xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.c (revision dae10a5fbc53d54c53c4ba24fa018ad8b1e7c008)
1 /*
2  * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "dp_types.h"
21 #include "dp_rx.h"
22 #include "dp_peer.h"
23 #include "hal_rx.h"
24 #include "hal_api.h"
25 #include "qdf_nbuf.h"
26 #ifdef MESH_MODE_SUPPORT
27 #include "if_meta_hdr.h"
28 #endif
29 #include "dp_internal.h"
30 #include "dp_rx_mon.h"
31 #ifdef RX_DESC_DEBUG_CHECK
32 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
33 {
34 	rx_desc->magic = DP_RX_DESC_MAGIC;
35 	rx_desc->nbuf = nbuf;
36 }
37 #else
38 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
39 {
40 	rx_desc->nbuf = nbuf;
41 }
42 #endif
43 
44 #ifdef CONFIG_WIN
45 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
46 {
47 	return vdev->ap_bridge_enabled;
48 }
49 #else
50 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
51 {
52 	if (vdev->opmode != wlan_op_mode_sta)
53 		return true;
54 	else
55 		return false;
56 }
57 #endif
58 /*
59  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
60  *			       called during dp rx initialization
61  *			       and at the end of dp_rx_process.
62  *
63  * @soc: core txrx main context
64  * @mac_id: mac_id which is one of 3 mac_ids
65  * @dp_rxdma_srng: dp rxdma circular ring
66  * @rx_desc_pool: Pointer to free Rx descriptor pool
67  * @num_req_buffers: number of buffer to be replenished
68  * @desc_list: list of descs if called from dp_rx_process
69  *	       or NULL during dp rx initialization or out of buffer
70  *	       interrupt.
71  * @tail: tail of descs list
72  * Return: return success or failure
73  */
74 QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
75 				struct dp_srng *dp_rxdma_srng,
76 				struct rx_desc_pool *rx_desc_pool,
77 				uint32_t num_req_buffers,
78 				union dp_rx_desc_list_elem_t **desc_list,
79 				union dp_rx_desc_list_elem_t **tail)
80 {
81 	uint32_t num_alloc_desc;
82 	uint16_t num_desc_to_free = 0;
83 	struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
84 	uint32_t num_entries_avail;
85 	uint32_t count;
86 	int sync_hw_ptr = 1;
87 	qdf_dma_addr_t paddr;
88 	qdf_nbuf_t rx_netbuf;
89 	void *rxdma_ring_entry;
90 	union dp_rx_desc_list_elem_t *next;
91 	QDF_STATUS ret;
92 
93 	void *rxdma_srng;
94 
95 	rxdma_srng = dp_rxdma_srng->hal_srng;
96 
97 	if (!rxdma_srng) {
98 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
99 				  "rxdma srng not initialized");
100 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
101 		return QDF_STATUS_E_FAILURE;
102 	}
103 
104 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
105 		"requested %d buffers for replenish", num_req_buffers);
106 
107 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
108 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
109 						   rxdma_srng,
110 						   sync_hw_ptr);
111 
112 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
113 		"no of available entries in rxdma ring: %d",
114 		num_entries_avail);
115 
116 	if (!(*desc_list) && (num_entries_avail >
117 		((dp_rxdma_srng->num_entries * 3) / 4))) {
118 		num_req_buffers = num_entries_avail;
119 	} else if (num_entries_avail < num_req_buffers) {
120 		num_desc_to_free = num_req_buffers - num_entries_avail;
121 		num_req_buffers = num_entries_avail;
122 	}
123 
124 	if (qdf_unlikely(!num_req_buffers)) {
125 		num_desc_to_free = num_req_buffers;
126 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
127 		goto free_descs;
128 	}
129 
130 	/*
131 	 * if desc_list is NULL, allocate the descs from freelist
132 	 */
133 	if (!(*desc_list)) {
134 		num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
135 							  rx_desc_pool,
136 							  num_req_buffers,
137 							  desc_list,
138 							  tail);
139 
140 		if (!num_alloc_desc) {
141 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
142 				"no free rx_descs in freelist");
143 			DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
144 					num_req_buffers);
145 			hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
146 			return QDF_STATUS_E_NOMEM;
147 		}
148 
149 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
150 			"%d rx desc allocated", num_alloc_desc);
151 		num_req_buffers = num_alloc_desc;
152 	}
153 
154 
155 	count = 0;
156 
157 	while (count < num_req_buffers) {
158 		rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
159 					RX_BUFFER_SIZE,
160 					RX_BUFFER_RESERVATION,
161 					RX_BUFFER_ALIGNMENT,
162 					FALSE);
163 
164 		if (rx_netbuf == NULL) {
165 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
166 			continue;
167 		}
168 
169 		ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
170 				    QDF_DMA_BIDIRECTIONAL);
171 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
172 			qdf_nbuf_free(rx_netbuf);
173 			DP_STATS_INC(dp_pdev, replenish.map_err, 1);
174 			continue;
175 		}
176 
177 		paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
178 
179 		/*
180 		 * check if the physical address of nbuf->data is
181 		 * less then 0x50000000 then free the nbuf and try
182 		 * allocating new nbuf. We can try for 100 times.
183 		 * this is a temp WAR till we fix it properly.
184 		 */
185 		ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
186 		if (ret == QDF_STATUS_E_FAILURE) {
187 			DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
188 			break;
189 		}
190 
191 		count++;
192 
193 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
194 								rxdma_srng);
195 		qdf_assert_always(rxdma_ring_entry);
196 
197 		next = (*desc_list)->next;
198 
199 		dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
200 		(*desc_list)->rx_desc.in_use = 1;
201 
202 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
203 				"rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
204 			rx_netbuf, qdf_nbuf_data(rx_netbuf),
205 			(unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
206 
207 		hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
208 						(*desc_list)->rx_desc.cookie,
209 						rx_desc_pool->owner);
210 
211 		*desc_list = next;
212 	}
213 
214 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
215 
216 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
217 		"successfully replenished %d buffers", num_req_buffers);
218 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
219 		"%d rx desc added back to free list", num_desc_to_free);
220 
221 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
222 			(RX_BUFFER_SIZE * num_req_buffers));
223 
224 free_descs:
225 	DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
226 	/*
227 	 * add any available free desc back to the free list
228 	 */
229 	if (*desc_list)
230 		dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
231 			mac_id, rx_desc_pool);
232 
233 	return QDF_STATUS_SUCCESS;
234 }
235 
236 /*
237  * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
238  *				pkts to RAW mode simulation to
239  *				decapsulate the pkt.
240  *
241  * @vdev: vdev on which RAW mode is enabled
242  * @nbuf_list: list of RAW pkts to process
243  * @peer: peer object from which the pkt is rx
244  *
245  * Return: void
246  */
247 void
248 dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
249 					struct dp_peer *peer)
250 {
251 	qdf_nbuf_t deliver_list_head = NULL;
252 	qdf_nbuf_t deliver_list_tail = NULL;
253 	qdf_nbuf_t nbuf;
254 
255 	nbuf = nbuf_list;
256 	while (nbuf) {
257 		qdf_nbuf_t next = qdf_nbuf_next(nbuf);
258 
259 		DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
260 
261 		DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
262 		DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
263 		/*
264 		 * reset the chfrag_start and chfrag_end bits in nbuf cb
265 		 * as this is a non-amsdu pkt and RAW mode simulation expects
266 		 * these bit s to be 0 for non-amsdu pkt.
