xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.c (revision 8ddef7dd9a290d4a9b1efd5d3efacf51d78a1a0d)
1 /*
2  * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "dp_types.h"
21 #include "dp_rx.h"
22 #include "dp_peer.h"
23 #include "hal_rx.h"
24 #include "hal_api.h"
25 #include "qdf_nbuf.h"
26 #ifdef MESH_MODE_SUPPORT
27 #include "if_meta_hdr.h"
28 #endif
29 #include "dp_internal.h"
30 #include "dp_rx_mon.h"
31 
32 #ifdef RX_DESC_DEBUG_CHECK
33 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
34 {
35 	rx_desc->magic = DP_RX_DESC_MAGIC;
36 	rx_desc->nbuf = nbuf;
37 }
38 #else
39 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
40 {
41 	rx_desc->nbuf = nbuf;
42 }
43 #endif
44 
45 #ifdef CONFIG_WIN
46 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
47 {
48 	return vdev->ap_bridge_enabled;
49 }
50 #else
51 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
52 {
53 	if (vdev->opmode != wlan_op_mode_sta)
54 		return true;
55 	else
56 		return false;
57 }
58 #endif
59 
60 /*
61  * dp_rx_dump_info_and_assert() - dump RX Ring info and Rx Desc info
62  *
63  * @soc: core txrx main context
64  * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
65  * @ring_desc: opaque pointer to the RX ring descriptor
66  * @rx_desc: host rs descriptor
67  *
68  * Return: void
69  */
70 void dp_rx_dump_info_and_assert(struct dp_soc *soc, void *hal_ring,
71 				void *ring_desc, struct dp_rx_desc *rx_desc)
72 {
73 	void *hal_soc = soc->hal_soc;
74 
75 	dp_rx_desc_dump(rx_desc);
76 	hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
77 	hal_srng_dump_ring(hal_soc, hal_ring);
78 	qdf_assert_always(rx_desc->in_use);
79 }
80 
81 /*
82  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
83  *			       called during dp rx initialization
84  *			       and at the end of dp_rx_process.
85  *
86  * @soc: core txrx main context
87  * @mac_id: mac_id which is one of 3 mac_ids
88  * @dp_rxdma_srng: dp rxdma circular ring
89  * @rx_desc_pool: Pointer to free Rx descriptor pool
90  * @num_req_buffers: number of buffer to be replenished
91  * @desc_list: list of descs if called from dp_rx_process
92  *	       or NULL during dp rx initialization or out of buffer
93  *	       interrupt.
94  * @tail: tail of descs list
95  * Return: return success or failure
96  */
97 QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
98 				struct dp_srng *dp_rxdma_srng,
99 				struct rx_desc_pool *rx_desc_pool,
100 				uint32_t num_req_buffers,
101 				union dp_rx_desc_list_elem_t **desc_list,
102 				union dp_rx_desc_list_elem_t **tail)
103 {
104 	uint32_t num_alloc_desc;
105 	uint16_t num_desc_to_free = 0;
106 	struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
107 	uint32_t num_entries_avail;
108 	uint32_t count;
109 	int sync_hw_ptr = 1;
110 	qdf_dma_addr_t paddr;
111 	qdf_nbuf_t rx_netbuf;
112 	void *rxdma_ring_entry;
113 	union dp_rx_desc_list_elem_t *next;
114 	QDF_STATUS ret;
115 
116 	void *rxdma_srng;
117 
118 	rxdma_srng = dp_rxdma_srng->hal_srng;
119 
120 	if (!rxdma_srng) {
121 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
122 				  "rxdma srng not initialized");
123 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
124 		return QDF_STATUS_E_FAILURE;
125 	}
126 
127 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
128 		"requested %d buffers for replenish", num_req_buffers);
129 
130 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
131 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
132 						   rxdma_srng,
133 						   sync_hw_ptr);
134 
135 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
136 		"no of available entries in rxdma ring: %d",
137 		num_entries_avail);
138 
139 	if (!(*desc_list) && (num_entries_avail >
140 		((dp_rxdma_srng->num_entries * 3) / 4))) {
141 		num_req_buffers = num_entries_avail;
142 	} else if (num_entries_avail < num_req_buffers) {
143 		num_desc_to_free = num_req_buffers - num_entries_avail;
144 		num_req_buffers = num_entries_avail;
145 	}
146 
147 	if (qdf_unlikely(!num_req_buffers)) {
148 		num_desc_to_free = num_req_buffers;
149 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
150 		goto free_descs;
151 	}
152 
153 	/*
154 	 * if desc_list is NULL, allocate the descs from freelist
155 	 */
156 	if (!(*desc_list)) {
157 		num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
158 							  rx_desc_pool,
159 							  num_req_buffers,
160 							  desc_list,
161 							  tail);
162 
163 		if (!num_alloc_desc) {
164 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
165 				"no free rx_descs in freelist");
166 			DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
167 					num_req_buffers);
168 			hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
169 			return QDF_STATUS_E_NOMEM;
170 		}
171 
172 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
173 			"%d rx desc allocated", num_alloc_desc);
174 		num_req_buffers = num_alloc_desc;
175 	}
176 
177 
178 	count = 0;
179 
180 	while (count < num_req_buffers) {
181 		rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
182 					RX_BUFFER_SIZE,
183 					RX_BUFFER_RESERVATION,
184 					RX_BUFFER_ALIGNMENT,
185 					FALSE);
186 
187 		if (rx_netbuf == NULL) {
188 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
189 			continue;
190 		}
191 
192 		ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
193 				    QDF_DMA_BIDIRECTIONAL);
194 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
195 			qdf_nbuf_free(rx_netbuf);
196 			DP_STATS_INC(dp_pdev, replenish.map_err, 1);
197 			continue;
198 		}
199 
200 		paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
201 
202 		/*
203 		 * check if the physical address of nbuf->data is
204 		 * less then 0x50000000 then free the nbuf and try
205 		 * allocating new nbuf. We can try for 100 times.
206 		 * this is a temp WAR till we fix it properly.
207 		 */
208 		ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
209 		if (ret == QDF_STATUS_E_FAILURE) {
210 			DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
211 			break;
212 		}
213 
214 		count++;
215 
216 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
217 								rxdma_srng);
218 		qdf_assert_always(rxdma_ring_entry);
219 
220 		next = (*desc_list)->next;
221 
222 		dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
223 		(*desc_list)->rx_desc.in_use = 1;
224 
225 		dp_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
226 			 rx_netbuf, qdf_nbuf_data(rx_netbuf),
227 			 (unsigned long long)paddr,
228 			 (*desc_list)->rx_desc.cookie);
229 
230 		hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
231 						(*desc_list)->rx_desc.cookie,
232 						rx_desc_pool->owner);
233 
234 		*desc_list = next;
235 	}
236 
237 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
238 
239 	dp_debug("replenished buffers %d, rx desc added back to free list %u",
240 		 num_req_buffers, num_desc_to_free);
241 
242 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
243 			(RX_BUFFER_SIZE * num_req_buffers));
244 
245 free_descs:
246 	DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
247 	/*
248 	 * add any available free desc back to the free list
249 	 */
250 	if (*desc_list)
251 		dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
252 			mac_id, rx_desc_pool);
253 
254 	return QDF_STATUS_SUCCESS;
255 }
256 
257 /*
258  * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
259  *				pkts to RAW mode simulation to
260  *				decapsulate the pkt.
