xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.c (revision a175314c51a4ce5cec2835cc8a8c7dc0c1810915)
1 /*
2  * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "dp_types.h"
20 #include "dp_rx.h"
21 #include "dp_peer.h"
22 #include "hal_rx.h"
23 #include "hal_api.h"
24 #include "qdf_nbuf.h"
25 #ifdef MESH_MODE_SUPPORT
26 #include "if_meta_hdr.h"
27 #endif
28 #include "dp_internal.h"
29 #include "dp_rx_mon.h"
30 #ifdef RX_DESC_DEBUG_CHECK
31 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
32 {
33 	rx_desc->magic = DP_RX_DESC_MAGIC;
34 	rx_desc->nbuf = nbuf;
35 }
36 #else
37 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
38 {
39 	rx_desc->nbuf = nbuf;
40 }
41 #endif
42 
43 #ifdef CONFIG_WIN
44 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
45 {
46 	return vdev->ap_bridge_enabled;
47 }
48 #else
49 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
50 {
51 	if (vdev->opmode != wlan_op_mode_sta)
52 		return true;
53 	else
54 		return false;
55 }
56 #endif
57 /*
58  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
59  *			       called during dp rx initialization
60  *			       and at the end of dp_rx_process.
61  *
62  * @soc: core txrx main context
63  * @mac_id: mac_id which is one of 3 mac_ids
64  * @dp_rxdma_srng: dp rxdma circular ring
65  * @rx_desc_pool: Pointer to free Rx descriptor pool
66  * @num_req_buffers: number of buffer to be replenished
67  * @desc_list: list of descs if called from dp_rx_process
68  *	       or NULL during dp rx initialization or out of buffer
69  *	       interrupt.
70  * @tail: tail of descs list
71  * Return: return success or failure
72  */
73 QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
74 				struct dp_srng *dp_rxdma_srng,
75 				struct rx_desc_pool *rx_desc_pool,
76 				uint32_t num_req_buffers,
77 				union dp_rx_desc_list_elem_t **desc_list,
78 				union dp_rx_desc_list_elem_t **tail)
79 {
80 	uint32_t num_alloc_desc;
81 	uint16_t num_desc_to_free = 0;
82 	struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
83 	uint32_t num_entries_avail;
84 	uint32_t count;
85 	int sync_hw_ptr = 1;
86 	qdf_dma_addr_t paddr;
87 	qdf_nbuf_t rx_netbuf;
88 	void *rxdma_ring_entry;
89 	union dp_rx_desc_list_elem_t *next;
90 	QDF_STATUS ret;
91 
92 	void *rxdma_srng;
93 
94 	rxdma_srng = dp_rxdma_srng->hal_srng;
95 
96 	if (!rxdma_srng) {
97 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
98 				  "rxdma srng not initialized");
99 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
100 		return QDF_STATUS_E_FAILURE;
101 	}
102 
103 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
104 		"requested %d buffers for replenish", num_req_buffers);
105 
106 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
107 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
108 						   rxdma_srng,
109 						   sync_hw_ptr);
110 
111 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
112 		"no of available entries in rxdma ring: %d",
113 		num_entries_avail);
114 
115 	if (!(*desc_list) && (num_entries_avail >
116 		((dp_rxdma_srng->num_entries * 3) / 4))) {
117 		num_req_buffers = num_entries_avail;
118 	} else if (num_entries_avail < num_req_buffers) {
119 		num_desc_to_free = num_req_buffers - num_entries_avail;
120 		num_req_buffers = num_entries_avail;
121 	}
122 
123 	if (qdf_unlikely(!num_req_buffers)) {
124 		num_desc_to_free = num_req_buffers;
125 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
126 		goto free_descs;
127 	}
128 
129 	/*
130 	 * if desc_list is NULL, allocate the descs from freelist
131 	 */
132 	if (!(*desc_list)) {
133 		num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
134 							  rx_desc_pool,
135 							  num_req_buffers,
136 							  desc_list,
137 							  tail);
138 
139 		if (!num_alloc_desc) {
140 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
141 				"no free rx_descs in freelist");
142 			DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
143 					num_req_buffers);
144 			hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
145 			return QDF_STATUS_E_NOMEM;
146 		}
147 
148 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
149 			"%d rx desc allocated", num_alloc_desc);
150 		num_req_buffers = num_alloc_desc;
151 	}
152 
153 
154 	count = 0;
155 
156 	while (count < num_req_buffers) {
157 		rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
158 					RX_BUFFER_SIZE,
159 					RX_BUFFER_RESERVATION,
160 					RX_BUFFER_ALIGNMENT,
161 					FALSE);
162 
163 		if (rx_netbuf == NULL) {
164 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
165 			continue;
166 		}
167 
168 		ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
169 				    QDF_DMA_BIDIRECTIONAL);
170 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
171 			qdf_nbuf_free(rx_netbuf);
172 			DP_STATS_INC(dp_pdev, replenish.map_err, 1);
173 			continue;
174 		}
175 
176 		paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
177 
178 		/*
179 		 * check if the physical address of nbuf->data is
180 		 * less then 0x50000000 then free the nbuf and try
181 		 * allocating new nbuf. We can try for 100 times.
182 		 * this is a temp WAR till we fix it properly.
183 		 */
184 		ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
185 		if (ret == QDF_STATUS_E_FAILURE) {
186 			DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
187 			break;
188 		}
189 
190 		count++;
191 
192 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
193 								rxdma_srng);
194 		qdf_assert_always(rxdma_ring_entry);
195 
196 		next = (*desc_list)->next;
197 
198 		dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
199 		(*desc_list)->rx_desc.in_use = 1;
200 
201 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
202 				"rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
203 			rx_netbuf, qdf_nbuf_data(rx_netbuf),
204 			(unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
205 
206 		hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
207 						(*desc_list)->rx_desc.cookie,
208 						rx_desc_pool->owner);
209 
210 		*desc_list = next;
211 	}
212 
213 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
214 
215 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
216 		"successfully replenished %d buffers", num_req_buffers);
217 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
218 		"%d rx desc added back to free list", num_desc_to_free);
219 
220 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
221 			(RX_BUFFER_SIZE * num_req_buffers));
222 
223 free_descs:
224 	DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
225 	/*
226 	 * add any available free desc back to the free list
227 	 */
228 	if (*desc_list)
229 		dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
230 			mac_id, rx_desc_pool);
231 
232 	return QDF_STATUS_SUCCESS;
233 }
234 
235 /*
236  * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
237  *				pkts to RAW mode simulation to
238  *				decapsulate the pkt.
239  *
240  * @vdev: vdev on which RAW mode is enabled
241  * @nbuf_list: list of RAW pkts to process
242  * @peer: peer object from which the pkt is rx
243  *
244  * Return: void
245  */
246 void
247 dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
248 					struct dp_peer *peer)
249 {
250 	qdf_nbuf_t deliver_list_head = NULL;
251 	qdf_nbuf_t deliver_list_tail = NULL;
252 	qdf_nbuf_t nbuf;
253 
254 	nbuf = nbuf_list;
255 	while (nbuf) {
256 		qdf_nbuf_t next = qdf_nbuf_next(nbuf);
257 
258 		DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
259 
260 		DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
261 		DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
262 		/*
263 		 * reset the chfrag_start and chfrag_end bits in nbuf cb
264 		 * as this is a non-amsdu pkt and RAW mode simulation expects
265 		 * these bit s to be 0 for non-amsdu pkt.