267 		 */
268 		if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
269 			 qdf_nbuf_is_rx_chfrag_end(nbuf)) {
270 			qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
271 			qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
272 		}
273 
274 		nbuf = next;
275 	}
276 
277 	vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
278 				 &deliver_list_tail, (struct cdp_peer*) peer);
279 
280 	vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
281 }
282 
283 
284 #ifdef DP_LFR
285 /*
286  * In case of LFR, data of a new peer might be sent up
287  * even before peer is added.
288  */
289 static inline struct dp_vdev *
290 dp_get_vdev_from_peer(struct dp_soc *soc,
291 			uint16_t peer_id,
292 			struct dp_peer *peer,
293 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
294 {
295 	struct dp_vdev *vdev;
296 	uint8_t vdev_id;
297 
298 	if (unlikely(!peer)) {
299 		if (peer_id != HTT_INVALID_PEER) {
300 			vdev_id = DP_PEER_METADATA_ID_GET(
301 					mpdu_desc_info.peer_meta_data);
302 			QDF_TRACE(QDF_MODULE_ID_DP,
303 				QDF_TRACE_LEVEL_DEBUG,
304 				FL("PeerID %d not found use vdevID %d"),
305 				peer_id, vdev_id);
306 			vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
307 							vdev_id);
308 		} else {
309 			QDF_TRACE(QDF_MODULE_ID_DP,
310 				QDF_TRACE_LEVEL_DEBUG,
311 				FL("Invalid PeerID %d"),
312 				peer_id);
313 			return NULL;
314 		}
315 	} else {
316 		vdev = peer->vdev;
317 	}
318 	return vdev;
319 }
320 #else
321 static inline struct dp_vdev *
322 dp_get_vdev_from_peer(struct dp_soc *soc,
323 			uint16_t peer_id,
324 			struct dp_peer *peer,
325 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
326 {
327 	if (unlikely(!peer)) {
328 		QDF_TRACE(QDF_MODULE_ID_DP,
329 			QDF_TRACE_LEVEL_DEBUG,
330 			FL("Peer not found for peerID %d"),
331 			peer_id);
332 		return NULL;
333 	} else {
334 		return peer->vdev;
335 	}
336 }
337 #endif
338 
339 /**
340  * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
341  *
342  * @soc: core txrx main context
343  * @sa_peer	: source peer entry
344  * @rx_tlv_hdr	: start address of rx tlvs
345  * @nbuf	: nbuf that has to be intrabss forwarded
346  *
347  * Return: bool: true if it is forwarded else false
348  */
349 static bool
350 dp_rx_intrabss_fwd(struct dp_soc *soc,
351 			struct dp_peer *sa_peer,
352 			uint8_t *rx_tlv_hdr,
353 			qdf_nbuf_t nbuf)
354 {
355 	uint16_t da_idx;
356 	uint16_t len;
357 	struct dp_peer *da_peer;
358 	struct dp_ast_entry *ast_entry;
359 	qdf_nbuf_t nbuf_copy;
360 
361 	/* check if the destination peer is available in peer table
362 	 * and also check if the source peer and destination peer
363 	 * belong to the same vap and destination peer is not bss peer.
364 	 */
365 
366 	if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
367 	   !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
368 		da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
369 
370 		ast_entry = soc->ast_table[da_idx];
371 		if (!ast_entry)
372 			return false;
373 
374 		da_peer = ast_entry->peer;
375 
376 		if (!da_peer)
377 			return false;
378 
379 		if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
380 			memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
381 			len = qdf_nbuf_len(nbuf);
382 
383 			/* linearize the nbuf just before we send to
384 			 * dp_tx_send()
385 			 */
386 			if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
387 				if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
388 					return false;
389 
390 				nbuf = qdf_nbuf_unshare(nbuf);
391 				if (!nbuf) {
392 					DP_STATS_INC_PKT(sa_peer,
393 							 rx.intra_bss.fail,
394 							 1,
395 							 len);
396 					/* return true even though the pkt is
397 					 * not forwarded. Basically skb_unshare
398 					 * failed and we want to continue with
399 					 * next nbuf.
400 					 */
401 					return true;
402 				}
403 			}
404 
405 			if (!dp_tx_send(sa_peer->vdev, nbuf)) {
406 				DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
407 						1, len);
408 				return true;
409 			} else {
410 				DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
411 						len);
412 				return false;
413 			}
414 		}
415 	}
416 	/* if it is a broadcast pkt (eg: ARP) and it is not its own
417 	 * source, then clone the pkt and send the cloned pkt for
418 	 * intra BSS forwarding and original pkt up the network stack
419 	 * Note: how do we handle multicast pkts. do we forward
420 	 * all multicast pkts as is or let a higher layer module
421 	 * like igmpsnoop decide whether to forward or not with
422 	 * Mcast enhancement.
423 	 */
424 	else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
425 		!sa_peer->bss_peer))) {
426 		nbuf_copy = qdf_nbuf_copy(nbuf);
427 		if (!nbuf_copy)
428 			return false;
429 		memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
430 		len = qdf_nbuf_len(nbuf_copy);
431 
432 		if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
433 			DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
434 			qdf_nbuf_free(nbuf_copy);
435 		} else
436 			DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
437 	}
438 	/* return false as we have to still send the original pkt
439 	 * up the stack
440 	 */
441 	return false;
442 }
443 
444 #ifdef MESH_MODE_SUPPORT
445 
446 /**
447  * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
448  *
449  * @vdev: DP Virtual device handle
450  * @nbuf: Buffer pointer
451  * @rx_tlv_hdr: start of rx tlv header
452  * @peer: pointer to peer
453  *
454  * This function allocated memory for mesh receive stats and fill the
455  * required stats. Stores the memory address in skb cb.
