xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx_defrag.c (revision 27d564647e9b50e713c60b0d7e5ea2a9b0a3ae74)
1 /*
2  * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "dp_types.h"
21 #include "dp_rx.h"
22 #include "dp_peer.h"
23 #include "hal_api.h"
24 #include "qdf_trace.h"
25 #include "qdf_nbuf.h"
26 #include "dp_rx_defrag.h"
27 #include <enet.h>	/* LLC_SNAP_HDR_LEN */
28 #include "dp_rx_defrag.h"
29 
30 const struct dp_rx_defrag_cipher dp_f_ccmp = {
31 	"AES-CCM",
32 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
33 	IEEE80211_WEP_MICLEN,
34 	0,
35 };
36 
37 const struct dp_rx_defrag_cipher dp_f_tkip = {
38 	"TKIP",
39 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
40 	IEEE80211_WEP_CRCLEN,
41 	IEEE80211_WEP_MICLEN,
42 };
43 
44 const struct dp_rx_defrag_cipher dp_f_wep = {
45 	"WEP",
46 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
47 	IEEE80211_WEP_CRCLEN,
48 	0,
49 };
50 
51 /*
52  * dp_rx_defrag_frames_free(): Free fragment chain
53  * @frames: Fragment chain
54  *
55  * Iterates through the fragment chain and frees them
56  * Returns: None
57  */
58 static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
59 {
60 	qdf_nbuf_t next, frag = frames;
61 
62 	while (frag) {
63 		next = qdf_nbuf_next(frag);
64 		qdf_nbuf_free(frag);
65 		frag = next;
66 	}
67 }
68 
69 /*
70  * dp_rx_clear_saved_desc_info(): Clears descriptor info
71  * @peer: Pointer to the peer data structure
72  * @tid: Transmit ID (TID)
73  *
74  * Saves MPDU descriptor info and MSDU link pointer from REO
75  * ring descriptor. The cache is created per peer, per TID
76  *
77  * Returns: None
78  */
79 static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
80 {
81 	if (peer->rx_tid[tid].dst_ring_desc)
82 		qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
83 
84 	peer->rx_tid[tid].dst_ring_desc = NULL;
85 }
86 
87 static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
88 					unsigned int tid)
89 {
90 	struct dp_soc *soc;
91 	struct dp_pdev *pdev;
92 	struct dp_srng *dp_rxdma_srng;
93 	struct rx_desc_pool *rx_desc_pool;
94 	union dp_rx_desc_list_elem_t *head = NULL;
95 	union dp_rx_desc_list_elem_t *tail = NULL;
96 
97 	if (peer->rx_tid[tid].head_frag_desc) {
98 		pdev = peer->vdev->pdev;
99 		soc = pdev->soc;
100 		dp_rxdma_srng = &pdev->rx_refill_buf_ring;
101 		rx_desc_pool = &soc->rx_desc_buf[pdev->pdev_id];
102 
103 		dp_rx_add_to_free_desc_list(&head, &tail,
104 					    peer->rx_tid[tid].head_frag_desc);
105 		dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
106 					1, &head, &tail);
107 	}
108 }
109 
110 /*
111  * dp_rx_reorder_flush_frag(): Flush the frag list
112  * @peer: Pointer to the peer data structure
113  * @tid: Transmit ID (TID)
114  *
115  * Flush the per-TID frag list
116  *
117  * Returns: None
118  */
119 void dp_rx_reorder_flush_frag(struct dp_peer *peer,
120 			 unsigned int tid)
121 {
122 	struct dp_soc *soc;
123 
124 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
125 		  FL("Flushing TID %d"), tid);
126 
127 	if (!peer) {
128 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
129 					"%s: NULL peer", __func__);
130 		return;
131 	}
132 
133 	soc = peer->vdev->pdev->soc;
134 
135 	if (peer->rx_tid[tid].dst_ring_desc) {
136 		if (dp_rx_link_desc_return(soc,
137 					peer->rx_tid[tid].dst_ring_desc,
138 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
139 					QDF_STATUS_SUCCESS)
140 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
141 					"%s: Failed to return link desc",
142 					__func__);
143 	}
144 
145 	dp_rx_return_head_frag_desc(peer, tid);
146 	dp_rx_defrag_cleanup(peer, tid);
147 }
148 
149 /*
150  * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
151  * @soc: DP SOC
152  *
153  * Flush fragments of all waitlisted TID's
154  *
155  * Returns: None
156  */
157 void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
158 {
159 	struct dp_rx_tid *rx_reorder;
160 	struct dp_rx_tid *tmp;
161 	uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
162 	TAILQ_HEAD(, dp_rx_tid) temp_list;
163 
164 	TAILQ_INIT(&temp_list);
165 
166 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
167 	TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
168 			   defrag_waitlist_elem, tmp) {
169 		unsigned int tid;
170 
171 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
172 				FL("Current time  %u"), now_ms);
173 
174 		if (rx_reorder->defrag_timeout_ms > now_ms)
175 			break;
176 
177 		tid = rx_reorder->tid;
178 		if (tid >= DP_MAX_TIDS) {
179 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
180 				  "%s: TID out of bounds: %d", __func__, tid);
181 			qdf_assert(0);
182 			continue;
183 		}
184 
185 		TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
186 			     defrag_waitlist_elem);
187 
188 		/* Move to temp list and clean-up later */
189 		TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
190 				  defrag_waitlist_elem);
191 	}
192 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
193 
194 	TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
195 			   defrag_waitlist_elem, tmp) {
196 		struct dp_peer *peer;
197 
198 		/* get address of current peer */
199 		peer =
200 			container_of(rx_reorder, struct dp_peer,
201 				     rx_tid[rx_reorder->tid]);
202 		dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
203 	}
204 }
205 
206 /*
207  * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
208  * @peer: Pointer to the peer data structure
209  * @tid: Transmit ID (TID)
210  *
211  * Appends per-tid fragments to global fragment wait list
212  *
213  * Returns: None
214  */
215 static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
216 {
217 	struct dp_soc *psoc = peer->vdev->pdev->soc;
218 	struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
219 
220 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
221 		  FL("Adding TID %u to waitlist for peer %pK"),
222 		  tid, peer);
223 
224 	/* TODO: use LIST macros instead of TAIL macros */
225 	qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
226 	TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
227 				defrag_waitlist_elem);
228 	qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
229 }
230 
231 /*
232  * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
233  * @peer: Pointer to the peer data structure
234  * @tid: Transmit ID (TID)
235  *
236  * Remove fragments from waitlist
237  *
238  * Returns: None
239  */
240 void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
241 {
242 	struct dp_pdev *pdev = peer->vdev->pdev;
243 	struct dp_soc *soc = pdev->soc;
244 	struct dp_rx_tid *rx_reorder;
245 
246 	if (tid > DP_MAX_TIDS) {
247 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
248 			  "TID out of bounds: %d", tid);
249 		qdf_assert(0);
250 		return;
251 	}
252 
253 	qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
254 	TAILQ_FOREACH(rx_reorder, &soc->rx.defrag.waitlist,
255 			   defrag_waitlist_elem) {
256 		struct dp_peer *peer_on_waitlist;
257 
258 		/* get address of current peer */
259 		peer_on_waitlist =
260 			container_of(rx_reorder, struct dp_peer,
261 				     rx_tid[rx_reorder->tid]);
262 
263 		/* Ensure it is TID for same peer */
264 		if (peer_on_waitlist == peer && rx_reorder->tid == tid)
265 			TAILQ_REMOVE(&soc->rx.defrag.waitlist,
266 				rx_reorder, defrag_waitlist_elem);
267 	}
268 	qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
269 }
270 
271 /*
272  * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
273  * @peer: Pointer to the peer data structure
274  * @tid: Transmit ID (TID)
275  * @head_addr: Pointer to head list
276  * @tail_addr: Pointer to tail list
277  * @frag: Incoming fragment
278  * @all_frag_present: Flag to indicate whether all fragments are received
279  *
280  * Build a per-tid, per-sequence fragment list.