266 		 */
267 		if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
268 			 qdf_nbuf_is_rx_chfrag_end(nbuf)) {
269 			qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
270 			qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
271 		}
272 
273 		nbuf = next;
274 	}
275 
276 	vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
277 				 &deliver_list_tail, (struct cdp_peer*) peer);
278 
279 	vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
280 }
281 
282 
283 #ifdef DP_LFR
284 /*
285  * In case of LFR, data of a new peer might be sent up
286  * even before peer is added.
287  */
288 static inline struct dp_vdev *
289 dp_get_vdev_from_peer(struct dp_soc *soc,
290 			uint16_t peer_id,
291 			struct dp_peer *peer,
292 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
293 {
294 	struct dp_vdev *vdev;
295 	uint8_t vdev_id;
296 
297 	if (unlikely(!peer)) {
298 		if (peer_id != HTT_INVALID_PEER) {
299 			vdev_id = DP_PEER_METADATA_ID_GET(
300 					mpdu_desc_info.peer_meta_data);
301 			QDF_TRACE(QDF_MODULE_ID_DP,
302 				QDF_TRACE_LEVEL_DEBUG,
303 				FL("PeerID %d not found use vdevID %d"),
304 				peer_id, vdev_id);
305 			vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
306 							vdev_id);
307 		} else {
308 			QDF_TRACE(QDF_MODULE_ID_DP,
309 				QDF_TRACE_LEVEL_DEBUG,
310 				FL("Invalid PeerID %d"),
311 				peer_id);
312 			return NULL;
313 		}
314 	} else {
315 		vdev = peer->vdev;
316 	}
317 	return vdev;
318 }
319 #else
320 static inline struct dp_vdev *
321 dp_get_vdev_from_peer(struct dp_soc *soc,
322 			uint16_t peer_id,
323 			struct dp_peer *peer,
324 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
325 {
326 	if (unlikely(!peer)) {
327 		QDF_TRACE(QDF_MODULE_ID_DP,
328 			QDF_TRACE_LEVEL_DEBUG,
329 			FL("Peer not found for peerID %d"),
330 			peer_id);
331 		return NULL;
332 	} else {
333 		return peer->vdev;
334 	}
335 }
336 #endif
337 
338 /**
339  * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
340  *
341  * @soc: core txrx main context
342  * @sa_peer	: source peer entry
343  * @rx_tlv_hdr	: start address of rx tlvs
344  * @nbuf	: nbuf that has to be intrabss forwarded
345  *
346  * Return: bool: true if it is forwarded else false
347  */
348 static bool
349 dp_rx_intrabss_fwd(struct dp_soc *soc,
350 			struct dp_peer *sa_peer,
351 			uint8_t *rx_tlv_hdr,
352 			qdf_nbuf_t nbuf)
353 {
354 	uint16_t da_idx;
355 	uint16_t len;
356 	struct dp_peer *da_peer;
357 	struct dp_ast_entry *ast_entry;
358 	qdf_nbuf_t nbuf_copy;
359 	struct dp_vdev *vdev = sa_peer->vdev;
360 
361 	/*
362 	 * intrabss forwarding is not applicable if
363 	 * vap is nawds enabled or ap_bridge is false.
364 	 */
365 	if (vdev->nawds_enabled)
366 		return false;
367 
368 
369 	/* check if the destination peer is available in peer table
370 	 * and also check if the source peer and destination peer
371 	 * belong to the same vap and destination peer is not bss peer.
372 	 */
373 
374 	if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
375 	   !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
376 		da_idx = hal_rx_msdu_end_da_idx_get(rx_tlv_hdr);
377 
378 		ast_entry = soc->ast_table[da_idx];
379 		if (!ast_entry)
380 			return false;
381 
382 		da_peer = ast_entry->peer;
383 
384 		if (!da_peer)
385 			return false;
386 
387 		if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
388 			memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
389 			len = qdf_nbuf_len(nbuf);
390 
391 			/* linearize the nbuf just before we send to
392 			 * dp_tx_send()
393 			 */
394 			if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
395 				if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
396 					return false;
397 
398 				nbuf = qdf_nbuf_unshare(nbuf);
399 				if (!nbuf) {
400 					DP_STATS_INC_PKT(sa_peer,
401 							 rx.intra_bss.fail,
402 							 1,
403 							 len);
404 					/* return true even though the pkt is
405 					 * not forwarded. Basically skb_unshare
406 					 * failed and we want to continue with
407 					 * next nbuf.
408 					 */
409 					return true;
410 				}
411 			}
412 
413 			if (!dp_tx_send(sa_peer->vdev, nbuf)) {
414 				DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
415 						1, len);
416 				return true;
417 			} else {
418 				DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
419 						len);
420 				return false;
421 			}
422 		}
423 	}
424 	/* if it is a broadcast pkt (eg: ARP) and it is not its own
425 	 * source, then clone the pkt and send the cloned pkt for
426 	 * intra BSS forwarding and original pkt up the network stack
427 	 * Note: how do we handle multicast pkts. do we forward
428 	 * all multicast pkts as is or let a higher layer module
429 	 * like igmpsnoop decide whether to forward or not with
430 	 * Mcast enhancement.
431 	 */
432 	else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
433 		!sa_peer->bss_peer))) {
434 		nbuf_copy = qdf_nbuf_copy(nbuf);
435 		if (!nbuf_copy)
436 			return false;
437 		memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
438 		len = qdf_nbuf_len(nbuf_copy);
439 
440 		if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
441 			DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
442 			qdf_nbuf_free(nbuf_copy);
443 		} else
444 			DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
445 	}
446 	/* return false as we have to still send the original pkt
447 	 * up the stack
448 	 */
449 	return false;
450 }
451 
452 #ifdef MESH_MODE_SUPPORT
453 
454 /**
455  * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
456  *
457  * @vdev: DP Virtual device handle
458  * @nbuf: Buffer pointer
459  * @rx_tlv_hdr: start of rx tlv header
460  * @peer: pointer to peer
461  *
462  * This function allocated memory for mesh receive stats and fill the
463  * required stats. Stores the memory address in skb cb.