261  *
262  * @vdev: vdev on which RAW mode is enabled
263  * @nbuf_list: list of RAW pkts to process
264  * @peer: peer object from which the pkt is rx
265  *
266  * Return: void
267  */
268 void
269 dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
270 					struct dp_peer *peer)
271 {
272 	qdf_nbuf_t deliver_list_head = NULL;
273 	qdf_nbuf_t deliver_list_tail = NULL;
274 	qdf_nbuf_t nbuf;
275 
276 	nbuf = nbuf_list;
277 	while (nbuf) {
278 		qdf_nbuf_t next = qdf_nbuf_next(nbuf);
279 
280 		DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
281 
282 		DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
283 		DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
284 		/*
285 		 * reset the chfrag_start and chfrag_end bits in nbuf cb
286 		 * as this is a non-amsdu pkt and RAW mode simulation expects
287 		 * these bit s to be 0 for non-amsdu pkt.
288 		 */
289 		if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
290 			 qdf_nbuf_is_rx_chfrag_end(nbuf)) {
291 			qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
292 			qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
293 		}
294 
295 		nbuf = next;
296 	}
297 
298 	vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
299 				 &deliver_list_tail, (struct cdp_peer*) peer);
300 
301 	vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
302 }
303 
304 
305 #ifdef DP_LFR
306 /*
307  * In case of LFR, data of a new peer might be sent up
308  * even before peer is added.
309  */
310 static inline struct dp_vdev *
311 dp_get_vdev_from_peer(struct dp_soc *soc,
312 			uint16_t peer_id,
313 			struct dp_peer *peer,
314 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
315 {
316 	struct dp_vdev *vdev;
317 	uint8_t vdev_id;
318 
319 	if (unlikely(!peer)) {
320 		if (peer_id != HTT_INVALID_PEER) {
321 			vdev_id = DP_PEER_METADATA_ID_GET(
322 					mpdu_desc_info.peer_meta_data);
323 			QDF_TRACE(QDF_MODULE_ID_DP,
324 				QDF_TRACE_LEVEL_DEBUG,
325 				FL("PeerID %d not found use vdevID %d"),
326 				peer_id, vdev_id);
327 			vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
328 							vdev_id);
329 		} else {
330 			QDF_TRACE(QDF_MODULE_ID_DP,
331 				QDF_TRACE_LEVEL_DEBUG,
332 				FL("Invalid PeerID %d"),
333 				peer_id);
334 			return NULL;
335 		}
336 	} else {
337 		vdev = peer->vdev;
338 	}
339 	return vdev;
340 }
341 #else
342 static inline struct dp_vdev *
343 dp_get_vdev_from_peer(struct dp_soc *soc,
344 			uint16_t peer_id,
345 			struct dp_peer *peer,
346 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
347 {
348 	if (unlikely(!peer)) {
349 		QDF_TRACE(QDF_MODULE_ID_DP,
350 			QDF_TRACE_LEVEL_DEBUG,
351 			FL("Peer not found for peerID %d"),
352 			peer_id);
353 		return NULL;
354 	} else {
355 		return peer->vdev;
356 	}
357 }
358 #endif
359 
360 /**
361  * dp_rx_da_learn() - Add AST entry based on DA lookup
362  *			This is a WAR for HK 1.0 and will
363  *			be removed in HK 2.0
364  *
365  * @soc: core txrx main context
366  * @rx_tlv_hdr	: start address of rx tlvs
367  * @ta_peer	: Transmitter peer entry
368  * @nbuf	: nbuf to retrieve destination mac for which AST will be added
369  *
370  */
371 #ifdef FEATURE_WDS
372 static void
373 dp_rx_da_learn(struct dp_soc *soc,
374 	       uint8_t *rx_tlv_hdr,
375 	       struct dp_peer *ta_peer,
376 	       qdf_nbuf_t nbuf)
377 {
378 	/* For HKv2 DA port learing is not needed */
379 	if (qdf_likely(soc->ast_override_support))
380 		return;
381 
382 	if (qdf_unlikely(!ta_peer))
383 		return;
384 
385 	if (qdf_unlikely(ta_peer->vdev->opmode != wlan_op_mode_ap))
386 		return;
387 
388 	if (!soc->da_war_enabled)
389 		return;
390 
391 	if (qdf_unlikely(!hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
392 			 !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
393 		dp_peer_add_ast(soc,
394 				ta_peer,
395 				qdf_nbuf_data(nbuf),
396 				CDP_TXRX_AST_TYPE_DA,
397 				IEEE80211_NODE_F_WDS_HM);
398 	}
399 }
400 #else
401 static void
402 dp_rx_da_learn(struct dp_soc *soc,
403 	       uint8_t *rx_tlv_hdr,
404 	       struct dp_peer *ta_peer,
405 	       qdf_nbuf_t nbuf)
406 {
407 }
408 #endif
409 
410 /**
411  * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
412  *
413  * @soc: core txrx main context
414  * @ta_peer	: source peer entry
415  * @rx_tlv_hdr	: start address of rx tlvs
416  * @nbuf	: nbuf that has to be intrabss forwarded
417  *
418  * Return: bool: true if it is forwarded else false
419  */
420 static bool
421 dp_rx_intrabss_fwd(struct dp_soc *soc,
422 			struct dp_peer *ta_peer,
423 			uint8_t *rx_tlv_hdr,
424 			qdf_nbuf_t nbuf)
425 {
426 	uint16_t da_idx;
427 	uint16_t len;
428 	struct dp_peer *da_peer;
429 	struct dp_ast_entry *ast_entry;
430 	qdf_nbuf_t nbuf_copy;
431 
432 	/* check if the destination peer is available in peer table
433 	 * and also check if the source peer and destination peer
434 	 * belong to the same vap and destination peer is not bss peer.
435 	 */
436 
437 	if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
438 	   !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
439 		da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
440 
441 		ast_entry = soc->ast_table[da_idx];
442 		if (!ast_entry)
443 			return false;
444 
445 		if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
446 			ast_entry->is_active = TRUE;
447 			return false;
448 		}
449 
450 		da_peer = ast_entry->peer;
451 
452 		if (!da_peer)
453 			return false;
454 		/* TA peer cannot be same as peer(DA) on which AST is present
455 		 * this indicates a change in topology and that AST entries
456 		 * are yet to be updated.
457 		 */
458 		if (da_peer == ta_peer)
459 			return false;
460 
461 		if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
462 			memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
463 			len = qdf_nbuf_len(nbuf);
464 
465 			/* linearize the nbuf just before we send to
466 			 * dp_tx_send()
467 			 */
468 			if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
469 				if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
470 					return false;
471 
472 				nbuf = qdf_nbuf_unshare(nbuf);
473 				if (!nbuf) {
474 					DP_STATS_INC_PKT(ta_peer,
475 							 rx.intra_bss.fail,
476 							 1,
477 							 len);
478 					/* return true even though the pkt is
479 					 * not forwarded. Basically skb_unshare
480 					 * failed and we want to continue with
481 					 * next nbuf.
482 					 */
483 					return true;
484 				}
485 			}
486 
487 			if (!dp_tx_send(ta_peer->vdev, nbuf)) {
488 				DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
489 						 len);
490 				return true;
491 			} else {
492 				DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
493 						 len);
494 				return false;
495 			}
496 		}
497 	}
498 	/* if it is a broadcast pkt (eg: ARP) and it is not its own
499 	 * source, then clone the pkt and send the cloned pkt for
500 	 * intra BSS forwarding and original pkt up the network stack
501 	 * Note: how do we handle multicast pkts. do we forward
502 	 * all multicast pkts as is or let a higher layer module
503 	 * like igmpsnoop decide whether to forward or not with
504 	 * Mcast enhancement.
