xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.h (revision dd4dc88b837a295134aa9869114a2efee0f4894b)
1 /*
2  * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #ifndef _DP_RX_H
20 #define _DP_RX_H
21 
22 #include "hal_rx.h"
23 #include "dp_tx.h"
24 #include "dp_peer.h"
25 #include "dp_internal.h"
26 
27 #ifdef RXDMA_OPTIMIZATION
28 #ifdef NO_RX_PKT_HDR_TLV
29 #define RX_BUFFER_ALIGNMENT     0
30 #else
31 #define RX_BUFFER_ALIGNMENT     128
32 #endif /* NO_RX_PKT_HDR_TLV */
33 #else /* RXDMA_OPTIMIZATION */
34 #define RX_BUFFER_ALIGNMENT     4
35 #endif /* RXDMA_OPTIMIZATION */
36 
37 #ifdef QCA_HOST2FW_RXBUF_RING
38 #define DP_WBM2SW_RBM HAL_RX_BUF_RBM_SW1_BM
39 
40 /**
41  * For MCL cases, allocate as many RX descriptors as buffers in the SW2RXDMA
42  * ring. This value may need to be tuned later.
43  */
44 #define DP_RX_DESC_ALLOC_MULTIPLIER 1
45 #else
46 #define DP_WBM2SW_RBM HAL_RX_BUF_RBM_SW3_BM
47 
48 /**
49  * AP use cases need to allocate more RX Descriptors than the number of
50  * entries avaialable in the SW2RXDMA buffer replenish ring. This is to account
51  * for frames sitting in REO queues, HW-HW DMA rings etc. Hence using a
52  * multiplication factor of 3, to allocate three times as many RX descriptors
53  * as RX buffers.
54  */
55 #define DP_RX_DESC_ALLOC_MULTIPLIER 3
56 #endif /* QCA_HOST2FW_RXBUF_RING */
57 
58 #define RX_BUFFER_RESERVATION   0
59 
60 #define DP_PEER_METADATA_PEER_ID_MASK	0x0000ffff
61 #define DP_PEER_METADATA_PEER_ID_SHIFT	0
62 #define DP_PEER_METADATA_VDEV_ID_MASK	0x00070000
63 #define DP_PEER_METADATA_VDEV_ID_SHIFT	16
64 
65 #define DP_PEER_METADATA_PEER_ID_GET(_peer_metadata)		\
66 	(((_peer_metadata) & DP_PEER_METADATA_PEER_ID_MASK)	\
67 			>> DP_PEER_METADATA_PEER_ID_SHIFT)
68 
69 #define DP_PEER_METADATA_ID_GET(_peer_metadata)			\
70 	(((_peer_metadata) & DP_PEER_METADATA_VDEV_ID_MASK)	\
71 			>> DP_PEER_METADATA_VDEV_ID_SHIFT)
72 
73 #define DP_RX_DESC_MAGIC 0xdec0de
74 
75 /**
76  * struct dp_rx_desc
77  *
78  * @nbuf		: VA of the "skb" posted
79  * @rx_buf_start	: VA of the original Rx buffer, before
80  *			  movement of any skb->data pointer
81  * @cookie		: index into the sw array which holds
82  *			  the sw Rx descriptors
83  *			  Cookie space is 21 bits:
84  *			  lower 18 bits -- index
85  *			  upper  3 bits -- pool_id
86  * @pool_id		: pool Id for which this allocated.
87  *			  Can only be used if there is no flow
88  *			  steering
89  * @in_use		  rx_desc is in use
90  * @unmapped		  used to mark rx_desc an unmapped if the corresponding
91  *			  nbuf is already unmapped
92  */
93 struct dp_rx_desc {
94 	qdf_nbuf_t nbuf;
95 	uint8_t *rx_buf_start;
96 	uint32_t cookie;
97 	uint8_t	 pool_id;
98 #ifdef RX_DESC_DEBUG_CHECK
99 	uint32_t magic;
100 #endif
101 	uint8_t	in_use:1,
102 	unmapped:1;
103 };
104 
105 /* RX Descriptor Multi Page memory alloc related */
106 #define DP_RX_DESC_OFFSET_NUM_BITS 8
107 #define DP_RX_DESC_PAGE_ID_NUM_BITS 8
108 #define DP_RX_DESC_POOL_ID_NUM_BITS 4
109 
110 #define DP_RX_DESC_PAGE_ID_SHIFT DP_RX_DESC_OFFSET_NUM_BITS
111 #define DP_RX_DESC_POOL_ID_SHIFT \
112 		(DP_RX_DESC_OFFSET_NUM_BITS + DP_RX_DESC_PAGE_ID_NUM_BITS)
113 #define RX_DESC_MULTI_PAGE_COOKIE_POOL_ID_MASK \
114 	(((1 << DP_RX_DESC_POOL_ID_NUM_BITS) - 1) << DP_RX_DESC_POOL_ID_SHIFT)
115 #define RX_DESC_MULTI_PAGE_COOKIE_PAGE_ID_MASK	\
116 			(((1 << DP_RX_DESC_PAGE_ID_NUM_BITS) - 1) << \
117 			 DP_RX_DESC_PAGE_ID_SHIFT)
118 #define RX_DESC_MULTI_PAGE_COOKIE_OFFSET_MASK \
119 			((1 << DP_RX_DESC_OFFSET_NUM_BITS) - 1)
120 #define DP_RX_DESC_MULTI_PAGE_COOKIE_GET_POOL_ID(_cookie)		\
121 	(((_cookie) & RX_DESC_MULTI_PAGE_COOKIE_POOL_ID_MASK) >>	\
122 			DP_RX_DESC_POOL_ID_SHIFT)
123 #define DP_RX_DESC_MULTI_PAGE_COOKIE_GET_PAGE_ID(_cookie)		\
124 	(((_cookie) & RX_DESC_MULTI_PAGE_COOKIE_PAGE_ID_MASK) >>	\
125 			DP_RX_DESC_PAGE_ID_SHIFT)
126 #define DP_RX_DESC_MULTI_PAGE_COOKIE_GET_OFFSET(_cookie)		\
127 	((_cookie) & RX_DESC_MULTI_PAGE_COOKIE_OFFSET_MASK)
128 
129 #define RX_DESC_COOKIE_INDEX_SHIFT		0
130 #define RX_DESC_COOKIE_INDEX_MASK		0x3ffff /* 18 bits */
131 #define RX_DESC_COOKIE_POOL_ID_SHIFT		18
132 #define RX_DESC_COOKIE_POOL_ID_MASK		0x1c0000
133 
134 #define DP_RX_DESC_COOKIE_MAX	\
135 	(RX_DESC_COOKIE_INDEX_MASK | RX_DESC_COOKIE_POOL_ID_MASK)
136 
137 #define DP_RX_DESC_COOKIE_POOL_ID_GET(_cookie)		\
138 	(((_cookie) & RX_DESC_COOKIE_POOL_ID_MASK) >>	\
139 			RX_DESC_COOKIE_POOL_ID_SHIFT)
140 
141 #define DP_RX_DESC_COOKIE_INDEX_GET(_cookie)		\
142 	(((_cookie) & RX_DESC_COOKIE_INDEX_MASK) >>	\
143 			RX_DESC_COOKIE_INDEX_SHIFT)
144 
145 /* DOC: Offset to obtain LLC hdr
146  *
147  * In the case of Wifi parse error
148  * to reach LLC header from beginning
149  * of VLAN tag we need to skip 8 bytes.
150  * Vlan_tag(4)+length(2)+length added
151  * by HW(2) = 8 bytes.
