xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.c (revision dd4dc88b837a295134aa9869114a2efee0f4894b)
1 /*
2  * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "dp_types.h"
21 #include "dp_rx.h"
22 #include "dp_peer.h"
23 #include "hal_rx.h"
24 #include "hal_api.h"
25 #include "qdf_nbuf.h"
26 #ifdef MESH_MODE_SUPPORT
27 #include "if_meta_hdr.h"
28 #endif
29 #include "dp_internal.h"
30 #include "dp_rx_mon.h"
31 #include "dp_ipa.h"
32 
33 #ifdef ATH_RX_PRI_SAVE
34 #define DP_RX_TID_SAVE(_nbuf, _tid) \
35 	(qdf_nbuf_set_priority(_nbuf, _tid))
36 #else
37 #define DP_RX_TID_SAVE(_nbuf, _tid)
38 #endif
39 
40 #ifdef CONFIG_MCL
41 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
42 {
43 	if (vdev->opmode != wlan_op_mode_sta)
44 		return true;
45 	else
46 		return false;
47 }
48 #else
49 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
50 {
51 	return vdev->ap_bridge_enabled;
52 }
53 #endif
54 
55 /*
56  * dp_rx_dump_info_and_assert() - dump RX Ring info and Rx Desc info
57  *
58  * @soc: core txrx main context
59  * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
60  * @ring_desc: opaque pointer to the RX ring descriptor
61  * @rx_desc: host rs descriptor
62  *
63  * Return: void
64  */
65 void dp_rx_dump_info_and_assert(struct dp_soc *soc, void *hal_ring,
66 				void *ring_desc, struct dp_rx_desc *rx_desc)
67 {
68 	void *hal_soc = soc->hal_soc;
69 
70 	dp_rx_desc_dump(rx_desc);
71 	hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
72 	hal_srng_dump_ring(hal_soc, hal_ring);
73 	qdf_assert_always(0);
74 }
75 
76 /*
77  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
78  *			       called during dp rx initialization
79  *			       and at the end of dp_rx_process.
80  *
81  * @soc: core txrx main context
82  * @mac_id: mac_id which is one of 3 mac_ids
83  * @dp_rxdma_srng: dp rxdma circular ring
84  * @rx_desc_pool: Pointer to free Rx descriptor pool
85  * @num_req_buffers: number of buffer to be replenished
86  * @desc_list: list of descs if called from dp_rx_process
87  *	       or NULL during dp rx initialization or out of buffer
88  *	       interrupt.
89  * @tail: tail of descs list
90  * Return: return success or failure
91  */
92 QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
93 				struct dp_srng *dp_rxdma_srng,
94 				struct rx_desc_pool *rx_desc_pool,
95 				uint32_t num_req_buffers,
96 				union dp_rx_desc_list_elem_t **desc_list,
97 				union dp_rx_desc_list_elem_t **tail)
98 {
99 	uint32_t num_alloc_desc;
100 	uint16_t num_desc_to_free = 0;
101 	struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
102 	uint32_t num_entries_avail;
103 	uint32_t count;
104 	int sync_hw_ptr = 1;
105 	qdf_dma_addr_t paddr;
106 	qdf_nbuf_t rx_netbuf;
107 	void *rxdma_ring_entry;
108 	union dp_rx_desc_list_elem_t *next;
109 	QDF_STATUS ret;
110 
111 	void *rxdma_srng;
112 
113 	rxdma_srng = dp_rxdma_srng->hal_srng;
114 
115 	if (!rxdma_srng) {
116 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
117 				  "rxdma srng not initialized");
118 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
119 		return QDF_STATUS_E_FAILURE;
120 	}
121 
122 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
123 		"requested %d buffers for replenish", num_req_buffers);
124 
125 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
126 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
127 						   rxdma_srng,
128 						   sync_hw_ptr);
129 
130 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
131 		"no of available entries in rxdma ring: %d",
132 		num_entries_avail);
133 
134 	if (!(*desc_list) && (num_entries_avail >
135 		((dp_rxdma_srng->num_entries * 3) / 4))) {
136 		num_req_buffers = num_entries_avail;
137 	} else if (num_entries_avail < num_req_buffers) {
138 		num_desc_to_free = num_req_buffers - num_entries_avail;
139 		num_req_buffers = num_entries_avail;
140 	}
141 
142 	if (qdf_unlikely(!num_req_buffers)) {
143 		num_desc_to_free = num_req_buffers;
144 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
145 		goto free_descs;
146 	}
147 
148 	/*
149 	 * if desc_list is NULL, allocate the descs from freelist
150 	 */
151 	if (!(*desc_list)) {
152 		num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
153 							  rx_desc_pool,
154 							  num_req_buffers,
155 							  desc_list,
156 							  tail);
157 
158 		if (!num_alloc_desc) {
159 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
160 				"no free rx_descs in freelist");
161 			DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
162 					num_req_buffers);
163 			hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
164 			return QDF_STATUS_E_NOMEM;
165 		}
166 
167 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
168 			"%d rx desc allocated", num_alloc_desc);
169 		num_req_buffers = num_alloc_desc;
170 	}
171 
172 
173 	count = 0;
174 
175 	while (count < num_req_buffers) {
176 		rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
177 					RX_BUFFER_SIZE,
178 					RX_BUFFER_RESERVATION,
179 					RX_BUFFER_ALIGNMENT,
180 					FALSE);
181 
182 		if (qdf_unlikely(!rx_netbuf)) {
183 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
184 			continue;
185 		}
186 
187 		ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
188 					  QDF_DMA_FROM_DEVICE);
189 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
190 			qdf_nbuf_free(rx_netbuf);
191 			DP_STATS_INC(dp_pdev, replenish.map_err, 1);
192 			continue;
193 		}
194 
195 		paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
196 
197 		/*
198 		 * check if the physical address of nbuf->data is
199 		 * less then 0x50000000 then free the nbuf and try
200 		 * allocating new nbuf. We can try for 100 times.
201 		 * this is a temp WAR till we fix it properly.
202 		 */
203 		ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
204 		if (ret == QDF_STATUS_E_FAILURE) {
205 			DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
206 			break;
207 		}
208 
209 		count++;
210 
211 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
212 							 rxdma_srng);
213 		qdf_assert_always(rxdma_ring_entry);
214 
215 		next = (*desc_list)->next;
216 
217 		dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
218 
219 		/* rx_desc.in_use should be zero at this time*/
220 		qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
221 
222 		(*desc_list)->rx_desc.in_use = 1;
223 
224 		dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
225 				 rx_netbuf, qdf_nbuf_data(rx_netbuf),
226 				 (unsigned long long)paddr,
227 				 (*desc_list)->rx_desc.cookie);
228 
229 		hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
230 						(*desc_list)->rx_desc.cookie,
231 						rx_desc_pool->owner);
232 
233 		*desc_list = next;
234 
235 		dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true);
236 	}
237 
238 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
239 
240 	dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
241 			 num_req_buffers, num_desc_to_free);
242 
243 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
244 			(RX_BUFFER_SIZE * num_req_buffers));
245 
246 free_descs:
247 	DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
248 	/*
249 	 * add any available free desc back to the free list
250 	 */
251 	if (*desc_list)
252 		dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
253 			mac_id, rx_desc_pool);
254 
255 	return QDF_STATUS_SUCCESS;
256 }
257 
258 /*
259  * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
260  *				pkts to RAW mode simulation to
261  *				decapsulate the pkt.
262  *
263  * @vdev: vdev on which RAW mode is enabled
264  * @nbuf_list: list of RAW pkts to process
265  * @peer: peer object from which the pkt is rx
266  *
267  * Return: void
268  */
269 void
270 dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
271 					struct dp_peer *peer)
272 {
273 	qdf_nbuf_t deliver_list_head = NULL;
274 	qdf_nbuf_t deliver_list_tail = NULL;
275 	qdf_nbuf_t nbuf;
276 
277 	nbuf = nbuf_list;
278 	while (nbuf) {
279 		qdf_nbuf_t next = qdf_nbuf_next(nbuf);
280 
281 		DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
282 
283 		DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
284 		DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
285 		/*
286 		 * reset the chfrag_start and chfrag_end bits in nbuf cb
287 		 * as this is a non-amsdu pkt and RAW mode simulation expects
288 		 * these bit s to be 0 for non-amsdu pkt.
289 		 */
290 		if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
291 			 qdf_nbuf_is_rx_chfrag_end(nbuf)) {
292 			qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
293 			qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
294 		}
295 
296 		nbuf = next;
297 	}
298 
299 	vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
300 				 &deliver_list_tail, (struct cdp_peer*) peer);
301 
302 	vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
303 }
304 
305 
306 #ifdef DP_LFR
307 /*
308  * In case of LFR, data of a new peer might be sent up
309  * even before peer is added.