505 	 */
506 	else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
507 		!ta_peer->bss_peer))) {
508 		nbuf_copy = qdf_nbuf_copy(nbuf);
509 		if (!nbuf_copy)
510 			return false;
511 		memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
512 		len = qdf_nbuf_len(nbuf_copy);
513 
514 		if (dp_tx_send(ta_peer->vdev, nbuf_copy)) {
515 			DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
516 			qdf_nbuf_free(nbuf_copy);
517 		} else {
518 			DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
519 		}
520 	}
521 	/* return false as we have to still send the original pkt
522 	 * up the stack
523 	 */
524 	return false;
525 }
526 
527 #ifdef MESH_MODE_SUPPORT
528 
529 /**
530  * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
531  *
532  * @vdev: DP Virtual device handle
533  * @nbuf: Buffer pointer
534  * @rx_tlv_hdr: start of rx tlv header
535  * @peer: pointer to peer
536  *
537  * This function allocated memory for mesh receive stats and fill the
538  * required stats. Stores the memory address in skb cb.
539  *
540  * Return: void
541  */
542 
543 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
544 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
545 {
546 	struct mesh_recv_hdr_s *rx_info = NULL;
547 	uint32_t pkt_type;
548 	uint32_t nss;
549 	uint32_t rate_mcs;
550 	uint32_t bw;
551 
552 	/* fill recv mesh stats */
553 	rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
554 
555 	/* upper layers are resposible to free this memory */
556 
557 	if (rx_info == NULL) {
558 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
559 			"Memory allocation failed for mesh rx stats");
560 		DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
561 		return;
562 	}
563 
564 	rx_info->rs_flags = MESH_RXHDR_VER1;
565 	if (qdf_nbuf_is_rx_chfrag_start(nbuf))
566 		rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
567 
568 	if (qdf_nbuf_is_rx_chfrag_end(nbuf))
569 		rx_info->rs_flags |= MESH_RX_LAST_MSDU;
570 
571 	if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
572 		rx_info->rs_flags |= MESH_RX_DECRYPTED;
573 		rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
574 		if (vdev->osif_get_key)
575 			vdev->osif_get_key(vdev->osif_vdev,
576 					&rx_info->rs_decryptkey[0],
577 					&peer->mac_addr.raw[0],
578 					rx_info->rs_keyix);
579 	}
580 
581 	rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
582 	rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
583 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
584 	rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
585 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
586 	nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
587 	rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
588 				(bw << 24);
589 
590 	qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
591 
592 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
593 		FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
594 						rx_info->rs_flags,
595 						rx_info->rs_rssi,
596 						rx_info->rs_channel,
597 						rx_info->rs_ratephy1,
598 						rx_info->rs_keyix);
599 
600 }
601 
602 /**
603  * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
604  *
605  * @vdev: DP Virtual device handle
606  * @nbuf: Buffer pointer
607  * @rx_tlv_hdr: start of rx tlv header
608  *
609  * This checks if the received packet is matching any filter out
610  * catogery and and drop the packet if it matches.
611  *
612  * Return: status(0 indicates drop, 1 indicate to no drop)
613  */
614 
615 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
616 					uint8_t *rx_tlv_hdr)
617 {
618 	union dp_align_mac_addr mac_addr;
619 
620 	if (qdf_unlikely(vdev->mesh_rx_filter)) {
621 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
622 			if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
623 				return  QDF_STATUS_SUCCESS;
624 
625 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
626 			if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
627 				return  QDF_STATUS_SUCCESS;
628 
629 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
630 			if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
631 				&& !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
632 				return  QDF_STATUS_SUCCESS;
633 
634 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
635 			if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
636 					&mac_addr.raw[0]))
637 				return QDF_STATUS_E_FAILURE;
638 
639 			if (!qdf_mem_cmp(&mac_addr.raw[0],
640 					&vdev->mac_addr.raw[0],
641 					DP_MAC_ADDR_LEN))
642 				return  QDF_STATUS_SUCCESS;
643 		}
644 
645 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
646 			if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
647 					&mac_addr.raw[0]))
648 				return QDF_STATUS_E_FAILURE;
649 
650 			if (!qdf_mem_cmp(&mac_addr.raw[0],
651 					&vdev->mac_addr.raw[0],
652 					DP_MAC_ADDR_LEN))
653 				return  QDF_STATUS_SUCCESS;
654 		}
655 	}
656 
657 	return QDF_STATUS_E_FAILURE;
658 }
659 
660 #else
661 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
662 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
663 {
664 }
665 
666 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
667 					uint8_t *rx_tlv_hdr)
668 {
669 	return QDF_STATUS_E_FAILURE;
670 }
671 
672 #endif
673 
674 #ifdef CONFIG_WIN
675 /**
676  * dp_rx_nac_filter(): Function to perform filtering of non-associated
677  * clients
678  * @pdev: DP pdev handle
679  * @rx_pkt_hdr: Rx packet Header
680  *
681  * return: dp_vdev*
682  */
683 static
684 struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
685 		uint8_t *rx_pkt_hdr)
686 {
687 	struct ieee80211_frame *wh;
688 	struct dp_neighbour_peer *peer = NULL;
689 
690 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
691 
692 	if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
693 		return NULL;
694 
695 	qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
696 	TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
697 				neighbour_peer_list_elem) {
698 		if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
699 				wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
700 			QDF_TRACE(
701 				QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
702 				FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
703 				peer->neighbour_peers_macaddr.raw[0],
704 				peer->neighbour_peers_macaddr.raw[1],
705 				peer->neighbour_peers_macaddr.raw[2],
706 				peer->neighbour_peers_macaddr.raw[3],
707 				peer->neighbour_peers_macaddr.raw[4],
708 				peer->neighbour_peers_macaddr.raw[5]);
709 
710 				qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
711 
712 			return pdev->monitor_vdev;
713 		}
714 	}
715 	qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
716 
717 	return NULL;
718 }
719 
720 /**
721  * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
722  * @soc: DP SOC handle
723  * @mpdu: mpdu for which peer is invalid
724  *
725  * return: integer type
726  */
727 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
728 {
729 	struct dp_invalid_peer_msg msg;
730 	struct dp_vdev *vdev = NULL;
731 	struct dp_pdev *pdev = NULL;
732 	struct ieee80211_frame *wh;
733 	uint8_t i;
734 	qdf_nbuf_t curr_nbuf, next_nbuf;
735 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
736 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
737 
738 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
739 
740 	if (!DP_FRAME_IS_DATA(wh)) {
741 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
742 				"NAWDS valid only for data frames");
743 		goto free;
744 	}
745 
746 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
747 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
748 				"Invalid nbuf length");
749 		goto free;
750 	}
751 
752 
753 	for (i = 0; i < MAX_PDEV_CNT; i++) {
754 		pdev = soc->pdev_list[i];
755 		if (!pdev) {
756 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
757 					"PDEV not found");
758 			continue;
759 		}
760 
761 		if (pdev->filter_neighbour_peers) {
762 			/* Next Hop scenario not yet handle */
763 			vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
764 			if (vdev) {
765 				dp_rx_mon_deliver(soc, i,
766 						pdev->invalid_peer_head_msdu,
767 						pdev->invalid_peer_tail_msdu);
768 
769 				pdev->invalid_peer_head_msdu = NULL;
770 				pdev->invalid_peer_tail_msdu = NULL;
771 
772 				return 0;
773 			}
774 		}
775 
776 
777 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
778 
779 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
780 						DP_MAC_ADDR_LEN) == 0) {
781 				goto out;
782 			}
783 		}
784 	}
785 
786 	if (!vdev) {
787 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
788 				"VDEV not found");
789 		goto free;
790 	}
791 
792 out:
793 	msg.wh = wh;
794 	qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
795 	msg.nbuf = mpdu;
796 	msg.vdev_id = vdev->vdev_id;
797 	if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
798 		pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
799 							&msg);
