xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.c (revision 2888b71da71bce103343119fa1b31f4a0cee07c8)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "hal_hw_headers.h"
21 #include "dp_types.h"
22 #include "dp_rx.h"
23 #include "dp_tx.h"
24 #include "dp_peer.h"
25 #include "hal_rx.h"
26 #include "hal_api.h"
27 #include "qdf_nbuf.h"
28 #ifdef MESH_MODE_SUPPORT
29 #include "if_meta_hdr.h"
30 #endif
31 #include "dp_internal.h"
32 #include "dp_ipa.h"
33 #include "dp_hist.h"
34 #include "dp_rx_buffer_pool.h"
35 #ifdef WIFI_MONITOR_SUPPORT
36 #include "dp_htt.h"
37 #include <dp_mon.h>
38 #endif
39 #ifdef FEATURE_WDS
40 #include "dp_txrx_wds.h"
41 #endif
42 #ifdef DP_RATETABLE_SUPPORT
43 #include "dp_ratetable.h"
44 #endif
45 
46 #ifdef DUP_RX_DESC_WAR
47 void dp_rx_dump_info_and_assert(struct dp_soc *soc,
48 				hal_ring_handle_t hal_ring,
49 				hal_ring_desc_t ring_desc,
50 				struct dp_rx_desc *rx_desc)
51 {
52 	void *hal_soc = soc->hal_soc;
53 
54 	hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
55 	dp_rx_desc_dump(rx_desc);
56 }
57 #else
58 void dp_rx_dump_info_and_assert(struct dp_soc *soc,
59 				hal_ring_handle_t hal_ring_hdl,
60 				hal_ring_desc_t ring_desc,
61 				struct dp_rx_desc *rx_desc)
62 {
63 	hal_soc_handle_t hal_soc = soc->hal_soc;
64 
65 	dp_rx_desc_dump(rx_desc);
66 	hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
67 	hal_srng_dump_ring(hal_soc, hal_ring_hdl);
68 	qdf_assert_always(0);
69 }
70 #endif
71 
72 #ifndef QCA_HOST_MODE_WIFI_DISABLED
73 #ifdef RX_DESC_SANITY_WAR
74 QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
75 			     hal_ring_handle_t hal_ring_hdl,
76 			     hal_ring_desc_t ring_desc,
77 			     struct dp_rx_desc *rx_desc)
78 {
79 	uint8_t return_buffer_manager;
80 
81 	if (qdf_unlikely(!rx_desc)) {
82 		/*
83 		 * This is an unlikely case where the cookie obtained
84 		 * from the ring_desc is invalid and hence we are not
85 		 * able to find the corresponding rx_desc
86 		 */
87 		goto fail;
88 	}
89 
90 	return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
91 	if (qdf_unlikely(!(return_buffer_manager ==
92 				HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
93 			 return_buffer_manager ==
94 				HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
95 		goto fail;
96 	}
97 
98 	return QDF_STATUS_SUCCESS;
99 
100 fail:
101 	DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
102 	dp_err("Ring Desc:");
103 	hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
104 				ring_desc);
105 	return QDF_STATUS_E_NULL_VALUE;
106 
107 }
108 #endif
109 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
110 
111 /**
112  * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
113  *
114  * @dp_soc: struct dp_soc *
115  * @nbuf_frag_info_t: nbuf frag info
116  * @dp_pdev: struct dp_pdev *
117  * @rx_desc_pool: Rx desc pool
118  *
119  * Return: QDF_STATUS
120  */
121 #ifdef DP_RX_MON_MEM_FRAG
122 static inline QDF_STATUS
123 dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
124 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
125 			   struct dp_pdev *dp_pdev,
126 			   struct rx_desc_pool *rx_desc_pool)
127 {
128 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
129 
130 	(nbuf_frag_info_t->virt_addr).vaddr =
131 			qdf_frag_alloc(NULL, rx_desc_pool->buf_size);
132 
133 	if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
134 		dp_err("Frag alloc failed");
135 		DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
136 		return QDF_STATUS_E_NOMEM;
137 	}
138 
139 	ret = qdf_mem_map_page(dp_soc->osdev,
140 			       (nbuf_frag_info_t->virt_addr).vaddr,
141 			       QDF_DMA_FROM_DEVICE,
142 			       rx_desc_pool->buf_size,
143 			       &nbuf_frag_info_t->paddr);
144 
145 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
146 		qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
147 		dp_err("Frag map failed");
148 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
149 		return QDF_STATUS_E_FAULT;
150 	}
151 
152 	return QDF_STATUS_SUCCESS;
153 }
154 #else
155 static inline QDF_STATUS
156 dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
157 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
158 			   struct dp_pdev *dp_pdev,
159 			   struct rx_desc_pool *rx_desc_pool)
160 {
161 	return QDF_STATUS_SUCCESS;
162 }
163 #endif /* DP_RX_MON_MEM_FRAG */
164 
165 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
166 /**
167  * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
168  * @soc: Datapath soc structure
169  * @ring_num: Refill ring number
170  * @num_req: number of buffers requested for refill
171  * @num_refill: number of buffers refilled
172  *
173  * Returns: None
174  */
175 static inline void
176 dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
177 			       hal_ring_handle_t hal_ring_hdl,
178 			       uint32_t num_req, uint32_t num_refill)
179 {
180 	struct dp_refill_info_record *record;
181 	uint32_t idx;
182 	uint32_t tp;
183 	uint32_t hp;
184 
185 	if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
186 			 !soc->rx_refill_ring_history[ring_num]))
187 		return;
188 
189 	idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
190 					DP_RX_REFILL_HIST_MAX);
191 
192 	/* No NULL check needed for record since its an array */
193 	record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
194 
195 	hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
196 	record->timestamp = qdf_get_log_timestamp();
197 	record->num_req = num_req;
198 	record->num_refill = num_refill;
199 	record->hp = hp;
200 	record->tp = tp;
201 }
202 #else
203 static inline void
204 dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
205 			       hal_ring_handle_t hal_ring_hdl,
206 			       uint32_t num_req, uint32_t num_refill)
207 {
208 }
209 #endif
210 
211 /**
212  * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
213  *
214  * @dp_soc: struct dp_soc *
215  * @mac_id: Mac id
216  * @num_entries_avail: num_entries_avail
217  * @nbuf_frag_info_t: nbuf frag info
218  * @dp_pdev: struct dp_pdev *
219  * @rx_desc_pool: Rx desc pool
220  *
221  * Return: QDF_STATUS
222  */
223 static inline QDF_STATUS
224 dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
225 				     uint32_t mac_id,
226 				     uint32_t num_entries_avail,
227 				     struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
228 				     struct dp_pdev *dp_pdev,
229 				     struct rx_desc_pool *rx_desc_pool)
230 {
231 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
232 
233 	(nbuf_frag_info_t->virt_addr).nbuf =
234 		dp_rx_buffer_pool_nbuf_alloc(dp_soc,
235 					     mac_id,
236 					     rx_desc_pool,
237 					     num_entries_avail);
238 	if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
239 		dp_err("nbuf alloc failed");
240 		DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
241 		return QDF_STATUS_E_NOMEM;
242 	}
243 
244 	ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
245 					 nbuf_frag_info_t);
246 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
247 		dp_rx_buffer_pool_nbuf_free(dp_soc,
248 			(nbuf_frag_info_t->virt_addr).nbuf, mac_id);
249 		dp_err("nbuf map failed");
250 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
251 		return QDF_STATUS_E_FAULT;
252 	}
253 
254 	nbuf_frag_info_t->paddr =
255 		qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
256 
257 	dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
258 			       (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
259 			       rx_desc_pool->buf_size,
260 			       true);
261 
262 	ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
263 			     &nbuf_frag_info_t->paddr,
264 			     rx_desc_pool);
265 	if (ret == QDF_STATUS_E_FAILURE) {
266 		DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
267 		return QDF_STATUS_E_ADDRNOTAVAIL;
268 	}
269 
270 	return QDF_STATUS_SUCCESS;
271 }
272 
273 #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
274 QDF_STATUS
275 __dp_rx_buffers_no_map_lt_replenish(struct dp_soc *soc, uint32_t mac_id,
276 				    struct dp_srng *dp_rxdma_srng,
277 				    struct rx_desc_pool *rx_desc_pool)
278 {
279 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
280 	uint32_t count;
281 	void *rxdma_ring_entry;
282 	union dp_rx_desc_list_elem_t *next = NULL;
283 	void *rxdma_srng;
284 	qdf_nbuf_t nbuf;
285 	qdf_dma_addr_t paddr;
286 	uint16_t num_entries_avail = 0;
287 	uint16_t num_alloc_desc = 0;
288 	union dp_rx_desc_list_elem_t *desc_list = NULL;
289 	union dp_rx_desc_list_elem_t *tail = NULL;
290 	int sync_hw_ptr = 0;
291 
292 	rxdma_srng = dp_rxdma_srng->hal_srng;
293 
294 	if (qdf_unlikely(!dp_pdev)) {
295 		dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id);
296 		return QDF_STATUS_E_FAILURE;
297 	}
298 
299 	if (qdf_unlikely(!rxdma_srng)) {
300 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
301 		return QDF_STATUS_E_FAILURE;
302 	}
303 
304 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
305 
306 	num_entries_avail = hal_srng_src_num_avail(soc->hal_soc,
307 						   rxdma_srng,
308 						   sync_hw_ptr);
309 
310 	dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
311 		    soc, num_entries_avail);
312 
313 	if (qdf_unlikely(num_entries_avail <
314 			 ((dp_rxdma_srng->num_entries * 3) / 4))) {
315 		hal_srng_access_end(soc->hal_soc, rxdma_srng);
316 		return QDF_STATUS_E_FAILURE;
317 	}
318 
319 	DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
320 
321 	num_alloc_desc = dp_rx_get_free_desc_list(soc, mac_id,
322 						  rx_desc_pool,
323 						  num_entries_avail,
324 						  &desc_list,
325 						  &tail);
326 
327 	if (!num_alloc_desc) {
328 		dp_rx_err("%pK: no free rx_descs in freelist", soc);
329 		DP_STATS_INC(dp_pdev, err.desc_lt_alloc_fail,
330 			     num_entries_avail);
331 		hal_srng_access_end(soc->hal_soc, rxdma_srng);
332 		return QDF_STATUS_E_NOMEM;
333 	}
334 
335 	for (count = 0; count < num_alloc_desc; count++) {
336 		next = desc_list->next;
337 		qdf_prefetch(next);
338 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
339 		if (qdf_unlikely(!nbuf)) {
340 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
341 			break;
342 		}
343 
344 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
345 					       rx_desc_pool->buf_size);
346 
347 		rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc,
348 							 rxdma_srng);
349 		qdf_assert_always(rxdma_ring_entry);
350 
351 		desc_list->rx_desc.nbuf = nbuf;
352 		desc_list->rx_desc.rx_buf_start = nbuf->data;
353 		desc_list->rx_desc.unmapped = 0;
354 
355 		/* rx_desc.in_use should be zero at this time*/
356 		qdf_assert_always(desc_list->rx_desc.in_use == 0);
357 
358 		desc_list->rx_desc.in_use = 1;
359 		desc_list->rx_desc.in_err_state = 0;
360 
361 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
362 					     paddr,
363 					     desc_list->rx_desc.cookie,
364 					     rx_desc_pool->owner);
365 
366 		desc_list = next;
367 	}
368 	qdf_dsb();
369 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
370 
371 	/* No need to count the number of bytes received during replenish.
372 	 * Therefore set replenish.pkts.bytes as 0.
373 	 */
374 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
375 	DP_STATS_INC(dp_pdev, buf_freelist, (num_alloc_desc - count));
376 	/*
377 	 * add any available free desc back to the free list
378 	 */
379 	if (desc_list)
380 		dp_rx_add_desc_list_to_free_list(soc, &desc_list, &tail,
381 						 mac_id, rx_desc_pool);
382 
383 	return QDF_STATUS_SUCCESS;
384 }
385 
386 QDF_STATUS
387 __dp_rx_buffers_no_map_replenish(struct dp_soc *soc, uint32_t mac_id,
388 				 struct dp_srng *dp_rxdma_srng,
389 				 struct rx_desc_pool *rx_desc_pool,
390 				 uint32_t num_req_buffers,
391 				 union dp_rx_desc_list_elem_t **desc_list,
392 				 union dp_rx_desc_list_elem_t **tail)
393 {
394 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
395 	uint32_t count;
396 	void *rxdma_ring_entry;
397 	union dp_rx_desc_list_elem_t *next;
398 	void *rxdma_srng;
399 	qdf_nbuf_t nbuf;
400 	qdf_dma_addr_t paddr;
401 
402 	rxdma_srng = dp_rxdma_srng->hal_srng;
403 
404 	if (qdf_unlikely(!dp_pdev)) {
405 		dp_rx_err("%pK: pdev is null for mac_id = %d",
406 			  soc, mac_id);
407 		return QDF_STATUS_E_FAILURE;
408 	}
409 
410 	if (qdf_unlikely(!rxdma_srng)) {
411 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
412 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
413 		return QDF_STATUS_E_FAILURE;
414 	}
415 
416 	dp_rx_debug("%pK: requested %d buffers for replenish",
417 		    soc, num_req_buffers);
418 
419 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
420 
421 	for (count = 0; count < num_req_buffers; count++) {
422 		next = (*desc_list)->next;
423 		qdf_prefetch(next);
424 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
425 		if (qdf_unlikely(!nbuf)) {
426 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
427 			break;
428 		}
429 
430 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
431 					       rx_desc_pool->buf_size);
432 		rxdma_ring_entry = (struct dp_buffer_addr_info *)
433 			hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
434 		if (!rxdma_ring_entry)
435 			break;
436 
437 		qdf_assert_always(rxdma_ring_entry);
438 
439 		(*desc_list)->rx_desc.nbuf = nbuf;
440 		(*desc_list)->rx_desc.rx_buf_start = nbuf->data;
441 		(*desc_list)->rx_desc.unmapped = 0;
442 
443 		/* rx_desc.in_use should be zero at this time*/
444 		qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
445 
446 		(*desc_list)->rx_desc.in_use = 1;
447 		(*desc_list)->rx_desc.in_err_state = 0;
448 
449 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
450 					     paddr,
451 					     (*desc_list)->rx_desc.cookie,
452 					     rx_desc_pool->owner);
453 
454 		*desc_list = next;
455 	}
456 	qdf_dsb();
457 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
458 
459 	/* No need to count the number of bytes received during replenish.