310  */
311 static inline struct dp_vdev *
312 dp_get_vdev_from_peer(struct dp_soc *soc,
313 			uint16_t peer_id,
314 			struct dp_peer *peer,
315 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
316 {
317 	struct dp_vdev *vdev;
318 	uint8_t vdev_id;
319 
320 	if (unlikely(!peer)) {
321 		if (peer_id != HTT_INVALID_PEER) {
322 			vdev_id = DP_PEER_METADATA_ID_GET(
323 					mpdu_desc_info.peer_meta_data);
324 			QDF_TRACE(QDF_MODULE_ID_DP,
325 				QDF_TRACE_LEVEL_DEBUG,
326 				FL("PeerID %d not found use vdevID %d"),
327 				peer_id, vdev_id);
328 			vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
329 							vdev_id);
330 		} else {
331 			QDF_TRACE(QDF_MODULE_ID_DP,
332 				QDF_TRACE_LEVEL_DEBUG,
333 				FL("Invalid PeerID %d"),
334 				peer_id);
335 			return NULL;
336 		}
337 	} else {
338 		vdev = peer->vdev;
339 	}
340 	return vdev;
341 }
342 #else
343 static inline struct dp_vdev *
344 dp_get_vdev_from_peer(struct dp_soc *soc,
345 			uint16_t peer_id,
346 			struct dp_peer *peer,
347 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
348 {
349 	if (unlikely(!peer)) {
350 		QDF_TRACE(QDF_MODULE_ID_DP,
351 			QDF_TRACE_LEVEL_DEBUG,
352 			FL("Peer not found for peerID %d"),
353 			peer_id);
354 		return NULL;
355 	} else {
356 		return peer->vdev;
357 	}
358 }
359 #endif
360 
361 /**
362  * dp_rx_da_learn() - Add AST entry based on DA lookup
363  *			This is a WAR for HK 1.0 and will
364  *			be removed in HK 2.0
365  *
366  * @soc: core txrx main context
367  * @rx_tlv_hdr	: start address of rx tlvs
368  * @ta_peer	: Transmitter peer entry
369  * @nbuf	: nbuf to retrieve destination mac for which AST will be added
370  *
371  */
372 #ifdef FEATURE_WDS
373 static void
374 dp_rx_da_learn(struct dp_soc *soc,
375 	       uint8_t *rx_tlv_hdr,
376 	       struct dp_peer *ta_peer,
377 	       qdf_nbuf_t nbuf)
378 {
379 	/* For HKv2 DA port learing is not needed */
380 	if (qdf_likely(soc->ast_override_support))
381 		return;
382 
383 	if (qdf_unlikely(!ta_peer))
384 		return;
385 
386 	if (qdf_unlikely(ta_peer->vdev->opmode != wlan_op_mode_ap))
387 		return;
388 
389 	if (!soc->da_war_enabled)
390 		return;
391 
392 	if (qdf_unlikely(!qdf_nbuf_is_da_valid(nbuf) &&
393 			 !qdf_nbuf_is_da_mcbc(nbuf))) {
394 		dp_peer_add_ast(soc,
395 				ta_peer,
396 				qdf_nbuf_data(nbuf),
397 				CDP_TXRX_AST_TYPE_DA,
398 				IEEE80211_NODE_F_WDS_HM);
399 	}
400 }
401 #else
402 static void
403 dp_rx_da_learn(struct dp_soc *soc,
404 	       uint8_t *rx_tlv_hdr,
405 	       struct dp_peer *ta_peer,
406 	       qdf_nbuf_t nbuf)
407 {
408 }
409 #endif
410 
411 /**
412  * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
413  *
414  * @soc: core txrx main context
415  * @ta_peer	: source peer entry
416  * @rx_tlv_hdr	: start address of rx tlvs
417  * @nbuf	: nbuf that has to be intrabss forwarded
418  *
419  * Return: bool: true if it is forwarded else false
420  */
421 static bool
422 dp_rx_intrabss_fwd(struct dp_soc *soc,
423 			struct dp_peer *ta_peer,
424 			uint8_t *rx_tlv_hdr,
425 			qdf_nbuf_t nbuf)
426 {
427 	uint16_t da_idx;
428 	uint16_t len;
429 	uint8_t is_frag;
430 	struct dp_peer *da_peer;
431 	struct dp_ast_entry *ast_entry;
432 	qdf_nbuf_t nbuf_copy;
433 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
434 	struct cdp_tid_rx_stats *tid_stats =
435 		&ta_peer->vdev->pdev->stats.tid_stats.tid_rx_stats[tid];
436 
437 	/* check if the destination peer is available in peer table
438 	 * and also check if the source peer and destination peer
439 	 * belong to the same vap and destination peer is not bss peer.
440 	 */
441 
442 	if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
443 		da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
444 
445 		ast_entry = soc->ast_table[da_idx];
446 		if (!ast_entry)
447 			return false;
448 
449 		if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
450 			ast_entry->is_active = TRUE;
451 			return false;
452 		}
453 
454 		da_peer = ast_entry->peer;
455 
456 		if (!da_peer)
457 			return false;
458 		/* TA peer cannot be same as peer(DA) on which AST is present
459 		 * this indicates a change in topology and that AST entries
460 		 * are yet to be updated.
461 		 */
462 		if (da_peer == ta_peer)
463 			return false;
464 
465 		if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
466 			len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
467 			is_frag = qdf_nbuf_is_frag(nbuf);
468 			memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
469 
470 			/* linearize the nbuf just before we send to
471 			 * dp_tx_send()
472 			 */
473 			if (qdf_unlikely(is_frag)) {
474 				if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
475 					return false;
476 
477 				nbuf = qdf_nbuf_unshare(nbuf);
478 				if (!nbuf) {
479 					DP_STATS_INC_PKT(ta_peer,
480 							 rx.intra_bss.fail,
481 							 1,
482 							 len);
483 					/* return true even though the pkt is
484 					 * not forwarded. Basically skb_unshare
485 					 * failed and we want to continue with
486 					 * next nbuf.
487 					 */
488 					tid_stats->fail_cnt[INTRABSS_DROP]++;
489 					return true;
490 				}
491 			}
492 
493 			if (!dp_tx_send(ta_peer->vdev, nbuf)) {
494 				DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
495 						 len);
496 				return true;
497 			} else {
498 				DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
499 						len);
500 				tid_stats->fail_cnt[INTRABSS_DROP]++;
501 				return false;
502 			}
503 		}
504 	}
505 	/* if it is a broadcast pkt (eg: ARP) and it is not its own
506 	 * source, then clone the pkt and send the cloned pkt for
507 	 * intra BSS forwarding and original pkt up the network stack
508 	 * Note: how do we handle multicast pkts. do we forward
509 	 * all multicast pkts as is or let a higher layer module
510 	 * like igmpsnoop decide whether to forward or not with
511 	 * Mcast enhancement.
512 	 */
513 	else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
514 			       !ta_peer->bss_peer))) {
515 		nbuf_copy = qdf_nbuf_copy(nbuf);
516 		if (!nbuf_copy)
517 			return false;
518 
519 		len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
520 		memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
521 
522 		if (dp_tx_send(ta_peer->vdev, nbuf_copy)) {
523 			DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
524 			tid_stats->fail_cnt[INTRABSS_DROP]++;
525 			qdf_nbuf_free(nbuf_copy);
526 		} else {
527 			DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
528 			tid_stats->intrabss_cnt++;
529 		}
530 	}
531 	/* return false as we have to still send the original pkt
532 	 * up the stack
533 	 */
534 	return false;
535 }
536 
537 #ifdef MESH_MODE_SUPPORT
538 
539 /**
540  * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
541  *
542  * @vdev: DP Virtual device handle
543  * @nbuf: Buffer pointer
544  * @rx_tlv_hdr: start of rx tlv header
545  * @peer: pointer to peer
546  *
547  * This function allocated memory for mesh receive stats and fill the
548  * required stats. Stores the memory address in skb cb.
549  *
550  * Return: void
551  */
552 
553 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
554 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
555 {
556 	struct mesh_recv_hdr_s *rx_info = NULL;
557 	uint32_t pkt_type;
558 	uint32_t nss;
559 	uint32_t rate_mcs;
560 	uint32_t bw;
561 
562 	/* fill recv mesh stats */
563 	rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
564 
565 	/* upper layers are resposible to free this memory */
566 
567 	if (!rx_info) {
568 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
569 			"Memory allocation failed for mesh rx stats");
570 		DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
571 		return;
572 	}
573 
574 	rx_info->rs_flags = MESH_RXHDR_VER1;
575 	if (qdf_nbuf_is_rx_chfrag_start(nbuf))
576 		rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
577 
578 	if (qdf_nbuf_is_rx_chfrag_end(nbuf))
579 		rx_info->rs_flags |= MESH_RX_LAST_MSDU;
580 
581 	if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
582 		rx_info->rs_flags |= MESH_RX_DECRYPTED;
583 		rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
584 		if (vdev->osif_get_key)
585 			vdev->osif_get_key(vdev->osif_vdev,
586 					&rx_info->rs_decryptkey[0],
587 					&peer->mac_addr.raw[0],
588 					rx_info->rs_keyix);
589 	}
590 
591 	rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
592 	rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
593 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
594 	rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
595 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
596 	nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
597 	rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
598 				(bw << 24);
599 
600 	qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
601 
602 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
603 		FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
604 						rx_info->rs_flags,
605 						rx_info->rs_rssi,
606 						rx_info->rs_channel,
607 						rx_info->rs_ratephy1,
608 						rx_info->rs_keyix);
609 
610 }
611 
612 /**
613  * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
614  *
615  * @vdev: DP Virtual device handle
616  * @nbuf: Buffer pointer
617  * @rx_tlv_hdr: start of rx tlv header
618  *
619  * This checks if the received packet is matching any filter out
620  * catogery and and drop the packet if it matches.