800 
801 free:
802 	/* Drop and free packet */
803 	curr_nbuf = mpdu;
804 	while (curr_nbuf) {
805 		next_nbuf = qdf_nbuf_next(curr_nbuf);
806 		qdf_nbuf_free(curr_nbuf);
807 		curr_nbuf = next_nbuf;
808 	}
809 
810 	return 0;
811 }
812 
813 /**
814  * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
815  * @soc: DP SOC handle
816  * @mpdu: mpdu for which peer is invalid
817  * @mpdu_done: if an mpdu is completed
818  *
819  * return: integer type
820  */
821 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
822 					qdf_nbuf_t mpdu, bool mpdu_done)
823 {
824 	/* Only trigger the process when mpdu is completed */
825 	if (mpdu_done)
826 		dp_rx_process_invalid_peer(soc, mpdu);
827 }
828 #else
829 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
830 {
831 	qdf_nbuf_t curr_nbuf, next_nbuf;
832 	struct dp_pdev *pdev;
833 	uint8_t i;
834 	struct dp_vdev *vdev = NULL;
835 	struct ieee80211_frame *wh;
836 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
837 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
838 
839 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
840 
841 	if (!DP_FRAME_IS_DATA(wh)) {
842 		QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
843 				   "only for data frames");
844 		goto free;
845 	}
846 
847 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
848 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
849 			  "Invalid nbuf length");
850 		goto free;
851 	}
852 
853 	for (i = 0; i < MAX_PDEV_CNT; i++) {
854 		pdev = soc->pdev_list[i];
855 		if (!pdev) {
856 			QDF_TRACE(QDF_MODULE_ID_DP,
857 				  QDF_TRACE_LEVEL_ERROR,
858 				  "PDEV not found");
859 			continue;
860 		}
861 
862 		qdf_spin_lock_bh(&pdev->vdev_list_lock);
863 		DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
864 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
865 					DP_MAC_ADDR_LEN) == 0) {
866 				qdf_spin_unlock_bh(&pdev->vdev_list_lock);
867 				goto out;
868 			}
869 		}
870 		qdf_spin_unlock_bh(&pdev->vdev_list_lock);
871 	}
872 
873 	if (NULL == vdev) {
874 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
875 			  "VDEV not found");
876 		goto free;
877 	}
878 
879 out:
880 	if (soc->cdp_soc.ol_ops->rx_invalid_peer)
881 		soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
882 free:
883 	/* reset the head and tail pointers */
884 	for (i = 0; i < MAX_PDEV_CNT; i++) {
885 		pdev = soc->pdev_list[i];
886 		if (!pdev) {
887 			QDF_TRACE(QDF_MODULE_ID_DP,
888 				  QDF_TRACE_LEVEL_ERROR,
889 				  "PDEV not found");
890 			continue;
891 		}
892 
893 		pdev->invalid_peer_head_msdu = NULL;
894 		pdev->invalid_peer_tail_msdu = NULL;
895 	}
896 
897 	/* Drop and free packet */
898 	curr_nbuf = mpdu;
899 	while (curr_nbuf) {
900 		next_nbuf = qdf_nbuf_next(curr_nbuf);
901 		qdf_nbuf_free(curr_nbuf);
902 		curr_nbuf = next_nbuf;
903 	}
904 
905 	return 0;
906 }
907 
908 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
909 					qdf_nbuf_t mpdu, bool mpdu_done)
910 {
911 	/* Process the nbuf */
912 	dp_rx_process_invalid_peer(soc, mpdu);
913 }
914 #endif
915 
916 #ifdef RECEIVE_OFFLOAD
917 /**
918  * dp_rx_print_offload_info() - Print offload info from RX TLV
919  * @rx_tlv: RX TLV for which offload information is to be printed
920  *
921  * Return: None
922  */
923 static void dp_rx_print_offload_info(uint8_t *rx_tlv)
924 {
925 	dp_debug("----------------------RX DESC LRO/GRO----------------------");
926 	dp_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
927 	dp_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
928 	dp_debug("chksum 0x%x", HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
929 	dp_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
930 	dp_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
931 	dp_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
932 	dp_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
933 	dp_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
934 	dp_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
935 	dp_debug("---------------------------------------------------------");
936 }
937 
938 /**
939  * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
940  * @soc: DP SOC handle
941  * @rx_tlv: RX TLV received for the msdu
942  * @msdu: msdu for which GRO info needs to be filled
943  *
944  * Return: None
945  */
946 static
947 void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
948 			 qdf_nbuf_t msdu)
949 {
950 	if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
951 		return;
952 
953 	/* Filling up RX offload info only for TCP packets */
954 	if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
955 		return;
956 
957 	QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
958 		 HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
959 	QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
960 			HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
961 	QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
962 			 HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
963 	QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
964 			 HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
965 	QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
966 			 HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
967 	QDF_NBUF_CB_RX_TCP_WIN(msdu) =
968 			 HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
969 	QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
970 			 HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
971 	QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
972 			 HAL_RX_TLV_GET_IPV6(rx_tlv);
973 	QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
974 			 HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
975 	QDF_NBUF_CB_RX_FLOW_ID(msdu) =
976 			 HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
977 
978 	dp_rx_print_offload_info(rx_tlv);
979 }
980 #else
981 static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
982 				qdf_nbuf_t msdu)
983 {
984 }
985 #endif /* RECEIVE_OFFLOAD */
986 
987 /**
988  * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
989  *
990  * @nbuf: pointer to msdu.
991  * @mpdu_len: mpdu length
992  *
993  * Return: returns true if nbuf is last msdu of mpdu else retuns false.
994  */
995 static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
996 {
997 	bool last_nbuf;
998 
999 	if (*mpdu_len > (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
1000 		qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
1001 		last_nbuf = false;
1002 	} else {
1003 		qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
1004 		last_nbuf = true;
1005 	}
1006 
1007 	*mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
1008 
1009 	return last_nbuf;
1010 }
1011 
1012 /**
1013  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
1014  *		     multiple nbufs.
1015  * @nbuf: pointer to the first msdu of an amsdu.
1016  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1017  *
1018  *
1019  * This function implements the creation of RX frag_list for cases
1020  * where an MSDU is spread across multiple nbufs.
1021  *
1022  * Return: returns the head nbuf which contains complete frag_list.
1023  */
1024 qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
1025 {
1026 	qdf_nbuf_t parent, next, frag_list;
1027 	uint16_t frag_list_len = 0;
1028 	uint16_t mpdu_len;
1029 	bool last_nbuf;
1030 
1031 	mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1032 	/*
1033 	 * this is a case where the complete msdu fits in one single nbuf.
1034 	 * in this case HW sets both start and end bit and we only need to
1035 	 * reset these bits for RAW mode simulator to decap the pkt
1036 	 */
1037 	if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
1038 					qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1039 		qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
1040 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1041 		return nbuf;
1042 	}
1043 
1044 	/*
1045 	 * This is a case where we have multiple msdus (A-MSDU) spread across
1046 	 * multiple nbufs. here we create a fraglist out of these nbufs.
1047 	 *
1048 	 * the moment we encounter a nbuf with continuation bit set we
1049 	 * know for sure we have an MSDU which is spread across multiple
1050 	 * nbufs. We loop through and reap nbufs till we reach last nbuf.
1051 	 */
1052 	parent = nbuf;
1053 	frag_list = nbuf->next;
1054 	nbuf = nbuf->next;
1055 
1056 	/*
1057 	 * set the start bit in the first nbuf we encounter with continuation
1058 	 * bit set. This has the proper mpdu length set as it is the first
1059 	 * msdu of the mpdu. this becomes the parent nbuf and the subsequent
1060 	 * nbufs will form the frag_list of the parent nbuf.
1061 	 */
1062 	qdf_nbuf_set_rx_chfrag_start(parent, 1);
1063 	last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
1064 
1065 	/*
1066 	 * this is where we set the length of the fragments which are
1067 	 * associated to the parent nbuf. We iterate through the frag_list
1068 	 * till we hit the last_nbuf of the list.