281  *
282  * Returns: Success, if inserted
283  */
284 static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
285 	qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
286 	uint8_t *all_frag_present)
287 {
288 	qdf_nbuf_t next;
289 	qdf_nbuf_t prev = NULL;
290 	qdf_nbuf_t cur;
291 	uint16_t head_fragno, cur_fragno, next_fragno;
292 	uint8_t last_morefrag = 1, count = 0;
293 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
294 	uint8_t *rx_desc_info;
295 
296 
297 	qdf_assert(frag);
298 	qdf_assert(head_addr);
299 	qdf_assert(tail_addr);
300 
301 	*all_frag_present = 0;
302 	rx_desc_info = qdf_nbuf_data(frag);
303 	cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
304 
305 	/* If this is the first fragment */
306 	if (!(*head_addr)) {
307 		*head_addr = *tail_addr = frag;
308 		qdf_nbuf_set_next(*tail_addr, NULL);
309 		rx_tid->curr_frag_num = cur_fragno;
310 
311 		goto insert_done;
312 	}
313 
314 	/* In sequence fragment */
315 	if (cur_fragno > rx_tid->curr_frag_num) {
316 		qdf_nbuf_set_next(*tail_addr, frag);
317 		*tail_addr = frag;
318 		qdf_nbuf_set_next(*tail_addr, NULL);
319 		rx_tid->curr_frag_num = cur_fragno;
320 	} else {
321 		/* Out of sequence fragment */
322 		cur = *head_addr;
323 		rx_desc_info = qdf_nbuf_data(cur);
324 		head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
325 
326 		if (cur_fragno == head_fragno) {
327 			qdf_nbuf_free(frag);
328 			goto insert_fail;
329 		} else if (head_fragno > cur_fragno) {
330 			qdf_nbuf_set_next(frag, cur);
331 			cur = frag;
332 			*head_addr = frag; /* head pointer to be updated */
333 		} else {
334 			while ((cur_fragno > head_fragno) && cur != NULL) {
335 				prev = cur;
336 				cur = qdf_nbuf_next(cur);
337 				rx_desc_info = qdf_nbuf_data(cur);
338 				head_fragno =
339 					dp_rx_frag_get_mpdu_frag_number(
340 								rx_desc_info);
341 			}
342 
343 			if (cur_fragno == head_fragno) {
344 				qdf_nbuf_free(frag);
345 				goto insert_fail;
346 			}
347 
348 			qdf_nbuf_set_next(prev, frag);
349 			qdf_nbuf_set_next(frag, cur);
350 		}
351 	}
352 
353 	next = qdf_nbuf_next(*head_addr);
354 
355 	rx_desc_info = qdf_nbuf_data(*tail_addr);
356 	last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
357 
358 	/* TODO: optimize the loop */
359 	if (!last_morefrag) {
360 		/* Check if all fragments are present */
361 		do {
362 			rx_desc_info = qdf_nbuf_data(next);
363 			next_fragno =
364 				dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
365 			count++;
366 
367 			if (next_fragno != count)
368 				break;
369 
370 			next = qdf_nbuf_next(next);
371 		} while (next);
372 
373 		if (!next) {
374 			*all_frag_present = 1;
375 			return QDF_STATUS_SUCCESS;
376 		}
377 	}
378 
379 insert_done:
380 	return QDF_STATUS_SUCCESS;
381 
382 insert_fail:
383 	return QDF_STATUS_E_FAILURE;
384 }
385 
386 
387 /*
388  * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
389  * @msdu: Pointer to the fragment
390  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
391  *
392  * decap tkip encrypted fragment
393  *
394  * Returns: QDF_STATUS
395  */
396 static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
397 {
398 	uint8_t *ivp, *orig_hdr;
399 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
400 
401 	/* start of 802.11 header info */
402 	orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
403 
404 	/* TKIP header is located post 802.11 header */
405 	ivp = orig_hdr + hdrlen;
406 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
407 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
408 			"IEEE80211_WEP_EXTIV is missing in TKIP fragment");
409 		return QDF_STATUS_E_DEFRAG_ERROR;
410 	}
411 
412 	qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
413 
414 	return QDF_STATUS_SUCCESS;
415 }
416 
417 /*
418  * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
419  * @nbuf: Pointer to the fragment buffer
420  * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
421  *
422  * Remove MIC information from CCMP fragment
423  *
424  * Returns: QDF_STATUS
425  */
426 static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
427 {
428 	uint8_t *ivp, *orig_hdr;
429 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
430 
431 	/* start of the 802.11 header */
432 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
433 
434 	/* CCMP header is located after 802.11 header */
435 	ivp = orig_hdr + hdrlen;
436 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
437 		return QDF_STATUS_E_DEFRAG_ERROR;
438 
439 	qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
440 
441 	return QDF_STATUS_SUCCESS;
442 }
443 
444 /*
445  * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
446  * @nbuf: Pointer to the fragment
447  * @hdrlen: length of the header information
448  *
449  * decap CCMP encrypted fragment
450  *
451  * Returns: QDF_STATUS
452  */
453 static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
454 {
455 	uint8_t *ivp, *origHdr;
456 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
457 
458 	origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
459 	ivp = origHdr + hdrlen;
460 
461 	if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
462 		return QDF_STATUS_E_DEFRAG_ERROR;
463 
464 	/* Let's pull the header later */
465 
466 	return QDF_STATUS_SUCCESS;
467 }
468 
469 /*
470  * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
471  * @msdu: Pointer to the fragment
472  * @hdrlen: length of the header information
473  *
474  * decap WEP encrypted fragment
475  *
476  * Returns: QDF_STATUS
477  */
478 static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
479 {
480 	uint8_t *origHdr;
481 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
482 
483 	origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
484 	qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
485 
486 	qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
487 
488 	return QDF_STATUS_SUCCESS;
489 }
490 
491 /*
492  * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
493  * @nbuf: Pointer to the fragment
494  *
495  * Calculate the header size of the received fragment
496  *
497  * Returns: header size (uint16_t)
498  */
499 static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
500 {
501 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
502 	uint16_t size = sizeof(struct ieee80211_frame);
503 	uint16_t fc = 0;
504 	uint32_t to_ds, fr_ds;
505 	uint8_t frm_ctrl_valid;
506 	uint16_t frm_ctrl_field;
507 
508 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
509 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
510 	frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
511 	frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
512 
513 	if (to_ds && fr_ds)
514 		size += IEEE80211_ADDR_LEN;
515 
516 	if (frm_ctrl_valid) {
517 		fc = frm_ctrl_field;
518 
519 		/* use 1-st byte for validation */
520 		if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
521 			size += sizeof(uint16_t);
522 			/* use 2-nd byte for validation */
523 			if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
524 				size += sizeof(struct ieee80211_htc);
525 		}
526 	}
527 
528 	return size;
529 }
530 
531 /*
532  * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
533  * @wh0: Pointer to the wireless header of the fragment
534  * @hdr: Array to hold the pseudo header
535  *
536  * Calculate a pseudo MIC header
537  *
538  * Returns: None
539  */
540 static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
541 				uint8_t hdr[])
542 {
543 	const struct ieee80211_frame_addr4 *wh =
544 		(const struct ieee80211_frame_addr4 *)wh0;
545 
546 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
547 	case IEEE80211_FC1_DIR_NODS:
548 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
549 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
550 					   wh->i_addr2);
551 		break;
552 	case IEEE80211_FC1_DIR_TODS:
553 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
554 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
555 					   wh->i_addr2);
556 		break;
557 	case IEEE80211_FC1_DIR_FROMDS:
558 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
559 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
560 					   wh->i_addr3);
561 		break;
562 	case IEEE80211_FC1_DIR_DSTODS:
563 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
564 		DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
565 					   wh->i_addr4);
566 		break;
567 	}
568 
569 	/*
570 	 * Bit 7 is IEEE80211_FC0_SUBTYPE_QOS for data frame, but
571 	 * it could also be set for deauth, disassoc, action, etc. for
572 	 * a mgt type frame. It comes into picture for MFP.
