %d \n",
736 			__func__,
737 			(uint32_t)qdf_nbuf_len(head),
738 			(uint32_t)qdf_nbuf_len(rx_nbuf),
739 			(uint32_t)(head->data_len));
740 }
741 
742 /**
743  * dp_rx_defrag_err() - rx err handler
744  * @pdev: handle to pdev object
745  * @vdev_id: vdev id
746  * @peer_mac_addr: peer mac address
747  * @tid: TID
748  * @tsf32: TSF
749  * @err_type: error type
750  * @rx_frame: rx frame
751  * @pn: PN Number
752  * @key_id: key id
753  *
754  * This function handles rx error and send MIC error notification
755  *
756  * Return: None
757  */
758 static void dp_rx_defrag_err(uint8_t vdev_id, uint8_t *peer_mac_addr,
759 	int tid, uint32_t tsf32, uint32_t err_type, qdf_nbuf_t rx_frame,
760 	uint64_t *pn, uint8_t key_id)
761 {
762 	/* TODO: Who needs to know about the TKIP MIC error */
763 }
764 
765 
766 /*
767  * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
768  * @nbuf: Pointer to the fragment buffer
769  * @hdrsize: Size of headers
770  *
771  * Transcap the fragment from 802.11 to 802.3
772  *
773  * Returns: None
774  */
775 static void
776 dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
777 {
778 	struct llc_snap_hdr_t *llchdr;
779 	struct ethernet_hdr_t *eth_hdr;
780 	uint8_t ether_type[2];
781 	uint16_t fc = 0;
782 	union dp_align_mac_addr mac_addr;
783 	uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
784 
785 	if (rx_desc_info == NULL) {
786 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
787 			"%s: Memory alloc failed ! \n", __func__);
788 		QDF_ASSERT(0);
789 		return;
790 	}
791 
792 	qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
793 
794 	llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
795 					RX_PKT_TLVS_LEN + hdrsize);
796 	qdf_mem_copy(ether_type, llchdr->ethertype, 2);
797 
798 	qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
799 				  sizeof(struct llc_snap_hdr_t) -
800 				  sizeof(struct ethernet_hdr_t)));
801 
802 	eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
803 
804 	if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
805 		fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
806 
807 	switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
808 
809 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
810 		"%s: frame control type: 0x%x", __func__, fc);
811 
812 	case IEEE80211_FC1_DIR_NODS:
813 		hal_rx_mpdu_get_addr1(rx_desc_info,
814 			&mac_addr.raw[0]);
815 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
816 			IEEE80211_ADDR_LEN);
817 		hal_rx_mpdu_get_addr2(rx_desc_info,
818 			&mac_addr.raw[0]);
819 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
820 			IEEE80211_ADDR_LEN);
821 		break;
822 	case IEEE80211_FC1_DIR_TODS:
823 		hal_rx_mpdu_get_addr3(rx_desc_info,
824 			&mac_addr.raw[0]);
825 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
826 			IEEE80211_ADDR_LEN);
827 		hal_rx_mpdu_get_addr2(rx_desc_info,
828 			&mac_addr.raw[0]);
829 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
830 			IEEE80211_ADDR_LEN);
831 		break;
832 	case IEEE80211_FC1_DIR_FROMDS:
833 		hal_rx_mpdu_get_addr1(rx_desc_info,
834 			&mac_addr.raw[0]);
835 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
836 			IEEE80211_ADDR_LEN);
837 		hal_rx_mpdu_get_addr3(rx_desc_info,
838 			&mac_addr.raw[0]);
839 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
840 			IEEE80211_ADDR_LEN);
841 		break;
842 
843 	case IEEE80211_FC1_DIR_DSTODS:
844 		hal_rx_mpdu_get_addr3(rx_desc_info,
845 			&mac_addr.raw[0]);
846 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
847 			IEEE80211_ADDR_LEN);
848 		hal_rx_mpdu_get_addr4(rx_desc_info,
849 			&mac_addr.raw[0]);
850 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
851 			IEEE80211_ADDR_LEN);
852 		break;
853 
854 	default:
855 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
856 		"%s: Unknown frame control type: 0x%x", __func__, fc);
857 	}
858 
859 	qdf_mem_copy(eth_hdr->ethertype, ether_type,
860 			sizeof(ether_type));
861 