152  */
153 #define DP_SKIP_VLAN		8
154 
155 /**
156  * struct dp_rx_cached_buf - rx cached buffer
157  * @list: linked list node
158  * @buf: skb buffer
159  */
160 struct dp_rx_cached_buf {
161 	qdf_list_node_t node;
162 	qdf_nbuf_t buf;
163 };
164 
165 /*
166  *dp_rx_xor_block() - xor block of data
167  *@b: destination data block
168  *@a: source data block
169  *@len: length of the data to process
170  *
171  *Returns: None
172  */
173 static inline void dp_rx_xor_block(uint8_t *b, const uint8_t *a, qdf_size_t len)
174 {
175 	qdf_size_t i;
176 
177 	for (i = 0; i < len; i++)
178 		b[i] ^= a[i];
179 }
180 
181 /*
182  *dp_rx_rotl() - rotate the bits left
183  *@val: unsigned integer input value
184  *@bits: number of bits
185  *
186  *Returns: Integer with left rotated by number of 'bits'
187  */
188 static inline uint32_t dp_rx_rotl(uint32_t val, int bits)
189 {
190 	return (val << bits) | (val >> (32 - bits));
191 }
192 
193 /*
194  *dp_rx_rotr() - rotate the bits right
195  *@val: unsigned integer input value
196  *@bits: number of bits
197  *
198  *Returns: Integer with right rotated by number of 'bits'
199  */
200 static inline uint32_t dp_rx_rotr(uint32_t val, int bits)
201 {
202 	return (val >> bits) | (val << (32 - bits));
203 }
204 
205 /*
206  * dp_set_rx_queue() - set queue_mapping in skb
207  * @nbuf: skb
208  * @queue_id: rx queue_id
209  *
210  * Return: void
211  */
212 #ifdef QCA_OL_RX_MULTIQ_SUPPORT
213 static inline void dp_set_rx_queue(qdf_nbuf_t nbuf, uint8_t queue_id)
214 {
215 	qdf_nbuf_record_rx_queue(nbuf, queue_id);
216 	return;
217 }
218 #else
219 static inline void dp_set_rx_queue(qdf_nbuf_t nbuf, uint8_t queue_id)
220 {
221 }
222 #endif
223 
224 /*
225  *dp_rx_xswap() - swap the bits left
226  *@val: unsigned integer input value
227  *
228  *Returns: Integer with bits swapped
229  */
230 static inline uint32_t dp_rx_xswap(uint32_t val)
231 {
232 	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
233 }
234 
235 /*
236  *dp_rx_get_le32_split() - get little endian 32 bits split
237  *@b0: byte 0
238  *@b1: byte 1
239  *@b2: byte 2
240  *@b3: byte 3
241  *
242  *Returns: Integer with split little endian 32 bits
243  */
244 static inline uint32_t dp_rx_get_le32_split(uint8_t b0, uint8_t b1, uint8_t b2,
245 					uint8_t b3)
246 {
247 	return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
248 }
249 
250 /*
251  *dp_rx_get_le32() - get little endian 32 bits
252  *@b0: byte 0
253  *@b1: byte 1
254  *@b2: byte 2
255  *@b3: byte 3
256  *
257  *Returns: Integer with little endian 32 bits
258  */
259 static inline uint32_t dp_rx_get_le32(const uint8_t *p)
260 {
261 	return dp_rx_get_le32_split(p[0], p[1], p[2], p[3]);
262 }
263 
264 /*
265  * dp_rx_put_le32() - put little endian 32 bits
266  * @p: destination char array
267  * @v: source 32-bit integer
268  *
269  * Returns: None
270  */
271 static inline void dp_rx_put_le32(uint8_t *p, uint32_t v)
272 {
273 	p[0] = (v) & 0xff;
274 	p[1] = (v >> 8) & 0xff;
275 	p[2] = (v >> 16) & 0xff;
276 	p[3] = (v >> 24) & 0xff;
277 }
278 
279 /* Extract michal mic block of data */
280 #define dp_rx_michael_block(l, r)	\
281 	do {					\
282 		r ^= dp_rx_rotl(l, 17);	\
283 		l += r;				\
284 		r ^= dp_rx_xswap(l);		\
285 		l += r;				\
286 		r ^= dp_rx_rotl(l, 3);	\
287 		l += r;				\
288 		r ^= dp_rx_rotr(l, 2);	\
289 		l += r;				\
290 	} while (0)
291 
292 /**
293  * struct dp_rx_desc_list_elem_t
294  *
295  * @next		: Next pointer to form free list
296  * @rx_desc		: DP Rx descriptor
297  */
298 union dp_rx_desc_list_elem_t {
299 	union dp_rx_desc_list_elem_t *next;
300 	struct dp_rx_desc rx_desc;
301 };
302 
303 #ifdef RX_DESC_MULTI_PAGE_ALLOC
304 /**
305  * dp_rx_desc_find() - find dp rx descriptor from page ID and offset
306  * @page_id: Page ID
307  * @offset: Offset of the descriptor element
308  *
309  * Return: RX descriptor element
310  */
311 union dp_rx_desc_list_elem_t *dp_rx_desc_find(uint16_t page_id, uint16_t offset,
312 					      struct rx_desc_pool *rx_pool);
313 
314 static inline
315 struct dp_rx_desc *dp_get_rx_desc_from_cookie(struct dp_soc *soc,
316 					      struct rx_desc_pool *pool,
317 					      uint32_t cookie)
318 {
319 	uint8_t pool_id = DP_RX_DESC_MULTI_PAGE_COOKIE_GET_POOL_ID(cookie);
320 	uint16_t page_id = DP_RX_DESC_MULTI_PAGE_COOKIE_GET_PAGE_ID(cookie);
321 	uint8_t offset = DP_RX_DESC_MULTI_PAGE_COOKIE_GET_OFFSET(cookie);
322 	struct rx_desc_pool *rx_desc_pool;
323 	union dp_rx_desc_list_elem_t *rx_desc_elem;
324 
325 	if (qdf_unlikely(pool_id >= MAX_RXDESC_POOLS))
326 		return NULL;
327 
328 	rx_desc_pool = &pool[pool_id];
329 	rx_desc_elem = (union dp_rx_desc_list_elem_t *)
330 		(rx_desc_pool->desc_pages.cacheable_pages[page_id] +
331 		rx_desc_pool->elem_size * offset);
332 
333 	return &rx_desc_elem->rx_desc;
334 }
335 
336 /**
337  * dp_rx_cookie_2_va_rxdma_buf() - Converts cookie to a virtual address of
338  *			 the Rx descriptor on Rx DMA source ring buffer
339  * @soc: core txrx main context
340  * @cookie: cookie used to lookup virtual address
341  *
342  * Return: Pointer to the Rx descriptor
343  */
344 static inline
345 struct dp_rx_desc *dp_rx_cookie_2_va_rxdma_buf(struct dp_soc *soc,
346 					       uint32_t cookie)
347 {
348 	return dp_get_rx_desc_from_cookie(soc, &soc->rx_desc_buf[0], cookie);
349 }
350 
351 /**
352  * dp_rx_cookie_2_va_mon_buf() - Converts cookie to a virtual address of
353  *			 the Rx descriptor on monitor ring buffer
354  * @soc: core txrx main context
355  * @cookie: cookie used to lookup virtual address
356  *
357  * Return: Pointer to the Rx descriptor
358  */
359 static inline
360 struct dp_rx_desc *dp_rx_cookie_2_va_mon_buf(struct dp_soc *soc,
361 					     uint32_t cookie)
362 {
363 	return dp_get_rx_desc_from_cookie(soc, &soc->rx_desc_mon[0], cookie);
364 }
365 
366 /**
367  * dp_rx_cookie_2_va_mon_status() - Converts cookie to a virtual address of
368  *			 the Rx descriptor on monitor status ring buffer
369  * @soc: core txrx main context
370  * @cookie: cookie used to lookup virtual address
371  *
372  * Return: Pointer to the Rx descriptor
373  */
374 static inline
375 struct dp_rx_desc *dp_rx_cookie_2_va_mon_status(struct dp_soc *soc,
376 						uint32_t cookie)
377 {
378 	return dp_get_rx_desc_from_cookie(soc, &soc->rx_desc_status[0], cookie);