456  *
457  * Return: void
458  */
459 
460 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
461 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
462 {
463 	struct mesh_recv_hdr_s *rx_info = NULL;
464 	uint32_t pkt_type;
465 	uint32_t nss;
466 	uint32_t rate_mcs;
467 	uint32_t bw;
468 
469 	/* fill recv mesh stats */
470 	rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
471 
472 	/* upper layers are resposible to free this memory */
473 
474 	if (rx_info == NULL) {
475 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
476 			"Memory allocation failed for mesh rx stats");
477 		DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
478 		return;
479 	}
480 
481 	rx_info->rs_flags = MESH_RXHDR_VER1;
482 	if (qdf_nbuf_is_rx_chfrag_start(nbuf))
483 		rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
484 
485 	if (qdf_nbuf_is_rx_chfrag_end(nbuf))
486 		rx_info->rs_flags |= MESH_RX_LAST_MSDU;
487 
488 	if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
489 		rx_info->rs_flags |= MESH_RX_DECRYPTED;
490 		rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
491 		if (vdev->osif_get_key)
492 			vdev->osif_get_key(vdev->osif_vdev,
493 					&rx_info->rs_decryptkey[0],
494 					&peer->mac_addr.raw[0],
495 					rx_info->rs_keyix);
496 	}
497 
498 	rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
499 	rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
500 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
501 	rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
502 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
503 	nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
504 	rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
505 				(bw << 24);
506 
507 	qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
508 
509 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
510 		FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
511 						rx_info->rs_flags,
512 						rx_info->rs_rssi,
513 						rx_info->rs_channel,
514 						rx_info->rs_ratephy1,
515 						rx_info->rs_keyix);
516 
517 }
518 
519 /**
520  * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
521  *
522  * @vdev: DP Virtual device handle
523  * @nbuf: Buffer pointer
524  * @rx_tlv_hdr: start of rx tlv header
525  *
526  * This checks if the received packet is matching any filter out
527  * catogery and and drop the packet if it matches.
528  *
529  * Return: status(0 indicates drop, 1 indicate to no drop)
530  */
531 
532 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
533 					uint8_t *rx_tlv_hdr)
534 {
535 	union dp_align_mac_addr mac_addr;
536 
537 	if (qdf_unlikely(vdev->mesh_rx_filter)) {
538 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
539 			if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
540 				return  QDF_STATUS_SUCCESS;
541 
542 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
543 			if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
544 				return  QDF_STATUS_SUCCESS;
545 
546 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
547 			if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
548 				&& !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
549 				return  QDF_STATUS_SUCCESS;
550 
551 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
552 			if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
553 					&mac_addr.raw[0]))
554 				return QDF_STATUS_E_FAILURE;
555 
556 			if (!qdf_mem_cmp(&mac_addr.raw[0],
557 					&vdev->mac_addr.raw[0],
558 					DP_MAC_ADDR_LEN))
559 				return  QDF_STATUS_SUCCESS;
560 		}
561 
562 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
563 			if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
564 					&mac_addr.raw[0]))
565 				return QDF_STATUS_E_FAILURE;
566 
567 			if (!qdf_mem_cmp(&mac_addr.raw[0],
568 					&vdev->mac_addr.raw[0],
569 					DP_MAC_ADDR_LEN))
570 				return  QDF_STATUS_SUCCESS;
571 		}
572 	}
573 
574 	return QDF_STATUS_E_FAILURE;
575 }
576 
577 #else
578 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
579 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
580 {
581 }
582 
583 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
584 					uint8_t *rx_tlv_hdr)
585 {
586 	return QDF_STATUS_E_FAILURE;
587 }
588 
589 #endif
590 
591 #ifdef CONFIG_WIN
592 /**
593  * dp_rx_nac_filter(): Function to perform filtering of non-associated
594  * clients
595  * @pdev: DP pdev handle
596  * @rx_pkt_hdr: Rx packet Header
597  *
598  * return: dp_vdev*
599  */
600 static
601 struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
602 		uint8_t *rx_pkt_hdr)
603 {
604 	struct ieee80211_frame *wh;
605 	struct dp_neighbour_peer *peer = NULL;
606 
607 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
608 
609 	if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
610 		return NULL;
611 
612 	qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
613 	TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
614 				neighbour_peer_list_elem) {
615 		if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
616 				wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
617 			QDF_TRACE(
618 				QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
619 				FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
620 				peer->neighbour_peers_macaddr.raw[0],
621 				peer->neighbour_peers_macaddr.raw[1],
622 				peer->neighbour_peers_macaddr.raw[2],
623 				peer->neighbour_peers_macaddr.raw[3],
624 				peer->neighbour_peers_macaddr.raw[4],
625 				peer->neighbour_peers_macaddr.raw[5]);
626 
627 				qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
628 
629 			return pdev->monitor_vdev;
630 		}
631 	}
632 	qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
633 
634 	return NULL;
635 }
636 
637 /**
638  * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
639  * @soc: DP SOC handle
640  * @mpdu: mpdu for which peer is invalid
641  *
642  * return: integer type
643  */
644 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
645 {
646 	struct dp_invalid_peer_msg msg;
647 	struct dp_vdev *vdev = NULL;
648 	struct dp_pdev *pdev = NULL;
649 	struct ieee80211_frame *wh;
650 	uint8_t i;
651 	qdf_nbuf_t curr_nbuf, next_nbuf;
652 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
653 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
654 
655 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
656 
657 	if (!DP_FRAME_IS_DATA(wh)) {
658 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
659 				"NAWDS valid only for data frames");
660 		goto free;
661 	}
662 
663 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
664 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
665 				"Invalid nbuf length");
666 		goto free;
667 	}
668 
669 
670 	for (i = 0; i < MAX_PDEV_CNT; i++) {
671 		pdev = soc->pdev_list[i];
672 		if (!pdev) {
673 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
674 					"PDEV not found");
675 			continue;
676 		}
677 
678 		if (pdev->filter_neighbour_peers) {
679 			/* Next Hop scenario not yet handle */
680 			vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
681 			if (vdev) {
682 				dp_rx_mon_deliver(soc, i,
683 						pdev->invalid_peer_head_msdu,
684 						pdev->invalid_peer_tail_msdu);
685 
686 				pdev->invalid_peer_head_msdu = NULL;
687 				pdev->invalid_peer_tail_msdu = NULL;
688 
689 				return 0;
690 			}
691 		}
692 
693 
694 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
695 
696 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
697 						DP_MAC_ADDR_LEN) == 0) {
698 				goto out;
699 			}
700 		}
701 	}
702 
703 	if (!vdev) {
704 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
705 				"VDEV not found");
706 		goto free;
707 	}
708 
709 out:
710 	msg.wh = wh;
711 	qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
712 	msg.nbuf = mpdu;
713 	msg.vdev_id = vdev->vdev_id;
714 	if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
715 		pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
716 							&msg);
717 
718 free:
719 	/* Drop and free packet */
720 	curr_nbuf = mpdu;
721 	while (curr_nbuf) {
722 		next_nbuf = qdf_nbuf_next(curr_nbuf);
723 		qdf_nbuf_free(curr_nbuf);
724 		curr_nbuf = next_nbuf;
725 	}
726 
727 	return 0;
728 }
729 
730 /**
731  * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
732  * @soc: DP SOC handle
733  * @mpdu: mpdu for which peer is invalid
734  * @mpdu_done: if an mpdu is completed
735  *
736  * return: integer type
737  */
738 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
739 					qdf_nbuf_t mpdu, bool mpdu_done)
740 {
741 	/* Only trigger the process when mpdu is completed */
742 	if (mpdu_done)
743 		dp_rx_process_invalid_peer(soc, mpdu);
744 }
745 #else
746 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
747 {
748 	qdf_nbuf_t curr_nbuf, next_nbuf;
749 	struct dp_pdev *pdev;
750 	uint8_t i;
751 	struct dp_vdev *vdev = NULL;
752 	struct ieee80211_frame *wh;
753 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
754 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
755 
756 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
757 
758 	if (!DP_FRAME_IS_DATA(wh)) {
759 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
760 			  "only for data frames");
761 		goto free;