573 	 */
574 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
575 		const struct ieee80211_qosframe *qwh =
576 			(const struct ieee80211_qosframe *)wh;
577 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
578 	} else {
579 		hdr[12] = 0;
580 	}
581 
582 	hdr[13] = hdr[14] = hdr[15] = 0;	/* reserved */
583 }
584 
585 /*
586  * dp_rx_defrag_mic(): Calculate MIC header
587  * @key: Pointer to the key
588  * @wbuf: fragment buffer
589  * @off: Offset
590  * @data_len: Data length
591  * @mic: Array to hold MIC
592  *
593  * Calculate a pseudo MIC header
594  *
595  * Returns: QDF_STATUS
596  */
597 static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
598 		uint16_t off, uint16_t data_len, uint8_t mic[])
599 {
600 	uint8_t hdr[16] = { 0, };
601 	uint32_t l, r;
602 	const uint8_t *data;
603 	uint32_t space;
604 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
605 
606 	dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
607 		+ rx_desc_len), hdr);
608 
609 	l = dp_rx_get_le32(key);
610 	r = dp_rx_get_le32(key + 4);
611 
612 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
613 	l ^= dp_rx_get_le32(hdr);
614 	dp_rx_michael_block(l, r);
615 	l ^= dp_rx_get_le32(&hdr[4]);
616 	dp_rx_michael_block(l, r);
617 	l ^= dp_rx_get_le32(&hdr[8]);
618 	dp_rx_michael_block(l, r);
619 	l ^= dp_rx_get_le32(&hdr[12]);
620 	dp_rx_michael_block(l, r);
621 
622 	/* first buffer has special handling */
623 	data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
624 	space = qdf_nbuf_len(wbuf) - off;
625 
626 	for (;; ) {
627 		if (space > data_len)
628 			space = data_len;
629 
630 		/* collect 32-bit blocks from current buffer */
631 		while (space >= sizeof(uint32_t)) {
632 			l ^= dp_rx_get_le32(data);
633 			dp_rx_michael_block(l, r);
634 			data += sizeof(uint32_t);
635 			space -= sizeof(uint32_t);
636 			data_len -= sizeof(uint32_t);
637 		}
638 		if (data_len < sizeof(uint32_t))
639 			break;
640 
641 		wbuf = qdf_nbuf_next(wbuf);
642 		if (wbuf == NULL)
643 			return QDF_STATUS_E_DEFRAG_ERROR;
644 
645 		if (space != 0) {
646 			const uint8_t *data_next;
647 			/*
648 			 * Block straddles buffers, split references.
649 			 */
650 			data_next =
651 				(uint8_t *)qdf_nbuf_data(wbuf) + off;
652 			if ((qdf_nbuf_len(wbuf)) <
653 				sizeof(uint32_t) - space) {
654 				return QDF_STATUS_E_DEFRAG_ERROR;
655 			}
656 			switch (space) {
657 			case 1:
658 				l ^= dp_rx_get_le32_split(data[0],
659 					data_next[0], data_next[1],
660 					data_next[2]);
661 				data = data_next + 3;
662 				space = (qdf_nbuf_len(wbuf) - off) - 3;
663 				break;
664 			case 2:
665 				l ^= dp_rx_get_le32_split(data[0], data[1],
666 						    data_next[0], data_next[1]);
667 				data = data_next + 2;
668 				space = (qdf_nbuf_len(wbuf) - off) - 2;
669 				break;
670 			case 3:
671 				l ^= dp_rx_get_le32_split(data[0], data[1],
672 					data[2], data_next[0]);
673 				data = data_next + 1;
674 				space = (qdf_nbuf_len(wbuf) - off) - 1;
675 				break;
676 			}
677 			dp_rx_michael_block(l, r);
678 			data_len -= sizeof(uint32_t);
679 		} else {
680 			/*
681 			 * Setup for next buffer.
