xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.c (revision d0c05845839e5f2ba5a8dcebe0cd3e4cd4e8dfcf)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "hal_hw_headers.h"
21 #include "dp_types.h"
22 #include "dp_rx.h"
23 #include "dp_tx.h"
24 #include "dp_peer.h"
25 #include "hal_rx.h"
26 #include "hal_api.h"
27 #include "qdf_nbuf.h"
28 #ifdef MESH_MODE_SUPPORT
29 #include "if_meta_hdr.h"
30 #endif
31 #include "dp_internal.h"
32 #include "dp_ipa.h"
33 #include "dp_hist.h"
34 #include "dp_rx_buffer_pool.h"
35 #ifdef WIFI_MONITOR_SUPPORT
36 #include "dp_htt.h"
37 #include <dp_mon.h>
38 #endif
39 #ifdef FEATURE_WDS
40 #include "dp_txrx_wds.h"
41 #endif
42 #ifdef DP_RATETABLE_SUPPORT
43 #include "dp_ratetable.h"
44 #endif
45 
46 #ifdef DUP_RX_DESC_WAR
47 void dp_rx_dump_info_and_assert(struct dp_soc *soc,
48 				hal_ring_handle_t hal_ring,
49 				hal_ring_desc_t ring_desc,
50 				struct dp_rx_desc *rx_desc)
51 {
52 	void *hal_soc = soc->hal_soc;
53 
54 	hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
55 	dp_rx_desc_dump(rx_desc);
56 }
57 #else
58 void dp_rx_dump_info_and_assert(struct dp_soc *soc,
59 				hal_ring_handle_t hal_ring_hdl,
60 				hal_ring_desc_t ring_desc,
61 				struct dp_rx_desc *rx_desc)
62 {
63 	hal_soc_handle_t hal_soc = soc->hal_soc;
64 
65 	dp_rx_desc_dump(rx_desc);
66 	hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
67 	hal_srng_dump_ring(hal_soc, hal_ring_hdl);
68 	qdf_assert_always(0);
69 }
70 #endif
71 
72 #ifndef QCA_HOST_MODE_WIFI_DISABLED
73 #ifdef RX_DESC_SANITY_WAR
74 QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
75 			     hal_ring_handle_t hal_ring_hdl,
76 			     hal_ring_desc_t ring_desc,
77 			     struct dp_rx_desc *rx_desc)
78 {
79 	uint8_t return_buffer_manager;
80 
81 	if (qdf_unlikely(!rx_desc)) {
82 		/*
83 		 * This is an unlikely case where the cookie obtained
84 		 * from the ring_desc is invalid and hence we are not
85 		 * able to find the corresponding rx_desc
86 		 */
87 		goto fail;
88 	}
89 
90 	return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
91 	if (qdf_unlikely(!(return_buffer_manager ==
92 				HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
93 			 return_buffer_manager ==
94 				HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
95 		goto fail;
96 	}
97 
98 	return QDF_STATUS_SUCCESS;
99 
100 fail:
101 	DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
102 	dp_err("Ring Desc:");
103 	hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
104 				ring_desc);
105 	return QDF_STATUS_E_NULL_VALUE;
106 
107 }
108 #endif
109 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
110 
111 /**
112  * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
113  *
114  * @dp_soc: struct dp_soc *
115  * @nbuf_frag_info_t: nbuf frag info
116  * @dp_pdev: struct dp_pdev *
117  * @rx_desc_pool: Rx desc pool
118  *
119  * Return: QDF_STATUS
120  */
121 #ifdef DP_RX_MON_MEM_FRAG
122 static inline QDF_STATUS
123 dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
124 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
125 			   struct dp_pdev *dp_pdev,
126 			   struct rx_desc_pool *rx_desc_pool)
127 {
128 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
129 
130 	(nbuf_frag_info_t->virt_addr).vaddr =
131 			qdf_frag_alloc(NULL, rx_desc_pool->buf_size);
132 
133 	if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
134 		dp_err("Frag alloc failed");
135 		DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
136 		return QDF_STATUS_E_NOMEM;
137 	}
138 
139 	ret = qdf_mem_map_page(dp_soc->osdev,
140 			       (nbuf_frag_info_t->virt_addr).vaddr,
141 			       QDF_DMA_FROM_DEVICE,
142 			       rx_desc_pool->buf_size,
143 			       &nbuf_frag_info_t->paddr);
144 
145 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
146 		qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
147 		dp_err("Frag map failed");
148 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
149 		return QDF_STATUS_E_FAULT;
150 	}
151 
152 	return QDF_STATUS_SUCCESS;
153 }
154 #else
155 static inline QDF_STATUS
156 dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
157 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
158 			   struct dp_pdev *dp_pdev,
159 			   struct rx_desc_pool *rx_desc_pool)
160 {
161 	return QDF_STATUS_SUCCESS;
162 }
163 #endif /* DP_RX_MON_MEM_FRAG */
164 
165 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
166 /**
167  * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
168  * @soc: Datapath soc structure
169  * @ring_num: Refill ring number
170  * @num_req: number of buffers requested for refill
171  * @num_refill: number of buffers refilled
172  *
173  * Returns: None
174  */
175 static inline void
176 dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
177 			       hal_ring_handle_t hal_ring_hdl,
178 			       uint32_t num_req, uint32_t num_refill)
179 {
180 	struct dp_refill_info_record *record;
181 	uint32_t idx;
182 	uint32_t tp;
183 	uint32_t hp;
184 
185 	if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
186 			 !soc->rx_refill_ring_history[ring_num]))
187 		return;
188 
189 	idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
190 					DP_RX_REFILL_HIST_MAX);
191 
192 	/* No NULL check needed for record since its an array */
193 	record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
194 
195 	hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
196 	record->timestamp = qdf_get_log_timestamp();
197 	record->num_req = num_req;
198 	record->num_refill = num_refill;
199 	record->hp = hp;
200 	record->tp = tp;
201 }
202 #else
203 static inline void
204 dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
205 			       hal_ring_handle_t hal_ring_hdl,
206 			       uint32_t num_req, uint32_t num_refill)
207 {
208 }
209 #endif
210 
211 /**
212  * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
213  *
214  * @dp_soc: struct dp_soc *
215  * @mac_id: Mac id
216  * @num_entries_avail: num_entries_avail
217  * @nbuf_frag_info_t: nbuf frag info
218  * @dp_pdev: struct dp_pdev *
219  * @rx_desc_pool: Rx desc pool
220  *
221  * Return: QDF_STATUS
222  */
223 static inline QDF_STATUS
224 dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
225 				     uint32_t mac_id,
226 				     uint32_t num_entries_avail,
227 				     struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
228 				     struct dp_pdev *dp_pdev,
229 				     struct rx_desc_pool *rx_desc_pool)
230 {
231 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
232 
233 	(nbuf_frag_info_t->virt_addr).nbuf =
234 		dp_rx_buffer_pool_nbuf_alloc(dp_soc,
235 					     mac_id,
236 					     rx_desc_pool,
237 					     num_entries_avail);
238 	if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
239 		dp_err("nbuf alloc failed");
240 		DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
241 		return QDF_STATUS_E_NOMEM;
242 	}
243 
244 	ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
245 					 nbuf_frag_info_t);
246 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
247 		dp_rx_buffer_pool_nbuf_free(dp_soc,
248 			(nbuf_frag_info_t->virt_addr).nbuf, mac_id);
249 		dp_err("nbuf map failed");
250 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
251 		return QDF_STATUS_E_FAULT;
252 	}
253 
254 	nbuf_frag_info_t->paddr =
255 		qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
256 
257 	dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
258 			       (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
259 			       rx_desc_pool->buf_size,
260 			       true);
261 
262 	ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
263 			     &nbuf_frag_info_t->paddr,
264 			     rx_desc_pool);
265 	if (ret == QDF_STATUS_E_FAILURE) {
266 		DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
267 		return QDF_STATUS_E_ADDRNOTAVAIL;
268 	}
269 
270 	return QDF_STATUS_SUCCESS;
271 }
272 
273 #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
274 QDF_STATUS
275 __dp_rx_buffers_no_map_lt_replenish(struct dp_soc *soc, uint32_t mac_id,
276 				    struct dp_srng *dp_rxdma_srng,
277 				    struct rx_desc_pool *rx_desc_pool)
278 {
279 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
280 	uint32_t count;
281 	void *rxdma_ring_entry;
282 	union dp_rx_desc_list_elem_t *next = NULL;
283 	void *rxdma_srng;
284 	qdf_nbuf_t nbuf;
285 	qdf_dma_addr_t paddr;
286 	uint16_t num_entries_avail = 0;
287 	uint16_t num_alloc_desc = 0;
288 	union dp_rx_desc_list_elem_t *desc_list = NULL;
289 	union dp_rx_desc_list_elem_t *tail = NULL;
290 	int sync_hw_ptr = 0;
291 
292 	rxdma_srng = dp_rxdma_srng->hal_srng;
293 
294 	if (qdf_unlikely(!dp_pdev)) {
295 		dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id);
296 		return QDF_STATUS_E_FAILURE;
297 	}
298 
299 	if (qdf_unlikely(!rxdma_srng)) {
300 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
301 		return QDF_STATUS_E_FAILURE;
302 	}
303 
304 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
305 
306 	num_entries_avail = hal_srng_src_num_avail(soc->hal_soc,
307 						   rxdma_srng,
308 						   sync_hw_ptr);
309 
310 	dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
311 		    soc, num_entries_avail);
312 
313 	if (qdf_unlikely(num_entries_avail <
314 			 ((dp_rxdma_srng->num_entries * 3) / 4))) {
315 		hal_srng_access_end(soc->hal_soc, rxdma_srng);
316 		return QDF_STATUS_E_FAILURE;
317 	}
318 
319 	DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
320 
321 	num_alloc_desc = dp_rx_get_free_desc_list(soc, mac_id,
322 						  rx_desc_pool,
323 						  num_entries_avail,
324 						  &desc_list,
325 						  &tail);
326 
327 	if (!num_alloc_desc) {
328 		dp_rx_err("%pK: no free rx_descs in freelist", soc);
329 		DP_STATS_INC(dp_pdev, err.desc_lt_alloc_fail,
330 			     num_entries_avail);
331 		hal_srng_access_end(soc->hal_soc, rxdma_srng);
332 		return QDF_STATUS_E_NOMEM;
333 	}
334 
335 	for (count = 0; count < num_alloc_desc; count++) {
336 		next = desc_list->next;
337 		qdf_prefetch(next);
338 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
339 		if (qdf_unlikely(!nbuf)) {
340 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
341 			break;
342 		}
343 
344 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
345 					       rx_desc_pool->buf_size);
346 
347 		rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc,
348 							 rxdma_srng);
349 		qdf_assert_always(rxdma_ring_entry);
350 
351 		desc_list->rx_desc.nbuf = nbuf;
352 		desc_list->rx_desc.rx_buf_start = nbuf->data;
353 		desc_list->rx_desc.unmapped = 0;
354 
355 		/* rx_desc.in_use should be zero at this time*/
356 		qdf_assert_always(desc_list->rx_desc.in_use == 0);
357 
358 		desc_list->rx_desc.in_use = 1;
359 		desc_list->rx_desc.in_err_state = 0;
360 
361 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
362 					     paddr,
363 					     desc_list->rx_desc.cookie,
364 					     rx_desc_pool->owner);
365 
366 		desc_list = next;
367 	}
368 	qdf_dsb();
369 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
370 
371 	/* No need to count the number of bytes received during replenish.
372 	 * Therefore set replenish.pkts.bytes as 0.
