xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.c (revision e9dba9646bfd1954b96d80bae0adc757244cbde8)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "dp_types.h"
21 #include "dp_rx.h"
22 #include "dp_peer.h"
23 #include "hal_rx.h"
24 #include "hal_api.h"
25 #include "qdf_nbuf.h"
26 #ifdef MESH_MODE_SUPPORT
27 #include "if_meta_hdr.h"
28 #endif
29 #include "dp_internal.h"
30 #include "dp_rx_mon.h"
31 #include "dp_ipa.h"
32 #ifdef FEATURE_WDS
33 #include "dp_txrx_wds.h"
34 #endif
35 #include "dp_hist.h"
36 #include "dp_rx_buffer_pool.h"
37 
38 #ifndef QCA_HOST_MODE_WIFI_DISABLED
39 
40 #ifdef ATH_RX_PRI_SAVE
41 #define DP_RX_TID_SAVE(_nbuf, _tid) \
42 	(qdf_nbuf_set_priority(_nbuf, _tid))
43 #else
44 #define DP_RX_TID_SAVE(_nbuf, _tid)
45 #endif
46 
47 #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
48 static inline
49 bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
50 {
51 	if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
52 	    qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
53 		DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
54 		return false;
55 	}
56 		return true;
57 }
58 #else
59 static inline
60 bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
61 {
62 	return true;
63 }
64 #endif
65 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
66 {
67 	return vdev->ap_bridge_enabled;
68 }
69 
70 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
71 
72 #ifdef DUP_RX_DESC_WAR
73 void dp_rx_dump_info_and_assert(struct dp_soc *soc,
74 				hal_ring_handle_t hal_ring,
75 				hal_ring_desc_t ring_desc,
76 				struct dp_rx_desc *rx_desc)
77 {
78 	void *hal_soc = soc->hal_soc;
79 
80 	hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
81 	dp_rx_desc_dump(rx_desc);
82 }
83 #else
84 void dp_rx_dump_info_and_assert(struct dp_soc *soc,
85 				hal_ring_handle_t hal_ring_hdl,
86 				hal_ring_desc_t ring_desc,
87 				struct dp_rx_desc *rx_desc)
88 {
89 	hal_soc_handle_t hal_soc = soc->hal_soc;
90 
91 	dp_rx_desc_dump(rx_desc);
92 	hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
93 	hal_srng_dump_ring(hal_soc, hal_ring_hdl);
94 	qdf_assert_always(0);
95 }
96 #endif
97 
98 #ifndef QCA_HOST_MODE_WIFI_DISABLED
99 #ifdef RX_DESC_SANITY_WAR
100 static inline
101 QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
102 			     hal_ring_handle_t hal_ring_hdl,
103 			     hal_ring_desc_t ring_desc,
104 			     struct dp_rx_desc *rx_desc)
105 {
106 	uint8_t return_buffer_manager;
107 
108 	if (qdf_unlikely(!rx_desc)) {
109 		/*
110 		 * This is an unlikely case where the cookie obtained
111 		 * from the ring_desc is invalid and hence we are not
112 		 * able to find the corresponding rx_desc
113 		 */
114 		goto fail;
115 	}
116 
117 	return_buffer_manager = hal_rx_ret_buf_manager_get(ring_desc);
118 	if (qdf_unlikely(!(return_buffer_manager == HAL_RX_BUF_RBM_SW1_BM ||
119 			 return_buffer_manager == HAL_RX_BUF_RBM_SW3_BM))) {
120 		goto fail;
121 	}
122 
123 	return QDF_STATUS_SUCCESS;
124 
125 fail:
126 	DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
127 	dp_err("Ring Desc:");
128 	hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
129 				ring_desc);
130 	return QDF_STATUS_E_NULL_VALUE;
131 
132 }
133 #else
134 static inline
135 QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
136 			     hal_ring_handle_t hal_ring_hdl,
137 			     hal_ring_desc_t ring_desc,
138 			     struct dp_rx_desc *rx_desc)
139 {
140 	return QDF_STATUS_SUCCESS;
141 }
142 #endif
143 
144 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
145 
146 /**
147  * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
148  *
149  * @dp_soc: struct dp_soc *
150  * @nbuf_frag_info_t: nbuf frag info
151  * @dp_pdev: struct dp_pdev *
152  * @rx_desc_pool: Rx desc pool
153  *
154  * Return: QDF_STATUS
155  */
156 #ifdef DP_RX_MON_MEM_FRAG
157 static inline QDF_STATUS
158 dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
159 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
160 			   struct dp_pdev *dp_pdev,
161 			   struct rx_desc_pool *rx_desc_pool)
162 {
163 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
164 
165 	(nbuf_frag_info_t->virt_addr).vaddr =
166 			qdf_frag_alloc(rx_desc_pool->buf_size);
167 
168 	if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
169 		dp_err("Frag alloc failed");
170 		DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
171 		return QDF_STATUS_E_NOMEM;
172 	}
173 
174 	ret = qdf_mem_map_page(dp_soc->osdev,
175 			       (nbuf_frag_info_t->virt_addr).vaddr,
176 			       QDF_DMA_FROM_DEVICE,
177 			       rx_desc_pool->buf_size,
178 			       &nbuf_frag_info_t->paddr);
179 
180 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
181 		qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
182 		dp_err("Frag map failed");
183 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
184 		return QDF_STATUS_E_FAULT;
185 	}
186 
187 	return QDF_STATUS_SUCCESS;
188 }
189 #else
190 static inline QDF_STATUS
191 dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
192 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
193 			   struct dp_pdev *dp_pdev,
194 			   struct rx_desc_pool *rx_desc_pool)
195 {
196 	return QDF_STATUS_SUCCESS;
197 }
198 #endif /* DP_RX_MON_MEM_FRAG */
199 
200 /**
201  * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
202  *
203  * @dp_soc: struct dp_soc *
204  * @mac_id: Mac id
205  * @num_entries_avail: num_entries_avail
206  * @nbuf_frag_info_t: nbuf frag info
207  * @dp_pdev: struct dp_pdev *
208  * @rx_desc_pool: Rx desc pool
209  *
210  * Return: QDF_STATUS
211  */
212 static inline QDF_STATUS
213 dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
214 				     uint32_t mac_id,
215 				     uint32_t num_entries_avail,
216 				     struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
217 				     struct dp_pdev *dp_pdev,
218 				     struct rx_desc_pool *rx_desc_pool)
219 {
220 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
221 
222 	(nbuf_frag_info_t->virt_addr).nbuf =
223 		dp_rx_buffer_pool_nbuf_alloc(dp_soc,
224 					     mac_id,
225 					     rx_desc_pool,
226 					     num_entries_avail);
227 	if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
228 		dp_err("nbuf alloc failed");
229 		DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
230 		return QDF_STATUS_E_NOMEM;
231 	}
232 
233 	ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
234 					 nbuf_frag_info_t);
235 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
236 		dp_rx_buffer_pool_nbuf_free(dp_soc,
237 			(nbuf_frag_info_t->virt_addr).nbuf, mac_id);
238 		dp_err("nbuf map failed");
239 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
240 		return QDF_STATUS_E_FAULT;
241 	}
242 
243 	nbuf_frag_info_t->paddr =
244 		qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
245 
246 	ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
247 			     &nbuf_frag_info_t->paddr,
248 			     rx_desc_pool);
249 	if (ret == QDF_STATUS_E_FAILURE) {
250 		DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
251 		return QDF_STATUS_E_ADDRNOTAVAIL;
252 	}
253 
254 	return QDF_STATUS_SUCCESS;
255 }
256 
257 /*
258  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
259  *			       called during dp rx initialization
260  *			       and at the end of dp_rx_process.
261  *
262  * @soc: core txrx main context
263  * @mac_id: mac_id which is one of 3 mac_ids
264  * @dp_rxdma_srng: dp rxdma circular ring
265  * @rx_desc_pool: Pointer to free Rx descriptor pool
266  * @num_req_buffers: number of buffer to be replenished
267  * @desc_list: list of descs if called from dp_rx_process
268  *	       or NULL during dp rx initialization or out of buffer
269  *	       interrupt.
270  * @tail: tail of descs list
271  * @func_name: name of the caller function
272  * Return: return success or failure
273  */
274 QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
275 				struct dp_srng *dp_rxdma_srng,
276 				struct rx_desc_pool *rx_desc_pool,
277 				uint32_t num_req_buffers,
278 				union dp_rx_desc_list_elem_t **desc_list,
279 				union dp_rx_desc_list_elem_t **tail,
280 				const char *func_name)
281 {
282 	uint32_t num_alloc_desc;
283 	uint16_t num_desc_to_free = 0;
284 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
285 	uint32_t num_entries_avail;
286 	uint32_t count;
287 	int sync_hw_ptr = 1;
288 	struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
289 	void *rxdma_ring_entry;
290 	union dp_rx_desc_list_elem_t *next;
291 	QDF_STATUS ret;
292 	void *rxdma_srng;
293 
294 	rxdma_srng = dp_rxdma_srng->hal_srng;
295 
296 	if (!rxdma_srng) {
297 		dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
298 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
299 		return QDF_STATUS_E_FAILURE;
300 	}
301 
302 	dp_rx_debug("%pK: requested %d buffers for replenish",
303 		    dp_soc, num_req_buffers);
304 
305 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
306 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
307 						   rxdma_srng,
308 						   sync_hw_ptr);
309 
310 	dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
311 		    dp_soc, num_entries_avail);
312 
313 	if (!(*desc_list) && (num_entries_avail >
314 		((dp_rxdma_srng->num_entries * 3) / 4))) {
315 		num_req_buffers = num_entries_avail;
316 	} else if (num_entries_avail < num_req_buffers) {
317 		num_desc_to_free = num_req_buffers - num_entries_avail;
318 		num_req_buffers = num_entries_avail;
319 	}
320 
321 	if (qdf_unlikely(!num_req_buffers)) {
322 		num_desc_to_free = num_req_buffers;
323 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
324 		goto free_descs;
325 	}
326 
327 	/*
328 	 * if desc_list is NULL, allocate the descs from freelist
329 	 */
330 	if (!(*desc_list)) {
331 		num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
332 							  rx_desc_pool,
333 							  num_req_buffers,
334 							  desc_list,
335 							  tail);
336 
337 		if (!num_alloc_desc) {
338 			dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
339 			DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
340 					num_req_buffers);
341 			hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
342 			return QDF_STATUS_E_NOMEM;
343 		}
344 
345 		dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
346 		num_req_buffers = num_alloc_desc;
347 	}
348 
349 
350 	count = 0;
351 
352 	while (count < num_req_buffers) {
353 		/* Flag is set while pdev rx_desc_pool initialization */
354 		if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
355 			ret = dp_pdev_frag_alloc_and_map(dp_soc,
356 							 &nbuf_frag_info,
357 							 dp_pdev,
358 							 rx_desc_pool);
359 		else
360 			ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
361 								   mac_id,
362 					num_entries_avail, &nbuf_frag_info,
363 					dp_pdev, rx_desc_pool);
364 
365 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
366 			if (qdf_unlikely(ret  == QDF_STATUS_E_FAULT))
367 				continue;
368 			break;
369 		}
370 
371 		count++;
372 
373 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
374 							 rxdma_srng);
375 		qdf_assert_always(rxdma_ring_entry);
376 
377 		next = (*desc_list)->next;
378 
379 		/* Flag is set while pdev rx_desc_pool initialization */
380 		if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
381 			dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
382 					     &nbuf_frag_info);
383 		else
384 			dp_rx_desc_prep(&((*desc_list)->rx_desc),
385 					&nbuf_frag_info);
386 
387 		/* rx_desc.in_use should be zero at this time*/
388 		qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
389 
390 		(*desc_list)->rx_desc.in_use = 1;
391 		(*desc_list)->rx_desc.in_err_state = 0;
392 		dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
393 					   func_name, RX_DESC_REPLENISHED);
394 		dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
395 				 nbuf_frag_info.virt_addr.nbuf,
396 				 (unsigned long long)(nbuf_frag_info.paddr),
397 				 (*desc_list)->rx_desc.cookie);
398 
399 		hal_rxdma_buff_addr_info_set(rxdma_ring_entry,
400 					     nbuf_frag_info.paddr,
401 						(*desc_list)->rx_desc.cookie,
402 						rx_desc_pool->owner);
403 
404 		*desc_list = next;
405 
406 	}
407 
408 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
409 
410 	dp_rx_schedule_refill_thread(dp_soc);
411 
412 	dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
413 			 count, num_desc_to_free);
414 
415 	/* No need to count the number of bytes received during replenish.
416 	 * Therefore set replenish.pkts.bytes as 0.
417 	 */
418 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
419 
420 free_descs:
421 	DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
422 	/*
423 	 * add any available free desc back to the free list
424 	 */
425 	if (*desc_list)
426 		dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
427 			mac_id, rx_desc_pool);
428 
429 	return QDF_STATUS_SUCCESS;
430 }
431 
432 /*
433  * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
434  *				pkts to RAW mode simulation to
435  *				decapsulate the pkt.
436  *
437  * @vdev: vdev on which RAW mode is enabled
438  * @nbuf_list: list of RAW pkts to process
439  * @peer: peer object from which the pkt is rx
440  *
441  * Return: void
442  */
443 void
444 dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
445 					struct dp_peer *peer)
446 {
447 	qdf_nbuf_t deliver_list_head = NULL;
448 	qdf_nbuf_t deliver_list_tail = NULL;
449 	qdf_nbuf_t nbuf;
450 
451 	nbuf = nbuf_list;
452 	while (nbuf) {
453 		qdf_nbuf_t next = qdf_nbuf_next(nbuf);
454 
455 		DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
456 
457 		DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
458 		DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
459 		/*
460 		 * reset the chfrag_start and chfrag_end bits in nbuf cb
461 		 * as this is a non-amsdu pkt and RAW mode simulation expects
462 		 * these bit s to be 0 for non-amsdu pkt.
