xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.c (revision 901120c066e139c7f8a2c8e4820561fdd83c67ef)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "hal_hw_headers.h"
21 #include "dp_types.h"
22 #include "dp_rx.h"
23 #include "dp_tx.h"
24 #include "dp_peer.h"
25 #include "hal_rx.h"
26 #include "hal_api.h"
27 #include "qdf_nbuf.h"
28 #ifdef MESH_MODE_SUPPORT
29 #include "if_meta_hdr.h"
30 #endif
31 #include "dp_internal.h"
32 #include "dp_ipa.h"
33 #include "dp_hist.h"
34 #include "dp_rx_buffer_pool.h"
35 #ifdef WIFI_MONITOR_SUPPORT
36 #include "dp_htt.h"
37 #include <dp_mon.h>
38 #endif
39 #ifdef FEATURE_WDS
40 #include "dp_txrx_wds.h"
41 #endif
42 #ifdef DP_RATETABLE_SUPPORT
43 #include "dp_ratetable.h"
44 #endif
45 
46 #ifdef DUP_RX_DESC_WAR
47 void dp_rx_dump_info_and_assert(struct dp_soc *soc,
48 				hal_ring_handle_t hal_ring,
49 				hal_ring_desc_t ring_desc,
50 				struct dp_rx_desc *rx_desc)
51 {
52 	void *hal_soc = soc->hal_soc;
53 
54 	hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
55 	dp_rx_desc_dump(rx_desc);
56 }
57 #else
58 void dp_rx_dump_info_and_assert(struct dp_soc *soc,
59 				hal_ring_handle_t hal_ring_hdl,
60 				hal_ring_desc_t ring_desc,
61 				struct dp_rx_desc *rx_desc)
62 {
63 	hal_soc_handle_t hal_soc = soc->hal_soc;
64 
65 	dp_rx_desc_dump(rx_desc);
66 	hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
67 	hal_srng_dump_ring(hal_soc, hal_ring_hdl);
68 	qdf_assert_always(0);
69 }
70 #endif
71 
72 #ifndef QCA_HOST_MODE_WIFI_DISABLED
73 #ifdef RX_DESC_SANITY_WAR
74 QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
75 			     hal_ring_handle_t hal_ring_hdl,
76 			     hal_ring_desc_t ring_desc,
77 			     struct dp_rx_desc *rx_desc)
78 {
79 	uint8_t return_buffer_manager;
80 
81 	if (qdf_unlikely(!rx_desc)) {
82 		/*
83 		 * This is an unlikely case where the cookie obtained
84 		 * from the ring_desc is invalid and hence we are not
85 		 * able to find the corresponding rx_desc
86 		 */
87 		goto fail;
88 	}
89 
90 	return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
91 	if (qdf_unlikely(!(return_buffer_manager ==
92 				HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
93 			 return_buffer_manager ==
94 				HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
95 		goto fail;
96 	}
97 
98 	return QDF_STATUS_SUCCESS;
99 
100 fail:
101 	DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
102 	dp_err("Ring Desc:");
103 	hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
104 				ring_desc);
105 	return QDF_STATUS_E_NULL_VALUE;
106 
107 }
108 #endif
109 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
110 
111 /**
112  * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
113  *
114  * @dp_soc: struct dp_soc *
115  * @nbuf_frag_info_t: nbuf frag info
116  * @dp_pdev: struct dp_pdev *
117  * @rx_desc_pool: Rx desc pool
118  *
119  * Return: QDF_STATUS
120  */
121 #ifdef DP_RX_MON_MEM_FRAG
122 static inline QDF_STATUS
123 dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
124 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
125 			   struct dp_pdev *dp_pdev,
126 			   struct rx_desc_pool *rx_desc_pool)
127 {
128 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
129 
130 	(nbuf_frag_info_t->virt_addr).vaddr =
131 			qdf_frag_alloc(NULL, rx_desc_pool->buf_size);
132 
133 	if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
134 		dp_err("Frag alloc failed");
135 		DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
136 		return QDF_STATUS_E_NOMEM;
137 	}
138 
139 	ret = qdf_mem_map_page(dp_soc->osdev,
140 			       (nbuf_frag_info_t->virt_addr).vaddr,
141 			       QDF_DMA_FROM_DEVICE,
142 			       rx_desc_pool->buf_size,
143 			       &nbuf_frag_info_t->paddr);
144 
145 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
146 		qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
147 		dp_err("Frag map failed");
148 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
149 		return QDF_STATUS_E_FAULT;
150 	}
151 
152 	return QDF_STATUS_SUCCESS;
153 }
154 #else
155 static inline QDF_STATUS
156 dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
157 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
158 			   struct dp_pdev *dp_pdev,
159 			   struct rx_desc_pool *rx_desc_pool)
160 {
161 	return QDF_STATUS_SUCCESS;
162 }
163 #endif /* DP_RX_MON_MEM_FRAG */
164 
165 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
166 /**
167  * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
168  * @soc: Datapath soc structure
169  * @ring_num: Refill ring number
170  * @num_req: number of buffers requested for refill
171  * @num_refill: number of buffers refilled
172  *
173  * Returns: None
174  */
175 static inline void
176 dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
177 			       hal_ring_handle_t hal_ring_hdl,
178 			       uint32_t num_req, uint32_t num_refill)
179 {
180 	struct dp_refill_info_record *record;
181 	uint32_t idx;
182 	uint32_t tp;
183 	uint32_t hp;
184 
185 	if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
186 			 !soc->rx_refill_ring_history[ring_num]))
187 		return;
188 
189 	idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
190 					DP_RX_REFILL_HIST_MAX);
191 
192 	/* No NULL check needed for record since its an array */
193 	record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
194 
195 	hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
196 	record->timestamp = qdf_get_log_timestamp();
197 	record->num_req = num_req;
198 	record->num_refill = num_refill;
199 	record->hp = hp;
200 	record->tp = tp;
201 }
202 #else
203 static inline void
204 dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
205 			       hal_ring_handle_t hal_ring_hdl,
206 			       uint32_t num_req, uint32_t num_refill)
207 {
208 }
209 #endif
210 
211 /**
212  * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
213  *
214  * @dp_soc: struct dp_soc *
215  * @mac_id: Mac id
216  * @num_entries_avail: num_entries_avail
217  * @nbuf_frag_info_t: nbuf frag info
218  * @dp_pdev: struct dp_pdev *
219  * @rx_desc_pool: Rx desc pool
220  *
221  * Return: QDF_STATUS
222  */
223 static inline QDF_STATUS
224 dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
225 				     uint32_t mac_id,
226 				     uint32_t num_entries_avail,
227 				     struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
228 				     struct dp_pdev *dp_pdev,
229 				     struct rx_desc_pool *rx_desc_pool)
230 {
231 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
232 
233 	(nbuf_frag_info_t->virt_addr).nbuf =
234 		dp_rx_buffer_pool_nbuf_alloc(dp_soc,
235 					     mac_id,
236 					     rx_desc_pool,
237 					     num_entries_avail);
238 	if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
239 		dp_err("nbuf alloc failed");
240 		DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
241 		return QDF_STATUS_E_NOMEM;
242 	}
243 
244 	ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
245 					 nbuf_frag_info_t);
246 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
247 		dp_rx_buffer_pool_nbuf_free(dp_soc,
248 			(nbuf_frag_info_t->virt_addr).nbuf, mac_id);
249 		dp_err("nbuf map failed");
250 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
251 		return QDF_STATUS_E_FAULT;
252 	}
253 
254 	nbuf_frag_info_t->paddr =
255 		qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
256 		dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, (qdf_nbuf_t)(
257 						  (nbuf_frag_info_t->virt_addr).nbuf),
258 						  rx_desc_pool->buf_size,
259 						  true, __func__, __LINE__);
260 
261 	ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
262 			     &nbuf_frag_info_t->paddr,
263 			     rx_desc_pool);
264 	if (ret == QDF_STATUS_E_FAILURE) {
265 		DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
266 		return QDF_STATUS_E_ADDRNOTAVAIL;
267 	}
268 
269 	return QDF_STATUS_SUCCESS;
270 }
271 
272 #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
273 QDF_STATUS
274 __dp_rx_buffers_no_map_lt_replenish(struct dp_soc *soc, uint32_t mac_id,
275 				    struct dp_srng *dp_rxdma_srng,
276 				    struct rx_desc_pool *rx_desc_pool)
277 {
278 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
279 	uint32_t count;
280 	void *rxdma_ring_entry;
281 	union dp_rx_desc_list_elem_t *next = NULL;
282 	void *rxdma_srng;
283 	qdf_nbuf_t nbuf;
284 	qdf_dma_addr_t paddr;
285 	uint16_t num_entries_avail = 0;
286 	uint16_t num_alloc_desc = 0;
287 	union dp_rx_desc_list_elem_t *desc_list = NULL;
288 	union dp_rx_desc_list_elem_t *tail = NULL;
289 	int sync_hw_ptr = 0;
290 
291 	rxdma_srng = dp_rxdma_srng->hal_srng;
292 
293 	if (qdf_unlikely(!dp_pdev)) {
294 		dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id);
295 		return QDF_STATUS_E_FAILURE;
296 	}
297 
298 	if (qdf_unlikely(!rxdma_srng)) {
299 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
300 		return QDF_STATUS_E_FAILURE;
301 	}
302 
303 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
304 
305 	num_entries_avail = hal_srng_src_num_avail(soc->hal_soc,
306 						   rxdma_srng,
307 						   sync_hw_ptr);
308 
309 	dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
310 		    soc, num_entries_avail);
311 
312 	if (qdf_unlikely(num_entries_avail <
313 			 ((dp_rxdma_srng->num_entries * 3) / 4))) {
314 		hal_srng_access_end(soc->hal_soc, rxdma_srng);
315 		return QDF_STATUS_E_FAILURE;
316 	}
317 
318 	DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
319 	num_alloc_desc = dp_rx_get_free_desc_list(soc, mac_id,
320 						  rx_desc_pool,
321 						  num_entries_avail,
322 						  &desc_list,
323 						  &tail);
324 
325 	if (!num_alloc_desc) {
326 		dp_rx_err("%pK: no free rx_descs in freelist", soc);
327 		DP_STATS_INC(dp_pdev, err.desc_lt_alloc_fail,
328 			     num_entries_avail);
329 		hal_srng_access_end(soc->hal_soc, rxdma_srng);
330 		return QDF_STATUS_E_NOMEM;
331 	}
332 
333 	for (count = 0; count < num_alloc_desc; count++) {
334 		next = desc_list->next;
335 		qdf_prefetch(next);
336 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
337 		if (qdf_unlikely(!nbuf)) {
338 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
339 			break;
340 		}
341 
342 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
343 					       rx_desc_pool->buf_size);
344 
345 		rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc,
346 							 rxdma_srng);
347 		qdf_assert_always(rxdma_ring_entry);
348 
349 		desc_list->rx_desc.nbuf = nbuf;
350 		desc_list->rx_desc.rx_buf_start = nbuf->data;
351 		desc_list->rx_desc.unmapped = 0;
352 
353 		/* rx_desc.in_use should be zero at this time*/
354 		qdf_assert_always(desc_list->rx_desc.in_use == 0);
355 
356 		desc_list->rx_desc.in_use = 1;
357 		desc_list->rx_desc.in_err_state = 0;
358 
359 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
360 					     paddr,
361 					     desc_list->rx_desc.cookie,
362 					     rx_desc_pool->owner);
363 
364 		desc_list = next;
365 	}
366 	qdf_dsb();
367 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
368 
369 	/* No need to count the number of bytes received during replenish.
370 	 * Therefore set replenish.pkts.bytes as 0.
371 	 */
372 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
373 	DP_STATS_INC(dp_pdev, buf_freelist, (num_alloc_desc - count));
374 	/*
375 	 * add any available free desc back to the free list
376 	 */
377 	if (desc_list)
378 		dp_rx_add_desc_list_to_free_list(soc, &desc_list, &tail,
379 						 mac_id, rx_desc_pool);
380 
381 	return QDF_STATUS_SUCCESS;
382 }
383 
384 QDF_STATUS
385 __dp_rx_buffers_no_map_replenish(struct dp_soc *soc, uint32_t mac_id,
386 				 struct dp_srng *dp_rxdma_srng,
387 				 struct rx_desc_pool *rx_desc_pool,
388 				 uint32_t num_req_buffers,
389 				 union dp_rx_desc_list_elem_t **desc_list,
390 				 union dp_rx_desc_list_elem_t **tail)
391 {
392 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
393 	uint32_t count;
394 	void *rxdma_ring_entry;
395 	union dp_rx_desc_list_elem_t *next;
396 	void *rxdma_srng;
397 	qdf_nbuf_t nbuf;
398 	qdf_nbuf_t nbuf_next;
399 	qdf_nbuf_t nbuf_head = NULL;
400 	qdf_nbuf_t nbuf_tail = NULL;
401 	qdf_dma_addr_t paddr;
402 
403 	rxdma_srng = dp_rxdma_srng->hal_srng;
404 
405 	if (qdf_unlikely(!dp_pdev)) {
406 		dp_rx_err("%pK: pdev is null for mac_id = %d",
407 			  soc, mac_id);
408 		return QDF_STATUS_E_FAILURE;
409 	}
410 
411 	if (qdf_unlikely(!rxdma_srng)) {
412 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
413 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
414 		return QDF_STATUS_E_FAILURE;
415 	}
416 
417 	/* Allocate required number of nbufs */
418 	for (count = 0; count < num_req_buffers; count++) {
419 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
420 		if (qdf_unlikely(!nbuf)) {
421 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
422 			/* Update num_req_buffers to nbufs allocated count */
423 			num_req_buffers = count;
424 			break;
425 		}
426 
427 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
428 					       rx_desc_pool->buf_size);
429 
430 		QDF_NBUF_CB_PADDR(nbuf) = paddr;
431 		DP_RX_LIST_APPEND(nbuf_head,
432 				  nbuf_tail,
433 				  nbuf);
434 	}
435 	qdf_dsb();
436 
437 	nbuf = nbuf_head;
438 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
439 
440 	for (count = 0; count < num_req_buffers; count++) {
441 		next = (*desc_list)->next;
442 		nbuf_next = nbuf->next;
443 		qdf_prefetch(next);
444 
445 		rxdma_ring_entry = (struct dp_buffer_addr_info *)
446 			hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
447 
448 		if (!rxdma_ring_entry)
449 			break;
450 
451 		(*desc_list)->rx_desc.nbuf = nbuf;
452 		(*desc_list)->rx_desc.rx_buf_start = nbuf->data;
453 		(*desc_list)->rx_desc.unmapped = 0;
454 
455 		/* rx_desc.in_use should be zero at this time*/
456 		qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
457 
458 		(*desc_list)->rx_desc.in_use = 1;
459 		(*desc_list)->rx_desc.in_err_state = 0;
460 
461 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
462 					     QDF_NBUF_CB_PADDR(nbuf),
463 					     (*desc_list)->rx_desc.cookie,
464 					     rx_desc_pool->owner);
465 
466 		*desc_list = next;
467 		nbuf = nbuf_next;
468 	}
469 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
470 
471 	/* No need to count the number of bytes received during replenish.