460 	 * Therefore set replenish.pkts.bytes as 0.
461 	 */
462 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
463 	DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
464 	/*
465 	 * add any available free desc back to the free list
466 	 */
467 	if (*desc_list)
468 		dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
469 						 mac_id, rx_desc_pool);
470 
471 	return QDF_STATUS_SUCCESS;
472 }
473 
474 QDF_STATUS __dp_pdev_rx_buffers_no_map_attach(struct dp_soc *soc,
475 					      uint32_t mac_id,
476 					      struct dp_srng *dp_rxdma_srng,
477 					      struct rx_desc_pool *rx_desc_pool,
478 					      uint32_t num_req_buffers)
479 {
480 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
481 	uint32_t count;
482 	uint32_t nr_descs = 0;
483 	void *rxdma_ring_entry;
484 	union dp_rx_desc_list_elem_t *next;
485 	void *rxdma_srng;
486 	qdf_nbuf_t nbuf;
487 	qdf_dma_addr_t paddr;
488 	union dp_rx_desc_list_elem_t *desc_list = NULL;
489 	union dp_rx_desc_list_elem_t *tail = NULL;
490 
491 	rxdma_srng = dp_rxdma_srng->hal_srng;
492 
493 	if (qdf_unlikely(!dp_pdev)) {
494 		dp_rx_err("%pK: pdev is null for mac_id = %d",
495 			  soc, mac_id);
496 		return QDF_STATUS_E_FAILURE;
497 	}
498 
499 	if (qdf_unlikely(!rxdma_srng)) {
500 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
501 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
502 		return QDF_STATUS_E_FAILURE;
503 	}
504 
505 	dp_rx_debug("%pK: requested %d buffers for replenish",
506 		    soc, num_req_buffers);
507 
508 	nr_descs = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool,
509 					    num_req_buffers, &desc_list, &tail);
510 	if (!nr_descs) {
511 		dp_err("no free rx_descs in freelist");
512 		DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
513 		return QDF_STATUS_E_NOMEM;
514 	}
515 
516 	dp_debug("got %u RX descs for driver attach", nr_descs);
517 
518 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
519 
520 	for (count = 0; count < nr_descs; count++) {
521 		next = desc_list->next;
522 		qdf_prefetch(next);
523 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
524 		if (qdf_unlikely(!nbuf)) {
525 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
526 			break;
527 		}
528 
529 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
530 					       rx_desc_pool->buf_size);
531 		rxdma_ring_entry = (struct dp_buffer_addr_info *)
532 			hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
533 		if (!rxdma_ring_entry)
534 			break;
535 
536 		qdf_assert_always(rxdma_ring_entry);
537 
538 		desc_list->rx_desc.nbuf = nbuf;
539 		desc_list->rx_desc.rx_buf_start = nbuf->data;
540 		desc_list->rx_desc.unmapped = 0;
541 
542 		/* rx_desc.in_use should be zero at this time*/
543 		qdf_assert_always(desc_list->rx_desc.in_use == 0);
544 
545 		desc_list->rx_desc.in_use = 1;
546 		desc_list->rx_desc.in_err_state = 0;
547 
548 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
549 					     paddr,
550 					     desc_list->rx_desc.cookie,
551 					     rx_desc_pool->owner);
552 
553 		desc_list = next;
554 	}
555 	qdf_dsb();
556 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
557 
558 	/* No need to count the number of bytes received during replenish.
559 	 * Therefore set replenish.pkts.bytes as 0.
560 	 */
561 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
562 
563 	return QDF_STATUS_SUCCESS;
564 }
565 #endif
566 
567 #ifdef DP_UMAC_HW_RESET_SUPPORT
568 #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
569 static inline
570 qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
571 					uint32_t buf_size)
572 {
573 	return dp_rx_nbuf_sync_no_dsb(soc, nbuf, rx_desc_pool->buf_size);
574 }
575 #else
576 static inline
577 qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
578 					uint32_t buf_size)
579 {
580 	return qdf_nbuf_get_frag_paddr(nbuf, 0);
581 }
582 #endif
583 
584 /*
585  * dp_rx_desc_replenish() - Replenish the rx descriptors one at a time
586  *
587  * @soc: core txrx main context
588  * @dp_rxdma_srng: rxdma ring
589  * @rx_desc_pool: rx descriptor pool
590  * @rx_desc:rx descriptor
591  *
592  * Return: void
593  */
594 static inline
595 void dp_rx_desc_replenish(struct dp_soc *soc, struct dp_srng *dp_rxdma_srng,
596 			  struct rx_desc_pool *rx_desc_pool,
597 			  struct dp_rx_desc *rx_desc)
598 {
599 	void *rxdma_srng;
600 	void *rxdma_ring_entry;
601 	qdf_dma_addr_t paddr;
602 
603 	rxdma_srng = dp_rxdma_srng->hal_srng;
604 
605 	/* No one else should be accessing the srng at this point */
606 	hal_srng_access_start_unlocked(soc->hal_soc, rxdma_srng);
607 
608 	rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
609 
610 	qdf_assert_always(rxdma_ring_entry);
611 	rx_desc->in_err_state = 0;
612 
613 	paddr = dp_rx_rep_retrieve_paddr(soc, rx_desc->nbuf,
614 					 rx_desc_pool->buf_size);
615 	hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry, paddr,
616 				     rx_desc->cookie, rx_desc_pool->owner);
617 
618 	hal_srng_access_end_unlocked(soc->hal_soc, rxdma_srng);
619 }
620 
621 /*
622  * dp_rx_desc_reuse() - Reuse the rx descriptors to fill the rx buf ring
623  *
624  * @soc: core txrx main context
625  * @nbuf_list: nbuf list for delayed free
626  *
627  * Return: void
628  */
629 void dp_rx_desc_reuse(struct dp_soc *soc, qdf_nbuf_t *nbuf_list)
630 {
631 	int mac_id, i, j;
632 	union dp_rx_desc_list_elem_t *head = NULL;
633 	union dp_rx_desc_list_elem_t *tail = NULL;
634 
635 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
636 		struct dp_srng *dp_rxdma_srng =
637 					&soc->rx_refill_buf_ring[mac_id];
638 		struct rx_desc_pool *rx_desc_pool = &soc->rx_desc_buf[mac_id];
639 		uint32_t rx_sw_desc_num = rx_desc_pool->pool_size;
640 		/* Only fill up 1/3 of the ring size */
641 		uint32_t num_req_decs;
642 
643 		if (!dp_rxdma_srng || !dp_rxdma_srng->hal_srng ||
644 		    !rx_desc_pool->array)
645 			continue;
646 
647 		num_req_decs = dp_rxdma_srng->num_entries / 3;
648 
649 		for (i = 0, j = 0; i < rx_sw_desc_num; i++) {
650 			struct dp_rx_desc *rx_desc =
651 				(struct dp_rx_desc *)&rx_desc_pool->array[i];
652 
653 			if (rx_desc->in_use) {
654 				if (j < dp_rxdma_srng->num_entries) {
655 					dp_rx_desc_replenish(soc, dp_rxdma_srng,
656 							     rx_desc_pool,
657 							     rx_desc);
658 				} else {
659 					dp_rx_nbuf_unmap(soc, rx_desc, 0);
660 					rx_desc->unmapped = 0;
661 
662 					rx_desc->nbuf->next = *nbuf_list;
663 					*nbuf_list = rx_desc->nbuf;
664 
665 					dp_rx_add_to_free_desc_list(&head,
666 								    &tail,
667 								    rx_desc);
668 				}
669 				j++;
670 			}
671 		}
672 
673 		if (head)
674 			dp_rx_add_desc_list_to_free_list(soc, &head, &tail,
675 							 mac_id, rx_desc_pool);
676 
677 		/* If num of descs in use were less, then we need to replenish
678 		 * the ring with some buffers
679 		 */
680 		head = NULL;
681 		tail = NULL;
682 
683 		if (j < (num_req_decs - 1))
684 			dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
685 						rx_desc_pool,
686 						((num_req_decs - 1) - j),
687 						&head, &tail, true);
688 	}
689 }
690 #endif
691 
692 /*
693  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
694  *			       called during dp rx initialization
695  *			       and at the end of dp_rx_process.
696  *
697  * @soc: core txrx main context
698  * @mac_id: mac_id which is one of 3 mac_ids
699  * @dp_rxdma_srng: dp rxdma circular ring
700  * @rx_desc_pool: Pointer to free Rx descriptor pool
701  * @num_req_buffers: number of buffer to be replenished
702  * @desc_list: list of descs if called from dp_rx_process
703  *	       or NULL during dp rx initialization or out of buffer
704  *	       interrupt.
705  * @tail: tail of descs list
706  * @req_only: If true don't replenish more than req buffers
707  * @func_name: name of the caller function
708  * Return: return success or failure
709  */
710 QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
711 				struct dp_srng *dp_rxdma_srng,
712 				struct rx_desc_pool *rx_desc_pool,
713 				uint32_t num_req_buffers,
714 				union dp_rx_desc_list_elem_t **desc_list,
715 				union dp_rx_desc_list_elem_t **tail,
716 				bool req_only, const char *func_name)
717 {
718 	uint32_t num_alloc_desc;
719 	uint16_t num_desc_to_free = 0;
720 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
721 	uint32_t num_entries_avail;
722 	uint32_t count;
723 	int sync_hw_ptr = 1;
724 	struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
725 	void *rxdma_ring_entry;
726 	union dp_rx_desc_list_elem_t *next;
727 	QDF_STATUS ret;
728 	void *rxdma_srng;
729 	union dp_rx_desc_list_elem_t *desc_list_append = NULL;
730 	union dp_rx_desc_list_elem_t *tail_append = NULL;
731 	union dp_rx_desc_list_elem_t *temp_list = NULL;
732 
733 	rxdma_srng = dp_rxdma_srng->hal_srng;
734 
735 	if (qdf_unlikely(!dp_pdev)) {
736 		dp_rx_err("%pK: pdev is null for mac_id = %d",
737 			  dp_soc, mac_id);
738 		return QDF_STATUS_E_FAILURE;
739 	}
740 
741 	if (qdf_unlikely(!rxdma_srng)) {
742 		dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
743 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
744 		return QDF_STATUS_E_FAILURE;
745 	}
746 
747 	dp_rx_debug("%pK: requested %d buffers for replenish",
748 		    dp_soc, num_req_buffers);
749 
750 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
751 
752 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
753 						   rxdma_srng,
754 						   sync_hw_ptr);
755 
756 	dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
757 		    dp_soc, num_entries_avail);
758 
759 	if (!req_only && !(*desc_list) && (num_entries_avail >
760 		((dp_rxdma_srng->num_entries * 3) / 4))) {
761 		num_req_buffers = num_entries_avail;
762 	} else if (num_entries_avail < num_req_buffers) {
763 		num_desc_to_free = num_req_buffers - num_entries_avail;
764 		num_req_buffers = num_entries_avail;
765 	} else if ((*desc_list) &&
766 		   dp_rxdma_srng->num_entries - num_entries_avail <
767 		   CRITICAL_BUFFER_THRESHOLD) {
768 		/* Append some free descriptors to tail */
769 		num_alloc_desc =
770 			dp_rx_get_free_desc_list(dp_soc, mac_id,
771 						 rx_desc_pool,
772 						 CRITICAL_BUFFER_THRESHOLD,
773 						 &desc_list_append,
774 						 &tail_append);
775 
776 		if (num_alloc_desc) {
777 			temp_list = *desc_list;
778 			*desc_list = desc_list_append;
779 			tail_append->next = temp_list;
780 			num_req_buffers += num_alloc_desc;
781 
782 			DP_STATS_DEC(dp_pdev,
783 				     replenish.free_list,
784 				     num_alloc_desc);
785 		} else
786 			dp_err_rl("%pK:  no free rx_descs in freelist", dp_soc);
787 	}
788 
789 	if (qdf_unlikely(!num_req_buffers)) {
790 		num_desc_to_free = num_req_buffers;
791 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
792 		goto free_descs;
793 	}
794 
795 	/*
796 	 * if desc_list is NULL, allocate the descs from freelist
797 	 */
798 	if (!(*desc_list)) {
799 		num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
800 							  rx_desc_pool,
801 							  num_req_buffers,
802 							  desc_list,
803 							  tail);
804 
805 		if (!num_alloc_desc) {
806 			dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
807 			DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
808 					num_req_buffers);
809 			hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
810 			return QDF_STATUS_E_NOMEM;
811 		}
812 
813 		dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
814 		num_req_buffers = num_alloc_desc;
815 	}
816 
817 
818 	count = 0;
819 
820 	while (count < num_req_buffers) {
821 		/* Flag is set while pdev rx_desc_pool initialization */
822 		if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
823 			ret = dp_pdev_frag_alloc_and_map(dp_soc,
824 							 &nbuf_frag_info,
825 							 dp_pdev,
826 							 rx_desc_pool);
827 		else
828 			ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
829 								   mac_id,
830 					num_entries_avail, &nbuf_frag_info,
831 					dp_pdev, rx_desc_pool);
832 
833 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
834 			if (qdf_unlikely(ret  == QDF_STATUS_E_FAULT))
835 				continue;
836 			break;
837 		}
838 
839 		count++;
840 
841 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
842 							 rxdma_srng);
843 		qdf_assert_always(rxdma_ring_entry);
844 
845 		next = (*desc_list)->next;
846 
847 		/* Flag is set while pdev rx_desc_pool initialization */
848 		if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
849 			dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
850 					     &nbuf_frag_info);
851 		else
852 			dp_rx_desc_prep(&((*desc_list)->rx_desc),
853 					&nbuf_frag_info);
854 
855 		/* rx_desc.in_use should be zero at this time*/
856 		qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
857 
858 		(*desc_list)->rx_desc.in_use = 1;
859 		(*desc_list)->rx_desc.in_err_state = 0;
860 		dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
861 					   func_name, RX_DESC_REPLENISHED);
862 		dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
863 				 nbuf_frag_info.virt_addr.nbuf,
864 				 (unsigned long long)(nbuf_frag_info.paddr),
865 				 (*desc_list)->rx_desc.cookie);
866 
867 		hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
868 					     nbuf_frag_info.paddr,
869 						(*desc_list)->rx_desc.cookie,
870 						rx_desc_pool->owner);
871 
872 		*desc_list = next;
873 
874 	}
875 
876 	dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
877 				       num_req_buffers, count);
878 
879 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
880 
881 	dp_rx_schedule_refill_thread(dp_soc);
882 
883 	dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
884 			 count, num_desc_to_free);
885 
886 	/* No need to count the number of bytes received during replenish.