373 	 */
374 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
375 	DP_STATS_INC(dp_pdev, buf_freelist, (num_alloc_desc - count));
376 	/*
377 	 * add any available free desc back to the free list
378 	 */
379 	if (desc_list)
380 		dp_rx_add_desc_list_to_free_list(soc, &desc_list, &tail,
381 						 mac_id, rx_desc_pool);
382 
383 	return QDF_STATUS_SUCCESS;
384 }
385 
386 QDF_STATUS
387 __dp_rx_buffers_no_map_replenish(struct dp_soc *soc, uint32_t mac_id,
388 				 struct dp_srng *dp_rxdma_srng,
389 				 struct rx_desc_pool *rx_desc_pool,
390 				 uint32_t num_req_buffers,
391 				 union dp_rx_desc_list_elem_t **desc_list,
392 				 union dp_rx_desc_list_elem_t **tail)
393 {
394 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
395 	uint32_t count;
396 	void *rxdma_ring_entry;
397 	union dp_rx_desc_list_elem_t *next;
398 	void *rxdma_srng;
399 	qdf_nbuf_t nbuf;
400 	qdf_dma_addr_t paddr;
401 
402 	rxdma_srng = dp_rxdma_srng->hal_srng;
403 
404 	if (qdf_unlikely(!dp_pdev)) {
405 		dp_rx_err("%pK: pdev is null for mac_id = %d",
406 			  soc, mac_id);
407 		return QDF_STATUS_E_FAILURE;
408 	}
409 
410 	if (qdf_unlikely(!rxdma_srng)) {
411 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
412 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
413 		return QDF_STATUS_E_FAILURE;
414 	}
415 
416 	dp_rx_debug("%pK: requested %d buffers for replenish",
417 		    soc, num_req_buffers);
418 
419 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
420 
421 	for (count = 0; count < num_req_buffers; count++) {
422 		next = (*desc_list)->next;
423 		qdf_prefetch(next);
424 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
425 		if (qdf_unlikely(!nbuf)) {
426 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
427 			break;
428 		}
429 
430 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
431 					       rx_desc_pool->buf_size);
432 		rxdma_ring_entry = (struct dp_buffer_addr_info *)
433 			hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
434 		if (!rxdma_ring_entry)
435 			break;
436 
437 		qdf_assert_always(rxdma_ring_entry);
438 
439 		(*desc_list)->rx_desc.nbuf = nbuf;
440 		(*desc_list)->rx_desc.rx_buf_start = nbuf->data;
441 		(*desc_list)->rx_desc.unmapped = 0;
442 
443 		/* rx_desc.in_use should be zero at this time*/
444 		qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
445 
446 		(*desc_list)->rx_desc.in_use = 1;
447 		(*desc_list)->rx_desc.in_err_state = 0;
448 
449 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
450 					     paddr,
451 					     (*desc_list)->rx_desc.cookie,
452 					     rx_desc_pool->owner);
453 
454 		*desc_list = next;
455 	}
456 	qdf_dsb();
457 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
458 
459 	/* No need to count the number of bytes received during replenish.
460 	 * Therefore set replenish.pkts.bytes as 0.
461 	 */
462 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
463 	DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
464 	/*
465 	 * add any available free desc back to the free list
466 	 */
467 	if (*desc_list)
468 		dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
469 						 mac_id, rx_desc_pool);
470 
471 	return QDF_STATUS_SUCCESS;
472 }
473 
474 QDF_STATUS __dp_pdev_rx_buffers_no_map_attach(struct dp_soc *soc,
475 					      uint32_t mac_id,
476 					      struct dp_srng *dp_rxdma_srng,
477 					      struct rx_desc_pool *rx_desc_pool,
478 					      uint32_t num_req_buffers)
479 {
480 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
481 	uint32_t count;
482 	uint32_t nr_descs = 0;
483 	void *rxdma_ring_entry;
484 	union dp_rx_desc_list_elem_t *next;
485 	void *rxdma_srng;
486 	qdf_nbuf_t nbuf;
487 	qdf_dma_addr_t paddr;
488 	union dp_rx_desc_list_elem_t *desc_list = NULL;
489 	union dp_rx_desc_list_elem_t *tail = NULL;
490 
491 	rxdma_srng = dp_rxdma_srng->hal_srng;
492 
493 	if (qdf_unlikely(!dp_pdev)) {
494 		dp_rx_err("%pK: pdev is null for mac_id = %d",
495 			  soc, mac_id);
496 		return QDF_STATUS_E_FAILURE;
497 	}
498 
499 	if (qdf_unlikely(!rxdma_srng)) {
500 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
501 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
502 		return QDF_STATUS_E_FAILURE;
503 	}
504 
505 	dp_rx_debug("%pK: requested %d buffers for replenish",
506 		    soc, num_req_buffers);
507 
508 	nr_descs = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool,
509 					    num_req_buffers, &desc_list, &tail);
510 	if (!nr_descs) {
511 		dp_err("no free rx_descs in freelist");
512 		DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
513 		return QDF_STATUS_E_NOMEM;
514 	}
515 
516 	dp_debug("got %u RX descs for driver attach", nr_descs);
517 
518 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
519 
520 	for (count = 0; count < nr_descs; count++) {
521 		next = desc_list->next;
522 		qdf_prefetch(next);
523 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
524 		if (qdf_unlikely(!nbuf)) {
525 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
526 			break;
527 		}
528 
529 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
530 					       rx_desc_pool->buf_size);
531 		rxdma_ring_entry = (struct dp_buffer_addr_info *)
532 			hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
533 		if (!rxdma_ring_entry)
534 			break;
535 
536 		qdf_assert_always(rxdma_ring_entry);
537 
538 		desc_list->rx_desc.nbuf = nbuf;
539 		desc_list->rx_desc.rx_buf_start = nbuf->data;
540 		desc_list->rx_desc.unmapped = 0;
541 
542 		/* rx_desc.in_use should be zero at this time*/
543 		qdf_assert_always(desc_list->rx_desc.in_use == 0);
544 
545 		desc_list->rx_desc.in_use = 1;
546 		desc_list->rx_desc.in_err_state = 0;
547 
548 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
549 					     paddr,
550 					     desc_list->rx_desc.cookie,
551 					     rx_desc_pool->owner);
552 
553 		desc_list = next;
554 	}
555 	qdf_dsb();
556 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
557 
558 	/* No need to count the number of bytes received during replenish.
559 	 * Therefore set replenish.pkts.bytes as 0.
560 	 */
561 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
562 
563 	return QDF_STATUS_SUCCESS;
564 }
565 #endif
566 
567 /*
568  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
569  *			       called during dp rx initialization
570  *			       and at the end of dp_rx_process.
571  *
572  * @soc: core txrx main context
573  * @mac_id: mac_id which is one of 3 mac_ids
574  * @dp_rxdma_srng: dp rxdma circular ring
575  * @rx_desc_pool: Pointer to free Rx descriptor pool
576  * @num_req_buffers: number of buffer to be replenished
577  * @desc_list: list of descs if called from dp_rx_process
578  *	       or NULL during dp rx initialization or out of buffer
579  *	       interrupt.
580  * @tail: tail of descs list
581  * @func_name: name of the caller function
582  * Return: return success or failure
583  */
584 QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
585 				struct dp_srng *dp_rxdma_srng,
586 				struct rx_desc_pool *rx_desc_pool,
587 				uint32_t num_req_buffers,
588 				union dp_rx_desc_list_elem_t **desc_list,
589 				union dp_rx_desc_list_elem_t **tail,
590 				const char *func_name)
591 {
592 	uint32_t num_alloc_desc;
593 	uint16_t num_desc_to_free = 0;
594 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
595 	uint32_t num_entries_avail;
596 	uint32_t count;
597 	int sync_hw_ptr = 1;
598 	struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
599 	void *rxdma_ring_entry;
600 	union dp_rx_desc_list_elem_t *next;
601 	QDF_STATUS ret;
602 	void *rxdma_srng;
603 
604 	rxdma_srng = dp_rxdma_srng->hal_srng;
605 
606 	if (qdf_unlikely(!dp_pdev)) {
607 		dp_rx_err("%pK: pdev is null for mac_id = %d",
608 			  dp_soc, mac_id);
609 		return QDF_STATUS_E_FAILURE;
610 	}
611 
612 	if (qdf_unlikely(!rxdma_srng)) {
613 		dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
614 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
615 		return QDF_STATUS_E_FAILURE;
616 	}
617 
618 	dp_rx_debug("%pK: requested %d buffers for replenish",
619 		    dp_soc, num_req_buffers);
620 
621 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
622 
623 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
624 						   rxdma_srng,
625 						   sync_hw_ptr);
626 
627 	dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
628 		    dp_soc, num_entries_avail);
629 
630 	if (!(*desc_list) && (num_entries_avail >
631 		((dp_rxdma_srng->num_entries * 3) / 4))) {
632 		num_req_buffers = num_entries_avail;
633 	} else if (num_entries_avail < num_req_buffers) {
634 		num_desc_to_free = num_req_buffers - num_entries_avail;
635 		num_req_buffers = num_entries_avail;
636 	}
637 
638 	if (qdf_unlikely(!num_req_buffers)) {
639 		num_desc_to_free = num_req_buffers;
640 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
641 		goto free_descs;
642 	}
643 
644 	/*
645 	 * if desc_list is NULL, allocate the descs from freelist
646 	 */
647 	if (!(*desc_list)) {
648 		num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
649 							  rx_desc_pool,
650 							  num_req_buffers,
651 							  desc_list,
652 							  tail);
653 
654 		if (!num_alloc_desc) {
655 			dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
656 			DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
657 					num_req_buffers);
658 			hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
659 			return QDF_STATUS_E_NOMEM;
660 		}
661 
662 		dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
663 		num_req_buffers = num_alloc_desc;
664 	}
665 
666 
667 	count = 0;
668 
669 	while (count < num_req_buffers) {
670 		/* Flag is set while pdev rx_desc_pool initialization */
671 		if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
672 			ret = dp_pdev_frag_alloc_and_map(dp_soc,
673 							 &nbuf_frag_info,
674 							 dp_pdev,
675 							 rx_desc_pool);
676 		else
677 			ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
678 								   mac_id,
679 					num_entries_avail, &nbuf_frag_info,
680 					dp_pdev, rx_desc_pool);
681 
682 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
683 			if (qdf_unlikely(ret  == QDF_STATUS_E_FAULT))
684 				continue;
685 			break;
686 		}
687 
688 		count++;
689 
690 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
691 							 rxdma_srng);
692 		qdf_assert_always(rxdma_ring_entry);
693 
694 		next = (*desc_list)->next;
695 
696 		/* Flag is set while pdev rx_desc_pool initialization */
697 		if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
698 			dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
699 					     &nbuf_frag_info);
700 		else
701 			dp_rx_desc_prep(&((*desc_list)->rx_desc),
702 					&nbuf_frag_info);
703 
704 		/* rx_desc.in_use should be zero at this time*/
705 		qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
706 
707 		(*desc_list)->rx_desc.in_use = 1;
708 		(*desc_list)->rx_desc.in_err_state = 0;
709 		dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
710 					   func_name, RX_DESC_REPLENISHED);
711 		dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
712 				 nbuf_frag_info.virt_addr.nbuf,
713 				 (unsigned long long)(nbuf_frag_info.paddr),
714 				 (*desc_list)->rx_desc.cookie);
715 
716 		hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
717 					     nbuf_frag_info.paddr,
718 						(*desc_list)->rx_desc.cookie,
719 						rx_desc_pool->owner);
720 
721 		*desc_list = next;
722 
723 	}
724 
725 	dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
726 				       num_req_buffers, count);
727 
728 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
729 
730 	dp_rx_schedule_refill_thread(dp_soc);
731 
732 	dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
733 			 count, num_desc_to_free);
734 
735 	/* No need to count the number of bytes received during replenish.
736 	 * Therefore set replenish.pkts.bytes as 0.
737 	 */
738 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
739 
740 free_descs:
741 	DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
742 	/*
743 	 * add any available free desc back to the free list
744 	 */
745 	if (*desc_list)
746 		dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
747 			mac_id, rx_desc_pool);
748 
749 	return QDF_STATUS_SUCCESS;
750 }
751 
752 qdf_export_symbol(__dp_rx_buffers_replenish);
753 
754 /*
755  * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
756  *				pkts to RAW mode simulation to
757  *				decapsulate the pkt.
758  *
759  * @vdev: vdev on which RAW mode is enabled
760  * @nbuf_list: list of RAW pkts to process
761  * @txrx_peer: peer object from which the pkt is rx
762  *
763  * Return: void
764  */
765 void
766 dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
767 		  struct dp_txrx_peer *txrx_peer)
768 {
769 	qdf_nbuf_t deliver_list_head = NULL;
770 	qdf_nbuf_t deliver_list_tail = NULL;
771 	qdf_nbuf_t nbuf;
772 
773 	nbuf = nbuf_list;
774 	while (nbuf) {
775 		qdf_nbuf_t next = qdf_nbuf_next(nbuf);
776 
777 		DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
778 
779 		DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
780 		DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1,
781 					      qdf_nbuf_len(nbuf));
782 		/*
783 		 * reset the chfrag_start and chfrag_end bits in nbuf cb
784 		 * as this is a non-amsdu pkt and RAW mode simulation expects
785 		 * these bit s to be 0 for non-amsdu pkt.
786 		 */
787 		if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
788 			 qdf_nbuf_is_rx_chfrag_end(nbuf)) {
789 			qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
790 			qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
791 		}
792 
793 		nbuf = next;
794 	}
795 
796 	vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
797 				 &deliver_list_tail);
798 
799 	vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
800 }
801 
802 #ifndef QCA_HOST_MODE_WIFI_DISABLED
803 #ifndef FEATURE_WDS
804 void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
805 		    struct dp_txrx_peer *ta_peer, qdf_nbuf_t nbuf)
806 {
807 }
808 #endif
809 
810 #ifdef QCA_SUPPORT_TX_MIN_RATES_FOR_SPECIAL_FRAMES
811 /*
812  * dp_classify_critical_pkts() - API for marking critical packets
813  * @soc: dp_soc context
814  * @vdev: vdev on which packet is to be sent
815  * @nbuf: nbuf that has to be classified
816  *
817  * The function parses the packet, identifies whether its a critical frame and
818  * marks QDF_NBUF_CB_TX_EXTRA_IS_CRITICAL bit in qdf_nbuf_cb for the nbuf.