472 	 * Therefore set replenish.pkts.bytes as 0.
473 	 */
474 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
475 	DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
476 	/*
477 	 * add any available free desc back to the free list
478 	 */
479 	if (*desc_list)
480 		dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
481 						 mac_id, rx_desc_pool);
482 	while (nbuf) {
483 		nbuf_next = nbuf->next;
484 		dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, nbuf);
485 		qdf_nbuf_free(nbuf);
486 		nbuf = nbuf_next;
487 	}
488 
489 	return QDF_STATUS_SUCCESS;
490 }
491 
492 QDF_STATUS __dp_pdev_rx_buffers_no_map_attach(struct dp_soc *soc,
493 					      uint32_t mac_id,
494 					      struct dp_srng *dp_rxdma_srng,
495 					      struct rx_desc_pool *rx_desc_pool,
496 					      uint32_t num_req_buffers)
497 {
498 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
499 	uint32_t count;
500 	uint32_t nr_descs = 0;
501 	void *rxdma_ring_entry;
502 	union dp_rx_desc_list_elem_t *next;
503 	void *rxdma_srng;
504 	qdf_nbuf_t nbuf;
505 	qdf_dma_addr_t paddr;
506 	union dp_rx_desc_list_elem_t *desc_list = NULL;
507 	union dp_rx_desc_list_elem_t *tail = NULL;
508 
509 	rxdma_srng = dp_rxdma_srng->hal_srng;
510 
511 	if (qdf_unlikely(!dp_pdev)) {
512 		dp_rx_err("%pK: pdev is null for mac_id = %d",
513 			  soc, mac_id);
514 		return QDF_STATUS_E_FAILURE;
515 	}
516 
517 	if (qdf_unlikely(!rxdma_srng)) {
518 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
519 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
520 		return QDF_STATUS_E_FAILURE;
521 	}
522 
523 	dp_rx_debug("%pK: requested %d buffers for replenish",
524 		    soc, num_req_buffers);
525 
526 	nr_descs = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool,
527 					    num_req_buffers, &desc_list, &tail);
528 	if (!nr_descs) {
529 		dp_err("no free rx_descs in freelist");
530 		DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
531 		return QDF_STATUS_E_NOMEM;
532 	}
533 
534 	dp_debug("got %u RX descs for driver attach", nr_descs);
535 
536 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
537 
538 	for (count = 0; count < nr_descs; count++) {
539 		next = desc_list->next;
540 		qdf_prefetch(next);
541 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
542 		if (qdf_unlikely(!nbuf)) {
543 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
544 			break;
545 		}
546 
547 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
548 					       rx_desc_pool->buf_size);
549 		rxdma_ring_entry = (struct dp_buffer_addr_info *)
550 			hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
551 		if (!rxdma_ring_entry)
552 			break;
553 
554 		qdf_assert_always(rxdma_ring_entry);
555 
556 		desc_list->rx_desc.nbuf = nbuf;
557 		desc_list->rx_desc.rx_buf_start = nbuf->data;
558 		desc_list->rx_desc.unmapped = 0;
559 
560 		/* rx_desc.in_use should be zero at this time*/
561 		qdf_assert_always(desc_list->rx_desc.in_use == 0);
562 
563 		desc_list->rx_desc.in_use = 1;
564 		desc_list->rx_desc.in_err_state = 0;
565 
566 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
567 					     paddr,
568 					     desc_list->rx_desc.cookie,
569 					     rx_desc_pool->owner);
570 
571 		desc_list = next;
572 	}
573 	qdf_dsb();
574 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
575 
576 	/* No need to count the number of bytes received during replenish.
577 	 * Therefore set replenish.pkts.bytes as 0.
578 	 */
579 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
580 
581 	return QDF_STATUS_SUCCESS;
582 }
583 #endif
584 
585 #ifdef DP_UMAC_HW_RESET_SUPPORT
586 #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
587 static inline
588 qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
589 					uint32_t buf_size)
590 {
591 	return dp_rx_nbuf_sync_no_dsb(dp_soc, nbuf, buf_size);
592 }
593 #else
594 static inline
595 qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
596 					uint32_t buf_size)
597 {
598 	return qdf_nbuf_get_frag_paddr(nbuf, 0);
599 }
600 #endif
601 
602 /*
603  * dp_rx_desc_replenish() - Replenish the rx descriptors one at a time
604  *
605  * @soc: core txrx main context
606  * @dp_rxdma_srng: rxdma ring
607  * @rx_desc_pool: rx descriptor pool
608  * @rx_desc:rx descriptor
609  *
610  * Return: void
611  */
612 static inline
613 void dp_rx_desc_replenish(struct dp_soc *soc, struct dp_srng *dp_rxdma_srng,
614 			  struct rx_desc_pool *rx_desc_pool,
615 			  struct dp_rx_desc *rx_desc)
616 {
617 	void *rxdma_srng;
618 	void *rxdma_ring_entry;
619 	qdf_dma_addr_t paddr;
620 
621 	rxdma_srng = dp_rxdma_srng->hal_srng;
622 
623 	/* No one else should be accessing the srng at this point */
624 	hal_srng_access_start_unlocked(soc->hal_soc, rxdma_srng);
625 
626 	rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
627 
628 	qdf_assert_always(rxdma_ring_entry);
629 	rx_desc->in_err_state = 0;
630 
631 	paddr = dp_rx_rep_retrieve_paddr(soc, rx_desc->nbuf,
632 					 rx_desc_pool->buf_size);
633 	hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry, paddr,
634 				     rx_desc->cookie, rx_desc_pool->owner);
635 
636 	hal_srng_access_end_unlocked(soc->hal_soc, rxdma_srng);
637 }
638 
639 /*
640  * dp_rx_desc_reuse() - Reuse the rx descriptors to fill the rx buf ring
641  *
642  * @soc: core txrx main context
643  * @nbuf_list: nbuf list for delayed free
644  *
645  * Return: void
646  */
647 void dp_rx_desc_reuse(struct dp_soc *soc, qdf_nbuf_t *nbuf_list)
648 {
649 	int mac_id, i, j;
650 	union dp_rx_desc_list_elem_t *head = NULL;
651 	union dp_rx_desc_list_elem_t *tail = NULL;
652 
653 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
654 		struct dp_srng *dp_rxdma_srng =
655 					&soc->rx_refill_buf_ring[mac_id];
656 		struct rx_desc_pool *rx_desc_pool = &soc->rx_desc_buf[mac_id];
657 		uint32_t rx_sw_desc_num = rx_desc_pool->pool_size;
658 		/* Only fill up 1/3 of the ring size */
659 		uint32_t num_req_decs;
660 
661 		if (!dp_rxdma_srng || !dp_rxdma_srng->hal_srng ||
662 		    !rx_desc_pool->array)
663 			continue;
664 
665 		num_req_decs = dp_rxdma_srng->num_entries / 3;
666 
667 		for (i = 0, j = 0; i < rx_sw_desc_num; i++) {
668 			struct dp_rx_desc *rx_desc =
669 				(struct dp_rx_desc *)&rx_desc_pool->array[i];
670 
671 			if (rx_desc->in_use) {
672 				if (j < dp_rxdma_srng->num_entries) {
673 					dp_rx_desc_replenish(soc, dp_rxdma_srng,
674 							     rx_desc_pool,
675 							     rx_desc);
676 				} else {
677 					dp_rx_nbuf_unmap(soc, rx_desc, 0);
678 					rx_desc->unmapped = 0;
679 
680 					rx_desc->nbuf->next = *nbuf_list;
681 					*nbuf_list = rx_desc->nbuf;
682 
683 					dp_rx_add_to_free_desc_list(&head,
684 								    &tail,
685 								    rx_desc);
686 				}
687 				j++;
688 			}
689 		}
690 
691 		if (head)
692 			dp_rx_add_desc_list_to_free_list(soc, &head, &tail,
693 							 mac_id, rx_desc_pool);
694 
695 		/* If num of descs in use were less, then we need to replenish
696 		 * the ring with some buffers
697 		 */
698 		head = NULL;
699 		tail = NULL;
700 
701 		if (j < (num_req_decs - 1))
702 			dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
703 						rx_desc_pool,
704 						((num_req_decs - 1) - j),
705 						&head, &tail, true);
706 	}
707 }
708 #endif
709 
710 /*
711  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
712  *			       called during dp rx initialization
713  *			       and at the end of dp_rx_process.
714  *
715  * @soc: core txrx main context
716  * @mac_id: mac_id which is one of 3 mac_ids
717  * @dp_rxdma_srng: dp rxdma circular ring
718  * @rx_desc_pool: Pointer to free Rx descriptor pool
719  * @num_req_buffers: number of buffer to be replenished
720  * @desc_list: list of descs if called from dp_rx_process
721  *	       or NULL during dp rx initialization or out of buffer
722  *	       interrupt.
723  * @tail: tail of descs list
724  * @req_only: If true don't replenish more than req buffers
725  * @func_name: name of the caller function
726  * Return: return success or failure
727  */
728 QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
729 				struct dp_srng *dp_rxdma_srng,
730 				struct rx_desc_pool *rx_desc_pool,
731 				uint32_t num_req_buffers,
732 				union dp_rx_desc_list_elem_t **desc_list,
733 				union dp_rx_desc_list_elem_t **tail,
734 				bool req_only, const char *func_name)
735 {
736 	uint32_t num_alloc_desc;
737 	uint16_t num_desc_to_free = 0;
738 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
739 	uint32_t num_entries_avail;
740 	uint32_t count;
741 	uint32_t extra_buffers;
742 	int sync_hw_ptr = 1;
743 	struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
744 	void *rxdma_ring_entry;
745 	union dp_rx_desc_list_elem_t *next;
746 	QDF_STATUS ret;
747 	void *rxdma_srng;
748 	union dp_rx_desc_list_elem_t *desc_list_append = NULL;
749 	union dp_rx_desc_list_elem_t *tail_append = NULL;
750 	union dp_rx_desc_list_elem_t *temp_list = NULL;
751 
752 	rxdma_srng = dp_rxdma_srng->hal_srng;
753 
754 	if (qdf_unlikely(!dp_pdev)) {
755 		dp_rx_err("%pK: pdev is null for mac_id = %d",
756 			  dp_soc, mac_id);
757 		return QDF_STATUS_E_FAILURE;
758 	}
759 
760 	if (qdf_unlikely(!rxdma_srng)) {
761 		dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
762 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
763 		return QDF_STATUS_E_FAILURE;
764 	}
765 
766 	dp_verbose_debug("%pK: requested %d buffers for replenish",
767 			 dp_soc, num_req_buffers);
768 
769 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
770 
771 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
772 						   rxdma_srng,
773 						   sync_hw_ptr);
774 
775 	dp_verbose_debug("%pK: no of available entries in rxdma ring: %d",
776 			 dp_soc, num_entries_avail);
777 
778 	if (!req_only && !(*desc_list) && (num_entries_avail >
779 		((dp_rxdma_srng->num_entries * 3) / 4))) {
780 		num_req_buffers = num_entries_avail;
781 		DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
782 	} else if (num_entries_avail < num_req_buffers) {
783 		num_desc_to_free = num_req_buffers - num_entries_avail;
784 		num_req_buffers = num_entries_avail;
785 	} else if ((*desc_list) &&
786 		   dp_rxdma_srng->num_entries - num_entries_avail <
787 		   CRITICAL_BUFFER_THRESHOLD) {
788 		/* set extra buffers to CRITICAL_BUFFER_THRESHOLD only if
789 		 * total buff requested after adding extra buffers is less
790 		 * than or equal to num entries available, else set it to max
791 		 * possible additional buffers available at that moment
792 		 */
793 		extra_buffers =
794 			((num_req_buffers + CRITICAL_BUFFER_THRESHOLD) > num_entries_avail) ?