887 	 * Therefore set replenish.pkts.bytes as 0.
888 	 */
889 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
890 	DP_STATS_INC(dp_pdev, replenish.free_list, num_req_buffers - count);
891 
892 free_descs:
893 	DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
894 	/*
895 	 * add any available free desc back to the free list
896 	 */
897 	if (*desc_list)
898 		dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
899 			mac_id, rx_desc_pool);
900 
901 	return QDF_STATUS_SUCCESS;
902 }
903 
904 qdf_export_symbol(__dp_rx_buffers_replenish);
905 
906 /*
907  * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
908  *				pkts to RAW mode simulation to
909  *				decapsulate the pkt.
910  *
911  * @vdev: vdev on which RAW mode is enabled
912  * @nbuf_list: list of RAW pkts to process
913  * @txrx_peer: peer object from which the pkt is rx
914  *
915  * Return: void
916  */
917 void
918 dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
919 		  struct dp_txrx_peer *txrx_peer)
920 {
921 	qdf_nbuf_t deliver_list_head = NULL;
922 	qdf_nbuf_t deliver_list_tail = NULL;
923 	qdf_nbuf_t nbuf;
924 
925 	nbuf = nbuf_list;
926 	while (nbuf) {
927 		qdf_nbuf_t next = qdf_nbuf_next(nbuf);
928 
929 		DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
930 
931 		DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
932 		DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1,
933 					      qdf_nbuf_len(nbuf));
934 		/*
935 		 * reset the chfrag_start and chfrag_end bits in nbuf cb
936 		 * as this is a non-amsdu pkt and RAW mode simulation expects
937 		 * these bit s to be 0 for non-amsdu pkt.
938 		 */
939 		if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
940 			 qdf_nbuf_is_rx_chfrag_end(nbuf)) {
941 			qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
942 			qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
943 		}
944 
945 		nbuf = next;
946 	}
947 
948 	vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
949 				 &deliver_list_tail);
950 
951 	vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
952 }
953 
954 #ifndef QCA_HOST_MODE_WIFI_DISABLED
955 #ifndef FEATURE_WDS
956 void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
957 		    struct dp_txrx_peer *ta_peer, qdf_nbuf_t nbuf)
958 {
959 }
960 #endif
961 
962 #ifdef QCA_SUPPORT_TX_MIN_RATES_FOR_SPECIAL_FRAMES
963 /*
964  * dp_classify_critical_pkts() - API for marking critical packets
965  * @soc: dp_soc context
966  * @vdev: vdev on which packet is to be sent
967  * @nbuf: nbuf that has to be classified
968  *
969  * The function parses the packet, identifies whether its a critical frame and
970  * marks QDF_NBUF_CB_TX_EXTRA_IS_CRITICAL bit in qdf_nbuf_cb for the nbuf.
971  * Code for marking which frames are CRITICAL is accessed via callback.
972  * EAPOL, ARP, DHCP, DHCPv6, ICMPv6 NS/NA are the typical critical frames.
973  *
974  * Return: None
975  */
976 static
977 void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
978 			       qdf_nbuf_t nbuf)
979 {
980 	if (vdev->tx_classify_critical_pkt_cb)
981 		vdev->tx_classify_critical_pkt_cb(vdev->osif_vdev, nbuf);
982 }
983 #else
984 static inline
985 void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
986 			       qdf_nbuf_t nbuf)
987 {
988 }
989 #endif
990 
991 #ifdef QCA_OL_TX_MULTIQ_SUPPORT
992 static inline
993 void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
994 {
995 	qdf_nbuf_set_queue_mapping(nbuf, ring_id);
996 }
997 #else
998 static inline
999 void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
1000 {
1001 }
1002 #endif
1003 
1004 /*
1005  * dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets
1006  *
1007  * @soc: core txrx main context
1008  * @ta_peer	: source peer entry
1009  * @rx_tlv_hdr	: start address of rx tlvs
1010  * @nbuf	: nbuf that has to be intrabss forwarded
1011  * @tid_stats	: tid stats pointer
1012  *
1013  * Return: bool: true if it is forwarded else false
1014  */
1015 bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
1016 			     uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
1017 			     struct cdp_tid_rx_stats *tid_stats)
1018 {
1019 	uint16_t len;
1020 	qdf_nbuf_t nbuf_copy;
1021 
1022 	if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
1023 					    nbuf))
1024 		return true;
1025 
1026 	if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
1027 		return false;
1028 
1029 	/* If the source peer in the isolation list
1030 	 * then dont forward instead push to bridge stack
1031 	 */
1032 	if (dp_get_peer_isolation(ta_peer))
1033 		return false;
1034 
1035 	nbuf_copy = qdf_nbuf_copy(nbuf);
1036 	if (!nbuf_copy)
1037 		return false;
1038 
1039 	len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1040 
1041 	qdf_mem_set(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
1042 	dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf_copy);
1043 
1044 	if (soc->arch_ops.dp_rx_intrabss_handle_nawds(soc, ta_peer, nbuf_copy,
1045 						      tid_stats))
1046 		return false;
1047 
1048 	if (dp_tx_send((struct cdp_soc_t *)soc,
1049 		       ta_peer->vdev->vdev_id, nbuf_copy)) {
1050 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
1051 					      len);
1052 		tid_stats->fail_cnt[INTRABSS_DROP]++;
1053 		dp_rx_nbuf_free(nbuf_copy);
1054 	} else {
1055 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
1056 					      len);
1057 		tid_stats->intrabss_cnt++;
1058 	}
1059 	return false;
1060 }
1061 
1062 /*
1063  * dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets
1064  *
1065  * @soc: core txrx main context
1066  * @ta_peer: source peer entry
1067  * @tx_vdev_id: VDEV ID for Intra-BSS TX
1068  * @rx_tlv_hdr: start address of rx tlvs
1069  * @nbuf: nbuf that has to be intrabss forwarded
1070  * @tid_stats: tid stats pointer
1071  *
1072  * Return: bool: true if it is forwarded else false
1073  */
1074 bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
1075 			      uint8_t tx_vdev_id,
1076 			      uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
1077 			      struct cdp_tid_rx_stats *tid_stats)
1078 {
1079 	uint16_t len;
1080 
1081 	len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1082 
1083 	/* linearize the nbuf just before we send to
1084 	 * dp_tx_send()
1085 	 */
1086 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
1087 		if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
1088 			return false;
1089 
1090 		nbuf = qdf_nbuf_unshare(nbuf);
1091 		if (!nbuf) {
1092 			DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer,
1093 						      rx.intra_bss.fail,
1094 						      1, len);
1095 			/* return true even though the pkt is
1096 			 * not forwarded. Basically skb_unshare
1097 			 * failed and we want to continue with
1098 			 * next nbuf.
1099 			 */
1100 			tid_stats->fail_cnt[INTRABSS_DROP]++;
1101 			return false;
1102 		}
1103 	}
1104 
1105 	qdf_mem_set(nbuf->cb, 0x0, sizeof(nbuf->cb));
1106 	dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf);
1107 
1108 	if (!dp_tx_send((struct cdp_soc_t *)soc,
1109 			tx_vdev_id, nbuf)) {
1110 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
1111 					      len);
1112 	} else {
1113 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
1114 					      len);
1115 		tid_stats->fail_cnt[INTRABSS_DROP]++;
1116 		return false;
1117 	}
1118 
1119 	return true;
1120 }
1121 
1122 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
1123 
1124 #ifdef MESH_MODE_SUPPORT
1125 
1126 /**
1127  * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
1128  *
1129  * @vdev: DP Virtual device handle
1130  * @nbuf: Buffer pointer
1131  * @rx_tlv_hdr: start of rx tlv header
1132  * @txrx_peer: pointer to peer
1133  *
1134  * This function allocated memory for mesh receive stats and fill the
1135  * required stats. Stores the memory address in skb cb.
1136  *
1137  * Return: void
1138  */
1139 
1140 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1141 			   uint8_t *rx_tlv_hdr,
1142 			   struct dp_txrx_peer *txrx_peer)
1143 {
1144 	struct mesh_recv_hdr_s *rx_info = NULL;
1145 	uint32_t pkt_type;
1146 	uint32_t nss;
1147 	uint32_t rate_mcs;
1148 	uint32_t bw;
1149 	uint8_t primary_chan_num;
1150 	uint32_t center_chan_freq;
1151 	struct dp_soc *soc = vdev->pdev->soc;
1152 	struct dp_peer *peer;
1153 	struct dp_peer *primary_link_peer;
1154 	struct dp_soc *link_peer_soc;
1155 	cdp_peer_stats_param_t buf = {0};
1156 
1157 	/* fill recv mesh stats */
1158 	rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
1159 
1160 	/* upper layers are resposible to free this memory */
1161 
1162 	if (!rx_info) {
1163 		dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
1164 			  vdev->pdev->soc);
1165 		DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
1166 		return;
1167 	}
1168 
1169 	rx_info->rs_flags = MESH_RXHDR_VER1;
1170 	if (qdf_nbuf_is_rx_chfrag_start(nbuf))
1171 		rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
1172 
1173 	if (qdf_nbuf_is_rx_chfrag_end(nbuf))
1174 		rx_info->rs_flags |= MESH_RX_LAST_MSDU;
1175 
1176 	peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_MESH);
1177 	if (peer) {
1178 		if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
1179 			rx_info->rs_flags |= MESH_RX_DECRYPTED;
1180 			rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
1181 								  rx_tlv_hdr);
1182 			if (vdev->osif_get_key)
1183 				vdev->osif_get_key(vdev->osif_vdev,
1184 						   &rx_info->rs_decryptkey[0],
1185 						   &peer->mac_addr.raw[0],
1186 						   rx_info->rs_keyix);
1187 		}
1188 
1189 		dp_peer_unref_delete(peer, DP_MOD_ID_MESH);
1190 	}
1191 
1192 	primary_link_peer = dp_get_primary_link_peer_by_id(soc,
1193 							   txrx_peer->peer_id,
1194 							   DP_MOD_ID_MESH);
1195 
1196 	if (qdf_likely(primary_link_peer)) {
1197 		link_peer_soc = primary_link_peer->vdev->pdev->soc;
1198 		dp_monitor_peer_get_stats_param(link_peer_soc,
1199 						primary_link_peer,
1200 						cdp_peer_rx_snr, &buf);
1201 		rx_info->rs_snr = buf.rx_snr;
1202 		dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_MESH);
1203 	}
1204 
1205 	rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
1206 
1207 	soc = vdev->pdev->soc;
1208 	primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
1209 	center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
1210 
1211 	if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
1212 		rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
1213 							soc->ctrl_psoc,
1214 							vdev->pdev->pdev_id,
1215 							center_chan_freq);
1216 	}
1217 	rx_info->rs_channel = primary_chan_num;
1218 	pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
1219 	rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
1220 	bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
1221 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
1222 	rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
1223 				(bw << 24);
1224 
1225 	qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
1226 
1227 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
1228 		FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
1229 						rx_info->rs_flags,
1230 						rx_info->rs_rssi,
1231 						rx_info->rs_channel,
1232 						rx_info->rs_ratephy1,
1233 						rx_info->rs_keyix,
1234 						rx_info->rs_snr);
1235 
1236 }
1237 
1238 /**
1239  * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
1240  *
1241  * @vdev: DP Virtual device handle
1242  * @nbuf: Buffer pointer
1243  * @rx_tlv_hdr: start of rx tlv header
1244  *
1245  * This checks if the received packet is matching any filter out
1246  * catogery and and drop the packet if it matches.