379 }
380 #else
381 /**
382  * dp_rx_cookie_2_va_rxdma_buf() - Converts cookie to a virtual address of
383  *			 the Rx descriptor on Rx DMA source ring buffer
384  * @soc: core txrx main context
385  * @cookie: cookie used to lookup virtual address
386  *
387  * Return: void *: Virtual Address of the Rx descriptor
388  */
389 static inline
390 void *dp_rx_cookie_2_va_rxdma_buf(struct dp_soc *soc, uint32_t cookie)
391 {
392 	uint8_t pool_id = DP_RX_DESC_COOKIE_POOL_ID_GET(cookie);
393 	uint16_t index = DP_RX_DESC_COOKIE_INDEX_GET(cookie);
394 	struct rx_desc_pool *rx_desc_pool;
395 
396 	if (qdf_unlikely(pool_id >= MAX_RXDESC_POOLS))
397 		return NULL;
398 
399 	rx_desc_pool = &soc->rx_desc_buf[pool_id];
400 
401 	if (qdf_unlikely(index >= rx_desc_pool->pool_size))
402 		return NULL;
403 
404 	return &(soc->rx_desc_buf[pool_id].array[index].rx_desc);
405 }
406 
407 /**
408  * dp_rx_cookie_2_va_mon_buf() - Converts cookie to a virtual address of
409  *			 the Rx descriptor on monitor ring buffer
410  * @soc: core txrx main context
411  * @cookie: cookie used to lookup virtual address
412  *
413  * Return: void *: Virtual Address of the Rx descriptor
414  */
415 static inline
416 void *dp_rx_cookie_2_va_mon_buf(struct dp_soc *soc, uint32_t cookie)
417 {
418 	uint8_t pool_id = DP_RX_DESC_COOKIE_POOL_ID_GET(cookie);
419 	uint16_t index = DP_RX_DESC_COOKIE_INDEX_GET(cookie);
420 	/* TODO */
421 	/* Add sanity for pool_id & index */
422 	return &(soc->rx_desc_mon[pool_id].array[index].rx_desc);
423 }
424 
425 /**
426  * dp_rx_cookie_2_va_mon_status() - Converts cookie to a virtual address of
427  *			 the Rx descriptor on monitor status ring buffer
428  * @soc: core txrx main context
429  * @cookie: cookie used to lookup virtual address
430  *
431  * Return: void *: Virtual Address of the Rx descriptor
432  */
433 static inline
434 void *dp_rx_cookie_2_va_mon_status(struct dp_soc *soc, uint32_t cookie)
435 {
436 	uint8_t pool_id = DP_RX_DESC_COOKIE_POOL_ID_GET(cookie);
437 	uint16_t index = DP_RX_DESC_COOKIE_INDEX_GET(cookie);
438 	/* TODO */
439 	/* Add sanity for pool_id & index */
440 	return &(soc->rx_desc_status[pool_id].array[index].rx_desc);
441 }
442 #endif /* RX_DESC_MULTI_PAGE_ALLOC */
443 
444 void dp_rx_add_desc_list_to_free_list(struct dp_soc *soc,
445 				union dp_rx_desc_list_elem_t **local_desc_list,
446 				union dp_rx_desc_list_elem_t **tail,
447 				uint16_t pool_id,
448 				struct rx_desc_pool *rx_desc_pool);
449 
450 uint16_t dp_rx_get_free_desc_list(struct dp_soc *soc, uint32_t pool_id,
451 				struct rx_desc_pool *rx_desc_pool,
452 				uint16_t num_descs,
453 				union dp_rx_desc_list_elem_t **desc_list,
454 				union dp_rx_desc_list_elem_t **tail);
455 
456 
457 QDF_STATUS dp_rx_pdev_attach(struct dp_pdev *pdev);
458 
459 void dp_rx_pdev_detach(struct dp_pdev *pdev);
460 
461 
462 uint32_t
463 dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint8_t reo_ring_num,
464 	      uint32_t quota);
465 
466 uint32_t dp_rx_err_process(struct dp_soc *soc, void *hal_ring, uint32_t quota);
467 
468 uint32_t
469 dp_rx_wbm_err_process(struct dp_soc *soc, void *hal_ring, uint32_t quota);
470 
471 /**
472  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
473  *		     multiple nbufs.
474  * @nbuf: pointer to the first msdu of an amsdu.
475  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
476  *
477  * This function implements the creation of RX frag_list for cases
478  * where an MSDU is spread across multiple nbufs.
479  *
480  * Return: returns the head nbuf which contains complete frag_list.
481  */
482 qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr);
483 
484 /*
485  * dp_rx_desc_pool_alloc() - create a pool of software rx_descs
486  *			     at the time of dp rx initialization
487  *
488  * @soc: core txrx main context
489  * @pool_id: pool_id which is one of 3 mac_ids
490  * @pool_size: number of Rx descriptor in the pool
491  * @rx_desc_pool: rx descriptor pool pointer
492  *
493  * Return: QDF status
494  */
495 QDF_STATUS dp_rx_desc_pool_alloc(struct dp_soc *soc, uint32_t pool_id,
496 				 uint32_t pool_size, struct rx_desc_pool *pool);
497 
498 /*
499  * dp_rx_desc_nbuf_and_pool_free() - free the sw rx desc pool called during
500  *				     de-initialization of wifi module.
501  *
502  * @soc: core txrx main context
503  * @pool_id: pool_id which is one of 3 mac_ids
504  * @rx_desc_pool: rx descriptor pool pointer
505  *
506  * Return: None
507  */
508 void dp_rx_desc_nbuf_and_pool_free(struct dp_soc *soc, uint32_t pool_id,
509 				   struct rx_desc_pool *rx_desc_pool);
510 
511 /*
512  * dp_rx_desc_nbuf_free() - free the sw rx desc nbufs called during
513  *			    de-initialization of wifi module.
514  *
515  * @soc: core txrx main context
516  * @pool_id: pool_id which is one of 3 mac_ids
517  * @rx_desc_pool: rx descriptor pool pointer
518  *
519  * Return: None
520  */
521 void dp_rx_desc_nbuf_free(struct dp_soc *soc,
522 			  struct rx_desc_pool *rx_desc_pool);
523 
524 /*
525  * dp_rx_desc_pool_free() - free the sw rx desc array called during
526  *			    de-initialization of wifi module.
527  *
528  * @soc: core txrx main context
529  * @rx_desc_pool: rx descriptor pool pointer
530  *
531  * Return: None
532  */
533 void dp_rx_desc_pool_free(struct dp_soc *soc,
534 			  struct rx_desc_pool *rx_desc_pool);
535 
536 void dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
537 				struct dp_peer *peer);
538 
539 /**
540  * dp_rx_add_to_free_desc_list() - Adds to a local free descriptor list
541  *
542  * @head: pointer to the head of local free list
543  * @tail: pointer to the tail of local free list
544  * @new: new descriptor that is added to the free list
545  *
546  * Return: void:
547  */
548 static inline
549 void dp_rx_add_to_free_desc_list(union dp_rx_desc_list_elem_t **head,
550 				 union dp_rx_desc_list_elem_t **tail,
551 				 struct dp_rx_desc *new)
552 {
553 	qdf_assert(head && new);
554 
555 	new->nbuf = NULL;
556 	new->in_use = 0;
557 
558 	((union dp_rx_desc_list_elem_t *)new)->next = *head;
559 	*head = (union dp_rx_desc_list_elem_t *)new;
560 	if (!*tail)
561 		*tail = *head;
562 
563 }
564 
565 /**
566  * dp_rx_wds_add_or_update_ast() - Add or update the ast entry.