1069 	 */
1070 	do {
1071 		last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
1072 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1073 		frag_list_len += qdf_nbuf_len(nbuf);
1074 
1075 		if (last_nbuf) {
1076 			next = nbuf->next;
1077 			nbuf->next = NULL;
1078 			break;
1079 		}
1080 
1081 		nbuf = nbuf->next;
1082 	} while (!last_nbuf);
1083 
1084 	qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
1085 	qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
1086 	parent->next = next;
1087 
1088 	qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
1089 	return parent;
1090 }
1091 
1092 static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
1093 						struct dp_peer *peer,
1094 						qdf_nbuf_t nbuf_head,
1095 						qdf_nbuf_t nbuf_tail)
1096 {
1097 	/*
1098 	 * highly unlikely to have a vdev without a registered rx
1099 	 * callback function. if so let us free the nbuf_list.
1100 	 */
1101 	if (qdf_unlikely(!vdev->osif_rx)) {
1102 		qdf_nbuf_t nbuf;
1103 		do {
1104 			nbuf = nbuf_head;
1105 			nbuf_head = nbuf_head->next;
1106 			qdf_nbuf_free(nbuf);
1107 		} while (nbuf_head);
1108 
1109 		return;
1110 	}
1111 
1112 	if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
1113 			(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
1114 		vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
1115 				&nbuf_tail, (struct cdp_peer *) peer);
1116 	}
1117 
1118 	vdev->osif_rx(vdev->osif_vdev, nbuf_head);
1119 
1120 }
1121 
1122 /**
1123  * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
1124  * @nbuf: pointer to the first msdu of an amsdu.
1125  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1126  *
1127  * The ipsumed field of the skb is set based on whether HW validated the
1128  * IP/TCP/UDP checksum.
1129  *
1130  * Return: void
1131  */
1132 static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
1133 				       qdf_nbuf_t nbuf,
1134 				       uint8_t *rx_tlv_hdr)
1135 {
1136 	qdf_nbuf_rx_cksum_t cksum = {0};
1137 	bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
1138 	bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
1139 
1140 	if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
1141 		cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
1142 		qdf_nbuf_set_rx_cksum(nbuf, &cksum);
1143 	} else {
1144 		DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
1145 		DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
1146 	}
1147 }
1148 
1149 /**
1150  * dp_rx_msdu_stats_update() - update per msdu stats.
1151  * @soc: core txrx main context
1152  * @nbuf: pointer to the first msdu of an amsdu.
1153  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1154  * @peer: pointer to the peer object.
1155  * @ring_id: reo dest ring number on which pkt is reaped.
1156  *
1157  * update all the per msdu stats for that nbuf.
1158  * Return: void
1159  */
1160 static void dp_rx_msdu_stats_update(struct dp_soc *soc,
1161 				    qdf_nbuf_t nbuf,
1162 				    uint8_t *rx_tlv_hdr,
1163 				    struct dp_peer *peer,
1164 				    uint8_t ring_id)
1165 {
1166 	bool is_ampdu, is_not_amsdu;
1167 	uint16_t peer_id;
1168 	uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
1169 	struct dp_vdev *vdev = peer->vdev;
1170 	qdf_ether_header_t *eh;
1171 	uint16_t msdu_len = qdf_nbuf_len(nbuf);
1172 
1173 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1174 			       hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
1175 
1176 	is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
1177 			qdf_nbuf_is_rx_chfrag_end(nbuf);
1178 
1179 	DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
1180 	DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
1181 	DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
1182 
1183 	if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
1184 			 (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
1185 		eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
1186 		DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
1187 		if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
1188 			DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
1189 
1190 		}
1191 	}
1192 
1193 	/*
1194 	 * currently we can return from here as we have similar stats
1195 	 * updated at per ppdu level instead of msdu level
1196 	 */
1197 	if (!soc->process_rx_status)
1198 		return;
1199 
1200 	is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
1201 	DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
1202 	DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
1203 
1204 	sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
1205 	mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
1206 	tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_tlv_hdr);
1207 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
1208 	reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
1209 							      rx_tlv_hdr);
1210 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
1211 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
1212 
1213 	DP_STATS_INC(peer, rx.bw[bw], 1);
1214 	DP_STATS_INC(peer, rx.nss[nss], 1);
1215 	DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
1216 	DP_STATS_INCC(peer, rx.err.mic_err, 1,
1217 		      hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
1218 	DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
1219 		      hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
1220 
1221 	DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
1222 	DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
1223 
1224 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1225 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1226 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1227 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1228 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1229 		      ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1230 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1231 		      ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1232 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1233 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1234 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1235 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1236 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1237 		      ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1238 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1239 		      ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1240 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1241 		      ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
1242 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1243 		      ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
1244 
1245 	if ((soc->process_rx_status) &&
1246 	    hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
1247 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
1248 		if (!vdev->pdev)
1249 			return;
1250 
1251 		dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
1252 				     &peer->stats, peer_id,
1253 				     UPDATE_PEER_STATS,
1254 				     vdev->pdev->pdev_id);
1255 #endif
1256 
1257 	}
1258 }
1259 
1260 static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
1261 				      void *rx_tlv_hdr)
1262 {
1263 	if ((hal_rx_msdu_end_sa_is_valid_get(rx_tlv_hdr) &&
1264 	     (hal_rx_msdu_end_sa_idx_get(rx_tlv_hdr) >
1265 		wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
1266 	    (hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
1267 	     (hal_rx_msdu_end_da_idx_get(soc->hal_soc,
1268 					 rx_tlv_hdr) >
1269 	      wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
1270 		return false;
1271 
1272 	return true;
1273 }
1274 
1275 #ifdef WDS_VENDOR_EXTENSION
1276 int dp_wds_rx_policy_check(
1277 		uint8_t *rx_tlv_hdr,
1278 		struct dp_vdev *vdev,
1279 		struct dp_peer *peer,
1280 		int rx_mcast
1281 		)
1282 {
1283 	struct dp_peer *bss_peer;
1284 	int fr_ds, to_ds, rx_3addr, rx_4addr;
1285 	int rx_policy_ucast, rx_policy_mcast;
1286 
1287 	if (vdev->opmode == wlan_op_mode_ap) {
1288 		TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
1289 			if (bss_peer->bss_peer) {
1290 				/* if wds policy check is not enabled on this vdev, accept all frames */
1291 				if (!bss_peer->wds_ecm.wds_rx_filter) {
1292 					return 1;
1293 				}
1294 				break;
1295 			}
1296 		}
1297 		rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
1298 		rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
1299 	} else {             /* sta mode */
1300 		if (!peer->wds_ecm.wds_rx_filter) {
1301 			return 1;
1302 		}
1303 		rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
1304 		rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
1305 	}
1306 
1307 	/* ------------------------------------------------
1308 	 *                       self
1309 	 * peer-             rx  rx-
1310 	 * wds  ucast mcast dir policy accept note
1311 	 * ------------------------------------------------
1312 	 * 1     1     0     11  x1     1      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
1313 	 * 1     1     0     01  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1314 	 * 1     1     0     10  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1315 	 * 1     1     0     00  x1     0      bad frame, won't see it
1316 	 * 1     0     1     11  1x     1      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
1317 	 * 1     0     1     01  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1318 	 * 1     0     1     10  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1319 	 * 1     0     1     00  1x     0      bad frame, won't see it
1320 	 * 1     1     0     11  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1321 	 * 1     1     0     01  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1322 	 * 1     1     0     10  x0     1      AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
1323 	 * 1     1     0     00  x0     0      bad frame, won't see it
1324 	 * 1     0     1     11  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1325 	 * 1     0     1     01  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1326 	 * 1     0     1     10  0x     1      AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
1327 	 * 1     0     1     00  0x     0      bad frame, won't see it
1328 	 *
1329 	 * 0     x     x     11  xx     0      we only accept td-ds Rx frames from non-wds peers in mode.