1247  *
1248  * Return: status(0 indicates drop, 1 indicate to no drop)
1249  */
1250 
1251 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1252 					uint8_t *rx_tlv_hdr)
1253 {
1254 	union dp_align_mac_addr mac_addr;
1255 	struct dp_soc *soc = vdev->pdev->soc;
1256 
1257 	if (qdf_unlikely(vdev->mesh_rx_filter)) {
1258 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
1259 			if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
1260 						  rx_tlv_hdr))
1261 				return  QDF_STATUS_SUCCESS;
1262 
1263 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
1264 			if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
1265 						  rx_tlv_hdr))
1266 				return  QDF_STATUS_SUCCESS;
1267 
1268 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
1269 			if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
1270 						   rx_tlv_hdr) &&
1271 			    !hal_rx_mpdu_get_to_ds(soc->hal_soc,
1272 						   rx_tlv_hdr))
1273 				return  QDF_STATUS_SUCCESS;
1274 
1275 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
1276 			if (hal_rx_mpdu_get_addr1(soc->hal_soc,
1277 						  rx_tlv_hdr,
1278 					&mac_addr.raw[0]))
1279 				return QDF_STATUS_E_FAILURE;
1280 
1281 			if (!qdf_mem_cmp(&mac_addr.raw[0],
1282 					&vdev->mac_addr.raw[0],
1283 					QDF_MAC_ADDR_SIZE))
1284 				return  QDF_STATUS_SUCCESS;
1285 		}
1286 
1287 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
1288 			if (hal_rx_mpdu_get_addr2(soc->hal_soc,
1289 						  rx_tlv_hdr,
1290 						  &mac_addr.raw[0]))
1291 				return QDF_STATUS_E_FAILURE;
1292 
1293 			if (!qdf_mem_cmp(&mac_addr.raw[0],
1294 					&vdev->mac_addr.raw[0],
1295 					QDF_MAC_ADDR_SIZE))
1296 				return  QDF_STATUS_SUCCESS;
1297 		}
1298 	}
1299 
1300 	return QDF_STATUS_E_FAILURE;
1301 }
1302 
1303 #else
1304 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1305 				uint8_t *rx_tlv_hdr, struct dp_txrx_peer *peer)
1306 {
1307 }
1308 
1309 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1310 					uint8_t *rx_tlv_hdr)
1311 {
1312 	return QDF_STATUS_E_FAILURE;
1313 }
1314 
1315 #endif
1316 
1317 #ifdef FEATURE_NAC_RSSI
1318 /**
1319  * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
1320  * @soc: DP SOC handle
1321  * @mpdu: mpdu for which peer is invalid
1322  * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
1323  * pool_id has same mapping)
1324  *
1325  * return: integer type
1326  */
1327 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
1328 				   uint8_t mac_id)
1329 {
1330 	struct dp_invalid_peer_msg msg;
1331 	struct dp_vdev *vdev = NULL;
1332 	struct dp_pdev *pdev = NULL;
1333 	struct ieee80211_frame *wh;
1334 	qdf_nbuf_t curr_nbuf, next_nbuf;
1335 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
1336 	uint8_t *rx_pkt_hdr = NULL;
1337 	int i = 0;
1338 
1339 	if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
1340 		dp_rx_debug("%pK: Drop decapped frames", soc);
1341 		goto free;
1342 	}
1343 
1344 	/* In RAW packet, packet header will be part of data */
1345 	rx_pkt_hdr = rx_tlv_hdr + soc->rx_pkt_tlv_size;
1346 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
1347 
1348 	if (!DP_FRAME_IS_DATA(wh)) {
1349 		dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
1350 		goto free;
1351 	}
1352 
1353 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
1354 		dp_rx_err("%pK: Invalid nbuf length", soc);
1355 		goto free;
1356 	}
1357 
1358 	/* In DMAC case the rx_desc_pools are common across PDEVs
1359 	 * so PDEV cannot be derived from the pool_id.
1360 	 *
1361 	 * link_id need to derived from the TLV tag word which is
1362 	 * disabled by default. For now adding a WAR to get vdev
1363 	 * with brute force this need to fixed with word based subscription
1364 	 * support is added by enabling TLV tag word
1365 	 */
1366 	if (soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
1367 		for (i = 0; i < MAX_PDEV_CNT; i++) {
1368 			pdev = soc->pdev_list[i];
1369 
1370 			if (!pdev || qdf_unlikely(pdev->is_pdev_down))
1371 				continue;
1372 
1373 			TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1374 				if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1375 						QDF_MAC_ADDR_SIZE) == 0) {
1376 					goto out;
1377 				}
1378 			}
1379 		}
1380 	} else {
1381 		pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1382 
1383 		if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
1384 			dp_rx_err("%pK: PDEV %s",
1385 				  soc, !pdev ? "not found" : "down");
1386 			goto free;
1387 		}
1388 
1389 		if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
1390 		    QDF_STATUS_SUCCESS)
1391 			return 0;
1392 
1393 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1394 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1395 					QDF_MAC_ADDR_SIZE) == 0) {
1396 				goto out;
1397 			}
1398 		}
1399 	}
1400 
1401 	if (!vdev) {
1402 		dp_rx_err("%pK: VDEV not found", soc);
1403 		goto free;
1404 	}
1405 out:
1406 	msg.wh = wh;
1407 	qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
1408 	msg.nbuf = mpdu;
1409 	msg.vdev_id = vdev->vdev_id;
1410 
1411 	/*
1412 	 * NOTE: Only valid for HKv1.
1413 	 * If smart monitor mode is enabled on RE, we are getting invalid
1414 	 * peer frames with RA as STA mac of RE and the TA not matching
1415 	 * with any NAC list or the the BSSID.Such frames need to dropped
1416 	 * in order to avoid HM_WDS false addition.
1417 	 */
1418 	if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
1419 		if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
1420 			dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
1421 				   soc, wh->i_addr1);
1422 			goto free;
1423 		}
1424 		pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
1425 				(struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
1426 				pdev->pdev_id, &msg);
1427 	}
1428 
1429 free:
1430 	/* Drop and free packet */
1431 	curr_nbuf = mpdu;
1432 	while (curr_nbuf) {
1433 		next_nbuf = qdf_nbuf_next(curr_nbuf);
1434 		dp_rx_nbuf_free(curr_nbuf);
1435 		curr_nbuf = next_nbuf;
1436 	}
1437 
1438 	return 0;
1439 }
1440 
1441 /**
1442  * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
1443  * @soc: DP SOC handle
1444  * @mpdu: mpdu for which peer is invalid
1445  * @mpdu_done: if an mpdu is completed
1446  * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
1447  * pool_id has same mapping)
1448  *
1449  * return: integer type
1450  */
1451 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
1452 					qdf_nbuf_t mpdu, bool mpdu_done,
1453 					uint8_t mac_id)
1454 {
1455 	/* Only trigger the process when mpdu is completed */
1456 	if (mpdu_done)
1457 		dp_rx_process_invalid_peer(soc, mpdu, mac_id);
1458 }
1459 #else
1460 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
1461 				   uint8_t mac_id)
1462 {
1463 	qdf_nbuf_t curr_nbuf, next_nbuf;
1464 	struct dp_pdev *pdev;
1465 	struct dp_vdev *vdev = NULL;
1466 	struct ieee80211_frame *wh;
1467 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
1468 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
1469 
1470 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
1471 
1472 	if (!DP_FRAME_IS_DATA(wh)) {
1473 		QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
1474 				   "only for data frames");
1475 		goto free;
1476 	}
1477 
1478 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
1479 		dp_rx_info_rl("%pK: Invalid nbuf length", soc);
1480 		goto free;
1481 	}
1482 
1483 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1484 	if (!pdev) {
1485 		dp_rx_info_rl("%pK: PDEV not found", soc);
1486 		goto free;
1487 	}
1488 
1489 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
1490 	DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
1491 		if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1492 				QDF_MAC_ADDR_SIZE) == 0) {
1493 			qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1494 			goto out;
1495 		}
1496 	}
1497 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1498 
1499 	if (!vdev) {
1500 		dp_rx_info_rl("%pK: VDEV not found", soc);
1501 		goto free;
1502 	}
1503 
1504 out:
1505 	if (soc->cdp_soc.ol_ops->rx_invalid_peer)
1506 		soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
1507 free:
1508 	/* reset the head and tail pointers */
1509 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1510 	if (pdev) {
1511 		pdev->invalid_peer_head_msdu = NULL;
1512 		pdev->invalid_peer_tail_msdu = NULL;
1513 	}
1514 
1515 	/* Drop and free packet */
1516 	curr_nbuf = mpdu;
1517 	while (curr_nbuf) {
1518 		next_nbuf = qdf_nbuf_next(curr_nbuf);
1519 		dp_rx_nbuf_free(curr_nbuf);
1520 		curr_nbuf = next_nbuf;
1521 	}
1522 
1523 	/* Reset the head and tail pointers */
1524 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1525 	if (pdev) {
1526 		pdev->invalid_peer_head_msdu = NULL;
1527 		pdev->invalid_peer_tail_msdu = NULL;
1528 	}
1529 
1530 	return 0;
1531 }
1532 
1533 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
1534 					qdf_nbuf_t mpdu, bool mpdu_done,
1535 					uint8_t mac_id)
1536 {
1537 	/* Process the nbuf */
1538 	dp_rx_process_invalid_peer(soc, mpdu, mac_id);
1539 }
1540 #endif
1541 
1542 #ifndef QCA_HOST_MODE_WIFI_DISABLED
1543 
1544 #ifdef RECEIVE_OFFLOAD
1545 /**
1546  * dp_rx_print_offload_info() - Print offload info from RX TLV
1547  * @soc: dp soc handle
1548  * @msdu: MSDU for which the offload info is to be printed
1549  *
1550  * Return: None
1551  */
1552 static void dp_rx_print_offload_info(struct dp_soc *soc,
1553 				     qdf_nbuf_t msdu)
1554 {
1555 	dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
1556 	dp_verbose_debug("lro_eligible 0x%x",
1557 			 QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
1558 	dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
1559 	dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
1560 	dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
1561 	dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
1562 	dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
1563 	dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
1564 	dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
1565 	dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
1566 	dp_verbose_debug("---------------------------------------------------------");
1567 }
1568 
1569 /**
1570  * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
1571  * @soc: DP SOC handle
1572  * @rx_tlv: RX TLV received for the msdu
1573  * @msdu: msdu for which GRO info needs to be filled
1574  * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
1575  *
1576  * Return: None
1577  */
1578 void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
1579 			 qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
1580 {
1581 	struct hal_offload_info offload_info;
1582 
1583 	if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
1584 		return;
1585 
1586 	if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
1587 		return;
1588 
1589 	*rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
1590 
1591 	QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
1592 	QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
1593 	QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
1594 			hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
1595 						  rx_tlv);
1596 	QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
1597 	QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
1598 	QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
1599 	QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
1600 	QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
1601 	QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
1602 	QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
1603 
1604 	dp_rx_print_offload_info(soc, msdu);
1605 }
1606 #endif /* RECEIVE_OFFLOAD */
1607 
1608 /**
1609  * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
1610  *
1611  * @soc: DP soc handle
1612  * @nbuf: pointer to msdu.
1613  * @mpdu_len: mpdu length
1614  * @l3_pad_len: L3 padding length by HW
1615  *
1616  * Return: returns true if nbuf is last msdu of mpdu else retuns false.
1617  */
1618 static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
1619 					 qdf_nbuf_t nbuf,
1620 					 uint16_t *mpdu_len,
1621 					 uint32_t l3_pad_len)
1622 {
1623 	bool last_nbuf;
1624 	uint32_t pkt_hdr_size;
1625 
1626 	pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
1627 
1628 	if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
1629 		qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
1630 		last_nbuf = false;
1631 		*mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
1632 	} else {
1633 		qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
1634 		last_nbuf = true;
1635 		*mpdu_len = 0;
1636 	}
1637 
1638 	return last_nbuf;
1639 }
1640 
1641 /**
1642  * dp_get_l3_hdr_pad_len() - get L3 header padding length.
1643  *
1644  * @soc: DP soc handle
1645  * @nbuf: pointer to msdu.
1646  *
1647  * Return: returns padding length in bytes.
1648  */
1649 static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
1650 					     qdf_nbuf_t nbuf)
1651 {
1652 	uint32_t l3_hdr_pad = 0;
1653 	uint8_t *rx_tlv_hdr;
1654 	struct hal_rx_msdu_metadata msdu_metadata;
1655 
1656 	while (nbuf) {
1657 		if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
1658 			/* scattered msdu end with continuation is 0 */
1659 			rx_tlv_hdr = qdf_nbuf_data(nbuf);
1660 			hal_rx_msdu_metadata_get(soc->hal_soc,
1661 						 rx_tlv_hdr,
1662 						 &msdu_metadata);
1663 			l3_hdr_pad = msdu_metadata.l3_hdr_pad;
1664 			break;
1665 		}
1666 		nbuf = nbuf->next;
1667 	}
1668 
1669 	return l3_hdr_pad;
1670 }
1671 
1672 /**
1673  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
1674  *		     multiple nbufs.
1675  * @soc: DP SOC handle
1676  * @nbuf: pointer to the first msdu of an amsdu.
1677  *
1678  * This function implements the creation of RX frag_list for cases
1679  * where an MSDU is spread across multiple nbufs.
1680  *
1681  * Return: returns the head nbuf which contains complete frag_list.
1682  */
1683 qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
1684 {
1685 	qdf_nbuf_t parent, frag_list, next = NULL;
1686 	uint16_t frag_list_len = 0;
1687 	uint16_t mpdu_len;
1688 	bool last_nbuf;
1689 	uint32_t l3_hdr_pad_offset = 0;
1690 
1691 	/*
1692 	 * Use msdu len got from REO entry descriptor instead since
1693 	 * there is case the RX PKT TLV is corrupted while msdu_len
1694 	 * from REO descriptor is right for non-raw RX scatter msdu.
1695 	 */
1696 	mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1697 
1698 	/*
1699 	 * this is a case where the complete msdu fits in one single nbuf.