862 	qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
863 	qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
864 	qdf_mem_free(rx_desc_info);
865 }
866 
867 /*
868  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
869  * @peer: Pointer to the peer
870  * @tid: Transmit Identifier
871  * @head: Buffer to be reinjected back
872  *
873  * Reinject the fragment chain back into REO
874  *
875  * Returns: QDF_STATUS
876  */
877  static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
878 					unsigned tid, qdf_nbuf_t head)
879 {
880 	struct dp_pdev *pdev = peer->vdev->pdev;
881 	struct dp_soc *soc = pdev->soc;
882 	struct hal_buf_info buf_info;
883 	void *link_desc_va;
884 	void *msdu0, *msdu_desc_info;
885 	void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
886 	void *dst_mpdu_desc_info, *dst_qdesc_addr;
887 	qdf_dma_addr_t paddr;
888 	uint32_t nbuf_len, seq_no, dst_ind;
889 	uint32_t *mpdu_wrd;
890 	uint32_t ret, cookie;
891 
892 	void *dst_ring_desc =
893 		peer->rx_tid[tid].dst_ring_desc;
894 	void *hal_srng = soc->reo_reinject_ring.hal_srng;
895 
896 	hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
897 
898 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
899 
900 	qdf_assert(link_desc_va);
901 
902 	msdu0 = (uint8_t *)link_desc_va +
903 		RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
904 
905 	nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
906 
907 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
908 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
909 			UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
910 
911 	/* msdu reconfig */
912 	msdu_desc_info = (uint8_t *)msdu0 +
913 		RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
914 
915 	dst_ind = hal_rx_msdu_reo_dst_ind_get(link_desc_va);
916 
917 	qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
918 
919 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
920 			FIRST_MSDU_IN_MPDU_FLAG, 1);
921 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
922 			LAST_MSDU_IN_MPDU_FLAG, 1);
923 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
924 			MSDU_CONTINUATION, 0x0);
925 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
926 			REO_DESTINATION_INDICATION, dst_ind);
927 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
928 			MSDU_LENGTH, nbuf_len);
929 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
930 			SA_IS_VALID, 1);
931 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
932 			DA_IS_VALID, 1);
933 
934 	/* change RX TLV's */
935 	hal_rx_msdu_start_msdu_len_set(
936 			qdf_nbuf_data(head), nbuf_len);
937 
938 	cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
939 
940 	/* map the nbuf before reinject it into HW */
941 	ret = qdf_nbuf_map_single(soc->osdev, head,
942 					QDF_DMA_BIDIRECTIONAL);
943 
944 	if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
945 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
946 				"%s: nbuf map failed !\n", __func__);
947 		qdf_nbuf_free(head);
948 		return QDF_STATUS_E_FAILURE;
949 	}
950 
951 	paddr = qdf_nbuf_get_frag_paddr(head, 0);
952 
953 	ret = check_x86_paddr(soc, &head, &paddr, pdev);
954 
955 	if (ret == QDF_STATUS_E_FAILURE) {
956 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
957 				"%s: x86 check failed !\n", __func__);
958 		return QDF_STATUS_E_FAILURE;
959 	}
960 
961 	hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie,
962 					HAL_RX_BUF_RBM_SW3_BM);
963 
964 	/* Lets fill entrance ring now !!! */
965 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
966 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
967 		"HAL RING Access For REO entrance SRNG Failed: %pK",
968 		hal_srng);
969 
970 		return QDF_STATUS_E_FAILURE;
971 	}
972 
973 	ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
974 
975 	qdf_assert(ent_ring_desc);
976 
977 	paddr = (uint64_t)buf_info.paddr;
978 	/* buf addr */
979 	hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
980 					buf_info.sw_cookie,