463 		 */
464 		if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
465 			 qdf_nbuf_is_rx_chfrag_end(nbuf)) {
466 			qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
467 			qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
468 		}
469 
470 		nbuf = next;
471 	}
472 
473 	vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
474 				 &deliver_list_tail, peer->mac_addr.raw);
475 
476 	vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
477 }
478 
479 #ifndef QCA_HOST_MODE_WIFI_DISABLED
480 
481 #ifndef FEATURE_WDS
482 static void
483 dp_rx_da_learn(struct dp_soc *soc,
484 	       uint8_t *rx_tlv_hdr,
485 	       struct dp_peer *ta_peer,
486 	       qdf_nbuf_t nbuf)
487 {
488 }
489 #endif
490 /*
491  * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
492  *
493  * @soc: core txrx main context
494  * @ta_peer	: source peer entry
495  * @rx_tlv_hdr	: start address of rx tlvs
496  * @nbuf	: nbuf that has to be intrabss forwarded
497  *
498  * Return: bool: true if it is forwarded else false
499  */
500 static bool
501 dp_rx_intrabss_fwd(struct dp_soc *soc,
502 			struct dp_peer *ta_peer,
503 			uint8_t *rx_tlv_hdr,
504 			qdf_nbuf_t nbuf,
505 			struct hal_rx_msdu_metadata msdu_metadata)
506 {
507 	uint16_t len;
508 	uint8_t is_frag;
509 	uint16_t da_peer_id = HTT_INVALID_PEER;
510 	struct dp_peer *da_peer = NULL;
511 	bool is_da_bss_peer = false;
512 	struct dp_ast_entry *ast_entry;
513 	qdf_nbuf_t nbuf_copy;
514 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
515 	uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
516 	struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
517 					tid_stats.tid_rx_stats[ring_id][tid];
518 
519 	/* check if the destination peer is available in peer table
520 	 * and also check if the source peer and destination peer
521 	 * belong to the same vap and destination peer is not bss peer.
522 	 */
523 
524 	if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
525 
526 		ast_entry = soc->ast_table[msdu_metadata.da_idx];
527 		if (!ast_entry)
528 			return false;
529 
530 		if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
531 			ast_entry->is_active = TRUE;
532 			return false;
533 		}
534 
535 		da_peer_id = ast_entry->peer_id;
536 
537 		if (da_peer_id == HTT_INVALID_PEER)
538 			return false;
539 		/* TA peer cannot be same as peer(DA) on which AST is present
540 		 * this indicates a change in topology and that AST entries
541 		 * are yet to be updated.
542 		 */
543 		if (da_peer_id == ta_peer->peer_id)
544 			return false;
545 
546 		if (ast_entry->vdev_id != ta_peer->vdev->vdev_id)
547 			return false;
548 
549 		da_peer = dp_peer_get_ref_by_id(soc, da_peer_id,
550 						DP_MOD_ID_RX);
551 		if (!da_peer)
552 			return false;
553 		is_da_bss_peer = da_peer->bss_peer;
554 		dp_peer_unref_delete(da_peer, DP_MOD_ID_RX);
555 
556 		if (!is_da_bss_peer) {
557 			len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
558 			is_frag = qdf_nbuf_is_frag(nbuf);
559 			memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
560 
561 			/* If the source or destination peer in the isolation
562 			 * list then dont forward instead push to bridge stack.
563 			 */
564 			if (dp_get_peer_isolation(ta_peer) ||
565 			    dp_get_peer_isolation(da_peer))
566 				return false;
567 
568 			/* linearize the nbuf just before we send to
569 			 * dp_tx_send()
570 			 */
571 			if (qdf_unlikely(is_frag)) {
572 				if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
573 					return false;
574 
575 				nbuf = qdf_nbuf_unshare(nbuf);
576 				if (!nbuf) {
577 					DP_STATS_INC_PKT(ta_peer,
578 							 rx.intra_bss.fail,
579 							 1,
580 							 len);
581 					/* return true even though the pkt is
582 					 * not forwarded. Basically skb_unshare
583 					 * failed and we want to continue with
584 					 * next nbuf.
585 					 */
586 					tid_stats->fail_cnt[INTRABSS_DROP]++;
587 					return true;
588 				}
589 			}
590 
591 			if (!dp_tx_send((struct cdp_soc_t *)soc,
592 					ta_peer->vdev->vdev_id, nbuf)) {
593 				DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
594 						 len);
595 				return true;
596 			} else {
597 				DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
598 						len);
599 				tid_stats->fail_cnt[INTRABSS_DROP]++;
600 				return false;
601 			}
602 		}
603 	}
604 	/* if it is a broadcast pkt (eg: ARP) and it is not its own
605 	 * source, then clone the pkt and send the cloned pkt for
606 	 * intra BSS forwarding and original pkt up the network stack
607 	 * Note: how do we handle multicast pkts. do we forward
608 	 * all multicast pkts as is or let a higher layer module
609 	 * like igmpsnoop decide whether to forward or not with
610 	 * Mcast enhancement.
611 	 */
612 	else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
613 			       !ta_peer->bss_peer))) {
614 		if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
615 			goto end;
616 
617 		/* If the source peer in the isolation list
618 		 * then dont forward instead push to bridge stack
619 		 */
620 		if (dp_get_peer_isolation(ta_peer))
621 			goto end;
622 
623 		nbuf_copy = qdf_nbuf_copy(nbuf);
624 		if (!nbuf_copy)
625 			goto end;
626 
627 		len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
628 		memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
629 
630 		/* Set cb->ftype to intrabss FWD */
631 		qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
632 		if (dp_tx_send((struct cdp_soc_t *)soc,
633 			       ta_peer->vdev->vdev_id, nbuf_copy)) {
634 			DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
635 			tid_stats->fail_cnt[INTRABSS_DROP]++;
636 			qdf_nbuf_free(nbuf_copy);
637 		} else {
638 			DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
639 			tid_stats->intrabss_cnt++;
640 		}
641 	}
642 
643 end:
644 	/* return false as we have to still send the original pkt
645 	 * up the stack
646 	 */
647 	return false;
648 }
649 
650 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
651 
652 #ifdef MESH_MODE_SUPPORT
653 
654 /**
655  * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
656  *
657  * @vdev: DP Virtual device handle
658  * @nbuf: Buffer pointer
659  * @rx_tlv_hdr: start of rx tlv header
660  * @peer: pointer to peer
661  *
662  * This function allocated memory for mesh receive stats and fill the
663  * required stats. Stores the memory address in skb cb.
664  *
665  * Return: void
666  */
667 
668 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
669 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
670 {
671 	struct mesh_recv_hdr_s *rx_info = NULL;
672 	uint32_t pkt_type;
673 	uint32_t nss;
674 	uint32_t rate_mcs;
675 	uint32_t bw;
676 	uint8_t primary_chan_num;
677 	uint32_t center_chan_freq;
678 	struct dp_soc *soc;
679 
680 	/* fill recv mesh stats */
681 	rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
682 
683 	/* upper layers are resposible to free this memory */
684 
685 	if (!rx_info) {
686 		dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
687 			  vdev->pdev->soc);
688 		DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
689 		return;
690 	}
691 
692 	rx_info->rs_flags = MESH_RXHDR_VER1;
693 	if (qdf_nbuf_is_rx_chfrag_start(nbuf))
694 		rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
695 
696 	if (qdf_nbuf_is_rx_chfrag_end(nbuf))
697 		rx_info->rs_flags |= MESH_RX_LAST_MSDU;
698 
699 	if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
700 		rx_info->rs_flags |= MESH_RX_DECRYPTED;
701 		rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
702 		if (vdev->osif_get_key)
703 			vdev->osif_get_key(vdev->osif_vdev,
704 					&rx_info->rs_decryptkey[0],
705 					&peer->mac_addr.raw[0],
706 					rx_info->rs_keyix);
707 	}
708 
709 	rx_info->rs_snr = peer->stats.rx.snr;
710 	rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
711 
712 	soc = vdev->pdev->soc;
713 	primary_chan_num = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
714 	center_chan_freq = hal_rx_msdu_start_get_freq(rx_tlv_hdr) >> 16;
715 
716 	if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
717 		rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
718 							soc->ctrl_psoc,
719 							vdev->pdev->pdev_id,
720 							center_chan_freq);
721 	}
722 	rx_info->rs_channel = primary_chan_num;
723 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
724 	rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
725 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
726 	nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
727 	rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
728 				(bw << 24);
729 
730 	qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
731 
732 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
733 		FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
734 						rx_info->rs_flags,
735 						rx_info->rs_rssi,
736 						rx_info->rs_channel,
737 						rx_info->rs_ratephy1,
738 						rx_info->rs_keyix,
739 						rx_info->rs_snr);
740 
741 }
742 
743 /**
744  * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
745  *
746  * @vdev: DP Virtual device handle
747  * @nbuf: Buffer pointer
748  * @rx_tlv_hdr: start of rx tlv header
749  *
750  * This checks if the received packet is matching any filter out
751  * catogery and and drop the packet if it matches.
752  *
753  * Return: status(0 indicates drop, 1 indicate to no drop)
754  */
755 
756 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
757 					uint8_t *rx_tlv_hdr)
758 {
759 	union dp_align_mac_addr mac_addr;
760 	struct dp_soc *soc = vdev->pdev->soc;
761 
762 	if (qdf_unlikely(vdev->mesh_rx_filter)) {
763 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
764 			if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
765 						  rx_tlv_hdr))
766 				return  QDF_STATUS_SUCCESS;
767 
768 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
769 			if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
770 						  rx_tlv_hdr))
771 				return  QDF_STATUS_SUCCESS;
772 
773 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
774 			if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
775 						   rx_tlv_hdr) &&
776 			    !hal_rx_mpdu_get_to_ds(soc->hal_soc,
777 						   rx_tlv_hdr))
778 				return  QDF_STATUS_SUCCESS;
779 
780 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
781 			if (hal_rx_mpdu_get_addr1(soc->hal_soc,
782 						  rx_tlv_hdr,
783 					&mac_addr.raw[0]))
784 				return QDF_STATUS_E_FAILURE;
785 
786 			if (!qdf_mem_cmp(&mac_addr.raw[0],
787 					&vdev->mac_addr.raw[0],
788 					QDF_MAC_ADDR_SIZE))
789 				return  QDF_STATUS_SUCCESS;
790 		}
791 
792 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
793 			if (hal_rx_mpdu_get_addr2(soc->hal_soc,
794 						  rx_tlv_hdr,
795 						  &mac_addr.raw[0]))
796 				return QDF_STATUS_E_FAILURE;
797 
798 			if (!qdf_mem_cmp(&mac_addr.raw[0],
799 					&vdev->mac_addr.raw[0],
800 					QDF_MAC_ADDR_SIZE))
801 				return  QDF_STATUS_SUCCESS;
802 		}
803 	}
804 
805 	return QDF_STATUS_E_FAILURE;
806 }
807 
808 #else
809 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
810 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
811 {
812 }
813 
814 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
815 					uint8_t *rx_tlv_hdr)
816 {
817 	return QDF_STATUS_E_FAILURE;
818 }
819 
820 #endif
821 
822 #ifdef FEATURE_NAC_RSSI
823 /**
824  * dp_rx_nac_filter(): Function to perform filtering of non-associated
825  * clients
826  * @pdev: DP pdev handle
827  * @rx_pkt_hdr: Rx packet Header
828  *
829  * return: dp_vdev*
830  */
831 static
832 struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
833 		uint8_t *rx_pkt_hdr)
834 {
835 	struct ieee80211_frame *wh;
836 	struct dp_neighbour_peer *peer = NULL;
837 
838 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
839 
840 	if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
841 		return NULL;
842 
843 	qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
844 	TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
845 				neighbour_peer_list_elem) {
846 		if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
847 				wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
848 			dp_rx_debug("%pK: NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x",
849 				    pdev->soc,
850 				    peer->neighbour_peers_macaddr.raw[0],
851 				    peer->neighbour_peers_macaddr.raw[1],
852 				    peer->neighbour_peers_macaddr.raw[2],
853 				    peer->neighbour_peers_macaddr.raw[3],
854 				    peer->neighbour_peers_macaddr.raw[4],
855 				    peer->neighbour_peers_macaddr.raw[5]);
856 
857 				qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
858 
859 			return pdev->monitor_vdev;
860 		}
861 	}
862 	qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
863 
864 	return NULL;
865 }
866 
867 /**
868  * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
869  * @soc: DP SOC handle
870  * @mpdu: mpdu for which peer is invalid
871  * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
872  * pool_id has same mapping)
873  *
874  * return: integer type
875  */
876 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
877 				   uint8_t mac_id)
878 {
879 	struct dp_invalid_peer_msg msg;
880 	struct dp_vdev *vdev = NULL;
881 	struct dp_pdev *pdev = NULL;
882 	struct ieee80211_frame *wh;
883 	qdf_nbuf_t curr_nbuf, next_nbuf;
884 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
885 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
886 
887 	rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
888 
889 	if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
890 		dp_rx_debug("%pK: Drop decapped frames", soc);
891 		goto free;
892 	}
893 
894 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
895 
896 	if (!DP_FRAME_IS_DATA(wh)) {
897 		dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
898 		goto free;
899 	}
900 
901 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
902 		dp_rx_err("%pK: Invalid nbuf length", soc);
903 		goto free;
904 	}
905 
906 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
907 
908 	if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
909 		dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
910 		goto free;
911 	}
912 
913 	if (pdev->filter_neighbour_peers) {
914 		/* Next Hop scenario not yet handle */
915 		vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
916 		if (vdev) {
917 			dp_rx_mon_deliver(soc, pdev->pdev_id,
918 					  pdev->invalid_peer_head_msdu,
919 					  pdev->invalid_peer_tail_msdu);
920 
921 			pdev->invalid_peer_head_msdu = NULL;
922 			pdev->invalid_peer_tail_msdu = NULL;
923 
924 			return 0;
925 		}
926 	}
927 
928 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
929 
930 		if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
931 				QDF_MAC_ADDR_SIZE) == 0) {
932 			goto out;
933 		}
934 	}
935 
936 	if (!vdev) {
937 		dp_rx_err("%pK: VDEV not found", soc);
938 		goto free;
939 	}
940 
941 out:
942 	msg.wh = wh;
943 	qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
944 	msg.nbuf = mpdu;
945 	msg.vdev_id = vdev->vdev_id;
946 
947 	/*
948 	 * NOTE: Only valid for HKv1.