567  *
568  * @soc: core txrx main context
569  * @ta_peer: WDS repeater peer
570  * @mac_addr: mac address of the peer
571  * @is_ad4_valid: 4-address valid flag
572  * @is_sa_valid: source address valid flag
573  * @is_chfrag_start: frag start flag
574  * @sa_idx: source-address index for peer
575  * @sa_sw_peer_id: software source-address peer-id
576  *
577  * Return: void:
578  */
579 #ifdef FEATURE_WDS
580 static inline void
581 dp_rx_wds_add_or_update_ast(struct dp_soc *soc, struct dp_peer *ta_peer,
582 			    qdf_nbuf_t nbuf, uint8_t is_ad4_valid,
583 			    uint8_t is_sa_valid, uint8_t is_chfrag_start,
584 			    uint16_t sa_idx, uint16_t sa_sw_peer_id)
585 {
586 	struct dp_peer *sa_peer;
587 	struct dp_ast_entry *ast;
588 	uint32_t flags = IEEE80211_NODE_F_WDS_HM;
589 	uint32_t ret = 0;
590 	struct dp_neighbour_peer *neighbour_peer = NULL;
591 	struct dp_pdev *pdev = ta_peer->vdev->pdev;
592 	uint8_t wds_src_mac[QDF_MAC_ADDR_SIZE];
593 
594 	/* For AP mode : Do wds source port learning only if it is a
595 	 * 4-address mpdu
596 	 *
597 	 * For STA mode : Frames from RootAP backend will be in 3-address mode,
598 	 * till RootAP does the WDS source port learning; Hence in repeater/STA
599 	 * mode, we enable learning even in 3-address mode , to avoid RootAP
600 	 * backbone getting wrongly learnt as MEC on repeater
601 	 */
602 	if (ta_peer->vdev->opmode != wlan_op_mode_sta) {
603 		if (!(is_chfrag_start && is_ad4_valid))
604 			return;
605 	} else {
606 		/* For HKv2 Source port learing is not needed in STA mode
607 		 * as we have support in HW
608 		 */
609 		if (soc->ast_override_support)
610 			return;
611 	}
612 
613 	if (qdf_unlikely(!is_sa_valid)) {
614 		qdf_mem_copy(wds_src_mac,
615 			     (qdf_nbuf_data(nbuf) + QDF_MAC_ADDR_SIZE),
616 			     QDF_MAC_ADDR_SIZE);
617 
618 		ret = dp_peer_add_ast(soc,
619 					ta_peer,
620 					wds_src_mac,
621 					CDP_TXRX_AST_TYPE_WDS,
622 					flags);
623 		return;
624 	}
625 
626 	qdf_spin_lock_bh(&soc->ast_lock);
627 	ast = soc->ast_table[sa_idx];
628 	qdf_spin_unlock_bh(&soc->ast_lock);
629 
630 	if (!ast) {
631 		/*
632 		 * In HKv1, it is possible that HW retains the AST entry in
633 		 * GSE cache on 1 radio , even after the AST entry is deleted
634 		 * (on another radio).
635 		 *
636 		 * Due to this, host might still get sa_is_valid indications
637 		 * for frames with SA not really present in AST table.
638 		 *
639 		 * So we go ahead and send an add_ast command to FW in such
640 		 * cases where sa is reported still as valid, so that FW will
641 		 * invalidate this GSE cache entry and new AST entry gets
642 		 * cached.
643 		 */
644 		if (!soc->ast_override_support) {
645 			qdf_mem_copy(wds_src_mac,
646 				     (qdf_nbuf_data(nbuf) + QDF_MAC_ADDR_SIZE),
647 				     QDF_MAC_ADDR_SIZE);
648 
649 			ret = dp_peer_add_ast(soc,
650 					      ta_peer,
651 					      wds_src_mac,
652 					      CDP_TXRX_AST_TYPE_WDS,
653 					      flags);
654 			return;
655 		} else {
656 			/* In HKv2 smart monitor case, when NAC client is
657 			 * added first and this client roams within BSS to
658 			 * connect to RE, since we have an AST entry for
659 			 * NAC we get sa_is_valid bit set. So we check if
660 			 * smart monitor is enabled and send add_ast command
661 			 * to FW.
662 			 */
663 			if (pdev->neighbour_peers_added) {
664 				qdf_mem_copy(wds_src_mac,
665 					     (qdf_nbuf_data(nbuf) +
666 					      QDF_MAC_ADDR_SIZE),
667 					     QDF_MAC_ADDR_SIZE);
668 
669 				qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
670 				TAILQ_FOREACH(neighbour_peer,
671 					      &pdev->neighbour_peers_list,
672 					      neighbour_peer_list_elem) {
673 					if (!qdf_mem_cmp(&neighbour_peer->neighbour_peers_macaddr,
674 							 wds_src_mac,
675 							 QDF_MAC_ADDR_SIZE)) {
676 						ret = dp_peer_add_ast(soc,
677 								      ta_peer,
678 								      wds_src_mac,
679 								      CDP_TXRX_AST_TYPE_WDS,
680 								      flags);
681 						QDF_TRACE(QDF_MODULE_ID_DP,
682 							  QDF_TRACE_LEVEL_INFO,
683 							  "sa valid and nac roamed to wds");
684 						break;
685 					}
686 				}
687 				qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
688 			}
689 			return;
690 		}
691 	}
692 
693 
694 	if ((ast->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
695 	    (ast->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
696 		return;
697 
698 	/*
699 	 * Ensure we are updating the right AST entry by
700 	 * validating ast_idx.
701 	 * There is a possibility we might arrive here without
702 	 * AST MAP event , so this check is mandatory
703 	 */
704 	if (ast->is_mapped && (ast->ast_idx == sa_idx))
705 		ast->is_active = TRUE;
706 
707 	if (sa_sw_peer_id != ta_peer->peer_ids[0]) {
708 		sa_peer = ast->peer;
709 
710 		if ((ast->type != CDP_TXRX_AST_TYPE_STATIC) &&
711 		    (ast->type != CDP_TXRX_AST_TYPE_SELF) &&
712 			(ast->type != CDP_TXRX_AST_TYPE_STA_BSS)) {
713 			if (ast->pdev_id != ta_peer->vdev->pdev->pdev_id) {
714 				/* This case is when a STA roams from one
715 				 * repeater to another repeater, but these
716 				 * repeaters are connected to root AP on
717 				 * different radios.
718 				 * Ex: rptr1 connected to ROOT AP over 5G
719 				 * and rptr2 connected to ROOT AP over 2G
720 				 * radio
721 				 */
722 				qdf_spin_lock_bh(&soc->ast_lock);
723 				dp_peer_del_ast(soc, ast);
724 				qdf_spin_unlock_bh(&soc->ast_lock);
725 			} else {
726 				/* this case is when a STA roams from one
727 				 * reapter to another repeater, but inside
728 				 * same radio.
729 				 */
730 				qdf_spin_lock_bh(&soc->ast_lock);
731 				dp_peer_update_ast(soc, ta_peer, ast, flags);
732 				qdf_spin_unlock_bh(&soc->ast_lock);
733 				return;
734 			}
735 		}
736 		/*
737 		 * Do not kickout STA if it belongs to a different radio.