819  * Code for marking which frames are CRITICAL is accessed via callback.
820  * EAPOL, ARP, DHCP, DHCPv6, ICMPv6 NS/NA are the typical critical frames.
821  *
822  * Return: None
823  */
824 static
825 void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
826 			       qdf_nbuf_t nbuf)
827 {
828 	if (vdev->tx_classify_critical_pkt_cb)
829 		vdev->tx_classify_critical_pkt_cb(vdev->osif_vdev, nbuf);
830 }
831 #else
832 static inline
833 void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
834 			       qdf_nbuf_t nbuf)
835 {
836 }
837 #endif
838 
839 #ifdef QCA_OL_TX_MULTIQ_SUPPORT
840 static inline
841 void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
842 {
843 	qdf_nbuf_set_queue_mapping(nbuf, ring_id);
844 }
845 #else
846 static inline
847 void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
848 {
849 }
850 #endif
851 
852 /*
853  * dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets
854  *
855  * @soc: core txrx main context
856  * @ta_peer	: source peer entry
857  * @rx_tlv_hdr	: start address of rx tlvs
858  * @nbuf	: nbuf that has to be intrabss forwarded
859  * @tid_stats	: tid stats pointer
860  *
861  * Return: bool: true if it is forwarded else false
862  */
863 bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
864 			     uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
865 			     struct cdp_tid_rx_stats *tid_stats)
866 {
867 	uint16_t len;
868 	qdf_nbuf_t nbuf_copy;
869 
870 	if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
871 					    nbuf))
872 		return true;
873 
874 	if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
875 		return false;
876 
877 	/* If the source peer in the isolation list
878 	 * then dont forward instead push to bridge stack
879 	 */
880 	if (dp_get_peer_isolation(ta_peer))
881 		return false;
882 
883 	nbuf_copy = qdf_nbuf_copy(nbuf);
884 	if (!nbuf_copy)
885 		return false;
886 
887 	len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
888 
889 	qdf_mem_set(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
890 	dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf_copy);
891 
892 	dp_rx_nbuf_queue_mapping_set(nbuf_copy, qdf_get_cpu());
893 	if (soc->arch_ops.dp_rx_intrabss_handle_nawds(soc, ta_peer, nbuf_copy,
894 						      tid_stats))
895 		return false;
896 
897 	if (dp_tx_send((struct cdp_soc_t *)soc,
898 		       ta_peer->vdev->vdev_id, nbuf_copy)) {
899 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
900 					      len);
901 		tid_stats->fail_cnt[INTRABSS_DROP]++;
902 		dp_rx_nbuf_free(nbuf_copy);
903 	} else {
904 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
905 					      len);
906 		tid_stats->intrabss_cnt++;
907 	}
908 	return false;
909 }
910 
911 /*
912  * dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets
913  *
914  * @soc: core txrx main context
915  * @ta_peer: source peer entry
916  * @tx_vdev_id: VDEV ID for Intra-BSS TX
917  * @rx_tlv_hdr: start address of rx tlvs
918  * @nbuf: nbuf that has to be intrabss forwarded
919  * @tid_stats: tid stats pointer
920  *
921  * Return: bool: true if it is forwarded else false
922  */
923 bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
924 			      uint8_t tx_vdev_id,
925 			      uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
926 			      struct cdp_tid_rx_stats *tid_stats)
927 {
928 	uint16_t len;
929 
930 	len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
931 
932 	/* linearize the nbuf just before we send to
933 	 * dp_tx_send()
934 	 */
935 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
936 		if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
937 			return false;
938 
939 		nbuf = qdf_nbuf_unshare(nbuf);
940 		if (!nbuf) {
941 			DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer,
942 						      rx.intra_bss.fail,
943 						      1, len);
944 			/* return true even though the pkt is
945 			 * not forwarded. Basically skb_unshare
946 			 * failed and we want to continue with
947 			 * next nbuf.
948 			 */
949 			tid_stats->fail_cnt[INTRABSS_DROP]++;
950 			return false;
951 		}
952 	}
953 
954 	qdf_mem_set(nbuf->cb, 0x0, sizeof(nbuf->cb));
955 	dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf);
956 
957 	dp_rx_nbuf_queue_mapping_set(nbuf, qdf_get_cpu());
958 	if (!dp_tx_send((struct cdp_soc_t *)soc,
959 			tx_vdev_id, nbuf)) {
960 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
961 					      len);
962 	} else {
963 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
964 					      len);
965 		tid_stats->fail_cnt[INTRABSS_DROP]++;
966 		return false;
967 	}
968 
969 	return true;
970 }
971 
972 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
973 
974 #ifdef MESH_MODE_SUPPORT
975 
976 /**
977  * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
978  *
979  * @vdev: DP Virtual device handle
980  * @nbuf: Buffer pointer
981  * @rx_tlv_hdr: start of rx tlv header
982  * @txrx_peer: pointer to peer
983  *
984  * This function allocated memory for mesh receive stats and fill the
985  * required stats. Stores the memory address in skb cb.
986  *
987  * Return: void
988  */
989 
990 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
991 			   uint8_t *rx_tlv_hdr,
992 			   struct dp_txrx_peer *txrx_peer)
993 {
994 	struct mesh_recv_hdr_s *rx_info = NULL;
995 	uint32_t pkt_type;
996 	uint32_t nss;
997 	uint32_t rate_mcs;
998 	uint32_t bw;
999 	uint8_t primary_chan_num;
1000 	uint32_t center_chan_freq;
1001 	struct dp_soc *soc = vdev->pdev->soc;
1002 	struct dp_peer *peer;
1003 	struct dp_peer *primary_link_peer;
1004 	struct dp_soc *link_peer_soc;
1005 	cdp_peer_stats_param_t buf = {0};
1006 
1007 	/* fill recv mesh stats */
1008 	rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
1009 
1010 	/* upper layers are resposible to free this memory */
1011 
1012 	if (!rx_info) {
1013 		dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
1014 			  vdev->pdev->soc);
1015 		DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
1016 		return;
1017 	}
1018 
1019 	rx_info->rs_flags = MESH_RXHDR_VER1;
1020 	if (qdf_nbuf_is_rx_chfrag_start(nbuf))
1021 		rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
1022 
1023 	if (qdf_nbuf_is_rx_chfrag_end(nbuf))
1024 		rx_info->rs_flags |= MESH_RX_LAST_MSDU;
1025 
1026 	peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_MESH);
1027 	if (peer) {
1028 		if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
1029 			rx_info->rs_flags |= MESH_RX_DECRYPTED;
1030 			rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
1031 								  rx_tlv_hdr);
1032 			if (vdev->osif_get_key)
1033 				vdev->osif_get_key(vdev->osif_vdev,
1034 						   &rx_info->rs_decryptkey[0],
1035 						   &peer->mac_addr.raw[0],
1036 						   rx_info->rs_keyix);
1037 		}
1038 
1039 		dp_peer_unref_delete(peer, DP_MOD_ID_MESH);
1040 	}
1041 
1042 	primary_link_peer = dp_get_primary_link_peer_by_id(soc,
1043 							   txrx_peer->peer_id,
1044 							   DP_MOD_ID_MESH);
1045 
1046 	if (qdf_likely(primary_link_peer)) {
1047 		link_peer_soc = primary_link_peer->vdev->pdev->soc;
1048 		dp_monitor_peer_get_stats_param(link_peer_soc,
1049 						primary_link_peer,
1050 						cdp_peer_rx_snr, &buf);
1051 		rx_info->rs_snr = buf.rx_snr;
1052 		dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_MESH);
1053 	}
1054 
1055 	rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
1056 
1057 	soc = vdev->pdev->soc;
1058 	primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
1059 	center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
1060 
1061 	if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
1062 		rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
1063 							soc->ctrl_psoc,
1064 							vdev->pdev->pdev_id,
1065 							center_chan_freq);
1066 	}
1067 	rx_info->rs_channel = primary_chan_num;
1068 	pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
1069 	rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
1070 	bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
1071 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
1072 	rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
1073 				(bw << 24);
1074 
1075 	qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
1076 
1077 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
1078 		FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
1079 						rx_info->rs_flags,
1080 						rx_info->rs_rssi,
1081 						rx_info->rs_channel,
1082 						rx_info->rs_ratephy1,
1083 						rx_info->rs_keyix,
1084 						rx_info->rs_snr);
1085 
1086 }
1087 
1088 /**
1089  * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
1090  *
1091  * @vdev: DP Virtual device handle
1092  * @nbuf: Buffer pointer
1093  * @rx_tlv_hdr: start of rx tlv header
1094  *
1095  * This checks if the received packet is matching any filter out
1096  * catogery and and drop the packet if it matches.
1097  *
1098  * Return: status(0 indicates drop, 1 indicate to no drop)
1099  */
1100 
1101 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1102 					uint8_t *rx_tlv_hdr)
1103 {
1104 	union dp_align_mac_addr mac_addr;
1105 	struct dp_soc *soc = vdev->pdev->soc;
1106 
1107 	if (qdf_unlikely(vdev->mesh_rx_filter)) {
1108 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
1109 			if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
1110 						  rx_tlv_hdr))
1111 				return  QDF_STATUS_SUCCESS;
1112 
1113 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
1114 			if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
1115 						  rx_tlv_hdr))
1116 				return  QDF_STATUS_SUCCESS;
1117 
1118 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
1119 			if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
1120 						   rx_tlv_hdr) &&
1121 			    !hal_rx_mpdu_get_to_ds(soc->hal_soc,
1122 						   rx_tlv_hdr))
1123 				return  QDF_STATUS_SUCCESS;
1124 
1125 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
1126 			if (hal_rx_mpdu_get_addr1(soc->hal_soc,
1127 						  rx_tlv_hdr,
1128 					&mac_addr.raw[0]))
1129 				return QDF_STATUS_E_FAILURE;
1130 
1131 			if (!qdf_mem_cmp(&mac_addr.raw[0],
1132 					&vdev->mac_addr.raw[0],
1133 					QDF_MAC_ADDR_SIZE))
1134 				return  QDF_STATUS_SUCCESS;
1135 		}
1136 
1137 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
1138 			if (hal_rx_mpdu_get_addr2(soc->hal_soc,
1139 						  rx_tlv_hdr,
1140 						  &mac_addr.raw[0]))
1141 				return QDF_STATUS_E_FAILURE;
1142 
1143 			if (!qdf_mem_cmp(&mac_addr.raw[0],
1144 					&vdev->mac_addr.raw[0],
1145 					QDF_MAC_ADDR_SIZE))
1146 				return  QDF_STATUS_SUCCESS;
1147 		}
1148 	}
1149 
1150 	return QDF_STATUS_E_FAILURE;
1151 }
1152 
1153 #else
1154 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1155 				uint8_t *rx_tlv_hdr, struct dp_txrx_peer *peer)
1156 {
1157 }
1158 
1159 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1160 					uint8_t *rx_tlv_hdr)
1161 {
1162 	return QDF_STATUS_E_FAILURE;
1163 }
1164 
1165 #endif
1166 
1167 #ifdef FEATURE_NAC_RSSI
1168 /**
1169  * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
1170  * @soc: DP SOC handle
1171  * @mpdu: mpdu for which peer is invalid
1172  * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
1173  * pool_id has same mapping)
1174  *
1175  * return: integer type
1176  */
1177 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
1178 				   uint8_t mac_id)
1179 {
1180 	struct dp_invalid_peer_msg msg;
1181 	struct dp_vdev *vdev = NULL;
1182 	struct dp_pdev *pdev = NULL;
1183 	struct ieee80211_frame *wh;
1184 	qdf_nbuf_t curr_nbuf, next_nbuf;
1185 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
1186 	uint8_t *rx_pkt_hdr = NULL;
1187 	int i = 0;
1188 
1189 	if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
1190 		dp_rx_debug("%pK: Drop decapped frames", soc);
1191 		goto free;
1192 	}
1193 
1194 	/* In RAW packet, packet header will be part of data */
1195 	rx_pkt_hdr = rx_tlv_hdr + soc->rx_pkt_tlv_size;
1196 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
1197 
1198 	if (!DP_FRAME_IS_DATA(wh)) {
1199 		dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
1200 		goto free;
1201 	}
1202 
1203 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
1204 		dp_rx_err("%pK: Invalid nbuf length", soc);
1205 		goto free;
1206 	}
1207 
1208 	/* In DMAC case the rx_desc_pools are common across PDEVs
1209 	 * so PDEV cannot be derived from the pool_id.