1700 	 * in this case HW sets both start and end bit and we only need to
1701 	 * reset these bits for RAW mode simulator to decap the pkt
1702 	 */
1703 	if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
1704 					qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1705 		qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
1706 		qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
1707 		return nbuf;
1708 	}
1709 
1710 	l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
1711 	/*
1712 	 * This is a case where we have multiple msdus (A-MSDU) spread across
1713 	 * multiple nbufs. here we create a fraglist out of these nbufs.
1714 	 *
1715 	 * the moment we encounter a nbuf with continuation bit set we
1716 	 * know for sure we have an MSDU which is spread across multiple
1717 	 * nbufs. We loop through and reap nbufs till we reach last nbuf.
1718 	 */
1719 	parent = nbuf;
1720 	frag_list = nbuf->next;
1721 	nbuf = nbuf->next;
1722 
1723 	/*
1724 	 * set the start bit in the first nbuf we encounter with continuation
1725 	 * bit set. This has the proper mpdu length set as it is the first
1726 	 * msdu of the mpdu. this becomes the parent nbuf and the subsequent
1727 	 * nbufs will form the frag_list of the parent nbuf.
1728 	 */
1729 	qdf_nbuf_set_rx_chfrag_start(parent, 1);
1730 	/*
1731 	 * L3 header padding is only needed for the 1st buffer
1732 	 * in a scattered msdu
1733 	 */
1734 	last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
1735 					  l3_hdr_pad_offset);
1736 
1737 	/*
1738 	 * MSDU cont bit is set but reported MPDU length can fit
1739 	 * in to single buffer
1740 	 *
1741 	 * Increment error stats and avoid SG list creation
1742 	 */
1743 	if (last_nbuf) {
1744 		DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
1745 		qdf_nbuf_pull_head(parent,
1746 				   soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
1747 		return parent;
1748 	}
1749 
1750 	/*
1751 	 * this is where we set the length of the fragments which are
1752 	 * associated to the parent nbuf. We iterate through the frag_list
1753 	 * till we hit the last_nbuf of the list.
1754 	 */
1755 	do {
1756 		last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
1757 		qdf_nbuf_pull_head(nbuf,
1758 				   soc->rx_pkt_tlv_size);
1759 		frag_list_len += qdf_nbuf_len(nbuf);
1760 
1761 		if (last_nbuf) {
1762 			next = nbuf->next;
1763 			nbuf->next = NULL;
1764 			break;
1765 		} else if (qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1766 			dp_err("Invalid packet length\n");
1767 			qdf_assert_always(0);
1768 		}
1769 		nbuf = nbuf->next;
1770 	} while (!last_nbuf);
1771 
1772 	qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
1773 	qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
1774 	parent->next = next;
1775 
1776 	qdf_nbuf_pull_head(parent,
1777 			   soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
1778 	return parent;
1779 }
1780 
1781 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
1782 
1783 #ifdef QCA_PEER_EXT_STATS
1784 /*
1785  * dp_rx_compute_tid_delay - Computer per TID delay stats
1786  * @peer: DP soc context
1787  * @nbuf: NBuffer
1788  *
1789  * Return: Void
1790  */
1791 void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
1792 			     qdf_nbuf_t nbuf)
1793 {
1794 	struct cdp_delay_rx_stats  *rx_delay = &stats->rx_delay;
1795 	uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
1796 
1797 	dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
1798 }
1799 #endif /* QCA_PEER_EXT_STATS */
1800 
1801 /**
1802  * dp_rx_compute_delay() - Compute and fill in all timestamps
1803  *				to pass in correct fields
1804  *
1805  * @vdev: pdev handle
1806  * @tx_desc: tx descriptor
1807  * @tid: tid value
1808  * Return: none
1809  */
1810 void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
1811 {
1812 	uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
1813 	int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
1814 	uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
1815 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
1816 	uint32_t interframe_delay =
1817 		(uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
1818 	struct cdp_tid_rx_stats *rstats =
1819 		&vdev->pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
1820 
1821 	dp_update_delay_stats(NULL, rstats, to_stack, tid,
1822 			      CDP_DELAY_STATS_REAP_STACK, ring_id, false);
1823 	/*
1824 	 * Update interframe delay stats calculated at deliver_data_ol point.
1825 	 * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
1826 	 * interframe delay will not be calculate correctly for 1st frame.
1827 	 * On the other side, this will help in avoiding extra per packet check
1828 	 * of vdev->prev_rx_deliver_tstamp.
1829 	 */
1830 	dp_update_delay_stats(NULL, rstats, interframe_delay, tid,
1831 			      CDP_DELAY_STATS_RX_INTERFRAME, ring_id, false);
1832 	vdev->prev_rx_deliver_tstamp = current_ts;
1833 }
1834 
1835 /**
1836  * dp_rx_drop_nbuf_list() - drop an nbuf list
1837  * @pdev: dp pdev reference
1838  * @buf_list: buffer list to be dropepd
1839  *
1840  * Return: int (number of bufs dropped)
1841  */
1842 static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
1843 				       qdf_nbuf_t buf_list)
1844 {
1845 	struct cdp_tid_rx_stats *stats = NULL;
1846 	uint8_t tid = 0, ring_id = 0;
1847 	int num_dropped = 0;
1848 	qdf_nbuf_t buf, next_buf;
1849 
1850 	buf = buf_list;
1851 	while (buf) {
1852 		ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
1853 		next_buf = qdf_nbuf_queue_next(buf);
1854 		tid = qdf_nbuf_get_tid_val(buf);
1855 		if (qdf_likely(pdev)) {
1856 			stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
1857 			stats->fail_cnt[INVALID_PEER_VDEV]++;
1858 			stats->delivered_to_stack--;
1859 		}
1860 		dp_rx_nbuf_free(buf);
1861 		buf = next_buf;
1862 		num_dropped++;
1863 	}
1864 
1865 	return num_dropped;
1866 }
1867 
1868 #ifdef QCA_SUPPORT_WDS_EXTENDED
1869 /**
1870  * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
1871  * @soc: core txrx main context
1872  * @vdev: vdev
1873  * @txrx_peer: txrx peer
1874  * @nbuf_head: skb list head
1875  *
1876  * Return: true if packet is delivered to netdev per STA.
1877  */
1878 static inline bool
1879 dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
1880 			   struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
1881 {
1882 	/*
1883 	 * When extended WDS is disabled, frames are sent to AP netdevice.
1884 	 */
1885 	if (qdf_likely(!vdev->wds_ext_enabled))
1886 		return false;
1887 
1888 	/*
1889 	 * There can be 2 cases:
1890 	 * 1. Send frame to parent netdev if its not for netdev per STA
1891 	 * 2. If frame is meant for netdev per STA:
1892 	 *    a. Send frame to appropriate netdev using registered fp.
1893 	 *    b. If fp is NULL, drop the frames.
1894 	 */
1895 	if (!txrx_peer->wds_ext.init)
1896 		return false;
1897 
1898 	if (txrx_peer->osif_rx)
1899 		txrx_peer->osif_rx(txrx_peer->wds_ext.osif_peer, nbuf_head);
1900 	else
1901 		dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
1902 
1903 	return true;
1904 }
1905 
1906 #else
1907 static inline bool
1908 dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
1909 			   struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
1910 {
1911 	return false;
1912 }
1913 #endif
1914 
1915 #ifdef PEER_CACHE_RX_PKTS
1916 /**
1917  * dp_rx_flush_rx_cached() - flush cached rx frames
1918  * @peer: peer
1919  * @drop: flag to drop frames or forward to net stack
1920  *
1921  * Return: None
1922  */
1923 void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
1924 {
1925 	struct dp_peer_cached_bufq *bufqi;
1926 	struct dp_rx_cached_buf *cache_buf = NULL;
1927 	ol_txrx_rx_fp data_rx = NULL;
1928 	int num_buff_elem;
1929 	QDF_STATUS status;
1930 
1931 	/*
1932 	 * Flush dp cached frames only for mld peers and legacy peers, as
1933 	 * link peers don't store cached frames
1934 	 */
1935 	if (IS_MLO_DP_LINK_PEER(peer))
1936 		return;
1937 
1938 	if (!peer->txrx_peer) {
1939 		dp_err("txrx_peer NULL!! peer mac_addr("QDF_MAC_ADDR_FMT")",
1940 			QDF_MAC_ADDR_REF(peer->mac_addr.raw));
1941 		return;
1942 	}
1943 
1944 	if (qdf_atomic_inc_return(&peer->txrx_peer->flush_in_progress) > 1) {
1945 		qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
1946 		return;
1947 	}
1948 
1949 	qdf_spin_lock_bh(&peer->peer_info_lock);
1950 	if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
1951 		data_rx = peer->vdev->osif_rx;
1952 	else
1953 		drop = true;
1954 	qdf_spin_unlock_bh(&peer->peer_info_lock);
1955 
1956 	bufqi = &peer->txrx_peer->bufq_info;
1957 
1958 	qdf_spin_lock_bh(&bufqi->bufq_lock);
1959 	qdf_list_remove_front(&bufqi->cached_bufq,
1960 			      (qdf_list_node_t **)&cache_buf);
1961 	while (cache_buf) {
1962 		num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
1963 								cache_buf->buf);
1964 		bufqi->entries -= num_buff_elem;
1965 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
1966 		if (drop) {
1967 			bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
1968 							      cache_buf->buf);
1969 		} else {
1970 			/* Flush the cached frames to OSIF DEV */
1971 			status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
1972 			if (status != QDF_STATUS_SUCCESS)
1973 				bufqi->dropped = dp_rx_drop_nbuf_list(
1974 							peer->vdev->pdev,
1975 							cache_buf->buf);
1976 		}
1977 		qdf_mem_free(cache_buf);
1978 		cache_buf = NULL;
1979 		qdf_spin_lock_bh(&bufqi->bufq_lock);
1980 		qdf_list_remove_front(&bufqi->cached_bufq,
1981 				      (qdf_list_node_t **)&cache_buf);
1982 	}
1983 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
1984 	qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
1985 }
1986 
1987 /**
1988  * dp_rx_enqueue_rx() - cache rx frames
1989  * @peer: peer
1990  * @rx_buf_list: cache buffer list
1991  *
1992  * Return: None
1993  */
1994 static QDF_STATUS
1995 dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list)
1996 {
1997 	struct dp_rx_cached_buf *cache_buf;
1998 	struct dp_peer_cached_bufq *bufqi = &txrx_peer->bufq_info;
1999 	int num_buff_elem;
2000 	QDF_STATUS ret = QDF_STATUS_SUCCESS;
2001 	struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
2002 	struct dp_peer *peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id,
2003 						     DP_MOD_ID_RX);
2004 
2005 	if (!peer) {
2006 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2007 						      rx_buf_list);
2008 		return QDF_STATUS_E_INVAL;
2009 	}
2010 
2011 	dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
2012 		    bufqi->dropped);
2013 	if (!peer->valid) {
2014 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2015 						      rx_buf_list);
2016 		ret = QDF_STATUS_E_INVAL;
2017 		goto fail;
2018 	}
2019 
2020 	qdf_spin_lock_bh(&bufqi->bufq_lock);
2021 	if (bufqi->entries >= bufqi->thresh) {
2022 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2023 						      rx_buf_list);
2024 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
2025 		ret = QDF_STATUS_E_RESOURCES;
2026 		goto fail;
2027 	}
2028 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
2029 
2030 	num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
2031 
2032 	cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
2033 	if (!cache_buf) {
2034 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2035 			  "Failed to allocate buf to cache rx frames");
2036 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2037 						      rx_buf_list);
2038 		ret = QDF_STATUS_E_NOMEM;
2039 		goto fail;
2040 	}
2041 
2042 	cache_buf->buf = rx_buf_list;
2043 
2044 	qdf_spin_lock_bh(&bufqi->bufq_lock);
2045 	qdf_list_insert_back(&bufqi->cached_bufq,
2046 			     &cache_buf->node);
2047 	bufqi->entries += num_buff_elem;
2048 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
2049 
2050 fail:
2051 	dp_peer_unref_delete(peer, DP_MOD_ID_RX);
2052 	return ret;
2053 }
2054 
2055 static inline
2056 bool dp_rx_is_peer_cache_bufq_supported(void)
2057 {
2058 	return true;
2059 }
2060 #else
2061 static inline
2062 bool dp_rx_is_peer_cache_bufq_supported(void)
2063 {
2064 	return false;
2065 }
2066 
2067 static inline QDF_STATUS
2068 dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list)
2069 {
2070 	return QDF_STATUS_SUCCESS;
2071 }
2072 #endif
2073 
2074 #ifndef DELIVERY_TO_STACK_STATUS_CHECK
2075 /**
2076  * dp_rx_check_delivery_to_stack() - Deliver pkts to network
2077  * using the appropriate call back functions.
2078  * @soc: soc
2079  * @vdev: vdev
2080  * @peer: peer
2081  * @nbuf_head: skb list head
2082  * @nbuf_tail: skb list tail
2083  *
2084  * Return: None
2085  */
2086 static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
2087 					  struct dp_vdev *vdev,
2088 					  struct dp_txrx_peer *txrx_peer,
2089 					  qdf_nbuf_t nbuf_head)
2090 {
2091 	if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
2092 						    txrx_peer, nbuf_head)))
2093 		return;
2094 
2095 	/* Function pointer initialized only when FISA is enabled */
2096 	if (vdev->osif_fisa_rx)
2097 		/* on failure send it via regular path */
2098 		vdev->osif_fisa_rx(soc, vdev, nbuf_head);
2099 	else
2100 		vdev->osif_rx(vdev->osif_vdev, nbuf_head);
2101 }
2102 
2103 #else
2104 /**
2105  * dp_rx_check_delivery_to_stack() - Deliver pkts to network
2106  * using the appropriate call back functions.