621  *
622  * Return: status(0 indicates drop, 1 indicate to no drop)
623  */
624 
625 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
626 					uint8_t *rx_tlv_hdr)
627 {
628 	union dp_align_mac_addr mac_addr;
629 
630 	if (qdf_unlikely(vdev->mesh_rx_filter)) {
631 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
632 			if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
633 				return  QDF_STATUS_SUCCESS;
634 
635 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
636 			if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
637 				return  QDF_STATUS_SUCCESS;
638 
639 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
640 			if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
641 				&& !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
642 				return  QDF_STATUS_SUCCESS;
643 
644 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
645 			if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
646 					&mac_addr.raw[0]))
647 				return QDF_STATUS_E_FAILURE;
648 
649 			if (!qdf_mem_cmp(&mac_addr.raw[0],
650 					&vdev->mac_addr.raw[0],
651 					QDF_MAC_ADDR_SIZE))
652 				return  QDF_STATUS_SUCCESS;
653 		}
654 
655 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
656 			if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
657 					&mac_addr.raw[0]))
658 				return QDF_STATUS_E_FAILURE;
659 
660 			if (!qdf_mem_cmp(&mac_addr.raw[0],
661 					&vdev->mac_addr.raw[0],
662 					QDF_MAC_ADDR_SIZE))
663 				return  QDF_STATUS_SUCCESS;
664 		}
665 	}
666 
667 	return QDF_STATUS_E_FAILURE;
668 }
669 
670 #else
671 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
672 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
673 {
674 }
675 
676 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
677 					uint8_t *rx_tlv_hdr)
678 {
679 	return QDF_STATUS_E_FAILURE;
680 }
681 
682 #endif
683 
684 #ifdef FEATURE_NAC_RSSI
685 /**
686  * dp_rx_nac_filter(): Function to perform filtering of non-associated
687  * clients
688  * @pdev: DP pdev handle
689  * @rx_pkt_hdr: Rx packet Header
690  *
691  * return: dp_vdev*
692  */
693 static
694 struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
695 		uint8_t *rx_pkt_hdr)
696 {
697 	struct ieee80211_frame *wh;
698 	struct dp_neighbour_peer *peer = NULL;
699 
700 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
701 
702 	if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
703 		return NULL;
704 
705 	qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
706 	TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
707 				neighbour_peer_list_elem) {
708 		if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
709 				wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
710 			QDF_TRACE(
711 				QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
712 				FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
713 				peer->neighbour_peers_macaddr.raw[0],
714 				peer->neighbour_peers_macaddr.raw[1],
715 				peer->neighbour_peers_macaddr.raw[2],
716 				peer->neighbour_peers_macaddr.raw[3],
717 				peer->neighbour_peers_macaddr.raw[4],
718 				peer->neighbour_peers_macaddr.raw[5]);
719 
720 				qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
721 
722 			return pdev->monitor_vdev;
723 		}
724 	}
725 	qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
726 
727 	return NULL;
728 }
729 
730 /**
731  * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
732  * @soc: DP SOC handle
733  * @mpdu: mpdu for which peer is invalid
734  *
735  * return: integer type
736  */
737 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
738 {
739 	struct dp_invalid_peer_msg msg;
740 	struct dp_vdev *vdev = NULL;
741 	struct dp_pdev *pdev = NULL;
742 	struct ieee80211_frame *wh;
743 	uint8_t i;
744 	qdf_nbuf_t curr_nbuf, next_nbuf;
745 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
746 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
747 
748 	if (!HAL_IS_DECAP_FORMAT_RAW(rx_tlv_hdr)) {
749 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
750 			  "Drop decapped frames");
751 		goto free;
752 	}
753 
754 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
755 
756 	if (!DP_FRAME_IS_DATA(wh)) {
757 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
758 				"NAWDS valid only for data frames");
759 		goto free;
760 	}
761 
762 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
763 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
764 				"Invalid nbuf length");
765 		goto free;
766 	}
767 
768 
769 	for (i = 0; i < MAX_PDEV_CNT; i++) {
770 		pdev = soc->pdev_list[i];
771 		if (!pdev) {
772 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
773 					"PDEV not found");
774 			continue;
775 		}
776 
777 		if (pdev->filter_neighbour_peers) {
778 			/* Next Hop scenario not yet handle */
779 			vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
780 			if (vdev) {
781 				dp_rx_mon_deliver(soc, i,
782 						pdev->invalid_peer_head_msdu,
783 						pdev->invalid_peer_tail_msdu);
784 
785 				pdev->invalid_peer_head_msdu = NULL;
786 				pdev->invalid_peer_tail_msdu = NULL;
787 
788 				return 0;
789 			}
790 		}
791 
792 
793 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
794 
795 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
796 						QDF_MAC_ADDR_SIZE) == 0) {
797 				goto out;
798 			}
799 		}
800 	}
801 
802 	if (!vdev) {
803 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
804 				"VDEV not found");
805 		goto free;
806 	}
807 
808 out:
809 	msg.wh = wh;
810 	qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
811 	msg.nbuf = mpdu;
812 	msg.vdev_id = vdev->vdev_id;
813 	if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
814 		pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
815 							&msg);
816 
817 free:
818 	/* Drop and free packet */
819 	curr_nbuf = mpdu;
820 	while (curr_nbuf) {
821 		next_nbuf = qdf_nbuf_next(curr_nbuf);
822 		qdf_nbuf_free(curr_nbuf);
823 		curr_nbuf = next_nbuf;
824 	}
825 
826 	return 0;
827 }
828 
829 /**
830  * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
831  * @soc: DP SOC handle
832  * @mpdu: mpdu for which peer is invalid
833  * @mpdu_done: if an mpdu is completed
834  *
835  * return: integer type
836  */
837 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
838 					qdf_nbuf_t mpdu, bool mpdu_done)
839 {
840 	/* Only trigger the process when mpdu is completed */
841 	if (mpdu_done)
842 		dp_rx_process_invalid_peer(soc, mpdu);
843 }
844 #else
845 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
846 {
847 	qdf_nbuf_t curr_nbuf, next_nbuf;
848 	struct dp_pdev *pdev;
849 	uint8_t i;
850 	struct dp_vdev *vdev = NULL;
851 	struct ieee80211_frame *wh;
852 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
853 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
854 
855 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
856 
857 	if (!DP_FRAME_IS_DATA(wh)) {
858 		QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
859 				   "only for data frames");
860 		goto free;
861 	}
862 
863 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
864 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
865 			  "Invalid nbuf length");
866 		goto free;
867 	}
868 
869 	for (i = 0; i < MAX_PDEV_CNT; i++) {
870 		pdev = soc->pdev_list[i];
871 		if (!pdev) {
872 			QDF_TRACE(QDF_MODULE_ID_DP,
873 				  QDF_TRACE_LEVEL_ERROR,
874 				  "PDEV not found");
875 			continue;
876 		}
877 
878 		qdf_spin_lock_bh(&pdev->vdev_list_lock);
879 		DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
880 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
881 					QDF_MAC_ADDR_SIZE) == 0) {
882 				qdf_spin_unlock_bh(&pdev->vdev_list_lock);
883 				goto out;
884 			}
885 		}
886 		qdf_spin_unlock_bh(&pdev->vdev_list_lock);
887 	}
888 
889 	if (!vdev) {
890 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
891 			  "VDEV not found");
892 		goto free;
893 	}
894 
895 out:
896 	if (soc->cdp_soc.ol_ops->rx_invalid_peer)
897 		soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
898 free:
899 	/* reset the head and tail pointers */
900 	for (i = 0; i < MAX_PDEV_CNT; i++) {
901 		pdev = soc->pdev_list[i];
902 		if (!pdev) {
903 			QDF_TRACE(QDF_MODULE_ID_DP,
904 				  QDF_TRACE_LEVEL_ERROR,
905 				  "PDEV not found");
906 			continue;
907 		}
908 
909 		pdev->invalid_peer_head_msdu = NULL;
910 		pdev->invalid_peer_tail_msdu = NULL;
911 	}
912 
913 	/* Drop and free packet */
914 	curr_nbuf = mpdu;
915 	while (curr_nbuf) {
916 		next_nbuf = qdf_nbuf_next(curr_nbuf);
917 		qdf_nbuf_free(curr_nbuf);
918 		curr_nbuf = next_nbuf;
919 	}
920 
921 	return 0;
922 }
923 
924 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
925 					qdf_nbuf_t mpdu, bool mpdu_done)
926 {
927 	/* Process the nbuf */
928 	dp_rx_process_invalid_peer(soc, mpdu);
929 }
930 #endif
931 
932 #ifdef RECEIVE_OFFLOAD
933 /**
934  * dp_rx_print_offload_info() - Print offload info from RX TLV
935  * @rx_tlv: RX TLV for which offload information is to be printed
936  *
937  * Return: None
938  */
939 static void dp_rx_print_offload_info(uint8_t *rx_tlv)
940 {
941 	dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
942 	dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
943 	dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
944 	dp_verbose_debug("chksum 0x%x", HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
945 	dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
946 	dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
947 	dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
948 	dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
949 	dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
950 	dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
951 	dp_verbose_debug("---------------------------------------------------------");
952 }
953 
954 /**
955  * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
956  * @soc: DP SOC handle
957  * @rx_tlv: RX TLV received for the msdu
958  * @msdu: msdu for which GRO info needs to be filled
959  *
960  * Return: None
961  */
962 static
963 void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
964 			 qdf_nbuf_t msdu)
965 {
966 	if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
967 		return;
968 
969 	/* Filling up RX offload info only for TCP packets */
970 	if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
971 		return;
972 
973 	QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
974 		 HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
975 	QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
976 			HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
977 	QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
978 			 HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
979 	QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
980 			 HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
981 	QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
982 			 HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
983 	QDF_NBUF_CB_RX_TCP_WIN(msdu) =
984 			 HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
985 	QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
986 			 HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
987 	QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
988 			 HAL_RX_TLV_GET_IPV6(rx_tlv);
989 	QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
990 			 HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
991 	QDF_NBUF_CB_RX_FLOW_ID(msdu) =
992 			 HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
993 
994 	dp_rx_print_offload_info(rx_tlv);
995 }
996 #else
997 static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
998 				qdf_nbuf_t msdu)
999 {
1000 }
1001 #endif /* RECEIVE_OFFLOAD */
1002 
1003 /**
1004  * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
1005  *
1006  * @nbuf: pointer to msdu.