762 	}
763 
764 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
765 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
766 			  "Invalid nbuf length");
767 		goto free;
768 	}
769 	/* reset the head and tail pointers */
770 	for (i = 0; i < MAX_PDEV_CNT; i++) {
771 		pdev = soc->pdev_list[i];
772 		if (!pdev) {
773 			QDF_TRACE(QDF_MODULE_ID_DP,
774 				  QDF_TRACE_LEVEL_ERROR,
775 				  "PDEV not found");
776 			continue;
777 		}
778 
779 		pdev->invalid_peer_head_msdu = NULL;
780 		pdev->invalid_peer_tail_msdu = NULL;
781 
782 		qdf_spin_lock_bh(&pdev->vdev_list_lock);
783 		DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
784 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
785 					DP_MAC_ADDR_LEN) == 0) {
786 				qdf_spin_unlock_bh(&pdev->vdev_list_lock);
787 				goto out;
788 			}
789 		}
790 		qdf_spin_unlock_bh(&pdev->vdev_list_lock);
791 	}
792 
793 	if (NULL == vdev) {
794 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
795 			  "VDEV not found");
796 		goto free;
797 	}
798 
799 out:
800 	if (soc->cdp_soc.ol_ops->rx_invalid_peer)
801 		soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
802 free:
803 	/* Drop and free packet */
804 	curr_nbuf = mpdu;
805 	while (curr_nbuf) {
806 		next_nbuf = qdf_nbuf_next(curr_nbuf);
807 		DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
808 				 qdf_nbuf_len(curr_nbuf));
809 		qdf_nbuf_free(curr_nbuf);
810 		curr_nbuf = next_nbuf;
811 	}
812 
813 	return 0;
814 }
815 
816 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
817 					qdf_nbuf_t mpdu, bool mpdu_done)
818 {
819 	/* To avoid compiler warning */
820 	mpdu_done = mpdu_done;
821 
822 	/* Process the nbuf */
823 	dp_rx_process_invalid_peer(soc, mpdu);
824 }
825 #endif
826 
827 #if defined(FEATURE_LRO)
828 static void dp_rx_print_lro_info(uint8_t *rx_tlv)
829 {
830 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
831 	FL("----------------------RX DESC LRO----------------------"));
832 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
833 		FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
834 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
835 		FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
836 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
837 		FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
838 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
839 		FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
840 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
841 		FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
842 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
843 		FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
844 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
845 		FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
846 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
847 		FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
848 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
849 		FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
850 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
851 	FL("---------------------------------------------------------"));
852 }
853 
854 /**
855  * dp_rx_lro() - LRO related processing
856  * @rx_tlv: TLV data extracted from the rx packet
857  * @peer: destination peer of the msdu
858  * @msdu: network buffer
859  * @ctx: LRO context
860  *
861  * This function performs the LRO related processing of the msdu
862  *
863  * Return: true: LRO enabled false: LRO is not enabled
864  */
865 static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
866 	 qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
867 {
868 	if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
869 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
870 			 FL("no peer, no vdev or LRO disabled"));
871 		QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
872 		return;
873 	}
874 	qdf_assert(rx_tlv);
875 	dp_rx_print_lro_info(rx_tlv);
876 
877 	QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
878 		 HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
879 
880 	QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
881 			HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
882 
883 	QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
884 			 HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
885 	QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
886 			 HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
887 	QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
888 			 HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
889 	QDF_NBUF_CB_RX_TCP_WIN(msdu) =
890 			 HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
891 	QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
892 			 HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
893 	QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
894 			 HAL_RX_TLV_GET_IPV6(rx_tlv);
895 	QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
896 			 HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
897 	QDF_NBUF_CB_RX_FLOW_ID(msdu) =
898 			 HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
899 	QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
900 
901 }
902 #else
903 static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
904 	 qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
905 {
906 }
907 #endif
908 
909 /**
910  * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
911  *
912  * @nbuf: pointer to msdu.
913  * @mpdu_len: mpdu length
914  *
915  * Return: returns true if nbuf is last msdu of mpdu else retuns false.
916  */
917 static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
918 {
919 	bool last_nbuf;
920 
921 	if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
922 		qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
923 		last_nbuf = false;
924 	} else {
925 		qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
926 		last_nbuf = true;
927 	}
928 
929 	*mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
930 
931 	return last_nbuf;
932 }
933 
934 /**
935  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
936  *		     multiple nbufs.
937  * @nbuf: pointer to the first msdu of an amsdu.
938  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
939  *
940  *
941  * This function implements the creation of RX frag_list for cases
942  * where an MSDU is spread across multiple nbufs.
943  *
944  * Return: returns the head nbuf which contains complete frag_list.
945  */
946 qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
947 {
948 	qdf_nbuf_t parent, next, frag_list;
949 	uint16_t frag_list_len = 0;
950 	uint16_t mpdu_len;
951 	bool last_nbuf;
952 
953 	mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
954 	/*
955 	 * this is a case where the complete msdu fits in one single nbuf.
956 	 * in this case HW sets both start and end bit and we only need to
957 	 * reset these bits for RAW mode simulator to decap the pkt
958 	 */
959 	if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
960 					qdf_nbuf_is_rx_chfrag_end(nbuf)) {
961 		qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
962 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
963 		return nbuf;
964 	}
965 
966 	/*
967 	 * This is a case where we have multiple msdus (A-MSDU) spread across
968 	 * multiple nbufs. here we create a fraglist out of these nbufs.
969 	 *
970 	 * the moment we encounter a nbuf with continuation bit set we
971 	 * know for sure we have an MSDU which is spread across multiple
972 	 * nbufs. We loop through and reap nbufs till we reach last nbuf.
973 	 */
974 	parent = nbuf;
975 	frag_list = nbuf->next;
976 	nbuf = nbuf->next;
977 
978 	/*
979 	 * set the start bit in the first nbuf we encounter with continuation
980 	 * bit set. This has the proper mpdu length set as it is the first
981 	 * msdu of the mpdu. this becomes the parent nbuf and the subsequent
982 	 * nbufs will form the frag_list of the parent nbuf.
983 	 */
984 	qdf_nbuf_set_rx_chfrag_start(parent, 1);
985 	last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
986 
987 	/*
988 	 * this is where we set the length of the fragments which are
989 	 * associated to the parent nbuf. We iterate through the frag_list
990 	 * till we hit the last_nbuf of the list.
991 	 */
992 	do {
993 		last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
994 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
995 		frag_list_len += qdf_nbuf_len(nbuf);
996 
997 		if (last_nbuf) {
998 			next = nbuf->next;
999 			nbuf->next = NULL;
1000 			break;
1001 		}
1002 
1003 		nbuf = nbuf->next;
1004 	} while (!last_nbuf);
1005 
1006 	qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
1007 	qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
1008 	parent->next = next;
1009 
1010 	qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
1011 	return parent;
1012 }
1013 
1014 static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
1015 						struct dp_peer *peer,
1016 						qdf_nbuf_t nbuf_head,
1017 						qdf_nbuf_t nbuf_tail)
1018 {
1019 	/*
1020 	 * highly unlikely to have a vdev without a registered rx
1021 	 * callback function. if so let us free the nbuf_list.