738 		 * For DBDC repeater, it is possible to arrive here
739 		 * for multicast loopback frames originated from connected
740 		 * clients and looped back (intrabss) by Root AP
741 		 */
742 		if (ast->pdev_id != ta_peer->vdev->pdev->pdev_id) {
743 			return;
744 		}
745 
746 		/*
747 		 * Kickout, when direct associated peer(SA) roams
748 		 * to another AP and reachable via TA peer
749 		 */
750 		if ((sa_peer->vdev->opmode == wlan_op_mode_ap) &&
751 		    !sa_peer->delete_in_progress) {
752 			sa_peer->delete_in_progress = true;
753 			if (soc->cdp_soc.ol_ops->peer_sta_kickout) {
754 				soc->cdp_soc.ol_ops->peer_sta_kickout(
755 						sa_peer->vdev->pdev->ctrl_pdev,
756 						wds_src_mac);
757 			}
758 		}
759 	}
760 }
761 
762 /**
763  * dp_rx_wds_srcport_learn() - Add or update the STA PEER which
764  *				is behind the WDS repeater.
765  *
766  * @soc: core txrx main context
767  * @rx_tlv_hdr: base address of RX TLV header
768  * @ta_peer: WDS repeater peer
769  * @nbuf: rx pkt
770  *
771  * Return: void:
772  */
773 static inline void
774 dp_rx_wds_srcport_learn(struct dp_soc *soc,
775 			uint8_t *rx_tlv_hdr,
776 			struct dp_peer *ta_peer,
777 			qdf_nbuf_t nbuf)
778 {
779 	uint16_t sa_sw_peer_id = hal_rx_msdu_end_sa_sw_peer_id_get(rx_tlv_hdr);
780 	uint8_t sa_is_valid = hal_rx_msdu_end_sa_is_valid_get(rx_tlv_hdr);
781 	uint16_t sa_idx;
782 	uint8_t is_chfrag_start = 0;
783 	uint8_t is_ad4_valid = 0;
784 
785 	if (qdf_unlikely(!ta_peer))
786 		return;
787 
788 	is_chfrag_start = qdf_nbuf_is_rx_chfrag_start(nbuf);
789 	if (is_chfrag_start)
790 		is_ad4_valid = hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr);
791 
792 	/*
793 	 * Get the AST entry from HW SA index and mark it as active
794 	 */
795 	sa_idx = hal_rx_msdu_end_sa_idx_get(rx_tlv_hdr);
796 
797 	dp_rx_wds_add_or_update_ast(soc, ta_peer, nbuf, is_ad4_valid,
798 				    sa_is_valid, is_chfrag_start,
799 				    sa_idx, sa_sw_peer_id);
800 
801 	return;
802 }
803 #else
804 static inline void
805 dp_rx_wds_srcport_learn(struct dp_soc *soc,
806 		uint8_t *rx_tlv_hdr,
807 		struct dp_peer *ta_peer,
808 		qdf_nbuf_t nbuf)
809 {
810 }
811 #endif
812 
813 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t nbuf);
814 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
815 		qdf_nbuf_t mpdu, bool mpdu_done);
816 void dp_rx_process_mic_error(struct dp_soc *soc, qdf_nbuf_t nbuf,
817 			     uint8_t *rx_tlv_hdr, struct dp_peer *peer);
818 void dp_2k_jump_handle(struct dp_soc *soc, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr,
819 		       uint16_t peer_id, uint8_t tid);
820 
821 
822 #define DP_RX_LIST_APPEND(head, tail, elem) \
823 	do {                                                          \
824 		if (!(head)) {                                        \
825 			(head) = (elem);                              \
826 			QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(head) = 1;\
827 		} else {                                              \
828 			qdf_nbuf_set_next((tail), (elem));            \
829 			QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(head)++;  \
830 		}                                                     \
831 		(tail) = (elem);                                      \
832 		qdf_nbuf_set_next((tail), NULL);                      \
833 	} while (0)
834 
835 #ifndef BUILD_X86
836 static inline int check_x86_paddr(struct dp_soc *dp_soc, qdf_nbuf_t *rx_netbuf,
837 		qdf_dma_addr_t *paddr, struct dp_pdev *pdev)
838 {
839 	return QDF_STATUS_SUCCESS;
840 }
841 #else
842 #define MAX_RETRY 100
843 static inline int check_x86_paddr(struct dp_soc *dp_soc, qdf_nbuf_t *rx_netbuf,
844 		qdf_dma_addr_t *paddr, struct dp_pdev *pdev)
845 {
846 	uint32_t nbuf_retry = 0;
847 	int32_t ret;
848 	const uint32_t x86_phy_addr = 0x50000000;
849 	/*
850 	 * in M2M emulation platforms (x86) the memory below 0x50000000
851 	 * is reserved for target use, so any memory allocated in this
852 	 * region should not be used by host
853 	 */
854 	do {
855 		if (qdf_likely(*paddr > x86_phy_addr))
856 			return QDF_STATUS_SUCCESS;
857 		else {
858 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
859 					"phy addr %pK exceeded 0x50000000 trying again",
860 					paddr);
861 
862 			nbuf_retry++;
863 			if ((*rx_netbuf)) {
864 				qdf_nbuf_unmap_single(dp_soc->osdev, *rx_netbuf,
865 						QDF_DMA_FROM_DEVICE);
866 				/* Not freeing buffer intentionally.
867 				 * Observed that same buffer is getting
868 				 * re-allocated resulting in longer load time
869 				 * WMI init timeout.
870 				 * This buffer is anyway not useful so skip it.
871 				 **/
872 			}
873 
874 			*rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
875 							RX_BUFFER_SIZE,
876 							RX_BUFFER_RESERVATION,
877 							RX_BUFFER_ALIGNMENT,
878 							FALSE);
879 
880 			if (qdf_unlikely(!(*rx_netbuf)))
881 				return QDF_STATUS_E_FAILURE;
882 
883 			ret = qdf_nbuf_map_single(dp_soc->osdev, *rx_netbuf,
884 							QDF_DMA_FROM_DEVICE);
885 
886 			if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
887 				qdf_nbuf_free(*rx_netbuf);
888 				*rx_netbuf = NULL;
889 				continue;
890 			}
891 
892 			*paddr = qdf_nbuf_get_frag_paddr(*rx_netbuf, 0);
893 		}
894 	} while (nbuf_retry < MAX_RETRY);
895 
896 	if ((*rx_netbuf)) {
897 		qdf_nbuf_unmap_single(dp_soc->osdev, *rx_netbuf,
898 					QDF_DMA_FROM_DEVICE);
899 		qdf_nbuf_free(*rx_netbuf);
900 	}
901 
902 	return QDF_STATUS_E_FAILURE;
903 }
904 #endif
905 
906 /**
907  * dp_rx_cookie_2_link_desc_va() - Converts cookie to a virtual address of
908  *				   the MSDU Link Descriptor
909  * @soc: core txrx main context
910  * @buf_info: buf_info include cookie that used to lookup virtual address of
911  * link descriptor Normally this is just an index into a per SOC array.
912  *
913  * This is the VA of the link descriptor, that HAL layer later uses to
914  * retrieve the list of MSDU's for a given MPDU.