1007  * @mpdu_len: mpdu length
1008  *
1009  * Return: returns true if nbuf is last msdu of mpdu else retuns false.
1010  */
1011 static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
1012 {
1013 	bool last_nbuf;
1014 
1015 	if (*mpdu_len > (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
1016 		qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
1017 		last_nbuf = false;
1018 	} else {
1019 		qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
1020 		last_nbuf = true;
1021 	}
1022 
1023 	*mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
1024 
1025 	return last_nbuf;
1026 }
1027 
1028 /**
1029  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
1030  *		     multiple nbufs.
1031  * @nbuf: pointer to the first msdu of an amsdu.
1032  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1033  *
1034  *
1035  * This function implements the creation of RX frag_list for cases
1036  * where an MSDU is spread across multiple nbufs.
1037  *
1038  * Return: returns the head nbuf which contains complete frag_list.
1039  */
1040 qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
1041 {
1042 	qdf_nbuf_t parent, next, frag_list;
1043 	uint16_t frag_list_len = 0;
1044 	uint16_t mpdu_len;
1045 	bool last_nbuf;
1046 
1047 	mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1048 	/*
1049 	 * this is a case where the complete msdu fits in one single nbuf.
1050 	 * in this case HW sets both start and end bit and we only need to
1051 	 * reset these bits for RAW mode simulator to decap the pkt
1052 	 */
1053 	if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
1054 					qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1055 		qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
1056 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1057 		return nbuf;
1058 	}
1059 
1060 	/*
1061 	 * This is a case where we have multiple msdus (A-MSDU) spread across
1062 	 * multiple nbufs. here we create a fraglist out of these nbufs.
1063 	 *
1064 	 * the moment we encounter a nbuf with continuation bit set we
1065 	 * know for sure we have an MSDU which is spread across multiple
1066 	 * nbufs. We loop through and reap nbufs till we reach last nbuf.
1067 	 */
1068 	parent = nbuf;
1069 	frag_list = nbuf->next;
1070 	nbuf = nbuf->next;
1071 
1072 	/*
1073 	 * set the start bit in the first nbuf we encounter with continuation
1074 	 * bit set. This has the proper mpdu length set as it is the first
1075 	 * msdu of the mpdu. this becomes the parent nbuf and the subsequent
1076 	 * nbufs will form the frag_list of the parent nbuf.
1077 	 */
1078 	qdf_nbuf_set_rx_chfrag_start(parent, 1);
1079 	last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
1080 
1081 	/*
1082 	 * this is where we set the length of the fragments which are
1083 	 * associated to the parent nbuf. We iterate through the frag_list
1084 	 * till we hit the last_nbuf of the list.
1085 	 */
1086 	do {
1087 		last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
1088 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1089 		frag_list_len += qdf_nbuf_len(nbuf);
1090 
1091 		if (last_nbuf) {
1092 			next = nbuf->next;
1093 			nbuf->next = NULL;
1094 			break;
1095 		}
1096 
1097 		nbuf = nbuf->next;
1098 	} while (!last_nbuf);
1099 
1100 	qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
1101 	qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
1102 	parent->next = next;
1103 
1104 	qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
1105 	return parent;
1106 }
1107 
1108 /**
1109  * dp_rx_compute_delay() - Compute and fill in all timestamps
1110  *				to pass in correct fields
1111  *
1112  * @vdev: pdev handle
1113  * @tx_desc: tx descriptor
1114  * @tid: tid value
1115  * Return: none
1116  */
1117 void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
1118 {
1119 	int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
1120 	uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
1121 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
1122 	uint32_t interframe_delay =
1123 		(uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
1124 
1125 	dp_update_delay_stats(vdev->pdev, to_stack, tid,
1126 			      CDP_DELAY_STATS_REAP_STACK);
1127 	/*
1128 	 * Update interframe delay stats calculated at deliver_data_ol point.
1129 	 * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
1130 	 * interframe delay will not be calculate correctly for 1st frame.
1131 	 * On the other side, this will help in avoiding extra per packet check
1132 	 * of vdev->prev_rx_deliver_tstamp.
1133 	 */
1134 	dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
1135 			      CDP_DELAY_STATS_RX_INTERFRAME);
1136 	vdev->prev_rx_deliver_tstamp = current_ts;
1137 }
1138 
1139 /**
1140  * dp_rx_drop_nbuf_list() - drop an nbuf list
1141  * @pdev: dp pdev reference
1142  * @buf_list: buffer list to be dropepd
1143  *
1144  * Return: int (number of bufs dropped)
1145  */
1146 static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
1147 				       qdf_nbuf_t buf_list)
1148 {
1149 	struct cdp_tid_rx_stats *stats = NULL;
1150 	uint8_t tid = 0;
1151 	int num_dropped = 0;
1152 	qdf_nbuf_t buf, next_buf;
1153 
1154 	buf = buf_list;
1155 	while (buf) {
1156 		next_buf = qdf_nbuf_queue_next(buf);
1157 		tid = qdf_nbuf_get_tid_val(buf);
1158 		stats = &pdev->stats.tid_stats.tid_rx_stats[tid];
1159 		stats->fail_cnt[INVALID_PEER_VDEV]++;
1160 		stats->delivered_to_stack--;
1161 		qdf_nbuf_free(buf);
1162 		buf = next_buf;
1163 		num_dropped++;
1164 	}
1165 
1166 	return num_dropped;
1167 }
1168 
1169 #ifdef PEER_CACHE_RX_PKTS
1170 /**
1171  * dp_rx_flush_rx_cached() - flush cached rx frames
1172  * @peer: peer
1173  * @drop: flag to drop frames or forward to net stack
1174  *
1175  * Return: None
1176  */
1177 void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
1178 {
1179 	struct dp_peer_cached_bufq *bufqi;
1180 	struct dp_rx_cached_buf *cache_buf = NULL;
1181 	ol_txrx_rx_fp data_rx = NULL;
1182 	int num_buff_elem;
1183 	QDF_STATUS status;
1184 
1185 	if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
1186 		qdf_atomic_dec(&peer->flush_in_progress);
1187 		return;
1188 	}
1189 
1190 	qdf_spin_lock_bh(&peer->peer_info_lock);
1191 	if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
1192 		data_rx = peer->vdev->osif_rx;
1193 	else
1194 		drop = true;
1195 	qdf_spin_unlock_bh(&peer->peer_info_lock);
1196 
1197 	bufqi = &peer->bufq_info;
1198 
1199 	qdf_spin_lock_bh(&bufqi->bufq_lock);
1200 	qdf_list_remove_front(&bufqi->cached_bufq,
1201 			      (qdf_list_node_t **)&cache_buf);
1202 	while (cache_buf) {
1203 		num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
1204 								cache_buf->buf);
1205 		bufqi->entries -= num_buff_elem;
1206 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
1207 		if (drop) {
1208 			bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
1209 							      cache_buf->buf);
1210 		} else {
1211 			/* Flush the cached frames to OSIF DEV */
1212 			status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
1213 			if (status != QDF_STATUS_SUCCESS)
1214 				bufqi->dropped = dp_rx_drop_nbuf_list(
1215 							peer->vdev->pdev,
1216 							cache_buf->buf);
1217 		}
1218 		qdf_mem_free(cache_buf);
1219 		cache_buf = NULL;
1220 		qdf_spin_lock_bh(&bufqi->bufq_lock);
1221 		qdf_list_remove_front(&bufqi->cached_bufq,
1222 				      (qdf_list_node_t **)&cache_buf);
1223 	}
1224 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
1225 	qdf_atomic_dec(&peer->flush_in_progress);
1226 }
1227 
1228 /**
1229  * dp_rx_enqueue_rx() - cache rx frames
1230  * @peer: peer
1231  * @rx_buf_list: cache buffer list
1232  *
1233  * Return: None
1234  */
1235 static QDF_STATUS
1236 dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
1237 {
1238 	struct dp_rx_cached_buf *cache_buf;
1239 	struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
1240 	int num_buff_elem;
1241 
1242 	QDF_TRACE_DEBUG_RL(QDF_MODULE_ID_TXRX, "bufq->curr %d bufq->drops %d",
1243 			   bufqi->entries, bufqi->dropped);
1244 
1245 	if (!peer->valid) {
1246 		bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
1247 						      rx_buf_list);
1248 		return QDF_STATUS_E_INVAL;
1249 	}
1250 
1251 	qdf_spin_lock_bh(&bufqi->bufq_lock);
1252 	if (bufqi->entries >= bufqi->thresh) {
1253 		bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
1254 						      rx_buf_list);
1255 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
1256 		return QDF_STATUS_E_RESOURCES;
1257 	}
1258 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
1259 
1260 	num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
1261 
1262 	cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
1263 	if (!cache_buf) {
1264 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1265 			  "Failed to allocate buf to cache rx frames");
1266 		bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
1267 						      rx_buf_list);
1268 		return QDF_STATUS_E_NOMEM;
1269 	}
1270 
1271 	cache_buf->buf = rx_buf_list;
1272 
1273 	qdf_spin_lock_bh(&bufqi->bufq_lock);
1274 	qdf_list_insert_back(&bufqi->cached_bufq,
1275 			     &cache_buf->node);
1276 	bufqi->entries += num_buff_elem;
1277 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
1278 
1279 	return QDF_STATUS_SUCCESS;
1280 }
1281 
1282 static inline
1283 bool dp_rx_is_peer_cache_bufq_supported(void)
1284 {
1285 	return true;
1286 }
1287 #else
1288 static inline
1289 bool dp_rx_is_peer_cache_bufq_supported(void)
1290 {
1291 	return false;
1292 }
1293 
1294 static inline QDF_STATUS
1295 dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
1296 {
1297 	return QDF_STATUS_SUCCESS;
1298 }
1299 #endif
1300 
1301 static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
1302 						struct dp_peer *peer,
1303 						qdf_nbuf_t nbuf_head,
1304 						qdf_nbuf_t nbuf_tail)
1305 {
1306 	/*
1307 	 * highly unlikely to have a vdev without a registered rx
1308 	 * callback function. if so let us free the nbuf_list.