795 			(num_entries_avail - num_req_buffers) :
796 			CRITICAL_BUFFER_THRESHOLD;
797 		/* Append some free descriptors to tail */
798 		num_alloc_desc =
799 			dp_rx_get_free_desc_list(dp_soc, mac_id,
800 						 rx_desc_pool,
801 						 extra_buffers,
802 						 &desc_list_append,
803 						 &tail_append);
804 
805 		if (num_alloc_desc) {
806 			temp_list = *desc_list;
807 			*desc_list = desc_list_append;
808 			tail_append->next = temp_list;
809 			num_req_buffers += num_alloc_desc;
810 
811 			DP_STATS_DEC(dp_pdev,
812 				     replenish.free_list,
813 				     num_alloc_desc);
814 		} else
815 			dp_err_rl("%pK:  no free rx_descs in freelist", dp_soc);
816 	}
817 
818 	if (qdf_unlikely(!num_req_buffers)) {
819 		num_desc_to_free = num_req_buffers;
820 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
821 		goto free_descs;
822 	}
823 
824 	/*
825 	 * if desc_list is NULL, allocate the descs from freelist
826 	 */
827 	if (!(*desc_list)) {
828 		num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
829 							  rx_desc_pool,
830 							  num_req_buffers,
831 							  desc_list,
832 							  tail);
833 
834 		if (!num_alloc_desc) {
835 			dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
836 			DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
837 					num_req_buffers);
838 			hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
839 			return QDF_STATUS_E_NOMEM;
840 		}
841 
842 		dp_verbose_debug("%pK: %d rx desc allocated", dp_soc,
843 				 num_alloc_desc);
844 		num_req_buffers = num_alloc_desc;
845 	}
846 
847 
848 	count = 0;
849 
850 	while (count < num_req_buffers) {
851 		/* Flag is set while pdev rx_desc_pool initialization */
852 		if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
853 			ret = dp_pdev_frag_alloc_and_map(dp_soc,
854 							 &nbuf_frag_info,
855 							 dp_pdev,
856 							 rx_desc_pool);
857 		else
858 			ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
859 								   mac_id,
860 					num_entries_avail, &nbuf_frag_info,
861 					dp_pdev, rx_desc_pool);
862 
863 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
864 			if (qdf_unlikely(ret  == QDF_STATUS_E_FAULT))
865 				continue;
866 			break;
867 		}
868 
869 		count++;
870 
871 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
872 							 rxdma_srng);
873 		qdf_assert_always(rxdma_ring_entry);
874 
875 		next = (*desc_list)->next;
876 
877 		/* Flag is set while pdev rx_desc_pool initialization */
878 		if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
879 			dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
880 					     &nbuf_frag_info);
881 		else
882 			dp_rx_desc_prep(&((*desc_list)->rx_desc),
883 					&nbuf_frag_info);
884 
885 		/* rx_desc.in_use should be zero at this time*/
886 		qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
887 
888 		(*desc_list)->rx_desc.in_use = 1;
889 		(*desc_list)->rx_desc.in_err_state = 0;
890 		dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
891 					   func_name, RX_DESC_REPLENISHED);
892 		dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
893 				 nbuf_frag_info.virt_addr.nbuf,
894 				 (unsigned long long)(nbuf_frag_info.paddr),
895 				 (*desc_list)->rx_desc.cookie);
896 
897 		hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
898 					     nbuf_frag_info.paddr,
899 						(*desc_list)->rx_desc.cookie,
900 						rx_desc_pool->owner);
901 
902 		*desc_list = next;
903 
904 	}
905 
906 	dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
907 				       num_req_buffers, count);
908 
909 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
910 
911 	dp_rx_schedule_refill_thread(dp_soc);
912 
913 	dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
914 			 count, num_desc_to_free);
915 
916 	/* No need to count the number of bytes received during replenish.
917 	 * Therefore set replenish.pkts.bytes as 0.
918 	 */
919 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
920 	DP_STATS_INC(dp_pdev, replenish.free_list, num_req_buffers - count);
921 
922 free_descs:
923 	DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
924 	/*
925 	 * add any available free desc back to the free list
926 	 */
927 	if (*desc_list)
928 		dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
929 			mac_id, rx_desc_pool);
930 
931 	return QDF_STATUS_SUCCESS;
932 }
933 
934 qdf_export_symbol(__dp_rx_buffers_replenish);
935 
936 /*
937  * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
938  *				pkts to RAW mode simulation to
939  *				decapsulate the pkt.
940  *
941  * @vdev: vdev on which RAW mode is enabled
942  * @nbuf_list: list of RAW pkts to process
943  * @txrx_peer: peer object from which the pkt is rx
944  *
945  * Return: void
946  */
947 void
948 dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
949 		  struct dp_txrx_peer *txrx_peer)
950 {
951 	qdf_nbuf_t deliver_list_head = NULL;
952 	qdf_nbuf_t deliver_list_tail = NULL;
953 	qdf_nbuf_t nbuf;
954 
955 	nbuf = nbuf_list;
956 	while (nbuf) {
957 		qdf_nbuf_t next = qdf_nbuf_next(nbuf);
958 
959 		DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
960 
961 		DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
962 		DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1,
963 					      qdf_nbuf_len(nbuf));
964 		/*
965 		 * reset the chfrag_start and chfrag_end bits in nbuf cb
966 		 * as this is a non-amsdu pkt and RAW mode simulation expects
967 		 * these bit s to be 0 for non-amsdu pkt.
968 		 */
969 		if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
970 			 qdf_nbuf_is_rx_chfrag_end(nbuf)) {
971 			qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
972 			qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
973 		}
974 
975 		nbuf = next;
976 	}
977 
978 	vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
979 				 &deliver_list_tail);
980 
981 	vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
982 }
983 
984 #ifndef QCA_HOST_MODE_WIFI_DISABLED
985 #ifndef FEATURE_WDS
986 void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
987 		    struct dp_txrx_peer *ta_peer, qdf_nbuf_t nbuf)
988 {
989 }
990 #endif
991 
992 #ifdef QCA_SUPPORT_TX_MIN_RATES_FOR_SPECIAL_FRAMES
993 /*
994  * dp_classify_critical_pkts() - API for marking critical packets
995  * @soc: dp_soc context
996  * @vdev: vdev on which packet is to be sent
997  * @nbuf: nbuf that has to be classified
998  *
999  * The function parses the packet, identifies whether its a critical frame and
1000  * marks QDF_NBUF_CB_TX_EXTRA_IS_CRITICAL bit in qdf_nbuf_cb for the nbuf.
1001  * Code for marking which frames are CRITICAL is accessed via callback.
1002  * EAPOL, ARP, DHCP, DHCPv6, ICMPv6 NS/NA are the typical critical frames.
1003  *
1004  * Return: None
1005  */
1006 static
1007 void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
1008 			       qdf_nbuf_t nbuf)
1009 {
1010 	if (vdev->tx_classify_critical_pkt_cb)
1011 		vdev->tx_classify_critical_pkt_cb(vdev->osif_vdev, nbuf);
1012 }
1013 #else
1014 static inline
1015 void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
1016 			       qdf_nbuf_t nbuf)
1017 {
1018 }
1019 #endif
1020 
1021 #ifdef QCA_OL_TX_MULTIQ_SUPPORT
1022 static inline
1023 void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
1024 {
1025 	qdf_nbuf_set_queue_mapping(nbuf, ring_id);
1026 }
1027 #else
1028 static inline
1029 void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
1030 {
1031 }
1032 #endif
1033 
1034 /*
1035  * dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets
1036  *
1037  * @soc: core txrx main context
1038  * @ta_peer	: source peer entry
1039  * @rx_tlv_hdr	: start address of rx tlvs
1040  * @nbuf	: nbuf that has to be intrabss forwarded
1041  * @tid_stats	: tid stats pointer
1042  *
1043  * Return: bool: true if it is forwarded else false
1044  */
1045 bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
1046 			     uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
1047 			     struct cdp_tid_rx_stats *tid_stats)
1048 {
1049 	uint16_t len;
1050 	qdf_nbuf_t nbuf_copy;
1051 
1052 	if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
1053 					    nbuf))
1054 		return true;
1055 
1056 	if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
1057 		return false;
1058 
1059 	/* If the source peer in the isolation list
1060 	 * then dont forward instead push to bridge stack
1061 	 */
1062 	if (dp_get_peer_isolation(ta_peer))
1063 		return false;
1064 
1065 	nbuf_copy = qdf_nbuf_copy(nbuf);
1066 	if (!nbuf_copy)
1067 		return false;
1068 
1069 	len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1070 
1071 	qdf_mem_set(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
1072 	dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf_copy);
1073 
1074 	if (soc->arch_ops.dp_rx_intrabss_handle_nawds(soc, ta_peer, nbuf_copy,
1075 						      tid_stats))
1076 		return false;
1077 
1078 	if (dp_tx_send((struct cdp_soc_t *)soc,
1079 		       ta_peer->vdev->vdev_id, nbuf_copy)) {
1080 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
1081 					      len);
1082 		tid_stats->fail_cnt[INTRABSS_DROP]++;
1083 		dp_rx_nbuf_free(nbuf_copy);
1084 	} else {
1085 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
1086 					      len);
1087 		tid_stats->intrabss_cnt++;
1088 	}
1089 	return false;
1090 }
1091 
1092 /*
1093  * dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets
1094  *
1095  * @soc: core txrx main context
1096  * @ta_peer: source peer entry
1097  * @tx_vdev_id: VDEV ID for Intra-BSS TX
1098  * @rx_tlv_hdr: start address of rx tlvs
1099  * @nbuf: nbuf that has to be intrabss forwarded
1100  * @tid_stats: tid stats pointer
1101  *
1102  * Return: bool: true if it is forwarded else false
1103  */
1104 bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
1105 			      uint8_t tx_vdev_id,
1106 			      uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
1107 			      struct cdp_tid_rx_stats *tid_stats)
1108 {
1109 	uint16_t len;
1110 
1111 	len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1112 
1113 	/* linearize the nbuf just before we send to
1114 	 * dp_tx_send()
1115 	 */
1116 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
1117 		if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
1118 			return false;
1119 
1120 		nbuf = qdf_nbuf_unshare(nbuf);
1121 		if (!nbuf) {
1122 			DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer,
1123 						      rx.intra_bss.fail,
1124 						      1, len);
1125 			/* return true even though the pkt is
1126 			 * not forwarded. Basically skb_unshare
1127 			 * failed and we want to continue with
1128 			 * next nbuf.
1129 			 */
1130 			tid_stats->fail_cnt[INTRABSS_DROP]++;
1131 			return false;
1132 		}
1133 	}
1134 
1135 	qdf_mem_set(nbuf->cb, 0x0, sizeof(nbuf->cb));
1136 	dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf);
1137 
1138 	if (!dp_tx_send((struct cdp_soc_t *)soc,
1139 			tx_vdev_id, nbuf)) {
1140 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
1141 					      len);
1142 	} else {
1143 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
1144 					      len);
1145 		tid_stats->fail_cnt[INTRABSS_DROP]++;
1146 		return false;
1147 	}
1148 
1149 	return true;
1150 }
1151 
1152 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
1153 
1154 #ifdef MESH_MODE_SUPPORT
1155 
1156 /**
1157  * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
1158  *
1159  * @vdev: DP Virtual device handle
1160  * @nbuf: Buffer pointer
1161  * @rx_tlv_hdr: start of rx tlv header
1162  * @txrx_peer: pointer to peer
1163  *
1164  * This function allocated memory for mesh receive stats and fill the
1165  * required stats. Stores the memory address in skb cb.
1166  *
1167  * Return: void
1168  */
1169 
1170 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1171 			   uint8_t *rx_tlv_hdr,
1172 			   struct dp_txrx_peer *txrx_peer)
1173 {
1174 	struct mesh_recv_hdr_s *rx_info = NULL;
1175 	uint32_t pkt_type;
1176 	uint32_t nss;
1177 	uint32_t rate_mcs;
1178 	uint32_t bw;
1179 	uint8_t primary_chan_num;
1180 	uint32_t center_chan_freq;
1181 	struct dp_soc *soc = vdev->pdev->soc;
1182 	struct dp_peer *peer;
1183 	struct dp_peer *primary_link_peer;
1184 	struct dp_soc *link_peer_soc;
1185 	cdp_peer_stats_param_t buf = {0};
1186 
1187 	/* fill recv mesh stats */
1188 	rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
1189 
1190 	/* upper layers are responsible to free this memory */
1191 
1192 	if (!rx_info) {
1193 		dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
1194 			  vdev->pdev->soc);
1195 		DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
1196 		return;
1197 	}
1198 
1199 	rx_info->rs_flags = MESH_RXHDR_VER1;
1200 	if (qdf_nbuf_is_rx_chfrag_start(nbuf))
1201 		rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
1202 
1203 	if (qdf_nbuf_is_rx_chfrag_end(nbuf))
1204 		rx_info->rs_flags |= MESH_RX_LAST_MSDU;
1205 
1206 	peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_MESH);
1207 	if (peer) {
1208 		if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
1209 			rx_info->rs_flags |= MESH_RX_DECRYPTED;
1210 			rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
1211 								  rx_tlv_hdr);
1212 			if (vdev->osif_get_key)
1213 				vdev->osif_get_key(vdev->osif_vdev,
1214 						   &rx_info->rs_decryptkey[0],
1215 						   &peer->mac_addr.raw[0],
1216 						   rx_info->rs_keyix);
1217 		}
1218 
1219 		dp_peer_unref_delete(peer, DP_MOD_ID_MESH);
1220 	}
1221 
1222 	primary_link_peer = dp_get_primary_link_peer_by_id(soc,
1223 							   txrx_peer->peer_id,
1224 							   DP_MOD_ID_MESH);
1225 
1226 	if (qdf_likely(primary_link_peer)) {
1227 		link_peer_soc = primary_link_peer->vdev->pdev->soc;
1228 		dp_monitor_peer_get_stats_param(link_peer_soc,
1229 						primary_link_peer,
1230 						cdp_peer_rx_snr, &buf);
1231 		rx_info->rs_snr = buf.rx_snr;
1232 		dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_MESH);
1233 	}
1234 
1235 	rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
1236 
1237 	soc = vdev->pdev->soc;
1238 	primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
1239 	center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
1240 
1241 	if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
1242 		rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
1243 							soc->ctrl_psoc,
1244 							vdev->pdev->pdev_id,
1245 							center_chan_freq);
1246 	}
1247 	rx_info->rs_channel = primary_chan_num;
1248 	pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
1249 	rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
1250 	bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
1251 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
1252 	rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
1253 				(bw << 24);
1254 
1255 	qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
1256 
1257 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
1258 		FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
1259 						rx_info->rs_flags,
1260 						rx_info->rs_rssi,
1261 						rx_info->rs_channel,
1262 						rx_info->rs_ratephy1,
1263 						rx_info->rs_keyix,
1264 						rx_info->rs_snr);
1265 
1266 }
1267 
1268 /**
1269  * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
1270  *
1271  * @vdev: DP Virtual device handle
1272  * @nbuf: Buffer pointer
1273  * @rx_tlv_hdr: start of rx tlv header
1274  *
1275  * This checks if the received packet is matching any filter out
1276  * catogery and and drop the packet if it matches.