915  *
916  * Return: void *: Virtual Address of the Rx descriptor
917  */
918 static inline
919 void *dp_rx_cookie_2_link_desc_va(struct dp_soc *soc,
920 				  struct hal_buf_info *buf_info)
921 {
922 	void *link_desc_va;
923 	uint32_t bank_id = LINK_DESC_COOKIE_BANK_ID(buf_info->sw_cookie);
924 
925 
926 	/* TODO */
927 	/* Add sanity for  cookie */
928 
929 	link_desc_va = soc->link_desc_banks[bank_id].base_vaddr +
930 		(buf_info->paddr -
931 			soc->link_desc_banks[bank_id].base_paddr);
932 
933 	return link_desc_va;
934 }
935 
936 /**
937  * dp_rx_cookie_2_mon_link_desc_va() - Converts cookie to a virtual address of
938  *				   the MSDU Link Descriptor
939  * @pdev: core txrx pdev context
940  * @buf_info: buf_info includes cookie that used to lookup virtual address of
941  * link descriptor. Normally this is just an index into a per pdev array.
942  *
943  * This is the VA of the link descriptor in monitor mode destination ring,
944  * that HAL layer later uses to retrieve the list of MSDU's for a given MPDU.
945  *
946  * Return: void *: Virtual Address of the Rx descriptor
947  */
948 static inline
949 void *dp_rx_cookie_2_mon_link_desc_va(struct dp_pdev *pdev,
950 				  struct hal_buf_info *buf_info,
951 				  int mac_id)
952 {
953 	void *link_desc_va;
954 	int mac_for_pdev = dp_get_mac_id_for_mac(pdev->soc, mac_id);
955 
956 	/* TODO */
957 	/* Add sanity for  cookie */
958 
959 	link_desc_va =
960 	   pdev->link_desc_banks[mac_for_pdev][buf_info->sw_cookie].base_vaddr +
961 	   (buf_info->paddr -
962 	   pdev->link_desc_banks[mac_for_pdev][buf_info->sw_cookie].base_paddr);
963 
964 	return link_desc_va;
965 }
966 
967 /**
968  * dp_rx_defrag_concat() - Concatenate the fragments
969  *
970  * @dst: destination pointer to the buffer
971  * @src: source pointer from where the fragment payload is to be copied
972  *
973  * Return: QDF_STATUS
974  */
975 static inline QDF_STATUS dp_rx_defrag_concat(qdf_nbuf_t dst, qdf_nbuf_t src)
976 {
977 	/*
978 	 * Inside qdf_nbuf_cat, if it is necessary to reallocate dst
979 	 * to provide space for src, the headroom portion is copied from
980 	 * the original dst buffer to the larger new dst buffer.
981 	 * (This is needed, because the headroom of the dst buffer
982 	 * contains the rx desc.)
983 	 */
984 	if (!qdf_nbuf_cat(dst, src)) {
985 		/*
986 		 * qdf_nbuf_cat does not free the src memory.
987 		 * Free src nbuf before returning
988 		 * For failure case the caller takes of freeing the nbuf
989 		 */
990 		qdf_nbuf_free(src);
991 		return QDF_STATUS_SUCCESS;
992 	}
993 
994 	return QDF_STATUS_E_DEFRAG_ERROR;
995 }
996 
997 /*
998  * dp_rx_ast_set_active() - set the active flag of the astentry
999  *				    corresponding to a hw index.
1000  * @soc: core txrx main context
1001  * @sa_idx: hw idx
1002  * @is_active: active flag
1003  *
1004  */
1005 #ifdef FEATURE_WDS
1006 static inline QDF_STATUS dp_rx_ast_set_active(struct dp_soc *soc, uint16_t sa_idx, bool is_active)
1007 {
1008 	struct dp_ast_entry *ast;
1009 	qdf_spin_lock_bh(&soc->ast_lock);
1010 	ast = soc->ast_table[sa_idx];
1011 
1012 	/*
1013 	 * Ensure we are updating the right AST entry by
1014 	 * validating ast_idx.
1015 	 * There is a possibility we might arrive here without
1016 	 * AST MAP event , so this check is mandatory
1017 	 */
1018 	if (ast && ast->is_mapped && (ast->ast_idx == sa_idx)) {
1019 		ast->is_active = is_active;
1020 		qdf_spin_unlock_bh(&soc->ast_lock);
1021 		return QDF_STATUS_SUCCESS;
1022 	}
1023 
1024 	qdf_spin_unlock_bh(&soc->ast_lock);
1025 	return QDF_STATUS_E_FAILURE;
1026 }
1027 #else
1028 static inline QDF_STATUS dp_rx_ast_set_active(struct dp_soc *soc, uint16_t sa_idx, bool is_active)
1029 {
1030 	return QDF_STATUS_SUCCESS;
1031 }
1032 #endif
1033 
1034 /*
1035  * dp_rx_desc_dump() - dump the sw rx descriptor
1036  *
1037  * @rx_desc: sw rx descriptor
1038  */
1039 static inline void dp_rx_desc_dump(struct dp_rx_desc *rx_desc)
1040 {
1041 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,
1042 		  "rx_desc->nbuf: %pK, rx_desc->cookie: %d, rx_desc->pool_id: %d, rx_desc->in_use: %d, rx_desc->unmapped: %d",
1043 		  rx_desc->nbuf, rx_desc->cookie, rx_desc->pool_id,
1044 		  rx_desc->in_use, rx_desc->unmapped);
1045 }
1046 
1047 /*
1048  * check_qwrap_multicast_loopback() - Check if rx packet is a loopback packet.
1049  *					In qwrap mode, packets originated from
1050  *					any vdev should not loopback and
1051  *					should be dropped.
1052  * @vdev: vdev on which rx packet is received
1053  * @nbuf: rx pkt
1054  *
1055  */
1056 #if ATH_SUPPORT_WRAP
1057 static inline bool check_qwrap_multicast_loopback(struct dp_vdev *vdev,
1058 						qdf_nbuf_t nbuf)
1059 {
1060 	struct dp_vdev *psta_vdev;
1061 	struct dp_pdev *pdev = vdev->pdev;
1062 	uint8_t *data = qdf_nbuf_data(nbuf);
1063 
1064 	if (qdf_unlikely(vdev->proxysta_vdev)) {
1065 		/* In qwrap isolation mode, allow loopback packets as all
1066 		 * packets go to RootAP and Loopback on the mpsta.
1067 		 */
1068 		if (vdev->isolation_vdev)
1069 			return false;
1070 		TAILQ_FOREACH(psta_vdev, &pdev->vdev_list, vdev_list_elem) {
1071 			if (qdf_unlikely(psta_vdev->proxysta_vdev &&
1072 					 !qdf_mem_cmp(psta_vdev->mac_addr.raw,
1073 						      &data[QDF_MAC_ADDR_SIZE],
1074 						      QDF_MAC_ADDR_SIZE))) {
1075 				/* Drop packet if source address is equal to
1076 				 * any of the vdev addresses.
1077 				 */
1078 				return true;
1079 			}
1080 		}
1081 	}
1082 	return false;
1083 }
1084 #else
1085 static inline bool check_qwrap_multicast_loopback(struct dp_vdev *vdev,
1086 						qdf_nbuf_t nbuf)
1087 {
1088 	return false;
1089 }
1090 #endif
1091 
1092 #if defined(WLAN_SUPPORT_RX_TAG_STATISTICS) && \
1093 	defined(WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG)
1094 /**
1095  * dp_rx_update_rx_protocol_tag_stats() - Increments the protocol tag stats
1096  *                                        for the given protocol type
1097  * @soc: core txrx main context
1098  * @pdev: TXRX pdev context for which stats should be incremented
1099  * @protocol_index: Protocol index for which the stats should be incremented
1100  * @ring_index: REO ring number from which this tag was received.
1101  *
1102  * Since HKv2 is a SMP, two or more cores may simultaneously receive packets
1103  * of same type, and hence attempt to increment counters for the same protocol
1104  * type at the same time. This creates the possibility of missing stats.