981 					HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
982 	/* mpdu desc info */
983 	ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
984 	RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
985 
986 	dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
987 	REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
988 
989 	qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
990 				sizeof(struct rx_mpdu_desc_info));
991 	qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
992 
993 	mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
994 	seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
995 
996 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
997 			MSDU_COUNT, 0x1);
998 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
999 			MPDU_SEQUENCE_NUMBER, seq_no);
1000 
1001 	/* unset frag bit */
1002 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1003 			FRAGMENT_FLAG, 0x0);
1004 
1005 	/* set sa/da valid bits */
1006 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1007 			SA_IS_VALID, 0x1);
1008 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1009 			DA_IS_VALID, 0x1);
1010 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1011 			RAW_MPDU, 0x0);
1012 
1013 	/* qdesc addr */
1014 	ent_qdesc_addr = (uint8_t *)ent_ring_desc +
1015 		REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1016 
1017 	dst_qdesc_addr = (uint8_t *)dst_ring_desc +
1018 		REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1019 
1020 	qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
1021 
1022 	HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
1023 			REO_DESTINATION_INDICATION, dst_ind);
1024 
1025 	hal_srng_access_end(soc->hal_soc, hal_srng);
1026 
1027 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1028 				"%s: reinjection done !\n", __func__);
1029 	return QDF_STATUS_SUCCESS;
1030 }
1031 
1032 /*
1033  * dp_rx_defrag(): Defragment the fragment chain
1034  * @peer: Pointer to the peer
1035  * @tid: Transmit Identifier
1036  * @frag_list_head: Pointer to head list
1037  * @frag_list_tail: Pointer to tail list
1038  *
1039  * Defragment the fragment chain
1040  *
1041  * Returns: QDF_STATUS
1042  */
1043 static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
1044 			qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
1045 {
1046 	qdf_nbuf_t tmp_next, prev;
1047 	qdf_nbuf_t cur = frag_list_head, msdu;
1048 	uint32_t index, tkip_demic = 0;
1049 	uint16_t hdr_space;
1050 	uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
1051 	struct dp_vdev *vdev = peer->vdev;
1052 
1053 	hdr_space = dp_rx_defrag_hdrsize(cur);
1054 	index = hal_rx_msdu_is_wlan_mcast(cur) ?
1055 		dp_sec_mcast : dp_sec_ucast;
1056 
1057 	/* Remove FCS from all fragments */
1058 	while (cur) {
1059 		tmp_next = qdf_nbuf_next(cur);
1060 		qdf_nbuf_set_next(cur, NULL);
1061 		qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
1062 		prev = cur;
1063 		qdf_nbuf_set_next(cur, tmp_next);
1064 		cur = tmp_next;
1065 	}
1066 	cur = frag_list_head;
1067 
1068 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1069 			"%s: Security type: %d\n", __func__,
1070 			peer->security[index].sec_type);
1071 
1072 	/* Temporary fix to drop TKIP encrypted packets */
1073 	if (peer->security[index].sec_type ==
1074 			htt_sec_type_tkip) {
1075 		return QDF_STATUS_E_DEFRAG_ERROR;
1076 	}
1077 
1078 	switch (peer->security[index].sec_type) {
1079 	case htt_sec_type_tkip:
1080 		tkip_demic = 1;
1081 
1082 	case htt_sec_type_tkip_nomic:
1083 		while (cur) {
1084 			tmp_next = qdf_nbuf_next(cur);
1085 			if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
1086 
1087 				/* TKIP decap failed, discard frags */
1088 				dp_rx_defrag_frames_free(frag_list_head);
1089 
1090 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1091 					QDF_TRACE_LEVEL_ERROR,
1092 					"dp_rx_defrag: TKIP decap failed");
1093 
1094 				return QDF_STATUS_E_DEFRAG_ERROR;
1095 			}