682 			 */
683 			data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
684 			space = qdf_nbuf_len(wbuf) - off;
685 		}
686 	}
687 	/* Last block and padding (0x5a, 4..7 x 0) */
688 	switch (data_len) {
689 	case 0:
690 		l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
691 		break;
692 	case 1:
693 		l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
694 		break;
695 	case 2:
696 		l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
697 		break;
698 	case 3:
699 		l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
700 		break;
701 	}
702 	dp_rx_michael_block(l, r);
703 	dp_rx_michael_block(l, r);
704 	dp_rx_put_le32(mic, l);
705 	dp_rx_put_le32(mic + 4, r);
706 
707 	return QDF_STATUS_SUCCESS;
708 }
709 
710 /*
711  * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
712  * @key: Pointer to the key
713  * @msdu: fragment buffer
714  * @hdrlen: Length of the header information
715  *
716  * Remove MIC information from the TKIP frame
717  *
718  * Returns: QDF_STATUS
719  */
720 static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
721 					qdf_nbuf_t msdu, uint16_t hdrlen)
722 {
723 	QDF_STATUS status;
724 	uint32_t pktlen = 0;
725 	uint8_t mic[IEEE80211_WEP_MICLEN];
726 	uint8_t mic0[IEEE80211_WEP_MICLEN];
727 	qdf_nbuf_t prev = NULL, next;
728 
729 	next = msdu;
730 	while (next) {
731 		pktlen += (qdf_nbuf_len(next) - hdrlen);
732 		prev = next;
733 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
734 			  "%s pktlen %ld", __func__,
735 				qdf_nbuf_len(next) - hdrlen);
736 		next = qdf_nbuf_next(next);
737 	}
738 
739 	if (!prev) {
740 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
741 			  "%s Defrag chaining failed !\n", __func__);
742 		return QDF_STATUS_E_DEFRAG_ERROR;
743 	}
744 
745 	qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
746 			   dp_f_tkip.ic_miclen, (caddr_t)mic0);
747 	qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
748 	pktlen -= dp_f_tkip.ic_miclen;
749 
750 	status = dp_rx_defrag_mic(key, msdu, hdrlen,
751 				pktlen, mic);
752 
753 	if (QDF_IS_STATUS_ERROR(status))
754 		return status;
755 
756 	if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
757 		return QDF_STATUS_E_DEFRAG_ERROR;
758 
759 	return QDF_STATUS_SUCCESS;
760 }
761 
762 /*
763  * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
764  * @nbuf: buffer pointer
765  * @hdrsize: size of the header to be pulled
766  *
767  * Pull the RXTLV & the 802.11 headers
768  *
769  * Returns: None
770  */
771 static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
772 {
773 	qdf_nbuf_pull_head(nbuf,
774 			RX_PKT_TLVS_LEN + hdrsize);
775 
776 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
777 			"%s: final pktlen %d .11len %d",
778 			__func__,
779 			(uint32_t)qdf_nbuf_len(nbuf), hdrsize);
780 }
781 
782 /*
783  * dp_rx_construct_fraglist(): Construct a nbuf fraglist
784  * @peer: Pointer to the peer
785  * @head: Pointer to list of fragments
786  * @hdrsize: Size of the header to be pulled
787  *
788  * Construct a nbuf fraglist
789  *
790  * Returns: None
791  */
792 static void
793 dp_rx_construct_fraglist(struct dp_peer *peer,
794 		qdf_nbuf_t head, uint16_t hdrsize)
795 {
796 	qdf_nbuf_t msdu = qdf_nbuf_next(head);
797 	qdf_nbuf_t rx_nbuf = msdu;
798 	uint32_t len = 0;
799 
800 	while (msdu) {
801 		dp_rx_frag_pull_hdr(msdu, hdrsize);
802 		len += qdf_nbuf_len(msdu);
803 		msdu = qdf_nbuf_next(msdu);
804 	}
805 
806 	qdf_nbuf_append_ext_list(head, rx_nbuf, len);
807 	qdf_nbuf_set_next(head, NULL);
808 
809 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
810 			"%s: head len %d ext len %d data len %d ",
811 			__func__,
812 			(uint32_t)qdf_nbuf_len(head),
813 			(uint32_t)qdf_nbuf_len(rx_nbuf),
814 			(uint32_t)(head->data_len));
815 }
816 
817 /**
818  * dp_rx_defrag_err() - rx err handler
819  * @pdev: handle to pdev object
820  * @vdev_id: vdev id
821  * @peer_mac_addr: peer mac address
822  * @tid: TID
823  * @tsf32: TSF
824  * @err_type: error type
825  * @rx_frame: rx frame
826  * @pn: PN Number
827  * @key_id: key id
828  *
829  * This function handles rx error and send MIC error notification
830  *
831  * Return: None
832  */
833 static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
834 {
835 	struct ol_if_ops *tops = NULL;
836 	struct dp_pdev *pdev = vdev->pdev;
837 	int rx_desc_len = sizeof(struct rx_pkt_tlvs);
838 	uint8_t *orig_hdr;
839 	struct ieee80211_frame *wh;
840 
841 	orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
842 	wh = (struct ieee80211_frame *)orig_hdr;
843 
844 	tops = pdev->soc->cdp_soc.ol_ops;
845 	if (tops->rx_mic_error)
846 		tops->rx_mic_error(pdev->ctrl_pdev, vdev->vdev_id, wh);
847 }
848 
849 
850 /*
851  * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
852  * @nbuf: Pointer to the fragment buffer
853  * @hdrsize: Size of headers
854  *
855  * Transcap the fragment from 802.11 to 802.3
856  *
857  * Returns: None
858  */
859 static void
860 dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
861 {
862 	struct llc_snap_hdr_t *llchdr;
863 	struct ethernet_hdr_t *eth_hdr;
864 	uint8_t ether_type[2];
865 	uint16_t fc = 0;
866 	union dp_align_mac_addr mac_addr;
867 	uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
868 
869 	if (rx_desc_info == NULL) {
870 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
871 			"%s: Memory alloc failed ! ", __func__);
872 		QDF_ASSERT(0);
873 		return;
874 	}
875 
876 	qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
877 
878 	llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
879 					RX_PKT_TLVS_LEN + hdrsize);
880 	qdf_mem_copy(ether_type, llchdr->ethertype, 2);
881 
882 	qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
883 				  sizeof(struct llc_snap_hdr_t) -
884 				  sizeof(struct ethernet_hdr_t)));
885 
886 	eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
887 
888 	if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
889 		fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
890 
891 	switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
892 
893 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
894 		"%s: frame control type: 0x%x", __func__, fc);
895 
896 	case IEEE80211_FC1_DIR_NODS:
897 		hal_rx_mpdu_get_addr1(rx_desc_info,
898 			&mac_addr.raw[0]);
899 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
900 			IEEE80211_ADDR_LEN);
901 		hal_rx_mpdu_get_addr2(rx_desc_info,
902 			&mac_addr.raw[0]);
903 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
904 			IEEE80211_ADDR_LEN);
905 		break;
906 	case IEEE80211_FC1_DIR_TODS:
907 		hal_rx_mpdu_get_addr3(rx_desc_info,
908 			&mac_addr.raw[0]);
909 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
910 			IEEE80211_ADDR_LEN);
911 		hal_rx_mpdu_get_addr2(rx_desc_info,
912 			&mac_addr.raw[0]);
913 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
914 			IEEE80211_ADDR_LEN);
915 		break;
916 	case IEEE80211_FC1_DIR_FROMDS:
917 		hal_rx_mpdu_get_addr1(rx_desc_info,
918 			&mac_addr.raw[0]);
919 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
920 			IEEE80211_ADDR_LEN);
921 		hal_rx_mpdu_get_addr3(rx_desc_info,
922 			&mac_addr.raw[0]);
923 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
924 			IEEE80211_ADDR_LEN);
925 		break;
926 
927 	case IEEE80211_FC1_DIR_DSTODS:
928 		hal_rx_mpdu_get_addr3(rx_desc_info,
929 			&mac_addr.raw[0]);
930 		qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