464  *
465  * Return: void
466  */
467 
468 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
469 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
470 {
471 	struct mesh_recv_hdr_s *rx_info = NULL;
472 	uint32_t pkt_type;
473 	uint32_t nss;
474 	uint32_t rate_mcs;
475 	uint32_t bw;
476 
477 	/* fill recv mesh stats */
478 	rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
479 
480 	/* upper layers are resposible to free this memory */
481 
482 	if (rx_info == NULL) {
483 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
484 			"Memory allocation failed for mesh rx stats");
485 		DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
486 		return;
487 	}
488 
489 	rx_info->rs_flags = MESH_RXHDR_VER1;
490 	if (qdf_nbuf_is_rx_chfrag_start(nbuf))
491 		rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
492 
493 	if (qdf_nbuf_is_rx_chfrag_end(nbuf))
494 		rx_info->rs_flags |= MESH_RX_LAST_MSDU;
495 
496 	if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
497 		rx_info->rs_flags |= MESH_RX_DECRYPTED;
498 		rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
499 		if (vdev->osif_get_key)
500 			vdev->osif_get_key(vdev->osif_vdev,
501 					&rx_info->rs_decryptkey[0],
502 					&peer->mac_addr.raw[0],
503 					rx_info->rs_keyix);
504 	}
505 
506 	rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
507 	rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
508 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
509 	rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
510 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
511 	nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
512 	rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
513 				(bw << 24);
514 
515 	qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
516 
517 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
518 		FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
519 						rx_info->rs_flags,
520 						rx_info->rs_rssi,
521 						rx_info->rs_channel,
522 						rx_info->rs_ratephy1,
523 						rx_info->rs_keyix);
524 
525 }
526 
527 /**
528  * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
529  *
530  * @vdev: DP Virtual device handle
531  * @nbuf: Buffer pointer
532  * @rx_tlv_hdr: start of rx tlv header
533  *
534  * This checks if the received packet is matching any filter out
535  * catogery and and drop the packet if it matches.
536  *
537  * Return: status(0 indicates drop, 1 indicate to no drop)
538  */
539 
540 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
541 					uint8_t *rx_tlv_hdr)
542 {
543 	union dp_align_mac_addr mac_addr;
544 
545 	if (qdf_unlikely(vdev->mesh_rx_filter)) {
546 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
547 			if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
548 				return  QDF_STATUS_SUCCESS;
549 
550 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
551 			if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
552 				return  QDF_STATUS_SUCCESS;
553 
554 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
555 			if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
556 				&& !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
557 				return  QDF_STATUS_SUCCESS;
558 
559 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
560 			if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
561 					&mac_addr.raw[0]))
562 				return QDF_STATUS_E_FAILURE;
563 
564 			if (!qdf_mem_cmp(&mac_addr.raw[0],
565 					&vdev->mac_addr.raw[0],
566 					DP_MAC_ADDR_LEN))
567 				return  QDF_STATUS_SUCCESS;
568 		}
569 
570 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
571 			if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
572 					&mac_addr.raw[0]))
573 				return QDF_STATUS_E_FAILURE;
574 
575 			if (!qdf_mem_cmp(&mac_addr.raw[0],
576 					&vdev->mac_addr.raw[0],
577 					DP_MAC_ADDR_LEN))
578 				return  QDF_STATUS_SUCCESS;
579 		}
580 	}
581 
582 	return QDF_STATUS_E_FAILURE;
583 }
584 
585 #else
586 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
587 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
588 {
589 }
590 
591 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
592 					uint8_t *rx_tlv_hdr)
593 {
594 	return QDF_STATUS_E_FAILURE;
595 }
596 
597 #endif
598 
599 #ifdef CONFIG_WIN
600 /**
601  * dp_rx_nac_filter(): Function to perform filtering of non-associated
602  * clients
603  * @pdev: DP pdev handle
604  * @rx_pkt_hdr: Rx packet Header
605  *
606  * return: dp_vdev*
607  */
608 static
609 struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
610 		uint8_t *rx_pkt_hdr)
611 {
612 	struct ieee80211_frame *wh;
613 	struct dp_neighbour_peer *peer = NULL;
614 
615 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
616 
617 	if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
618 		return NULL;
619 
620 	qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
621 	TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
622 				neighbour_peer_list_elem) {
623 		if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
624 				wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
625 			QDF_TRACE(
626 				QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
627 				FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
628 				peer->neighbour_peers_macaddr.raw[0],
629 				peer->neighbour_peers_macaddr.raw[1],
630 				peer->neighbour_peers_macaddr.raw[2],
631 				peer->neighbour_peers_macaddr.raw[3],
632 				peer->neighbour_peers_macaddr.raw[4],
633 				peer->neighbour_peers_macaddr.raw[5]);
634 
635 				qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
636 
637 			return pdev->monitor_vdev;
638 		}
639 	}
640 	qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
641 
642 	return NULL;
643 }
644 
645 /**
646  * dp_rx_process_nac_rssi_frames(): Store RSSI for configured NAC
647  * @pdev: DP pdev handle
648  * @rx_tlv_hdr: tlv hdr buf
649  *
650  * return: None
651  */
652 #ifdef ATH_SUPPORT_NAC_RSSI
653 static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
654 {
655 	struct dp_vdev *vdev = NULL;
656 	struct dp_soc *soc  = pdev->soc;
657 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
658 	struct ieee80211_frame *wh = (struct ieee80211_frame *)rx_pkt_hdr;
659 
660 	if (pdev->nac_rssi_filtering) {
661 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
662 			if (vdev->cdp_nac_rssi_enabled &&
663 				(qdf_mem_cmp(vdev->cdp_nac_rssi.client_mac,
664 					wh->i_addr1, DP_MAC_ADDR_LEN) == 0)) {
665 				QDF_TRACE(QDF_MODULE_ID_DP,
666 					QDF_TRACE_LEVEL_DEBUG, "RSSI updated");
667 				vdev->cdp_nac_rssi.vdev_id = vdev->vdev_id;
668 				vdev->cdp_nac_rssi.client_rssi =
669 					hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
670 				dp_wdi_event_handler(WDI_EVENT_NAC_RSSI, soc,
671 					(void *)&vdev->cdp_nac_rssi,
672 					HTT_INVALID_PEER, WDI_NO_VAL,
673 					pdev->pdev_id);
674 			}
675 		}
676 	}
677 }
678 #else
679 static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
680 {
681 }
682 #endif
683 
684 /**
685  * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
686  * @soc: DP SOC handle
687  * @mpdu: mpdu for which peer is invalid
688  *
689  * return: integer type
690  */
691 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
692 {
693 	struct dp_invalid_peer_msg msg;
694 	struct dp_vdev *vdev = NULL;
695 	struct dp_pdev *pdev = NULL;
696 	struct ieee80211_frame *wh;
697 	uint8_t i;
698 	qdf_nbuf_t curr_nbuf, next_nbuf;
699 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
700 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
701 
702 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
703 
704 	if (!DP_FRAME_IS_DATA(wh)) {
705 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
706 				"NAWDS valid only for data frames");
707 		goto free;
708 	}
709 
710 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
711 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
712 				"Invalid nbuf length");
713 		goto free;
714 	}
715 
716 
717 	for (i = 0; i < MAX_PDEV_CNT; i++) {
718 		pdev = soc->pdev_list[i];
719 		if (!pdev) {
720 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
721 					"PDEV not found");
722 			continue;
723 		}
724 
725 		if (pdev->filter_neighbour_peers) {
726 			/* Next Hop scenario not yet handle */
727 			vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
728 			if (vdev) {
729 				dp_rx_mon_deliver(soc, i,
730 						pdev->invalid_peer_head_msdu,
731 						pdev->invalid_peer_tail_msdu);
732 
733 				pdev->invalid_peer_head_msdu = NULL;
734 				pdev->invalid_peer_tail_msdu = NULL;
735 
736 				return 0;
737 			}
738 		}
739 
740 
741 		dp_rx_process_nac_rssi_frames(pdev, rx_tlv_hdr);
742 