949 	 * If smart monitor mode is enabled on RE, we are getting invalid
950 	 * peer frames with RA as STA mac of RE and the TA not matching
951 	 * with any NAC list or the the BSSID.Such frames need to dropped
952 	 * in order to avoid HM_WDS false addition.
953 	 */
954 	if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
955 		if (!soc->hw_nac_monitor_support &&
956 		    pdev->filter_neighbour_peers &&
957 		    vdev->opmode == wlan_op_mode_sta) {
958 			dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
959 				   soc, wh->i_addr1);
960 			goto free;
961 		}
962 		pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
963 				(struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
964 				pdev->pdev_id, &msg);
965 	}
966 
967 free:
968 	/* Drop and free packet */
969 	curr_nbuf = mpdu;
970 	while (curr_nbuf) {
971 		next_nbuf = qdf_nbuf_next(curr_nbuf);
972 		qdf_nbuf_free(curr_nbuf);
973 		curr_nbuf = next_nbuf;
974 	}
975 
976 	return 0;
977 }
978 
979 /**
980  * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
981  * @soc: DP SOC handle
982  * @mpdu: mpdu for which peer is invalid
983  * @mpdu_done: if an mpdu is completed
984  * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
985  * pool_id has same mapping)
986  *
987  * return: integer type
988  */
989 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
990 					qdf_nbuf_t mpdu, bool mpdu_done,
991 					uint8_t mac_id)
992 {
993 	/* Only trigger the process when mpdu is completed */
994 	if (mpdu_done)
995 		dp_rx_process_invalid_peer(soc, mpdu, mac_id);
996 }
997 #else
998 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
999 				   uint8_t mac_id)
1000 {
1001 	qdf_nbuf_t curr_nbuf, next_nbuf;
1002 	struct dp_pdev *pdev;
1003 	struct dp_vdev *vdev = NULL;
1004 	struct ieee80211_frame *wh;
1005 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
1006 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
1007 
1008 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
1009 
1010 	if (!DP_FRAME_IS_DATA(wh)) {
1011 		QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
1012 				   "only for data frames");
1013 		goto free;
1014 	}
1015 
1016 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
1017 		dp_rx_err("%pK: Invalid nbuf length", soc);
1018 		goto free;
1019 	}
1020 
1021 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1022 	if (!pdev) {
1023 		dp_rx_err("%pK: PDEV not found", soc);
1024 		goto free;
1025 	}
1026 
1027 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
1028 	DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
1029 		if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1030 				QDF_MAC_ADDR_SIZE) == 0) {
1031 			qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1032 			goto out;
1033 		}
1034 	}
1035 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1036 
1037 	if (!vdev) {
1038 		dp_rx_err("%pK: VDEV not found", soc);
1039 		goto free;
1040 	}
1041 
1042 out:
1043 	if (soc->cdp_soc.ol_ops->rx_invalid_peer)
1044 		soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
1045 free:
1046 	/* reset the head and tail pointers */
1047 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1048 	if (pdev) {
1049 		pdev->invalid_peer_head_msdu = NULL;
1050 		pdev->invalid_peer_tail_msdu = NULL;
1051 	}
1052 
1053 	/* Drop and free packet */
1054 	curr_nbuf = mpdu;
1055 	while (curr_nbuf) {
1056 		next_nbuf = qdf_nbuf_next(curr_nbuf);
1057 		qdf_nbuf_free(curr_nbuf);
1058 		curr_nbuf = next_nbuf;
1059 	}
1060 
1061 	/* Reset the head and tail pointers */
1062 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1063 	if (pdev) {
1064 		pdev->invalid_peer_head_msdu = NULL;
1065 		pdev->invalid_peer_tail_msdu = NULL;
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
1072 					qdf_nbuf_t mpdu, bool mpdu_done,
1073 					uint8_t mac_id)
1074 {
1075 	/* Process the nbuf */
1076 	dp_rx_process_invalid_peer(soc, mpdu, mac_id);
1077 }
1078 #endif
1079 
1080 #ifndef QCA_HOST_MODE_WIFI_DISABLED
1081 
1082 #ifdef RECEIVE_OFFLOAD
1083 /**
1084  * dp_rx_print_offload_info() - Print offload info from RX TLV
1085  * @soc: dp soc handle
1086  * @rx_tlv: RX TLV for which offload information is to be printed
1087  *
1088  * Return: None
1089  */
1090 static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
1091 {
1092 	dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
1093 	dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
1094 	dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
1095 	dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
1096 								  rx_tlv));
1097 	dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
1098 	dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
1099 	dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
1100 	dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
1101 	dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
1102 	dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
1103 	dp_verbose_debug("---------------------------------------------------------");
1104 }
1105 
1106 /**
1107  * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
1108  * @soc: DP SOC handle
1109  * @rx_tlv: RX TLV received for the msdu
1110  * @msdu: msdu for which GRO info needs to be filled
1111  * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
1112  *
1113  * Return: None
1114  */
1115 static
1116 void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
1117 			 qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
1118 {
1119 	if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
1120 		return;
1121 
1122 	/* Filling up RX offload info only for TCP packets */
1123 	if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
1124 		return;
1125 
1126 	*rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
1127 
1128 	QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
1129 		 HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
1130 	QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
1131 			HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
1132 	QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
1133 			hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
1134 						  rx_tlv);
1135 	QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
1136 			 HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
1137 	QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
1138 			 HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
1139 	QDF_NBUF_CB_RX_TCP_WIN(msdu) =
1140 			 HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
1141 	QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
1142 			 HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
1143 	QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
1144 			 HAL_RX_TLV_GET_IPV6(rx_tlv);
1145 	QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
1146 			 HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
1147 	QDF_NBUF_CB_RX_FLOW_ID(msdu) =
1148 			 HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
1149 
1150 	dp_rx_print_offload_info(soc, rx_tlv);
1151 }
1152 #else
1153 static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
1154 				qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
1155 {
1156 }
1157 #endif /* RECEIVE_OFFLOAD */
1158 
1159 /**
1160  * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
1161  *
1162  * @nbuf: pointer to msdu.
1163  * @mpdu_len: mpdu length
1164  *
1165  * Return: returns true if nbuf is last msdu of mpdu else retuns false.
1166  */
1167 static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
1168 {
1169 	bool last_nbuf;
1170 
1171 	if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
1172 		qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
1173 		last_nbuf = false;
1174 	} else {
1175 		qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
1176 		last_nbuf = true;
1177 	}
1178 
1179 	*mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
1180 
1181 	return last_nbuf;
1182 }
1183 
1184 /**
1185  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
1186  *		     multiple nbufs.
1187  * @soc: DP SOC handle
1188  * @nbuf: pointer to the first msdu of an amsdu.
1189  *
1190  * This function implements the creation of RX frag_list for cases
1191  * where an MSDU is spread across multiple nbufs.
1192  *
1193  * Return: returns the head nbuf which contains complete frag_list.
1194  */
1195 qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
1196 {
1197 	qdf_nbuf_t parent, frag_list, next = NULL;
1198 	uint16_t frag_list_len = 0;
1199 	uint16_t mpdu_len;
1200 	bool last_nbuf;
1201 
1202 	/*
1203 	 * Use msdu len got from REO entry descriptor instead since
1204 	 * there is case the RX PKT TLV is corrupted while msdu_len
1205 	 * from REO descriptor is right for non-raw RX scatter msdu.
1206 	 */
1207 	mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1208 	/*
1209 	 * this is a case where the complete msdu fits in one single nbuf.
1210 	 * in this case HW sets both start and end bit and we only need to
1211 	 * reset these bits for RAW mode simulator to decap the pkt
1212 	 */
1213 	if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
1214 					qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1215 		qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
1216 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1217 		return nbuf;
1218 	}
1219 
1220 	/*
1221 	 * This is a case where we have multiple msdus (A-MSDU) spread across
1222 	 * multiple nbufs. here we create a fraglist out of these nbufs.
1223 	 *
1224 	 * the moment we encounter a nbuf with continuation bit set we
1225 	 * know for sure we have an MSDU which is spread across multiple
1226 	 * nbufs. We loop through and reap nbufs till we reach last nbuf.
1227 	 */
1228 	parent = nbuf;
1229 	frag_list = nbuf->next;
1230 	nbuf = nbuf->next;
1231 
1232 	/*
1233 	 * set the start bit in the first nbuf we encounter with continuation
1234 	 * bit set. This has the proper mpdu length set as it is the first
1235 	 * msdu of the mpdu. this becomes the parent nbuf and the subsequent
1236 	 * nbufs will form the frag_list of the parent nbuf.
1237 	 */
1238 	qdf_nbuf_set_rx_chfrag_start(parent, 1);
1239 	last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
1240 
1241 	/*
1242 	 * HW issue:  MSDU cont bit is set but reported MPDU length can fit
1243 	 * in to single buffer
1244 	 *
1245 	 * Increment error stats and avoid SG list creation
1246 	 */
1247 	if (last_nbuf) {
1248 		DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
1249 		qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
1250 		return parent;
1251 	}
1252 
1253 	/*
1254 	 * this is where we set the length of the fragments which are
1255 	 * associated to the parent nbuf. We iterate through the frag_list
1256 	 * till we hit the last_nbuf of the list.
1257 	 */
1258 	do {
1259 		last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
1260 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1261 		frag_list_len += qdf_nbuf_len(nbuf);
1262 
1263 		if (last_nbuf) {
1264 			next = nbuf->next;
1265 			nbuf->next = NULL;
1266 			break;
1267 		}
1268 
1269 		nbuf = nbuf->next;
1270 	} while (!last_nbuf);
1271 
1272 	qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
1273 	qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
1274 	parent->next = next;
1275 
1276 	qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
1277 	return parent;
1278 }
1279 
1280 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
1281 
1282 #ifdef QCA_PEER_EXT_STATS
1283 /*
1284  * dp_rx_compute_tid_delay - Computer per TID delay stats
1285  * @peer: DP soc context
1286  * @nbuf: NBuffer
1287  *
1288  * Return: Void
1289  */
1290 void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
1291 			     qdf_nbuf_t nbuf)
1292 {
1293 	struct cdp_delay_rx_stats  *rx_delay = &stats->rx_delay;
1294 	uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
1295 
1296 	dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
1297 }
1298 #endif /* QCA_PEER_EXT_STATS */
1299 
1300 /**
1301  * dp_rx_compute_delay() - Compute and fill in all timestamps
1302  *				to pass in correct fields
1303  *
1304  * @vdev: pdev handle
1305  * @tx_desc: tx descriptor
1306  * @tid: tid value
1307  * Return: none
1308  */
1309 void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
1310 {
1311 	uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
1312 	int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
1313 	uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
1314 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
1315 	uint32_t interframe_delay =
1316 		(uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
1317 
1318 	dp_update_delay_stats(vdev->pdev, to_stack, tid,
1319 			      CDP_DELAY_STATS_REAP_STACK, ring_id);
1320 	/*
1321 	 * Update interframe delay stats calculated at deliver_data_ol point.
1322 	 * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
1323 	 * interframe delay will not be calculate correctly for 1st frame.
1324 	 * On the other side, this will help in avoiding extra per packet check
1325 	 * of vdev->prev_rx_deliver_tstamp.
1326 	 */
1327 	dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
1328 			      CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
1329 	vdev->prev_rx_deliver_tstamp = current_ts;
1330 }
1331 
1332 /**
1333  * dp_rx_drop_nbuf_list() - drop an nbuf list
1334  * @pdev: dp pdev reference
1335  * @buf_list: buffer list to be dropepd
1336  *
1337  * Return: int (number of bufs dropped)
1338  */
1339 static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
1340 				       qdf_nbuf_t buf_list)
1341 {
1342 	struct cdp_tid_rx_stats *stats = NULL;
1343 	uint8_t tid = 0, ring_id = 0;
1344 	int num_dropped = 0;
1345 	qdf_nbuf_t buf, next_buf;
1346 
1347 	buf = buf_list;
1348 	while (buf) {
1349 		ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
1350 		next_buf = qdf_nbuf_queue_next(buf);
1351 		tid = qdf_nbuf_get_tid_val(buf);
1352 		if (qdf_likely(pdev)) {
1353 			stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
1354 			stats->fail_cnt[INVALID_PEER_VDEV]++;
1355 			stats->delivered_to_stack--;
1356 		}
1357 		qdf_nbuf_free(buf);
1358 		buf = next_buf;
1359 		num_dropped++;
1360 	}
1361 
1362 	return num_dropped;
1363 }
1364 
1365 #ifdef QCA_SUPPORT_WDS_EXTENDED
1366 /**
1367  * dp_rx_wds_ext() - Make different lists for 4-address and 3-address frames
1368  * @nbuf_head: skb list head
1369  * @vdev: vdev
1370  * @peer: peer
1371  * @peer_id: peer id of new received frame
1372  * @vdev_id: vdev_id of new received frame
1373  *
1374  * Return: true if peer_ids are different.