931 			IEEE80211_ADDR_LEN);
932 		hal_rx_mpdu_get_addr4(rx_desc_info,
933 			&mac_addr.raw[0]);
934 		qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
935 			IEEE80211_ADDR_LEN);
936 		break;
937 
938 	default:
939 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
940 		"%s: Unknown frame control type: 0x%x", __func__, fc);
941 	}
942 
943 	qdf_mem_copy(eth_hdr->ethertype, ether_type,
944 			sizeof(ether_type));
945 
946 	qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
947 	qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
948 	qdf_mem_free(rx_desc_info);
949 }
950 
951 /*
952  * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
953  * @peer: Pointer to the peer
954  * @tid: Transmit Identifier
955  * @head: Buffer to be reinjected back
956  *
957  * Reinject the fragment chain back into REO
958  *
959  * Returns: QDF_STATUS
960  */
961  static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
962 					unsigned tid, qdf_nbuf_t head)
963 {
964 	struct dp_pdev *pdev = peer->vdev->pdev;
965 	struct dp_soc *soc = pdev->soc;
966 	struct hal_buf_info buf_info;
967 	void *link_desc_va;
968 	void *msdu0, *msdu_desc_info;
969 	void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
970 	void *dst_mpdu_desc_info, *dst_qdesc_addr;
971 	qdf_dma_addr_t paddr;
972 	uint32_t nbuf_len, seq_no, dst_ind;
973 	uint32_t *mpdu_wrd;
974 	uint32_t ret, cookie;
975 
976 	void *dst_ring_desc =
977 		peer->rx_tid[tid].dst_ring_desc;
978 	void *hal_srng = soc->reo_reinject_ring.hal_srng;
979 
980 	ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
981 	if (!ent_ring_desc) {
982 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
983 			  "HAL src ring next entry NULL");
984 		return QDF_STATUS_E_FAILURE;
985 	}
986 
987 	hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
988 
989 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
990 
991 	qdf_assert(link_desc_va);
992 
993 	msdu0 = (uint8_t *)link_desc_va +
994 		RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
995 
996 	nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
997 
998 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
999 	HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
1000 			UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
1001 
1002 	/* msdu reconfig */
1003 	msdu_desc_info = (uint8_t *)msdu0 +
1004 		RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
1005 
1006 	dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
1007 
1008 	qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
1009 
1010 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1011 			FIRST_MSDU_IN_MPDU_FLAG, 1);
1012 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1013 			LAST_MSDU_IN_MPDU_FLAG, 1);
1014 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1015 			MSDU_CONTINUATION, 0x0);
1016 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1017 			REO_DESTINATION_INDICATION, dst_ind);
1018 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1019 			MSDU_LENGTH, nbuf_len);
1020 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1021 			SA_IS_VALID, 1);
1022 	HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
1023 			DA_IS_VALID, 1);
1024 
1025 	/* change RX TLV's */
1026 	hal_rx_msdu_start_msdu_len_set(
1027 			qdf_nbuf_data(head), nbuf_len);
1028 
1029 	cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
1030 
1031 	/* map the nbuf before reinject it into HW */
1032 	ret = qdf_nbuf_map_single(soc->osdev, head,
1033 					QDF_DMA_BIDIRECTIONAL);
1034 
1035 	if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
1036 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1037 				"%s: nbuf map failed !", __func__);
1038 		return QDF_STATUS_E_FAILURE;
1039 	}
1040 
1041 	paddr = qdf_nbuf_get_frag_paddr(head, 0);
1042 
1043 	ret = check_x86_paddr(soc, &head, &paddr, pdev);
1044 
1045 	if (ret == QDF_STATUS_E_FAILURE) {
1046 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1047 				"%s: x86 check failed !", __func__);
1048 		return QDF_STATUS_E_FAILURE;
1049 	}
1050 
1051 	hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_WBM2SW_RBM);
1052 
1053 	/* Lets fill entrance ring now !!! */
1054 	if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
1055 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1056 		"HAL RING Access For REO entrance SRNG Failed: %pK",
1057 		hal_srng);
1058 
1059 		return QDF_STATUS_E_FAILURE;
1060 	}
1061 
1062 	paddr = (uint64_t)buf_info.paddr;
1063 	/* buf addr */
1064 	hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
1065 				     buf_info.sw_cookie,
1066 				     HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
1067 	/* mpdu desc info */
1068 	ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
1069 	RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
1070 
1071 	dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
1072 	REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
1073 
1074 	qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
1075 				sizeof(struct rx_mpdu_desc_info));
1076 	qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
1077 
1078 	mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
1079 	seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
1080 
1081 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1082 			MSDU_COUNT, 0x1);
1083 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1084 			MPDU_SEQUENCE_NUMBER, seq_no);
1085 
1086 	/* unset frag bit */
1087 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1088 			FRAGMENT_FLAG, 0x0);
1089 
1090 	/* set sa/da valid bits */
1091 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1092 			SA_IS_VALID, 0x1);
1093 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1094 			DA_IS_VALID, 0x1);
1095 	HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
1096 			RAW_MPDU, 0x0);
1097 
1098 	/* qdesc addr */
1099 	ent_qdesc_addr = (uint8_t *)ent_ring_desc +
1100 		REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1101 
1102 	dst_qdesc_addr = (uint8_t *)dst_ring_desc +
1103 		REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
1104 
1105 	qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
1106 
1107 	HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
1108 			REO_DESTINATION_INDICATION, dst_ind);
1109 
1110 	hal_srng_access_end(soc->hal_soc, hal_srng);
1111 
1112 	DP_STATS_INC(soc, rx.reo_reinject, 1);
1113 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1114 				"%s: reinjection done !", __func__);
1115 	return QDF_STATUS_SUCCESS;
1116 }
1117 
1118 /*
1119  * dp_rx_defrag(): Defragment the fragment chain
1120  * @peer: Pointer to the peer
1121  * @tid: Transmit Identifier
1122  * @frag_list_head: Pointer to head list
1123  * @frag_list_tail: Pointer to tail list
1124  *
1125  * Defragment the fragment chain
1126  *
1127  * Returns: QDF_STATUS
1128  */
1129 static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
1130 			qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
1131 {
1132 	qdf_nbuf_t tmp_next, prev;
1133 	qdf_nbuf_t cur = frag_list_head, msdu;
1134 	uint32_t index, tkip_demic = 0;
1135 	uint16_t hdr_space;
1136 	uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
1137 	struct dp_vdev *vdev = peer->vdev;
1138 	struct dp_soc *soc = vdev->pdev->soc;
1139 	uint8_t status = 0;
1140 
1141 	hdr_space = dp_rx_defrag_hdrsize(cur);
1142 	index = hal_rx_msdu_is_wlan_mcast(cur) ?