1309 	 */
1310 	if (qdf_unlikely(!vdev->osif_rx)) {
1311 		if (dp_rx_is_peer_cache_bufq_supported())
1312 			dp_rx_enqueue_rx(peer, nbuf_head);
1313 		else
1314 			dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
1315 
1316 		return;
1317 	}
1318 
1319 	if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
1320 			(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
1321 		vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
1322 				&nbuf_tail, (struct cdp_peer *) peer);
1323 	}
1324 
1325 	vdev->osif_rx(vdev->osif_vdev, nbuf_head);
1326 }
1327 
1328 /**
1329  * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
1330  * @nbuf: pointer to the first msdu of an amsdu.
1331  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1332  *
1333  * The ipsumed field of the skb is set based on whether HW validated the
1334  * IP/TCP/UDP checksum.
1335  *
1336  * Return: void
1337  */
1338 static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
1339 				       qdf_nbuf_t nbuf,
1340 				       uint8_t *rx_tlv_hdr)
1341 {
1342 	qdf_nbuf_rx_cksum_t cksum = {0};
1343 	bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
1344 	bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
1345 
1346 	if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
1347 		cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
1348 		qdf_nbuf_set_rx_cksum(nbuf, &cksum);
1349 	} else {
1350 		DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
1351 		DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
1352 	}
1353 }
1354 
1355 /**
1356  * dp_rx_msdu_stats_update() - update per msdu stats.
1357  * @soc: core txrx main context
1358  * @nbuf: pointer to the first msdu of an amsdu.
1359  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1360  * @peer: pointer to the peer object.
1361  * @ring_id: reo dest ring number on which pkt is reaped.
1362  * @tid_stats: per tid rx stats.
1363  *
1364  * update all the per msdu stats for that nbuf.
1365  * Return: void
1366  */
1367 static void dp_rx_msdu_stats_update(struct dp_soc *soc,
1368 				    qdf_nbuf_t nbuf,
1369 				    uint8_t *rx_tlv_hdr,
1370 				    struct dp_peer *peer,
1371 				    uint8_t ring_id,
1372 				    struct cdp_tid_rx_stats *tid_stats)
1373 {
1374 	bool is_ampdu, is_not_amsdu;
1375 	uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
1376 	struct dp_vdev *vdev = peer->vdev;
1377 	qdf_ether_header_t *eh;
1378 	uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1379 
1380 	is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
1381 			qdf_nbuf_is_rx_chfrag_end(nbuf);
1382 
1383 	DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
1384 	DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
1385 	DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
1386 
1387 	tid_stats->msdu_cnt++;
1388 	if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
1389 			 (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
1390 		eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
1391 		DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
1392 		tid_stats->mcast_msdu_cnt++;
1393 		if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
1394 			DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
1395 			tid_stats->bcast_msdu_cnt++;
1396 		}
1397 	}
1398 
1399 	/*
1400 	 * currently we can return from here as we have similar stats
1401 	 * updated at per ppdu level instead of msdu level
1402 	 */
1403 	if (!soc->process_rx_status)
1404 		return;
1405 
1406 	is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
1407 	DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
1408 	DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
1409 
1410 	sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
1411 	mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
1412 	tid = qdf_nbuf_get_tid_val(nbuf);
1413 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
1414 	reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
1415 							      rx_tlv_hdr);
1416 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
1417 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
1418 
1419 	DP_STATS_INC(peer, rx.bw[bw], 1);
1420 	/*
1421 	 * only if nss > 0 and pkt_type is 11N/AC/AX,
1422 	 * then increase index [nss - 1] in array counter.
1423 	 */
1424 	if (nss > 0 && (pkt_type == DOT11_N ||
1425 			pkt_type == DOT11_AC ||
1426 			pkt_type == DOT11_AX))
1427 		DP_STATS_INC(peer, rx.nss[nss - 1], 1);
1428 
1429 	DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
1430 	DP_STATS_INCC(peer, rx.err.mic_err, 1,
1431 		      hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
1432 	DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
1433 		      hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
1434 
1435 	DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
1436 	DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
1437 
1438 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1439 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1440 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1441 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1442 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1443 		      ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1444 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1445 		      ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1446 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1447 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1448 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1449 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1450 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1451 		      ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1452 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1453 		      ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1454 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1455 		      ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
1456 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1457 		      ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
1458 
1459 	if ((soc->process_rx_status) &&
1460 	    hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
1461 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
1462 		if (!vdev->pdev)
1463 			return;
1464 
1465 		dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
1466 				     &peer->stats, peer->peer_ids[0],
1467 				     UPDATE_PEER_STATS,
1468 				     vdev->pdev->pdev_id);
1469 #endif
1470 
1471 	}
1472 }
1473 
1474 static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
1475 				      void *rx_tlv_hdr,
1476 				      qdf_nbuf_t nbuf)
1477 {
1478 	if ((qdf_nbuf_is_sa_valid(nbuf) &&
1479 	     (hal_rx_msdu_end_sa_idx_get(rx_tlv_hdr) >
1480 		wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
1481 	    (qdf_nbuf_is_da_valid(nbuf) &&
1482 	     (hal_rx_msdu_end_da_idx_get(soc->hal_soc,
1483 					 rx_tlv_hdr) >
1484 	      wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
1485 		return false;
1486 
1487 	return true;
1488 }
1489 
1490 #ifdef WDS_VENDOR_EXTENSION
1491 int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
1492 			   struct dp_vdev *vdev,
1493 			   struct dp_peer *peer)
1494 {
1495 	struct dp_peer *bss_peer;
1496 	int fr_ds, to_ds, rx_3addr, rx_4addr;
1497 	int rx_policy_ucast, rx_policy_mcast;
1498 	int rx_mcast = hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr);
1499 
1500 	if (vdev->opmode == wlan_op_mode_ap) {
1501 		TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
1502 			if (bss_peer->bss_peer) {
1503 				/* if wds policy check is not enabled on this vdev, accept all frames */
1504 				if (!bss_peer->wds_ecm.wds_rx_filter) {
1505 					return 1;
1506 				}
1507 				break;
1508 			}
1509 		}
1510 		rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
1511 		rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
1512 	} else {             /* sta mode */
1513 		if (!peer->wds_ecm.wds_rx_filter) {
1514 			return 1;
1515 		}
1516 		rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
1517 		rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
1518 	}
1519 
1520 	/* ------------------------------------------------
1521 	 *                       self
1522 	 * peer-             rx  rx-
1523 	 * wds  ucast mcast dir policy accept note
1524 	 * ------------------------------------------------
1525 	 * 1     1     0     11  x1     1      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
1526 	 * 1     1     0     01  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1527 	 * 1     1     0     10  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1528 	 * 1     1     0     00  x1     0      bad frame, won't see it
1529 	 * 1     0     1     11  1x     1      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
1530 	 * 1     0     1     01  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1531 	 * 1     0     1     10  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1532 	 * 1     0     1     00  1x     0      bad frame, won't see it
1533 	 * 1     1     0     11  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1534 	 * 1     1     0     01  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1535 	 * 1     1     0     10  x0     1      AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
1536 	 * 1     1     0     00  x0     0      bad frame, won't see it
1537 	 * 1     0     1     11  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1538 	 * 1     0     1     01  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1539 	 * 1     0     1     10  0x     1      AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
1540 	 * 1     0     1     00  0x     0      bad frame, won't see it
1541 	 *
1542 	 * 0     x     x     11  xx     0      we only accept td-ds Rx frames from non-wds peers in mode.
1543 	 * 0     x     x     01  xx     1
1544 	 * 0     x     x     10  xx     0
1545 	 * 0     x     x     00  xx     0      bad frame, won't see it
1546 	 * ------------------------------------------------
1547 	 */
1548 
1549 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
1550 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
1551 	rx_3addr = fr_ds ^ to_ds;
1552 	rx_4addr = fr_ds & to_ds;
1553 
1554 	if (vdev->opmode == wlan_op_mode_ap) {
1555 		if ((!peer->wds_enabled && rx_3addr && to_ds) ||
1556 				(peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1557 				(peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
1558 			return 1;
1559 		}
1560 	} else {           /* sta mode */
1561 		if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1562 				(rx_mcast && (rx_4addr == rx_policy_mcast))) {
1563 			return 1;
1564 		}
1565 	}
1566 	return 0;
1567 }
1568 #else
1569 int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
1570 			   struct dp_vdev *vdev,
1571 			   struct dp_peer *peer)
1572 {
1573 	return 1;
1574 }
1575 #endif
1576 
1577 #ifdef RX_DESC_DEBUG_CHECK
1578 /**
1579  * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
1580  *				  corruption
1581  *
1582  * @ring_desc: REO ring descriptor
1583  * @rx_desc: Rx descriptor
1584  *
1585  * Return: NONE
1586  */
1587 static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc,
1588 					   struct dp_rx_desc *rx_desc)
1589 {
1590 	struct hal_buf_info hbi;
1591 
1592 	hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
1593 	/* Sanity check for possible buffer paddr corruption */
1594 	qdf_assert_always((&hbi)->paddr ==
1595 			  qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
1596 }
1597 #else
1598 static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc,
1599 					   struct dp_rx_desc *rx_desc)
1600 {
1601 }
1602 #endif
1603 
1604 #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
1605 static inline
1606 bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
1607 {
1608 	bool limit_hit = false;
1609 	struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
1610 
1611 	limit_hit =
1612 		(num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
1613 
1614 	if (limit_hit)
1615 		DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
1616 
1617 	return limit_hit;
1618 }
1619 
1620 static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
1621 {
1622 	return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
1623 }
1624 
1625 #else
1626 static inline
1627 bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
1628 {
1629 	return false;
1630 }
1631 
1632 static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
1633 {
1634 	return false;
1635 }
1636 
1637 #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
1638 /**
1639  * dp_rx_process() - Brain of the Rx processing functionality
1640  *		     Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
1641  * @soc: core txrx main context
1642  * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
1643  * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
1644  * @quota: No. of units (packets) that can be serviced in one shot.