1375  */
1376 static inline bool
1377 dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
1378 		    struct dp_vdev *vdev,
1379 		    struct dp_peer *peer,
1380 		    uint16_t peer_id,
1381 		    uint8_t vdev_id)
1382 {
1383 	if (nbuf_head && peer && (peer->peer_id != peer_id))
1384 		return true;
1385 
1386 	return false;
1387 }
1388 
1389 /**
1390  * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
1391  * @soc: core txrx main context
1392  * @vdev: vdev
1393  * @peer: peer
1394  * @nbuf_head: skb list head
1395  *
1396  * Return: true if packet is delivered to netdev per STA.
1397  */
1398 static inline bool
1399 dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
1400 			   struct dp_peer *peer, qdf_nbuf_t nbuf_head)
1401 {
1402 	/*
1403 	 * When extended WDS is disabled, frames are sent to AP netdevice.
1404 	 */
1405 	if (qdf_likely(!vdev->wds_ext_enabled))
1406 		return false;
1407 
1408 	/*
1409 	 * There can be 2 cases:
1410 	 * 1. Send frame to parent netdev if its not for netdev per STA
1411 	 * 2. If frame is meant for netdev per STA:
1412 	 *    a. Send frame to appropriate netdev using registered fp.
1413 	 *    b. If fp is NULL, drop the frames.
1414 	 */
1415 	if (!peer->wds_ext.init)
1416 		return false;
1417 
1418 	if (peer->osif_rx)
1419 		peer->osif_rx(peer->wds_ext.osif_peer, nbuf_head);
1420 	else
1421 		dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
1422 
1423 	return true;
1424 }
1425 
1426 #else
1427 static inline bool
1428 dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
1429 		    struct dp_vdev *vdev,
1430 		    struct dp_peer *peer,
1431 		    uint16_t peer_id,
1432 		    uint8_t vdev_id)
1433 {
1434 	if (nbuf_head && vdev && (vdev->vdev_id != vdev_id))
1435 		return true;
1436 
1437 	return false;
1438 }
1439 
1440 static inline bool
1441 dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
1442 			   struct dp_peer *peer, qdf_nbuf_t nbuf_head)
1443 {
1444 	return false;
1445 }
1446 #endif
1447 
1448 #ifdef PEER_CACHE_RX_PKTS
1449 /**
1450  * dp_rx_flush_rx_cached() - flush cached rx frames
1451  * @peer: peer
1452  * @drop: flag to drop frames or forward to net stack
1453  *
1454  * Return: None
1455  */
1456 void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
1457 {
1458 	struct dp_peer_cached_bufq *bufqi;
1459 	struct dp_rx_cached_buf *cache_buf = NULL;
1460 	ol_txrx_rx_fp data_rx = NULL;
1461 	int num_buff_elem;
1462 	QDF_STATUS status;
1463 
1464 	if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
1465 		qdf_atomic_dec(&peer->flush_in_progress);
1466 		return;
1467 	}
1468 
1469 	qdf_spin_lock_bh(&peer->peer_info_lock);
1470 	if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
1471 		data_rx = peer->vdev->osif_rx;
1472 	else
1473 		drop = true;
1474 	qdf_spin_unlock_bh(&peer->peer_info_lock);
1475 
1476 	bufqi = &peer->bufq_info;
1477 
1478 	qdf_spin_lock_bh(&bufqi->bufq_lock);
1479 	qdf_list_remove_front(&bufqi->cached_bufq,
1480 			      (qdf_list_node_t **)&cache_buf);
1481 	while (cache_buf) {
1482 		num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
1483 								cache_buf->buf);
1484 		bufqi->entries -= num_buff_elem;
1485 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
1486 		if (drop) {
1487 			bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
1488 							      cache_buf->buf);
1489 		} else {
1490 			/* Flush the cached frames to OSIF DEV */
1491 			status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
1492 			if (status != QDF_STATUS_SUCCESS)
1493 				bufqi->dropped = dp_rx_drop_nbuf_list(
1494 							peer->vdev->pdev,
1495 							cache_buf->buf);
1496 		}
1497 		qdf_mem_free(cache_buf);
1498 		cache_buf = NULL;
1499 		qdf_spin_lock_bh(&bufqi->bufq_lock);
1500 		qdf_list_remove_front(&bufqi->cached_bufq,
1501 				      (qdf_list_node_t **)&cache_buf);
1502 	}
1503 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
1504 	qdf_atomic_dec(&peer->flush_in_progress);
1505 }
1506 
1507 /**
1508  * dp_rx_enqueue_rx() - cache rx frames
1509  * @peer: peer
1510  * @rx_buf_list: cache buffer list
1511  *
1512  * Return: None
1513  */
1514 static QDF_STATUS
1515 dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
1516 {
1517 	struct dp_rx_cached_buf *cache_buf;
1518 	struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
1519 	int num_buff_elem;
1520 
1521 	dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
1522 		    bufqi->dropped);
1523 	if (!peer->valid) {
1524 		bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
1525 						      rx_buf_list);
1526 		return QDF_STATUS_E_INVAL;
1527 	}
1528 
1529 	qdf_spin_lock_bh(&bufqi->bufq_lock);
1530 	if (bufqi->entries >= bufqi->thresh) {
1531 		bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
1532 						      rx_buf_list);
1533 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
1534 		return QDF_STATUS_E_RESOURCES;
1535 	}
1536 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
1537 
1538 	num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
1539 
1540 	cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
1541 	if (!cache_buf) {
1542 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1543 			  "Failed to allocate buf to cache rx frames");
1544 		bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
1545 						      rx_buf_list);
1546 		return QDF_STATUS_E_NOMEM;
1547 	}
1548 
1549 	cache_buf->buf = rx_buf_list;
1550 
1551 	qdf_spin_lock_bh(&bufqi->bufq_lock);
1552 	qdf_list_insert_back(&bufqi->cached_bufq,
1553 			     &cache_buf->node);
1554 	bufqi->entries += num_buff_elem;
1555 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
1556 
1557 	return QDF_STATUS_SUCCESS;
1558 }
1559 
1560 static inline
1561 bool dp_rx_is_peer_cache_bufq_supported(void)
1562 {
1563 	return true;
1564 }
1565 #else
1566 static inline
1567 bool dp_rx_is_peer_cache_bufq_supported(void)
1568 {
1569 	return false;
1570 }
1571 
1572 static inline QDF_STATUS
1573 dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
1574 {
1575 	return QDF_STATUS_SUCCESS;
1576 }
1577 #endif
1578 
1579 #ifndef DELIVERY_TO_STACK_STATUS_CHECK
1580 /**
1581  * dp_rx_check_delivery_to_stack() - Deliver pkts to network
1582  * using the appropriate call back functions.
1583  * @soc: soc
1584  * @vdev: vdev
1585  * @peer: peer
1586  * @nbuf_head: skb list head
1587  * @nbuf_tail: skb list tail
1588  *
1589  * Return: None
1590  */
1591 static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
1592 					  struct dp_vdev *vdev,
1593 					  struct dp_peer *peer,
1594 					  qdf_nbuf_t nbuf_head)
1595 {
1596 	if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
1597 						    peer, nbuf_head)))
1598 		return;
1599 
1600 	/* Function pointer initialized only when FISA is enabled */
1601 	if (vdev->osif_fisa_rx)
1602 		/* on failure send it via regular path */
1603 		vdev->osif_fisa_rx(soc, vdev, nbuf_head);
1604 	else
1605 		vdev->osif_rx(vdev->osif_vdev, nbuf_head);
1606 }
1607 
1608 #else
1609 /**
1610  * dp_rx_check_delivery_to_stack() - Deliver pkts to network
1611  * using the appropriate call back functions.
1612  * @soc: soc
1613  * @vdev: vdev
1614  * @peer: peer
1615  * @nbuf_head: skb list head
1616  * @nbuf_tail: skb list tail
1617  *
1618  * Check the return status of the call back function and drop
1619  * the packets if the return status indicates a failure.
1620  *
1621  * Return: None
1622  */
1623 static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
1624 					  struct dp_vdev *vdev,
1625 					  struct dp_peer *peer,
1626 					  qdf_nbuf_t nbuf_head)
1627 {
1628 	int num_nbuf = 0;
1629 	QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
1630 
1631 	/* Function pointer initialized only when FISA is enabled */
1632 	if (vdev->osif_fisa_rx)
1633 		/* on failure send it via regular path */
1634 		ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
1635 	else if (vdev->osif_rx)
1636 		ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
1637 
1638 	if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
1639 		num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
1640 		DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
1641 		if (peer)
1642 			DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
1643 	}
1644 }
1645 #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
1646 
1647 void dp_rx_deliver_to_stack(struct dp_soc *soc,
1648 			    struct dp_vdev *vdev,
1649 			    struct dp_peer *peer,
1650 			    qdf_nbuf_t nbuf_head,
1651 			    qdf_nbuf_t nbuf_tail)
1652 {
1653 	int num_nbuf = 0;
1654 
1655 	if (qdf_unlikely(!vdev || vdev->delete.pending)) {
1656 		num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
1657 		/*
1658 		 * This is a special case where vdev is invalid,
1659 		 * so we cannot know the pdev to which this packet
1660 		 * belonged. Hence we update the soc rx error stats.
1661 		 */
1662 		DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
1663 		return;
1664 	}
1665 
1666 	/*
1667 	 * highly unlikely to have a vdev without a registered rx
1668 	 * callback function. if so let us free the nbuf_list.
1669 	 */
1670 	if (qdf_unlikely(!vdev->osif_rx)) {
1671 		if (peer && dp_rx_is_peer_cache_bufq_supported()) {
1672 			dp_rx_enqueue_rx(peer, nbuf_head);
1673 		} else {
1674 			num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
1675 							nbuf_head);
1676 			DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
1677 		}
1678 		return;
1679 	}
1680 
1681 	if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
1682 			(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
1683 		vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
1684 				&nbuf_tail, peer->mac_addr.raw);
1685 	}
1686 
1687 	dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
1688 }
1689 
1690 #ifndef QCA_HOST_MODE_WIFI_DISABLED
1691 
1692 /**
1693  * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
1694  * @nbuf: pointer to the first msdu of an amsdu.
1695  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1696  *
1697  * The ipsumed field of the skb is set based on whether HW validated the
1698  * IP/TCP/UDP checksum.
1699  *
1700  * Return: void
1701  */
1702 static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
1703 				       qdf_nbuf_t nbuf,
1704 				       uint8_t *rx_tlv_hdr)
1705 {
1706 	qdf_nbuf_rx_cksum_t cksum = {0};
1707 	bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
1708 	bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
1709 
1710 	if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
1711 		cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
1712 		qdf_nbuf_set_rx_cksum(nbuf, &cksum);
1713 	} else {
1714 		DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
1715 		DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
1716 	}
1717 }
1718 
1719 #ifdef VDEV_PEER_PROTOCOL_COUNT
1720 #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
1721 { \
1722 	qdf_nbuf_t nbuf_local; \
1723 	struct dp_peer *peer_local; \
1724 	struct dp_vdev *vdev_local = vdev_hdl; \
1725 	do { \
1726 		if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
1727 			break; \
1728 		nbuf_local = nbuf; \
1729 		peer_local = peer; \
1730 		if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
1731 			break; \
1732 		else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
1733 			break; \
1734 		dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
1735 						       (nbuf_local), \
1736 						       (peer_local), 0, 1); \
1737 	} while (0); \
1738 }
1739 #else
1740 #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
1741 #endif
1742 
1743 /**
1744  * dp_rx_msdu_stats_update() - update per msdu stats.
1745  * @soc: core txrx main context
1746  * @nbuf: pointer to the first msdu of an amsdu.
1747  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1748  * @peer: pointer to the peer object.
1749  * @ring_id: reo dest ring number on which pkt is reaped.
1750  * @tid_stats: per tid rx stats.
1751  *
1752  * update all the per msdu stats for that nbuf.
1753  * Return: void
1754  */
1755 static void dp_rx_msdu_stats_update(struct dp_soc *soc,
1756 				    qdf_nbuf_t nbuf,
1757 				    uint8_t *rx_tlv_hdr,
1758 				    struct dp_peer *peer,
1759 				    uint8_t ring_id,
1760 				    struct cdp_tid_rx_stats *tid_stats)
1761 {
1762 	bool is_ampdu, is_not_amsdu;
1763 	uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
1764 	struct dp_vdev *vdev = peer->vdev;
1765 	qdf_ether_header_t *eh;
1766 	uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1767 
1768 	dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
1769 	is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
1770 			qdf_nbuf_is_rx_chfrag_end(nbuf);
1771 
1772 	DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
1773 	DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
1774 	DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
1775 	DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
1776 
1777 	tid_stats->msdu_cnt++;
1778 	if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
1779 			 (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
1780 		eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
1781 		DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
1782 		tid_stats->mcast_msdu_cnt++;
1783 		if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
1784 			DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
1785 			tid_stats->bcast_msdu_cnt++;
1786 		}
1787 	}
1788 
1789 	/*
1790 	 * currently we can return from here as we have similar stats
1791 	 * updated at per ppdu level instead of msdu level
1792 	 */
1793 	if (!soc->process_rx_status)
1794 		return;
1795 
1796 	is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
1797 	DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
1798 	DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
1799 
1800 	sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
1801 	mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
1802 	tid = qdf_nbuf_get_tid_val(nbuf);
1803 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
1804 	reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
1805 							      rx_tlv_hdr);
1806 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
1807 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
1808 
1809 	DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
1810 		      ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
1811 	DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
1812 		      ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
1813 	DP_STATS_INC(peer, rx.bw[bw], 1);
1814 	/*
1815 	 * only if nss > 0 and pkt_type is 11N/AC/AX,
1816 	 * then increase index [nss - 1] in array counter.