1210 	 *
1211 	 * link_id need to derived from the TLV tag word which is
1212 	 * disabled by default. For now adding a WAR to get vdev
1213 	 * with brute force this need to fixed with word based subscription
1214 	 * support is added by enabling TLV tag word
1215 	 */
1216 	if (soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
1217 		for (i = 0; i < MAX_PDEV_CNT; i++) {
1218 			pdev = soc->pdev_list[i];
1219 
1220 			if (!pdev || qdf_unlikely(pdev->is_pdev_down))
1221 				continue;
1222 
1223 			TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1224 				if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1225 						QDF_MAC_ADDR_SIZE) == 0) {
1226 					goto out;
1227 				}
1228 			}
1229 		}
1230 	} else {
1231 		pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1232 
1233 		if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
1234 			dp_rx_err("%pK: PDEV %s",
1235 				  soc, !pdev ? "not found" : "down");
1236 			goto free;
1237 		}
1238 
1239 		if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
1240 		    QDF_STATUS_SUCCESS)
1241 			return 0;
1242 
1243 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1244 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1245 					QDF_MAC_ADDR_SIZE) == 0) {
1246 				goto out;
1247 			}
1248 		}
1249 	}
1250 
1251 	if (!vdev) {
1252 		dp_rx_err("%pK: VDEV not found", soc);
1253 		goto free;
1254 	}
1255 out:
1256 	msg.wh = wh;
1257 	qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
1258 	msg.nbuf = mpdu;
1259 	msg.vdev_id = vdev->vdev_id;
1260 
1261 	/*
1262 	 * NOTE: Only valid for HKv1.
1263 	 * If smart monitor mode is enabled on RE, we are getting invalid
1264 	 * peer frames with RA as STA mac of RE and the TA not matching
1265 	 * with any NAC list or the the BSSID.Such frames need to dropped
1266 	 * in order to avoid HM_WDS false addition.
1267 	 */
1268 	if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
1269 		if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
1270 			dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
1271 				   soc, wh->i_addr1);
1272 			goto free;
1273 		}
1274 		pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
1275 				(struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
1276 				pdev->pdev_id, &msg);
1277 	}
1278 
1279 free:
1280 	/* Drop and free packet */
1281 	curr_nbuf = mpdu;
1282 	while (curr_nbuf) {
1283 		next_nbuf = qdf_nbuf_next(curr_nbuf);
1284 		dp_rx_nbuf_free(curr_nbuf);
1285 		curr_nbuf = next_nbuf;
1286 	}
1287 
1288 	return 0;
1289 }
1290 
1291 /**
1292  * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
1293  * @soc: DP SOC handle
1294  * @mpdu: mpdu for which peer is invalid
1295  * @mpdu_done: if an mpdu is completed
1296  * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
1297  * pool_id has same mapping)
1298  *
1299  * return: integer type
1300  */
1301 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
1302 					qdf_nbuf_t mpdu, bool mpdu_done,
1303 					uint8_t mac_id)
1304 {
1305 	/* Only trigger the process when mpdu is completed */
1306 	if (mpdu_done)
1307 		dp_rx_process_invalid_peer(soc, mpdu, mac_id);
1308 }
1309 #else
1310 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
1311 				   uint8_t mac_id)
1312 {
1313 	qdf_nbuf_t curr_nbuf, next_nbuf;
1314 	struct dp_pdev *pdev;
1315 	struct dp_vdev *vdev = NULL;
1316 	struct ieee80211_frame *wh;
1317 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
1318 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
1319 
1320 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
1321 
1322 	if (!DP_FRAME_IS_DATA(wh)) {
1323 		QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
1324 				   "only for data frames");
1325 		goto free;
1326 	}
1327 
1328 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
1329 		dp_rx_info_rl("%pK: Invalid nbuf length", soc);
1330 		goto free;
1331 	}
1332 
1333 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1334 	if (!pdev) {
1335 		dp_rx_info_rl("%pK: PDEV not found", soc);
1336 		goto free;
1337 	}
1338 
1339 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
1340 	DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
1341 		if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1342 				QDF_MAC_ADDR_SIZE) == 0) {
1343 			qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1344 			goto out;
1345 		}
1346 	}
1347 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1348 
1349 	if (!vdev) {
1350 		dp_rx_info_rl("%pK: VDEV not found", soc);
1351 		goto free;
1352 	}
1353 
1354 out:
1355 	if (soc->cdp_soc.ol_ops->rx_invalid_peer)
1356 		soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
1357 free:
1358 	/* reset the head and tail pointers */
1359 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1360 	if (pdev) {
1361 		pdev->invalid_peer_head_msdu = NULL;
1362 		pdev->invalid_peer_tail_msdu = NULL;
1363 	}
1364 
1365 	/* Drop and free packet */
1366 	curr_nbuf = mpdu;
1367 	while (curr_nbuf) {
1368 		next_nbuf = qdf_nbuf_next(curr_nbuf);
1369 		dp_rx_nbuf_free(curr_nbuf);
1370 		curr_nbuf = next_nbuf;
1371 	}
1372 
1373 	/* Reset the head and tail pointers */
1374 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1375 	if (pdev) {
1376 		pdev->invalid_peer_head_msdu = NULL;
1377 		pdev->invalid_peer_tail_msdu = NULL;
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
1384 					qdf_nbuf_t mpdu, bool mpdu_done,
1385 					uint8_t mac_id)
1386 {
1387 	/* Process the nbuf */
1388 	dp_rx_process_invalid_peer(soc, mpdu, mac_id);
1389 }
1390 #endif
1391 
1392 #ifndef QCA_HOST_MODE_WIFI_DISABLED
1393 
1394 #ifdef RECEIVE_OFFLOAD
1395 /**
1396  * dp_rx_print_offload_info() - Print offload info from RX TLV
1397  * @soc: dp soc handle
1398  * @msdu: MSDU for which the offload info is to be printed
1399  *
1400  * Return: None
1401  */
1402 static void dp_rx_print_offload_info(struct dp_soc *soc,
1403 				     qdf_nbuf_t msdu)
1404 {
1405 	dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
1406 	dp_verbose_debug("lro_eligible 0x%x",
1407 			 QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
1408 	dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
1409 	dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
1410 	dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
1411 	dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
1412 	dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
1413 	dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
1414 	dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
1415 	dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
1416 	dp_verbose_debug("---------------------------------------------------------");
1417 }
1418 
1419 /**
1420  * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
1421  * @soc: DP SOC handle
1422  * @rx_tlv: RX TLV received for the msdu
1423  * @msdu: msdu for which GRO info needs to be filled
1424  * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
1425  *
1426  * Return: None
1427  */
1428 void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
1429 			 qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
1430 {
1431 	struct hal_offload_info offload_info;
1432 
1433 	if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
1434 		return;
1435 
1436 	if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
1437 		return;
1438 
1439 	*rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
1440 
1441 	QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
1442 	QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
1443 	QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
1444 			hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
1445 						  rx_tlv);
1446 	QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
1447 	QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
1448 	QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
1449 	QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
1450 	QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
1451 	QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
1452 	QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
1453 
1454 	dp_rx_print_offload_info(soc, msdu);
1455 }
1456 #endif /* RECEIVE_OFFLOAD */
1457 
1458 /**
1459  * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
1460  *
1461  * @soc: DP soc handle
1462  * @nbuf: pointer to msdu.
1463  * @mpdu_len: mpdu length
1464  * @l3_pad_len: L3 padding length by HW
1465  *
1466  * Return: returns true if nbuf is last msdu of mpdu else retuns false.
1467  */
1468 static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
1469 					 qdf_nbuf_t nbuf,
1470 					 uint16_t *mpdu_len,
1471 					 uint32_t l3_pad_len)
1472 {
1473 	bool last_nbuf;
1474 	uint32_t pkt_hdr_size;
1475 
1476 	pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
1477 
1478 	if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
1479 		qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
1480 		last_nbuf = false;
1481 		*mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
1482 	} else {
1483 		qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
1484 		last_nbuf = true;
1485 		*mpdu_len = 0;
1486 	}
1487 
1488 	return last_nbuf;
1489 }
1490 
1491 /**
1492  * dp_get_l3_hdr_pad_len() - get L3 header padding length.
1493  *
1494  * @soc: DP soc handle
1495  * @nbuf: pointer to msdu.
1496  *
1497  * Return: returns padding length in bytes.
1498  */
1499 static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
1500 					     qdf_nbuf_t nbuf)
1501 {
1502 	uint32_t l3_hdr_pad = 0;
1503 	uint8_t *rx_tlv_hdr;
1504 	struct hal_rx_msdu_metadata msdu_metadata;
1505 
1506 	while (nbuf) {
1507 		if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
1508 			/* scattered msdu end with continuation is 0 */
1509 			rx_tlv_hdr = qdf_nbuf_data(nbuf);
1510 			hal_rx_msdu_metadata_get(soc->hal_soc,
1511 						 rx_tlv_hdr,
1512 						 &msdu_metadata);
1513 			l3_hdr_pad = msdu_metadata.l3_hdr_pad;
1514 			break;
1515 		}
1516 		nbuf = nbuf->next;
1517 	}
1518 
1519 	return l3_hdr_pad;
1520 }
1521 
1522 /**
1523  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
1524  *		     multiple nbufs.
1525  * @soc: DP SOC handle
1526  * @nbuf: pointer to the first msdu of an amsdu.
1527  *
1528  * This function implements the creation of RX frag_list for cases
1529  * where an MSDU is spread across multiple nbufs.
1530  *
1531  * Return: returns the head nbuf which contains complete frag_list.
1532  */
1533 qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
1534 {
1535 	qdf_nbuf_t parent, frag_list, next = NULL;
1536 	uint16_t frag_list_len = 0;
1537 	uint16_t mpdu_len;
1538 	bool last_nbuf;
1539 	uint32_t l3_hdr_pad_offset = 0;
1540 
1541 	/*
1542 	 * Use msdu len got from REO entry descriptor instead since
1543 	 * there is case the RX PKT TLV is corrupted while msdu_len
1544 	 * from REO descriptor is right for non-raw RX scatter msdu.
1545 	 */
1546 	mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1547 
1548 	/*
1549 	 * this is a case where the complete msdu fits in one single nbuf.
1550 	 * in this case HW sets both start and end bit and we only need to
1551 	 * reset these bits for RAW mode simulator to decap the pkt
1552 	 */
1553 	if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
1554 					qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1555 		qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
1556 		qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
1557 		return nbuf;
1558 	}
1559 
1560 	l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
1561 	/*
1562 	 * This is a case where we have multiple msdus (A-MSDU) spread across
1563 	 * multiple nbufs. here we create a fraglist out of these nbufs.
1564 	 *
1565 	 * the moment we encounter a nbuf with continuation bit set we
1566 	 * know for sure we have an MSDU which is spread across multiple
1567 	 * nbufs. We loop through and reap nbufs till we reach last nbuf.
1568 	 */
1569 	parent = nbuf;
1570 	frag_list = nbuf->next;
1571 	nbuf = nbuf->next;
1572 
1573 	/*
1574 	 * set the start bit in the first nbuf we encounter with continuation
1575 	 * bit set. This has the proper mpdu length set as it is the first
1576 	 * msdu of the mpdu. this becomes the parent nbuf and the subsequent
1577 	 * nbufs will form the frag_list of the parent nbuf.
1578 	 */
1579 	qdf_nbuf_set_rx_chfrag_start(parent, 1);
1580 	/*
1581 	 * L3 header padding is only needed for the 1st buffer
1582 	 * in a scattered msdu
1583 	 */
1584 	last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
1585 					  l3_hdr_pad_offset);
1586 
1587 	/*
1588 	 * MSDU cont bit is set but reported MPDU length can fit
1589 	 * in to single buffer
1590 	 *
1591 	 * Increment error stats and avoid SG list creation
1592 	 */
1593 	if (last_nbuf) {
1594 		DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
1595 		qdf_nbuf_pull_head(parent,
1596 				   soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
1597 		return parent;
1598 	}
1599 
1600 	/*
1601 	 * this is where we set the length of the fragments which are
1602 	 * associated to the parent nbuf. We iterate through the frag_list
1603 	 * till we hit the last_nbuf of the list.