1143 		dp_sec_mcast : dp_sec_ucast;
1144 
1145 	/* Remove FCS from all fragments */
1146 	while (cur) {
1147 		tmp_next = qdf_nbuf_next(cur);
1148 		qdf_nbuf_set_next(cur, NULL);
1149 		qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
1150 		prev = cur;
1151 		qdf_nbuf_set_next(cur, tmp_next);
1152 		cur = tmp_next;
1153 	}
1154 	cur = frag_list_head;
1155 
1156 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1157 			"%s: index %d Security type: %d", __func__,
1158 			index, peer->security[index].sec_type);
1159 
1160 	switch (peer->security[index].sec_type) {
1161 	case cdp_sec_type_tkip:
1162 		tkip_demic = 1;
1163 
1164 	case cdp_sec_type_tkip_nomic:
1165 		while (cur) {
1166 			tmp_next = qdf_nbuf_next(cur);
1167 			if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
1168 
1169 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1170 					QDF_TRACE_LEVEL_ERROR,
1171 					"dp_rx_defrag: TKIP decap failed");
1172 
1173 				return QDF_STATUS_E_DEFRAG_ERROR;
1174 			}
1175 			cur = tmp_next;
1176 		}
1177 
1178 		/* If success, increment header to be stripped later */
1179 		hdr_space += dp_f_tkip.ic_header;
1180 		break;
1181 
1182 	case cdp_sec_type_aes_ccmp:
1183 		while (cur) {
1184 			tmp_next = qdf_nbuf_next(cur);
1185 			if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
1186 
1187 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1188 					QDF_TRACE_LEVEL_ERROR,
1189 					"dp_rx_defrag: CCMP demic failed");
1190 
1191 				return QDF_STATUS_E_DEFRAG_ERROR;
1192 			}
1193 			if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
1194 
1195 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1196 					QDF_TRACE_LEVEL_ERROR,
1197 					"dp_rx_defrag: CCMP decap failed");
1198 
1199 				return QDF_STATUS_E_DEFRAG_ERROR;
1200 			}
1201 			cur = tmp_next;
1202 		}
1203 
1204 		/* If success, increment header to be stripped later */
1205 		hdr_space += dp_f_ccmp.ic_header;
1206 		break;
1207 
1208 	case cdp_sec_type_wep40:
1209 	case cdp_sec_type_wep104:
1210 	case cdp_sec_type_wep128:
1211 		while (cur) {
1212 			tmp_next = qdf_nbuf_next(cur);
1213 			if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
1214 
1215 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1216 					QDF_TRACE_LEVEL_ERROR,
1217 					"dp_rx_defrag: WEP decap failed");
1218 
1219 				return QDF_STATUS_E_DEFRAG_ERROR;
1220 			}
1221 			cur = tmp_next;
1222 		}
1223 
1224 		/* If success, increment header to be stripped later */
1225 		hdr_space += dp_f_wep.ic_header;
1226 		break;
1227 	default:
1228 		QDF_TRACE(QDF_MODULE_ID_TXRX,
1229 			QDF_TRACE_LEVEL_ERROR,
1230 			"dp_rx_defrag: Did not match any security type");
1231 		break;
1232 	}
1233 
1234 	if (tkip_demic) {
1235 		msdu = frag_list_head;
1236 		if (soc->cdp_soc.ol_ops->rx_frag_tkip_demic) {
1237 			status = soc->cdp_soc.ol_ops->rx_frag_tkip_demic(
1238 				(void *)peer->ctrl_peer, msdu, hdr_space);
1239 		} else {
1240 			qdf_mem_copy(key,
1241 				     &peer->security[index].michael_key[0],
1242 				IEEE80211_WEP_MICLEN);
1243 			status = dp_rx_defrag_tkip_demic(key, msdu,
1244 							 RX_PKT_TLVS_LEN +
1245 							 hdr_space);
1246 
1247 			if (status) {
1248 				dp_rx_defrag_err(vdev, frag_list_head);
1249 
1250 				QDF_TRACE(QDF_MODULE_ID_TXRX,
1251 					  QDF_TRACE_LEVEL_ERROR,
1252 					  "%s: TKIP demic failed status %d",
1253 					  __func__, status);
1254 
1255 				return QDF_STATUS_E_DEFRAG_ERROR;
1256 			}
1257 		}
1258 	}
1259 
1260 	/* Convert the header to 802.3 header */
1261 	dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
1262 	dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
1263 
1264 	return QDF_STATUS_SUCCESS;
1265 }
1266 
1267 /*
1268  * dp_rx_defrag_cleanup(): Clean up activities
1269  * @peer: Pointer to the peer
1270  * @tid: Transmit Identifier
1271  *
1272  * Returns: None
1273  */
1274 void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
1275 {
1276 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
1277 				peer->rx_tid[tid].array;
1278 
1279 	if (!rx_reorder_array_elem) {
1280 		/*
1281 		 * if this condition is hit then somebody
1282 		 * must have reset this pointer to NULL.
1283 		 * array pointer usually points to base variable
1284 		 * of TID queue structure: "struct dp_rx_tid"
1285 		 */
1286 		QDF_ASSERT(0);
1287 		return;
1288 	}
1289 	/* Free up nbufs */
1290 	dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1291 
1292 	/* Free up saved ring descriptors */
1293 	dp_rx_clear_saved_desc_info(peer, tid);
1294 
1295 	rx_reorder_array_elem->head = NULL;
1296 	rx_reorder_array_elem->tail = NULL;
1297 	peer->rx_tid[tid].defrag_timeout_ms = 0;
1298 	peer->rx_tid[tid].curr_frag_num = 0;
1299 	peer->rx_tid[tid].curr_seq_num = 0;
1300 	peer->rx_tid[tid].head_frag_desc = NULL;
1301 }
1302 
1303 /*
1304  * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
1305  * @ring_desc: Pointer to the dst ring descriptor
1306  * @peer: Pointer to the peer
1307  * @tid: Transmit Identifier
1308  *
1309  * Returns: None
1310  */
1311 static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
1312 	struct dp_rx_desc *rx_desc, struct dp_peer *peer, unsigned tid)
1313 {
1314 	void *dst_ring_desc = qdf_mem_malloc(
1315 			sizeof(struct reo_destination_ring));
1316 
1317 	if (dst_ring_desc == NULL) {
1318 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1319 			"%s: Memory alloc failed !", __func__);
1320 		QDF_ASSERT(0);
1321 		return QDF_STATUS_E_NOMEM;
1322 	}
1323 
1324 	qdf_mem_copy(dst_ring_desc, ring_desc,
1325 		       sizeof(struct reo_destination_ring));
1326 
1327 	peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
1328 	peer->rx_tid[tid].head_frag_desc = rx_desc;
1329 
1330 	return QDF_STATUS_SUCCESS;
1331 }
1332 
1333 /*
1334  * dp_rx_defrag_store_fragment(): Store incoming fragments
1335  * @soc: Pointer to the SOC data structure
1336  * @ring_desc: Pointer to the ring descriptor
1337  * @mpdu_desc_info: MPDU descriptor info
1338  * @tid: Traffic Identifier
1339  * @rx_desc: Pointer to rx descriptor
1340  * @rx_bfs: Number of bfs consumed
1341  *
1342  * Returns: QDF_STATUS
1343  */
1344 static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
1345 			void *ring_desc,
1346 			union dp_rx_desc_list_elem_t **head,
1347 			union dp_rx_desc_list_elem_t **tail,
1348 			struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1349 			unsigned tid, struct dp_rx_desc *rx_desc,
1350 			uint32_t *rx_bfs)
1351 {
1352 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1353 	struct dp_pdev *pdev;
1354 	struct dp_peer *peer;
1355 	uint16_t peer_id;
1356 	uint8_t fragno, more_frag, all_frag_present = 0;
1357 	uint16_t rxseq = mpdu_desc_info->mpdu_seq;
1358 	QDF_STATUS status;
1359 	struct dp_rx_tid *rx_tid;
1360 	uint8_t mpdu_sequence_control_valid;
1361 	uint8_t mpdu_frame_control_valid;
1362 	qdf_nbuf_t frag = rx_desc->nbuf;
1363 
1364 	/* Check if the packet is from a valid peer */
1365 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1366 					mpdu_desc_info->peer_meta_data);
1367 	peer = dp_peer_find_by_id(soc, peer_id);
1368 
1369 	if (!peer) {
1370 		/* We should not receive anything from unknown peer
1371 		 * however, that might happen while we are in the monitor mode.