1022 	 */
1023 	if (qdf_unlikely(!vdev->osif_rx)) {
1024 		qdf_nbuf_t nbuf;
1025 		do {
1026 			nbuf = nbuf_head;
1027 			nbuf_head = nbuf_head->next;
1028 			qdf_nbuf_free(nbuf);
1029 		} while (nbuf_head);
1030 
1031 		return;
1032 	}
1033 
1034 	if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
1035 			(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
1036 		vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
1037 				&nbuf_tail, (struct cdp_peer *) peer);
1038 	}
1039 
1040 	vdev->osif_rx(vdev->osif_vdev, nbuf_head);
1041 
1042 }
1043 
1044 /**
1045  * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
1046  * @nbuf: pointer to the first msdu of an amsdu.
1047  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1048  *
1049  * The ipsumed field of the skb is set based on whether HW validated the
1050  * IP/TCP/UDP checksum.
1051  *
1052  * Return: void
1053  */
1054 static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
1055 				       qdf_nbuf_t nbuf,
1056 				       uint8_t *rx_tlv_hdr)
1057 {
1058 	qdf_nbuf_rx_cksum_t cksum = {0};
1059 	bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
1060 	bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
1061 
1062 	if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
1063 		cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
1064 		qdf_nbuf_set_rx_cksum(nbuf, &cksum);
1065 	} else {
1066 		DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
1067 		DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
1068 	}
1069 }
1070 
1071 /**
1072  * dp_rx_msdu_stats_update() - update per msdu stats.
1073  * @soc: core txrx main context
1074  * @nbuf: pointer to the first msdu of an amsdu.
1075  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1076  * @peer: pointer to the peer object.
1077  * @ring_id: reo dest ring number on which pkt is reaped.
1078  *
1079  * update all the per msdu stats for that nbuf.
1080  * Return: void
1081  */
1082 static void dp_rx_msdu_stats_update(struct dp_soc *soc,
1083 				    qdf_nbuf_t nbuf,
1084 				    uint8_t *rx_tlv_hdr,
1085 				    struct dp_peer *peer,
1086 				    uint8_t ring_id)
1087 {
1088 	bool is_ampdu, is_not_amsdu;
1089 	uint16_t peer_id;
1090 	uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
1091 	struct dp_vdev *vdev = peer->vdev;
1092 	struct ether_header *eh;
1093 	uint16_t msdu_len = qdf_nbuf_len(nbuf);
1094 
1095 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1096 			       hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
1097 
1098 	is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
1099 			qdf_nbuf_is_rx_chfrag_end(nbuf);
1100 
1101 	DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
1102 	DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
1103 	DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
1104 
1105 	if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
1106 			 (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
1107 		eh = (struct ether_header *)qdf_nbuf_data(nbuf);
1108 		DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
1109 		if (IEEE80211_IS_BROADCAST(eh->ether_dhost)) {
1110 			DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
1111 
1112 		}
1113 	}
1114 
1115 	/*
1116 	 * currently we can return from here as we have similar stats
1117 	 * updated at per ppdu level instead of msdu level
1118 	 */
1119 	if (!soc->process_rx_status)
1120 		return;
1121 
1122 	is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
1123 	DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
1124 	DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
1125 
1126 	sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
1127 	mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
1128 	tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_tlv_hdr);
1129 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
1130 	reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
1131 							      rx_tlv_hdr);
1132 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
1133 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
1134 
1135 	/* Save tid to skb->priority */
1136 	DP_RX_TID_SAVE(nbuf, tid);
1137 
1138 	DP_STATS_INC(peer, rx.bw[bw], 1);
1139 	DP_STATS_INC(peer, rx.nss[nss], 1);
1140 	DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
1141 	DP_STATS_INCC(peer, rx.err.mic_err, 1,
1142 		      hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
1143 	DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
1144 		      hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
1145 
1146 	DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
1147 	DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
1148 
1149 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1150 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1151 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1152 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1153 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1154 		      ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1155 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1156 		      ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1157 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1158 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1159 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1160 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1161 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1162 		      ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1163 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1164 		      ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1165 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1166 		      ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
1167 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1168 		      ((mcs <= MAX_MCS) && (pkt_type == DOT11_AX)));
1169 
1170 	if ((soc->process_rx_status) &&
1171 	    hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
1172 		if (soc->cdp_soc.ol_ops->update_dp_stats) {
1173 			soc->cdp_soc.ol_ops->update_dp_stats(
1174 					vdev->pdev->ctrl_pdev,
1175 					&peer->stats,
1176 					peer_id,
1177 					UPDATE_PEER_STATS);
1178 		}
1179 	}
1180 }
1181 
1182 #ifdef WDS_VENDOR_EXTENSION
1183 int dp_wds_rx_policy_check(
1184 		uint8_t *rx_tlv_hdr,
1185 		struct dp_vdev *vdev,
1186 		struct dp_peer *peer,
1187 		int rx_mcast
1188 		)
1189 {
1190 	struct dp_peer *bss_peer;
1191 	int fr_ds, to_ds, rx_3addr, rx_4addr;
1192 	int rx_policy_ucast, rx_policy_mcast;
1193 
1194 	if (vdev->opmode == wlan_op_mode_ap) {
1195 		TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
1196 			if (bss_peer->bss_peer) {
1197 				/* if wds policy check is not enabled on this vdev, accept all frames */
1198 				if (!bss_peer->wds_ecm.wds_rx_filter) {
1199 					return 1;
1200 				}
1201 				break;
1202 			}
1203 		}
1204 		rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
1205 		rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
1206 	} else {             /* sta mode */
1207 		if (!peer->wds_ecm.wds_rx_filter) {
1208 			return 1;
1209 		}
1210 		rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
1211 		rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
1212 	}
1213 
1214 	/* ------------------------------------------------
1215 	 *                       self
1216 	 * peer-             rx  rx-
1217 	 * wds  ucast mcast dir policy accept note
1218 	 * ------------------------------------------------
1219 	 * 1     1     0     11  x1     1      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
1220 	 * 1     1     0     01  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1221 	 * 1     1     0     10  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1222 	 * 1     1     0     00  x1     0      bad frame, won't see it
1223 	 * 1     0     1     11  1x     1      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
1224 	 * 1     0     1     01  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1225 	 * 1     0     1     10  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1226 	 * 1     0     1     00  1x     0      bad frame, won't see it
1227 	 * 1     1     0     11  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1228 	 * 1     1     0     01  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1229 	 * 1     1     0     10  x0     1      AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
1230 	 * 1     1     0     00  x0     0      bad frame, won't see it
1231 	 * 1     0     1     11  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1232 	 * 1     0     1     01  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1233 	 * 1     0     1     10  0x     1      AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
1234 	 * 1     0     1     00  0x     0      bad frame, won't see it
1235 	 *
1236 	 * 0     x     x     11  xx     0      we only accept td-ds Rx frames from non-wds peers in mode.