1604 	 */
1605 	do {
1606 		last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
1607 		qdf_nbuf_pull_head(nbuf,
1608 				   soc->rx_pkt_tlv_size);
1609 		frag_list_len += qdf_nbuf_len(nbuf);
1610 
1611 		if (last_nbuf) {
1612 			next = nbuf->next;
1613 			nbuf->next = NULL;
1614 			break;
1615 		} else if (qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1616 			dp_err("Invalid packet length\n");
1617 			qdf_assert_always(0);
1618 		}
1619 		nbuf = nbuf->next;
1620 	} while (!last_nbuf);
1621 
1622 	qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
1623 	qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
1624 	parent->next = next;
1625 
1626 	qdf_nbuf_pull_head(parent,
1627 			   soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
1628 	return parent;
1629 }
1630 
1631 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
1632 
1633 #ifdef QCA_PEER_EXT_STATS
1634 /*
1635  * dp_rx_compute_tid_delay - Computer per TID delay stats
1636  * @peer: DP soc context
1637  * @nbuf: NBuffer
1638  *
1639  * Return: Void
1640  */
1641 void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
1642 			     qdf_nbuf_t nbuf)
1643 {
1644 	struct cdp_delay_rx_stats  *rx_delay = &stats->rx_delay;
1645 	uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
1646 
1647 	dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
1648 }
1649 #endif /* QCA_PEER_EXT_STATS */
1650 
1651 /**
1652  * dp_rx_compute_delay() - Compute and fill in all timestamps
1653  *				to pass in correct fields
1654  *
1655  * @vdev: pdev handle
1656  * @tx_desc: tx descriptor
1657  * @tid: tid value
1658  * Return: none
1659  */
1660 void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
1661 {
1662 	uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
1663 	int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
1664 	uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
1665 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
1666 	uint32_t interframe_delay =
1667 		(uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
1668 	struct cdp_tid_rx_stats *rstats =
1669 		&vdev->pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
1670 
1671 	dp_update_delay_stats(NULL, rstats, to_stack, tid,
1672 			      CDP_DELAY_STATS_REAP_STACK, ring_id, false);
1673 	/*
1674 	 * Update interframe delay stats calculated at deliver_data_ol point.
1675 	 * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
1676 	 * interframe delay will not be calculate correctly for 1st frame.
1677 	 * On the other side, this will help in avoiding extra per packet check
1678 	 * of vdev->prev_rx_deliver_tstamp.
1679 	 */
1680 	dp_update_delay_stats(NULL, rstats, interframe_delay, tid,
1681 			      CDP_DELAY_STATS_RX_INTERFRAME, ring_id, false);
1682 	vdev->prev_rx_deliver_tstamp = current_ts;
1683 }
1684 
1685 /**
1686  * dp_rx_drop_nbuf_list() - drop an nbuf list
1687  * @pdev: dp pdev reference
1688  * @buf_list: buffer list to be dropepd
1689  *
1690  * Return: int (number of bufs dropped)
1691  */
1692 static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
1693 				       qdf_nbuf_t buf_list)
1694 {
1695 	struct cdp_tid_rx_stats *stats = NULL;
1696 	uint8_t tid = 0, ring_id = 0;
1697 	int num_dropped = 0;
1698 	qdf_nbuf_t buf, next_buf;
1699 
1700 	buf = buf_list;
1701 	while (buf) {
1702 		ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
1703 		next_buf = qdf_nbuf_queue_next(buf);
1704 		tid = qdf_nbuf_get_tid_val(buf);
1705 		if (qdf_likely(pdev)) {
1706 			stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
1707 			stats->fail_cnt[INVALID_PEER_VDEV]++;
1708 			stats->delivered_to_stack--;
1709 		}
1710 		dp_rx_nbuf_free(buf);
1711 		buf = next_buf;
1712 		num_dropped++;
1713 	}
1714 
1715 	return num_dropped;
1716 }
1717 
1718 #ifdef QCA_SUPPORT_WDS_EXTENDED
1719 /**
1720  * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
1721  * @soc: core txrx main context
1722  * @vdev: vdev
1723  * @txrx_peer: txrx peer
1724  * @nbuf_head: skb list head
1725  *
1726  * Return: true if packet is delivered to netdev per STA.
1727  */
1728 static inline bool
1729 dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
1730 			   struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
1731 {
1732 	/*
1733 	 * When extended WDS is disabled, frames are sent to AP netdevice.
1734 	 */
1735 	if (qdf_likely(!vdev->wds_ext_enabled))
1736 		return false;
1737 
1738 	/*
1739 	 * There can be 2 cases:
1740 	 * 1. Send frame to parent netdev if its not for netdev per STA
1741 	 * 2. If frame is meant for netdev per STA:
1742 	 *    a. Send frame to appropriate netdev using registered fp.
1743 	 *    b. If fp is NULL, drop the frames.
1744 	 */
1745 	if (!txrx_peer->wds_ext.init)
1746 		return false;
1747 
1748 	if (txrx_peer->osif_rx)
1749 		txrx_peer->osif_rx(txrx_peer->wds_ext.osif_peer, nbuf_head);
1750 	else
1751 		dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
1752 
1753 	return true;
1754 }
1755 
1756 #else
1757 static inline bool
1758 dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
1759 			   struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
1760 {
1761 	return false;
1762 }
1763 #endif
1764 
1765 #ifdef PEER_CACHE_RX_PKTS
1766 /**
1767  * dp_rx_flush_rx_cached() - flush cached rx frames
1768  * @peer: peer
1769  * @drop: flag to drop frames or forward to net stack
1770  *
1771  * Return: None
1772  */
1773 void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
1774 {
1775 	struct dp_peer_cached_bufq *bufqi;
1776 	struct dp_rx_cached_buf *cache_buf = NULL;
1777 	ol_txrx_rx_fp data_rx = NULL;
1778 	int num_buff_elem;
1779 	QDF_STATUS status;
1780 
1781 	/*
1782 	 * Flush dp cached frames only for mld peers and legacy peers, as
1783 	 * link peers don't store cached frames
1784 	 */
1785 	if (IS_MLO_DP_LINK_PEER(peer))
1786 		return;
1787 
1788 	if (!peer->txrx_peer) {
1789 		dp_err("txrx_peer NULL!! peer mac_addr("QDF_MAC_ADDR_FMT")",
1790 			QDF_MAC_ADDR_REF(peer->mac_addr.raw));
1791 		return;
1792 	}
1793 
1794 	if (qdf_atomic_inc_return(&peer->txrx_peer->flush_in_progress) > 1) {
1795 		qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
1796 		return;
1797 	}
1798 
1799 	qdf_spin_lock_bh(&peer->peer_info_lock);
1800 	if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
1801 		data_rx = peer->vdev->osif_rx;
1802 	else
1803 		drop = true;
1804 	qdf_spin_unlock_bh(&peer->peer_info_lock);
1805 
1806 	bufqi = &peer->txrx_peer->bufq_info;
1807 
1808 	qdf_spin_lock_bh(&bufqi->bufq_lock);
1809 	qdf_list_remove_front(&bufqi->cached_bufq,
1810 			      (qdf_list_node_t **)&cache_buf);
1811 	while (cache_buf) {
1812 		num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
1813 								cache_buf->buf);
1814 		bufqi->entries -= num_buff_elem;
1815 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
1816 		if (drop) {
1817 			bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
1818 							      cache_buf->buf);
1819 		} else {
1820 			/* Flush the cached frames to OSIF DEV */
1821 			status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
1822 			if (status != QDF_STATUS_SUCCESS)
1823 				bufqi->dropped = dp_rx_drop_nbuf_list(
1824 							peer->vdev->pdev,
1825 							cache_buf->buf);
1826 		}
1827 		qdf_mem_free(cache_buf);
1828 		cache_buf = NULL;
1829 		qdf_spin_lock_bh(&bufqi->bufq_lock);
1830 		qdf_list_remove_front(&bufqi->cached_bufq,
1831 				      (qdf_list_node_t **)&cache_buf);
1832 	}
1833 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
1834 	qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
1835 }
1836 
1837 /**
1838  * dp_rx_enqueue_rx() - cache rx frames
1839  * @peer: peer
1840  * @rx_buf_list: cache buffer list
1841  *
1842  * Return: None
1843  */
1844 static QDF_STATUS
1845 dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list)
1846 {
1847 	struct dp_rx_cached_buf *cache_buf;
1848 	struct dp_peer_cached_bufq *bufqi = &txrx_peer->bufq_info;
1849 	int num_buff_elem;
1850 	QDF_STATUS ret = QDF_STATUS_SUCCESS;
1851 	struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
1852 	struct dp_peer *peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id,
1853 						     DP_MOD_ID_RX);
1854 
1855 	if (!peer) {
1856 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
1857 						      rx_buf_list);
1858 		return QDF_STATUS_E_INVAL;
1859 	}
1860 
1861 	dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
1862 		    bufqi->dropped);
1863 	if (!peer->valid) {
1864 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
1865 						      rx_buf_list);
1866 		ret = QDF_STATUS_E_INVAL;
1867 		goto fail;
1868 	}
1869 
1870 	qdf_spin_lock_bh(&bufqi->bufq_lock);
1871 	if (bufqi->entries >= bufqi->thresh) {
1872 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
1873 						      rx_buf_list);
1874 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
1875 		ret = QDF_STATUS_E_RESOURCES;
1876 		goto fail;
1877 	}
1878 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
1879 
1880 	num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
1881 
1882 	cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
1883 	if (!cache_buf) {
1884 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1885 			  "Failed to allocate buf to cache rx frames");
1886 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
1887 						      rx_buf_list);
1888 		ret = QDF_STATUS_E_NOMEM;
1889 		goto fail;
1890 	}
1891 
1892 	cache_buf->buf = rx_buf_list;
1893 
1894 	qdf_spin_lock_bh(&bufqi->bufq_lock);
1895 	qdf_list_insert_back(&bufqi->cached_bufq,
1896 			     &cache_buf->node);
1897 	bufqi->entries += num_buff_elem;
1898 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
1899 
1900 fail:
1901 	dp_peer_unref_delete(peer, DP_MOD_ID_RX);
1902 	return ret;
1903 }
1904 
1905 static inline
1906 bool dp_rx_is_peer_cache_bufq_supported(void)
1907 {
1908 	return true;
1909 }
1910 #else
1911 static inline
1912 bool dp_rx_is_peer_cache_bufq_supported(void)
1913 {
1914 	return false;
1915 }
1916 
1917 static inline QDF_STATUS
1918 dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list)
1919 {
1920 	return QDF_STATUS_SUCCESS;
1921 }
1922 #endif
1923 
1924 #ifndef DELIVERY_TO_STACK_STATUS_CHECK
1925 /**
1926  * dp_rx_check_delivery_to_stack() - Deliver pkts to network
1927  * using the appropriate call back functions.
1928  * @soc: soc
1929  * @vdev: vdev
1930  * @peer: peer
1931  * @nbuf_head: skb list head
1932  * @nbuf_tail: skb list tail
1933  *
1934  * Return: None
1935  */
1936 static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
1937 					  struct dp_vdev *vdev,
1938 					  struct dp_txrx_peer *txrx_peer,
1939 					  qdf_nbuf_t nbuf_head)
1940 {
1941 	if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
1942 						    txrx_peer, nbuf_head)))
1943 		return;
1944 
1945 	/* Function pointer initialized only when FISA is enabled */
1946 	if (vdev->osif_fisa_rx)
1947 		/* on failure send it via regular path */
1948 		vdev->osif_fisa_rx(soc, vdev, nbuf_head);
1949 	else
1950 		vdev->osif_rx(vdev->osif_vdev, nbuf_head);
1951 }
1952 
1953 #else
1954 /**
1955  * dp_rx_check_delivery_to_stack() - Deliver pkts to network
1956  * using the appropriate call back functions.
1957  * @soc: soc
1958  * @vdev: vdev
1959  * @txrx_peer: txrx peer
1960  * @nbuf_head: skb list head
1961  * @nbuf_tail: skb list tail
1962  *
1963  * Check the return status of the call back function and drop
1964  * the packets if the return status indicates a failure.
1965  *
1966  * Return: None
1967  */
1968 static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
1969 					  struct dp_vdev *vdev,
1970 					  struct dp_txrx_peer *txrx_peer,
1971 					  qdf_nbuf_t nbuf_head)
1972 {
1973 	int num_nbuf = 0;
1974 	QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
1975 
1976 	/* Function pointer initialized only when FISA is enabled */
1977 	if (vdev->osif_fisa_rx)
1978 		/* on failure send it via regular path */
1979 		ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
1980 	else if (vdev->osif_rx)
1981 		ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
1982 
1983 	if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
1984 		num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
1985 		DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
1986 		if (txrx_peer)
1987 			DP_PEER_STATS_FLAT_DEC(txrx_peer, to_stack.num,
1988 					       num_nbuf);
1989 	}
1990 }
1991 #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
1992 
1993 /*
1994  * dp_rx_validate_rx_callbacks() - validate rx callbacks
1995  * @soc DP soc
1996  * @vdev: DP vdev handle
1997  * @txrx_peer: pointer to the txrx peer object
1998  * nbuf_head: skb list head
1999  *
2000  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
2001  *			QDF_STATUS_E_FAILURE
2002  */
2003 static inline QDF_STATUS
2004 dp_rx_validate_rx_callbacks(struct dp_soc *soc,
2005 			    struct dp_vdev *vdev,
2006 			    struct dp_txrx_peer *txrx_peer,
2007 			    qdf_nbuf_t nbuf_head)
2008 {
2009 	int num_nbuf;
2010 
2011 	if (qdf_unlikely(!vdev || vdev->delete.pending)) {
2012 		num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
2013 		/*
2014 		 * This is a special case where vdev is invalid,
2015 		 * so we cannot know the pdev to which this packet
2016 		 * belonged. Hence we update the soc rx error stats.