1817 	 */
1818 	if (nss > 0 && (pkt_type == DOT11_N ||
1819 			pkt_type == DOT11_AC ||
1820 			pkt_type == DOT11_AX))
1821 		DP_STATS_INC(peer, rx.nss[nss - 1], 1);
1822 
1823 	DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
1824 	DP_STATS_INCC(peer, rx.err.mic_err, 1,
1825 		      hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
1826 	DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
1827 		      hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
1828 
1829 	DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
1830 	DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
1831 
1832 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1833 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1834 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1835 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1836 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1837 		      ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1838 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1839 		      ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1840 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1841 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1842 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1843 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1844 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1845 		      ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1846 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1847 		      ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1848 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1849 		      ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
1850 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1851 		      ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
1852 
1853 	if ((soc->process_rx_status) &&
1854 	    hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
1855 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
1856 		if (!vdev->pdev)
1857 			return;
1858 
1859 		dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
1860 				     &peer->stats, peer->peer_id,
1861 				     UPDATE_PEER_STATS,
1862 				     vdev->pdev->pdev_id);
1863 #endif
1864 
1865 	}
1866 }
1867 
1868 static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
1869 				      uint8_t *rx_tlv_hdr,
1870 				      qdf_nbuf_t nbuf,
1871 				      struct hal_rx_msdu_metadata msdu_info)
1872 {
1873 	if ((qdf_nbuf_is_sa_valid(nbuf) &&
1874 	    (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
1875 	    (!qdf_nbuf_is_da_mcbc(nbuf) &&
1876 	     qdf_nbuf_is_da_valid(nbuf) &&
1877 	     (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
1878 		return false;
1879 
1880 	return true;
1881 }
1882 
1883 #ifndef WDS_VENDOR_EXTENSION
1884 int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
1885 			   struct dp_vdev *vdev,
1886 			   struct dp_peer *peer)
1887 {
1888 	return 1;
1889 }
1890 #endif
1891 
1892 #ifdef RX_DESC_DEBUG_CHECK
1893 /**
1894  * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
1895  *				  corruption
1896  *
1897  * @ring_desc: REO ring descriptor
1898  * @rx_desc: Rx descriptor
1899  *
1900  * Return: NONE
1901  */
1902 static inline
1903 QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
1904 					struct dp_rx_desc *rx_desc)
1905 {
1906 	struct hal_buf_info hbi;
1907 
1908 	hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
1909 	/* Sanity check for possible buffer paddr corruption */
1910 	if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
1911 		return QDF_STATUS_SUCCESS;
1912 
1913 	return QDF_STATUS_E_FAILURE;
1914 }
1915 #else
1916 static inline
1917 QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
1918 					struct dp_rx_desc *rx_desc)
1919 {
1920 	return QDF_STATUS_SUCCESS;
1921 }
1922 #endif
1923 
1924 #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
1925 static inline
1926 bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
1927 {
1928 	bool limit_hit = false;
1929 	struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
1930 
1931 	limit_hit =
1932 		(num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
1933 
1934 	if (limit_hit)
1935 		DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
1936 
1937 	return limit_hit;
1938 }
1939 
1940 static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
1941 {
1942 	return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
1943 }
1944 
1945 #else
1946 static inline
1947 bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
1948 {
1949 	return false;
1950 }
1951 
1952 static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
1953 {
1954 	return false;
1955 }
1956 
1957 #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
1958 
1959 #ifdef DP_RX_PKT_NO_PEER_DELIVER
1960 /**
1961  * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
1962  *				      no corresbonding peer found
1963  * @soc: core txrx main context
1964  * @nbuf: pkt skb pointer
1965  *
1966  * This function will try to deliver some RX special frames to stack
1967  * even there is no peer matched found. for instance, LFR case, some
1968  * eapol data will be sent to host before peer_map done.
1969  *
1970  * Return: None
1971  */
1972 static
1973 void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
1974 {
1975 	uint16_t peer_id;
1976 	uint8_t vdev_id;
1977 	struct dp_vdev *vdev = NULL;
1978 	uint32_t l2_hdr_offset = 0;
1979 	uint16_t msdu_len = 0;
1980 	uint32_t pkt_len = 0;
1981 	uint8_t *rx_tlv_hdr;
1982 	uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
1983 				FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
1984 
1985 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
1986 	if (peer_id > soc->max_peers)
1987 		goto deliver_fail;
1988 
1989 	vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
1990 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
1991 	if (!vdev || vdev->delete.pending || !vdev->osif_rx)
1992 		goto deliver_fail;
1993 
1994 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
1995 		goto deliver_fail;
1996 
1997 	rx_tlv_hdr = qdf_nbuf_data(nbuf);
1998 	l2_hdr_offset =
1999 		hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
2000 
2001 	msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2002 	pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
2003 	QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
2004 
2005 	qdf_nbuf_set_pktlen(nbuf, pkt_len);
2006 	qdf_nbuf_pull_head(nbuf,
2007 			   RX_PKT_TLVS_LEN +
2008 			   l2_hdr_offset);
2009 
2010 	if (dp_rx_is_special_frame(nbuf, frame_mask)) {
2011 		qdf_nbuf_set_exc_frame(nbuf, 1);
2012 		if (QDF_STATUS_SUCCESS !=
2013 		    vdev->osif_rx(vdev->osif_vdev, nbuf))
2014 			goto deliver_fail;
2015 		DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
2016 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2017 		return;
2018 	}
2019 
2020 deliver_fail:
2021 	DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
2022 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2023 	qdf_nbuf_free(nbuf);
2024 	if (vdev)
2025 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2026 }
2027 #else
2028 static inline
2029 void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
2030 {
2031 	DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
2032 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2033 	qdf_nbuf_free(nbuf);
2034 }
2035 #endif
2036 
2037 /**
2038  * dp_rx_srng_get_num_pending() - get number of pending entries
2039  * @hal_soc: hal soc opaque pointer
2040  * @hal_ring: opaque pointer to the HAL Rx Ring
2041  * @num_entries: number of entries in the hal_ring.
2042  * @near_full: pointer to a boolean. This is set if ring is near full.
2043  *
2044  * The function returns the number of entries in a destination ring which are
2045  * yet to be reaped. The function also checks if the ring is near full.
2046  * If more than half of the ring needs to be reaped, the ring is considered
2047  * approaching full.
2048  * The function useses hal_srng_dst_num_valid_locked to get the number of valid
2049  * entries. It should not be called within a SRNG lock. HW pointer value is
2050  * synced into cached_hp.
2051  *
2052  * Return: Number of pending entries if any
2053  */
2054 static
2055 uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
2056 				    hal_ring_handle_t hal_ring_hdl,
2057 				    uint32_t num_entries,
2058 				    bool *near_full)
2059 {
2060 	uint32_t num_pending = 0;
2061 
2062 	num_pending = hal_srng_dst_num_valid_locked(hal_soc,
2063 						    hal_ring_hdl,
2064 						    true);
2065 
2066 	if (num_entries && (num_pending >= num_entries >> 1))
2067 		*near_full = true;
2068 	else
2069 		*near_full = false;
2070 
2071 	return num_pending;
2072 }
2073 
2074 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
2075 
2076 #ifdef WLAN_SUPPORT_RX_FISA
2077 void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
2078 {
2079 	QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
2080 	qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
2081 }
2082 
2083 /**
2084  * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
2085  * @nbuf: pkt skb pointer
2086  * @l3_padding: l3 padding
2087  *
2088  * Return: None
2089  */
2090 static inline
2091 void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
2092 {
2093 	QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
2094 }
2095 #else
2096 void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
2097 {
2098 	qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
2099 }
2100 
2101 static inline
2102 void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
2103 {
2104 }
2105 #endif
2106 
2107 #ifndef QCA_HOST_MODE_WIFI_DISABLED
2108 
2109 #ifdef DP_RX_DROP_RAW_FRM
2110 /**
2111  * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
2112  * @nbuf: pkt skb pointer
2113  *
2114  * Return: true - raw frame, dropped
2115  *	   false - not raw frame, do nothing
2116  */
2117 static inline
2118 bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
2119 {
2120 	if (qdf_nbuf_is_raw_frame(nbuf)) {
2121 		qdf_nbuf_free(nbuf);
2122 		return true;
2123 	}
2124 
2125 	return false;
2126 }
2127 #else
2128 static inline
2129 bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
2130 {
2131 	return false;
2132 }
2133 #endif
2134 
2135 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
2136 /**
2137  * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
2138  * @soc: Datapath soc structure
2139  * @ring_num: REO ring number
2140  * @ring_desc: REO ring descriptor
2141  *
2142  * Returns: None
2143  */
2144 static inline void
2145 dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
2146 			hal_ring_desc_t ring_desc)
2147 {
2148 	struct dp_buf_info_record *record;
2149 	uint8_t rbm;
2150 	struct hal_buf_info hbi;
2151 	uint32_t idx;
2152 
2153 	if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
2154 		return;
2155 
2156 	hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
2157 	rbm = hal_rx_ret_buf_manager_get(ring_desc);
2158 
2159 	idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
2160 					DP_RX_HIST_MAX);
2161 
2162 	/* No NULL check needed for record since its an array */
2163 	record = &soc->rx_ring_history[ring_num]->entry[idx];
2164 
2165 	record->timestamp = qdf_get_log_timestamp();
2166 	record->hbi.paddr = hbi.paddr;
2167 	record->hbi.sw_cookie = hbi.sw_cookie;
2168 	record->hbi.rbm = rbm;
2169 }
2170 #else
2171 static inline void
2172 dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
2173 			hal_ring_desc_t ring_desc)
2174 {
2175 }
2176 #endif
2177 
2178 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
2179 /**
2180  * dp_rx_update_stats() - Update soc level rx packet count
2181  * @soc: DP soc handle
2182  * @nbuf: nbuf received
2183  *
2184  * Returns: none
2185  */
2186 static inline void dp_rx_update_stats(struct dp_soc *soc,
2187 				      qdf_nbuf_t nbuf)
2188 {
2189 	DP_STATS_INC_PKT(soc, rx.ingress, 1,
2190 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2191 }
2192 #else
2193 static inline void dp_rx_update_stats(struct dp_soc *soc,
2194 				      qdf_nbuf_t nbuf)
2195 {
2196 }
2197 #endif
2198 
2199 #ifdef WLAN_FEATURE_PKT_CAPTURE_LITHIUM
2200 /**
2201  * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
2202  * @soc : dp_soc handle
2203  * @pdev: dp_pdev handle
2204  * @peer_id: peer_id of the peer for which completion came
2205  * @ppdu_id: ppdu_id
2206  * @netbuf: Buffer pointer
2207  *
2208  * This function is used to deliver rx packet to packet capture
2209  */
2210 void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc,  struct dp_pdev *pdev,
2211 				  uint16_t peer_id, uint32_t is_offload,
2212 				  qdf_nbuf_t netbuf)
2213 {
2214 	dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
2215 			     peer_id, is_offload, pdev->pdev_id);
2216 }
2217 
2218 void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
2219 					  uint32_t is_offload)
2220 {
2221 	uint16_t msdu_len = 0;
2222 	uint16_t peer_id, vdev_id;
2223 	uint32_t pkt_len = 0;
2224 	uint8_t *rx_tlv_hdr;
2225 	uint32_t l2_hdr_offset = 0;
2226 	struct hal_rx_msdu_metadata msdu_metadata;
2227 
2228 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
2229 	vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
2230 	rx_tlv_hdr = qdf_nbuf_data(nbuf);
2231 	hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr, &msdu_metadata);
2232 	msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2233 	pkt_len = msdu_len + msdu_metadata.l3_hdr_pad +
2234 		  RX_PKT_TLVS_LEN;
2235 	l2_hdr_offset =
2236 		hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
2237 
2238 	qdf_nbuf_set_pktlen(nbuf, pkt_len);
2239 	dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
2240 
2241 	dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, nbuf,
2242 			     HTT_INVALID_VDEV, is_offload, 0);
2243 }
2244 
2245 #endif
2246 
2247 /**
2248  * dp_rx_process() - Brain of the Rx processing functionality
2249  *		     Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
2250  * @int_ctx: per interrupt context
2251  * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
2252  * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
2253  * @quota: No. of units (packets) that can be serviced in one shot.
2254  *
2255  * This function implements the core of Rx functionality. This is
2256  * expected to handle only non-error frames.