743 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
744 
745 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
746 						DP_MAC_ADDR_LEN) == 0) {
747 				goto out;
748 			}
749 		}
750 	}
751 
752 	if (!vdev) {
753 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
754 				"VDEV not found");
755 		goto free;
756 	}
757 
758 out:
759 	msg.wh = wh;
760 	qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
761 	msg.nbuf = mpdu;
762 	msg.vdev_id = vdev->vdev_id;
763 	if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
764 		pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
765 							&msg);
766 
767 free:
768 	/* Drop and free packet */
769 	curr_nbuf = mpdu;
770 	while (curr_nbuf) {
771 		next_nbuf = qdf_nbuf_next(curr_nbuf);
772 		qdf_nbuf_free(curr_nbuf);
773 		curr_nbuf = next_nbuf;
774 	}
775 
776 	return 0;
777 }
778 
779 /**
780  * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
781  * @soc: DP SOC handle
782  * @mpdu: mpdu for which peer is invalid
783  * @mpdu_done: if an mpdu is completed
784  *
785  * return: integer type
786  */
787 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
788 					qdf_nbuf_t mpdu, bool mpdu_done)
789 {
790 	/* Only trigger the process when mpdu is completed */
791 	if (mpdu_done)
792 		dp_rx_process_invalid_peer(soc, mpdu);
793 }
794 #else
795 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
796 {
797 	qdf_nbuf_t curr_nbuf, next_nbuf;
798 	struct dp_pdev *pdev;
799 	uint8_t i;
800 
801 	curr_nbuf = mpdu;
802 	while (curr_nbuf) {
803 		next_nbuf = qdf_nbuf_next(curr_nbuf);
804 		/* Drop and free packet */
805 		DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
806 				qdf_nbuf_len(curr_nbuf));
807 		qdf_nbuf_free(curr_nbuf);
808 		curr_nbuf = next_nbuf;
809 	}
810 
811 	/* reset the head and tail pointers */
812 	for (i = 0; i < MAX_PDEV_CNT; i++) {
813 		pdev = soc->pdev_list[i];
814 		if (!pdev) {
815 			QDF_TRACE(QDF_MODULE_ID_DP,
816 				QDF_TRACE_LEVEL_ERROR,
817 				"PDEV not found");
818 			continue;
819 		}
820 
821 		pdev->invalid_peer_head_msdu = NULL;
822 		pdev->invalid_peer_tail_msdu = NULL;
823 	}
824 	return 0;
825 }
826 
827 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
828 					qdf_nbuf_t mpdu, bool mpdu_done)
829 {
830 	/* To avoid compiler warning */
831 	mpdu_done = mpdu_done;
832 
833 	/* Process the nbuf */
834 	dp_rx_process_invalid_peer(soc, mpdu);
835 }
836 #endif
837 
838 #if defined(FEATURE_LRO)
839 static void dp_rx_print_lro_info(uint8_t *rx_tlv)
840 {
841 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
842 	FL("----------------------RX DESC LRO----------------------\n"));
843 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
844 		FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
845 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
846 		FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
847 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
848 		FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
849 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
850 		FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
851 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
852 		FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
853 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
854 		FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
855 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
856 		FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
857 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
858 		FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
859 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
860 		FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
861 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
862 	FL("---------------------------------------------------------\n"));
863 }
864 
865 /**
866  * dp_rx_lro() - LRO related processing
867  * @rx_tlv: TLV data extracted from the rx packet
868  * @peer: destination peer of the msdu
869  * @msdu: network buffer
870  * @ctx: LRO context
871  *
872  * This function performs the LRO related processing of the msdu
873  *
874  * Return: true: LRO enabled false: LRO is not enabled
875  */
876 static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
877 	 qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
878 {
879 	if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
880 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
881 			 FL("no peer, no vdev or LRO disabled"));
882 		QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
883 		return;
884 	}
885 	qdf_assert(rx_tlv);
886 	dp_rx_print_lro_info(rx_tlv);
887 
888 	QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
889 		 HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
890 
891 	QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
892 			HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
893 
894 	QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
895 			 HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
896 	QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
897 			 HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
898 	QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
899 			 HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
900 	QDF_NBUF_CB_RX_TCP_WIN(msdu) =
901 			 HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
902 	QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
903 			 HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
904 	QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
905 			 HAL_RX_TLV_GET_IPV6(rx_tlv);
906 	QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
907 			 HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
908 	QDF_NBUF_CB_RX_FLOW_ID(msdu) =
909 			 HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
910 	QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
911 
912 }
913 #else
914 static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
915 	 qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
916 {
917 }
918 #endif
919 
920 /**
921  * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
922  *
923  * @nbuf: pointer to msdu.
924  * @mpdu_len: mpdu length
925  *
926  * Return: returns true if nbuf is last msdu of mpdu else retuns false.
927  */
928 static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
929 {
930 	bool last_nbuf;
931 
932 	if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
933 		qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
934 		last_nbuf = false;
935 	} else {
936 		qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
937 		last_nbuf = true;
938 	}
939 
940 	*mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
941 
942 	return last_nbuf;
943 }
944 
945 /**
946  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
947  *		     multiple nbufs.
948  * @nbuf: pointer to the first msdu of an amsdu.
949  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
950  *
951  *
952  * This function implements the creation of RX frag_list for cases
953  * where an MSDU is spread across multiple nbufs.
954  *
955  * Return: returns the head nbuf which contains complete frag_list.
956  */
957 qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
958 {
959 	qdf_nbuf_t parent, next, frag_list;
960 	uint16_t frag_list_len = 0;
961 	uint16_t mpdu_len;
962 	bool last_nbuf;
963 
964 	mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
965 	/*
966 	 * this is a case where the complete msdu fits in one single nbuf.
967 	 * in this case HW sets both start and end bit and we only need to
968 	 * reset these bits for RAW mode simulator to decap the pkt
969 	 */
970 	if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
971 					qdf_nbuf_is_rx_chfrag_end(nbuf)) {
972 		qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
973 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
974 		return nbuf;
975 	}
976 
977 	/*
978 	 * This is a case where we have multiple msdus (A-MSDU) spread across
979 	 * multiple nbufs. here we create a fraglist out of these nbufs.
980 	 *
981 	 * the moment we encounter a nbuf with continuation bit set we
982 	 * know for sure we have an MSDU which is spread across multiple
983 	 * nbufs. We loop through and reap nbufs till we reach last nbuf.
984 	 */
985 	parent = nbuf;
986 	frag_list = nbuf->next;
987 	nbuf = nbuf->next;
988 
989 	/*
990 	 * set the start bit in the first nbuf we encounter with continuation
991 	 * bit set. This has the proper mpdu length set as it is the first
992 	 * msdu of the mpdu. this becomes the parent nbuf and the subsequent
993 	 * nbufs will form the frag_list of the parent nbuf.