1105  *
1106  * For example,  when two or more CPUs have each read the old tag value, V,
1107  * for protocol type, P and each increment the value to V+1. Instead, the
1108  * operations should have been  sequenced to achieve a final value of V+2.
1109  *
1110  * In order to avoid this scenario,  we can either use locks or store stats
1111  * on a per-CPU basis. Since tagging happens in the core data path, locks
1112  * are not preferred. Instead, we use a per-ring counter, since each CPU
1113  * operates on a REO ring.
1114  *
1115  * Return: void
1116  */
1117 static inline void dp_rx_update_rx_protocol_tag_stats(struct dp_pdev *pdev,
1118 						      uint16_t protocol_index,
1119 						      uint16_t ring_index)
1120 {
1121 	if (ring_index >= MAX_REO_DEST_RINGS)
1122 		return;
1123 
1124 	pdev->reo_proto_tag_stats[ring_index][protocol_index].tag_ctr++;
1125 }
1126 #else
1127 static inline void dp_rx_update_rx_protocol_tag_stats(struct dp_pdev *pdev,
1128 						      uint16_t protocol_index,
1129 						      uint16_t ring_index)
1130 {
1131 }
1132 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
1133 
1134 #if defined(WLAN_SUPPORT_RX_TAG_STATISTICS) && \
1135 	defined(WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG)
1136 /**
1137  * dp_rx_update_rx_err_protocol_tag_stats() - Increments the protocol tag stats
1138  *                                        for the given protocol type
1139  *                                        received from exception ring
1140  * @soc: core txrx main context
1141  * @pdev: TXRX pdev context for which stats should be incremented
1142  * @protocol_index: Protocol index for which the stats should be incremented
1143  *
1144  * In HKv2, all exception packets are received on Ring-0 (along with normal
1145  * Rx). Hence tags are maintained separately for exception ring as well.
1146  *
1147  * Return: void
1148  */
1149 static inline
1150 void dp_rx_update_rx_err_protocol_tag_stats(struct dp_pdev *pdev,
1151 					    uint16_t protocol_index)
1152 {
1153 	pdev->rx_err_proto_tag_stats[protocol_index].tag_ctr++;
1154 }
1155 #else
1156 static inline
1157 void dp_rx_update_rx_err_protocol_tag_stats(struct dp_pdev *pdev,
1158 					    uint16_t protocol_index)
1159 {
1160 }
1161 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
1162 /**
1163  * dp_rx_update_protocol_tag() - Reads CCE metadata from the RX MSDU end TLV
1164  *                              and set the corresponding tag in QDF packet
1165  * @soc: core txrx main context
1166  * @vdev: vdev on which the packet is received
1167  * @nbuf: QDF pkt buffer on which the protocol tag should be set
1168  * @rx_tlv_hdr: rBbase address where the RX TLVs starts
1169  * @ring_index: REO ring number, not used for error & monitor ring
1170  * @is_reo_exception: flag to indicate if rx from REO ring or exception ring
1171  * @is_update_stats: flag to indicate whether to update stats or not
1172  * Return: void
1173  */
1174 #ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
1175 static inline void
1176 dp_rx_update_protocol_tag(struct dp_soc *soc, struct dp_vdev *vdev,
1177 			  qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr,
1178 			  uint16_t ring_index,
1179 			  bool is_reo_exception, bool is_update_stats)
1180 {
1181 	uint16_t cce_metadata = RX_PROTOCOL_TAG_START_OFFSET;
1182 	bool     cce_match = false;
1183 	struct   dp_pdev *pdev;
1184 	uint16_t protocol_tag = 0;
1185 
1186 	if (qdf_unlikely(!vdev))
1187 		return;
1188 
1189 	pdev = vdev->pdev;
1190 
1191 	if (qdf_likely(!pdev->is_rx_protocol_tagging_enabled))
1192 		return;
1193 
1194 	/*
1195 	 * In case of raw frames, rx_attention and rx_msdu_end tlv
1196 	 * may be stale or invalid. Do not tag such frames.
1197 	 * Default decap_type is set to ethernet for monitor vdev,
1198 	 * therefore, cannot check decap_type for monitor mode.
1199 	 * We will call this only for eth frames from dp_rx_mon_dest.c.
1200 	 */
1201 	if (qdf_likely(!(pdev->monitor_vdev && pdev->monitor_vdev == vdev) &&
1202 		       (vdev->rx_decap_type !=  htt_cmn_pkt_type_ethernet)))
1203 		return;
1204 
1205 	/*
1206 	 * Check whether HW has filled in the CCE metadata in
1207 	 * this packet, if not filled, just return
1208 	 */
1209 	if (qdf_likely(!hal_rx_msdu_cce_match_get(rx_tlv_hdr)))
1210 		return;
1211 
1212 	cce_match = true;
1213 	/* Get the cce_metadata from RX MSDU TLV */
1214 	cce_metadata = (hal_rx_msdu_cce_metadata_get(rx_tlv_hdr) &
1215 			RX_MSDU_END_16_CCE_METADATA_MASK);
1216 	/*
1217 	 * Received CCE metadata should be within the
1218 	 * valid limits
1219 	 */
1220 	qdf_assert_always((cce_metadata >= RX_PROTOCOL_TAG_START_OFFSET) &&
1221 			  (cce_metadata < (RX_PROTOCOL_TAG_START_OFFSET +
1222 			   RX_PROTOCOL_TAG_MAX)));
1223 
1224 	/*
1225 	 * The CCE metadata received is just the
1226 	 * packet_type + RX_PROTOCOL_TAG_START_OFFSET
1227 	 */
1228 	cce_metadata -= RX_PROTOCOL_TAG_START_OFFSET;
1229 
1230 	/*
1231 	 * Update the QDF packet with the user-specified
1232 	 * tag/metadata by looking up tag value for
1233 	 * received protocol type.
1234 	 */
1235 	protocol_tag = pdev->rx_proto_tag_map[cce_metadata].tag;
1236 	qdf_nbuf_set_rx_protocol_tag(nbuf, protocol_tag);
1237 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
1238 		  "Seq:%u decap:%u CCE Match:%d ProtoID:%u Tag:%u US:%d",
1239 		  hal_rx_get_rx_sequence(rx_tlv_hdr),
1240 		  vdev->rx_decap_type, cce_match, cce_metadata,
1241 		  protocol_tag, is_update_stats);
1242 
1243 	if (qdf_likely(!is_update_stats))
1244 		return;
1245 
1246 	if (qdf_unlikely(is_reo_exception)) {
1247 		dp_rx_update_rx_err_protocol_tag_stats(pdev,
1248 						       cce_metadata);
1249 	} else {
1250 		dp_rx_update_rx_protocol_tag_stats(pdev,
1251 						   cce_metadata,
1252 						   ring_index);
1253 	}
1254 
1255 }
1256 #else
1257 static inline void
1258 dp_rx_update_protocol_tag(struct dp_soc *soc, struct dp_vdev *vdev,
1259 			  qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr,
1260 			  uint16_t ring_index,
1261 			  bool is_reo_exception, bool is_update_stats)
1262 {
1263 	/* Stub API */
1264 }
1265 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
1266 
1267 /**
1268  * dp_rx_mon_update_protocol_tag() - Performs necessary checks for monitor mode
1269  *				and then tags appropriate packets
1270  * @soc: core txrx main context
1271  * @vdev: pdev on which packet is received
1272  * @msdu: QDF packet buffer on which the protocol tag should be set
1273  * @rx_desc: base address where the RX TLVs start
1274  * Return: void
1275  */
1276 #ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
1277 static inline
1278 void dp_rx_mon_update_protocol_tag(struct dp_soc *soc, struct dp_pdev *dp_pdev,
1279 				   qdf_nbuf_t msdu, void *rx_desc)
1280 {
1281 	uint32_t msdu_ppdu_id = 0;
1282 	struct mon_rx_status *mon_recv_status;
1283 
1284 	if (qdf_likely(!dp_pdev->is_rx_protocol_tagging_enabled))
1285 		return;
1286 
1287 	if (qdf_likely(!dp_pdev->monitor_vdev))
1288 		return;
1289 
1290 	if (qdf_likely(1 != dp_pdev->ppdu_info.rx_status.rxpcu_filter_pass))
1291 		return;
1292 
1293 	msdu_ppdu_id = HAL_RX_HW_DESC_GET_PPDUID_GET(rx_desc);
1294 
1295 	if (msdu_ppdu_id != dp_pdev->ppdu_info.com_info.ppdu_id) {
1296 		QDF_TRACE(QDF_MODULE_ID_DP,
1297 			  QDF_TRACE_LEVEL_ERROR,
1298 			  "msdu_ppdu_id=%x,com_info.ppdu_id=%x",
1299 			  msdu_ppdu_id,
1300 			  dp_pdev->ppdu_info.com_info.ppdu_id);
1301 		return;
1302 	}
1303 
1304 	/*
1305 	 * Update the protocol tag in SKB for packets received on BSS.