1237 	 * 0     x     x     01  xx     1
1238 	 * 0     x     x     10  xx     0
1239 	 * 0     x     x     00  xx     0      bad frame, won't see it
1240 	 * ------------------------------------------------
1241 	 */
1242 
1243 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
1244 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
1245 	rx_3addr = fr_ds ^ to_ds;
1246 	rx_4addr = fr_ds & to_ds;
1247 
1248 	if (vdev->opmode == wlan_op_mode_ap) {
1249 		if ((!peer->wds_enabled && rx_3addr && to_ds) ||
1250 				(peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1251 				(peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
1252 			return 1;
1253 		}
1254 	} else {           /* sta mode */
1255 		if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1256 				(rx_mcast && (rx_4addr == rx_policy_mcast))) {
1257 			return 1;
1258 		}
1259 	}
1260 	return 0;
1261 }
1262 #else
1263 int dp_wds_rx_policy_check(
1264 		uint8_t *rx_tlv_hdr,
1265 		struct dp_vdev *vdev,
1266 		struct dp_peer *peer,
1267 		int rx_mcast
1268 		)
1269 {
1270 	return 1;
1271 }
1272 #endif
1273 
1274 /**
1275  * dp_rx_process() - Brain of the Rx processing functionality
1276  *		     Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
1277  * @soc: core txrx main context
1278  * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
1279  * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
1280  * @quota: No. of units (packets) that can be serviced in one shot.
1281  *
1282  * This function implements the core of Rx functionality. This is
1283  * expected to handle only non-error frames.
1284  *
1285  * Return: uint32_t: No. of elements processed
1286  */
1287 uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring,
1288 		       uint8_t reo_ring_num, uint32_t quota)
1289 {
1290 	void *hal_soc;
1291 	void *ring_desc;
1292 	struct dp_rx_desc *rx_desc = NULL;
1293 	qdf_nbuf_t nbuf, next;
1294 	union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
1295 	union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
1296 	uint32_t rx_bufs_used = 0, rx_buf_cookie;
1297 	uint32_t l2_hdr_offset = 0;
1298 	uint16_t msdu_len = 0;
1299 	uint16_t peer_id;
1300 	struct dp_peer *peer = NULL;
1301 	struct dp_vdev *vdev = NULL;
1302 	uint32_t pkt_len = 0;
1303 	struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
1304 	struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
1305 	enum hal_reo_error_status error;
1306 	uint32_t peer_mdata;
1307 	uint8_t *rx_tlv_hdr;
1308 	uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
1309 	uint8_t mac_id = 0;
1310 	struct dp_pdev *pdev;
1311 	struct dp_srng *dp_rxdma_srng;
1312 	struct rx_desc_pool *rx_desc_pool;
1313 	struct dp_soc *soc = int_ctx->soc;
1314 	uint8_t ring_id = 0;
1315 	uint8_t core_id = 0;
1316 	qdf_nbuf_t nbuf_head = NULL;
1317 	qdf_nbuf_t nbuf_tail = NULL;
1318 	qdf_nbuf_t deliver_list_head = NULL;
1319 	qdf_nbuf_t deliver_list_tail = NULL;
1320 
1321 	DP_HIST_INIT();
1322 	/* Debug -- Remove later */
1323 	qdf_assert(soc && hal_ring);
1324 
1325 	hal_soc = soc->hal_soc;
1326 
1327 	/* Debug -- Remove later */
1328 	qdf_assert(hal_soc);
1329 
1330 	hif_pm_runtime_mark_last_busy(soc->osdev->dev);
1331 
1332 	if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
1333 
1334 		/*
1335 		 * Need API to convert from hal_ring pointer to
1336 		 * Ring Type / Ring Id combo
1337 		 */
1338 		DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
1339 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1340 			FL("HAL RING Access Failed -- %pK"), hal_ring);
1341 		hal_srng_access_end(hal_soc, hal_ring);
1342 		goto done;
1343 	}
1344 
1345 	/*
1346 	 * start reaping the buffers from reo ring and queue
1347 	 * them in per vdev queue.
1348 	 * Process the received pkts in a different per vdev loop.
1349 	 */
1350 	while (qdf_likely(quota)) {
1351 		ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
1352 
1353 		/*
1354 		 * in case HW has updated hp after we cached the hp
1355 		 * ring_desc can be NULL even there are entries
1356 		 * available in the ring. Update the cached_hp
1357 		 * and reap the buffers available to read complete
1358 		 * mpdu in one reap
1359 		 *
1360 		 * This is needed for RAW mode we have to read all
1361 		 * msdus corresponding to amsdu in one reap to create
1362 		 * SG list properly but due to mismatch in cached_hp
1363 		 * and actual hp sometimes we are unable to read
1364 		 * complete mpdu in one reap.
1365 		 */
1366 		if (qdf_unlikely(!ring_desc)) {
1367 			hal_srng_access_start_unlocked(hal_soc, hal_ring);
1368 			ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
1369 			if (!ring_desc)
1370 				break;
1371 		}
1372 
1373 		error = HAL_RX_ERROR_STATUS_GET(ring_desc);
1374 		ring_id = hal_srng_ring_id_get(hal_ring);
1375 
1376 		if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
1377 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1378 			FL("HAL RING 0x%pK:error %d"), hal_ring, error);
1379 			DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
1380 			/* Don't know how to deal with this -- assert */
1381 			qdf_assert(0);
1382 		}
1383 
1384 		rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
1385 
1386 		rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
1387 
1388 
1389 		qdf_assert(rx_desc);
1390 		rx_bufs_reaped[rx_desc->pool_id]++;
1391 
1392 		/* TODO */
1393 		/*
1394 		 * Need a separate API for unmapping based on
1395 		 * phyiscal address
1396 		 */
1397 		qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
1398 					QDF_DMA_BIDIRECTIONAL);
1399 
1400 		core_id = smp_processor_id();
1401 		DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
1402 
1403 		/* Get MPDU DESC info */
1404 		hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
1405 
1406 		hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
1407 						mpdu_desc_info.peer_meta_data);
1408 
1409 		/* Get MSDU DESC info */
1410 		hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
1411 
1412 		/*
1413 		 * save msdu flags first, last and continuation msdu in
1414 		 * nbuf->cb
1415 		 */
1416 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
1417 			qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
1418 
1419 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
1420 			qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
1421 
1422 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
1423 			qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
1424 
1425 		QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
1426 		DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
1427 
1428 		/*
1429 		 * if continuation bit is set then we have MSDU spread
1430 		 * across multiple buffers, let us not decrement quota
1431 		 * till we reap all buffers of that MSDU.