1372 		 * We don't need to handle that here
1373 		 */
1374 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1375 			"Unknown peer, dropping the fragment");
1376 
1377 		qdf_nbuf_free(frag);
1378 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1379 		*rx_bfs = 1;
1380 
1381 		return QDF_STATUS_E_DEFRAG_ERROR;
1382 	}
1383 
1384 	pdev = peer->vdev->pdev;
1385 	rx_tid = &peer->rx_tid[tid];
1386 
1387 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1388 
1389 	mpdu_sequence_control_valid =
1390 		hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
1391 
1392 	/* Invalid MPDU sequence control field, MPDU is of no use */
1393 	if (!mpdu_sequence_control_valid) {
1394 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1395 			"Invalid MPDU seq control field, dropping MPDU");
1396 		qdf_nbuf_free(frag);
1397 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1398 		*rx_bfs = 1;
1399 
1400 		qdf_assert(0);
1401 		goto end;
1402 	}
1403 
1404 	mpdu_frame_control_valid =
1405 		hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
1406 
1407 	/* Invalid frame control field */
1408 	if (!mpdu_frame_control_valid) {
1409 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1410 			"Invalid frame control field, dropping MPDU");
1411 		qdf_nbuf_free(frag);
1412 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1413 		*rx_bfs = 1;
1414 
1415 		qdf_assert(0);
1416 		goto end;
1417 	}
1418 
1419 	/* Current mpdu sequence */
1420 	more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
1421 
1422 	/* HW does not populate the fragment number as of now
1423 	 * need to get from the 802.11 header
1424 	 */
1425 	fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
1426 
1427 	/*
1428 	 * !more_frag: no more fragments to be delivered
1429 	 * !frag_no: packet is not fragmented
1430 	 * !rx_reorder_array_elem->head: no saved fragments so far
1431 	 */
1432 	if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
1433 		/* We should not get into this situation here.
1434 		 * It means an unfragmented packet with fragment flag
1435 		 * is delivered over the REO exception ring.
1436 		 * Typically it follows normal rx path.
1437 		 */
1438 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1439 			"Rcvd unfragmented pkt on REO Err srng, dropping");
1440 		qdf_nbuf_free(frag);
1441 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1442 		*rx_bfs = 1;
1443 
1444 		qdf_assert(0);
1445 		goto end;
1446 	}
1447 
1448 	/* Check if the fragment is for the same sequence or a different one */
1449 	if (rx_reorder_array_elem->head) {
1450 		if (rxseq != rx_tid->curr_seq_num) {
1451 
1452 			/* Drop stored fragments if out of sequence
1453 			 * fragment is received
1454 			 */
1455 			dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
1456 
1457 			rx_reorder_array_elem->head = NULL;
1458 			rx_reorder_array_elem->tail = NULL;
1459 
1460 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1461 				"%s mismatch, dropping earlier sequence ",
1462 				(rxseq == rx_tid->curr_seq_num)
1463 				? "address"
1464 				: "seq number");
1465 
1466 			/*
1467 			 * The sequence number for this fragment becomes the
1468 			 * new sequence number to be processed
1469 			 */
1470 			rx_tid->curr_seq_num = rxseq;
1471 
1472 		}
1473 	} else {
1474 		/* Start of a new sequence */
1475 		dp_rx_defrag_cleanup(peer, tid);
1476 		rx_tid->curr_seq_num = rxseq;
1477 	}
1478 
1479 	/*
1480 	 * If the earlier sequence was dropped, this will be the fresh start.
1481 	 * Else, continue with next fragment in a given sequence
1482 	 */
1483 	status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
1484 			&rx_reorder_array_elem->tail, frag,
1485 			&all_frag_present);
1486 
1487 	/*
1488 	 * Currently, we can have only 6 MSDUs per-MPDU, if the current
1489 	 * packet sequence has more than 6 MSDUs for some reason, we will
1490 	 * have to use the next MSDU link descriptor and chain them together
1491 	 * before reinjection
1492 	 */
1493 	if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
1494 			(rx_reorder_array_elem->head == frag)) {
1495 
1496 		status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
1497 					rx_desc, peer, tid);
1498 
1499 		if (status != QDF_STATUS_SUCCESS) {
1500 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1501 				"%s: Unable to store ring desc !", __func__);
1502 			goto end;
1503 		}
1504 	} else {
1505 		dp_rx_add_to_free_desc_list(head, tail, rx_desc);
1506 		*rx_bfs = 1;
1507 
1508 		/* Return the non-head link desc */
1509 		if (dp_rx_link_desc_return(soc, ring_desc,
1510 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1511 				QDF_STATUS_SUCCESS)
1512 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1513 					"%s: Failed to return link desc",
1514 					__func__);
1515 
1516 	}
1517 
1518 	if (pdev->soc->rx.flags.defrag_timeout_check)
1519 		dp_rx_defrag_waitlist_remove(peer, tid);
1520 
1521 	/* Yet to receive more fragments for this sequence number */
1522 	if (!all_frag_present) {
1523 		uint32_t now_ms =
1524 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1525 
1526 		peer->rx_tid[tid].defrag_timeout_ms =
1527 			now_ms + pdev->soc->rx.defrag.timeout_ms;
1528 
1529 		dp_rx_defrag_waitlist_add(peer, tid);
1530 		dp_peer_unref_del_find_by_id(peer);
1531 
1532 		return QDF_STATUS_SUCCESS;
1533 	}
1534 
1535 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1536 		"All fragments received for sequence: %d", rxseq);
1537 
1538 	/* Process the fragments */
1539 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1540 		rx_reorder_array_elem->tail);
1541 	if (QDF_IS_STATUS_ERROR(status)) {
1542 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1543 			"Fragment processing failed");
1544 
1545 		dp_rx_add_to_free_desc_list(head, tail,
1546 				peer->rx_tid[tid].head_frag_desc);
1547 		*rx_bfs = 1;
1548 
1549 		if (dp_rx_link_desc_return(soc,
1550 					peer->rx_tid[tid].dst_ring_desc,
1551 					HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
1552 				QDF_STATUS_SUCCESS)
1553 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1554 					"%s: Failed to return link desc",
1555 					__func__);
1556 		dp_rx_defrag_cleanup(peer, tid);
1557 		goto end;
1558 	}
1559 
1560 	/* Re-inject the fragments back to REO for further processing */
1561 	status = dp_rx_defrag_reo_reinject(peer, tid,
1562 			rx_reorder_array_elem->head);
1563 	if (QDF_IS_STATUS_SUCCESS(status)) {
1564 		rx_reorder_array_elem->head = NULL;
1565 		rx_reorder_array_elem->tail = NULL;
1566 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1567 		"Fragmented sequence successfully reinjected");
1568 	} else {
1569 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1570 		"Fragmented sequence reinjection failed");
1571 		dp_rx_return_head_frag_desc(peer, tid);
1572 	}
1573 
1574 	dp_rx_defrag_cleanup(peer, tid);
1575 
1576 	dp_peer_unref_del_find_by_id(peer);
1577 
1578 	return QDF_STATUS_SUCCESS;
1579 
1580 end:
1581 	dp_peer_unref_del_find_by_id(peer);
1582 
1583 	return QDF_STATUS_E_DEFRAG_ERROR;
1584 }
1585 
1586 /**
1587  * dp_rx_frag_handle() - Handles fragmented Rx frames
1588  *
1589  * @soc: core txrx main context
1590  * @ring_desc: opaque pointer to the REO error ring descriptor
1591  * @mpdu_desc_info: MPDU descriptor information from ring descriptor
1592  * @head: head of the local descriptor free-list
1593  * @tail: tail of the local descriptor free-list
1594  * @quota: No. of units (packets) that can be serviced in one shot.