1306 	 * Do not update tag stats since it would double actual received count
1307 	 */
1308 	mon_recv_status = &dp_pdev->ppdu_info.rx_status;
1309 	if (mon_recv_status->frame_control_info_valid &&
1310 	    ((mon_recv_status->frame_control & IEEE80211_FC0_TYPE_MASK) ==
1311 	      IEEE80211_FC0_TYPE_DATA)) {
1312 		dp_rx_update_protocol_tag(soc,
1313 					  dp_pdev->monitor_vdev,
1314 					  msdu, rx_desc,
1315 					  MAX_REO_DEST_RINGS,
1316 					  false, false);
1317 	}
1318 }
1319 #else
1320 static inline
1321 void dp_rx_mon_update_protocol_tag(struct dp_soc *soc, struct dp_pdev *dp_pdev,
1322 				   qdf_nbuf_t msdu, void *rx_desc)
1323 {
1324 	/* Stub API */
1325 }
1326 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
1327 /*
1328  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
1329  *			       called during dp rx initialization
1330  *			       and at the end of dp_rx_process.
1331  *
1332  * @soc: core txrx main context
1333  * @mac_id: mac_id which is one of 3 mac_ids
1334  * @dp_rxdma_srng: dp rxdma circular ring
1335  * @rx_desc_pool: Pointer to free Rx descriptor pool
1336  * @num_req_buffers: number of buffer to be replenished
1337  * @desc_list: list of descs if called from dp_rx_process
1338  *	       or NULL during dp rx initialization or out of buffer
1339  *	       interrupt.
1340  * @tail: tail of descs list
1341  * Return: return success or failure
1342  */
1343 QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
1344 				 struct dp_srng *dp_rxdma_srng,
1345 				 struct rx_desc_pool *rx_desc_pool,
1346 				 uint32_t num_req_buffers,
1347 				 union dp_rx_desc_list_elem_t **desc_list,
1348 				 union dp_rx_desc_list_elem_t **tail);
1349 
1350 /**
1351  * dp_rx_link_desc_return() - Return a MPDU link descriptor to HW
1352  *			      (WBM), following error handling
1353  *
1354  * @soc: core DP main context
1355  * @buf_addr_info: opaque pointer to the REO error ring descriptor
1356  * @buf_addr_info: void pointer to the buffer_addr_info
1357  * @bm_action: put to idle_list or release to msdu_list
1358  * Return: QDF_STATUS
1359  */
1360 QDF_STATUS
1361 dp_rx_link_desc_return(struct dp_soc *soc, void *ring_desc, uint8_t bm_action);
1362 
1363 QDF_STATUS
1364 dp_rx_link_desc_buf_return(struct dp_soc *soc, struct dp_srng *dp_rxdma_srng,
1365 				void *buf_addr_info, uint8_t bm_action);
1366 /**
1367  * dp_rx_link_desc_return_by_addr - Return a MPDU link descriptor to
1368  *					(WBM) by address
1369  *
1370  * @soc: core DP main context
1371  * @link_desc_addr: link descriptor addr
1372  *
1373  * Return: QDF_STATUS
1374  */
1375 QDF_STATUS
1376 dp_rx_link_desc_return_by_addr(struct dp_soc *soc, void *link_desc_addr,
1377 					uint8_t bm_action);
1378 
1379 uint32_t
1380 dp_rxdma_err_process(struct dp_soc *soc, uint32_t mac_id,
1381 						uint32_t quota);
1382 
1383 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1384 				uint8_t *rx_tlv_hdr, struct dp_peer *peer);
1385 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1386 					uint8_t *rx_tlv_hdr);
1387 
1388 int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr, struct dp_vdev *vdev,
1389 			   struct dp_peer *peer);
1390 
1391 qdf_nbuf_t
1392 dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev);
1393 
1394 void dp_rx_dump_info_and_assert(struct dp_soc *soc, void *hal_ring,
1395 				void *ring_desc, struct dp_rx_desc *rx_desc);
1396 
1397 void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf);
1398 #ifdef RX_DESC_DEBUG_CHECK
1399 /**
1400  * dp_rx_desc_check_magic() - check the magic value in dp_rx_desc
1401  * @rx_desc: rx descriptor pointer
1402  *
1403  * Return: true, if magic is correct, else false.
1404  */
1405 static inline bool dp_rx_desc_check_magic(struct dp_rx_desc *rx_desc)
1406 {
1407 	if (qdf_unlikely(rx_desc->magic != DP_RX_DESC_MAGIC))
1408 		return false;
1409 
1410 	rx_desc->magic = 0;
1411 	return true;
1412 }
1413 
1414 /**
1415  * dp_rx_desc_prep() - prepare rx desc
1416  * @rx_desc: rx descriptor pointer to be prepared
1417  * @nbuf: nbuf to be associated with rx_desc
1418  *
1419  * Note: assumption is that we are associating a nbuf which is mapped
1420  *
1421  * Return: none
1422  */
1423 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
1424 {
1425 	rx_desc->magic = DP_RX_DESC_MAGIC;
1426 	rx_desc->nbuf = nbuf;
1427 	rx_desc->unmapped = 0;
1428 }
1429 
1430 #else
1431 
1432 static inline bool dp_rx_desc_check_magic(struct dp_rx_desc *rx_desc)
1433 {
1434 	return true;
1435 }
1436 
1437 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
1438 {
1439 	rx_desc->nbuf = nbuf;
1440 	rx_desc->unmapped = 0;
1441 }
1442 #endif /* RX_DESC_DEBUG_CHECK */
1443 
1444 void dp_rx_process_rxdma_err(struct dp_soc *soc, qdf_nbuf_t nbuf,
1445 			     uint8_t *rx_tlv_hdr, struct dp_peer *peer,
1446 			     uint8_t err_code);
1447 
1448 #ifdef PEER_CACHE_RX_PKTS
1449 /**
1450  * dp_rx_flush_rx_cached() - flush cached rx frames
1451  * @peer: peer
1452  * @drop: set flag to drop frames
1453  *
1454  * Return: None
1455  */
1456 void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop);
1457 #else
1458 static inline void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
1459 {
1460 }
1461 #endif
1462 #endif /* _DP_RX_H */
1463