1645  *
1646  * This function implements the core of Rx functionality. This is
1647  * expected to handle only non-error frames.
1648  *
1649  * Return: uint32_t: No. of elements processed
1650  */
1651 uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring,
1652 		       uint8_t reo_ring_num, uint32_t quota)
1653 {
1654 	void *hal_soc;
1655 	void *ring_desc;
1656 	struct dp_rx_desc *rx_desc = NULL;
1657 	qdf_nbuf_t nbuf, next;
1658 	union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
1659 	union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
1660 	uint32_t rx_bufs_used = 0, rx_buf_cookie;
1661 	uint32_t l2_hdr_offset = 0;
1662 	uint16_t msdu_len = 0;
1663 	uint16_t peer_id;
1664 	struct dp_peer *peer;
1665 	struct dp_vdev *vdev;
1666 	uint32_t pkt_len = 0;
1667 	struct hal_rx_mpdu_desc_info mpdu_desc_info;
1668 	struct hal_rx_msdu_desc_info msdu_desc_info;
1669 	enum hal_reo_error_status error;
1670 	uint32_t peer_mdata;
1671 	uint8_t *rx_tlv_hdr;
1672 	uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
1673 	uint8_t mac_id = 0;
1674 	struct dp_pdev *pdev;
1675 	struct dp_pdev *rx_pdev;
1676 	struct dp_srng *dp_rxdma_srng;
1677 	struct rx_desc_pool *rx_desc_pool;
1678 	struct dp_soc *soc = int_ctx->soc;
1679 	uint8_t ring_id = 0;
1680 	uint8_t core_id = 0;
1681 	struct cdp_tid_rx_stats *tid_stats;
1682 	qdf_nbuf_t nbuf_head;
1683 	qdf_nbuf_t nbuf_tail;
1684 	qdf_nbuf_t deliver_list_head;
1685 	qdf_nbuf_t deliver_list_tail;
1686 	uint32_t num_rx_bufs_reaped = 0;
1687 	uint32_t intr_id;
1688 	struct hif_opaque_softc *scn;
1689 	int32_t tid = 0;
1690 	bool is_prev_msdu_last = true;
1691 	uint32_t num_entries_avail = 0;
1692 
1693 	DP_HIST_INIT();
1694 
1695 	qdf_assert_always(soc && hal_ring);
1696 	hal_soc = soc->hal_soc;
1697 	qdf_assert_always(hal_soc);
1698 
1699 	hif_pm_runtime_mark_last_busy(soc->osdev->dev);
1700 	scn = soc->hif_handle;
1701 	intr_id = int_ctx->dp_intr_id;
1702 
1703 more_data:
1704 	/* reset local variables here to be re-used in the function */
1705 	nbuf_head = NULL;
1706 	nbuf_tail = NULL;
1707 	deliver_list_head = NULL;
1708 	deliver_list_tail = NULL;
1709 	peer = NULL;
1710 	vdev = NULL;
1711 	num_rx_bufs_reaped = 0;
1712 
1713 	qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
1714 	qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
1715 	qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
1716 	qdf_mem_zero(head, sizeof(head));
1717 	qdf_mem_zero(tail, sizeof(tail));
1718 
1719 	if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
1720 
1721 		/*
1722 		 * Need API to convert from hal_ring pointer to
1723 		 * Ring Type / Ring Id combo
1724 		 */
1725 		DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
1726 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1727 			FL("HAL RING Access Failed -- %pK"), hal_ring);
1728 		hal_srng_access_end(hal_soc, hal_ring);
1729 		goto done;
1730 	}
1731 
1732 	/*
1733 	 * start reaping the buffers from reo ring and queue
1734 	 * them in per vdev queue.
1735 	 * Process the received pkts in a different per vdev loop.
1736 	 */
1737 	while (qdf_likely(quota &&
1738 			  (ring_desc = hal_srng_dst_peek(hal_soc, hal_ring)))) {
1739 
1740 		error = HAL_RX_ERROR_STATUS_GET(ring_desc);
1741 		ring_id = hal_srng_ring_id_get(hal_ring);
1742 
1743 		if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
1744 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1745 			FL("HAL RING 0x%pK:error %d"), hal_ring, error);
1746 			DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
1747 			/* Don't know how to deal with this -- assert */
1748 			qdf_assert(0);
1749 		}
1750 
1751 		rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
1752 
1753 		rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
1754 		qdf_assert(rx_desc);
1755 
1756 		dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
1757 		/*
1758 		 * this is a unlikely scenario where the host is reaping
1759 		 * a descriptor which it already reaped just a while ago
1760 		 * but is yet to replenish it back to HW.
1761 		 * In this case host will dump the last 128 descriptors
1762 		 * including the software descriptor rx_desc and assert.
1763 		 */
1764 		if (qdf_unlikely(!rx_desc->in_use)) {
1765 			DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
1766 			dp_err("Reaping rx_desc not in use!");
1767 			dp_rx_dump_info_and_assert(soc, hal_ring,
1768 						   ring_desc, rx_desc);
1769 		}
1770 
1771 		if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
1772 			dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
1773 			DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
1774 			dp_rx_dump_info_and_assert(soc, hal_ring,
1775 						   ring_desc, rx_desc);
1776 		}
1777 
1778 		/* TODO */
1779 		/*
1780 		 * Need a separate API for unmapping based on
1781 		 * phyiscal address
1782 		 */
1783 		qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
1784 					QDF_DMA_FROM_DEVICE);
1785 		rx_desc->unmapped = 1;
1786 
1787 		core_id = smp_processor_id();
1788 		DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
1789 
1790 		/* Get MPDU DESC info */
1791 		hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
1792 
1793 		/* Get MSDU DESC info */
1794 		hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
1795 
1796 		if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
1797 				HAL_MPDU_F_RAW_AMPDU)) {
1798 			/* previous msdu has end bit set, so current one is
1799 			 * the new MPDU
1800 			 */
1801 			if (is_prev_msdu_last) {
1802 				is_prev_msdu_last = false;
1803 				/* Get number of entries available in HW ring */
1804 				num_entries_avail =
1805 				hal_srng_dst_num_valid(hal_soc, hal_ring, 1);
1806 
1807 				/* For new MPDU check if we can read complete
1808 				 * MPDU by comparing the number of buffers
1809 				 * available and number of buffers needed to
1810 				 * reap this MPDU
1811 				 */
1812 				if (((msdu_desc_info.msdu_len /
1813 				     (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN) + 1)) >
1814 				     num_entries_avail)
1815 					break;
1816 			} else {
1817 				if (msdu_desc_info.msdu_flags &
1818 				    HAL_MSDU_F_LAST_MSDU_IN_MPDU)
1819 					is_prev_msdu_last = true;
1820 			}
1821 			qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
1822 		}
1823 
1824 		/* Pop out the descriptor*/
1825 		hal_srng_dst_get_next(hal_soc, hal_ring);
1826 
1827 		rx_bufs_reaped[rx_desc->pool_id]++;
1828 		peer_mdata = mpdu_desc_info.peer_meta_data;
1829 		QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
1830 			DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
1831 
1832 		/*
1833 		 * save msdu flags first, last and continuation msdu in
1834 		 * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
1835 		 * length to nbuf->cb. This ensures the info required for
1836 		 * per pkt processing is always in the same cache line.
1837 		 * This helps in improving throughput for smaller pkt
1838 		 * sizes.
1839 		 */
1840 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
1841 			qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
1842 
1843 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
1844 			qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
1845 
1846 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
1847 			qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
1848 
1849 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
1850 			qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
1851 
1852 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
1853 			qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
1854 
1855 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
1856 			qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
1857 
1858 		qdf_nbuf_set_tid_val(rx_desc->nbuf,
1859 				     HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
1860 
1861 		QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
1862 
1863 		QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
1864 
1865 		DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
1866 
1867 		/*
1868 		 * if continuation bit is set then we have MSDU spread
1869 		 * across multiple buffers, let us not decrement quota
1870 		 * till we reap all buffers of that MSDU.
1871 		 */
1872 		if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
1873 			quota -= 1;
1874 
1875 		dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
1876 						&tail[rx_desc->pool_id],
1877 						rx_desc);
1878 
1879 		num_rx_bufs_reaped++;
1880 		if (dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
1881 			break;
1882 	}
1883 done:
1884 	hal_srng_access_end(hal_soc, hal_ring);
1885 
1886 	if (nbuf_tail)
1887 		QDF_NBUF_CB_RX_FLUSH_IND(nbuf_tail) = 1;
1888 
1889 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
1890 		/*
1891 		 * continue with next mac_id if no pkts were reaped
1892 		 * from that pool
1893 		 */
1894 		if (!rx_bufs_reaped[mac_id])
1895 			continue;
1896 
1897 		pdev = soc->pdev_list[mac_id];
1898 		dp_rxdma_srng = &pdev->rx_refill_buf_ring;
1899 		rx_desc_pool = &soc->rx_desc_buf[mac_id];
1900 
1901 		dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
1902 					rx_desc_pool, rx_bufs_reaped[mac_id],
1903 					&head[mac_id], &tail[mac_id]);
1904 	}
1905 
1906 	dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
1907 	/* Peer can be NULL is case of LFR */
1908 	if (qdf_likely(peer))
1909 		vdev = NULL;
1910 
1911 	/*
1912 	 * BIG loop where each nbuf is dequeued from global queue,
1913 	 * processed and queued back on a per vdev basis. These nbufs
1914 	 * are sent to stack as and when we run out of nbufs
1915 	 * or a new nbuf dequeued from global queue has a different
1916 	 * vdev when compared to previous nbuf.