994 	 */
995 	qdf_nbuf_set_rx_chfrag_start(parent, 1);
996 	last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
997 
998 	/*
999 	 * this is where we set the length of the fragments which are
1000 	 * associated to the parent nbuf. We iterate through the frag_list
1001 	 * till we hit the last_nbuf of the list.
1002 	 */
1003 	do {
1004 		last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
1005 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1006 		frag_list_len += qdf_nbuf_len(nbuf);
1007 
1008 		if (last_nbuf) {
1009 			next = nbuf->next;
1010 			nbuf->next = NULL;
1011 			break;
1012 		}
1013 
1014 		nbuf = nbuf->next;
1015 	} while (!last_nbuf);
1016 
1017 	qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
1018 	qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
1019 	parent->next = next;
1020 
1021 	qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
1022 	return parent;
1023 }
1024 
1025 static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
1026 						struct dp_peer *peer,
1027 						qdf_nbuf_t nbuf_head,
1028 						qdf_nbuf_t nbuf_tail)
1029 {
1030 	/*
1031 	 * highly unlikely to have a vdev without a registered rx
1032 	 * callback function. if so let us free the nbuf_list.
1033 	 */
1034 	if (qdf_unlikely(!vdev->osif_rx)) {
1035 		qdf_nbuf_t nbuf;
1036 		do {
1037 			nbuf = nbuf_head;
1038 			nbuf_head = nbuf_head->next;
1039 			qdf_nbuf_free(nbuf);
1040 		} while (nbuf_head);
1041 
1042 		return;
1043 	}
1044 
1045 	if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
1046 			(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
1047 		vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
1048 				&nbuf_tail, (struct cdp_peer *) peer);
1049 	}
1050 
1051 	vdev->osif_rx(vdev->osif_vdev, nbuf_head);
1052 
1053 }
1054 
1055 /**
1056  * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
1057  * @nbuf: pointer to the first msdu of an amsdu.
1058  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1059  *
1060  * The ipsumed field of the skb is set based on whether HW validated the
1061  * IP/TCP/UDP checksum.
1062  *
1063  * Return: void
1064  */
1065 static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
1066 				       qdf_nbuf_t nbuf,
1067 				       uint8_t *rx_tlv_hdr)
1068 {
1069 	qdf_nbuf_rx_cksum_t cksum = {0};
1070 	bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
1071 	bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
1072 
1073 	if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
1074 		cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
1075 		qdf_nbuf_set_rx_cksum(nbuf, &cksum);
1076 	} else {
1077 		DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
1078 		DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
1079 	}
1080 }
1081 
1082 /**
1083  * dp_rx_msdu_stats_update() - update per msdu stats.
1084  * @soc: core txrx main context
1085  * @nbuf: pointer to the first msdu of an amsdu.
1086  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1087  * @peer: pointer to the peer object.
1088  * @ring_id: reo dest ring number on which pkt is reaped.
1089  *
1090  * update all the per msdu stats for that nbuf.
1091  * Return: void
1092  */
1093 static void dp_rx_msdu_stats_update(struct dp_soc *soc,
1094 				    qdf_nbuf_t nbuf,
1095 				    uint8_t *rx_tlv_hdr,
1096 				    struct dp_peer *peer,
1097 				    uint8_t ring_id)
1098 {
1099 	bool is_ampdu, is_not_amsdu;
1100 	uint16_t peer_id;
1101 	uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
1102 	struct dp_vdev *vdev = peer->vdev;
1103 	struct ether_header *eh;
1104 	uint16_t msdu_len = qdf_nbuf_len(nbuf);
1105 
1106 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1107 			       hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
1108 
1109 	is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
1110 			qdf_nbuf_is_rx_chfrag_end(nbuf);
1111 
1112 	DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
1113 	DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
1114 	DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
1115 
1116 	if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
1117 			 (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
1118 		eh = (struct ether_header *)qdf_nbuf_data(nbuf);
1119 		if (IEEE80211_IS_BROADCAST(eh->ether_dhost)) {
1120 			DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
1121 		} else {
1122 			DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
1123 		}
1124 	}
1125 
1126 	/*
1127 	 * currently we can return from here as we have similar stats
1128 	 * updated at per ppdu level instead of msdu level
1129 	 */
1130 	if (!soc->process_rx_status)
1131 		return;
1132 
1133 	is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
1134 	DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
1135 	DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
1136 
1137 	sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
1138 	mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
1139 	tid = hal_rx_mpdu_start_tid_get(rx_tlv_hdr);
1140 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
1141 	reception_type = hal_rx_msdu_start_reception_type_get(rx_tlv_hdr);
1142 	nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
1143 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
1144 
1145 	/* Save tid to skb->priority */
1146 	DP_RX_TID_SAVE(nbuf, tid);
1147 
1148 	DP_STATS_INC(peer, rx.nss[nss], 1);
1149 	DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
1150 	DP_STATS_INCC(peer, rx.err.mic_err, 1,
1151 		      hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
1152 	DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
1153 		      hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
1154 
1155 	DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
1156 	DP_STATS_INC(peer, rx.bw[bw], 1);
1157 	DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
1158 
1159 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1160 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1161 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1162 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1163 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1164 		      ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1165 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1166 		      ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1167 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1168 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1169 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1170 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1171 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1172 		      ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1173 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1174 		      ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1175 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1176 		      ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
1177 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1178 		      ((mcs <= MAX_MCS) && (pkt_type == DOT11_AX)));
1179 
1180 	if ((soc->process_rx_status) &&
1181 	    hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
1182 		if (soc->cdp_soc.ol_ops->update_dp_stats) {
1183 			soc->cdp_soc.ol_ops->update_dp_stats(
1184 					vdev->pdev->ctrl_pdev,
1185 					&peer->stats,
1186 					peer_id,
1187 					UPDATE_PEER_STATS);
1188 		}
1189 	}
1190 }
1191 
1192 #ifdef WDS_VENDOR_EXTENSION
1193 int dp_wds_rx_policy_check(
1194 		uint8_t *rx_tlv_hdr,
1195 		struct dp_vdev *vdev,
1196 		struct dp_peer *peer,
1197 		int rx_mcast
1198 		)
1199 {
1200 	struct dp_peer *bss_peer;
1201 	int fr_ds, to_ds, rx_3addr, rx_4addr;
1202 	int rx_policy_ucast, rx_policy_mcast;
1203 
1204 	if (vdev->opmode == wlan_op_mode_ap) {
1205 		TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
1206 			if (bss_peer->bss_peer) {
1207 				/* if wds policy check is not enabled on this vdev, accept all frames */
1208 				if (!bss_peer->wds_ecm.wds_rx_filter) {
1209 					return 1;
1210 				}
1211 				break;
1212 			}
1213 		}
1214 		rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
1215 		rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
1216 	} else {             /* sta mode */
1217 		if (!peer->wds_ecm.wds_rx_filter) {
1218 			return 1;
1219 		}
1220 		rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
1221 		rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
1222 	}
1223 
1224 	/* ------------------------------------------------
1225 	 *                       self
1226 	 * peer-             rx  rx-
1227 	 * wds  ucast mcast dir policy accept note
1228 	 * ------------------------------------------------
1229 	 * 1     1     0     11  x1     1      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
1230 	 * 1     1     0     01  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1231 	 * 1     1     0     10  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1232 	 * 1     1     0     00  x1     0      bad frame, won't see it
1233 	 * 1     0     1     11  1x     1      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
1234 	 * 1     0     1     01  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1235 	 * 1     0     1     10  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1236 	 * 1     0     1     00  1x     0      bad frame, won't see it
1237 	 * 1     1     0     11  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1238 	 * 1     1     0     01  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1239 	 * 1     1     0     10  x0     1      AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
1240 	 * 1     1     0     00  x0     0      bad frame, won't see it
1241 	 * 1     0     1     11  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1242 	 * 1     0     1     01  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1243 	 * 1     0     1     10  0x     1      AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
1244 	 * 1     0     1     00  0x     0      bad frame, won't see it
1245 	 *
1246 	 * 0     x     x     11  xx     0      we only accept td-ds Rx frames from non-wds peers in mode.