1096 			cur = tmp_next;
1097 		}
1098 		break;
1099 
1100 	case htt_sec_type_aes_ccmp:
1101 		while (cur) {
1102 			tmp_next = qdf_nbuf_next(cur);
1103 			if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
1104 
1105 				/* CCMP demic failed, discard frags */
1106 				dp_rx_defrag_frames_free(frag_list_head);
1107 
1108 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1109 					QDF_TRACE_LEVEL_ERROR,
1110 					"dp_rx_defrag: CCMP demic failed");
1111 
1112 				return QDF_STATUS_E_DEFRAG_ERROR;
1113 			}
1114 			if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
1115 
1116 				/* CCMP decap failed, discard frags */
1117 				dp_rx_defrag_frames_free(frag_list_head);
1118 
1119 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1120 					QDF_TRACE_LEVEL_ERROR,
1121 					"dp_rx_defrag: CCMP decap failed");
1122 
1123 				return QDF_STATUS_E_DEFRAG_ERROR;
1124 			}
1125 			cur = tmp_next;
1126 		}
1127 
1128 		/* If success, increment header to be stripped later */
1129 		hdr_space += dp_f_ccmp.ic_header;
1130 		break;
1131 	case htt_sec_type_wep40:
1132 	case htt_sec_type_wep104:
1133 	case htt_sec_type_wep128:
1134 		while (cur) {
1135 			tmp_next = qdf_nbuf_next(cur);
1136 			if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
1137 
1138 				/* WEP decap failed, discard frags */
1139 				dp_rx_defrag_frames_free(frag_list_head);
1140 
1141 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1142 					QDF_TRACE_LEVEL_ERROR,
1143 					"dp_rx_defrag: WEP decap failed");
1144 
1145 				return QDF_STATUS_E_DEFRAG_ERROR;
1146 			}
1147 			cur = tmp_next;
1148 		}
1149 
1150 		/* If success, increment header to be stripped later */
1151 		hdr_space += dp_f_wep.ic_header;
1152 		break;
1153 	default:
1154 		QDF_TRACE(QDF_MODULE_ID_TXRX,
1155 			QDF_TRACE_LEVEL_ERROR,
1156 			"dp_rx_defrag: Did not match any security type");
1157 		break;
1158 	}
1159 
1160 	if (tkip_demic) {
1161 		msdu = frag_list_tail; /* Only last fragment has the MIC */
1162 
1163 		qdf_mem_copy(key,
1164 			peer->security[index].michael_key,
1165 			sizeof(peer->security[index].michael_key));
1166 		if (dp_rx_defrag_tkip_demic(key, msdu, hdr_space)) {
1167 			qdf_nbuf_free(msdu);
1168 			dp_rx_defrag_err(vdev->vdev_id, peer->mac_addr.raw,
1169 				tid, 0, QDF_STATUS_E_DEFRAG_ERROR, msdu,
1170 				NULL, 0);
1171 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1172 				"dp_rx_defrag: TKIP demic failed");
1173 			return QDF_STATUS_E_DEFRAG_ERROR;
1174 		}
1175 	}
1176 
1177 	/* Convert the header to 802.3 header */
1178 	dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
1179 	dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
1180 
1181 	return QDF_STATUS_SUCCESS;
1182 }
1183 
1184 /*
1185  * dp_rx_defrag_cleanup(): Clean up activities
1186  * @peer: Pointer to the peer
1187  * @tid: Transmit Identifier
1188  *
1189  * Returns: None
1190  */
1191 static void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
1192 {
1193 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1194 				peer->rx_tid[tid].array;
1195 
1196 	/* Free up nbufs */
1197 	dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1198 
1199 	/* Free up saved ring descriptors */
1200 	dp_rx_clear_saved_desc_info(peer, tid);
1201 
1202 	rx_reorder_array_elem->head = NULL;
1203 	rx_reorder_array_elem->tail = NULL;
1204 	peer->rx_tid[tid].defrag_timeout_ms = 0;
1205 	peer->rx_tid[tid].curr_frag_num = 0;
1206 	peer->rx_tid[tid].curr_seq_num = 0;
1207 }
1208 
1209 /*
1210  * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
1211  * @ring_desc: Pointer to the dst ring descriptor
1212  * @peer: Pointer to the peer
1213  * @tid: Transmit Identifier
1214  *
1215  * Returns: None
1216  */
1217 static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
1218 	struct dp_peer *peer, unsigned tid)
1219 {
1220 	void *dst_ring_desc = qdf_mem_malloc(
1221 			sizeof(struct reo_destination_ring));
1222 
1223 	if (dst_ring_desc == NULL) {