2107  * @soc: soc
2108  * @vdev: vdev
2109  * @txrx_peer: txrx peer
2110  * @nbuf_head: skb list head
2111  * @nbuf_tail: skb list tail
2112  *
2113  * Check the return status of the call back function and drop
2114  * the packets if the return status indicates a failure.
2115  *
2116  * Return: None
2117  */
2118 static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
2119 					  struct dp_vdev *vdev,
2120 					  struct dp_txrx_peer *txrx_peer,
2121 					  qdf_nbuf_t nbuf_head)
2122 {
2123 	int num_nbuf = 0;
2124 	QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
2125 
2126 	/* Function pointer initialized only when FISA is enabled */
2127 	if (vdev->osif_fisa_rx)
2128 		/* on failure send it via regular path */
2129 		ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
2130 	else if (vdev->osif_rx)
2131 		ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
2132 
2133 	if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
2134 		num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
2135 		DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
2136 		if (txrx_peer)
2137 			DP_PEER_STATS_FLAT_DEC(txrx_peer, to_stack.num,
2138 					       num_nbuf);
2139 	}
2140 }
2141 #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
2142 
2143 /*
2144  * dp_rx_validate_rx_callbacks() - validate rx callbacks
2145  * @soc DP soc
2146  * @vdev: DP vdev handle
2147  * @txrx_peer: pointer to the txrx peer object
2148  * nbuf_head: skb list head
2149  *
2150  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
2151  *			QDF_STATUS_E_FAILURE
2152  */
2153 static inline QDF_STATUS
2154 dp_rx_validate_rx_callbacks(struct dp_soc *soc,
2155 			    struct dp_vdev *vdev,
2156 			    struct dp_txrx_peer *txrx_peer,
2157 			    qdf_nbuf_t nbuf_head)
2158 {
2159 	int num_nbuf;
2160 
2161 	if (qdf_unlikely(!vdev || vdev->delete.pending)) {
2162 		num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
2163 		/*
2164 		 * This is a special case where vdev is invalid,
2165 		 * so we cannot know the pdev to which this packet
2166 		 * belonged. Hence we update the soc rx error stats.
2167 		 */
2168 		DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
2169 		return QDF_STATUS_E_FAILURE;
2170 	}
2171 
2172 	/*
2173 	 * highly unlikely to have a vdev without a registered rx
2174 	 * callback function. if so let us free the nbuf_list.
2175 	 */
2176 	if (qdf_unlikely(!vdev->osif_rx)) {
2177 		if (txrx_peer && dp_rx_is_peer_cache_bufq_supported()) {
2178 			dp_rx_enqueue_rx(txrx_peer, nbuf_head);
2179 		} else {
2180 			num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
2181 							nbuf_head);
2182 			DP_PEER_TO_STACK_DECC(txrx_peer, num_nbuf,
2183 					      vdev->pdev->enhanced_stats_en);
2184 		}
2185 		return QDF_STATUS_E_FAILURE;
2186 	}
2187 
2188 	return QDF_STATUS_SUCCESS;
2189 }
2190 
2191 QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
2192 				  struct dp_vdev *vdev,
2193 				  struct dp_txrx_peer *txrx_peer,
2194 				  qdf_nbuf_t nbuf_head,
2195 				  qdf_nbuf_t nbuf_tail)
2196 {
2197 	if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
2198 					QDF_STATUS_SUCCESS)
2199 		return QDF_STATUS_E_FAILURE;
2200 
2201 	if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
2202 			(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
2203 		vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
2204 					 &nbuf_tail);
2205 	}
2206 
2207 	dp_rx_check_delivery_to_stack(soc, vdev, txrx_peer, nbuf_head);
2208 
2209 	return QDF_STATUS_SUCCESS;
2210 }
2211 
2212 #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
2213 QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
2214 					struct dp_vdev *vdev,
2215 					struct dp_txrx_peer *txrx_peer,
2216 					qdf_nbuf_t nbuf_head,
2217 					qdf_nbuf_t nbuf_tail)
2218 {
2219 	if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
2220 					QDF_STATUS_SUCCESS)
2221 		return QDF_STATUS_E_FAILURE;
2222 
2223 	vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
2224 
2225 	return QDF_STATUS_SUCCESS;
2226 }
2227 #endif
2228 
2229 #ifndef QCA_HOST_MODE_WIFI_DISABLED
2230 #ifdef VDEV_PEER_PROTOCOL_COUNT
2231 #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer) \
2232 { \
2233 	qdf_nbuf_t nbuf_local; \
2234 	struct dp_txrx_peer *txrx_peer_local; \
2235 	struct dp_vdev *vdev_local = vdev_hdl; \
2236 	do { \
2237 		if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
2238 			break; \
2239 		nbuf_local = nbuf; \
2240 		txrx_peer_local = txrx_peer; \
2241 		if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
2242 			break; \
2243 		else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
2244 			break; \
2245 		dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
2246 						       (nbuf_local), \
2247 						       (txrx_peer_local), 0, 1); \
2248 	} while (0); \
2249 }
2250 #else
2251 #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer)
2252 #endif
2253 
2254 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
2255 /**
2256  * dp_rx_rates_stats_update() - update rate stats
2257  * from rx msdu.
2258  * @soc: datapath soc handle
2259  * @nbuf: received msdu buffer
2260  * @rx_tlv_hdr: rx tlv header
2261  * @txrx_peer: datapath txrx_peer handle
2262  * @sgi: Short Guard Interval
2263  * @mcs: Modulation and Coding Set
2264  * @nss: Number of Spatial Streams
2265  * @bw: BandWidth
2266  * @pkt_type: Corresponds to preamble
2267  *
2268  * To be precisely record rates, following factors are considered:
2269  * Exclude specific frames, ARP, DHCP, ssdp, etc.
2270  * Make sure to affect rx throughput as least as possible.
2271  *
2272  * Return: void
2273  */
2274 static void
2275 dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2276 			 uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
2277 			 uint32_t sgi, uint32_t mcs,
2278 			 uint32_t nss, uint32_t bw, uint32_t pkt_type)
2279 {
2280 	uint32_t rix;
2281 	uint16_t ratecode;
2282 	uint32_t avg_rx_rate;
2283 	uint32_t ratekbps;
2284 	enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
2285 
2286 	if (soc->high_throughput ||
2287 	    dp_rx_data_is_specific(soc->hal_soc, rx_tlv_hdr, nbuf)) {
2288 		return;
2289 	}
2290 
2291 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.rx_rate, mcs);
2292 
2293 	/* In 11b mode, the nss we get from tlv is 0, invalid and should be 1 */
2294 	if (pkt_type == DOT11_B)
2295 		nss = 1;
2296 
2297 	/* here pkt_type corresponds to preamble */
2298 	ratekbps = dp_getrateindex(sgi,
2299 				   mcs,
2300 				   nss - 1,
2301 				   pkt_type,
2302 				   bw,
2303 				   punc_mode,
2304 				   &rix,
2305 				   &ratecode);
2306 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.last_rx_rate, ratekbps);
2307 	avg_rx_rate =
2308 		dp_ath_rate_lpf(txrx_peer->stats.extd_stats.rx.avg_rx_rate,
2309 				ratekbps);
2310 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.avg_rx_rate, avg_rx_rate);
2311 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.nss_info, nss);
2312 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.mcs_info, mcs);
2313 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.bw_info, bw);
2314 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.gi_info, sgi);
2315 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.preamble_info, pkt_type);
2316 }
2317 #else
2318 static inline void
2319 dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2320 			 uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
2321 			 uint32_t sgi, uint32_t mcs,
2322 			 uint32_t nss, uint32_t bw, uint32_t pkt_type)
2323 {
2324 }
2325 #endif /* FEATURE_RX_LINKSPEED_ROAM_TRIGGER */
2326 
2327 #ifndef QCA_ENHANCED_STATS_SUPPORT
2328 /**
2329  * dp_rx_msdu_extd_stats_update(): Update Rx extended path stats for peer
2330  *
2331  * @soc: datapath soc handle
2332  * @nbuf: received msdu buffer
2333  * @rx_tlv_hdr: rx tlv header
2334  * @txrx_peer: datapath txrx_peer handle
2335  *
2336  * Return: void
2337  */
2338 static inline
2339 void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2340 				  uint8_t *rx_tlv_hdr,
2341 				  struct dp_txrx_peer *txrx_peer)
2342 {
2343 	bool is_ampdu;
2344 	uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
2345 	uint8_t dst_mcs_idx;
2346 
2347 	/*
2348 	 * TODO - For KIWI this field is present in ring_desc
2349 	 * Try to use ring desc instead of tlv.
2350 	 */
2351 	is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
2352 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.ampdu_cnt, 1, is_ampdu);
2353 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
2354 
2355 	sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
2356 	mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
2357 	tid = qdf_nbuf_get_tid_val(nbuf);
2358 	bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
2359 	reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
2360 							      rx_tlv_hdr);
2361 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
2362 	pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
2363 	/* do HW to SW pkt type conversion */
2364 	pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX :
2365 		    hal_2_dp_pkt_type_map[pkt_type]);
2366 
2367 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[mcs], 1,
2368 		      ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
2369 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
2370 		      ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
2371 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.bw[bw], 1);
2372 	/*
2373 	 * only if nss > 0 and pkt_type is 11N/AC/AX,
2374 	 * then increase index [nss - 1] in array counter.
2375 	 */
2376 	if (nss > 0 && CDP_IS_PKT_TYPE_SUPPORT_NSS(pkt_type))
2377 		DP_PEER_EXTD_STATS_INC(txrx_peer, rx.nss[nss - 1], 1);
2378 
2379 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.sgi_count[sgi], 1);
2380 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.mic_err, 1,
2381 				   hal_rx_tlv_mic_err_get(soc->hal_soc,
2382 				   rx_tlv_hdr));
2383 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.decrypt_err, 1,
2384 				   hal_rx_tlv_decrypt_err_get(soc->hal_soc,
2385 				   rx_tlv_hdr));
2386 
2387 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
2388 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.reception_type[reception_type], 1);
2389 
2390 	dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs);
2391 	if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx)
2392 		DP_PEER_EXTD_STATS_INC(txrx_peer,
2393 				       rx.pkt_type[pkt_type].mcs_count[dst_mcs_idx],
2394 				       1);
2395 
2396 	dp_rx_rates_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer,
2397 				 sgi, mcs, nss, bw, pkt_type);
2398 }
2399 #else
2400 static inline
2401 void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2402 				  uint8_t *rx_tlv_hdr,
2403 				  struct dp_txrx_peer *txrx_peer)
2404 {
2405 }
2406 #endif
2407 
2408 #if defined(DP_PKT_STATS_PER_LMAC) && defined(WLAN_FEATURE_11BE_MLO)
2409 static inline void
2410 dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
2411 			       qdf_nbuf_t nbuf)
2412 {
2413 	uint8_t lmac_id = qdf_nbuf_get_lmac_id(nbuf);
2414 
2415 	/* only count stats per lmac for MLO connection*/
2416 	DP_PEER_PER_PKT_STATS_INCC_PKT(txrx_peer, rx.rx_lmac[lmac_id], 1,
2417 				       QDF_NBUF_CB_RX_PKT_LEN(nbuf),
2418 				       txrx_peer->mld_peer);
2419 }
2420 #else
2421 static inline void
2422 dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
2423 			       qdf_nbuf_t nbuf)
2424 {
2425 }
2426 #endif
2427 
2428 /**
2429  * dp_rx_msdu_stats_update() - update per msdu stats.
2430  * @soc: core txrx main context
2431  * @nbuf: pointer to the first msdu of an amsdu.
2432  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
2433  * @txrx_peer: pointer to the txrx peer object.
2434  * @ring_id: reo dest ring number on which pkt is reaped.
2435  * @tid_stats: per tid rx stats.
2436  *
2437  * update all the per msdu stats for that nbuf.