1247 	 * 0     x     x     01  xx     1
1248 	 * 0     x     x     10  xx     0
1249 	 * 0     x     x     00  xx     0      bad frame, won't see it
1250 	 * ------------------------------------------------
1251 	 */
1252 
1253 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
1254 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
1255 	rx_3addr = fr_ds ^ to_ds;
1256 	rx_4addr = fr_ds & to_ds;
1257 
1258 	if (vdev->opmode == wlan_op_mode_ap) {
1259 		if ((!peer->wds_enabled && rx_3addr && to_ds) ||
1260 				(peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1261 				(peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
1262 			return 1;
1263 		}
1264 	} else {           /* sta mode */
1265 		if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1266 				(rx_mcast && (rx_4addr == rx_policy_mcast))) {
1267 			return 1;
1268 		}
1269 	}
1270 	return 0;
1271 }
1272 #else
1273 int dp_wds_rx_policy_check(
1274 		uint8_t *rx_tlv_hdr,
1275 		struct dp_vdev *vdev,
1276 		struct dp_peer *peer,
1277 		int rx_mcast
1278 		)
1279 {
1280 	return 1;
1281 }
1282 #endif
1283 
1284 /**
1285  * dp_rx_process() - Brain of the Rx processing functionality
1286  *		     Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
1287  * @soc: core txrx main context
1288  * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
1289  * @quota: No. of units (packets) that can be serviced in one shot.
1290  *
1291  * This function implements the core of Rx functionality. This is
1292  * expected to handle only non-error frames.
1293  *
1294  * Return: uint32_t: No. of elements processed
1295  */
1296 uint32_t
1297 dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint32_t quota)
1298 {
1299 	void *hal_soc;
1300 	void *ring_desc;
1301 	struct dp_rx_desc *rx_desc = NULL;
1302 	qdf_nbuf_t nbuf, next;
1303 	union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
1304 	union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
1305 	uint32_t rx_bufs_used = 0, rx_buf_cookie;
1306 	uint32_t l2_hdr_offset = 0;
1307 	uint16_t msdu_len = 0;
1308 	uint16_t peer_id;
1309 	struct dp_peer *peer = NULL;
1310 	struct dp_vdev *vdev = NULL;
1311 	uint32_t pkt_len = 0;
1312 	struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
1313 	struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
1314 	enum hal_reo_error_status error;
1315 	uint32_t peer_mdata;
1316 	uint8_t *rx_tlv_hdr;
1317 	uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
1318 	uint8_t mac_id = 0;
1319 	struct dp_pdev *pdev;
1320 	struct dp_srng *dp_rxdma_srng;
1321 	struct rx_desc_pool *rx_desc_pool;
1322 	struct dp_soc *soc = int_ctx->soc;
1323 	uint8_t ring_id = 0;
1324 	uint8_t core_id = 0;
1325 	qdf_nbuf_t nbuf_head = NULL;
1326 	qdf_nbuf_t nbuf_tail = NULL;
1327 	qdf_nbuf_t deliver_list_head = NULL;
1328 	qdf_nbuf_t deliver_list_tail = NULL;
1329 
1330 	DP_HIST_INIT();
1331 	/* Debug -- Remove later */
1332 	qdf_assert(soc && hal_ring);
1333 
1334 	hal_soc = soc->hal_soc;
1335 
1336 	/* Debug -- Remove later */
1337 	qdf_assert(hal_soc);
1338 
1339 	hif_pm_runtime_mark_last_busy(soc->osdev->dev);
1340 
1341 	if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
1342 
1343 		/*
1344 		 * Need API to convert from hal_ring pointer to
1345 		 * Ring Type / Ring Id combo
1346 		 */
1347 		DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
1348 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1349 			FL("HAL RING Access Failed -- %pK"), hal_ring);
1350 		hal_srng_access_end(hal_soc, hal_ring);
1351 		goto done;
1352 	}
1353 
1354 	/*
1355 	 * start reaping the buffers from reo ring and queue
1356 	 * them in per vdev queue.
1357 	 * Process the received pkts in a different per vdev loop.
1358 	 */
1359 	while (qdf_likely(quota)) {
1360 		ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
1361 
1362 		/*
1363 		 * in case HW has updated hp after we cached the hp
1364 		 * ring_desc can be NULL even there are entries
1365 		 * available in the ring. Update the cached_hp
1366 		 * and reap the buffers available to read complete
1367 		 * mpdu in one reap
1368 		 *
1369 		 * This is needed for RAW mode we have to read all
1370 		 * msdus corresponding to amsdu in one reap to create
1371 		 * SG list properly but due to mismatch in cached_hp
1372 		 * and actual hp sometimes we are unable to read
1373 		 * complete mpdu in one reap.
1374 		 */
1375 		if (qdf_unlikely(!ring_desc)) {
1376 			hal_srng_access_start_unlocked(hal_soc, hal_ring);
1377 			ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
1378 			if (!ring_desc)
1379 				break;
1380 		}
1381 
1382 		error = HAL_RX_ERROR_STATUS_GET(ring_desc);
1383 		ring_id = hal_srng_ring_id_get(hal_ring);
1384 
1385 		if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
1386 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1387 			FL("HAL RING 0x%pK:error %d"), hal_ring, error);
1388 			DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
1389 			/* Don't know how to deal with this -- assert */
1390 			qdf_assert(0);
1391 		}
1392 
1393 		rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
1394 
1395 		rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
1396 
1397 
1398 		qdf_assert(rx_desc);
1399 		rx_bufs_reaped[rx_desc->pool_id]++;
1400 
1401 		/* TODO */
1402 		/*
1403 		 * Need a separate API for unmapping based on
1404 		 * phyiscal address
1405 		 */
1406 		qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
1407 					QDF_DMA_BIDIRECTIONAL);
1408 
1409 		core_id = smp_processor_id();
1410 		DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
1411 
1412 		/* Get MPDU DESC info */
1413 		hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
1414 
1415 		hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
1416 						mpdu_desc_info.peer_meta_data);
1417 
1418 		/* Get MSDU DESC info */
1419 		hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
1420 
1421 		/*
1422 		 * save msdu flags first, last and continuation msdu in
1423 		 * nbuf->cb
1424 		 */
1425 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
1426 			qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
1427 
1428 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
1429 			qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
1430 
1431 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
1432 			qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
1433 
1434 		DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
1435 
1436 		/*
1437 		 * if continuation bit is set then we have MSDU spread
1438 		 * across multiple buffers, let us not decrement quota
1439 		 * till we reap all buffers of that MSDU.