1224 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1225 			"%s: Memory alloc failed !\n", __func__);
1226 		QDF_ASSERT(0);
1227 		return QDF_STATUS_E_NOMEM;
1228 	}
1229 
1230 	qdf_mem_copy(dst_ring_desc, ring_desc,
1231 		       sizeof(struct reo_destination_ring));
1232 
1233 	peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
1234 
1235 	return QDF_STATUS_SUCCESS;
1236 }
1237 
1238 /*
1239  * dp_rx_defrag_store_fragment(): Store incoming fragments
1240  * @soc: Pointer to the SOC data structure
1241  * @ring_desc: Pointer to the ring descriptor
1242  * @mpdu_desc_info: MPDU descriptor info
1243  * @tid: Traffic Identifier
1244  * @rx_desc: Pointer to rx descriptor
1245  * @rx_bfs: Number of bfs consumed
1246  *
1247  * Returns: QDF_STATUS
1248  */
1249 static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
1250 			void *ring_desc,
1251 			union dp_rx_desc_list_elem_t **head,
1252 			union dp_rx_desc_list_elem_t **tail,
1253 			struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1254 			unsigned tid, struct dp_rx_desc *rx_desc,
1255 			uint32_t *rx_bfs)
1256 {
1257 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1258 	struct dp_pdev *pdev;
1259 	struct dp_peer *peer;
1260 	uint16_t peer_id;
1261 	uint8_t fragno, more_frag, all_frag_present = 0;
1262 	uint16_t rxseq = mpdu_desc_info->mpdu_seq;
1263 	QDF_STATUS status;
1264 	struct dp_rx_tid *rx_tid;
1265 	uint8_t mpdu_sequence_control_valid;
1266 	uint8_t mpdu_frame_control_valid;
1267 	qdf_nbuf_t frag = rx_desc->nbuf;
1268 
1269 	/* Check if the packet is from a valid peer */
1270 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1271 					mpdu_desc_info->peer_meta_data);
1272 	peer = dp_peer_find_by_id(soc, peer_id);
1273 
1274 	if (!peer) {
1275 		/* We should not recieve anything from unknown peer
1276 		 * however, that might happen while we are in the monitor mode.
1277 		 * We don't need to handle that here
1278 		 */
1279 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1280 			"Unknown peer, dropping the fragment");
1281 
1282 		qdf_nbuf_free(frag);
1283 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1284 
1285 		return QDF_STATUS_E_DEFRAG_ERROR;
1286 	}
1287 
1288 	pdev = peer->vdev->pdev;
1289 	rx_tid = &peer->rx_tid[tid];
1290 
1291 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1292 
1293 	mpdu_sequence_control_valid =
1294 		hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
1295 
1296 	/* Invalid MPDU sequence control field, MPDU is of no use */
1297 	if (!mpdu_sequence_control_valid) {
1298 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1299 			"Invalid MPDU seq control field, dropping MPDU");
1300 		qdf_nbuf_free(frag);
1301 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1302 
1303 		qdf_assert(0);
1304 		goto end;
1305 	}
1306 
1307 	mpdu_frame_control_valid =
1308 		hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
1309 
1310 	/* Invalid frame control field */
1311 	if (!mpdu_frame_control_valid) {
1312 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1313 			"Invalid frame control field, dropping MPDU");
1314 		qdf_nbuf_free(frag);
1315 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1316 
1317 		qdf_assert(0);
1318 		goto end;
1319 	}
1320 
1321 	/* Current mpdu sequence */
1322 	more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
1323 
1324 	/* HW does not populate the fragment number as of now
1325 	 * need to get from the 802.11 header
1326 	 */
1327 	fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
1328 
1329 	/*
1330 	 * !more_frag: no more fragments to be delivered
1331 	 * !frag_no: packet is not fragmented
1332 	 * !rx_reorder_array_elem->head: no saved fragments so far
1333 	 */
1334 	if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
1335 		/* We should not get into this situation here.
1336 		 * It means an unfragmented packet with fragment flag
1337 		 * is delivered over the REO exception ring.
1338 		 * Typically it follows normal rx path.