1330 	 * 0     x     x     01  xx     1
1331 	 * 0     x     x     10  xx     0
1332 	 * 0     x     x     00  xx     0      bad frame, won't see it
1333 	 * ------------------------------------------------
1334 	 */
1335 
1336 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
1337 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
1338 	rx_3addr = fr_ds ^ to_ds;
1339 	rx_4addr = fr_ds & to_ds;
1340 
1341 	if (vdev->opmode == wlan_op_mode_ap) {
1342 		if ((!peer->wds_enabled && rx_3addr && to_ds) ||
1343 				(peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1344 				(peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
1345 			return 1;
1346 		}
1347 	} else {           /* sta mode */
1348 		if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1349 				(rx_mcast && (rx_4addr == rx_policy_mcast))) {
1350 			return 1;
1351 		}
1352 	}
1353 	return 0;
1354 }
1355 #else
1356 int dp_wds_rx_policy_check(
1357 		uint8_t *rx_tlv_hdr,
1358 		struct dp_vdev *vdev,
1359 		struct dp_peer *peer,
1360 		int rx_mcast
1361 		)
1362 {
1363 	return 1;
1364 }
1365 #endif
1366 
1367 /**
1368  * dp_rx_process() - Brain of the Rx processing functionality
1369  *		     Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
1370  * @soc: core txrx main context
1371  * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
1372  * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
1373  * @quota: No. of units (packets) that can be serviced in one shot.
1374  *
1375  * This function implements the core of Rx functionality. This is
1376  * expected to handle only non-error frames.
1377  *
1378  * Return: uint32_t: No. of elements processed
1379  */
1380 uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring,
1381 		       uint8_t reo_ring_num, uint32_t quota)
1382 {
1383 	void *hal_soc;
1384 	void *ring_desc;
1385 	struct dp_rx_desc *rx_desc = NULL;
1386 	qdf_nbuf_t nbuf, next;
1387 	union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
1388 	union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
1389 	uint32_t rx_bufs_used = 0, rx_buf_cookie;
1390 	uint32_t l2_hdr_offset = 0;
1391 	uint16_t msdu_len = 0;
1392 	uint16_t peer_id;
1393 	struct dp_peer *peer = NULL;
1394 	struct dp_vdev *vdev = NULL;
1395 	uint32_t pkt_len = 0;
1396 	struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
1397 	struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
1398 	enum hal_reo_error_status error;
1399 	uint32_t peer_mdata;
1400 	uint8_t *rx_tlv_hdr;
1401 	uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
1402 	uint8_t mac_id = 0;
1403 	struct dp_pdev *pdev;
1404 	struct dp_srng *dp_rxdma_srng;
1405 	struct rx_desc_pool *rx_desc_pool;
1406 	struct dp_soc *soc = int_ctx->soc;
1407 	uint8_t ring_id = 0;
1408 	uint8_t core_id = 0;
1409 	qdf_nbuf_t nbuf_head = NULL;
1410 	qdf_nbuf_t nbuf_tail = NULL;
1411 	qdf_nbuf_t deliver_list_head = NULL;
1412 	qdf_nbuf_t deliver_list_tail = NULL;
1413 	int32_t tid = 0;
1414 	uint32_t dst_num_valid = 0;
1415 
1416 	DP_HIST_INIT();
1417 	/* Debug -- Remove later */
1418 	qdf_assert(soc && hal_ring);
1419 
1420 	hal_soc = soc->hal_soc;
1421 
1422 	/* Debug -- Remove later */
1423 	qdf_assert(hal_soc);
1424 
1425 	hif_pm_runtime_mark_last_busy(soc->osdev->dev);
1426 
1427 	if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
1428 
1429 		/*
1430 		 * Need API to convert from hal_ring pointer to
1431 		 * Ring Type / Ring Id combo
1432 		 */
1433 		DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
1434 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1435 			FL("HAL RING Access Failed -- %pK"), hal_ring);
1436 		hal_srng_access_end(hal_soc, hal_ring);
1437 		goto done;
1438 	}
1439 
1440 	/*
1441 	 * start reaping the buffers from reo ring and queue
1442 	 * them in per vdev queue.
1443 	 * Process the received pkts in a different per vdev loop.
1444 	 */
1445 	while (qdf_likely(quota)) {
1446 		ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
1447 
1448 		/*
1449 		 * in case HW has updated hp after we cached the hp
1450 		 * ring_desc can be NULL even there are entries
1451 		 * available in the ring. Update the cached_hp
1452 		 * and reap the buffers available to read complete
1453 		 * mpdu in one reap
1454 		 *
1455 		 * This is needed for RAW mode we have to read all
1456 		 * msdus corresponding to amsdu in one reap to create
1457 		 * SG list properly but due to mismatch in cached_hp
1458 		 * and actual hp sometimes we are unable to read
1459 		 * complete mpdu in one reap.
1460 		 */
1461 		if (qdf_unlikely(!ring_desc)) {
1462 			dst_num_valid = hal_srng_dst_num_valid(hal_soc,
1463 							       hal_ring,
1464 							       true);
1465 			if (dst_num_valid) {
1466 				DP_STATS_INC(soc, rx.hp_oos, 1);
1467 				hal_srng_access_end_unlocked(hal_soc,
1468 							     hal_ring);
1469 				continue;
1470 			} else {
1471 				break;
1472 			}
1473 		}
1474 
1475 		error = HAL_RX_ERROR_STATUS_GET(ring_desc);
1476 		ring_id = hal_srng_ring_id_get(hal_ring);
1477 
1478 		if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
1479 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1480 			FL("HAL RING 0x%pK:error %d"), hal_ring, error);
1481 			DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
1482 			/* Don't know how to deal with this -- assert */
1483 			qdf_assert(0);
1484 		}
1485 
1486 		rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
1487 
1488 		rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
1489 		qdf_assert(rx_desc);
1490 
1491 		/*
1492 		 * this is a unlikely scenario where the host is reaping
1493 		 * a descriptor which it already reaped just a while ago
1494 		 * but is yet to replenish it back to HW.
1495 		 * In this case host will dump the last 128 descriptors
1496 		 * including the software descriptor rx_desc and assert.
1497 		 */
1498 		if (qdf_unlikely(!rx_desc->in_use)) {
1499 			DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
1500 			dp_rx_dump_info_and_assert(soc, hal_ring,
1501 						   ring_desc, rx_desc);
1502 		}
1503 
1504 		rx_bufs_reaped[rx_desc->pool_id]++;
1505 
1506 		/* TODO */
1507 		/*
1508 		 * Need a separate API for unmapping based on
1509 		 * phyiscal address
1510 		 */
1511 		qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
1512 					QDF_DMA_BIDIRECTIONAL);
1513 
1514 		core_id = smp_processor_id();
1515 		DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
1516 
1517 		/* Get MPDU DESC info */
1518 		hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
1519 
1520 		hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
1521 						mpdu_desc_info.peer_meta_data);
1522 
1523 		/* Get MSDU DESC info */
1524 		hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
1525 
1526 		/*
1527 		 * save msdu flags first, last and continuation msdu in
1528 		 * nbuf->cb
1529 		 */
1530 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
1531 			qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
1532 
1533 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
1534 			qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
1535 
1536 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
1537 			qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
1538 
1539 		QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
1540 		DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
1541 
1542 		/*
1543 		 * if continuation bit is set then we have MSDU spread
1544 		 * across multiple buffers, let us not decrement quota
1545 		 * till we reap all buffers of that MSDU.