2257  *
2258  * Return: uint32_t: No. of elements processed
2259  */
2260 uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
2261 			    uint8_t reo_ring_num, uint32_t quota)
2262 {
2263 	hal_ring_desc_t ring_desc;
2264 	hal_soc_handle_t hal_soc;
2265 	struct dp_rx_desc *rx_desc = NULL;
2266 	qdf_nbuf_t nbuf, next;
2267 	bool near_full;
2268 	union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
2269 	union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
2270 	uint32_t num_pending;
2271 	uint32_t rx_bufs_used = 0, rx_buf_cookie;
2272 	uint16_t msdu_len = 0;
2273 	uint16_t peer_id;
2274 	uint8_t vdev_id;
2275 	struct dp_peer *peer;
2276 	struct dp_vdev *vdev;
2277 	uint32_t pkt_len = 0;
2278 	struct hal_rx_mpdu_desc_info mpdu_desc_info;
2279 	struct hal_rx_msdu_desc_info msdu_desc_info;
2280 	enum hal_reo_error_status error;
2281 	uint32_t peer_mdata;
2282 	uint8_t *rx_tlv_hdr;
2283 	uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
2284 	uint8_t mac_id = 0;
2285 	struct dp_pdev *rx_pdev;
2286 	struct dp_srng *dp_rxdma_srng;
2287 	struct rx_desc_pool *rx_desc_pool;
2288 	struct dp_soc *soc = int_ctx->soc;
2289 	uint8_t ring_id = 0;
2290 	uint8_t core_id = 0;
2291 	struct cdp_tid_rx_stats *tid_stats;
2292 	qdf_nbuf_t nbuf_head;
2293 	qdf_nbuf_t nbuf_tail;
2294 	qdf_nbuf_t deliver_list_head;
2295 	qdf_nbuf_t deliver_list_tail;
2296 	uint32_t num_rx_bufs_reaped = 0;
2297 	uint32_t intr_id;
2298 	struct hif_opaque_softc *scn;
2299 	int32_t tid = 0;
2300 	bool is_prev_msdu_last = true;
2301 	uint32_t num_entries_avail = 0;
2302 	uint32_t rx_ol_pkt_cnt = 0;
2303 	uint32_t num_entries = 0;
2304 	struct hal_rx_msdu_metadata msdu_metadata;
2305 	QDF_STATUS status;
2306 	qdf_nbuf_t ebuf_head;
2307 	qdf_nbuf_t ebuf_tail;
2308 	uint8_t pkt_capture_offload = 0;
2309 
2310 	DP_HIST_INIT();
2311 
2312 	qdf_assert_always(soc && hal_ring_hdl);
2313 	hal_soc = soc->hal_soc;
2314 	qdf_assert_always(hal_soc);
2315 
2316 	scn = soc->hif_handle;
2317 	hif_pm_runtime_mark_dp_rx_busy(scn);
2318 	intr_id = int_ctx->dp_intr_id;
2319 	num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
2320 
2321 more_data:
2322 	/* reset local variables here to be re-used in the function */
2323 	nbuf_head = NULL;
2324 	nbuf_tail = NULL;
2325 	deliver_list_head = NULL;
2326 	deliver_list_tail = NULL;
2327 	peer = NULL;
2328 	vdev = NULL;
2329 	num_rx_bufs_reaped = 0;
2330 	ebuf_head = NULL;
2331 	ebuf_tail = NULL;
2332 
2333 	qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
2334 	qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
2335 	qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
2336 	qdf_mem_zero(head, sizeof(head));
2337 	qdf_mem_zero(tail, sizeof(tail));
2338 
2339 	if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
2340 
2341 		/*
2342 		 * Need API to convert from hal_ring pointer to
2343 		 * Ring Type / Ring Id combo
2344 		 */
2345 		DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
2346 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2347 			FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
2348 		goto done;
2349 	}
2350 
2351 	/*
2352 	 * start reaping the buffers from reo ring and queue
2353 	 * them in per vdev queue.
2354 	 * Process the received pkts in a different per vdev loop.
2355 	 */
2356 	while (qdf_likely(quota &&
2357 			  (ring_desc = hal_srng_dst_peek(hal_soc,
2358 							 hal_ring_hdl)))) {
2359 
2360 		error = HAL_RX_ERROR_STATUS_GET(ring_desc);
2361 		ring_id = hal_srng_ring_id_get(hal_ring_hdl);
2362 
2363 		if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
2364 			dp_rx_err("%pK: HAL RING 0x%pK:error %d",
2365 				  soc, hal_ring_hdl, error);
2366 			DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
2367 			/* Don't know how to deal with this -- assert */
2368 			qdf_assert(0);
2369 		}
2370 
2371 		dp_rx_ring_record_entry(soc, reo_ring_num, ring_desc);
2372 		rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
2373 		status = dp_rx_cookie_check_and_invalidate(ring_desc);
2374 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
2375 			DP_STATS_INC(soc, rx.err.stale_cookie, 1);
2376 			break;
2377 		}
2378 
2379 		rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
2380 		status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl,
2381 					   ring_desc, rx_desc);
2382 		if (QDF_IS_STATUS_ERROR(status)) {
2383 			if (qdf_unlikely(rx_desc && rx_desc->nbuf)) {
2384 				qdf_assert_always(rx_desc->unmapped);
2385 				dp_ipa_handle_rx_buf_smmu_mapping(
2386 							soc,
2387 							rx_desc->nbuf,
2388 							RX_DATA_BUFFER_SIZE,
2389 							false);
2390 				qdf_nbuf_unmap_nbytes_single(
2391 							soc->osdev,
2392 							rx_desc->nbuf,
2393 							QDF_DMA_FROM_DEVICE,
2394 							RX_DATA_BUFFER_SIZE);
2395 				rx_desc->unmapped = 1;
2396 				dp_rx_buffer_pool_nbuf_free(soc, rx_desc->nbuf,
2397 							    rx_desc->pool_id);
2398 				dp_rx_add_to_free_desc_list(
2399 							&head[rx_desc->pool_id],
2400 							&tail[rx_desc->pool_id],
2401 							rx_desc);
2402 			}
2403 			hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
2404 			continue;
2405 		}
2406 
2407 		/*
2408 		 * this is a unlikely scenario where the host is reaping
2409 		 * a descriptor which it already reaped just a while ago
2410 		 * but is yet to replenish it back to HW.
2411 		 * In this case host will dump the last 128 descriptors
2412 		 * including the software descriptor rx_desc and assert.
2413 		 */
2414 
2415 		if (qdf_unlikely(!rx_desc->in_use)) {
2416 			DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
2417 			dp_info_rl("Reaping rx_desc not in use!");
2418 			dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
2419 						   ring_desc, rx_desc);
2420 			/* ignore duplicate RX desc and continue to process */
2421 			/* Pop out the descriptor */
2422 			hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
2423 			continue;
2424 		}
2425 
2426 		status = dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
2427 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
2428 			DP_STATS_INC(soc, rx.err.nbuf_sanity_fail, 1);
2429 			dp_info_rl("Nbuf sanity check failure!");
2430 			dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
2431 						   ring_desc, rx_desc);
2432 			rx_desc->in_err_state = 1;
2433 			hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
2434 			continue;
2435 		}
2436 
2437 		if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
2438 			dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
2439 			DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
2440 			dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
2441 						   ring_desc, rx_desc);
2442 		}
2443 
2444 		/* Get MPDU DESC info */
2445 		hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
2446 
2447 		/* Get MSDU DESC info */
2448 		hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
2449 
2450 		if (qdf_unlikely(msdu_desc_info.msdu_flags &
2451 				 HAL_MSDU_F_MSDU_CONTINUATION)) {
2452 			/* previous msdu has end bit set, so current one is
2453 			 * the new MPDU
2454 			 */
2455 			if (is_prev_msdu_last) {
2456 				/* Get number of entries available in HW ring */
2457 				num_entries_avail =
2458 				hal_srng_dst_num_valid(hal_soc,
2459 						       hal_ring_hdl, 1);
2460 
2461 				/* For new MPDU check if we can read complete
2462 				 * MPDU by comparing the number of buffers
2463 				 * available and number of buffers needed to
2464 				 * reap this MPDU
2465 				 */
2466 				if (((msdu_desc_info.msdu_len /
2467 				     (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
2468 				     1)) > num_entries_avail) {
2469 					DP_STATS_INC(
2470 						soc,
2471 						rx.msdu_scatter_wait_break,
2472 						1);
2473 					break;
2474 				}
2475 				is_prev_msdu_last = false;
2476 			}
2477 
2478 		}
2479 
2480 		core_id = smp_processor_id();
2481 		DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
2482 
2483 		if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
2484 			qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
2485 
2486 		if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
2487 				 HAL_MPDU_F_RAW_AMPDU))
2488 			qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
2489 
2490 		if (!is_prev_msdu_last &&
2491 		    msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
2492 			is_prev_msdu_last = true;
2493 
2494 		/* Pop out the descriptor*/
2495 		hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
2496 
2497 		rx_bufs_reaped[rx_desc->pool_id]++;
2498 		peer_mdata = mpdu_desc_info.peer_meta_data;
2499 		QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
2500 			DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
2501 		QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
2502 			DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
2503 
2504 		/* to indicate whether this msdu is rx offload */
2505 		pkt_capture_offload =
2506 			DP_PEER_METADATA_OFFLOAD_GET(peer_mdata);
2507 
2508 		/*
2509 		 * save msdu flags first, last and continuation msdu in
2510 		 * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
2511 		 * length to nbuf->cb. This ensures the info required for
2512 		 * per pkt processing is always in the same cache line.
2513 		 * This helps in improving throughput for smaller pkt
2514 		 * sizes.
2515 		 */
2516 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
2517 			qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
2518 
2519 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
2520 			qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
2521 
2522 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
2523 			qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
2524 
2525 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
2526 			qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
2527 
2528 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
2529 			qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
2530 
2531 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
2532 			qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
2533 
2534 		qdf_nbuf_set_tid_val(rx_desc->nbuf,
2535 				     HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
2536 		qdf_nbuf_set_rx_reo_dest_ind(
2537 				rx_desc->nbuf,
2538 				HAL_RX_REO_MSDU_REO_DST_IND_GET(ring_desc));
2539 
2540 		QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
2541 
2542 		QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
2543 
2544 		/*
2545 		 * move unmap after scattered msdu waiting break logic
2546 		 * in case double skb unmap happened.
2547 		 */
2548 		rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
2549 		dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
2550 						  rx_desc_pool->buf_size,
2551 						  false);
2552 		qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
2553 					     QDF_DMA_FROM_DEVICE,
2554 					     rx_desc_pool->buf_size);
2555 		rx_desc->unmapped = 1;
2556 		DP_RX_PROCESS_NBUF(soc, nbuf_head, nbuf_tail, ebuf_head,
2557 				   ebuf_tail, rx_desc);
2558 		/*
2559 		 * if continuation bit is set then we have MSDU spread
2560 		 * across multiple buffers, let us not decrement quota
2561 		 * till we reap all buffers of that MSDU.
2562 		 */
2563 		if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
2564 			quota -= 1;
2565 
2566 		dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
2567 						&tail[rx_desc->pool_id],
2568 						rx_desc);
2569 
2570 		num_rx_bufs_reaped++;
2571 		/*
2572 		 * only if complete msdu is received for scatter case,
2573 		 * then allow break.
2574 		 */
2575 		if (is_prev_msdu_last &&
2576 		    dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
2577 			break;
2578 	}
2579 done:
2580 	dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl);
2581 
2582 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
2583 		/*
2584 		 * continue with next mac_id if no pkts were reaped
2585 		 * from that pool
2586 		 */
2587 		if (!rx_bufs_reaped[mac_id])
2588 			continue;
2589 
2590 		dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
2591 
2592 		rx_desc_pool = &soc->rx_desc_buf[mac_id];
2593 
2594 		dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
2595 					rx_desc_pool, rx_bufs_reaped[mac_id],
2596 					&head[mac_id], &tail[mac_id]);
2597 	}
2598 
2599 	dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
2600 	/* Peer can be NULL is case of LFR */
2601 	if (qdf_likely(peer))
2602 		vdev = NULL;
2603 
2604 	/*
2605 	 * BIG loop where each nbuf is dequeued from global queue,
2606 	 * processed and queued back on a per vdev basis. These nbufs
2607 	 * are sent to stack as and when we run out of nbufs
2608 	 * or a new nbuf dequeued from global queue has a different
2609 	 * vdev when compared to previous nbuf.
2610 	 */
2611 	nbuf = nbuf_head;
2612 	while (nbuf) {
2613 		next = nbuf->next;
2614 		if (qdf_unlikely(dp_rx_is_raw_frame_dropped(nbuf))) {
2615 			nbuf = next;
2616 			DP_STATS_INC(soc, rx.err.raw_frm_drop, 1);
2617 			continue;
2618 		}
2619 
2620 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
2621 		vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
2622 		peer_id =  QDF_NBUF_CB_RX_PEER_ID(nbuf);
2623 
2624 		if (dp_rx_is_list_ready(deliver_list_head, vdev, peer,
2625 					peer_id, vdev_id)) {
2626 			dp_rx_deliver_to_stack(soc, vdev, peer,
2627 					       deliver_list_head,
2628 					       deliver_list_tail);
2629 			deliver_list_head = NULL;
2630 			deliver_list_tail = NULL;
2631 		}
2632 
2633 		/* Get TID from struct cb->tid_val, save to tid */
2634 		if (qdf_nbuf_is_rx_chfrag_start(nbuf))
2635 			tid = qdf_nbuf_get_tid_val(nbuf);
2636 
2637 		if (qdf_unlikely(!peer)) {
2638 			peer = dp_peer_get_ref_by_id(soc, peer_id,
2639 						     DP_MOD_ID_RX);
2640 		} else if (peer && peer->peer_id != peer_id) {
2641 			dp_peer_unref_delete(peer, DP_MOD_ID_RX);
2642 			peer = dp_peer_get_ref_by_id(soc, peer_id,
2643 						     DP_MOD_ID_RX);
2644 		}
2645 
2646 		if (peer) {
2647 			QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
2648 			qdf_dp_trace_set_track(nbuf, QDF_RX);
2649 			QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
2650 			QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
2651 				QDF_NBUF_RX_PKT_DATA_TRACK;
2652 		}
2653 
2654 		rx_bufs_used++;
2655 
2656 		if (qdf_likely(peer)) {
2657 			vdev = peer->vdev;
2658 
2659 			/*
2660 			 * In encryption mode, all data packets except
2661 			 * EAPOL frames should be dropped when peer is not
2662 			 * authenticated. Thie feature is enabled for all peers
2663 			 * under this vdev when peer_authorize flag is set.