1917 	 */
1918 	nbuf = nbuf_head;
1919 	while (nbuf) {
1920 		next = nbuf->next;
1921 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
1922 		/* Get TID from struct cb->tid_val, save to tid */
1923 		if (qdf_nbuf_is_rx_chfrag_start(nbuf))
1924 			tid = qdf_nbuf_get_tid_val(nbuf);
1925 
1926 		/*
1927 		 * Check if DMA completed -- msdu_done is the last bit
1928 		 * to be written
1929 		 */
1930 		rx_pdev = soc->pdev_list[rx_desc->pool_id];
1931 		DP_RX_TID_SAVE(nbuf, tid);
1932 		if (qdf_unlikely(rx_pdev->delay_stats_flag))
1933 			qdf_nbuf_set_timestamp(nbuf);
1934 
1935 		tid_stats = &rx_pdev->stats.tid_stats.tid_rx_stats[tid];
1936 		if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
1937 			dp_err("MSDU DONE failure");
1938 			DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
1939 			hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
1940 					QDF_TRACE_LEVEL_INFO);
1941 			tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
1942 			qdf_nbuf_free(nbuf);
1943 			qdf_assert(0);
1944 			nbuf = next;
1945 			continue;
1946 		}
1947 
1948 		peer_mdata =  QDF_NBUF_CB_RX_PEER_ID(nbuf);
1949 		peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
1950 		peer = dp_peer_find_by_id(soc, peer_id);
1951 
1952 		if (peer) {
1953 			QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
1954 			qdf_dp_trace_set_track(nbuf, QDF_RX);
1955 			QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
1956 			QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
1957 				QDF_NBUF_RX_PKT_DATA_TRACK;
1958 		}
1959 
1960 		rx_bufs_used++;
1961 
1962 		if (deliver_list_head && peer && (vdev != peer->vdev)) {
1963 			dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
1964 					deliver_list_tail);
1965 			deliver_list_head = NULL;
1966 			deliver_list_tail = NULL;
1967 		}
1968 
1969 		if (qdf_likely(peer)) {
1970 			vdev = peer->vdev;
1971 		} else {
1972 			DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
1973 					 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
1974 			tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
1975 			qdf_nbuf_free(nbuf);
1976 			nbuf = next;
1977 			continue;
1978 		}
1979 
1980 		if (qdf_unlikely(!vdev)) {
1981 			tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
1982 			qdf_nbuf_free(nbuf);
1983 			nbuf = next;
1984 			DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
1985 			dp_peer_unref_del_find_by_id(peer);
1986 			continue;
1987 		}
1988 
1989 		DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
1990 		/*
1991 		 * First IF condition:
1992 		 * 802.11 Fragmented pkts are reinjected to REO
1993 		 * HW block as SG pkts and for these pkts we only
1994 		 * need to pull the RX TLVS header length.
1995 		 * Second IF condition:
1996 		 * The below condition happens when an MSDU is spread
1997 		 * across multiple buffers. This can happen in two cases
1998 		 * 1. The nbuf size is smaller then the received msdu.
1999 		 *    ex: we have set the nbuf size to 2048 during
2000 		 *        nbuf_alloc. but we received an msdu which is
2001 		 *        2304 bytes in size then this msdu is spread
2002 		 *        across 2 nbufs.
2003 		 *
2004 		 * 2. AMSDUs when RAW mode is enabled.
2005 		 *    ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
2006 		 *        across 1st nbuf and 2nd nbuf and last MSDU is
2007 		 *        spread across 2nd nbuf and 3rd nbuf.
2008 		 *
2009 		 * for these scenarios let us create a skb frag_list and
2010 		 * append these buffers till the last MSDU of the AMSDU
2011 		 * Third condition:
2012 		 * This is the most likely case, we receive 802.3 pkts
2013 		 * decapsulated by HW, here we need to set the pkt length.
2014 		 */
2015 		if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
2016 			bool is_mcbc, is_sa_vld, is_da_vld;
2017 
2018 			is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr);
2019 			is_sa_vld = hal_rx_msdu_end_sa_is_valid_get(rx_tlv_hdr);
2020 			is_da_vld = hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr);
2021 
2022 			qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
2023 			qdf_nbuf_set_da_valid(nbuf, is_da_vld);
2024 			qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
2025 
2026 			qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
2027 		} else if (qdf_nbuf_is_raw_frame(nbuf)) {
2028 			msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2029 			nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
2030 
2031 			DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
2032 			DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
2033 
2034 			next = nbuf->next;
2035 		} else {
2036 			l2_hdr_offset =
2037 				hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
2038 
2039 			msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2040 			pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
2041 
2042 			qdf_nbuf_set_pktlen(nbuf, pkt_len);
2043 			qdf_nbuf_pull_head(nbuf,
2044 					   RX_PKT_TLVS_LEN +
2045 					   l2_hdr_offset);
2046 		}
2047 
2048 		if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
2049 			QDF_TRACE(QDF_MODULE_ID_DP,
2050 					QDF_TRACE_LEVEL_ERROR,
2051 					FL("Policy Check Drop pkt"));
2052 			tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
2053 			/* Drop & free packet */
2054 			qdf_nbuf_free(nbuf);
2055 			/* Statistics */
2056 			nbuf = next;
2057 			dp_peer_unref_del_find_by_id(peer);
2058 			continue;
2059 		}
2060 
2061 		if (qdf_unlikely(peer && (peer->nawds_enabled) &&
2062 				 (qdf_nbuf_is_da_mcbc(nbuf)) &&
2063 				 (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) ==
2064 				  false))) {
2065 			tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
2066 			DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
2067 			qdf_nbuf_free(nbuf);
2068 			nbuf = next;
2069 			dp_peer_unref_del_find_by_id(peer);
2070 			continue;
2071 		}
2072 
2073 		if (soc->process_rx_status)
2074 			dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
2075 
2076 		/* Update the protocol tag in SKB based on CCE metadata */
2077 		dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
2078 					  reo_ring_num, false, true);
2079 
2080 		dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
2081 					ring_id, tid_stats);
2082 
2083 		if (qdf_unlikely(vdev->mesh_vdev)) {
2084 			if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
2085 					== QDF_STATUS_SUCCESS) {
2086 				QDF_TRACE(QDF_MODULE_ID_DP,
2087 						QDF_TRACE_LEVEL_INFO_MED,
2088 						FL("mesh pkt filtered"));
2089 				tid_stats->fail_cnt[MESH_FILTER_DROP]++;
2090 				DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
2091 					     1);
2092 
2093 				qdf_nbuf_free(nbuf);
2094 				nbuf = next;
2095 				dp_peer_unref_del_find_by_id(peer);
2096 				continue;
2097 			}
2098 			dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
2099 		}
2100 
2101 		if (qdf_likely(vdev->rx_decap_type ==
2102 			       htt_cmn_pkt_type_ethernet) &&
2103 		    qdf_likely(!vdev->mesh_vdev)) {
2104 			/* WDS Destination Address Learning */
2105 			dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
2106 
2107 			/* Due to HW issue, sometimes we see that the sa_idx
2108 			 * and da_idx are invalid with sa_valid and da_valid
2109 			 * bits set
2110 			 *
2111 			 * in this case we also see that value of
2112 			 * sa_sw_peer_id is set as 0
2113 			 *
2114 			 * Drop the packet if sa_idx and da_idx OOB or
2115 			 * sa_sw_peerid is 0
2116 			 */
2117 			if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf)) {
2118 				qdf_nbuf_free(nbuf);
2119 				nbuf = next;
2120 				DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
2121 				dp_peer_unref_del_find_by_id(peer);
2122 				continue;
2123 			}
2124 			/* WDS Source Port Learning */
2125 			if (qdf_likely(vdev->wds_enabled))
2126 				dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
2127 							peer, nbuf);
2128 
2129 			/* Intrabss-fwd */
2130 			if (dp_rx_check_ap_bridge(vdev))
2131 				if (dp_rx_intrabss_fwd(soc,
2132 							peer,
2133 							rx_tlv_hdr,
2134 							nbuf)) {
2135 					nbuf = next;
2136 					dp_peer_unref_del_find_by_id(peer);
2137 					tid_stats->intrabss_cnt++;
2138 					continue; /* Get next desc */
2139 				}
2140 		}
2141 
2142 		dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf);
2143 		qdf_nbuf_cb_update_peer_local_id(nbuf, peer->local_id);
2144 
2145 		DP_RX_LIST_APPEND(deliver_list_head,
2146 				  deliver_list_tail,
2147 				  nbuf);
2148 		DP_STATS_INC_PKT(peer, rx.to_stack, 1,
2149 				 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2150 
2151 		tid_stats->delivered_to_stack++;
2152 		nbuf = next;
2153 		dp_peer_unref_del_find_by_id(peer);
2154 	}
2155 
2156 	if (deliver_list_head)
2157 		dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
2158 				       deliver_list_tail);
2159 
2160 	if (dp_rx_enable_eol_data_check(soc)) {
2161 		if (quota &&
2162 		    hal_srng_dst_peek_sync_locked(soc, hal_ring)) {
2163 			DP_STATS_INC(soc, rx.hp_oos2, 1);
2164 			if (!hif_exec_should_yield(scn, intr_id))
2165 				goto more_data;
2166 		}
2167 	}
2168 	/* Update histogram statistics by looping through pdev's */
2169 	DP_RX_HIST_STATS_PER_PDEV();
2170 
2171 	return rx_bufs_used; /* Assume no scale factor for now */
2172 }
2173 
2174 /**
2175  * dp_rx_detach() - detach dp rx
2176  * @pdev: core txrx pdev context
2177  *
2178  * This function will detach DP RX into main device context
2179  * will free DP Rx resources.