1277  *
1278  * Return: status(0 indicates drop, 1 indicate to no drop)
1279  */
1280 
1281 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1282 					uint8_t *rx_tlv_hdr)
1283 {
1284 	union dp_align_mac_addr mac_addr;
1285 	struct dp_soc *soc = vdev->pdev->soc;
1286 
1287 	if (qdf_unlikely(vdev->mesh_rx_filter)) {
1288 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
1289 			if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
1290 						  rx_tlv_hdr))
1291 				return  QDF_STATUS_SUCCESS;
1292 
1293 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
1294 			if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
1295 						  rx_tlv_hdr))
1296 				return  QDF_STATUS_SUCCESS;
1297 
1298 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
1299 			if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
1300 						   rx_tlv_hdr) &&
1301 			    !hal_rx_mpdu_get_to_ds(soc->hal_soc,
1302 						   rx_tlv_hdr))
1303 				return  QDF_STATUS_SUCCESS;
1304 
1305 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
1306 			if (hal_rx_mpdu_get_addr1(soc->hal_soc,
1307 						  rx_tlv_hdr,
1308 					&mac_addr.raw[0]))
1309 				return QDF_STATUS_E_FAILURE;
1310 
1311 			if (!qdf_mem_cmp(&mac_addr.raw[0],
1312 					&vdev->mac_addr.raw[0],
1313 					QDF_MAC_ADDR_SIZE))
1314 				return  QDF_STATUS_SUCCESS;
1315 		}
1316 
1317 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
1318 			if (hal_rx_mpdu_get_addr2(soc->hal_soc,
1319 						  rx_tlv_hdr,
1320 						  &mac_addr.raw[0]))
1321 				return QDF_STATUS_E_FAILURE;
1322 
1323 			if (!qdf_mem_cmp(&mac_addr.raw[0],
1324 					&vdev->mac_addr.raw[0],
1325 					QDF_MAC_ADDR_SIZE))
1326 				return  QDF_STATUS_SUCCESS;
1327 		}
1328 	}
1329 
1330 	return QDF_STATUS_E_FAILURE;
1331 }
1332 
1333 #else
1334 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1335 				uint8_t *rx_tlv_hdr, struct dp_txrx_peer *peer)
1336 {
1337 }
1338 
1339 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1340 					uint8_t *rx_tlv_hdr)
1341 {
1342 	return QDF_STATUS_E_FAILURE;
1343 }
1344 
1345 #endif
1346 
1347 #ifdef FEATURE_NAC_RSSI
1348 /**
1349  * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
1350  * @soc: DP SOC handle
1351  * @mpdu: mpdu for which peer is invalid
1352  * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
1353  * pool_id has same mapping)
1354  *
1355  * return: integer type
1356  */
1357 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
1358 				   uint8_t mac_id)
1359 {
1360 	struct dp_invalid_peer_msg msg;
1361 	struct dp_vdev *vdev = NULL;
1362 	struct dp_pdev *pdev = NULL;
1363 	struct ieee80211_frame *wh;
1364 	qdf_nbuf_t curr_nbuf, next_nbuf;
1365 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
1366 	uint8_t *rx_pkt_hdr = NULL;
1367 	int i = 0;
1368 
1369 	if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
1370 		dp_rx_debug("%pK: Drop decapped frames", soc);
1371 		goto free;
1372 	}
1373 
1374 	/* In RAW packet, packet header will be part of data */
1375 	rx_pkt_hdr = rx_tlv_hdr + soc->rx_pkt_tlv_size;
1376 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
1377 
1378 	if (!DP_FRAME_IS_DATA(wh)) {
1379 		dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
1380 		goto free;
1381 	}
1382 
1383 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
1384 		dp_rx_err("%pK: Invalid nbuf length", soc);
1385 		goto free;
1386 	}
1387 
1388 	/* In DMAC case the rx_desc_pools are common across PDEVs
1389 	 * so PDEV cannot be derived from the pool_id.
1390 	 *
1391 	 * link_id need to derived from the TLV tag word which is
1392 	 * disabled by default. For now adding a WAR to get vdev
1393 	 * with brute force this need to fixed with word based subscription
1394 	 * support is added by enabling TLV tag word
1395 	 */
1396 	if (soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
1397 		for (i = 0; i < MAX_PDEV_CNT; i++) {
1398 			pdev = soc->pdev_list[i];
1399 
1400 			if (!pdev || qdf_unlikely(pdev->is_pdev_down))
1401 				continue;
1402 
1403 			TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1404 				if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1405 						QDF_MAC_ADDR_SIZE) == 0) {
1406 					goto out;
1407 				}
1408 			}
1409 		}
1410 	} else {
1411 		pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1412 
1413 		if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
1414 			dp_rx_err("%pK: PDEV %s",
1415 				  soc, !pdev ? "not found" : "down");
1416 			goto free;
1417 		}
1418 
1419 		if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
1420 		    QDF_STATUS_SUCCESS)
1421 			return 0;
1422 
1423 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1424 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1425 					QDF_MAC_ADDR_SIZE) == 0) {
1426 				goto out;
1427 			}
1428 		}
1429 	}
1430 
1431 	if (!vdev) {
1432 		dp_rx_err("%pK: VDEV not found", soc);
1433 		goto free;
1434 	}
1435 out:
1436 	msg.wh = wh;
1437 	qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
1438 	msg.nbuf = mpdu;
1439 	msg.vdev_id = vdev->vdev_id;
1440 
1441 	/*
1442 	 * NOTE: Only valid for HKv1.
1443 	 * If smart monitor mode is enabled on RE, we are getting invalid
1444 	 * peer frames with RA as STA mac of RE and the TA not matching
1445 	 * with any NAC list or the the BSSID.Such frames need to dropped
1446 	 * in order to avoid HM_WDS false addition.
1447 	 */
1448 	if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
1449 		if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
1450 			dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
1451 				   soc, wh->i_addr1);
1452 			goto free;
1453 		}
1454 		pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
1455 				(struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
1456 				pdev->pdev_id, &msg);
1457 	}
1458 
1459 free:
1460 	/* Drop and free packet */
1461 	curr_nbuf = mpdu;
1462 	while (curr_nbuf) {
1463 		next_nbuf = qdf_nbuf_next(curr_nbuf);
1464 		dp_rx_nbuf_free(curr_nbuf);
1465 		curr_nbuf = next_nbuf;
1466 	}
1467 
1468 	return 0;
1469 }
1470 
1471 /**
1472  * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
1473  * @soc: DP SOC handle
1474  * @mpdu: mpdu for which peer is invalid
1475  * @mpdu_done: if an mpdu is completed
1476  * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
1477  * pool_id has same mapping)
1478  *
1479  * return: integer type
1480  */
1481 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
1482 					qdf_nbuf_t mpdu, bool mpdu_done,
1483 					uint8_t mac_id)
1484 {
1485 	/* Only trigger the process when mpdu is completed */
1486 	if (mpdu_done)
1487 		dp_rx_process_invalid_peer(soc, mpdu, mac_id);
1488 }
1489 #else
1490 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
1491 				   uint8_t mac_id)
1492 {
1493 	qdf_nbuf_t curr_nbuf, next_nbuf;
1494 	struct dp_pdev *pdev;
1495 	struct dp_vdev *vdev = NULL;
1496 	struct ieee80211_frame *wh;
1497 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
1498 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
1499 
1500 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
1501 
1502 	if (!DP_FRAME_IS_DATA(wh)) {
1503 		QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
1504 				   "only for data frames");
1505 		goto free;
1506 	}
1507 
1508 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
1509 		dp_rx_info_rl("%pK: Invalid nbuf length", soc);
1510 		goto free;
1511 	}
1512 
1513 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1514 	if (!pdev) {
1515 		dp_rx_info_rl("%pK: PDEV not found", soc);
1516 		goto free;
1517 	}
1518 
1519 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
1520 	DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
1521 		if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1522 				QDF_MAC_ADDR_SIZE) == 0) {
1523 			qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1524 			goto out;
1525 		}
1526 	}
1527 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1528 
1529 	if (!vdev) {
1530 		dp_rx_info_rl("%pK: VDEV not found", soc);
1531 		goto free;
1532 	}
1533 
1534 out:
1535 	if (soc->cdp_soc.ol_ops->rx_invalid_peer)
1536 		soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
1537 free:
1538 
1539 	/* Drop and free packet */
1540 	curr_nbuf = mpdu;
1541 	while (curr_nbuf) {
1542 		next_nbuf = qdf_nbuf_next(curr_nbuf);
1543 		dp_rx_nbuf_free(curr_nbuf);
1544 		curr_nbuf = next_nbuf;
1545 	}
1546 
1547 	/* Reset the head and tail pointers */
1548 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1549 	if (pdev) {
1550 		pdev->invalid_peer_head_msdu = NULL;
1551 		pdev->invalid_peer_tail_msdu = NULL;
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
1558 					qdf_nbuf_t mpdu, bool mpdu_done,
1559 					uint8_t mac_id)
1560 {
1561 	/* Process the nbuf */
1562 	dp_rx_process_invalid_peer(soc, mpdu, mac_id);
1563 }
1564 #endif
1565 
1566 #ifndef QCA_HOST_MODE_WIFI_DISABLED
1567 
1568 #ifdef RECEIVE_OFFLOAD
1569 /**
1570  * dp_rx_print_offload_info() - Print offload info from RX TLV
1571  * @soc: dp soc handle
1572  * @msdu: MSDU for which the offload info is to be printed
1573  *
1574  * Return: None
1575  */
1576 static void dp_rx_print_offload_info(struct dp_soc *soc,
1577 				     qdf_nbuf_t msdu)
1578 {
1579 	dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
1580 	dp_verbose_debug("lro_eligible 0x%x",
1581 			 QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
1582 	dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
1583 	dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
1584 	dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
1585 	dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
1586 	dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
1587 	dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
1588 	dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
1589 	dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
1590 	dp_verbose_debug("---------------------------------------------------------");
1591 }
1592 
1593 /**
1594  * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
1595  * @soc: DP SOC handle
1596  * @rx_tlv: RX TLV received for the msdu
1597  * @msdu: msdu for which GRO info needs to be filled
1598  * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
1599  *
1600  * Return: None
1601  */
1602 void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
1603 			 qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
1604 {
1605 	struct hal_offload_info offload_info;
1606 
1607 	if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
1608 		return;
1609 
1610 	if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
1611 		return;
1612 
1613 	*rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
1614 
1615 	QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
1616 	QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
1617 	QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
1618 			hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
1619 						  rx_tlv);
1620 	QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
1621 	QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
1622 	QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
1623 	QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
1624 	QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
1625 	QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
1626 	QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
1627 
1628 	dp_rx_print_offload_info(soc, msdu);
1629 }
1630 #endif /* RECEIVE_OFFLOAD */
1631 
1632 /**
1633  * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
1634  *
1635  * @soc: DP soc handle
1636  * @nbuf: pointer to msdu.
1637  * @mpdu_len: mpdu length
1638  * @l3_pad_len: L3 padding length by HW
1639  *
1640  * Return: returns true if nbuf is last msdu of mpdu else returns false.
1641  */
1642 static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
1643 					 qdf_nbuf_t nbuf,
1644 					 uint16_t *mpdu_len,
1645 					 uint32_t l3_pad_len)
1646 {
1647 	bool last_nbuf;
1648 	uint32_t pkt_hdr_size;
1649 
1650 	pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
1651 
1652 	if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
1653 		qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
1654 		last_nbuf = false;
1655 		*mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
1656 	} else {
1657 		qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
1658 		last_nbuf = true;
1659 		*mpdu_len = 0;
1660 	}
1661 
1662 	return last_nbuf;
1663 }
1664 
1665 /**
1666  * dp_get_l3_hdr_pad_len() - get L3 header padding length.
1667  *
1668  * @soc: DP soc handle
1669  * @nbuf: pointer to msdu.
1670  *
1671  * Return: returns padding length in bytes.
1672  */
1673 static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
1674 					     qdf_nbuf_t nbuf)
1675 {
1676 	uint32_t l3_hdr_pad = 0;
1677 	uint8_t *rx_tlv_hdr;
1678 	struct hal_rx_msdu_metadata msdu_metadata;
1679 
1680 	while (nbuf) {
1681 		if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
1682 			/* scattered msdu end with continuation is 0 */
1683 			rx_tlv_hdr = qdf_nbuf_data(nbuf);
1684 			hal_rx_msdu_metadata_get(soc->hal_soc,
1685 						 rx_tlv_hdr,
1686 						 &msdu_metadata);
1687 			l3_hdr_pad = msdu_metadata.l3_hdr_pad;
1688 			break;
1689 		}
1690 		nbuf = nbuf->next;
1691 	}
1692 
1693 	return l3_hdr_pad;
1694 }
1695 
1696 /**
1697  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
1698  *		     multiple nbufs.
1699  * @soc: DP SOC handle
1700  * @nbuf: pointer to the first msdu of an amsdu.
1701  *
1702  * This function implements the creation of RX frag_list for cases
1703  * where an MSDU is spread across multiple nbufs.
1704  *
1705  * Return: returns the head nbuf which contains complete frag_list.
1706  */
1707 qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
1708 {
1709 	qdf_nbuf_t parent, frag_list, next = NULL;
1710 	uint16_t frag_list_len = 0;
1711 	uint16_t mpdu_len;
1712 	bool last_nbuf;
1713 	uint32_t l3_hdr_pad_offset = 0;
1714 
1715 	/*
1716 	 * Use msdu len got from REO entry descriptor instead since
1717 	 * there is case the RX PKT TLV is corrupted while msdu_len
1718 	 * from REO descriptor is right for non-raw RX scatter msdu.
1719 	 */
1720 	mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1721 
1722 	/*
1723 	 * this is a case where the complete msdu fits in one single nbuf.
1724 	 * in this case HW sets both start and end bit and we only need to
1725 	 * reset these bits for RAW mode simulator to decap the pkt
1726 	 */
1727 	if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
1728 					qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1729 		qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
1730 		qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
1731 		return nbuf;
1732 	}
1733 
1734 	l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
1735 	/*
1736 	 * This is a case where we have multiple msdus (A-MSDU) spread across
1737 	 * multiple nbufs. here we create a fraglist out of these nbufs.
1738 	 *
1739 	 * the moment we encounter a nbuf with continuation bit set we
1740 	 * know for sure we have an MSDU which is spread across multiple
1741 	 * nbufs. We loop through and reap nbufs till we reach last nbuf.
1742 	 */
1743 	parent = nbuf;
1744 	frag_list = nbuf->next;
1745 	nbuf = nbuf->next;
1746 
1747 	/*
1748 	 * set the start bit in the first nbuf we encounter with continuation
1749 	 * bit set. This has the proper mpdu length set as it is the first
1750 	 * msdu of the mpdu. this becomes the parent nbuf and the subsequent
1751 	 * nbufs will form the frag_list of the parent nbuf.