1432 		 */
1433 		if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
1434 			quota -= 1;
1435 
1436 
1437 		dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
1438 						&tail[rx_desc->pool_id],
1439 						rx_desc);
1440 	}
1441 done:
1442 	hal_srng_access_end(hal_soc, hal_ring);
1443 
1444 	if (nbuf_tail)
1445 		QDF_NBUF_CB_RX_FLUSH_IND(nbuf_tail) = 1;
1446 
1447 	/* Update histogram statistics by looping through pdev's */
1448 	DP_RX_HIST_STATS_PER_PDEV();
1449 
1450 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
1451 		/*
1452 		 * continue with next mac_id if no pkts were reaped
1453 		 * from that pool
1454 		 */
1455 		if (!rx_bufs_reaped[mac_id])
1456 			continue;
1457 
1458 		pdev = soc->pdev_list[mac_id];
1459 		dp_rxdma_srng = &pdev->rx_refill_buf_ring;
1460 		rx_desc_pool = &soc->rx_desc_buf[mac_id];
1461 
1462 		dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
1463 					rx_desc_pool, rx_bufs_reaped[mac_id],
1464 					&head[mac_id], &tail[mac_id]);
1465 	}
1466 
1467 	/* Peer can be NULL is case of LFR */
1468 	if (qdf_likely(peer != NULL))
1469 		vdev = NULL;
1470 
1471 	/*
1472 	 * BIG loop where each nbuf is dequeued from global queue,
1473 	 * processed and queued back on a per vdev basis. These nbufs
1474 	 * are sent to stack as and when we run out of nbufs
1475 	 * or a new nbuf dequeued from global queue has a different
1476 	 * vdev when compared to previous nbuf.
1477 	 */
1478 	nbuf = nbuf_head;
1479 	while (nbuf) {
1480 		next = nbuf->next;
1481 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
1482 
1483 		/*
1484 		 * Check if DMA completed -- msdu_done is the last bit
1485 		 * to be written
1486 		 */
1487 		if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
1488 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1489 				  FL("MSDU DONE failure"));
1490 			hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
1491 					     QDF_TRACE_LEVEL_INFO);
1492 			qdf_assert(0);
1493 		}
1494 
1495 		peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
1496 		peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
1497 		peer = dp_peer_find_by_id(soc, peer_id);
1498 
1499 		if (peer) {
1500 			QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
1501 			qdf_dp_trace_set_track(nbuf, QDF_RX);
1502 			QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
1503 			QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
1504 				QDF_NBUF_RX_PKT_DATA_TRACK;
1505 		}
1506 
1507 		rx_bufs_used++;
1508 
1509 		if (deliver_list_head && peer && (vdev != peer->vdev)) {
1510 			dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
1511 					deliver_list_tail);
1512 			deliver_list_head = NULL;
1513 			deliver_list_tail = NULL;
1514 		}
1515 
1516 		if (qdf_likely(peer != NULL)) {
1517 			vdev = peer->vdev;
1518 		} else {
1519 			DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
1520 					 qdf_nbuf_len(nbuf));
1521 			qdf_nbuf_free(nbuf);
1522 			nbuf = next;
1523 			continue;
1524 		}
1525 
1526 		if (qdf_unlikely(vdev == NULL)) {
1527 			qdf_nbuf_free(nbuf);
1528 			nbuf = next;
1529 			DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
1530 			dp_peer_unref_del_find_by_id(peer);
1531 			continue;
1532 		}
1533 
1534 		DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
1535 		/*
1536 		 * First IF condition:
1537 		 * 802.11 Fragmented pkts are reinjected to REO
1538 		 * HW block as SG pkts and for these pkts we only
1539 		 * need to pull the RX TLVS header length.
1540 		 * Second IF condition:
1541 		 * The below condition happens when an MSDU is spread
1542 		 * across multiple buffers. This can happen in two cases
1543 		 * 1. The nbuf size is smaller then the received msdu.
1544 		 *    ex: we have set the nbuf size to 2048 during
1545 		 *        nbuf_alloc. but we received an msdu which is
1546 		 *        2304 bytes in size then this msdu is spread
1547 		 *        across 2 nbufs.
1548 		 *
1549 		 * 2. AMSDUs when RAW mode is enabled.
1550 		 *    ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
1551 		 *        across 1st nbuf and 2nd nbuf and last MSDU is
1552 		 *        spread across 2nd nbuf and 3rd nbuf.
1553 		 *
1554 		 * for these scenarios let us create a skb frag_list and
1555 		 * append these buffers till the last MSDU of the AMSDU
1556 		 * Third condition:
1557 		 * This is the most likely case, we receive 802.3 pkts
1558 		 * decapsulated by HW, here we need to set the pkt length.
1559 		 */
1560 		if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf)))
1561 			qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1562 		else if (qdf_unlikely(vdev->rx_decap_type ==
1563 				htt_cmn_pkt_type_raw)) {
1564 			msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1565 			nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
1566 
1567 			DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
1568 			DP_STATS_INC_PKT(peer, rx.raw, 1,
1569 					 msdu_len);
1570 
1571 			next = nbuf->next;
1572 		} else {
1573 			l2_hdr_offset =
1574 				hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
1575 
1576 			msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1577 			pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
1578 
1579 			qdf_nbuf_set_pktlen(nbuf, pkt_len);
1580 			qdf_nbuf_pull_head(nbuf,
1581 					   RX_PKT_TLVS_LEN +
1582 					   l2_hdr_offset);
1583 		}
1584 
1585 		if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
1586 				hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
1587 			QDF_TRACE(QDF_MODULE_ID_DP,
1588 					QDF_TRACE_LEVEL_ERROR,
1589 					FL("Policy Check Drop pkt"));
1590 			/* Drop & free packet */
1591 			qdf_nbuf_free(nbuf);
1592 			/* Statistics */
1593 			nbuf = next;
1594 			dp_peer_unref_del_find_by_id(peer);
1595 			continue;
1596 		}
1597 
1598 		if (qdf_unlikely(peer && peer->bss_peer)) {
1599 			QDF_TRACE(QDF_MODULE_ID_DP,
1600 				QDF_TRACE_LEVEL_ERROR,
1601 				FL("received pkt with same src MAC"));
1602 			DP_STATS_INC(vdev->pdev, dropped.mec, 1);
1603 
1604 			/* Drop & free packet */
1605 			qdf_nbuf_free(nbuf);
1606 			/* Statistics */
1607 			nbuf = next;
1608 			dp_peer_unref_del_find_by_id(peer);
1609 			continue;
1610 		}
1611 
1612 		if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
1613 			(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
1614 			(hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
1615 			DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
1616 			qdf_nbuf_free(nbuf);
1617 			nbuf = next;
1618 			dp_peer_unref_del_find_by_id(peer);
1619 			continue;
1620 		}
1621 
1622 		dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
1623 
1624 		dp_set_rx_queue(nbuf, ring_id);
1625 
1626 		/*
1627 		 * HW structures call this L3 header padding --
1628 		 * even though this is actually the offset from
1629 		 * the buffer beginning where the L2 header
1630 		 * begins.