2438  * Return: void
2439  */
2440 void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2441 			     uint8_t *rx_tlv_hdr,
2442 			     struct dp_txrx_peer *txrx_peer,
2443 			     uint8_t ring_id,
2444 			     struct cdp_tid_rx_stats *tid_stats)
2445 {
2446 	bool is_not_amsdu;
2447 	struct dp_vdev *vdev = txrx_peer->vdev;
2448 	bool enh_flag;
2449 	qdf_ether_header_t *eh;
2450 	uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2451 
2452 	dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, txrx_peer);
2453 	is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
2454 			qdf_nbuf_is_rx_chfrag_end(nbuf);
2455 	DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.rcvd_reo[ring_id], 1,
2456 				      msdu_len);
2457 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.non_amsdu_cnt, 1,
2458 				   is_not_amsdu);
2459 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.amsdu_cnt, 1, !is_not_amsdu);
2460 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.rx_retries, 1,
2461 				   qdf_nbuf_is_rx_retry_flag(nbuf));
2462 	dp_peer_update_rx_pkt_per_lmac(txrx_peer, nbuf);
2463 	tid_stats->msdu_cnt++;
2464 	if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
2465 			 (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
2466 		eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
2467 		enh_flag = vdev->pdev->enhanced_stats_en;
2468 		DP_PEER_MC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
2469 		tid_stats->mcast_msdu_cnt++;
2470 		if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
2471 			DP_PEER_BC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
2472 			tid_stats->bcast_msdu_cnt++;
2473 		}
2474 	}
2475 
2476 	txrx_peer->stats.per_pkt_stats.rx.last_rx_ts = qdf_system_ticks();
2477 
2478 	dp_rx_msdu_extd_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer);
2479 }
2480 
2481 #ifndef WDS_VENDOR_EXTENSION
2482 int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
2483 			   struct dp_vdev *vdev,
2484 			   struct dp_txrx_peer *txrx_peer)
2485 {
2486 	return 1;
2487 }
2488 #endif
2489 
2490 #ifdef RX_DESC_DEBUG_CHECK
2491 /**
2492  * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
2493  *				  corruption
2494  *
2495  * @ring_desc: REO ring descriptor
2496  * @rx_desc: Rx descriptor
2497  *
2498  * Return: NONE
2499  */
2500 QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
2501 					hal_ring_desc_t ring_desc,
2502 					struct dp_rx_desc *rx_desc)
2503 {
2504 	struct hal_buf_info hbi;
2505 
2506 	hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
2507 	/* Sanity check for possible buffer paddr corruption */
2508 	if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
2509 		return QDF_STATUS_SUCCESS;
2510 
2511 	return QDF_STATUS_E_FAILURE;
2512 }
2513 
2514 /**
2515  * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
2516  *				      out of bound access from H.W
2517  *
2518  * @soc: DP soc
2519  * @pkt_len: Packet length received from H.W
2520  *
2521  * Return: NONE
2522  */
2523 static inline void
2524 dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
2525 				 uint32_t pkt_len)
2526 {
2527 	struct rx_desc_pool *rx_desc_pool;
2528 
2529 	rx_desc_pool = &soc->rx_desc_buf[0];
2530 	qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
2531 }
2532 #else
2533 static inline void
2534 dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
2535 #endif
2536 
2537 #ifdef DP_RX_PKT_NO_PEER_DELIVER
2538 #ifdef DP_RX_UDP_OVER_PEER_ROAM
2539 /**
2540  * dp_rx_is_udp_allowed_over_roam_peer() - check if udp data received
2541  *					   during roaming
2542  * @vdev: dp_vdev pointer
2543  * @rx_tlv_hdr: rx tlv header
2544  * @nbuf: pkt skb pointer
2545  *
2546  * This function will check if rx udp data is received from authorised
2547  * roamed peer before peer map indication is received from FW after
2548  * roaming. This is needed for VoIP scenarios in which packet loss
2549  * expected during roaming is minimal.
2550  *
2551  * Return: bool
2552  */
2553 static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
2554 						uint8_t *rx_tlv_hdr,
2555 						qdf_nbuf_t nbuf)
2556 {
2557 	char *hdr_desc;
2558 	struct ieee80211_frame *wh = NULL;
2559 
2560 	hdr_desc = hal_rx_desc_get_80211_hdr(vdev->pdev->soc->hal_soc,
2561 					     rx_tlv_hdr);
2562 	wh = (struct ieee80211_frame *)hdr_desc;
2563 
2564 	if (vdev->roaming_peer_status ==
2565 	    WLAN_ROAM_PEER_AUTH_STATUS_AUTHENTICATED &&
2566 	    !qdf_mem_cmp(vdev->roaming_peer_mac.raw, wh->i_addr2,
2567 	    QDF_MAC_ADDR_SIZE) && (qdf_nbuf_is_ipv4_udp_pkt(nbuf) ||
2568 	    qdf_nbuf_is_ipv6_udp_pkt(nbuf)))
2569 		return true;
2570 
2571 	return false;
2572 }
2573 #else
2574 static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
2575 						uint8_t *rx_tlv_hdr,
2576 						qdf_nbuf_t nbuf)
2577 {
2578 	return false;
2579 }
2580 #endif
2581 /**
2582  * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
2583  *				      no corresbonding peer found
2584  * @soc: core txrx main context
2585  * @nbuf: pkt skb pointer
2586  *
2587  * This function will try to deliver some RX special frames to stack
2588  * even there is no peer matched found. for instance, LFR case, some
2589  * eapol data will be sent to host before peer_map done.
2590  *
2591  * Return: None
2592  */
2593 void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
2594 {
2595 	uint16_t peer_id;
2596 	uint8_t vdev_id;
2597 	struct dp_vdev *vdev = NULL;
2598 	uint32_t l2_hdr_offset = 0;
2599 	uint16_t msdu_len = 0;
2600 	uint32_t pkt_len = 0;
2601 	uint8_t *rx_tlv_hdr;
2602 	uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
2603 				FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
2604 
2605 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
2606 	if (peer_id > soc->max_peer_id)
2607 		goto deliver_fail;
2608 
2609 	vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
2610 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
2611 	if (!vdev || vdev->delete.pending || !vdev->osif_rx)
2612 		goto deliver_fail;
2613 
2614 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
2615 		goto deliver_fail;
2616 
2617 	rx_tlv_hdr = qdf_nbuf_data(nbuf);
2618 	l2_hdr_offset =
2619 		hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
2620 
2621 	msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2622 	pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
2623 	QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
2624 
2625 	qdf_nbuf_set_pktlen(nbuf, pkt_len);
2626 	qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
2627 
2628 	if (dp_rx_is_special_frame(nbuf, frame_mask) ||
2629 	    dp_rx_is_udp_allowed_over_roam_peer(vdev, rx_tlv_hdr, nbuf)) {
2630 		qdf_nbuf_set_exc_frame(nbuf, 1);
2631 		if (QDF_STATUS_SUCCESS !=
2632 		    vdev->osif_rx(vdev->osif_vdev, nbuf))
2633 			goto deliver_fail;
2634 		DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
2635 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2636 		return;
2637 	}
2638 
2639 deliver_fail:
2640 	DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
2641 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2642 	dp_rx_nbuf_free(nbuf);
2643 	if (vdev)
2644 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2645 }
2646 #else
2647 void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
2648 {
2649 	DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
2650 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2651 	dp_rx_nbuf_free(nbuf);
2652 }
2653 #endif
2654 
2655 /**
2656  * dp_rx_srng_get_num_pending() - get number of pending entries
2657  * @hal_soc: hal soc opaque pointer
2658  * @hal_ring: opaque pointer to the HAL Rx Ring
2659  * @num_entries: number of entries in the hal_ring.
2660  * @near_full: pointer to a boolean. This is set if ring is near full.
2661  *
2662  * The function returns the number of entries in a destination ring which are
2663  * yet to be reaped. The function also checks if the ring is near full.
2664  * If more than half of the ring needs to be reaped, the ring is considered
2665  * approaching full.
2666  * The function useses hal_srng_dst_num_valid_locked to get the number of valid
2667  * entries. It should not be called within a SRNG lock. HW pointer value is
2668  * synced into cached_hp.
2669  *
2670  * Return: Number of pending entries if any
2671  */
2672 uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
2673 				    hal_ring_handle_t hal_ring_hdl,
2674 				    uint32_t num_entries,
2675 				    bool *near_full)
2676 {
2677 	uint32_t num_pending = 0;
2678 
2679 	num_pending = hal_srng_dst_num_valid_locked(hal_soc,
2680 						    hal_ring_hdl,
2681 						    true);
2682 
2683 	if (num_entries && (num_pending >= num_entries >> 1))
2684 		*near_full = true;
2685 	else
2686 		*near_full = false;
2687 
2688 	return num_pending;
2689 }
2690 
2691 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
2692 
2693 #ifdef WLAN_SUPPORT_RX_FISA
2694 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
2695 {
2696 	QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
2697 	qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
2698 }
2699 #else
2700 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
2701 {
2702 	qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
2703 }
2704 #endif
2705 
2706 #ifndef QCA_HOST_MODE_WIFI_DISABLED
2707 
2708 #ifdef DP_RX_DROP_RAW_FRM
2709 /**
2710  * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
2711  * @nbuf: pkt skb pointer
2712  *
2713  * Return: true - raw frame, dropped
2714  *	   false - not raw frame, do nothing
2715  */
2716 bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
2717 {
2718 	if (qdf_nbuf_is_raw_frame(nbuf)) {
2719 		dp_rx_nbuf_free(nbuf);
2720 		return true;
2721 	}
2722 
2723 	return false;
2724 }
2725 #endif
2726 
2727 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
2728 /**
2729  * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
2730  * @soc: Datapath soc structure
2731  * @ring_num: REO ring number
2732  * @ring_desc: REO ring descriptor
2733  *
2734  * Returns: None
2735  */
2736 void
2737 dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
2738 			hal_ring_desc_t ring_desc)
2739 {
2740 	struct dp_buf_info_record *record;
2741 	struct hal_buf_info hbi;
2742 	uint32_t idx;
2743 
2744 	if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
2745 		return;
2746 
2747 	hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
2748 
2749 	/* buffer_addr_info is the first element of ring_desc */
2750 	hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
2751 				  &hbi);
2752 
2753 	idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
2754 					DP_RX_HIST_MAX);
2755 
2756 	/* No NULL check needed for record since its an array */
2757 	record = &soc->rx_ring_history[ring_num]->entry[idx];
2758 
2759 	record->timestamp = qdf_get_log_timestamp();
2760 	record->hbi.paddr = hbi.paddr;
2761 	record->hbi.sw_cookie = hbi.sw_cookie;
2762 	record->hbi.rbm = hbi.rbm;
2763 }
2764 #endif
2765 
2766 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
2767 /**
2768  * dp_rx_update_stats() - Update soc level rx packet count
2769  * @soc: DP soc handle
2770  * @nbuf: nbuf received
2771  *
2772  * Returns: none
2773  */
2774 void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
2775 {
2776 	DP_STATS_INC_PKT(soc, rx.ingress, 1,
2777 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2778 }
2779 #endif
2780 
2781 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
2782 /**
2783  * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
2784  * @soc : dp_soc handle
2785  * @pdev: dp_pdev handle
2786  * @peer_id: peer_id of the peer for which completion came
2787  * @ppdu_id: ppdu_id
2788  * @netbuf: Buffer pointer
2789  *
2790  * This function is used to deliver rx packet to packet capture
2791  */
2792 void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc,  struct dp_pdev *pdev,
2793 				  uint16_t peer_id, uint32_t is_offload,
2794 				  qdf_nbuf_t netbuf)
2795 {
2796 	if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
2797 		dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
2798 				     peer_id, is_offload, pdev->pdev_id);
2799 }
2800 
2801 void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
2802 					  uint32_t is_offload)
2803 {
2804 	if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
2805 		dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
2806 				     soc, nbuf, HTT_INVALID_VDEV,
2807 				     is_offload, 0);
2808 }
2809 #endif
2810 
2811 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
2812 
2813 QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
2814 {
2815 	QDF_STATUS ret;
2816 
2817 	if (vdev->osif_rx_flush) {
2818 		ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
2819 		if (!QDF_IS_STATUS_SUCCESS(ret)) {
2820 			dp_err("Failed to flush rx pkts for vdev %d\n",
2821 			       vdev->vdev_id);
2822 			return ret;
2823 		}
2824 	}
2825 
2826 	return QDF_STATUS_SUCCESS;
2827 }
2828 
2829 static QDF_STATUS
2830 dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
2831 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
2832 			   struct dp_pdev *dp_pdev,
2833 			   struct rx_desc_pool *rx_desc_pool)
2834 {
2835 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
2836 
2837 	(nbuf_frag_info_t->virt_addr).nbuf =
2838 		qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
2839 			       RX_BUFFER_RESERVATION,
2840 			       rx_desc_pool->buf_alignment, FALSE);
2841 	if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
2842 		dp_err("nbuf alloc failed");
2843 		DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
2844 		return ret;
2845 	}
2846 
2847 	ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
2848 					 (nbuf_frag_info_t->virt_addr).nbuf,
2849 					 QDF_DMA_FROM_DEVICE,
2850 					 rx_desc_pool->buf_size);
2851 
2852 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
2853 		qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
2854 		dp_err("nbuf map failed");
2855 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
2856 		return ret;
2857 	}
2858 
2859 	nbuf_frag_info_t->paddr =
2860 		qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
2861 
2862 	ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
2863 			     &nbuf_frag_info_t->paddr,
2864 			     rx_desc_pool);
2865 	if (ret == QDF_STATUS_E_FAILURE) {
2866 		dp_err("nbuf check x86 failed");
2867 		DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
2868 		return ret;
2869 	}
2870 
2871 	return QDF_STATUS_SUCCESS;
2872 }
2873 
2874 QDF_STATUS
2875 dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
2876 			  struct dp_srng *dp_rxdma_srng,
2877 			  struct rx_desc_pool *rx_desc_pool,
2878 			  uint32_t num_req_buffers)
2879 {
2880 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
2881 	hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
2882 	union dp_rx_desc_list_elem_t *next;
2883 	void *rxdma_ring_entry;
2884 	qdf_dma_addr_t paddr;
2885 	struct dp_rx_nbuf_frag_info *nf_info;
2886 	uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
2887 	uint32_t buffer_index, nbuf_ptrs_per_page;
2888 	qdf_nbuf_t nbuf;
2889 	QDF_STATUS ret;
2890 	int page_idx, total_pages;
2891 	union dp_rx_desc_list_elem_t *desc_list = NULL;
2892 	union dp_rx_desc_list_elem_t *tail = NULL;
2893 	int sync_hw_ptr = 1;
2894 	uint32_t num_entries_avail;
2895 
2896 	if (qdf_unlikely(!dp_pdev)) {
2897 		dp_rx_err("%pK: pdev is null for mac_id = %d",
2898 			  dp_soc, mac_id);
2899 		return QDF_STATUS_E_FAILURE;
2900 	}
2901 
2902 	if (qdf_unlikely(!rxdma_srng)) {
2903 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
2904 		return QDF_STATUS_E_FAILURE;
2905 	}
2906 
2907 	dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
2908 
2909 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
2910 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
2911 						   rxdma_srng,
2912 						   sync_hw_ptr);
2913 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
2914 
2915 	if (!num_entries_avail) {
2916 		dp_err("Num of available entries is zero, nothing to do");
2917 		return QDF_STATUS_E_NOMEM;
2918 	}
2919 
2920 	if (num_entries_avail < num_req_buffers)
2921 		num_req_buffers = num_entries_avail;
2922 
2923 	nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
2924 					    num_req_buffers, &desc_list, &tail);
2925 	if (!nr_descs) {
2926 		dp_err("no free rx_descs in freelist");
2927 		DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
2928 		return QDF_STATUS_E_NOMEM;
2929 	}
2930 
2931 	dp_debug("got %u RX descs for driver attach", nr_descs);
2932 
2933 	/*
2934 	 * Try to allocate pointers to the nbuf one page at a time.