1440 		 */
1441 		if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
1442 			quota -= 1;
1443 
1444 
1445 		dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
1446 						&tail[rx_desc->pool_id],
1447 						rx_desc);
1448 	}
1449 done:
1450 	hal_srng_access_end(hal_soc, hal_ring);
1451 
1452 	/* Update histogram statistics by looping through pdev's */
1453 	DP_RX_HIST_STATS_PER_PDEV();
1454 
1455 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
1456 		/*
1457 		 * continue with next mac_id if no pkts were reaped
1458 		 * from that pool
1459 		 */
1460 		if (!rx_bufs_reaped[mac_id])
1461 			continue;
1462 
1463 		pdev = soc->pdev_list[mac_id];
1464 		dp_rxdma_srng = &pdev->rx_refill_buf_ring;
1465 		rx_desc_pool = &soc->rx_desc_buf[mac_id];
1466 
1467 		dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
1468 					rx_desc_pool, rx_bufs_reaped[mac_id],
1469 					&head[mac_id], &tail[mac_id]);
1470 	}
1471 
1472 	/* Peer can be NULL is case of LFR */
1473 	if (qdf_likely(peer != NULL))
1474 		vdev = NULL;
1475 
1476 	/*
1477 	 * BIG loop where each nbuf is dequeued from global queue,
1478 	 * processed and queued back on a per vdev basis. These nbufs
1479 	 * are sent to stack as and when we run out of nbufs
1480 	 * or a new nbuf dequeued from global queue has a different
1481 	 * vdev when compared to previous nbuf.
1482 	 */
1483 	nbuf = nbuf_head;
1484 	while (nbuf) {
1485 		next = nbuf->next;
1486 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
1487 
1488 		/*
1489 		 * Check if DMA completed -- msdu_done is the last bit
1490 		 * to be written
1491 		 */
1492 		if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
1493 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1494 				  FL("MSDU DONE failure"));
1495 			hal_rx_dump_pkt_tlvs(rx_tlv_hdr, QDF_TRACE_LEVEL_INFO);
1496 			qdf_assert(0);
1497 		}
1498 
1499 		peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
1500 		peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
1501 		peer = dp_peer_find_by_id(soc, peer_id);
1502 
1503 		if (peer) {
1504 			QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
1505 			qdf_dp_trace_set_track(nbuf, QDF_RX);
1506 			QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
1507 			QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
1508 				QDF_NBUF_RX_PKT_DATA_TRACK;
1509 		}
1510 
1511 		rx_bufs_used++;
1512 
1513 		if (deliver_list_head && peer && (vdev != peer->vdev)) {
1514 			dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
1515 					deliver_list_tail);
1516 			deliver_list_head = NULL;
1517 			deliver_list_tail = NULL;
1518 		}
1519 
1520 		if (qdf_likely(peer != NULL)) {
1521 			vdev = peer->vdev;
1522 		} else {
1523 			qdf_nbuf_free(nbuf);
1524 			nbuf = next;
1525 			continue;
1526 		}
1527 
1528 		if (qdf_unlikely(vdev == NULL)) {
1529 			qdf_nbuf_free(nbuf);
1530 			nbuf = next;
1531 			DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
1532 			continue;
1533 		}
1534 
1535 		DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
1536 		/*
1537 		 * First IF condition:
1538 		 * 802.11 Fragmented pkts are reinjected to REO
1539 		 * HW block as SG pkts and for these pkts we only
1540 		 * need to pull the RX TLVS header length.
1541 		 * Second IF condition:
1542 		 * The below condition happens when an MSDU is spread
1543 		 * across multiple buffers. This can happen in two cases
1544 		 * 1. The nbuf size is smaller then the received msdu.
1545 		 *    ex: we have set the nbuf size to 2048 during
1546 		 *        nbuf_alloc. but we received an msdu which is
1547 		 *        2304 bytes in size then this msdu is spread
1548 		 *        across 2 nbufs.
1549 		 *
1550 		 * 2. AMSDUs when RAW mode is enabled.
1551 		 *    ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
1552 		 *        across 1st nbuf and 2nd nbuf and last MSDU is
1553 		 *        spread across 2nd nbuf and 3rd nbuf.
1554 		 *
1555 		 * for these scenarios let us create a skb frag_list and
1556 		 * append these buffers till the last MSDU of the AMSDU
1557 		 * Third condition:
1558 		 * This is the most likely case, we receive 802.3 pkts
1559 		 * decapsulated by HW, here we need to set the pkt length.
1560 		 */
1561 		if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf)))
1562 			qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1563 		else if (qdf_unlikely(vdev->rx_decap_type ==
1564 				htt_cmn_pkt_type_raw)) {
1565 			msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1566 			nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
1567 
1568 			DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
1569 			DP_STATS_INC_PKT(peer, rx.raw, 1,
1570 					 msdu_len);
1571 
1572 			next = nbuf->next;
1573 		} else {
1574 			l2_hdr_offset =
1575 				hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
1576 
1577 			msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1578 			pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
1579 
1580 			qdf_nbuf_set_pktlen(nbuf, pkt_len);
1581 			qdf_nbuf_pull_head(nbuf,
1582 					   RX_PKT_TLVS_LEN +
1583 					   l2_hdr_offset);
1584 		}
1585 
1586 		if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
1587 				hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
1588 			QDF_TRACE(QDF_MODULE_ID_DP,
1589 					QDF_TRACE_LEVEL_ERROR,
1590 					FL("Policy Check Drop pkt"));
1591 			/* Drop & free packet */
1592 			qdf_nbuf_free(nbuf);
1593 			/* Statistics */
1594 			nbuf = next;
1595 			continue;
1596 		}
1597 
1598 		if (qdf_unlikely(peer && peer->bss_peer)) {
1599 			QDF_TRACE(QDF_MODULE_ID_DP,
1600 				QDF_TRACE_LEVEL_ERROR,
1601 				FL("received pkt with same src MAC"));
1602 			DP_STATS_INC(vdev->pdev, dropped.mec, 1);
1603 
1604 			/* Drop & free packet */
1605 			qdf_nbuf_free(nbuf);
1606 			/* Statistics */
1607 			nbuf = next;
1608 			continue;
1609 		}
1610 
1611 		if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
1612 			(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
1613 			(hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
1614 			DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
1615 			qdf_nbuf_free(nbuf);
1616 			nbuf = next;
1617 			continue;
1618 		}
1619 
1620 		dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
1621 
1622 		dp_set_rx_queue(nbuf, ring_id);
1623 
1624 		/*
1625 		 * HW structures call this L3 header padding --
1626 		 * even though this is actually the offset from
1627 		 * the buffer beginning where the L2 header
1628 		 * begins.