1752 	 */
1753 	qdf_nbuf_set_rx_chfrag_start(parent, 1);
1754 	/*
1755 	 * L3 header padding is only needed for the 1st buffer
1756 	 * in a scattered msdu
1757 	 */
1758 	last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
1759 					  l3_hdr_pad_offset);
1760 
1761 	/*
1762 	 * MSDU cont bit is set but reported MPDU length can fit
1763 	 * in to single buffer
1764 	 *
1765 	 * Increment error stats and avoid SG list creation
1766 	 */
1767 	if (last_nbuf) {
1768 		DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
1769 		qdf_nbuf_pull_head(parent,
1770 				   soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
1771 		return parent;
1772 	}
1773 
1774 	/*
1775 	 * this is where we set the length of the fragments which are
1776 	 * associated to the parent nbuf. We iterate through the frag_list
1777 	 * till we hit the last_nbuf of the list.
1778 	 */
1779 	do {
1780 		last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
1781 		qdf_nbuf_pull_head(nbuf,
1782 				   soc->rx_pkt_tlv_size);
1783 		frag_list_len += qdf_nbuf_len(nbuf);
1784 
1785 		if (last_nbuf) {
1786 			next = nbuf->next;
1787 			nbuf->next = NULL;
1788 			break;
1789 		} else if (qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1790 			dp_err("Invalid packet length\n");
1791 			qdf_assert_always(0);
1792 		}
1793 		nbuf = nbuf->next;
1794 	} while (!last_nbuf);
1795 
1796 	qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
1797 	qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
1798 	parent->next = next;
1799 
1800 	qdf_nbuf_pull_head(parent,
1801 			   soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
1802 	return parent;
1803 }
1804 
1805 #ifdef DP_RX_SG_FRAME_SUPPORT
1806 /**
1807  * dp_rx_is_sg_supported() - SG packets processing supported or not.
1808  *
1809  * Return: returns true when processing is supported else false.
1810  */
1811 bool dp_rx_is_sg_supported(void)
1812 {
1813 	return true;
1814 }
1815 #else
1816 bool dp_rx_is_sg_supported(void)
1817 {
1818 	return false;
1819 }
1820 #endif
1821 
1822 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
1823 
1824 #ifdef QCA_PEER_EXT_STATS
1825 /*
1826  * dp_rx_compute_tid_delay - Computer per TID delay stats
1827  * @peer: DP soc context
1828  * @nbuf: NBuffer
1829  *
1830  * Return: Void
1831  */
1832 void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
1833 			     qdf_nbuf_t nbuf)
1834 {
1835 	struct cdp_delay_rx_stats  *rx_delay = &stats->rx_delay;
1836 	uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
1837 
1838 	dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
1839 }
1840 #endif /* QCA_PEER_EXT_STATS */
1841 
1842 /**
1843  * dp_rx_compute_delay() - Compute and fill in all timestamps
1844  *				to pass in correct fields
1845  *
1846  * @vdev: pdev handle
1847  * @tx_desc: tx descriptor
1848  * @tid: tid value
1849  * Return: none
1850  */
1851 void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
1852 {
1853 	uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
1854 	int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
1855 	uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
1856 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
1857 	uint32_t interframe_delay =
1858 		(uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
1859 	struct cdp_tid_rx_stats *rstats =
1860 		&vdev->pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
1861 
1862 	dp_update_delay_stats(NULL, rstats, to_stack, tid,
1863 			      CDP_DELAY_STATS_REAP_STACK, ring_id, false);
1864 	/*
1865 	 * Update interframe delay stats calculated at deliver_data_ol point.
1866 	 * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
1867 	 * interframe delay will not be calculate correctly for 1st frame.
1868 	 * On the other side, this will help in avoiding extra per packet check
1869 	 * of vdev->prev_rx_deliver_tstamp.
1870 	 */
1871 	dp_update_delay_stats(NULL, rstats, interframe_delay, tid,
1872 			      CDP_DELAY_STATS_RX_INTERFRAME, ring_id, false);
1873 	vdev->prev_rx_deliver_tstamp = current_ts;
1874 }
1875 
1876 /**
1877  * dp_rx_drop_nbuf_list() - drop an nbuf list
1878  * @pdev: dp pdev reference
1879  * @buf_list: buffer list to be dropepd
1880  *
1881  * Return: int (number of bufs dropped)
1882  */
1883 static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
1884 				       qdf_nbuf_t buf_list)
1885 {
1886 	struct cdp_tid_rx_stats *stats = NULL;
1887 	uint8_t tid = 0, ring_id = 0;
1888 	int num_dropped = 0;
1889 	qdf_nbuf_t buf, next_buf;
1890 
1891 	buf = buf_list;
1892 	while (buf) {
1893 		ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
1894 		next_buf = qdf_nbuf_queue_next(buf);
1895 		tid = qdf_nbuf_get_tid_val(buf);
1896 		if (qdf_likely(pdev)) {
1897 			stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
1898 			stats->fail_cnt[INVALID_PEER_VDEV]++;
1899 			stats->delivered_to_stack--;
1900 		}
1901 		dp_rx_nbuf_free(buf);
1902 		buf = next_buf;
1903 		num_dropped++;
1904 	}
1905 
1906 	return num_dropped;
1907 }
1908 
1909 #ifdef QCA_SUPPORT_WDS_EXTENDED
1910 /**
1911  * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
1912  * @soc: core txrx main context
1913  * @vdev: vdev
1914  * @txrx_peer: txrx peer
1915  * @nbuf_head: skb list head
1916  *
1917  * Return: true if packet is delivered to netdev per STA.
1918  */
1919 static inline bool
1920 dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
1921 			   struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
1922 {
1923 	/*
1924 	 * When extended WDS is disabled, frames are sent to AP netdevice.
1925 	 */
1926 	if (qdf_likely(!vdev->wds_ext_enabled))
1927 		return false;
1928 
1929 	/*
1930 	 * There can be 2 cases:
1931 	 * 1. Send frame to parent netdev if its not for netdev per STA
1932 	 * 2. If frame is meant for netdev per STA:
1933 	 *    a. Send frame to appropriate netdev using registered fp.
1934 	 *    b. If fp is NULL, drop the frames.
1935 	 */
1936 	if (!txrx_peer->wds_ext.init)
1937 		return false;
1938 
1939 	if (txrx_peer->osif_rx)
1940 		txrx_peer->osif_rx(txrx_peer->wds_ext.osif_peer, nbuf_head);
1941 	else
1942 		dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
1943 
1944 	return true;
1945 }
1946 
1947 #else
1948 static inline bool
1949 dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
1950 			   struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
1951 {
1952 	return false;
1953 }
1954 #endif
1955 
1956 #ifdef PEER_CACHE_RX_PKTS
1957 /**
1958  * dp_rx_flush_rx_cached() - flush cached rx frames
1959  * @peer: peer
1960  * @drop: flag to drop frames or forward to net stack
1961  *
1962  * Return: None
1963  */
1964 void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
1965 {
1966 	struct dp_peer_cached_bufq *bufqi;
1967 	struct dp_rx_cached_buf *cache_buf = NULL;
1968 	ol_txrx_rx_fp data_rx = NULL;
1969 	int num_buff_elem;
1970 	QDF_STATUS status;
1971 
1972 	/*
1973 	 * Flush dp cached frames only for mld peers and legacy peers, as
1974 	 * link peers don't store cached frames
1975 	 */
1976 	if (IS_MLO_DP_LINK_PEER(peer))
1977 		return;
1978 
1979 	if (!peer->txrx_peer) {
1980 		dp_err("txrx_peer NULL!! peer mac_addr("QDF_MAC_ADDR_FMT")",
1981 			QDF_MAC_ADDR_REF(peer->mac_addr.raw));
1982 		return;
1983 	}
1984 
1985 	if (qdf_atomic_inc_return(&peer->txrx_peer->flush_in_progress) > 1) {
1986 		qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
1987 		return;
1988 	}
1989 
1990 	qdf_spin_lock_bh(&peer->peer_info_lock);
1991 	if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
1992 		data_rx = peer->vdev->osif_rx;
1993 	else
1994 		drop = true;
1995 	qdf_spin_unlock_bh(&peer->peer_info_lock);
1996 
1997 	bufqi = &peer->txrx_peer->bufq_info;
1998 
1999 	qdf_spin_lock_bh(&bufqi->bufq_lock);
2000 	qdf_list_remove_front(&bufqi->cached_bufq,
2001 			      (qdf_list_node_t **)&cache_buf);
2002 	while (cache_buf) {
2003 		num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
2004 								cache_buf->buf);
2005 		bufqi->entries -= num_buff_elem;
2006 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
2007 		if (drop) {
2008 			bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
2009 							      cache_buf->buf);
2010 		} else {
2011 			/* Flush the cached frames to OSIF DEV */
2012 			status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
2013 			if (status != QDF_STATUS_SUCCESS)
2014 				bufqi->dropped = dp_rx_drop_nbuf_list(
2015 							peer->vdev->pdev,
2016 							cache_buf->buf);
2017 		}
2018 		qdf_mem_free(cache_buf);
2019 		cache_buf = NULL;
2020 		qdf_spin_lock_bh(&bufqi->bufq_lock);
2021 		qdf_list_remove_front(&bufqi->cached_bufq,
2022 				      (qdf_list_node_t **)&cache_buf);
2023 	}
2024 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
2025 	qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
2026 }
2027 
2028 /**
2029  * dp_rx_enqueue_rx() - cache rx frames
2030  * @peer: peer
2031  * @txrx_peer: DP txrx_peer
2032  * @rx_buf_list: cache buffer list
2033  *
2034  * Return: None
2035  */
2036 static QDF_STATUS
2037 dp_rx_enqueue_rx(struct dp_peer *peer,
2038 		 struct dp_txrx_peer *txrx_peer,
2039 		 qdf_nbuf_t rx_buf_list)
2040 {
2041 	struct dp_rx_cached_buf *cache_buf;
2042 	struct dp_peer_cached_bufq *bufqi = &txrx_peer->bufq_info;
2043 	int num_buff_elem;
2044 	QDF_STATUS ret = QDF_STATUS_SUCCESS;
2045 	struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
2046 	struct dp_peer *ta_peer = NULL;
2047 
2048 	/*
2049 	 * If peer id is invalid which likely peer map has not completed,
2050 	 * then need caller provide dp_peer pointer, else it's ok to use
2051 	 * txrx_peer->peer_id to get dp_peer.
2052 	 */
2053 	if (peer) {
2054 		if (QDF_STATUS_SUCCESS ==
2055 		    dp_peer_get_ref(soc, peer, DP_MOD_ID_RX))
2056 			ta_peer = peer;
2057 	} else {
2058 		ta_peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id,
2059 						DP_MOD_ID_RX);
2060 	}
2061 
2062 	if (!ta_peer) {
2063 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2064 						      rx_buf_list);
2065 		return QDF_STATUS_E_INVAL;
2066 	}
2067 
2068 	dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
2069 		    bufqi->dropped);
2070 	if (!ta_peer->valid) {
2071 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2072 						      rx_buf_list);
2073 		ret = QDF_STATUS_E_INVAL;
2074 		goto fail;
2075 	}
2076 
2077 	qdf_spin_lock_bh(&bufqi->bufq_lock);
2078 	if (bufqi->entries >= bufqi->thresh) {
2079 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2080 						      rx_buf_list);
2081 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
2082 		ret = QDF_STATUS_E_RESOURCES;
2083 		goto fail;
2084 	}
2085 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
2086 
2087 	num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
2088 
2089 	cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
2090 	if (!cache_buf) {
2091 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2092 			  "Failed to allocate buf to cache rx frames");
2093 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2094 						      rx_buf_list);
2095 		ret = QDF_STATUS_E_NOMEM;
2096 		goto fail;
2097 	}
2098 
2099 	cache_buf->buf = rx_buf_list;
2100 
2101 	qdf_spin_lock_bh(&bufqi->bufq_lock);
2102 	qdf_list_insert_back(&bufqi->cached_bufq,
2103 			     &cache_buf->node);
2104 	bufqi->entries += num_buff_elem;
2105 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
2106 
2107 fail:
2108 	dp_peer_unref_delete(ta_peer, DP_MOD_ID_RX);
2109 	return ret;
2110 }
2111 
2112 static inline
2113 bool dp_rx_is_peer_cache_bufq_supported(void)
2114 {
2115 	return true;
2116 }
2117 #else
2118 static inline
2119 bool dp_rx_is_peer_cache_bufq_supported(void)
2120 {
2121 	return false;
2122 }
2123 
2124 static inline QDF_STATUS
2125 dp_rx_enqueue_rx(struct dp_peer *peer,
2126 		 struct dp_txrx_peer *txrx_peer,
2127 		 qdf_nbuf_t rx_buf_list)
2128 {
2129 	return QDF_STATUS_SUCCESS;
2130 }
2131 #endif
2132 
2133 #ifndef DELIVERY_TO_STACK_STATUS_CHECK
2134 /**
2135  * dp_rx_check_delivery_to_stack() - Deliver pkts to network
2136  * using the appropriate call back functions.
2137  * @soc: soc
2138  * @vdev: vdev
2139  * @peer: peer
2140  * @nbuf_head: skb list head
2141  * @nbuf_tail: skb list tail
2142  *
2143  * Return: None
2144  */
2145 static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
2146 					  struct dp_vdev *vdev,
2147 					  struct dp_txrx_peer *txrx_peer,
2148 					  qdf_nbuf_t nbuf_head)
2149 {
2150 	if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
2151 						    txrx_peer, nbuf_head)))
2152 		return;
2153 
2154 	/* Function pointer initialized only when FISA is enabled */
2155 	if (vdev->osif_fisa_rx)
2156 		/* on failure send it via regular path */
2157 		vdev->osif_fisa_rx(soc, vdev, nbuf_head);
2158 	else
2159 		vdev->osif_rx(vdev->osif_vdev, nbuf_head);
2160 }
2161 
2162 #else
2163 /**
2164  * dp_rx_check_delivery_to_stack() - Deliver pkts to network
2165  * using the appropriate call back functions.
2166  * @soc: soc
2167  * @vdev: vdev
2168  * @txrx_peer: txrx peer
2169  * @nbuf_head: skb list head
2170  * @nbuf_tail: skb list tail
2171  *
2172  * Check the return status of the call back function and drop
2173  * the packets if the return status indicates a failure.