2664 			 */
2665 			if (qdf_unlikely(vdev->peer_authorize)) {
2666 				if (qdf_unlikely(vdev->sec_type != cdp_sec_type_none)) {
2667 					/*
2668 					 * Allow only EAPOL frames
2669 					 */
2670 					if (qdf_unlikely(!peer->authorize &&
2671 								!qdf_nbuf_is_ipv4_eapol_pkt(nbuf))) {
2672 						qdf_nbuf_free(nbuf);
2673 						nbuf = next;
2674 						DP_STATS_INC(soc, rx.err.peer_unauth_rx_pkt_drop, 1);
2675 						continue;
2676 					}
2677 				}
2678 			}
2679 
2680 		} else {
2681 			nbuf->next = NULL;
2682 			dp_rx_deliver_to_pkt_capture_no_peer(
2683 					soc, nbuf, pkt_capture_offload);
2684 			if (!pkt_capture_offload)
2685 				dp_rx_deliver_to_stack_no_peer(soc, nbuf);
2686 			nbuf = next;
2687 			continue;
2688 		}
2689 
2690 		if (qdf_unlikely(!vdev)) {
2691 			qdf_nbuf_free(nbuf);
2692 			nbuf = next;
2693 			DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
2694 			continue;
2695 		}
2696 
2697 		/* when hlos tid override is enabled, save tid in
2698 		 * skb->priority
2699 		 */
2700 		if (qdf_unlikely(vdev->skip_sw_tid_classification &
2701 					DP_TXRX_HLOS_TID_OVERRIDE_ENABLED))
2702 			qdf_nbuf_set_priority(nbuf, tid);
2703 
2704 		rx_pdev = vdev->pdev;
2705 		DP_RX_TID_SAVE(nbuf, tid);
2706 		if (qdf_unlikely(rx_pdev->delay_stats_flag) ||
2707 		    qdf_unlikely(wlan_cfg_is_peer_ext_stats_enabled(
2708 				 soc->wlan_cfg_ctx)))
2709 			qdf_nbuf_set_timestamp(nbuf);
2710 
2711 		ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
2712 		tid_stats =
2713 			&rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
2714 
2715 		/*
2716 		 * Check if DMA completed -- msdu_done is the last bit
2717 		 * to be written
2718 		 */
2719 		if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
2720 				 !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
2721 			dp_err("MSDU DONE failure");
2722 			DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
2723 			hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
2724 					     QDF_TRACE_LEVEL_INFO);
2725 			tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
2726 			qdf_nbuf_free(nbuf);
2727 			qdf_assert(0);
2728 			nbuf = next;
2729 			continue;
2730 		}
2731 
2732 		DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
2733 		/*
2734 		 * First IF condition:
2735 		 * 802.11 Fragmented pkts are reinjected to REO
2736 		 * HW block as SG pkts and for these pkts we only
2737 		 * need to pull the RX TLVS header length.
2738 		 * Second IF condition:
2739 		 * The below condition happens when an MSDU is spread
2740 		 * across multiple buffers. This can happen in two cases
2741 		 * 1. The nbuf size is smaller then the received msdu.
2742 		 *    ex: we have set the nbuf size to 2048 during
2743 		 *        nbuf_alloc. but we received an msdu which is
2744 		 *        2304 bytes in size then this msdu is spread
2745 		 *        across 2 nbufs.
2746 		 *
2747 		 * 2. AMSDUs when RAW mode is enabled.
2748 		 *    ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
2749 		 *        across 1st nbuf and 2nd nbuf and last MSDU is
2750 		 *        spread across 2nd nbuf and 3rd nbuf.
2751 		 *
2752 		 * for these scenarios let us create a skb frag_list and
2753 		 * append these buffers till the last MSDU of the AMSDU
2754 		 * Third condition:
2755 		 * This is the most likely case, we receive 802.3 pkts
2756 		 * decapsulated by HW, here we need to set the pkt length.
2757 		 */
2758 		hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
2759 		if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
2760 			bool is_mcbc, is_sa_vld, is_da_vld;
2761 
2762 			is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
2763 								 rx_tlv_hdr);
2764 			is_sa_vld =
2765 				hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
2766 								rx_tlv_hdr);
2767 			is_da_vld =
2768 				hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
2769 								rx_tlv_hdr);
2770 
2771 			qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
2772 			qdf_nbuf_set_da_valid(nbuf, is_da_vld);
2773 			qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
2774 
2775 			qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
2776 		} else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
2777 			msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2778 			nbuf = dp_rx_sg_create(soc, nbuf);
2779 			next = nbuf->next;
2780 
2781 			if (qdf_nbuf_is_raw_frame(nbuf)) {
2782 				DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
2783 				DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
2784 			} else {
2785 				qdf_nbuf_free(nbuf);
2786 				DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
2787 				dp_info_rl("scatter msdu len %d, dropped",
2788 					   msdu_len);
2789 				nbuf = next;
2790 				continue;
2791 			}
2792 		} else {
2793 
2794 			msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2795 			pkt_len = msdu_len +
2796 				  msdu_metadata.l3_hdr_pad +
2797 				  RX_PKT_TLVS_LEN;
2798 
2799 			qdf_nbuf_set_pktlen(nbuf, pkt_len);
2800 			dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
2801 		}
2802 
2803 		/*
2804 		 * process frame for mulitpass phrase processing
2805 		 */
2806 		if (qdf_unlikely(vdev->multipass_en)) {
2807 			if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
2808 				DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
2809 				qdf_nbuf_free(nbuf);
2810 				nbuf = next;
2811 				continue;
2812 			}
2813 		}
2814 
2815 		if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
2816 			dp_rx_err("%pK: Policy Check Drop pkt", soc);
2817 			tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
2818 			/* Drop & free packet */
2819 			qdf_nbuf_free(nbuf);
2820 			/* Statistics */
2821 			nbuf = next;
2822 			continue;
2823 		}
2824 
2825 		if (qdf_unlikely(peer && (peer->nawds_enabled) &&
2826 				 (qdf_nbuf_is_da_mcbc(nbuf)) &&
2827 				 (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
2828 								rx_tlv_hdr) ==
2829 				  false))) {
2830 			tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
2831 			DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
2832 			qdf_nbuf_free(nbuf);
2833 			nbuf = next;
2834 			continue;
2835 		}
2836 
2837 		if (soc->process_rx_status)
2838 			dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
2839 
2840 		/* Update the protocol tag in SKB based on CCE metadata */
2841 		dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
2842 					  reo_ring_num, false, true);
2843 
2844 		/* Update the flow tag in SKB based on FSE metadata */
2845 		dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
2846 
2847 		dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
2848 					ring_id, tid_stats);
2849 
2850 		if (qdf_unlikely(vdev->mesh_vdev)) {
2851 			if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
2852 					== QDF_STATUS_SUCCESS) {
2853 				dp_rx_info("%pK: mesh pkt filtered", soc);
2854 				tid_stats->fail_cnt[MESH_FILTER_DROP]++;
2855 				DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
2856 					     1);
2857 
2858 				qdf_nbuf_free(nbuf);
2859 				nbuf = next;
2860 				continue;
2861 			}
2862 			dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
2863 		}
2864 
2865 		if (qdf_likely(vdev->rx_decap_type ==
2866 			       htt_cmn_pkt_type_ethernet) &&
2867 		    qdf_likely(!vdev->mesh_vdev)) {
2868 			/* WDS Destination Address Learning */
2869 			dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
2870 
2871 			/* Due to HW issue, sometimes we see that the sa_idx
2872 			 * and da_idx are invalid with sa_valid and da_valid
2873 			 * bits set
2874 			 *
2875 			 * in this case we also see that value of
2876 			 * sa_sw_peer_id is set as 0
2877 			 *
2878 			 * Drop the packet if sa_idx and da_idx OOB or
2879 			 * sa_sw_peerid is 0
2880 			 */
2881 			if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
2882 						msdu_metadata)) {
2883 				qdf_nbuf_free(nbuf);
2884 				nbuf = next;
2885 				DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
2886 				continue;
2887 			}
2888 			/* WDS Source Port Learning */
2889 			if (qdf_likely(vdev->wds_enabled))
2890 				dp_rx_wds_srcport_learn(soc,
2891 							rx_tlv_hdr,
2892 							peer,
2893 							nbuf,
2894 							msdu_metadata);
2895 
2896 			/* Intrabss-fwd */
2897 			if (dp_rx_check_ap_bridge(vdev))
2898 				if (dp_rx_intrabss_fwd(soc,
2899 							peer,
2900 							rx_tlv_hdr,
2901 							nbuf,
2902 							msdu_metadata)) {
2903 					nbuf = next;
2904 					tid_stats->intrabss_cnt++;
2905 					continue; /* Get next desc */
2906 				}
2907 		}
2908 
2909 		dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
2910 
2911 		dp_rx_update_stats(soc, nbuf);
2912 		DP_RX_LIST_APPEND(deliver_list_head,
2913 				  deliver_list_tail,
2914 				  nbuf);
2915 		DP_STATS_INC_PKT(peer, rx.to_stack, 1,
2916 				 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2917 		if (qdf_unlikely(peer->in_twt))
2918 			DP_STATS_INC_PKT(peer, rx.to_stack_twt, 1,
2919 					 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2920 
2921 		tid_stats->delivered_to_stack++;
2922 		nbuf = next;
2923 	}
2924 
2925 	if (qdf_likely(deliver_list_head)) {
2926 		if (qdf_likely(peer)) {
2927 			dp_rx_deliver_to_pkt_capture(soc, vdev->pdev, peer_id,
2928 						     pkt_capture_offload,
2929 						     deliver_list_head);
2930 			if (!pkt_capture_offload)
2931 				dp_rx_deliver_to_stack(soc, vdev, peer,
2932 						       deliver_list_head,
2933 						       deliver_list_tail);
2934 		}
2935 		else {
2936 			nbuf = deliver_list_head;
2937 			while (nbuf) {
2938 				next = nbuf->next;
2939 				nbuf->next = NULL;
2940 				dp_rx_deliver_to_stack_no_peer(soc, nbuf);
2941 				nbuf = next;
2942 			}
2943 		}
2944 	}
2945 
2946 	if (qdf_likely(peer))
2947 		dp_peer_unref_delete(peer, DP_MOD_ID_RX);
2948 
2949 	if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
2950 		if (quota) {
2951 			num_pending =
2952 				dp_rx_srng_get_num_pending(hal_soc,
2953 							   hal_ring_hdl,
2954 							   num_entries,
2955 							   &near_full);
2956 			if (num_pending) {
2957 				DP_STATS_INC(soc, rx.hp_oos2, 1);
2958 
2959 				if (!hif_exec_should_yield(scn, intr_id))
2960 					goto more_data;
2961 
2962 				if (qdf_unlikely(near_full)) {
2963 					DP_STATS_INC(soc, rx.near_full, 1);
2964 					goto more_data;
2965 				}
2966 			}
2967 		}
2968 
2969 		if (vdev && vdev->osif_fisa_flush)
2970 			vdev->osif_fisa_flush(soc, reo_ring_num);
2971 
2972 		if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
2973 			vdev->osif_gro_flush(vdev->osif_vdev,
2974 					     reo_ring_num);
2975 		}
2976 	}
2977 
2978 	/* Update histogram statistics by looping through pdev's */
2979 	DP_RX_HIST_STATS_PER_PDEV();
2980 
2981 	return rx_bufs_used; /* Assume no scale factor for now */
2982 }
2983 
2984 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
2985 
2986 QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
2987 {
2988 	QDF_STATUS ret;
2989 
2990 	if (vdev->osif_rx_flush) {
2991 		ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
2992 		if (!QDF_IS_STATUS_SUCCESS(ret)) {
2993 			dp_err("Failed to flush rx pkts for vdev %d\n",
2994 			       vdev->vdev_id);
2995 			return ret;
2996 		}
2997 	}
2998 
2999 	return QDF_STATUS_SUCCESS;
3000 }
3001 
3002 static QDF_STATUS
3003 dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
3004 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
3005 			   struct dp_pdev *dp_pdev,
3006 			   struct rx_desc_pool *rx_desc_pool)
3007 {
3008 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
3009 
3010 	(nbuf_frag_info_t->virt_addr).nbuf =
3011 		qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
3012 			       RX_BUFFER_RESERVATION,
3013 			       rx_desc_pool->buf_alignment, FALSE);
3014 	if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
3015 		dp_err("nbuf alloc failed");
3016 		DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
3017 		return ret;
3018 	}
3019 
3020 	ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
3021 					 (nbuf_frag_info_t->virt_addr).nbuf,
3022 					 QDF_DMA_FROM_DEVICE,
3023 					 rx_desc_pool->buf_size);
3024 
3025 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
3026 		qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
3027 		dp_err("nbuf map failed");
3028 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
3029 		return ret;
3030 	}
3031 
3032 	nbuf_frag_info_t->paddr =
3033 		qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
3034 
3035 	ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
3036 			     &nbuf_frag_info_t->paddr,
3037 			     rx_desc_pool);
3038 	if (ret == QDF_STATUS_E_FAILURE) {
3039 		dp_err("nbuf check x86 failed");
3040 		DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
3041 		return ret;
3042 	}
3043 
3044 	return QDF_STATUS_SUCCESS;
3045 }
3046 
3047 QDF_STATUS
3048 dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
3049 			  struct dp_srng *dp_rxdma_srng,
3050 			  struct rx_desc_pool *rx_desc_pool,
3051 			  uint32_t num_req_buffers)
3052 {
3053 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
3054 	hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
3055 	union dp_rx_desc_list_elem_t *next;
3056 	void *rxdma_ring_entry;
3057 	qdf_dma_addr_t paddr;
3058 	struct dp_rx_nbuf_frag_info *nf_info;
3059 	uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
3060 	uint32_t buffer_index, nbuf_ptrs_per_page;
3061 	qdf_nbuf_t nbuf;
3062 	QDF_STATUS ret;
3063 	int page_idx, total_pages;
3064 	union dp_rx_desc_list_elem_t *desc_list = NULL;
3065 	union dp_rx_desc_list_elem_t *tail = NULL;
3066 	int sync_hw_ptr = 1;
3067 	uint32_t num_entries_avail;
3068 
3069 	if (qdf_unlikely(!rxdma_srng)) {
3070 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
3071 		return QDF_STATUS_E_FAILURE;
3072 	}
3073 
3074 	dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
3075 
3076 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
3077 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
3078 						   rxdma_srng,
3079 						   sync_hw_ptr);
3080 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
3081 
3082 	if (!num_entries_avail) {
3083 		dp_err("Num of available entries is zero, nothing to do");
3084 		return QDF_STATUS_E_NOMEM;
3085 	}
3086 
3087 	if (num_entries_avail < num_req_buffers)
3088 		num_req_buffers = num_entries_avail;
3089 
3090 	nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
3091 					    num_req_buffers, &desc_list, &tail);
3092 	if (!nr_descs) {
3093 		dp_err("no free rx_descs in freelist");
3094 		DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
3095 		return QDF_STATUS_E_NOMEM;
3096 	}
3097 
3098 	dp_debug("got %u RX descs for driver attach", nr_descs);
3099 
3100 	/*
3101 	 * Try to allocate pointers to the nbuf one page at a time.