1629 		 */
1630 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1631 			FL("rxhash: flow id toeplitz: 0x%x\n"),
1632 			hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
1633 
1634 		dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
1635 
1636 		if (qdf_unlikely(vdev->mesh_vdev)) {
1637 			if (dp_rx_filter_mesh_packets(vdev, nbuf,
1638 							rx_tlv_hdr)
1639 					== QDF_STATUS_SUCCESS) {
1640 				QDF_TRACE(QDF_MODULE_ID_DP,
1641 					QDF_TRACE_LEVEL_INFO_MED,
1642 					FL("mesh pkt filtered"));
1643 			DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
1644 					1);
1645 
1646 				qdf_nbuf_free(nbuf);
1647 				nbuf = next;
1648 				continue;
1649 			}
1650 			dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
1651 		}
1652 
1653 #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
1654 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1655 			"p_id %d msdu_len %d hdr_off %d",
1656 			peer_id, msdu_len, l2_hdr_offset);
1657 
1658 		print_hex_dump(KERN_ERR,
1659 			       "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
1660 				qdf_nbuf_data(nbuf), 128, false);
1661 #endif /* NAPIER_EMULATION */
1662 
1663 		if (qdf_likely(vdev->rx_decap_type ==
1664 					htt_cmn_pkt_type_ethernet) &&
1665 				(qdf_likely(!vdev->mesh_vdev))) {
1666 			/* WDS Source Port Learning */
1667 			dp_rx_wds_srcport_learn(soc,
1668 						rx_tlv_hdr,
1669 						peer,
1670 						nbuf);
1671 
1672 			/* Intrabss-fwd */
1673 			if (dp_rx_check_ap_bridge(vdev))
1674 				if (dp_rx_intrabss_fwd(soc,
1675 							peer,
1676 							rx_tlv_hdr,
1677 							nbuf)) {
1678 					nbuf = next;
1679 					continue; /* Get next desc */
1680 				}
1681 		}
1682 
1683 		dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
1684 
1685 		DP_RX_LIST_APPEND(deliver_list_head,
1686 					deliver_list_tail,
1687 					nbuf);
1688 
1689 		DP_STATS_INC_PKT(peer, rx.to_stack, 1,
1690 				qdf_nbuf_len(nbuf));
1691 
1692 		nbuf = next;
1693 	}
1694 
1695 	if (deliver_list_head)
1696 		dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
1697 				deliver_list_tail);
1698 
1699 	return rx_bufs_used; /* Assume no scale factor for now */
1700 }
1701 
1702 /**
1703  * dp_rx_detach() - detach dp rx
1704  * @pdev: core txrx pdev context
1705  *
1706  * This function will detach DP RX into main device context
1707  * will free DP Rx resources.
1708  *
1709  * Return: void
1710  */
1711 void
1712 dp_rx_pdev_detach(struct dp_pdev *pdev)
1713 {
1714 	uint8_t pdev_id = pdev->pdev_id;
1715 	struct dp_soc *soc = pdev->soc;
1716 	struct rx_desc_pool *rx_desc_pool;
1717 
1718 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
1719 
1720 	if (rx_desc_pool->pool_size != 0) {
1721 		dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
1722 	}
1723 
1724 	return;
1725 }
1726 
1727 /**
1728  * dp_rx_attach() - attach DP RX
1729  * @pdev: core txrx pdev context
1730  *
1731  * This function will attach a DP RX instance into the main
1732  * device (SOC) context. Will allocate dp rx resource and
1733  * initialize resources.
1734  *
1735  * Return: QDF_STATUS_SUCCESS: success
1736  *         QDF_STATUS_E_RESOURCES: Error return
1737  */
1738 QDF_STATUS
1739 dp_rx_pdev_attach(struct dp_pdev *pdev)
1740 {
1741 	uint8_t pdev_id = pdev->pdev_id;
1742 	struct dp_soc *soc = pdev->soc;
1743 	struct dp_srng rxdma_srng;
1744 	uint32_t rxdma_entries;
1745 	union dp_rx_desc_list_elem_t *desc_list = NULL;
1746 	union dp_rx_desc_list_elem_t *tail = NULL;
1747 	struct dp_srng *dp_rxdma_srng;
1748 	struct rx_desc_pool *rx_desc_pool;
1749 
1750 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
1751 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1752 			"nss-wifi<4> skip Rx refil %d", pdev_id);
1753 		return QDF_STATUS_SUCCESS;
1754 	}
1755 
1756 	pdev = soc->pdev_list[pdev_id];
1757 	rxdma_srng = pdev->rx_refill_buf_ring;
1758 	soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
1759 	rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
1760 						     soc->hal_soc, RXDMA_BUF);
1761 
1762 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
1763 
1764 	dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
1765 
1766 	rx_desc_pool->owner = DP_WBM2SW_RBM;
1767 	/* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
1768 	dp_rxdma_srng = &pdev->rx_refill_buf_ring;
1769 	dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
1770 		0, &desc_list, &tail);
1771 
1772 	return QDF_STATUS_SUCCESS;
1773 }
1774 
1775 /*
1776  * dp_rx_nbuf_prepare() - prepare RX nbuf
1777  * @soc: core txrx main context
1778  * @pdev: core txrx pdev context
1779  *
1780  * This function alloc & map nbuf for RX dma usage, retry it if failed
1781  * until retry times reaches max threshold or succeeded.
1782  *
1783  * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
1784  */
1785 qdf_nbuf_t
1786 dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
1787 {
1788 	uint8_t *buf;
1789 	int32_t nbuf_retry_count;
1790 	QDF_STATUS ret;
1791 	qdf_nbuf_t nbuf = NULL;
1792 
1793 	for (nbuf_retry_count = 0; nbuf_retry_count <
1794 		QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
1795 			nbuf_retry_count++) {
1796 		/* Allocate a new skb */
1797 		nbuf = qdf_nbuf_alloc(soc->osdev,
1798 					RX_BUFFER_SIZE,
1799 					RX_BUFFER_RESERVATION,
1800 					RX_BUFFER_ALIGNMENT,
1801 					FALSE);
1802 
1803 		if (nbuf == NULL) {
1804 			DP_STATS_INC(pdev,
1805 				replenish.nbuf_alloc_fail, 1);
1806 			continue;
1807 		}
1808 
1809 		buf = qdf_nbuf_data(nbuf);
1810 
1811 		memset(buf, 0, RX_BUFFER_SIZE);
1812 
1813 		ret = qdf_nbuf_map_single(soc->osdev, nbuf,
1814 				    QDF_DMA_BIDIRECTIONAL);
1815 
1816 		/* nbuf map failed */
1817 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
1818 			qdf_nbuf_free(nbuf);
1819 			DP_STATS_INC(pdev, replenish.map_err, 1);
1820 			continue;
1821 		}
1822 		/* qdf_nbuf alloc and map succeeded */
1823 		break;
1824 	}
1825 
1826 	/* qdf_nbuf still alloc or map failed */
1827 	if (qdf_unlikely(nbuf_retry_count >=
1828 			QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
1829 		return NULL;
1830 
1831 	return nbuf;
1832 }
1833