1339 		 */
1340 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1341 			"Rcvd unfragmented pkt on REO Err srng, dropping");
1342 		qdf_nbuf_free(frag);
1343 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1344 
1345 		qdf_assert(0);
1346 		goto end;
1347 	}
1348 
1349 	/* Check if the fragment is for the same sequence or a different one */
1350 	if (rx_reorder_array_elem->head) {
1351 		if (rxseq != rx_tid->curr_seq_num) {
1352 
1353 			/* Drop stored fragments if out of sequence
1354 			 * fragment is received
1355 			 */
1356 			dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1357 
1358 			rx_reorder_array_elem->head = NULL;
1359 			rx_reorder_array_elem->tail = NULL;
1360 
1361 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1362 				"%s mismatch, dropping earlier sequence ",
1363 				(rxseq == rx_tid->curr_seq_num)
1364 				? "address"
1365 				: "seq number");
1366 
1367 			/*
1368 			 * The sequence number for this fragment becomes the
1369 			 * new sequence number to be processed
1370 			 */
1371 			rx_tid->curr_seq_num = rxseq;
1372 
1373 		}
1374 	} else {
1375 		/* Start of a new sequence */
1376 		dp_rx_defrag_cleanup(peer, tid);
1377 		rx_tid->curr_seq_num = rxseq;
1378 	}
1379 
1380 	/*
1381 	 * If the earlier sequence was dropped, this will be the fresh start.
1382 	 * Else, continue with next fragment in a given sequence
1383 	 */
1384 	status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
1385 			&rx_reorder_array_elem->tail, frag,
1386 			&all_frag_present);
1387 
1388 	/*
1389 	 * Currently, we can have only 6 MSDUs per-MPDU, if the current
1390 	 * packet sequence has more than 6 MSDUs for some reason, we will
1391 	 * have to use the next MSDU link descriptor and chain them together
1392 	 * before reinjection
1393 	 */
1394 	if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
1395 			(rx_reorder_array_elem->head == frag)) {
1396 
1397 		status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
1398 					peer, tid);
1399 
1400 		if (status != QDF_STATUS_SUCCESS) {
1401 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1402 				"%s: Unable to store ring desc !\n", __func__);
1403 			goto end;
1404 		}
1405 	} else {
1406 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1407 		*rx_bfs = 1;
1408 
1409 		/* Return the non-head link desc */
1410 		if (dp_rx_link_desc_return(soc, ring_desc,
1411 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1412 				QDF_STATUS_SUCCESS)
1413 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1414 					"%s: Failed to return link desc\n",
1415 					__func__);
1416 
1417 	}
1418 
1419 	if (pdev->soc->rx.flags.defrag_timeout_check)
1420 		dp_rx_defrag_waitlist_remove(peer, tid);
1421 
1422 	/* Yet to receive more fragments for this sequence number */
1423 	if (!all_frag_present) {
1424 		uint32_t now_ms =
1425 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1426 
1427 		peer->rx_tid[tid].defrag_timeout_ms =
1428 			now_ms + pdev->soc->rx.defrag.timeout_ms;
1429 
1430 		dp_rx_defrag_waitlist_add(peer, tid);
1431 
1432 		return QDF_STATUS_SUCCESS;
1433 	}
1434 
1435 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1436 		"All fragments received for sequence: %d", rxseq);
1437 
1438 	/* Process the fragments */
1439 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1440 		rx_reorder_array_elem->tail);
1441 	if (QDF_IS_STATUS_ERROR(status)) {
1442 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1443 			"Fragment processing failed");
1444 		if (dp_rx_link_desc_return(soc,
1445 					peer->rx_tid[tid].dst_ring_desc,
1446 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1447 				QDF_STATUS_SUCCESS)
1448 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1449 					"%s: Failed to return link desc\n",
1450 					__func__);
1451 		dp_rx_defrag_cleanup(peer, tid);
1452 		goto end;
1453 	}
1454 
1455 	/* Re-inject the fragments back to REO for further processing */
1456 	status = dp_rx_defrag_reo_reinject(peer, tid,
1457 			rx_reorder_array_elem->head);
1458 	if (QDF_IS_STATUS_SUCCESS(status)) {
1459 		rx_reorder_array_elem->head = NULL;
1460 		rx_reorder_array_elem->tail = NULL;
1461 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1462 		"Fragmented sequence successfully reinjected");
1463 	}
1464 	else
1465 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1466 		"Fragmented sequence reinjection failed");
1467 
1468 	dp_rx_defrag_cleanup(peer, tid);
1469 	return QDF_STATUS_SUCCESS;
1470 
1471 end:
1472 	return QDF_STATUS_E_DEFRAG_ERROR;
1473 }
1474 
1475 /**
1476  * dp_rx_frag_handle() - Handles fragmented Rx frames
1477  *
1478  * @soc: core txrx main context
1479  * @ring_desc: opaque pointer to the REO error ring descriptor
1480  * @mpdu_desc_info: MPDU descriptor information from ring descriptor
1481  * @head: head of the local descriptor free-list
1482  * @tail: tail of the local descriptor free-list
1483  * @quota: No. of units (packets) that can be serviced in one shot.