1546 		 */
1547 		if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
1548 			quota -= 1;
1549 
1550 
1551 		dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
1552 						&tail[rx_desc->pool_id],
1553 						rx_desc);
1554 	}
1555 done:
1556 	hal_srng_access_end(hal_soc, hal_ring);
1557 
1558 	if (nbuf_tail)
1559 		QDF_NBUF_CB_RX_FLUSH_IND(nbuf_tail) = 1;
1560 
1561 	/* Update histogram statistics by looping through pdev's */
1562 	DP_RX_HIST_STATS_PER_PDEV();
1563 
1564 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
1565 		/*
1566 		 * continue with next mac_id if no pkts were reaped
1567 		 * from that pool
1568 		 */
1569 		if (!rx_bufs_reaped[mac_id])
1570 			continue;
1571 
1572 		pdev = soc->pdev_list[mac_id];
1573 		dp_rxdma_srng = &pdev->rx_refill_buf_ring;
1574 		rx_desc_pool = &soc->rx_desc_buf[mac_id];
1575 
1576 		dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
1577 					rx_desc_pool, rx_bufs_reaped[mac_id],
1578 					&head[mac_id], &tail[mac_id]);
1579 	}
1580 
1581 	/* Peer can be NULL is case of LFR */
1582 	if (qdf_likely(peer != NULL))
1583 		vdev = NULL;
1584 
1585 	/*
1586 	 * BIG loop where each nbuf is dequeued from global queue,
1587 	 * processed and queued back on a per vdev basis. These nbufs
1588 	 * are sent to stack as and when we run out of nbufs
1589 	 * or a new nbuf dequeued from global queue has a different
1590 	 * vdev when compared to previous nbuf.
1591 	 */
1592 	nbuf = nbuf_head;
1593 	while (nbuf) {
1594 		next = nbuf->next;
1595 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
1596 
1597 		/*
1598 		 * Check if DMA completed -- msdu_done is the last bit
1599 		 * to be written
1600 		 */
1601 		if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
1602 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1603 				  FL("MSDU DONE failure"));
1604 			hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
1605 					     QDF_TRACE_LEVEL_INFO);
1606 			qdf_assert(0);
1607 		}
1608 
1609 		peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
1610 		peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
1611 		peer = dp_peer_find_by_id(soc, peer_id);
1612 
1613 		if (peer) {
1614 			QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
1615 			qdf_dp_trace_set_track(nbuf, QDF_RX);
1616 			QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
1617 			QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
1618 				QDF_NBUF_RX_PKT_DATA_TRACK;
1619 		}
1620 
1621 		rx_bufs_used++;
1622 
1623 		if (deliver_list_head && peer && (vdev != peer->vdev)) {
1624 			dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
1625 					deliver_list_tail);
1626 			deliver_list_head = NULL;
1627 			deliver_list_tail = NULL;
1628 		}
1629 
1630 		if (qdf_likely(peer != NULL)) {
1631 			vdev = peer->vdev;
1632 		} else {
1633 			DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
1634 					 qdf_nbuf_len(nbuf));
1635 			qdf_nbuf_free(nbuf);
1636 			nbuf = next;
1637 			continue;
1638 		}
1639 
1640 		if (qdf_unlikely(vdev == NULL)) {
1641 			qdf_nbuf_free(nbuf);
1642 			nbuf = next;
1643 			DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
1644 			dp_peer_unref_del_find_by_id(peer);
1645 			continue;
1646 		}
1647 
1648 		DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
1649 		/*
1650 		 * First IF condition:
1651 		 * 802.11 Fragmented pkts are reinjected to REO
1652 		 * HW block as SG pkts and for these pkts we only
1653 		 * need to pull the RX TLVS header length.
1654 		 * Second IF condition:
1655 		 * The below condition happens when an MSDU is spread
1656 		 * across multiple buffers. This can happen in two cases
1657 		 * 1. The nbuf size is smaller then the received msdu.
1658 		 *    ex: we have set the nbuf size to 2048 during
1659 		 *        nbuf_alloc. but we received an msdu which is
1660 		 *        2304 bytes in size then this msdu is spread
1661 		 *        across 2 nbufs.
1662 		 *
1663 		 * 2. AMSDUs when RAW mode is enabled.
1664 		 *    ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
1665 		 *        across 1st nbuf and 2nd nbuf and last MSDU is
1666 		 *        spread across 2nd nbuf and 3rd nbuf.
1667 		 *
1668 		 * for these scenarios let us create a skb frag_list and
1669 		 * append these buffers till the last MSDU of the AMSDU
1670 		 * Third condition:
1671 		 * This is the most likely case, we receive 802.3 pkts
1672 		 * decapsulated by HW, here we need to set the pkt length.
1673 		 */
1674 		if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf)))
1675 			qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1676 		else if (qdf_unlikely(vdev->rx_decap_type ==
1677 				htt_cmn_pkt_type_raw)) {
1678 			msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1679 			nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
1680 
1681 			DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
1682 			DP_STATS_INC_PKT(peer, rx.raw, 1,
1683 					 msdu_len);
1684 
1685 			next = nbuf->next;
1686 		} else {
1687 			l2_hdr_offset =
1688 				hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
1689 
1690 			msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1691 			pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
1692 
1693 			qdf_nbuf_set_pktlen(nbuf, pkt_len);
1694 			qdf_nbuf_pull_head(nbuf,
1695 					   RX_PKT_TLVS_LEN +
1696 					   l2_hdr_offset);
1697 		}
1698 
1699 		if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
1700 				hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
1701 			QDF_TRACE(QDF_MODULE_ID_DP,
1702 					QDF_TRACE_LEVEL_ERROR,
1703 					FL("Policy Check Drop pkt"));
1704 			/* Drop & free packet */
1705 			qdf_nbuf_free(nbuf);
1706 			/* Statistics */
1707 			nbuf = next;
1708 			dp_peer_unref_del_find_by_id(peer);
1709 			continue;
1710 		}
1711 
1712 		if (qdf_unlikely(peer && peer->bss_peer)) {
1713 			QDF_TRACE(QDF_MODULE_ID_DP,
1714 				QDF_TRACE_LEVEL_ERROR,
1715 				FL("received pkt with same src MAC"));
1716 			DP_STATS_INC_PKT(peer, rx.mec_drop, 1, msdu_len);
1717 
1718 			/* Drop & free packet */
1719 			qdf_nbuf_free(nbuf);
1720 			/* Statistics */
1721 			nbuf = next;
1722 			dp_peer_unref_del_find_by_id(peer);
1723 			continue;
1724 		}
1725 
1726 		if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
1727 			(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
1728 			(hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
1729 			DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
1730 			qdf_nbuf_free(nbuf);
1731 			nbuf = next;
1732 			dp_peer_unref_del_find_by_id(peer);
1733 			continue;
1734 		}
1735 
1736 		dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
1737 
1738 		dp_set_rx_queue(nbuf, ring_id);
1739 
1740 		/*
1741 		 * HW structures call this L3 header padding --
1742 		 * even though this is actually the offset from
1743 		 * the buffer beginning where the L2 header
1744 		 * begins.