2017 		 */
2018 		DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
2019 		return QDF_STATUS_E_FAILURE;
2020 	}
2021 
2022 	/*
2023 	 * highly unlikely to have a vdev without a registered rx
2024 	 * callback function. if so let us free the nbuf_list.
2025 	 */
2026 	if (qdf_unlikely(!vdev->osif_rx)) {
2027 		if (txrx_peer && dp_rx_is_peer_cache_bufq_supported()) {
2028 			dp_rx_enqueue_rx(txrx_peer, nbuf_head);
2029 		} else {
2030 			num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
2031 							nbuf_head);
2032 			DP_PEER_TO_STACK_DECC(txrx_peer, num_nbuf,
2033 					      vdev->pdev->enhanced_stats_en);
2034 		}
2035 		return QDF_STATUS_E_FAILURE;
2036 	}
2037 
2038 	return QDF_STATUS_SUCCESS;
2039 }
2040 
2041 QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
2042 				  struct dp_vdev *vdev,
2043 				  struct dp_txrx_peer *txrx_peer,
2044 				  qdf_nbuf_t nbuf_head,
2045 				  qdf_nbuf_t nbuf_tail)
2046 {
2047 	if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
2048 					QDF_STATUS_SUCCESS)
2049 		return QDF_STATUS_E_FAILURE;
2050 
2051 	if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
2052 			(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
2053 		vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
2054 					 &nbuf_tail);
2055 	}
2056 
2057 	dp_rx_check_delivery_to_stack(soc, vdev, txrx_peer, nbuf_head);
2058 
2059 	return QDF_STATUS_SUCCESS;
2060 }
2061 
2062 #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
2063 QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
2064 					struct dp_vdev *vdev,
2065 					struct dp_txrx_peer *txrx_peer,
2066 					qdf_nbuf_t nbuf_head,
2067 					qdf_nbuf_t nbuf_tail)
2068 {
2069 	if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
2070 					QDF_STATUS_SUCCESS)
2071 		return QDF_STATUS_E_FAILURE;
2072 
2073 	vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
2074 
2075 	return QDF_STATUS_SUCCESS;
2076 }
2077 #endif
2078 
2079 #ifndef QCA_HOST_MODE_WIFI_DISABLED
2080 #ifdef VDEV_PEER_PROTOCOL_COUNT
2081 #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer) \
2082 { \
2083 	qdf_nbuf_t nbuf_local; \
2084 	struct dp_txrx_peer *txrx_peer_local; \
2085 	struct dp_vdev *vdev_local = vdev_hdl; \
2086 	do { \
2087 		if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
2088 			break; \
2089 		nbuf_local = nbuf; \
2090 		txrx_peer_local = txrx_peer; \
2091 		if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
2092 			break; \
2093 		else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
2094 			break; \
2095 		dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
2096 						       (nbuf_local), \
2097 						       (txrx_peer_local), 0, 1); \
2098 	} while (0); \
2099 }
2100 #else
2101 #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer)
2102 #endif
2103 
2104 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
2105 /**
2106  * dp_rx_rates_stats_update() - update rate stats
2107  * from rx msdu.
2108  * @soc: datapath soc handle
2109  * @nbuf: received msdu buffer
2110  * @rx_tlv_hdr: rx tlv header
2111  * @txrx_peer: datapath txrx_peer handle
2112  * @sgi: Short Guard Interval
2113  * @mcs: Modulation and Coding Set
2114  * @nss: Number of Spatial Streams
2115  * @bw: BandWidth
2116  * @pkt_type: Corresponds to preamble
2117  *
2118  * To be precisely record rates, following factors are considered:
2119  * Exclude specific frames, ARP, DHCP, ssdp, etc.
2120  * Make sure to affect rx throughput as least as possible.
2121  *
2122  * Return: void
2123  */
2124 static void
2125 dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2126 			 uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
2127 			 uint32_t sgi, uint32_t mcs,
2128 			 uint32_t nss, uint32_t bw, uint32_t pkt_type)
2129 {
2130 	uint32_t rix;
2131 	uint16_t ratecode;
2132 	uint32_t avg_rx_rate;
2133 	uint32_t ratekbps;
2134 	enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
2135 
2136 	if (soc->high_throughput ||
2137 	    dp_rx_data_is_specific(soc->hal_soc, rx_tlv_hdr, nbuf)) {
2138 		return;
2139 	}
2140 
2141 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.rx_rate, mcs);
2142 
2143 	/* here pkt_type corresponds to preamble */
2144 	ratekbps = dp_getrateindex(sgi,
2145 				   mcs,
2146 				   nss,
2147 				   pkt_type,
2148 				   bw,
2149 				   punc_mode,
2150 				   &rix,
2151 				   &ratecode);
2152 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.last_rx_rate, ratekbps);
2153 	avg_rx_rate =
2154 		dp_ath_rate_lpf(txrx_peer->stats.extd_stats.rx.avg_rx_rate,
2155 				ratekbps);
2156 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.avg_rx_rate, avg_rx_rate);
2157 }
2158 #else
2159 static void
2160 dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2161 			 uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
2162 			 uint32_t sgi, uint32_t mcs,
2163 			 uint32_t nss, uint32_t bw, uint32_t pkt_type)
2164 {
2165 }
2166 #endif /* FEATURE_RX_LINKSPEED_ROAM_TRIGGER */
2167 
2168 #ifndef QCA_ENHANCED_STATS_SUPPORT
2169 /**
2170  * dp_rx_msdu_extd_stats_update(): Update Rx extended path stats for peer
2171  *
2172  * @soc: datapath soc handle
2173  * @nbuf: received msdu buffer
2174  * @rx_tlv_hdr: rx tlv header
2175  * @txrx_peer: datapath txrx_peer handle
2176  *
2177  * Return: void
2178  */
2179 static inline
2180 void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2181 				  uint8_t *rx_tlv_hdr,
2182 				  struct dp_txrx_peer *txrx_peer)
2183 {
2184 	bool is_ampdu;
2185 	uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
2186 	uint8_t dst_mcs_idx;
2187 
2188 	/*
2189 	 * TODO - For KIWI this field is present in ring_desc
2190 	 * Try to use ring desc instead of tlv.
2191 	 */
2192 	is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
2193 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.ampdu_cnt, 1, is_ampdu);
2194 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
2195 
2196 	sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
2197 	mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
2198 	tid = qdf_nbuf_get_tid_val(nbuf);
2199 	bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
2200 	reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
2201 							      rx_tlv_hdr);
2202 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
2203 	pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
2204 	/* do HW to SW pkt type conversion */
2205 	pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX :
2206 		    hal_2_dp_pkt_type_map[pkt_type]);
2207 
2208 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[mcs], 1,
2209 		      ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
2210 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
2211 		      ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
2212 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.bw[bw], 1);
2213 	/*
2214 	 * only if nss > 0 and pkt_type is 11N/AC/AX,
2215 	 * then increase index [nss - 1] in array counter.
2216 	 */
2217 	if (nss > 0 && CDP_IS_PKT_TYPE_SUPPORT_NSS(pkt_type))
2218 		DP_PEER_EXTD_STATS_INC(txrx_peer, rx.nss[nss - 1], 1);
2219 
2220 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.sgi_count[sgi], 1);
2221 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.mic_err, 1,
2222 				   hal_rx_tlv_mic_err_get(soc->hal_soc,
2223 				   rx_tlv_hdr));
2224 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.decrypt_err, 1,
2225 				   hal_rx_tlv_decrypt_err_get(soc->hal_soc,
2226 				   rx_tlv_hdr));
2227 
2228 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
2229 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.reception_type[reception_type], 1);
2230 
2231 	dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs);
2232 	if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx)
2233 		DP_PEER_EXTD_STATS_INC(txrx_peer,
2234 				       rx.pkt_type[pkt_type].mcs_count[dst_mcs_idx],
2235 				       1);
2236 
2237 	dp_rx_rates_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer,
2238 				 sgi, mcs, nss, bw, pkt_type);
2239 }
2240 #else
2241 static inline
2242 void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2243 				  uint8_t *rx_tlv_hdr,
2244 				  struct dp_txrx_peer *txrx_peer)
2245 {
2246 }
2247 #endif
2248 
2249 #if defined(DP_PKT_STATS_PER_LMAC) && defined(WLAN_FEATURE_11BE_MLO)
2250 static inline void
2251 dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
2252 			       qdf_nbuf_t nbuf)
2253 {
2254 	uint8_t lmac_id = qdf_nbuf_get_lmac_id(nbuf);
2255 
2256 	/* only count stats per lmac for MLO connection*/
2257 	DP_PEER_PER_PKT_STATS_INCC_PKT(txrx_peer, rx.rx_lmac[lmac_id], 1,
2258 				       QDF_NBUF_CB_RX_PKT_LEN(nbuf),
2259 				       txrx_peer->mld_peer);
2260 }
2261 #else
2262 static inline void
2263 dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
2264 			       qdf_nbuf_t nbuf)
2265 {
2266 }
2267 #endif
2268 
2269 /**
2270  * dp_rx_msdu_stats_update() - update per msdu stats.
2271  * @soc: core txrx main context
2272  * @nbuf: pointer to the first msdu of an amsdu.
2273  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
2274  * @txrx_peer: pointer to the txrx peer object.
2275  * @ring_id: reo dest ring number on which pkt is reaped.
2276  * @tid_stats: per tid rx stats.
2277  *
2278  * update all the per msdu stats for that nbuf.
2279  * Return: void
2280  */
2281 void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2282 			     uint8_t *rx_tlv_hdr,
2283 			     struct dp_txrx_peer *txrx_peer,
2284 			     uint8_t ring_id,
2285 			     struct cdp_tid_rx_stats *tid_stats)
2286 {
2287 	bool is_not_amsdu;
2288 	struct dp_vdev *vdev = txrx_peer->vdev;
2289 	bool enh_flag;
2290 	qdf_ether_header_t *eh;
2291 	uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2292 
2293 	dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, txrx_peer);
2294 	is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
2295 			qdf_nbuf_is_rx_chfrag_end(nbuf);
2296 	DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.rcvd_reo[ring_id], 1,
2297 				      msdu_len);
2298 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.non_amsdu_cnt, 1,
2299 				   is_not_amsdu);
2300 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.amsdu_cnt, 1, !is_not_amsdu);
2301 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.rx_retries, 1,
2302 				   qdf_nbuf_is_rx_retry_flag(nbuf));
2303 	dp_peer_update_rx_pkt_per_lmac(txrx_peer, nbuf);
2304 	tid_stats->msdu_cnt++;
2305 	if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
2306 			 (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
2307 		eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
2308 		enh_flag = vdev->pdev->enhanced_stats_en;
2309 		DP_PEER_MC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
2310 		tid_stats->mcast_msdu_cnt++;
2311 		if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
2312 			DP_PEER_BC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
2313 			tid_stats->bcast_msdu_cnt++;
2314 		}
2315 	}
2316 
2317 	txrx_peer->stats.per_pkt_stats.rx.last_rx_ts = qdf_system_ticks();
2318 
2319 	dp_rx_msdu_extd_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer);
2320 }
2321 
2322 #ifndef WDS_VENDOR_EXTENSION
2323 int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
2324 			   struct dp_vdev *vdev,
2325 			   struct dp_txrx_peer *txrx_peer)
2326 {
2327 	return 1;
2328 }
2329 #endif
2330 
2331 #ifdef RX_DESC_DEBUG_CHECK
2332 /**
2333  * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
2334  *				  corruption
2335  *
2336  * @ring_desc: REO ring descriptor
2337  * @rx_desc: Rx descriptor
2338  *
2339  * Return: NONE
2340  */
2341 QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
2342 					hal_ring_desc_t ring_desc,
2343 					struct dp_rx_desc *rx_desc)
2344 {
2345 	struct hal_buf_info hbi;
2346 
2347 	hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
2348 	/* Sanity check for possible buffer paddr corruption */
2349 	if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
2350 		return QDF_STATUS_SUCCESS;
2351 
2352 	return QDF_STATUS_E_FAILURE;
2353 }
2354 
2355 /**
2356  * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
2357  *				      out of bound access from H.W
2358  *
2359  * @soc: DP soc
2360  * @pkt_len: Packet length received from H.W
2361  *
2362  * Return: NONE
2363  */
2364 static inline void
2365 dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
2366 				 uint32_t pkt_len)
2367 {
2368 	struct rx_desc_pool *rx_desc_pool;
2369 
2370 	rx_desc_pool = &soc->rx_desc_buf[0];
2371 	qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
2372 }
2373 #else
2374 static inline void
2375 dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
2376 #endif
2377 
2378 #ifdef DP_RX_PKT_NO_PEER_DELIVER
2379 #ifdef DP_RX_UDP_OVER_PEER_ROAM
2380 /**
2381  * dp_rx_is_udp_allowed_over_roam_peer() - check if udp data received
2382  *					   during roaming
2383  * @vdev: dp_vdev pointer
2384  * @rx_tlv_hdr: rx tlv header
2385  * @nbuf: pkt skb pointer
2386  *
2387  * This function will check if rx udp data is received from authorised
2388  * roamed peer before peer map indication is received from FW after
2389  * roaming. This is needed for VoIP scenarios in which packet loss
2390  * expected during roaming is minimal.