2935 	 * Take pointers that can fit in one page of memory and
2936 	 * iterate through the total descriptors that need to be
2937 	 * allocated in order of pages. Reuse the pointers that
2938 	 * have been allocated to fit in one page across each
2939 	 * iteration to index into the nbuf.
2940 	 */
2941 	total_pages = (nr_descs * sizeof(*nf_info)) / DP_BLOCKMEM_SIZE;
2942 
2943 	/*
2944 	 * Add an extra page to store the remainder if any
2945 	 */
2946 	if ((nr_descs * sizeof(*nf_info)) % DP_BLOCKMEM_SIZE)
2947 		total_pages++;
2948 	nf_info = qdf_mem_malloc(DP_BLOCKMEM_SIZE);
2949 	if (!nf_info) {
2950 		dp_err("failed to allocate nbuf array");
2951 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
2952 		QDF_BUG(0);
2953 		return QDF_STATUS_E_NOMEM;
2954 	}
2955 	nbuf_ptrs_per_page = DP_BLOCKMEM_SIZE / sizeof(*nf_info);
2956 
2957 	for (page_idx = 0; page_idx < total_pages; page_idx++) {
2958 		qdf_mem_zero(nf_info, DP_BLOCKMEM_SIZE);
2959 
2960 		for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
2961 			/*
2962 			 * The last page of buffer pointers may not be required
2963 			 * completely based on the number of descriptors. Below
2964 			 * check will ensure we are allocating only the
2965 			 * required number of descriptors.
2966 			 */
2967 			if (nr_nbuf_total >= nr_descs)
2968 				break;
2969 			/* Flag is set while pdev rx_desc_pool initialization */
2970 			if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
2971 				ret = dp_pdev_frag_alloc_and_map(dp_soc,
2972 						&nf_info[nr_nbuf], dp_pdev,
2973 						rx_desc_pool);
2974 			else
2975 				ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
2976 						&nf_info[nr_nbuf], dp_pdev,
2977 						rx_desc_pool);
2978 			if (QDF_IS_STATUS_ERROR(ret))
2979 				break;
2980 
2981 			nr_nbuf_total++;
2982 		}
2983 
2984 		hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
2985 
2986 		for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
2987 			rxdma_ring_entry =
2988 				hal_srng_src_get_next(dp_soc->hal_soc,
2989 						      rxdma_srng);
2990 			qdf_assert_always(rxdma_ring_entry);
2991 
2992 			next = desc_list->next;
2993 			paddr = nf_info[buffer_index].paddr;
2994 			nbuf = nf_info[buffer_index].virt_addr.nbuf;
2995 
2996 			/* Flag is set while pdev rx_desc_pool initialization */
2997 			if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
2998 				dp_rx_desc_frag_prep(&desc_list->rx_desc,
2999 						     &nf_info[buffer_index]);
3000 			else
3001 				dp_rx_desc_prep(&desc_list->rx_desc,
3002 						&nf_info[buffer_index]);
3003 			desc_list->rx_desc.in_use = 1;
3004 			dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
3005 			dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
3006 						   __func__,
3007 						   RX_DESC_REPLENISHED);
3008 
3009 			hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
3010 						     desc_list->rx_desc.cookie,
3011 						     rx_desc_pool->owner);
3012 			dp_ipa_handle_rx_buf_smmu_mapping(
3013 						dp_soc, nbuf,
3014 						rx_desc_pool->buf_size,
3015 						true);
3016 
3017 			desc_list = next;
3018 		}
3019 
3020 		dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
3021 					       rxdma_srng, nr_nbuf, nr_nbuf);
3022 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
3023 	}
3024 
3025 	dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
3026 	qdf_mem_free(nf_info);
3027 
3028 	if (!nr_nbuf_total) {
3029 		dp_err("No nbuf's allocated");
3030 		QDF_BUG(0);
3031 		return QDF_STATUS_E_RESOURCES;
3032 	}
3033 
3034 	/* No need to count the number of bytes received during replenish.
3035 	 * Therefore set replenish.pkts.bytes as 0.
3036 	 */
3037 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
3038 
3039 	return QDF_STATUS_SUCCESS;
3040 }
3041 
3042 qdf_export_symbol(dp_pdev_rx_buffers_attach);
3043 
3044 /**
3045  * dp_rx_enable_mon_dest_frag() - Enable frag processing for
3046  *              monitor destination ring via frag.
3047  *
3048  * Enable this flag only for monitor destination buffer processing
3049  * if DP_RX_MON_MEM_FRAG feature is enabled.
3050  * If flag is set then frag based function will be called for alloc,
3051  * map, prep desc and free ops for desc buffer else normal nbuf based
3052  * function will be called.
3053  *
3054  * @rx_desc_pool: Rx desc pool
3055  * @is_mon_dest_desc: Is it for monitor dest buffer
3056  *
3057  * Return: None
3058  */
3059 #ifdef DP_RX_MON_MEM_FRAG
3060 void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
3061 				bool is_mon_dest_desc)
3062 {
3063 	rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
3064 	if (is_mon_dest_desc)
3065 		dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
3066 }
3067 #else
3068 void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
3069 				bool is_mon_dest_desc)
3070 {
3071 	rx_desc_pool->rx_mon_dest_frag_enable = false;
3072 	if (is_mon_dest_desc)
3073 		dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
3074 }
3075 #endif
3076 
3077 qdf_export_symbol(dp_rx_enable_mon_dest_frag);
3078 
3079 /*
3080  * dp_rx_pdev_desc_pool_alloc() -  allocate memory for software rx descriptor
3081  *				   pool
3082  *
3083  * @pdev: core txrx pdev context
3084  *
3085  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3086  *			QDF_STATUS_E_NOMEM
3087  */
3088 QDF_STATUS
3089 dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
3090 {
3091 	struct dp_soc *soc = pdev->soc;
3092 	uint32_t rxdma_entries;
3093 	uint32_t rx_sw_desc_num;
3094 	struct dp_srng *dp_rxdma_srng;
3095 	struct rx_desc_pool *rx_desc_pool;
3096 	uint32_t status = QDF_STATUS_SUCCESS;
3097 	int mac_for_pdev;
3098 
3099 	mac_for_pdev = pdev->lmac_id;
3100 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
3101 		dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
3102 			   soc, mac_for_pdev);
3103 		return status;
3104 	}
3105 
3106 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3107 	rxdma_entries = dp_rxdma_srng->num_entries;
3108 
3109 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3110 	rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
3111 
3112 	rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
3113 	status = dp_rx_desc_pool_alloc(soc,
3114 				       rx_sw_desc_num,
3115 				       rx_desc_pool);
3116 	if (status != QDF_STATUS_SUCCESS)
3117 		return status;
3118 
3119 	return status;
3120 }
3121 
3122 /*
3123  * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
3124  *
3125  * @pdev: core txrx pdev context
3126  */
3127 void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
3128 {
3129 	int mac_for_pdev = pdev->lmac_id;
3130 	struct dp_soc *soc = pdev->soc;
3131 	struct rx_desc_pool *rx_desc_pool;
3132 
3133 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3134 
3135 	dp_rx_desc_pool_free(soc, rx_desc_pool);
3136 }
3137 
3138 /*
3139  * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
3140  *
3141  * @pdev: core txrx pdev context
3142  *
3143  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3144  *			QDF_STATUS_E_NOMEM
3145  */
3146 QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
3147 {
3148 	int mac_for_pdev = pdev->lmac_id;
3149 	struct dp_soc *soc = pdev->soc;
3150 	uint32_t rxdma_entries;
3151 	uint32_t rx_sw_desc_num;
3152 	struct dp_srng *dp_rxdma_srng;
3153 	struct rx_desc_pool *rx_desc_pool;
3154 
3155 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3156 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
3157 		/**
3158 		 * If NSS is enabled, rx_desc_pool is already filled.
3159 		 * Hence, just disable desc_pool frag flag.
3160 		 */
3161 		dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
3162 
3163 		dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
3164 			   soc, mac_for_pdev);
3165 		return QDF_STATUS_SUCCESS;
3166 	}
3167 
3168 	if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
3169 		return QDF_STATUS_E_NOMEM;
3170 
3171 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3172 	rxdma_entries = dp_rxdma_srng->num_entries;
3173 
3174 	soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
3175 
3176 	rx_sw_desc_num =
3177 	wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
3178 
3179 	rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
3180 	rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
3181 	rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
3182 	/* Disable monitor dest processing via frag */
3183 	dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
3184 
3185 	dp_rx_desc_pool_init(soc, mac_for_pdev,
3186 			     rx_sw_desc_num, rx_desc_pool);
3187 	return QDF_STATUS_SUCCESS;
3188 }
3189 
3190 /*
3191  * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
3192  * @pdev: core txrx pdev context
3193  *
3194  * This function resets the freelist of rx descriptors and destroys locks
3195  * associated with this list of descriptors.
3196  */
3197 void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
3198 {
3199 	int mac_for_pdev = pdev->lmac_id;
3200 	struct dp_soc *soc = pdev->soc;
3201 	struct rx_desc_pool *rx_desc_pool;
3202 
3203 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3204 
3205 	dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
3206 }
3207 
3208 /*
3209  * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
3210  *
3211  * @pdev: core txrx pdev context
3212  *
3213  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3214  *			QDF_STATUS_E_NOMEM
3215  */
3216 QDF_STATUS
3217 dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
3218 {
3219 	int mac_for_pdev = pdev->lmac_id;
3220 	struct dp_soc *soc = pdev->soc;
3221 	struct dp_srng *dp_rxdma_srng;
3222 	struct rx_desc_pool *rx_desc_pool;
3223 	uint32_t rxdma_entries;
3224 
3225 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3226 	rxdma_entries = dp_rxdma_srng->num_entries;
3227 
3228 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3229 
3230 	/* Initialize RX buffer pool which will be
3231 	 * used during low memory conditions
3232 	 */
3233 	dp_rx_buffer_pool_init(soc, mac_for_pdev);
3234 
3235 	return dp_pdev_rx_buffers_attach_simple(soc, mac_for_pdev,
3236 						dp_rxdma_srng,
3237 						rx_desc_pool,
3238 						rxdma_entries - 1);
3239 }
3240 
3241 /*
3242  * dp_rx_pdev_buffers_free - Free nbufs (skbs)
3243  *
3244  * @pdev: core txrx pdev context
3245  */
3246 void
3247 dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
3248 {
3249 	int mac_for_pdev = pdev->lmac_id;
3250 	struct dp_soc *soc = pdev->soc;
3251 	struct rx_desc_pool *rx_desc_pool;
3252 
3253 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3254 
3255 	dp_rx_desc_nbuf_free(soc, rx_desc_pool);
3256 	dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
3257 }
3258 
3259 #ifdef DP_RX_SPECIAL_FRAME_NEED
3260 bool dp_rx_deliver_special_frame(struct dp_soc *soc,
3261 				 struct dp_txrx_peer *txrx_peer,
3262 				 qdf_nbuf_t nbuf, uint32_t frame_mask,
3263 				 uint8_t *rx_tlv_hdr)
3264 {
3265 	uint32_t l2_hdr_offset = 0;
3266 	uint16_t msdu_len = 0;
3267 	uint32_t skip_len;
3268 
3269 	l2_hdr_offset =
3270 		hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
3271 
3272 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
3273 		skip_len = l2_hdr_offset;
3274 	} else {
3275 		msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
3276 		skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
3277 		qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
3278 	}
3279 
3280 	QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
3281 	dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
3282 	qdf_nbuf_pull_head(nbuf, skip_len);
3283 
3284 	if (txrx_peer->vdev) {
3285 		dp_rx_send_pktlog(soc, txrx_peer->vdev->pdev, nbuf,
3286 				  QDF_TX_RX_STATUS_OK);
3287 	}
3288 
3289 	if (dp_rx_is_special_frame(nbuf, frame_mask)) {
3290 		dp_info("special frame, mpdu sn 0x%x",
3291 			hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
3292 		qdf_nbuf_set_exc_frame(nbuf, 1);
3293 		dp_rx_deliver_to_stack(soc, txrx_peer->vdev, txrx_peer,
3294 				       nbuf, NULL);
3295 		return true;
3296 	}
3297 
3298 	return false;
3299 }
3300 #endif
3301 
3302 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
3303 void dp_rx_mark_first_packet_after_wow_wakeup(struct dp_pdev *pdev,
3304 					      uint8_t *rx_tlv,
3305 					      qdf_nbuf_t nbuf)
3306 {
3307 	struct dp_soc *soc;
3308 
3309 	if (!pdev->is_first_wakeup_packet)
3310 		return;
3311 
3312 	soc = pdev->soc;
3313 	if (hal_get_first_wow_wakeup_packet(soc->hal_soc, rx_tlv)) {
3314 		qdf_nbuf_mark_wakeup_frame(nbuf);
3315 		dp_info("First packet after WOW Wakeup rcvd");
3316 	}
3317 }
3318 #endif
3319