2174  *
2175  * Return: None
2176  */
2177 static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
2178 					  struct dp_vdev *vdev,
2179 					  struct dp_txrx_peer *txrx_peer,
2180 					  qdf_nbuf_t nbuf_head)
2181 {
2182 	int num_nbuf = 0;
2183 	QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
2184 
2185 	/* Function pointer initialized only when FISA is enabled */
2186 	if (vdev->osif_fisa_rx)
2187 		/* on failure send it via regular path */
2188 		ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
2189 	else if (vdev->osif_rx)
2190 		ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
2191 
2192 	if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
2193 		num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
2194 		DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
2195 		if (txrx_peer)
2196 			DP_PEER_STATS_FLAT_DEC(txrx_peer, to_stack.num,
2197 					       num_nbuf);
2198 	}
2199 }
2200 #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
2201 
2202 /*
2203  * dp_rx_validate_rx_callbacks() - validate rx callbacks
2204  * @soc DP soc
2205  * @vdev: DP vdev handle
2206  * @txrx_peer: pointer to the txrx peer object
2207  * nbuf_head: skb list head
2208  *
2209  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
2210  *			QDF_STATUS_E_FAILURE
2211  */
2212 static inline QDF_STATUS
2213 dp_rx_validate_rx_callbacks(struct dp_soc *soc,
2214 			    struct dp_vdev *vdev,
2215 			    struct dp_txrx_peer *txrx_peer,
2216 			    qdf_nbuf_t nbuf_head)
2217 {
2218 	int num_nbuf;
2219 
2220 	if (qdf_unlikely(!vdev || vdev->delete.pending)) {
2221 		num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
2222 		/*
2223 		 * This is a special case where vdev is invalid,
2224 		 * so we cannot know the pdev to which this packet
2225 		 * belonged. Hence we update the soc rx error stats.
2226 		 */
2227 		DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
2228 		return QDF_STATUS_E_FAILURE;
2229 	}
2230 
2231 	/*
2232 	 * highly unlikely to have a vdev without a registered rx
2233 	 * callback function. if so let us free the nbuf_list.
2234 	 */
2235 	if (qdf_unlikely(!vdev->osif_rx)) {
2236 		if (txrx_peer && dp_rx_is_peer_cache_bufq_supported()) {
2237 			dp_rx_enqueue_rx(NULL, txrx_peer, nbuf_head);
2238 		} else {
2239 			num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
2240 							nbuf_head);
2241 			DP_PEER_TO_STACK_DECC(txrx_peer, num_nbuf,
2242 					      vdev->pdev->enhanced_stats_en);
2243 		}
2244 		return QDF_STATUS_E_FAILURE;
2245 	}
2246 
2247 	return QDF_STATUS_SUCCESS;
2248 }
2249 
2250 QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
2251 				  struct dp_vdev *vdev,
2252 				  struct dp_txrx_peer *txrx_peer,
2253 				  qdf_nbuf_t nbuf_head,
2254 				  qdf_nbuf_t nbuf_tail)
2255 {
2256 	if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
2257 					QDF_STATUS_SUCCESS)
2258 		return QDF_STATUS_E_FAILURE;
2259 
2260 	if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
2261 			(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
2262 		vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
2263 					 &nbuf_tail);
2264 	}
2265 
2266 	dp_rx_check_delivery_to_stack(soc, vdev, txrx_peer, nbuf_head);
2267 
2268 	return QDF_STATUS_SUCCESS;
2269 }
2270 
2271 #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
2272 QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
2273 					struct dp_vdev *vdev,
2274 					struct dp_txrx_peer *txrx_peer,
2275 					qdf_nbuf_t nbuf_head,
2276 					qdf_nbuf_t nbuf_tail)
2277 {
2278 	if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
2279 					QDF_STATUS_SUCCESS)
2280 		return QDF_STATUS_E_FAILURE;
2281 
2282 	vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
2283 
2284 	return QDF_STATUS_SUCCESS;
2285 }
2286 #endif
2287 
2288 #ifndef QCA_HOST_MODE_WIFI_DISABLED
2289 #ifdef VDEV_PEER_PROTOCOL_COUNT
2290 #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer) \
2291 { \
2292 	qdf_nbuf_t nbuf_local; \
2293 	struct dp_txrx_peer *txrx_peer_local; \
2294 	struct dp_vdev *vdev_local = vdev_hdl; \
2295 	do { \
2296 		if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
2297 			break; \
2298 		nbuf_local = nbuf; \
2299 		txrx_peer_local = txrx_peer; \
2300 		if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
2301 			break; \
2302 		else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
2303 			break; \
2304 		dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
2305 						       (nbuf_local), \
2306 						       (txrx_peer_local), 0, 1); \
2307 	} while (0); \
2308 }
2309 #else
2310 #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer)
2311 #endif
2312 
2313 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
2314 /**
2315  * dp_rx_rates_stats_update() - update rate stats
2316  * from rx msdu.
2317  * @soc: datapath soc handle
2318  * @nbuf: received msdu buffer
2319  * @rx_tlv_hdr: rx tlv header
2320  * @txrx_peer: datapath txrx_peer handle
2321  * @sgi: Short Guard Interval
2322  * @mcs: Modulation and Coding Set
2323  * @nss: Number of Spatial Streams
2324  * @bw: BandWidth
2325  * @pkt_type: Corresponds to preamble
2326  *
2327  * To be precisely record rates, following factors are considered:
2328  * Exclude specific frames, ARP, DHCP, ssdp, etc.
2329  * Make sure to affect rx throughput as least as possible.
2330  *
2331  * Return: void
2332  */
2333 static void
2334 dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2335 			 uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
2336 			 uint32_t sgi, uint32_t mcs,
2337 			 uint32_t nss, uint32_t bw, uint32_t pkt_type)
2338 {
2339 	uint32_t rix;
2340 	uint16_t ratecode;
2341 	uint32_t avg_rx_rate;
2342 	uint32_t ratekbps;
2343 	enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
2344 
2345 	if (soc->high_throughput ||
2346 	    dp_rx_data_is_specific(soc->hal_soc, rx_tlv_hdr, nbuf)) {
2347 		return;
2348 	}
2349 
2350 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.rx_rate, mcs);
2351 
2352 	/* In 11b mode, the nss we get from tlv is 0, invalid and should be 1 */
2353 	if (qdf_unlikely(pkt_type == DOT11_B))
2354 		nss = 1;
2355 
2356 	/* here pkt_type corresponds to preamble */
2357 	ratekbps = dp_getrateindex(sgi,
2358 				   mcs,
2359 				   nss - 1,
2360 				   pkt_type,
2361 				   bw,
2362 				   punc_mode,
2363 				   &rix,
2364 				   &ratecode);
2365 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.last_rx_rate, ratekbps);
2366 	avg_rx_rate =
2367 		dp_ath_rate_lpf(txrx_peer->stats.extd_stats.rx.avg_rx_rate,
2368 				ratekbps);
2369 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.avg_rx_rate, avg_rx_rate);
2370 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.nss_info, nss);
2371 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.mcs_info, mcs);
2372 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.bw_info, bw);
2373 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.gi_info, sgi);
2374 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.preamble_info, pkt_type);
2375 }
2376 #else
2377 static inline void
2378 dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2379 			 uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
2380 			 uint32_t sgi, uint32_t mcs,
2381 			 uint32_t nss, uint32_t bw, uint32_t pkt_type)
2382 {
2383 }
2384 #endif /* FEATURE_RX_LINKSPEED_ROAM_TRIGGER */
2385 
2386 #ifndef QCA_ENHANCED_STATS_SUPPORT
2387 /**
2388  * dp_rx_msdu_extd_stats_update(): Update Rx extended path stats for peer
2389  *
2390  * @soc: datapath soc handle
2391  * @nbuf: received msdu buffer
2392  * @rx_tlv_hdr: rx tlv header
2393  * @txrx_peer: datapath txrx_peer handle
2394  *
2395  * Return: void
2396  */
2397 static inline
2398 void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2399 				  uint8_t *rx_tlv_hdr,
2400 				  struct dp_txrx_peer *txrx_peer)
2401 {
2402 	bool is_ampdu;
2403 	uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
2404 	uint8_t dst_mcs_idx;
2405 
2406 	/*
2407 	 * TODO - For KIWI this field is present in ring_desc
2408 	 * Try to use ring desc instead of tlv.
2409 	 */
2410 	is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
2411 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.ampdu_cnt, 1, is_ampdu);
2412 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
2413 
2414 	sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
2415 	mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
2416 	tid = qdf_nbuf_get_tid_val(nbuf);
2417 	bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
2418 	reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
2419 							      rx_tlv_hdr);
2420 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
2421 	pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
2422 	/* do HW to SW pkt type conversion */
2423 	pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX :
2424 		    hal_2_dp_pkt_type_map[pkt_type]);
2425 
2426 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[mcs], 1,
2427 		      ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
2428 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
2429 		      ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
2430 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.bw[bw], 1);
2431 	/*
2432 	 * only if nss > 0 and pkt_type is 11N/AC/AX,
2433 	 * then increase index [nss - 1] in array counter.
2434 	 */
2435 	if (nss > 0 && CDP_IS_PKT_TYPE_SUPPORT_NSS(pkt_type))
2436 		DP_PEER_EXTD_STATS_INC(txrx_peer, rx.nss[nss - 1], 1);
2437 
2438 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.sgi_count[sgi], 1);
2439 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.mic_err, 1,
2440 				   hal_rx_tlv_mic_err_get(soc->hal_soc,
2441 				   rx_tlv_hdr));
2442 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.decrypt_err, 1,
2443 				   hal_rx_tlv_decrypt_err_get(soc->hal_soc,
2444 				   rx_tlv_hdr));
2445 
2446 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
2447 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.reception_type[reception_type], 1);
2448 
2449 	dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs);
2450 	if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx)
2451 		DP_PEER_EXTD_STATS_INC(txrx_peer,
2452 				       rx.pkt_type[pkt_type].mcs_count[dst_mcs_idx],
2453 				       1);
2454 
2455 	dp_rx_rates_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer,
2456 				 sgi, mcs, nss, bw, pkt_type);
2457 }
2458 #else
2459 static inline
2460 void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2461 				  uint8_t *rx_tlv_hdr,
2462 				  struct dp_txrx_peer *txrx_peer)
2463 {
2464 }
2465 #endif
2466 
2467 #if defined(DP_PKT_STATS_PER_LMAC) && defined(WLAN_FEATURE_11BE_MLO)
2468 static inline void
2469 dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
2470 			       qdf_nbuf_t nbuf)
2471 {
2472 	uint8_t lmac_id = qdf_nbuf_get_lmac_id(nbuf);
2473 
2474 	if (qdf_unlikely(lmac_id >= CDP_MAX_LMACS)) {
2475 		dp_err_rl("Invalid lmac_id: %u vdev_id: %u",
2476 			  lmac_id, QDF_NBUF_CB_RX_VDEV_ID(nbuf));
2477 
2478 		if (qdf_likely(txrx_peer))
2479 			dp_err_rl("peer_id: %u", txrx_peer->peer_id);
2480 
2481 		return;
2482 	}
2483 
2484 	/* only count stats per lmac for MLO connection*/
2485 	DP_PEER_PER_PKT_STATS_INCC_PKT(txrx_peer, rx.rx_lmac[lmac_id], 1,
2486 				       QDF_NBUF_CB_RX_PKT_LEN(nbuf),
2487 				       txrx_peer->mld_peer);
2488 }
2489 #else
2490 static inline void
2491 dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
2492 			       qdf_nbuf_t nbuf)
2493 {
2494 }
2495 #endif
2496 
2497 /**
2498  * dp_rx_msdu_stats_update() - update per msdu stats.
2499  * @soc: core txrx main context
2500  * @nbuf: pointer to the first msdu of an amsdu.
2501  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
2502  * @txrx_peer: pointer to the txrx peer object.
2503  * @ring_id: reo dest ring number on which pkt is reaped.
2504  * @tid_stats: per tid rx stats.
2505  *
2506  * update all the per msdu stats for that nbuf.
2507  * Return: void
2508  */
2509 void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2510 			     uint8_t *rx_tlv_hdr,
2511 			     struct dp_txrx_peer *txrx_peer,
2512 			     uint8_t ring_id,
2513 			     struct cdp_tid_rx_stats *tid_stats)
2514 {
2515 	bool is_not_amsdu;
2516 	struct dp_vdev *vdev = txrx_peer->vdev;
2517 	bool enh_flag;
2518 	qdf_ether_header_t *eh;
2519 	uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2520 
2521 	dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, txrx_peer);
2522 	is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
2523 			qdf_nbuf_is_rx_chfrag_end(nbuf);
2524 	DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.rcvd_reo[ring_id], 1,
2525 				      msdu_len);
2526 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.non_amsdu_cnt, 1,
2527 				   is_not_amsdu);
2528 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.amsdu_cnt, 1, !is_not_amsdu);
2529 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.rx_retries, 1,
2530 				   qdf_nbuf_is_rx_retry_flag(nbuf));
2531 	dp_peer_update_rx_pkt_per_lmac(txrx_peer, nbuf);
2532 	tid_stats->msdu_cnt++;
2533 	if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
2534 			 (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
2535 		eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
2536 		enh_flag = vdev->pdev->enhanced_stats_en;
2537 		DP_PEER_MC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
2538 		tid_stats->mcast_msdu_cnt++;
2539 		if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
2540 			DP_PEER_BC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
2541 			tid_stats->bcast_msdu_cnt++;
2542 		}
2543 	}
2544 
2545 	txrx_peer->stats.per_pkt_stats.rx.last_rx_ts = qdf_system_ticks();
2546 
2547 	dp_rx_msdu_extd_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer);
2548 }
2549 
2550 #ifndef WDS_VENDOR_EXTENSION
2551 int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
2552 			   struct dp_vdev *vdev,
2553 			   struct dp_txrx_peer *txrx_peer)
2554 {
2555 	return 1;
2556 }
2557 #endif
2558 
2559 #ifdef RX_DESC_DEBUG_CHECK
2560 /**
2561  * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
2562  *				  corruption
2563  *
2564  * @ring_desc: REO ring descriptor
2565  * @rx_desc: Rx descriptor
2566  *
2567  * Return: NONE
2568  */
2569 QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
2570 					hal_ring_desc_t ring_desc,
2571 					struct dp_rx_desc *rx_desc)
2572 {
2573 	struct hal_buf_info hbi;
2574 
2575 	hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
2576 	/* Sanity check for possible buffer paddr corruption */
2577 	if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
2578 		return QDF_STATUS_SUCCESS;
2579 
2580 	return QDF_STATUS_E_FAILURE;
2581 }
2582 
2583 /**
2584  * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
2585  *				      out of bound access from H.W
2586  *
2587  * @soc: DP soc
2588  * @pkt_len: Packet length received from H.W
2589  *
2590  * Return: NONE
2591  */
2592 static inline void
2593 dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
2594 				 uint32_t pkt_len)
2595 {
2596 	struct rx_desc_pool *rx_desc_pool;
2597 
2598 	rx_desc_pool = &soc->rx_desc_buf[0];
2599 	qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
2600 }
2601 #else
2602 static inline void
2603 dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
2604 #endif
2605 
2606 #ifdef DP_RX_PKT_NO_PEER_DELIVER
2607 #ifdef DP_RX_UDP_OVER_PEER_ROAM
2608 /**
2609  * dp_rx_is_udp_allowed_over_roam_peer() - check if udp data received
2610  *					   during roaming
2611  * @vdev: dp_vdev pointer
2612  * @rx_tlv_hdr: rx tlv header
2613  * @nbuf: pkt skb pointer
2614  *
2615  * This function will check if rx udp data is received from authorised
2616  * roamed peer before peer map indication is received from FW after
2617  * roaming. This is needed for VoIP scenarios in which packet loss
2618  * expected during roaming is minimal.