2391  *
2392  * Return: bool
2393  */
2394 static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
2395 						uint8_t *rx_tlv_hdr,
2396 						qdf_nbuf_t nbuf)
2397 {
2398 	char *hdr_desc;
2399 	struct ieee80211_frame *wh = NULL;
2400 
2401 	hdr_desc = hal_rx_desc_get_80211_hdr(vdev->pdev->soc->hal_soc,
2402 					     rx_tlv_hdr);
2403 	wh = (struct ieee80211_frame *)hdr_desc;
2404 
2405 	if (vdev->roaming_peer_status ==
2406 	    WLAN_ROAM_PEER_AUTH_STATUS_AUTHENTICATED &&
2407 	    !qdf_mem_cmp(vdev->roaming_peer_mac.raw, wh->i_addr2,
2408 	    QDF_MAC_ADDR_SIZE) && (qdf_nbuf_is_ipv4_udp_pkt(nbuf) ||
2409 	    qdf_nbuf_is_ipv6_udp_pkt(nbuf)))
2410 		return true;
2411 
2412 	return false;
2413 }
2414 #else
2415 static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
2416 						uint8_t *rx_tlv_hdr,
2417 						qdf_nbuf_t nbuf)
2418 {
2419 	return false;
2420 }
2421 #endif
2422 /**
2423  * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
2424  *				      no corresbonding peer found
2425  * @soc: core txrx main context
2426  * @nbuf: pkt skb pointer
2427  *
2428  * This function will try to deliver some RX special frames to stack
2429  * even there is no peer matched found. for instance, LFR case, some
2430  * eapol data will be sent to host before peer_map done.
2431  *
2432  * Return: None
2433  */
2434 void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
2435 {
2436 	uint16_t peer_id;
2437 	uint8_t vdev_id;
2438 	struct dp_vdev *vdev = NULL;
2439 	uint32_t l2_hdr_offset = 0;
2440 	uint16_t msdu_len = 0;
2441 	uint32_t pkt_len = 0;
2442 	uint8_t *rx_tlv_hdr;
2443 	uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
2444 				FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
2445 
2446 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
2447 	if (peer_id > soc->max_peer_id)
2448 		goto deliver_fail;
2449 
2450 	vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
2451 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
2452 	if (!vdev || vdev->delete.pending || !vdev->osif_rx)
2453 		goto deliver_fail;
2454 
2455 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
2456 		goto deliver_fail;
2457 
2458 	rx_tlv_hdr = qdf_nbuf_data(nbuf);
2459 	l2_hdr_offset =
2460 		hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
2461 
2462 	msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2463 	pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
2464 	QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
2465 
2466 	qdf_nbuf_set_pktlen(nbuf, pkt_len);
2467 	qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
2468 
2469 	if (dp_rx_is_special_frame(nbuf, frame_mask) ||
2470 	    dp_rx_is_udp_allowed_over_roam_peer(vdev, rx_tlv_hdr, nbuf)) {
2471 		qdf_nbuf_set_exc_frame(nbuf, 1);
2472 		if (QDF_STATUS_SUCCESS !=
2473 		    vdev->osif_rx(vdev->osif_vdev, nbuf))
2474 			goto deliver_fail;
2475 		DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
2476 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2477 		return;
2478 	}
2479 
2480 deliver_fail:
2481 	DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
2482 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2483 	dp_rx_nbuf_free(nbuf);
2484 	if (vdev)
2485 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2486 }
2487 #else
2488 void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
2489 {
2490 	DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
2491 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2492 	dp_rx_nbuf_free(nbuf);
2493 }
2494 #endif
2495 
2496 /**
2497  * dp_rx_srng_get_num_pending() - get number of pending entries
2498  * @hal_soc: hal soc opaque pointer
2499  * @hal_ring: opaque pointer to the HAL Rx Ring
2500  * @num_entries: number of entries in the hal_ring.
2501  * @near_full: pointer to a boolean. This is set if ring is near full.
2502  *
2503  * The function returns the number of entries in a destination ring which are
2504  * yet to be reaped. The function also checks if the ring is near full.
2505  * If more than half of the ring needs to be reaped, the ring is considered
2506  * approaching full.
2507  * The function useses hal_srng_dst_num_valid_locked to get the number of valid
2508  * entries. It should not be called within a SRNG lock. HW pointer value is
2509  * synced into cached_hp.
2510  *
2511  * Return: Number of pending entries if any
2512  */
2513 uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
2514 				    hal_ring_handle_t hal_ring_hdl,
2515 				    uint32_t num_entries,
2516 				    bool *near_full)
2517 {
2518 	uint32_t num_pending = 0;
2519 
2520 	num_pending = hal_srng_dst_num_valid_locked(hal_soc,
2521 						    hal_ring_hdl,
2522 						    true);
2523 
2524 	if (num_entries && (num_pending >= num_entries >> 1))
2525 		*near_full = true;
2526 	else
2527 		*near_full = false;
2528 
2529 	return num_pending;
2530 }
2531 
2532 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
2533 
2534 #ifdef WLAN_SUPPORT_RX_FISA
2535 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
2536 {
2537 	QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
2538 	qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
2539 }
2540 #else
2541 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
2542 {
2543 	qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
2544 }
2545 #endif
2546 
2547 #ifndef QCA_HOST_MODE_WIFI_DISABLED
2548 
2549 #ifdef DP_RX_DROP_RAW_FRM
2550 /**
2551  * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
2552  * @nbuf: pkt skb pointer
2553  *
2554  * Return: true - raw frame, dropped
2555  *	   false - not raw frame, do nothing
2556  */
2557 bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
2558 {
2559 	if (qdf_nbuf_is_raw_frame(nbuf)) {
2560 		dp_rx_nbuf_free(nbuf);
2561 		return true;
2562 	}
2563 
2564 	return false;
2565 }
2566 #endif
2567 
2568 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
2569 /**
2570  * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
2571  * @soc: Datapath soc structure
2572  * @ring_num: REO ring number
2573  * @ring_desc: REO ring descriptor
2574  *
2575  * Returns: None
2576  */
2577 void
2578 dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
2579 			hal_ring_desc_t ring_desc)
2580 {
2581 	struct dp_buf_info_record *record;
2582 	struct hal_buf_info hbi;
2583 	uint32_t idx;
2584 
2585 	if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
2586 		return;
2587 
2588 	hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
2589 
2590 	/* buffer_addr_info is the first element of ring_desc */
2591 	hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
2592 				  &hbi);
2593 
2594 	idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
2595 					DP_RX_HIST_MAX);
2596 
2597 	/* No NULL check needed for record since its an array */
2598 	record = &soc->rx_ring_history[ring_num]->entry[idx];
2599 
2600 	record->timestamp = qdf_get_log_timestamp();
2601 	record->hbi.paddr = hbi.paddr;
2602 	record->hbi.sw_cookie = hbi.sw_cookie;
2603 	record->hbi.rbm = hbi.rbm;
2604 }
2605 #endif
2606 
2607 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
2608 /**
2609  * dp_rx_update_stats() - Update soc level rx packet count
2610  * @soc: DP soc handle
2611  * @nbuf: nbuf received
2612  *
2613  * Returns: none
2614  */
2615 void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
2616 {
2617 	DP_STATS_INC_PKT(soc, rx.ingress, 1,
2618 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2619 }
2620 #endif
2621 
2622 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
2623 /**
2624  * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
2625  * @soc : dp_soc handle
2626  * @pdev: dp_pdev handle
2627  * @peer_id: peer_id of the peer for which completion came
2628  * @ppdu_id: ppdu_id
2629  * @netbuf: Buffer pointer
2630  *
2631  * This function is used to deliver rx packet to packet capture
2632  */
2633 void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc,  struct dp_pdev *pdev,
2634 				  uint16_t peer_id, uint32_t is_offload,
2635 				  qdf_nbuf_t netbuf)
2636 {
2637 	if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
2638 		dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
2639 				     peer_id, is_offload, pdev->pdev_id);
2640 }
2641 
2642 void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
2643 					  uint32_t is_offload)
2644 {
2645 	if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
2646 		dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
2647 				     soc, nbuf, HTT_INVALID_VDEV,
2648 				     is_offload, 0);
2649 }
2650 #endif
2651 
2652 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
2653 
2654 QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
2655 {
2656 	QDF_STATUS ret;
2657 
2658 	if (vdev->osif_rx_flush) {
2659 		ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
2660 		if (!QDF_IS_STATUS_SUCCESS(ret)) {
2661 			dp_err("Failed to flush rx pkts for vdev %d\n",
2662 			       vdev->vdev_id);
2663 			return ret;
2664 		}
2665 	}
2666 
2667 	return QDF_STATUS_SUCCESS;
2668 }
2669 
2670 static QDF_STATUS
2671 dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
2672 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
2673 			   struct dp_pdev *dp_pdev,
2674 			   struct rx_desc_pool *rx_desc_pool)
2675 {
2676 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
2677 
2678 	(nbuf_frag_info_t->virt_addr).nbuf =
2679 		qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
2680 			       RX_BUFFER_RESERVATION,
2681 			       rx_desc_pool->buf_alignment, FALSE);
2682 	if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
2683 		dp_err("nbuf alloc failed");
2684 		DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
2685 		return ret;
2686 	}
2687 
2688 	ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
2689 					 (nbuf_frag_info_t->virt_addr).nbuf,
2690 					 QDF_DMA_FROM_DEVICE,
2691 					 rx_desc_pool->buf_size);
2692 
2693 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
2694 		qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
2695 		dp_err("nbuf map failed");
2696 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
2697 		return ret;
2698 	}
2699 
2700 	nbuf_frag_info_t->paddr =
2701 		qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
2702 
2703 	ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
2704 			     &nbuf_frag_info_t->paddr,
2705 			     rx_desc_pool);
2706 	if (ret == QDF_STATUS_E_FAILURE) {
2707 		dp_err("nbuf check x86 failed");
2708 		DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
2709 		return ret;
2710 	}
2711 
2712 	return QDF_STATUS_SUCCESS;
2713 }
2714 
2715 QDF_STATUS
2716 dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
2717 			  struct dp_srng *dp_rxdma_srng,
2718 			  struct rx_desc_pool *rx_desc_pool,
2719 			  uint32_t num_req_buffers)
2720 {
2721 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
2722 	hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
2723 	union dp_rx_desc_list_elem_t *next;
2724 	void *rxdma_ring_entry;
2725 	qdf_dma_addr_t paddr;
2726 	struct dp_rx_nbuf_frag_info *nf_info;
2727 	uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
2728 	uint32_t buffer_index, nbuf_ptrs_per_page;
2729 	qdf_nbuf_t nbuf;
2730 	QDF_STATUS ret;
2731 	int page_idx, total_pages;
2732 	union dp_rx_desc_list_elem_t *desc_list = NULL;
2733 	union dp_rx_desc_list_elem_t *tail = NULL;
2734 	int sync_hw_ptr = 1;
2735 	uint32_t num_entries_avail;
2736 
2737 	if (qdf_unlikely(!dp_pdev)) {
2738 		dp_rx_err("%pK: pdev is null for mac_id = %d",
2739 			  dp_soc, mac_id);
2740 		return QDF_STATUS_E_FAILURE;
2741 	}
2742 
2743 	if (qdf_unlikely(!rxdma_srng)) {
2744 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
2745 		return QDF_STATUS_E_FAILURE;
2746 	}
2747 
2748 	dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
2749 
2750 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
2751 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
2752 						   rxdma_srng,
2753 						   sync_hw_ptr);
2754 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
2755 
2756 	if (!num_entries_avail) {
2757 		dp_err("Num of available entries is zero, nothing to do");
2758 		return QDF_STATUS_E_NOMEM;
2759 	}
2760 
2761 	if (num_entries_avail < num_req_buffers)
2762 		num_req_buffers = num_entries_avail;
2763 
2764 	nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
2765 					    num_req_buffers, &desc_list, &tail);
2766 	if (!nr_descs) {
2767 		dp_err("no free rx_descs in freelist");
2768 		DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
2769 		return QDF_STATUS_E_NOMEM;
2770 	}
2771 
2772 	dp_debug("got %u RX descs for driver attach", nr_descs);
2773 
2774 	/*
2775 	 * Try to allocate pointers to the nbuf one page at a time.