1595  *
1596  * This function implements RX 802.11 fragmentation handling
1597  * The handling is mostly same as legacy fragmentation handling.
1598  * If required, this function can re-inject the frames back to
1599  * REO ring (with proper setting to by-pass fragmentation check
1600  * but use duplicate detection / re-ordering and routing these frames
1601  * to a different core.
1602  *
1603  * Return: uint32_t: No. of elements processed
1604  */
1605 uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
1606 		struct hal_rx_mpdu_desc_info *mpdu_desc_info,
1607 		union dp_rx_desc_list_elem_t **head,
1608 		union dp_rx_desc_list_elem_t **tail,
1609 		uint32_t quota)
1610 {
1611 	uint32_t rx_bufs_used = 0;
1612 	void *link_desc_va;
1613 	struct hal_buf_info buf_info;
1614 	struct hal_rx_msdu_list msdu_list; /* per MPDU list of MSDUs */
1615 	qdf_nbuf_t msdu = NULL;
1616 	uint32_t tid, msdu_len;
1617 	int idx, rx_bfs = 0;
1618 	QDF_STATUS status;
1619 
1620 	qdf_assert(soc);
1621 	qdf_assert(mpdu_desc_info);
1622 
1623 	/* Fragment from a valid peer */
1624 	hal_rx_reo_buf_paddr_get(ring_desc, &buf_info);
1625 
1626 	link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
1627 
1628 	qdf_assert(link_desc_va);
1629 
1630 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1631 		"Number of MSDUs to process, num_msdus: %d",
1632 		mpdu_desc_info->msdu_count);
1633 
1634 
1635 	if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
1636 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1637 			"Not sufficient MSDUs to process");
1638 		return rx_bufs_used;
1639 	}
1640 
1641 	/* Get msdu_list for the given MPDU */
1642 	hal_rx_msdu_list_get(soc->hal_soc, link_desc_va, &msdu_list,
1643 			     &mpdu_desc_info->msdu_count);
1644 
1645 	/* Process all MSDUs in the current MPDU */
1646 	for (idx = 0; (idx < mpdu_desc_info->msdu_count) && quota--; idx++) {
1647 		struct dp_rx_desc *rx_desc =
1648 			dp_rx_cookie_2_va_rxdma_buf(soc,
1649 				msdu_list.sw_cookie[idx]);
1650 
1651 		qdf_assert(rx_desc);
1652 
1653 		msdu = rx_desc->nbuf;
1654 
1655 		qdf_nbuf_unmap_single(soc->osdev, msdu,
1656 				QDF_DMA_BIDIRECTIONAL);
1657 
1658 		rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
1659 
1660 		msdu_len = hal_rx_msdu_start_msdu_len_get(
1661 				rx_desc->rx_buf_start);
1662 
1663 		qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
1664 		qdf_nbuf_append_ext_list(msdu, NULL, 0);
1665 
1666 		tid = hal_rx_mpdu_start_tid_get(soc->hal_soc,
1667 						rx_desc->rx_buf_start);
1668 
1669 		/* Process fragment-by-fragment */
1670 		status = dp_rx_defrag_store_fragment(soc, ring_desc,
1671 				head, tail, mpdu_desc_info,
1672 				tid, rx_desc, &rx_bfs);
1673 
1674 		if (rx_bfs)
1675 			rx_bufs_used++;
1676 
1677 		if (!QDF_IS_STATUS_SUCCESS(status)) {
1678 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1679 				"Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
1680 				mpdu_desc_info->mpdu_seq,
1681 				mpdu_desc_info->msdu_count,
1682 				mpdu_desc_info->mpdu_flags);
1683 
1684 			/* No point in processing rest of the fragments */
1685 			break;
1686 		}
1687 	}
1688 
1689 	return rx_bufs_used;
1690 }
1691 
1692 QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
1693 				      struct dp_peer *peer, uint16_t tid,
1694 		uint16_t rxseq, qdf_nbuf_t nbuf)
1695 {
1696 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1697 	struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
1698 	uint8_t all_frag_present;
1699 	uint32_t msdu_len;
1700 	QDF_STATUS status;
1701 
1702 	rx_reorder_array_elem = peer->rx_tid[tid].array;
1703 
1704 	if (rx_reorder_array_elem->head &&
1705 	    rxseq != rx_tid->curr_seq_num) {
1706 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1707 			  "%s: No list found for TID %d Seq# %d",
1708 				__func__, tid, rxseq);
1709 		qdf_nbuf_free(nbuf);
1710 		goto fail;
1711 	}
1712 
1713 	msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
1714 
1715 	qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
1716 
1717 	status = dp_rx_defrag_fraglist_insert(peer, tid,
1718 					      &rx_reorder_array_elem->head,
1719 			&rx_reorder_array_elem->tail, nbuf,
1720 			&all_frag_present);
1721 
1722 	if (QDF_IS_STATUS_ERROR(status)) {
1723 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1724 			  "%s Fragment insert failed", __func__);
1725 
1726 		goto fail;
1727 	}
1728 
1729 	if (soc->rx.flags.defrag_timeout_check)
1730 		dp_rx_defrag_waitlist_remove(peer, tid);
1731 
1732 	if (!all_frag_present) {
1733 		uint32_t now_ms =
1734 			qdf_system_ticks_to_msecs(qdf_system_ticks());
1735 
1736 		peer->rx_tid[tid].defrag_timeout_ms =
1737 			now_ms + soc->rx.defrag.timeout_ms;
1738 
1739 		dp_rx_defrag_waitlist_add(peer, tid);
1740 
1741 		return QDF_STATUS_SUCCESS;
1742 	}
1743 
1744 	status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
1745 			      rx_reorder_array_elem->tail);
1746 
1747 	if (QDF_IS_STATUS_ERROR(status)) {
1748 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1749 			  "%s Fragment processing failed", __func__);
1750 
1751 		dp_rx_return_head_frag_desc(peer, tid);
1752 		dp_rx_defrag_cleanup(peer, tid);
1753 
1754 		goto fail;
1755 	}
1756 
1757 	/* Re-inject the fragments back to REO for further processing */
1758 	status = dp_rx_defrag_reo_reinject(peer, tid,
1759 					   rx_reorder_array_elem->head);
1760 	if (QDF_IS_STATUS_SUCCESS(status)) {
1761 		rx_reorder_array_elem->head = NULL;
1762 		rx_reorder_array_elem->tail = NULL;
1763 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1764 			  "%s: Frag seq successfully reinjected",
1765 			__func__);
1766 	} else {
1767 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1768 			  "%s: Frag seq reinjection failed",
1769 			__func__);
1770 		dp_rx_return_head_frag_desc(peer, tid);
1771 	}
1772 
1773 	dp_rx_defrag_cleanup(peer, tid);
1774 	return QDF_STATUS_SUCCESS;
1775 
1776 fail:
1777 	return QDF_STATUS_E_DEFRAG_ERROR;
1778 }
1779