1631 		 */
1632 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1633 			FL("rxhash: flow id toeplitz: 0x%x"),
1634 			hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
1635 
1636 		dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
1637 
1638 		if (qdf_unlikely(vdev->mesh_vdev)) {
1639 			if (dp_rx_filter_mesh_packets(vdev, nbuf,
1640 							rx_tlv_hdr)
1641 					== QDF_STATUS_SUCCESS) {
1642 				QDF_TRACE(QDF_MODULE_ID_DP,
1643 					QDF_TRACE_LEVEL_INFO_MED,
1644 					FL("mesh pkt filtered"));
1645 			DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
1646 					1);
1647 
1648 				qdf_nbuf_free(nbuf);
1649 				nbuf = next;
1650 				dp_peer_unref_del_find_by_id(peer);
1651 				continue;
1652 			}
1653 			dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
1654 		}
1655 
1656 #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
1657 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1658 			"p_id %d msdu_len %d hdr_off %d",
1659 			peer_id, msdu_len, l2_hdr_offset);
1660 
1661 		print_hex_dump(KERN_ERR,
1662 			       "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
1663 				qdf_nbuf_data(nbuf), 128, false);
1664 #endif /* NAPIER_EMULATION */
1665 
1666 		if (qdf_likely(vdev->rx_decap_type ==
1667 			       htt_cmn_pkt_type_ethernet) &&
1668 		    qdf_likely(!vdev->mesh_vdev)) {
1669 			/* WDS Source Port Learning */
1670 			if (vdev->wds_enabled)
1671 				dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
1672 							peer, nbuf);
1673 
1674 			/* Intrabss-fwd */
1675 			if (dp_rx_check_ap_bridge(vdev))
1676 				if (dp_rx_intrabss_fwd(soc,
1677 							peer,
1678 							rx_tlv_hdr,
1679 							nbuf)) {
1680 					nbuf = next;
1681 					dp_peer_unref_del_find_by_id(peer);
1682 					continue; /* Get next desc */
1683 				}
1684 		}
1685 
1686 		dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
1687 		qdf_nbuf_cb_update_peer_local_id(nbuf, peer->local_id);
1688 		DP_RX_LIST_APPEND(deliver_list_head,
1689 				  deliver_list_tail,
1690 				  nbuf);
1691 		DP_STATS_INC_PKT(peer, rx.to_stack, 1,
1692 				qdf_nbuf_len(nbuf));
1693 
1694 		nbuf = next;
1695 		dp_peer_unref_del_find_by_id(peer);
1696 	}
1697 
1698 	if (deliver_list_head)
1699 		dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
1700 				       deliver_list_tail);
1701 
1702 	return rx_bufs_used; /* Assume no scale factor for now */
1703 }
1704 
1705 /**
1706  * dp_rx_detach() - detach dp rx
1707  * @pdev: core txrx pdev context
1708  *
1709  * This function will detach DP RX into main device context
1710  * will free DP Rx resources.
1711  *
1712  * Return: void
1713  */
1714 void
1715 dp_rx_pdev_detach(struct dp_pdev *pdev)
1716 {
1717 	uint8_t pdev_id = pdev->pdev_id;
1718 	struct dp_soc *soc = pdev->soc;
1719 	struct rx_desc_pool *rx_desc_pool;
1720 
1721 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
1722 
1723 	if (rx_desc_pool->pool_size != 0) {
1724 		dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
1725 	}
1726 
1727 	return;
1728 }
1729 
1730 /**
1731  * dp_rx_attach() - attach DP RX
1732  * @pdev: core txrx pdev context
1733  *
1734  * This function will attach a DP RX instance into the main
1735  * device (SOC) context. Will allocate dp rx resource and
1736  * initialize resources.
1737  *
1738  * Return: QDF_STATUS_SUCCESS: success
1739  *         QDF_STATUS_E_RESOURCES: Error return
1740  */
1741 QDF_STATUS
1742 dp_rx_pdev_attach(struct dp_pdev *pdev)
1743 {
1744 	uint8_t pdev_id = pdev->pdev_id;
1745 	struct dp_soc *soc = pdev->soc;
1746 	struct dp_srng rxdma_srng;
1747 	uint32_t rxdma_entries;
1748 	union dp_rx_desc_list_elem_t *desc_list = NULL;
1749 	union dp_rx_desc_list_elem_t *tail = NULL;
1750 	struct dp_srng *dp_rxdma_srng;
1751 	struct rx_desc_pool *rx_desc_pool;
1752 
1753 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
1754 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1755 			  "nss-wifi<4> skip Rx refil %d", pdev_id);
1756 		return QDF_STATUS_SUCCESS;
1757 	}
1758 
1759 	pdev = soc->pdev_list[pdev_id];
1760 	rxdma_srng = pdev->rx_refill_buf_ring;
1761 	soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
1762 	rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
1763 						     soc->hal_soc, RXDMA_BUF);
1764 
1765 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
1766 
1767 	dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
1768 
1769 	rx_desc_pool->owner = DP_WBM2SW_RBM;
1770 	/* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
1771 	dp_rxdma_srng = &pdev->rx_refill_buf_ring;
1772 	dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
1773 		0, &desc_list, &tail);
1774 
1775 	return QDF_STATUS_SUCCESS;
1776 }
1777 
1778 /*
1779  * dp_rx_nbuf_prepare() - prepare RX nbuf
1780  * @soc: core txrx main context
1781  * @pdev: core txrx pdev context
1782  *
1783  * This function alloc & map nbuf for RX dma usage, retry it if failed
1784  * until retry times reaches max threshold or succeeded.
1785  *
1786  * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
1787  */
1788 qdf_nbuf_t
1789 dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
1790 {
1791 	uint8_t *buf;
1792 	int32_t nbuf_retry_count;
1793 	QDF_STATUS ret;
1794 	qdf_nbuf_t nbuf = NULL;
1795 
1796 	for (nbuf_retry_count = 0; nbuf_retry_count <
1797 		QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
1798 			nbuf_retry_count++) {
1799 		/* Allocate a new skb */
1800 		nbuf = qdf_nbuf_alloc(soc->osdev,
1801 					RX_BUFFER_SIZE,
1802 					RX_BUFFER_RESERVATION,
1803 					RX_BUFFER_ALIGNMENT,
1804 					FALSE);
1805 
1806 		if (nbuf == NULL) {
1807 			DP_STATS_INC(pdev,
1808 				replenish.nbuf_alloc_fail, 1);
1809 			continue;
1810 		}
1811 
1812 		buf = qdf_nbuf_data(nbuf);
1813 
1814 		memset(buf, 0, RX_BUFFER_SIZE);
1815 
1816 		ret = qdf_nbuf_map_single(soc->osdev, nbuf,
1817 				    QDF_DMA_BIDIRECTIONAL);
1818 
1819 		/* nbuf map failed */
1820 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
1821 			qdf_nbuf_free(nbuf);
1822 			DP_STATS_INC(pdev, replenish.map_err, 1);
1823 			continue;
1824 		}
1825 		/* qdf_nbuf alloc and map succeeded */
1826 		break;
1827 	}
1828 
1829 	/* qdf_nbuf still alloc or map failed */
1830 	if (qdf_unlikely(nbuf_retry_count >=
1831 			QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
1832 		return NULL;
1833 
1834 	return nbuf;
1835 }
1836