2180  *
2181  * Return: void
2182  */
2183 void
2184 dp_rx_pdev_detach(struct dp_pdev *pdev)
2185 {
2186 	uint8_t pdev_id = pdev->pdev_id;
2187 	struct dp_soc *soc = pdev->soc;
2188 	struct rx_desc_pool *rx_desc_pool;
2189 
2190 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
2191 
2192 	if (rx_desc_pool->pool_size != 0) {
2193 		if (!dp_is_soc_reinit(soc))
2194 			dp_rx_desc_nbuf_and_pool_free(soc, pdev_id,
2195 						      rx_desc_pool);
2196 		else
2197 			dp_rx_desc_nbuf_free(soc, rx_desc_pool);
2198 	}
2199 
2200 	return;
2201 }
2202 
2203 static QDF_STATUS
2204 dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
2205 			  struct dp_srng *dp_rxdma_srng,
2206 			  struct rx_desc_pool *rx_desc_pool,
2207 			  uint32_t num_req_buffers,
2208 			  union dp_rx_desc_list_elem_t **desc_list,
2209 			  union dp_rx_desc_list_elem_t **tail)
2210 {
2211 	struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
2212 	void *rxdma_srng = dp_rxdma_srng->hal_srng;
2213 	union dp_rx_desc_list_elem_t *next;
2214 	void *rxdma_ring_entry;
2215 	qdf_dma_addr_t paddr;
2216 	void **rx_nbuf_arr;
2217 	uint32_t nr_descs;
2218 	uint32_t nr_nbuf;
2219 	qdf_nbuf_t nbuf;
2220 	QDF_STATUS ret;
2221 	int i;
2222 
2223 	if (qdf_unlikely(!rxdma_srng)) {
2224 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
2225 		return QDF_STATUS_E_FAILURE;
2226 	}
2227 
2228 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2229 		  "requested %u RX buffers for driver attach", num_req_buffers);
2230 
2231 	nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
2232 					    num_req_buffers, desc_list, tail);
2233 	if (!nr_descs) {
2234 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2235 			  "no free rx_descs in freelist");
2236 		DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
2237 		return QDF_STATUS_E_NOMEM;
2238 	}
2239 
2240 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2241 		  "got %u RX descs for driver attach", nr_descs);
2242 
2243 	rx_nbuf_arr = qdf_mem_malloc(nr_descs * sizeof(*rx_nbuf_arr));
2244 	if (!rx_nbuf_arr) {
2245 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2246 			  "failed to allocate nbuf array");
2247 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
2248 		return QDF_STATUS_E_NOMEM;
2249 	}
2250 
2251 	for (nr_nbuf = 0; nr_nbuf < nr_descs; nr_nbuf++) {
2252 		nbuf = qdf_nbuf_alloc(dp_soc->osdev, RX_BUFFER_SIZE,
2253 				      RX_BUFFER_RESERVATION,
2254 				      RX_BUFFER_ALIGNMENT,
2255 				      FALSE);
2256 		if (!nbuf) {
2257 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2258 				  "nbuf alloc failed");
2259 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
2260 			break;
2261 		}
2262 
2263 		ret = qdf_nbuf_map_single(dp_soc->osdev, nbuf,
2264 					  QDF_DMA_FROM_DEVICE);
2265 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
2266 			qdf_nbuf_free(nbuf);
2267 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2268 				  "nbuf map failed");
2269 			DP_STATS_INC(dp_pdev, replenish.map_err, 1);
2270 			break;
2271 		}
2272 
2273 		paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
2274 
2275 		ret = check_x86_paddr(dp_soc, &nbuf, &paddr, dp_pdev);
2276 		if (ret == QDF_STATUS_E_FAILURE) {
2277 			qdf_nbuf_unmap_single(dp_soc->osdev, nbuf,
2278 					      QDF_DMA_FROM_DEVICE);
2279 			qdf_nbuf_free(nbuf);
2280 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
2281 				  "nbuf check x86 failed");
2282 			DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
2283 			break;
2284 		}
2285 
2286 		rx_nbuf_arr[nr_nbuf] = (void *)nbuf;
2287 	}
2288 
2289 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2290 		  "allocated %u nbuf for driver attach", nr_nbuf);
2291 
2292 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
2293 
2294 	for (i = 0; i < nr_nbuf; i++) {
2295 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
2296 							 rxdma_srng);
2297 		qdf_assert_always(rxdma_ring_entry);
2298 
2299 		next = (*desc_list)->next;
2300 		nbuf = rx_nbuf_arr[i];
2301 		paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
2302 
2303 		dp_rx_desc_prep(&((*desc_list)->rx_desc), nbuf);
2304 		(*desc_list)->rx_desc.in_use = 1;
2305 
2306 		hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
2307 					     (*desc_list)->rx_desc.cookie,
2308 					     rx_desc_pool->owner);
2309 
2310 		dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf, true);
2311 
2312 		*desc_list = next;
2313 	}
2314 
2315 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
2316 
2317 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2318 		  "filled %u RX buffers for driver attach", nr_nbuf);
2319 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, RX_BUFFER_SIZE *
2320 			 nr_nbuf);
2321 
2322 	qdf_mem_free(rx_nbuf_arr);
2323 
2324 	return QDF_STATUS_SUCCESS;
2325 }
2326 
2327 /**
2328  * dp_rx_attach() - attach DP RX
2329  * @pdev: core txrx pdev context
2330  *
2331  * This function will attach a DP RX instance into the main
2332  * device (SOC) context. Will allocate dp rx resource and
2333  * initialize resources.
2334  *
2335  * Return: QDF_STATUS_SUCCESS: success
2336  *         QDF_STATUS_E_RESOURCES: Error return
2337  */
2338 QDF_STATUS
2339 dp_rx_pdev_attach(struct dp_pdev *pdev)
2340 {
2341 	uint8_t pdev_id = pdev->pdev_id;
2342 	struct dp_soc *soc = pdev->soc;
2343 	uint32_t rxdma_entries;
2344 	union dp_rx_desc_list_elem_t *desc_list = NULL;
2345 	union dp_rx_desc_list_elem_t *tail = NULL;
2346 	struct dp_srng *dp_rxdma_srng;
2347 	struct rx_desc_pool *rx_desc_pool;
2348 
2349 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
2350 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
2351 			  "nss-wifi<4> skip Rx refil %d", pdev_id);
2352 		return QDF_STATUS_SUCCESS;
2353 	}
2354 
2355 	pdev = soc->pdev_list[pdev_id];
2356 	dp_rxdma_srng = &pdev->rx_refill_buf_ring;
2357 	rxdma_entries = dp_rxdma_srng->num_entries;
2358 
2359 	soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
2360 
2361 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
2362 	dp_rx_desc_pool_alloc(soc, pdev_id,
2363 			      DP_RX_DESC_ALLOC_MULTIPLIER * rxdma_entries,
2364 			      rx_desc_pool);
2365 
2366 	rx_desc_pool->owner = DP_WBM2SW_RBM;
2367 	/* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
2368 
2369 	return dp_pdev_rx_buffers_attach(soc, pdev_id, dp_rxdma_srng,
2370 					 rx_desc_pool, rxdma_entries - 1,
2371 					 &desc_list, &tail);
2372 }
2373 
2374 /*
2375  * dp_rx_nbuf_prepare() - prepare RX nbuf
2376  * @soc: core txrx main context
2377  * @pdev: core txrx pdev context
2378  *
2379  * This function alloc & map nbuf for RX dma usage, retry it if failed
2380  * until retry times reaches max threshold or succeeded.
2381  *
2382  * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
2383  */
2384 qdf_nbuf_t
2385 dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
2386 {
2387 	uint8_t *buf;
2388 	int32_t nbuf_retry_count;
2389 	QDF_STATUS ret;
2390 	qdf_nbuf_t nbuf = NULL;
2391 
2392 	for (nbuf_retry_count = 0; nbuf_retry_count <
2393 		QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
2394 			nbuf_retry_count++) {
2395 		/* Allocate a new skb */
2396 		nbuf = qdf_nbuf_alloc(soc->osdev,
2397 					RX_BUFFER_SIZE,
2398 					RX_BUFFER_RESERVATION,
2399 					RX_BUFFER_ALIGNMENT,
2400 					FALSE);
2401 
2402 		if (!nbuf) {
2403 			DP_STATS_INC(pdev,
2404 				replenish.nbuf_alloc_fail, 1);
2405 			continue;
2406 		}
2407 
2408 		buf = qdf_nbuf_data(nbuf);
2409 
2410 		memset(buf, 0, RX_BUFFER_SIZE);
2411 
2412 		ret = qdf_nbuf_map_single(soc->osdev, nbuf,
2413 				    QDF_DMA_FROM_DEVICE);
2414 
2415 		/* nbuf map failed */
2416 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
2417 			qdf_nbuf_free(nbuf);
2418 			DP_STATS_INC(pdev, replenish.map_err, 1);
2419 			continue;
2420 		}
2421 		/* qdf_nbuf alloc and map succeeded */
2422 		break;
2423 	}
2424 
2425 	/* qdf_nbuf still alloc or map failed */
2426 	if (qdf_unlikely(nbuf_retry_count >=
2427 			QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
2428 		return NULL;
2429 
2430 	return nbuf;
2431 }
2432