1484  *
1485  * This function implements RX 802.11 fragmentation handling
1486  * The handling is mostly same as legacy fragmentation handling.
1487  * If required, this function can re-inject the frames back to
1488  * REO ring (with proper setting to by-pass fragmentation check
1489  * but use duplicate detection / re-ordering and routing these frames
1490  * to a different core.
1491  *
1492  * Return: uint32_t: No. of elements processed
1493  */
1494 uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
1495 		struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1496 		union dp_rx_desc_list_elem_t **head,
1497 		union dp_rx_desc_list_elem_t **tail,
1498 		uint32_t quota)
1499 {
1500 	uint32_t rx_bufs_used = 0;
1501 	void *link_desc_va;
1502 	struct hal_buf_info buf_info;
1503 	struct hal_rx_msdu_list msdu_list; /* per MPDU list of MSDUs */
1504 	qdf_nbuf_t msdu = NULL;
1505 	uint32_t tid, msdu_len;
1506 	int idx, rx_bfs = 0;
1507 	QDF_STATUS status;
1508 
1509 	qdf_assert(soc);
1510 	qdf_assert(mpdu_desc_info);
1511 
1512 	/* Fragment from a valid peer */
1513 	hal_rx_reo_buf_paddr_get(ring_desc, &buf_info);
1514 
1515 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
1516 
1517 	qdf_assert(link_desc_va);
1518 
1519 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1520 		"Number of MSDUs to process, num_msdus: %d",
1521 		mpdu_desc_info->msdu_count);
1522 
1523 
1524 	if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
1525 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1526 			"Not sufficient MSDUs to process");
1527 		return rx_bufs_used;
1528 	}
1529 
1530 	/* Get msdu_list for the given MPDU */
1531 	hal_rx_msdu_list_get(link_desc_va, &msdu_list,
1532 		&mpdu_desc_info->msdu_count);
1533 
1534 	/* Process all MSDUs in the current MPDU */
1535 	for (idx = 0; (idx < mpdu_desc_info->msdu_count) && quota--; idx++) {
1536 		struct dp_rx_desc *rx_desc =
1537 			dp_rx_cookie_2_va_rxdma_buf(soc,
1538 				msdu_list.sw_cookie[idx]);
1539 
1540 		qdf_assert(rx_desc);
1541 
1542 		msdu = rx_desc->nbuf;
1543 
1544 		qdf_nbuf_unmap_single(soc->osdev, msdu,
1545 				QDF_DMA_BIDIRECTIONAL);
1546 
1547 		rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
1548 
1549 		msdu_len = hal_rx_msdu_start_msdu_len_get(
1550 				rx_desc->rx_buf_start);
1551 
1552 		qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
1553 
1554 		tid = hal_rx_mpdu_start_tid_get(rx_desc->rx_buf_start);
1555 
1556 		/* Process fragment-by-fragment */
1557 		status = dp_rx_defrag_store_fragment(soc, ring_desc,
1558 				head, tail, mpdu_desc_info,
1559 				tid, rx_desc, &rx_bfs);
1560 
1561 		if (QDF_IS_STATUS_SUCCESS(status)) {
1562 			if (rx_bfs)
1563 				rx_bufs_used++;
1564 		} else {
1565 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1566 				"Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
1567 				mpdu_desc_info->mpdu_seq,
1568 				mpdu_desc_info->msdu_count,
1569 				mpdu_desc_info->mpdu_flags);
1570 
1571 			/* No point in processing rest of the fragments */
1572 			break;
1573 		}
1574 	}
1575 
1576 	return rx_bufs_used;
1577 }
1578