2619  *
2620  * Return: bool
2621  */
2622 static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
2623 						uint8_t *rx_tlv_hdr,
2624 						qdf_nbuf_t nbuf)
2625 {
2626 	char *hdr_desc;
2627 	struct ieee80211_frame *wh = NULL;
2628 
2629 	hdr_desc = hal_rx_desc_get_80211_hdr(vdev->pdev->soc->hal_soc,
2630 					     rx_tlv_hdr);
2631 	wh = (struct ieee80211_frame *)hdr_desc;
2632 
2633 	if (vdev->roaming_peer_status ==
2634 	    WLAN_ROAM_PEER_AUTH_STATUS_AUTHENTICATED &&
2635 	    !qdf_mem_cmp(vdev->roaming_peer_mac.raw, wh->i_addr2,
2636 	    QDF_MAC_ADDR_SIZE) && (qdf_nbuf_is_ipv4_udp_pkt(nbuf) ||
2637 	    qdf_nbuf_is_ipv6_udp_pkt(nbuf)))
2638 		return true;
2639 
2640 	return false;
2641 }
2642 #else
2643 static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
2644 						uint8_t *rx_tlv_hdr,
2645 						qdf_nbuf_t nbuf)
2646 {
2647 	return false;
2648 }
2649 #endif
2650 /**
2651  * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
2652  *				      no corresbonding peer found
2653  * @soc: core txrx main context
2654  * @nbuf: pkt skb pointer
2655  *
2656  * This function will try to deliver some RX special frames to stack
2657  * even there is no peer matched found. for instance, LFR case, some
2658  * eapol data will be sent to host before peer_map done.
2659  *
2660  * Return: None
2661  */
2662 void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
2663 {
2664 	uint16_t peer_id;
2665 	uint8_t vdev_id;
2666 	struct dp_vdev *vdev = NULL;
2667 	uint32_t l2_hdr_offset = 0;
2668 	uint16_t msdu_len = 0;
2669 	uint32_t pkt_len = 0;
2670 	uint8_t *rx_tlv_hdr;
2671 	uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
2672 				FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
2673 	bool is_special_frame = false;
2674 	struct dp_peer *peer = NULL;
2675 
2676 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
2677 	if (peer_id > soc->max_peer_id)
2678 		goto deliver_fail;
2679 
2680 	vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
2681 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
2682 	if (!vdev || vdev->delete.pending)
2683 		goto deliver_fail;
2684 
2685 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
2686 		goto deliver_fail;
2687 
2688 	rx_tlv_hdr = qdf_nbuf_data(nbuf);
2689 	l2_hdr_offset =
2690 		hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
2691 
2692 	msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2693 	pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
2694 	QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
2695 
2696 	qdf_nbuf_set_pktlen(nbuf, pkt_len);
2697 	qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
2698 
2699 	is_special_frame = dp_rx_is_special_frame(nbuf, frame_mask);
2700 	if (qdf_likely(vdev->osif_rx)) {
2701 		if (is_special_frame ||
2702 		    dp_rx_is_udp_allowed_over_roam_peer(vdev, rx_tlv_hdr,
2703 							nbuf)) {
2704 			qdf_nbuf_set_exc_frame(nbuf, 1);
2705 			if (QDF_STATUS_SUCCESS !=
2706 			    vdev->osif_rx(vdev->osif_vdev, nbuf))
2707 				goto deliver_fail;
2708 
2709 			DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
2710 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2711 			return;
2712 		}
2713 	} else if (is_special_frame) {
2714 		/*
2715 		 * If MLO connection, txrx_peer for link peer does not exist,
2716 		 * try to store these RX packets to txrx_peer's bufq of MLD
2717 		 * peer until vdev->osif_rx is registered from CP and flush
2718 		 * them to stack.
2719 		 */
2720 		peer = dp_peer_get_tgt_peer_by_id(soc, peer_id,
2721 						  DP_MOD_ID_RX);
2722 		if (!peer)
2723 			goto deliver_fail;
2724 
2725 		/* only check for MLO connection */
2726 		if (IS_MLO_DP_MLD_PEER(peer) && peer->txrx_peer &&
2727 		    dp_rx_is_peer_cache_bufq_supported()) {
2728 			qdf_nbuf_set_exc_frame(nbuf, 1);
2729 
2730 			if (QDF_STATUS_SUCCESS ==
2731 			    dp_rx_enqueue_rx(peer, peer->txrx_peer, nbuf)) {
2732 				DP_STATS_INC(soc,
2733 					     rx.err.pkt_delivered_no_peer,
2734 					     1);
2735 			} else {
2736 				DP_STATS_INC(soc,
2737 					     rx.err.rx_invalid_peer.num,
2738 					     1);
2739 			}
2740 
2741 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2742 			dp_peer_unref_delete(peer, DP_MOD_ID_RX);
2743 			return;
2744 		}
2745 
2746 		dp_peer_unref_delete(peer, DP_MOD_ID_RX);
2747 	}
2748 
2749 deliver_fail:
2750 	DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
2751 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2752 	dp_rx_nbuf_free(nbuf);
2753 	if (vdev)
2754 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2755 }
2756 #else
2757 void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
2758 {
2759 	DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
2760 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2761 	dp_rx_nbuf_free(nbuf);
2762 }
2763 #endif
2764 
2765 /**
2766  * dp_rx_srng_get_num_pending() - get number of pending entries
2767  * @hal_soc: hal soc opaque pointer
2768  * @hal_ring: opaque pointer to the HAL Rx Ring
2769  * @num_entries: number of entries in the hal_ring.
2770  * @near_full: pointer to a boolean. This is set if ring is near full.
2771  *
2772  * The function returns the number of entries in a destination ring which are
2773  * yet to be reaped. The function also checks if the ring is near full.
2774  * If more than half of the ring needs to be reaped, the ring is considered
2775  * approaching full.
2776  * The function useses hal_srng_dst_num_valid_locked to get the number of valid
2777  * entries. It should not be called within a SRNG lock. HW pointer value is
2778  * synced into cached_hp.
2779  *
2780  * Return: Number of pending entries if any
2781  */
2782 uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
2783 				    hal_ring_handle_t hal_ring_hdl,
2784 				    uint32_t num_entries,
2785 				    bool *near_full)
2786 {
2787 	uint32_t num_pending = 0;
2788 
2789 	num_pending = hal_srng_dst_num_valid_locked(hal_soc,
2790 						    hal_ring_hdl,
2791 						    true);
2792 
2793 	if (num_entries && (num_pending >= num_entries >> 1))
2794 		*near_full = true;
2795 	else
2796 		*near_full = false;
2797 
2798 	return num_pending;
2799 }
2800 
2801 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
2802 
2803 #ifdef WLAN_SUPPORT_RX_FISA
2804 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
2805 {
2806 	QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
2807 	qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
2808 }
2809 #else
2810 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
2811 {
2812 	qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
2813 }
2814 #endif
2815 
2816 #ifndef QCA_HOST_MODE_WIFI_DISABLED
2817 
2818 #ifdef DP_RX_DROP_RAW_FRM
2819 /**
2820  * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
2821  * @nbuf: pkt skb pointer
2822  *
2823  * Return: true - raw frame, dropped
2824  *	   false - not raw frame, do nothing
2825  */
2826 bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
2827 {
2828 	if (qdf_nbuf_is_raw_frame(nbuf)) {
2829 		dp_rx_nbuf_free(nbuf);
2830 		return true;
2831 	}
2832 
2833 	return false;
2834 }
2835 #endif
2836 
2837 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
2838 /**
2839  * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
2840  * @soc: Datapath soc structure
2841  * @ring_num: REO ring number
2842  * @ring_desc: REO ring descriptor
2843  *
2844  * Returns: None
2845  */
2846 void
2847 dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
2848 			hal_ring_desc_t ring_desc)
2849 {
2850 	struct dp_buf_info_record *record;
2851 	struct hal_buf_info hbi;
2852 	uint32_t idx;
2853 
2854 	if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
2855 		return;
2856 
2857 	hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
2858 
2859 	/* buffer_addr_info is the first element of ring_desc */
2860 	hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
2861 				  &hbi);
2862 
2863 	idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
2864 					DP_RX_HIST_MAX);
2865 
2866 	/* No NULL check needed for record since its an array */
2867 	record = &soc->rx_ring_history[ring_num]->entry[idx];
2868 
2869 	record->timestamp = qdf_get_log_timestamp();
2870 	record->hbi.paddr = hbi.paddr;
2871 	record->hbi.sw_cookie = hbi.sw_cookie;
2872 	record->hbi.rbm = hbi.rbm;
2873 }
2874 #endif
2875 
2876 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
2877 /**
2878  * dp_rx_update_stats() - Update soc level rx packet count
2879  * @soc: DP soc handle
2880  * @nbuf: nbuf received
2881  *
2882  * Returns: none
2883  */
2884 void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
2885 {
2886 	DP_STATS_INC_PKT(soc, rx.ingress, 1,
2887 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2888 }
2889 #endif
2890 
2891 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
2892 /**
2893  * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
2894  * @soc : dp_soc handle
2895  * @pdev: dp_pdev handle
2896  * @peer_id: peer_id of the peer for which completion came
2897  * @ppdu_id: ppdu_id
2898  * @netbuf: Buffer pointer
2899  *
2900  * This function is used to deliver rx packet to packet capture
2901  */
2902 void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc,  struct dp_pdev *pdev,
2903 				  uint16_t peer_id, uint32_t is_offload,
2904 				  qdf_nbuf_t netbuf)
2905 {
2906 	if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
2907 		dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
2908 				     peer_id, is_offload, pdev->pdev_id);
2909 }
2910 
2911 void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
2912 					  uint32_t is_offload)
2913 {
2914 	if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
2915 		dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
2916 				     soc, nbuf, HTT_INVALID_VDEV,
2917 				     is_offload, 0);
2918 }
2919 #endif
2920 
2921 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
2922 
2923 QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
2924 {
2925 	QDF_STATUS ret;
2926 
2927 	if (vdev->osif_rx_flush) {
2928 		ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
2929 		if (!QDF_IS_STATUS_SUCCESS(ret)) {
2930 			dp_err("Failed to flush rx pkts for vdev %d\n",
2931 			       vdev->vdev_id);
2932 			return ret;
2933 		}
2934 	}
2935 
2936 	return QDF_STATUS_SUCCESS;
2937 }
2938 
2939 static QDF_STATUS
2940 dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
2941 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
2942 			   struct dp_pdev *dp_pdev,
2943 			   struct rx_desc_pool *rx_desc_pool)
2944 {
2945 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
2946 
2947 	(nbuf_frag_info_t->virt_addr).nbuf =
2948 		qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
2949 			       RX_BUFFER_RESERVATION,
2950 			       rx_desc_pool->buf_alignment, FALSE);
2951 	if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
2952 		dp_err("nbuf alloc failed");
2953 		DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
2954 		return ret;
2955 	}
2956 
2957 	ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
2958 					 (nbuf_frag_info_t->virt_addr).nbuf,
2959 					 QDF_DMA_FROM_DEVICE,
2960 					 rx_desc_pool->buf_size);
2961 
2962 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
2963 		qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
2964 		dp_err("nbuf map failed");
2965 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
2966 		return ret;
2967 	}
2968 
2969 	nbuf_frag_info_t->paddr =
2970 		qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
2971 
2972 	ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
2973 			     &nbuf_frag_info_t->paddr,
2974 			     rx_desc_pool);
2975 	if (ret == QDF_STATUS_E_FAILURE) {
2976 		dp_err("nbuf check x86 failed");
2977 		DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
2978 		return ret;
2979 	}
2980 
2981 	return QDF_STATUS_SUCCESS;
2982 }
2983 
2984 QDF_STATUS
2985 dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
2986 			  struct dp_srng *dp_rxdma_srng,
2987 			  struct rx_desc_pool *rx_desc_pool,
2988 			  uint32_t num_req_buffers)
2989 {
2990 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
2991 	hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
2992 	union dp_rx_desc_list_elem_t *next;
2993 	void *rxdma_ring_entry;
2994 	qdf_dma_addr_t paddr;
2995 	struct dp_rx_nbuf_frag_info *nf_info;
2996 	uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
2997 	uint32_t buffer_index, nbuf_ptrs_per_page;
2998 	qdf_nbuf_t nbuf;
2999 	QDF_STATUS ret;
3000 	int page_idx, total_pages;
3001 	union dp_rx_desc_list_elem_t *desc_list = NULL;
3002 	union dp_rx_desc_list_elem_t *tail = NULL;
3003 	int sync_hw_ptr = 1;
3004 	uint32_t num_entries_avail;
3005 
3006 	if (qdf_unlikely(!dp_pdev)) {
3007 		dp_rx_err("%pK: pdev is null for mac_id = %d",
3008 			  dp_soc, mac_id);
3009 		return QDF_STATUS_E_FAILURE;
3010 	}
3011 
3012 	if (qdf_unlikely(!rxdma_srng)) {
3013 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
3014 		return QDF_STATUS_E_FAILURE;
3015 	}
3016 
3017 	dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
3018 
3019 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
3020 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
3021 						   rxdma_srng,
3022 						   sync_hw_ptr);
3023 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
3024 
3025 	if (!num_entries_avail) {
3026 		dp_err("Num of available entries is zero, nothing to do");
3027 		return QDF_STATUS_E_NOMEM;
3028 	}
3029 
3030 	if (num_entries_avail < num_req_buffers)
3031 		num_req_buffers = num_entries_avail;
3032 
3033 	nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
3034 					    num_req_buffers, &desc_list, &tail);
3035 	if (!nr_descs) {
3036 		dp_err("no free rx_descs in freelist");
3037 		DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
3038 		return QDF_STATUS_E_NOMEM;
3039 	}
3040 
3041 	dp_debug("got %u RX descs for driver attach", nr_descs);
3042 
3043 	/*
3044 	 * Try to allocate pointers to the nbuf one page at a time.