1745 		 */
1746 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1747 			FL("rxhash: flow id toeplitz: 0x%x"),
1748 			hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
1749 
1750 		dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
1751 
1752 		if (qdf_unlikely(vdev->mesh_vdev)) {
1753 			if (dp_rx_filter_mesh_packets(vdev, nbuf,
1754 							rx_tlv_hdr)
1755 					== QDF_STATUS_SUCCESS) {
1756 				QDF_TRACE(QDF_MODULE_ID_DP,
1757 					QDF_TRACE_LEVEL_INFO_MED,
1758 					FL("mesh pkt filtered"));
1759 			DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
1760 					1);
1761 
1762 				qdf_nbuf_free(nbuf);
1763 				nbuf = next;
1764 				dp_peer_unref_del_find_by_id(peer);
1765 				continue;
1766 			}
1767 			dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
1768 		}
1769 
1770 #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
1771 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1772 			"p_id %d msdu_len %d hdr_off %d",
1773 			peer_id, msdu_len, l2_hdr_offset);
1774 
1775 		print_hex_dump(KERN_ERR,
1776 			       "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
1777 				qdf_nbuf_data(nbuf), 128, false);
1778 #endif /* NAPIER_EMULATION */
1779 
1780 		if (qdf_likely(vdev->rx_decap_type ==
1781 			       htt_cmn_pkt_type_ethernet) &&
1782 		    qdf_likely(!vdev->mesh_vdev)) {
1783 			/* WDS Destination Address Learning */
1784 			dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
1785 
1786 			/* Due to HW issue, sometimes we see that the sa_idx
1787 			 * and da_idx are invalid with sa_valid and da_valid
1788 			 * bits set
1789 			 *
1790 			 * in this case we also see that value of
1791 			 * sa_sw_peer_id is set as 0
1792 			 *
1793 			 * Drop the packet if sa_idx and da_idx OOB or
1794 			 * sa_sw_peerid is 0
1795 			 */
1796 			if (!is_sa_da_idx_valid(soc, rx_tlv_hdr)) {
1797 				qdf_nbuf_free(nbuf);
1798 				nbuf = next;
1799 				DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
1800 				continue;
1801 			}
1802 			/* WDS Source Port Learning */
1803 			if (vdev->wds_enabled)
1804 				dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
1805 							peer, nbuf);
1806 
1807 			/* Intrabss-fwd */
1808 			if (dp_rx_check_ap_bridge(vdev))
1809 				if (dp_rx_intrabss_fwd(soc,
1810 							peer,
1811 							rx_tlv_hdr,
1812 							nbuf)) {
1813 					nbuf = next;
1814 					dp_peer_unref_del_find_by_id(peer);
1815 					continue; /* Get next desc */
1816 				}
1817 		}
1818 
1819 		dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf);
1820 		qdf_nbuf_cb_update_peer_local_id(nbuf, peer->local_id);
1821 
1822 		/* Get TID from first msdu per MPDU, save to skb->priority */
1823 		if (qdf_nbuf_is_rx_chfrag_start(nbuf))
1824 			tid = hal_rx_mpdu_start_tid_get(soc->hal_soc,
1825 							rx_tlv_hdr);
1826 		DP_RX_TID_SAVE(nbuf, tid);
1827 
1828 		DP_RX_LIST_APPEND(deliver_list_head,
1829 				  deliver_list_tail,
1830 				  nbuf);
1831 		DP_STATS_INC_PKT(peer, rx.to_stack, 1,
1832 				qdf_nbuf_len(nbuf));
1833 
1834 		nbuf = next;
1835 		dp_peer_unref_del_find_by_id(peer);
1836 	}
1837 
1838 	if (deliver_list_head)
1839 		dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
1840 				       deliver_list_tail);
1841 
1842 	return rx_bufs_used; /* Assume no scale factor for now */
1843 }
1844 
1845 /**
1846  * dp_rx_detach() - detach dp rx
1847  * @pdev: core txrx pdev context
1848  *
1849  * This function will detach DP RX into main device context
1850  * will free DP Rx resources.
1851  *
1852  * Return: void
1853  */
1854 void
1855 dp_rx_pdev_detach(struct dp_pdev *pdev)
1856 {
1857 	uint8_t pdev_id = pdev->pdev_id;
1858 	struct dp_soc *soc = pdev->soc;
1859 	struct rx_desc_pool *rx_desc_pool;
1860 
1861 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
1862 
1863 	if (rx_desc_pool->pool_size != 0) {
1864 		dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
1865 	}
1866 
1867 	return;
1868 }
1869 
1870 /**
1871  * dp_rx_attach() - attach DP RX
1872  * @pdev: core txrx pdev context
1873  *
1874  * This function will attach a DP RX instance into the main
1875  * device (SOC) context. Will allocate dp rx resource and
1876  * initialize resources.
1877  *
1878  * Return: QDF_STATUS_SUCCESS: success
1879  *         QDF_STATUS_E_RESOURCES: Error return
1880  */
1881 QDF_STATUS
1882 dp_rx_pdev_attach(struct dp_pdev *pdev)
1883 {
1884 	uint8_t pdev_id = pdev->pdev_id;
1885 	struct dp_soc *soc = pdev->soc;
1886 	uint32_t rxdma_entries;
1887 	union dp_rx_desc_list_elem_t *desc_list = NULL;
1888 	union dp_rx_desc_list_elem_t *tail = NULL;
1889 	struct dp_srng *dp_rxdma_srng;
1890 	struct rx_desc_pool *rx_desc_pool;
1891 
1892 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
1893 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1894 			  "nss-wifi<4> skip Rx refil %d", pdev_id);
1895 		return QDF_STATUS_SUCCESS;
1896 	}
1897 
1898 	pdev = soc->pdev_list[pdev_id];
1899 	dp_rxdma_srng = &pdev->rx_refill_buf_ring;
1900 	rxdma_entries = dp_rxdma_srng->num_entries;
1901 
1902 	soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
1903 
1904 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
1905 	dp_rx_desc_pool_alloc(soc, pdev_id,
1906 			      DP_RX_DESC_ALLOC_MULTIPLIER * rxdma_entries,
1907 			      rx_desc_pool);
1908 
1909 	rx_desc_pool->owner = DP_WBM2SW_RBM;
1910 	/* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
1911 
1912 	dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
1913 				0, &desc_list, &tail);
1914 
1915 	return QDF_STATUS_SUCCESS;
1916 }
1917 
1918 /*
1919  * dp_rx_nbuf_prepare() - prepare RX nbuf
1920  * @soc: core txrx main context
1921  * @pdev: core txrx pdev context
1922  *
1923  * This function alloc & map nbuf for RX dma usage, retry it if failed
1924  * until retry times reaches max threshold or succeeded.
1925  *
1926  * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
1927  */
1928 qdf_nbuf_t
1929 dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
1930 {
1931 	uint8_t *buf;
1932 	int32_t nbuf_retry_count;
1933 	QDF_STATUS ret;
1934 	qdf_nbuf_t nbuf = NULL;
1935 
1936 	for (nbuf_retry_count = 0; nbuf_retry_count <
1937 		QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
1938 			nbuf_retry_count++) {
1939 		/* Allocate a new skb */
1940 		nbuf = qdf_nbuf_alloc(soc->osdev,
1941 					RX_BUFFER_SIZE,
1942 					RX_BUFFER_RESERVATION,
1943 					RX_BUFFER_ALIGNMENT,
1944 					FALSE);
1945 
1946 		if (nbuf == NULL) {
1947 			DP_STATS_INC(pdev,
1948 				replenish.nbuf_alloc_fail, 1);
1949 			continue;
1950 		}
1951 
1952 		buf = qdf_nbuf_data(nbuf);
1953 
1954 		memset(buf, 0, RX_BUFFER_SIZE);
1955 
1956 		ret = qdf_nbuf_map_single(soc->osdev, nbuf,
1957 				    QDF_DMA_BIDIRECTIONAL);
1958 
1959 		/* nbuf map failed */
1960 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
1961 			qdf_nbuf_free(nbuf);
1962 			DP_STATS_INC(pdev, replenish.map_err, 1);
1963 			continue;
1964 		}
1965 		/* qdf_nbuf alloc and map succeeded */
1966 		break;
1967 	}
1968 
1969 	/* qdf_nbuf still alloc or map failed */
1970 	if (qdf_unlikely(nbuf_retry_count >=
1971 			QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
1972 		return NULL;
1973 
1974 	return nbuf;
1975 }
1976