2776 	 * Take pointers that can fit in one page of memory and
2777 	 * iterate through the total descriptors that need to be
2778 	 * allocated in order of pages. Reuse the pointers that
2779 	 * have been allocated to fit in one page across each
2780 	 * iteration to index into the nbuf.
2781 	 */
2782 	total_pages = (nr_descs * sizeof(*nf_info)) / DP_BLOCKMEM_SIZE;
2783 
2784 	/*
2785 	 * Add an extra page to store the remainder if any
2786 	 */
2787 	if ((nr_descs * sizeof(*nf_info)) % DP_BLOCKMEM_SIZE)
2788 		total_pages++;
2789 	nf_info = qdf_mem_malloc(DP_BLOCKMEM_SIZE);
2790 	if (!nf_info) {
2791 		dp_err("failed to allocate nbuf array");
2792 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
2793 		QDF_BUG(0);
2794 		return QDF_STATUS_E_NOMEM;
2795 	}
2796 	nbuf_ptrs_per_page = DP_BLOCKMEM_SIZE / sizeof(*nf_info);
2797 
2798 	for (page_idx = 0; page_idx < total_pages; page_idx++) {
2799 		qdf_mem_zero(nf_info, DP_BLOCKMEM_SIZE);
2800 
2801 		for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
2802 			/*
2803 			 * The last page of buffer pointers may not be required
2804 			 * completely based on the number of descriptors. Below
2805 			 * check will ensure we are allocating only the
2806 			 * required number of descriptors.
2807 			 */
2808 			if (nr_nbuf_total >= nr_descs)
2809 				break;
2810 			/* Flag is set while pdev rx_desc_pool initialization */
2811 			if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
2812 				ret = dp_pdev_frag_alloc_and_map(dp_soc,
2813 						&nf_info[nr_nbuf], dp_pdev,
2814 						rx_desc_pool);
2815 			else
2816 				ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
2817 						&nf_info[nr_nbuf], dp_pdev,
2818 						rx_desc_pool);
2819 			if (QDF_IS_STATUS_ERROR(ret))
2820 				break;
2821 
2822 			nr_nbuf_total++;
2823 		}
2824 
2825 		hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
2826 
2827 		for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
2828 			rxdma_ring_entry =
2829 				hal_srng_src_get_next(dp_soc->hal_soc,
2830 						      rxdma_srng);
2831 			qdf_assert_always(rxdma_ring_entry);
2832 
2833 			next = desc_list->next;
2834 			paddr = nf_info[buffer_index].paddr;
2835 			nbuf = nf_info[buffer_index].virt_addr.nbuf;
2836 
2837 			/* Flag is set while pdev rx_desc_pool initialization */
2838 			if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
2839 				dp_rx_desc_frag_prep(&desc_list->rx_desc,
2840 						     &nf_info[buffer_index]);
2841 			else
2842 				dp_rx_desc_prep(&desc_list->rx_desc,
2843 						&nf_info[buffer_index]);
2844 			desc_list->rx_desc.in_use = 1;
2845 			dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
2846 			dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
2847 						   __func__,
2848 						   RX_DESC_REPLENISHED);
2849 
2850 			hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
2851 						     desc_list->rx_desc.cookie,
2852 						     rx_desc_pool->owner);
2853 			dp_ipa_handle_rx_buf_smmu_mapping(
2854 						dp_soc, nbuf,
2855 						rx_desc_pool->buf_size,
2856 						true);
2857 
2858 			desc_list = next;
2859 		}
2860 
2861 		dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
2862 					       rxdma_srng, nr_nbuf, nr_nbuf);
2863 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
2864 	}
2865 
2866 	dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
2867 	qdf_mem_free(nf_info);
2868 
2869 	if (!nr_nbuf_total) {
2870 		dp_err("No nbuf's allocated");
2871 		QDF_BUG(0);
2872 		return QDF_STATUS_E_RESOURCES;
2873 	}
2874 
2875 	/* No need to count the number of bytes received during replenish.
2876 	 * Therefore set replenish.pkts.bytes as 0.
2877 	 */
2878 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
2879 
2880 	return QDF_STATUS_SUCCESS;
2881 }
2882 
2883 qdf_export_symbol(dp_pdev_rx_buffers_attach);
2884 
2885 /**
2886  * dp_rx_enable_mon_dest_frag() - Enable frag processing for
2887  *              monitor destination ring via frag.
2888  *
2889  * Enable this flag only for monitor destination buffer processing
2890  * if DP_RX_MON_MEM_FRAG feature is enabled.
2891  * If flag is set then frag based function will be called for alloc,
2892  * map, prep desc and free ops for desc buffer else normal nbuf based
2893  * function will be called.
2894  *
2895  * @rx_desc_pool: Rx desc pool
2896  * @is_mon_dest_desc: Is it for monitor dest buffer
2897  *
2898  * Return: None
2899  */
2900 #ifdef DP_RX_MON_MEM_FRAG
2901 void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
2902 				bool is_mon_dest_desc)
2903 {
2904 	rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
2905 	if (is_mon_dest_desc)
2906 		dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
2907 }
2908 #else
2909 void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
2910 				bool is_mon_dest_desc)
2911 {
2912 	rx_desc_pool->rx_mon_dest_frag_enable = false;
2913 	if (is_mon_dest_desc)
2914 		dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
2915 }
2916 #endif
2917 
2918 qdf_export_symbol(dp_rx_enable_mon_dest_frag);
2919 
2920 /*
2921  * dp_rx_pdev_desc_pool_alloc() -  allocate memory for software rx descriptor
2922  *				   pool
2923  *
2924  * @pdev: core txrx pdev context
2925  *
2926  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
2927  *			QDF_STATUS_E_NOMEM
2928  */
2929 QDF_STATUS
2930 dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
2931 {
2932 	struct dp_soc *soc = pdev->soc;
2933 	uint32_t rxdma_entries;
2934 	uint32_t rx_sw_desc_num;
2935 	struct dp_srng *dp_rxdma_srng;
2936 	struct rx_desc_pool *rx_desc_pool;
2937 	uint32_t status = QDF_STATUS_SUCCESS;
2938 	int mac_for_pdev;
2939 
2940 	mac_for_pdev = pdev->lmac_id;
2941 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
2942 		dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
2943 			   soc, mac_for_pdev);
2944 		return status;
2945 	}
2946 
2947 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
2948 	rxdma_entries = dp_rxdma_srng->num_entries;
2949 
2950 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
2951 	rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
2952 
2953 	rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
2954 	status = dp_rx_desc_pool_alloc(soc,
2955 				       rx_sw_desc_num,
2956 				       rx_desc_pool);
2957 	if (status != QDF_STATUS_SUCCESS)
2958 		return status;
2959 
2960 	return status;
2961 }
2962 
2963 /*
2964  * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
2965  *
2966  * @pdev: core txrx pdev context
2967  */
2968 void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
2969 {
2970 	int mac_for_pdev = pdev->lmac_id;
2971 	struct dp_soc *soc = pdev->soc;
2972 	struct rx_desc_pool *rx_desc_pool;
2973 
2974 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
2975 
2976 	dp_rx_desc_pool_free(soc, rx_desc_pool);
2977 }
2978 
2979 /*
2980  * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
2981  *
2982  * @pdev: core txrx pdev context
2983  *
2984  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
2985  *			QDF_STATUS_E_NOMEM
2986  */
2987 QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
2988 {
2989 	int mac_for_pdev = pdev->lmac_id;
2990 	struct dp_soc *soc = pdev->soc;
2991 	uint32_t rxdma_entries;
2992 	uint32_t rx_sw_desc_num;
2993 	struct dp_srng *dp_rxdma_srng;
2994 	struct rx_desc_pool *rx_desc_pool;
2995 
2996 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
2997 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
2998 		/**
2999 		 * If NSS is enabled, rx_desc_pool is already filled.
3000 		 * Hence, just disable desc_pool frag flag.
3001 		 */
3002 		dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
3003 
3004 		dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
3005 			   soc, mac_for_pdev);
3006 		return QDF_STATUS_SUCCESS;
3007 	}
3008 
3009 	if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
3010 		return QDF_STATUS_E_NOMEM;
3011 
3012 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3013 	rxdma_entries = dp_rxdma_srng->num_entries;
3014 
3015 	soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
3016 
3017 	rx_sw_desc_num =
3018 	wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
3019 
3020 	rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
3021 	rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
3022 	rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
3023 	/* Disable monitor dest processing via frag */
3024 	dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
3025 
3026 	dp_rx_desc_pool_init(soc, mac_for_pdev,
3027 			     rx_sw_desc_num, rx_desc_pool);
3028 	return QDF_STATUS_SUCCESS;
3029 }
3030 
3031 /*
3032  * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
3033  * @pdev: core txrx pdev context
3034  *
3035  * This function resets the freelist of rx descriptors and destroys locks
3036  * associated with this list of descriptors.
3037  */
3038 void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
3039 {
3040 	int mac_for_pdev = pdev->lmac_id;
3041 	struct dp_soc *soc = pdev->soc;
3042 	struct rx_desc_pool *rx_desc_pool;
3043 
3044 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3045 
3046 	dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
3047 }
3048 
3049 /*
3050  * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
3051  *
3052  * @pdev: core txrx pdev context
3053  *
3054  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3055  *			QDF_STATUS_E_NOMEM
3056  */
3057 QDF_STATUS
3058 dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
3059 {
3060 	int mac_for_pdev = pdev->lmac_id;
3061 	struct dp_soc *soc = pdev->soc;
3062 	struct dp_srng *dp_rxdma_srng;
3063 	struct rx_desc_pool *rx_desc_pool;
3064 	uint32_t rxdma_entries;
3065 
3066 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3067 	rxdma_entries = dp_rxdma_srng->num_entries;
3068 
3069 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3070 
3071 	/* Initialize RX buffer pool which will be
3072 	 * used during low memory conditions
3073 	 */
3074 	dp_rx_buffer_pool_init(soc, mac_for_pdev);
3075 
3076 	return dp_pdev_rx_buffers_attach_simple(soc, mac_for_pdev,
3077 						dp_rxdma_srng,
3078 						rx_desc_pool,
3079 						rxdma_entries - 1);
3080 }
3081 
3082 /*
3083  * dp_rx_pdev_buffers_free - Free nbufs (skbs)
3084  *
3085  * @pdev: core txrx pdev context
3086  */
3087 void
3088 dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
3089 {
3090 	int mac_for_pdev = pdev->lmac_id;
3091 	struct dp_soc *soc = pdev->soc;
3092 	struct rx_desc_pool *rx_desc_pool;
3093 
3094 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3095 
3096 	dp_rx_desc_nbuf_free(soc, rx_desc_pool);
3097 	dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
3098 }
3099 
3100 #ifdef DP_RX_SPECIAL_FRAME_NEED
3101 bool dp_rx_deliver_special_frame(struct dp_soc *soc,
3102 				 struct dp_txrx_peer *txrx_peer,
3103 				 qdf_nbuf_t nbuf, uint32_t frame_mask,
3104 				 uint8_t *rx_tlv_hdr)
3105 {
3106 	uint32_t l2_hdr_offset = 0;
3107 	uint16_t msdu_len = 0;
3108 	uint32_t skip_len;
3109 
3110 	l2_hdr_offset =
3111 		hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
3112 
3113 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
3114 		skip_len = l2_hdr_offset;
3115 	} else {
3116 		msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
3117 		skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
3118 		qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
3119 	}
3120 
3121 	QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
3122 	dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
3123 	qdf_nbuf_pull_head(nbuf, skip_len);
3124 
3125 	if (txrx_peer->vdev) {
3126 		dp_rx_send_pktlog(soc, txrx_peer->vdev->pdev, nbuf,
3127 				  QDF_TX_RX_STATUS_OK);
3128 	}
3129 
3130 	if (dp_rx_is_special_frame(nbuf, frame_mask)) {
3131 		dp_info("special frame, mpdu sn 0x%x",
3132 			hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
3133 		qdf_nbuf_set_exc_frame(nbuf, 1);
3134 		dp_rx_deliver_to_stack(soc, txrx_peer->vdev, txrx_peer,
3135 				       nbuf, NULL);
3136 		return true;
3137 	}
3138 
3139 	return false;
3140 }
3141 #endif
3142 
3143 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
3144 void dp_rx_mark_first_packet_after_wow_wakeup(struct dp_pdev *pdev,
3145 					      uint8_t *rx_tlv,
3146 					      qdf_nbuf_t nbuf)
3147 {
3148 	struct dp_soc *soc;
3149 
3150 	if (!pdev->is_first_wakeup_packet)
3151 		return;
3152 
3153 	soc = pdev->soc;
3154 	if (hal_get_first_wow_wakeup_packet(soc->hal_soc, rx_tlv)) {
3155 		qdf_nbuf_mark_wakeup_frame(nbuf);
3156 		dp_info("First packet after WOW Wakeup rcvd");
3157 	}
3158 }
3159 #endif
3160