3045 	 * Take pointers that can fit in one page of memory and
3046 	 * iterate through the total descriptors that need to be
3047 	 * allocated in order of pages. Reuse the pointers that
3048 	 * have been allocated to fit in one page across each
3049 	 * iteration to index into the nbuf.
3050 	 */
3051 	total_pages = (nr_descs * sizeof(*nf_info)) / DP_BLOCKMEM_SIZE;
3052 
3053 	/*
3054 	 * Add an extra page to store the remainder if any
3055 	 */
3056 	if ((nr_descs * sizeof(*nf_info)) % DP_BLOCKMEM_SIZE)
3057 		total_pages++;
3058 	nf_info = qdf_mem_malloc(DP_BLOCKMEM_SIZE);
3059 	if (!nf_info) {
3060 		dp_err("failed to allocate nbuf array");
3061 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
3062 		QDF_BUG(0);
3063 		return QDF_STATUS_E_NOMEM;
3064 	}
3065 	nbuf_ptrs_per_page = DP_BLOCKMEM_SIZE / sizeof(*nf_info);
3066 
3067 	for (page_idx = 0; page_idx < total_pages; page_idx++) {
3068 		qdf_mem_zero(nf_info, DP_BLOCKMEM_SIZE);
3069 
3070 		for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
3071 			/*
3072 			 * The last page of buffer pointers may not be required
3073 			 * completely based on the number of descriptors. Below
3074 			 * check will ensure we are allocating only the
3075 			 * required number of descriptors.
3076 			 */
3077 			if (nr_nbuf_total >= nr_descs)
3078 				break;
3079 			/* Flag is set while pdev rx_desc_pool initialization */
3080 			if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
3081 				ret = dp_pdev_frag_alloc_and_map(dp_soc,
3082 						&nf_info[nr_nbuf], dp_pdev,
3083 						rx_desc_pool);
3084 			else
3085 				ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
3086 						&nf_info[nr_nbuf], dp_pdev,
3087 						rx_desc_pool);
3088 			if (QDF_IS_STATUS_ERROR(ret))
3089 				break;
3090 
3091 			nr_nbuf_total++;
3092 		}
3093 
3094 		hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
3095 
3096 		for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
3097 			rxdma_ring_entry =
3098 				hal_srng_src_get_next(dp_soc->hal_soc,
3099 						      rxdma_srng);
3100 			qdf_assert_always(rxdma_ring_entry);
3101 
3102 			next = desc_list->next;
3103 			paddr = nf_info[buffer_index].paddr;
3104 			nbuf = nf_info[buffer_index].virt_addr.nbuf;
3105 
3106 			/* Flag is set while pdev rx_desc_pool initialization */
3107 			if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
3108 				dp_rx_desc_frag_prep(&desc_list->rx_desc,
3109 						     &nf_info[buffer_index]);
3110 			else
3111 				dp_rx_desc_prep(&desc_list->rx_desc,
3112 						&nf_info[buffer_index]);
3113 			desc_list->rx_desc.in_use = 1;
3114 			dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
3115 			dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
3116 						   __func__,
3117 						   RX_DESC_REPLENISHED);
3118 
3119 			hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
3120 						     desc_list->rx_desc.cookie,
3121 						     rx_desc_pool->owner);
3122 
3123 			dp_ipa_handle_rx_buf_smmu_mapping(
3124 					dp_soc, nbuf,
3125 					rx_desc_pool->buf_size, true,
3126 					__func__, __LINE__);
3127 
3128 			desc_list = next;
3129 		}
3130 
3131 		dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
3132 					       rxdma_srng, nr_nbuf, nr_nbuf);
3133 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
3134 	}
3135 
3136 	dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
3137 	qdf_mem_free(nf_info);
3138 
3139 	if (!nr_nbuf_total) {
3140 		dp_err("No nbuf's allocated");
3141 		QDF_BUG(0);
3142 		return QDF_STATUS_E_RESOURCES;
3143 	}
3144 
3145 	/* No need to count the number of bytes received during replenish.
3146 	 * Therefore set replenish.pkts.bytes as 0.
3147 	 */
3148 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
3149 
3150 	return QDF_STATUS_SUCCESS;
3151 }
3152 
3153 qdf_export_symbol(dp_pdev_rx_buffers_attach);
3154 
3155 /**
3156  * dp_rx_enable_mon_dest_frag() - Enable frag processing for
3157  *              monitor destination ring via frag.
3158  *
3159  * Enable this flag only for monitor destination buffer processing
3160  * if DP_RX_MON_MEM_FRAG feature is enabled.
3161  * If flag is set then frag based function will be called for alloc,
3162  * map, prep desc and free ops for desc buffer else normal nbuf based
3163  * function will be called.
3164  *
3165  * @rx_desc_pool: Rx desc pool
3166  * @is_mon_dest_desc: Is it for monitor dest buffer
3167  *
3168  * Return: None
3169  */
3170 #ifdef DP_RX_MON_MEM_FRAG
3171 void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
3172 				bool is_mon_dest_desc)
3173 {
3174 	rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
3175 	if (is_mon_dest_desc)
3176 		dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
3177 }
3178 #else
3179 void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
3180 				bool is_mon_dest_desc)
3181 {
3182 	rx_desc_pool->rx_mon_dest_frag_enable = false;
3183 	if (is_mon_dest_desc)
3184 		dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
3185 }
3186 #endif
3187 
3188 qdf_export_symbol(dp_rx_enable_mon_dest_frag);
3189 
3190 /*
3191  * dp_rx_pdev_desc_pool_alloc() -  allocate memory for software rx descriptor
3192  *				   pool
3193  *
3194  * @pdev: core txrx pdev context
3195  *
3196  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3197  *			QDF_STATUS_E_NOMEM
3198  */
3199 QDF_STATUS
3200 dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
3201 {
3202 	struct dp_soc *soc = pdev->soc;
3203 	uint32_t rxdma_entries;
3204 	uint32_t rx_sw_desc_num;
3205 	struct dp_srng *dp_rxdma_srng;
3206 	struct rx_desc_pool *rx_desc_pool;
3207 	uint32_t status = QDF_STATUS_SUCCESS;
3208 	int mac_for_pdev;
3209 
3210 	mac_for_pdev = pdev->lmac_id;
3211 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
3212 		dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
3213 			   soc, mac_for_pdev);
3214 		return status;
3215 	}
3216 
3217 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3218 	rxdma_entries = dp_rxdma_srng->num_entries;
3219 
3220 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3221 	rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
3222 
3223 	rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
3224 	status = dp_rx_desc_pool_alloc(soc,
3225 				       rx_sw_desc_num,
3226 				       rx_desc_pool);
3227 	if (status != QDF_STATUS_SUCCESS)
3228 		return status;
3229 
3230 	return status;
3231 }
3232 
3233 /*
3234  * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
3235  *
3236  * @pdev: core txrx pdev context
3237  */
3238 void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
3239 {
3240 	int mac_for_pdev = pdev->lmac_id;
3241 	struct dp_soc *soc = pdev->soc;
3242 	struct rx_desc_pool *rx_desc_pool;
3243 
3244 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3245 
3246 	dp_rx_desc_pool_free(soc, rx_desc_pool);
3247 }
3248 
3249 /*
3250  * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
3251  *
3252  * @pdev: core txrx pdev context
3253  *
3254  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3255  *			QDF_STATUS_E_NOMEM
3256  */
3257 QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
3258 {
3259 	int mac_for_pdev = pdev->lmac_id;
3260 	struct dp_soc *soc = pdev->soc;
3261 	uint32_t rxdma_entries;
3262 	uint32_t rx_sw_desc_num;
3263 	struct dp_srng *dp_rxdma_srng;
3264 	struct rx_desc_pool *rx_desc_pool;
3265 
3266 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3267 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
3268 		/**
3269 		 * If NSS is enabled, rx_desc_pool is already filled.
3270 		 * Hence, just disable desc_pool frag flag.
3271 		 */
3272 		dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
3273 
3274 		dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
3275 			   soc, mac_for_pdev);
3276 		return QDF_STATUS_SUCCESS;
3277 	}
3278 
3279 	if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
3280 		return QDF_STATUS_E_NOMEM;
3281 
3282 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3283 	rxdma_entries = dp_rxdma_srng->num_entries;
3284 
3285 	soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
3286 
3287 	rx_sw_desc_num =
3288 	wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
3289 
3290 	rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
3291 	rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
3292 	rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
3293 	/* Disable monitor dest processing via frag */
3294 	dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
3295 
3296 	dp_rx_desc_pool_init(soc, mac_for_pdev,
3297 			     rx_sw_desc_num, rx_desc_pool);
3298 	return QDF_STATUS_SUCCESS;
3299 }
3300 
3301 /*
3302  * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
3303  * @pdev: core txrx pdev context
3304  *
3305  * This function resets the freelist of rx descriptors and destroys locks
3306  * associated with this list of descriptors.
3307  */
3308 void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
3309 {
3310 	int mac_for_pdev = pdev->lmac_id;
3311 	struct dp_soc *soc = pdev->soc;
3312 	struct rx_desc_pool *rx_desc_pool;
3313 
3314 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3315 
3316 	dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
3317 }
3318 
3319 /*
3320  * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
3321  *
3322  * @pdev: core txrx pdev context
3323  *
3324  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3325  *			QDF_STATUS_E_NOMEM
3326  */
3327 QDF_STATUS
3328 dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
3329 {
3330 	int mac_for_pdev = pdev->lmac_id;
3331 	struct dp_soc *soc = pdev->soc;
3332 	struct dp_srng *dp_rxdma_srng;
3333 	struct rx_desc_pool *rx_desc_pool;
3334 	uint32_t rxdma_entries;
3335 
3336 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3337 	rxdma_entries = dp_rxdma_srng->num_entries;
3338 
3339 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3340 
3341 	/* Initialize RX buffer pool which will be
3342 	 * used during low memory conditions
3343 	 */
3344 	dp_rx_buffer_pool_init(soc, mac_for_pdev);
3345 
3346 	return dp_pdev_rx_buffers_attach_simple(soc, mac_for_pdev,
3347 						dp_rxdma_srng,
3348 						rx_desc_pool,
3349 						rxdma_entries - 1);
3350 }
3351 
3352 /*
3353  * dp_rx_pdev_buffers_free - Free nbufs (skbs)
3354  *
3355  * @pdev: core txrx pdev context
3356  */
3357 void
3358 dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
3359 {
3360 	int mac_for_pdev = pdev->lmac_id;
3361 	struct dp_soc *soc = pdev->soc;
3362 	struct rx_desc_pool *rx_desc_pool;
3363 
3364 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3365 
3366 	dp_rx_desc_nbuf_free(soc, rx_desc_pool);
3367 	dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
3368 }
3369 
3370 #ifdef DP_RX_SPECIAL_FRAME_NEED
3371 bool dp_rx_deliver_special_frame(struct dp_soc *soc,
3372 				 struct dp_txrx_peer *txrx_peer,
3373 				 qdf_nbuf_t nbuf, uint32_t frame_mask,
3374 				 uint8_t *rx_tlv_hdr)
3375 {
3376 	uint32_t l2_hdr_offset = 0;
3377 	uint16_t msdu_len = 0;
3378 	uint32_t skip_len;
3379 
3380 	l2_hdr_offset =
3381 		hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
3382 
3383 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
3384 		skip_len = l2_hdr_offset;
3385 	} else {
3386 		msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
3387 		skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
3388 		qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
3389 	}
3390 
3391 	QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
3392 	dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
3393 	qdf_nbuf_pull_head(nbuf, skip_len);
3394 
3395 	if (txrx_peer->vdev) {
3396 		dp_rx_send_pktlog(soc, txrx_peer->vdev->pdev, nbuf,
3397 				  QDF_TX_RX_STATUS_OK);
3398 	}
3399 
3400 	if (dp_rx_is_special_frame(nbuf, frame_mask)) {
3401 		dp_info("special frame, mpdu sn 0x%x",
3402 			hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
3403 		qdf_nbuf_set_exc_frame(nbuf, 1);
3404 		dp_rx_deliver_to_stack(soc, txrx_peer->vdev, txrx_peer,
3405 				       nbuf, NULL);
3406 		return true;
3407 	}
3408 
3409 	return false;
3410 }
3411 #endif
3412 
3413 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
3414 void dp_rx_mark_first_packet_after_wow_wakeup(struct dp_pdev *pdev,
3415 					      uint8_t *rx_tlv,
3416 					      qdf_nbuf_t nbuf)
3417 {
3418 	struct dp_soc *soc;
3419 
3420 	if (!pdev->is_first_wakeup_packet)
3421 		return;
3422 
3423 	soc = pdev->soc;
3424 	if (hal_get_first_wow_wakeup_packet(soc->hal_soc, rx_tlv)) {
3425 		qdf_nbuf_mark_wakeup_frame(nbuf);
3426 		dp_info("First packet after WOW Wakeup rcvd");
3427 	}
3428 }
3429 #endif
3430