3102 	 * Take pointers that can fit in one page of memory and
3103 	 * iterate through the total descriptors that need to be
3104 	 * allocated in order of pages. Reuse the pointers that
3105 	 * have been allocated to fit in one page across each
3106 	 * iteration to index into the nbuf.
3107 	 */
3108 	total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
3109 
3110 	/*
3111 	 * Add an extra page to store the remainder if any
3112 	 */
3113 	if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
3114 		total_pages++;
3115 	nf_info = qdf_mem_malloc(PAGE_SIZE);
3116 	if (!nf_info) {
3117 		dp_err("failed to allocate nbuf array");
3118 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
3119 		QDF_BUG(0);
3120 		return QDF_STATUS_E_NOMEM;
3121 	}
3122 	nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
3123 
3124 	for (page_idx = 0; page_idx < total_pages; page_idx++) {
3125 		qdf_mem_zero(nf_info, PAGE_SIZE);
3126 
3127 		for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
3128 			/*
3129 			 * The last page of buffer pointers may not be required
3130 			 * completely based on the number of descriptors. Below
3131 			 * check will ensure we are allocating only the
3132 			 * required number of descriptors.
3133 			 */
3134 			if (nr_nbuf_total >= nr_descs)
3135 				break;
3136 			/* Flag is set while pdev rx_desc_pool initialization */
3137 			if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
3138 				ret = dp_pdev_frag_alloc_and_map(dp_soc,
3139 						&nf_info[nr_nbuf], dp_pdev,
3140 						rx_desc_pool);
3141 			else
3142 				ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
3143 						&nf_info[nr_nbuf], dp_pdev,
3144 						rx_desc_pool);
3145 			if (QDF_IS_STATUS_ERROR(ret))
3146 				break;
3147 
3148 			nr_nbuf_total++;
3149 		}
3150 
3151 		hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
3152 
3153 		for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
3154 			rxdma_ring_entry =
3155 				hal_srng_src_get_next(dp_soc->hal_soc,
3156 						      rxdma_srng);
3157 			qdf_assert_always(rxdma_ring_entry);
3158 
3159 			next = desc_list->next;
3160 			paddr = nf_info[buffer_index].paddr;
3161 			nbuf = nf_info[buffer_index].virt_addr.nbuf;
3162 
3163 			/* Flag is set while pdev rx_desc_pool initialization */
3164 			if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
3165 				dp_rx_desc_frag_prep(&desc_list->rx_desc,
3166 						     &nf_info[buffer_index]);
3167 			else
3168 				dp_rx_desc_prep(&desc_list->rx_desc,
3169 						&nf_info[buffer_index]);
3170 			desc_list->rx_desc.in_use = 1;
3171 			dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
3172 			dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
3173 						   __func__,
3174 						   RX_DESC_REPLENISHED);
3175 
3176 			hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
3177 						     desc_list->rx_desc.cookie,
3178 						     rx_desc_pool->owner);
3179 			dp_ipa_handle_rx_buf_smmu_mapping(
3180 						dp_soc, nbuf,
3181 						rx_desc_pool->buf_size,
3182 						true);
3183 
3184 			desc_list = next;
3185 		}
3186 
3187 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
3188 	}
3189 
3190 	dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
3191 	qdf_mem_free(nf_info);
3192 
3193 	if (!nr_nbuf_total) {
3194 		dp_err("No nbuf's allocated");
3195 		QDF_BUG(0);
3196 		return QDF_STATUS_E_RESOURCES;
3197 	}
3198 
3199 	/* No need to count the number of bytes received during replenish.
3200 	 * Therefore set replenish.pkts.bytes as 0.
3201 	 */
3202 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
3203 
3204 	return QDF_STATUS_SUCCESS;
3205 }
3206 
3207 /**
3208  * dp_rx_enable_mon_dest_frag() - Enable frag processing for
3209  *              monitor destination ring via frag.
3210  *
3211  * Enable this flag only for monitor destination buffer processing
3212  * if DP_RX_MON_MEM_FRAG feature is enabled.
3213  * If flag is set then frag based function will be called for alloc,
3214  * map, prep desc and free ops for desc buffer else normal nbuf based
3215  * function will be called.
3216  *
3217  * @rx_desc_pool: Rx desc pool
3218  * @is_mon_dest_desc: Is it for monitor dest buffer
3219  *
3220  * Return: None
3221  */
3222 #ifdef DP_RX_MON_MEM_FRAG
3223 void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
3224 				bool is_mon_dest_desc)
3225 {
3226 	rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
3227 	if (is_mon_dest_desc)
3228 		dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
3229 }
3230 #else
3231 void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
3232 				bool is_mon_dest_desc)
3233 {
3234 	rx_desc_pool->rx_mon_dest_frag_enable = false;
3235 	if (is_mon_dest_desc)
3236 		dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
3237 }
3238 #endif
3239 
3240 /*
3241  * dp_rx_pdev_desc_pool_alloc() -  allocate memory for software rx descriptor
3242  *				   pool
3243  *
3244  * @pdev: core txrx pdev context
3245  *
3246  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3247  *			QDF_STATUS_E_NOMEM
3248  */
3249 QDF_STATUS
3250 dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
3251 {
3252 	struct dp_soc *soc = pdev->soc;
3253 	uint32_t rxdma_entries;
3254 	uint32_t rx_sw_desc_num;
3255 	struct dp_srng *dp_rxdma_srng;
3256 	struct rx_desc_pool *rx_desc_pool;
3257 	uint32_t status = QDF_STATUS_SUCCESS;
3258 	int mac_for_pdev;
3259 
3260 	mac_for_pdev = pdev->lmac_id;
3261 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
3262 		dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
3263 			   soc, mac_for_pdev);
3264 		return status;
3265 	}
3266 
3267 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3268 	rxdma_entries = dp_rxdma_srng->num_entries;
3269 
3270 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3271 	rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
3272 
3273 	rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
3274 	status = dp_rx_desc_pool_alloc(soc,
3275 				       rx_sw_desc_num,
3276 				       rx_desc_pool);
3277 	if (status != QDF_STATUS_SUCCESS)
3278 		return status;
3279 
3280 	return status;
3281 }
3282 
3283 /*
3284  * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
3285  *
3286  * @pdev: core txrx pdev context
3287  */
3288 void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
3289 {
3290 	int mac_for_pdev = pdev->lmac_id;
3291 	struct dp_soc *soc = pdev->soc;
3292 	struct rx_desc_pool *rx_desc_pool;
3293 
3294 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3295 
3296 	dp_rx_desc_pool_free(soc, rx_desc_pool);
3297 }
3298 
3299 /*
3300  * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
3301  *
3302  * @pdev: core txrx pdev context
3303  *
3304  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3305  *			QDF_STATUS_E_NOMEM
3306  */
3307 QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
3308 {
3309 	int mac_for_pdev = pdev->lmac_id;
3310 	struct dp_soc *soc = pdev->soc;
3311 	uint32_t rxdma_entries;
3312 	uint32_t rx_sw_desc_num;
3313 	struct dp_srng *dp_rxdma_srng;
3314 	struct rx_desc_pool *rx_desc_pool;
3315 
3316 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
3317 		/**
3318 		 * If NSS is enabled, rx_desc_pool is already filled.
3319 		 * Hence, just disable desc_pool frag flag.
3320 		 */
3321 		rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3322 		dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
3323 
3324 		dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
3325 			   soc, mac_for_pdev);
3326 		return QDF_STATUS_SUCCESS;
3327 	}
3328 
3329 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3330 	if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
3331 		return QDF_STATUS_E_NOMEM;
3332 
3333 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3334 	rxdma_entries = dp_rxdma_srng->num_entries;
3335 
3336 	soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
3337 
3338 	rx_sw_desc_num =
3339 	wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
3340 
3341 	rx_desc_pool->owner = DP_WBM2SW_RBM;
3342 	rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
3343 	rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
3344 	/* Disable monitor dest processing via frag */
3345 	dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
3346 
3347 	dp_rx_desc_pool_init(soc, mac_for_pdev,
3348 			     rx_sw_desc_num, rx_desc_pool);
3349 	return QDF_STATUS_SUCCESS;
3350 }
3351 
3352 /*
3353  * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
3354  * @pdev: core txrx pdev context
3355  *
3356  * This function resets the freelist of rx descriptors and destroys locks
3357  * associated with this list of descriptors.
3358  */
3359 void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
3360 {
3361 	int mac_for_pdev = pdev->lmac_id;
3362 	struct dp_soc *soc = pdev->soc;
3363 	struct rx_desc_pool *rx_desc_pool;
3364 
3365 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3366 
3367 	dp_rx_desc_pool_deinit(soc, rx_desc_pool);
3368 }
3369 
3370 /*
3371  * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
3372  *
3373  * @pdev: core txrx pdev context
3374  *
3375  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3376  *			QDF_STATUS_E_NOMEM
3377  */
3378 QDF_STATUS
3379 dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
3380 {
3381 	int mac_for_pdev = pdev->lmac_id;
3382 	struct dp_soc *soc = pdev->soc;
3383 	struct dp_srng *dp_rxdma_srng;
3384 	struct rx_desc_pool *rx_desc_pool;
3385 	uint32_t rxdma_entries;
3386 
3387 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3388 	rxdma_entries = dp_rxdma_srng->num_entries;
3389 
3390 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3391 
3392 	/* Initialize RX buffer pool which will be
3393 	 * used during low memory conditions
3394 	 */
3395 	dp_rx_buffer_pool_init(soc, mac_for_pdev);
3396 
3397 	return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
3398 					 rx_desc_pool, rxdma_entries - 1);
3399 }
3400 
3401 /*
3402  * dp_rx_pdev_buffers_free - Free nbufs (skbs)
3403  *
3404  * @pdev: core txrx pdev context
3405  */
3406 void
3407 dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
3408 {
3409 	int mac_for_pdev = pdev->lmac_id;
3410 	struct dp_soc *soc = pdev->soc;
3411 	struct rx_desc_pool *rx_desc_pool;
3412 
3413 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3414 
3415 	dp_rx_desc_nbuf_free(soc, rx_desc_pool);
3416 	dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
3417 }
3418 
3419 #ifdef DP_RX_SPECIAL_FRAME_NEED
3420 bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
3421 				 qdf_nbuf_t nbuf, uint32_t frame_mask,
3422 				 uint8_t *rx_tlv_hdr)
3423 {
3424 	uint32_t l2_hdr_offset = 0;
3425 	uint16_t msdu_len = 0;
3426 	uint32_t skip_len;
3427 
3428 	l2_hdr_offset =
3429 		hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
3430 
3431 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
3432 		skip_len = l2_hdr_offset;
3433 	} else {
3434 		msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
3435 		skip_len = l2_hdr_offset + RX_PKT_TLVS_LEN;
3436 		qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
3437 	}
3438 
3439 	QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
3440 	dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
3441 	qdf_nbuf_pull_head(nbuf, skip_len);
3442 
3443 	if (dp_rx_is_special_frame(nbuf, frame_mask)) {
3444 		qdf_nbuf_set_exc_frame(nbuf, 1);
3445 		dp_rx_deliver_to_stack(soc, peer->vdev, peer,
3446 				       nbuf, NULL);
3447 		return true;
3448 	}
3449 
3450 	return false;
3451 }
3452 #endif
3453