xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.c (revision 27d564647e9b50e713c60b0d7e5ea2a9b0a3ae74)
1 /*
2  * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "dp_types.h"
21 #include "dp_rx.h"
22 #include "dp_peer.h"
23 #include "hal_rx.h"
24 #include "hal_api.h"
25 #include "qdf_nbuf.h"
26 #ifdef MESH_MODE_SUPPORT
27 #include "if_meta_hdr.h"
28 #endif
29 #include "dp_internal.h"
30 #include "dp_rx_mon.h"
31 #ifdef RX_DESC_DEBUG_CHECK
32 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
33 {
34 	rx_desc->magic = DP_RX_DESC_MAGIC;
35 	rx_desc->nbuf = nbuf;
36 }
37 #else
38 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
39 {
40 	rx_desc->nbuf = nbuf;
41 }
42 #endif
43 
44 #ifdef CONFIG_WIN
45 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
46 {
47 	return vdev->ap_bridge_enabled;
48 }
49 #else
50 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
51 {
52 	if (vdev->opmode != wlan_op_mode_sta)
53 		return true;
54 	else
55 		return false;
56 }
57 #endif
58 /*
59  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
60  *			       called during dp rx initialization
61  *			       and at the end of dp_rx_process.
62  *
63  * @soc: core txrx main context
64  * @mac_id: mac_id which is one of 3 mac_ids
65  * @dp_rxdma_srng: dp rxdma circular ring
66  * @rx_desc_pool: Pointer to free Rx descriptor pool
67  * @num_req_buffers: number of buffer to be replenished
68  * @desc_list: list of descs if called from dp_rx_process
69  *	       or NULL during dp rx initialization or out of buffer
70  *	       interrupt.
71  * @tail: tail of descs list
72  * Return: return success or failure
73  */
74 QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
75 				struct dp_srng *dp_rxdma_srng,
76 				struct rx_desc_pool *rx_desc_pool,
77 				uint32_t num_req_buffers,
78 				union dp_rx_desc_list_elem_t **desc_list,
79 				union dp_rx_desc_list_elem_t **tail)
80 {
81 	uint32_t num_alloc_desc;
82 	uint16_t num_desc_to_free = 0;
83 	struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
84 	uint32_t num_entries_avail;
85 	uint32_t count;
86 	int sync_hw_ptr = 1;
87 	qdf_dma_addr_t paddr;
88 	qdf_nbuf_t rx_netbuf;
89 	void *rxdma_ring_entry;
90 	union dp_rx_desc_list_elem_t *next;
91 	QDF_STATUS ret;
92 
93 	void *rxdma_srng;
94 
95 	rxdma_srng = dp_rxdma_srng->hal_srng;
96 
97 	if (!rxdma_srng) {
98 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
99 				  "rxdma srng not initialized");
100 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
101 		return QDF_STATUS_E_FAILURE;
102 	}
103 
104 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
105 		"requested %d buffers for replenish", num_req_buffers);
106 
107 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
108 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
109 						   rxdma_srng,
110 						   sync_hw_ptr);
111 
112 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
113 		"no of available entries in rxdma ring: %d",
114 		num_entries_avail);
115 
116 	if (!(*desc_list) && (num_entries_avail >
117 		((dp_rxdma_srng->num_entries * 3) / 4))) {
118 		num_req_buffers = num_entries_avail;
119 	} else if (num_entries_avail < num_req_buffers) {
120 		num_desc_to_free = num_req_buffers - num_entries_avail;
121 		num_req_buffers = num_entries_avail;
122 	}
123 
124 	if (qdf_unlikely(!num_req_buffers)) {
125 		num_desc_to_free = num_req_buffers;
126 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
127 		goto free_descs;
128 	}
129 
130 	/*
131 	 * if desc_list is NULL, allocate the descs from freelist
132 	 */
133 	if (!(*desc_list)) {
134 		num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
135 							  rx_desc_pool,
136 							  num_req_buffers,
137 							  desc_list,
138 							  tail);
139 
140 		if (!num_alloc_desc) {
141 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
142 				"no free rx_descs in freelist");
143 			DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
144 					num_req_buffers);
145 			hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
146 			return QDF_STATUS_E_NOMEM;
147 		}
148 
149 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
150 			"%d rx desc allocated", num_alloc_desc);
151 		num_req_buffers = num_alloc_desc;
152 	}
153 
154 
155 	count = 0;
156 
157 	while (count < num_req_buffers) {
158 		rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
159 					RX_BUFFER_SIZE,
160 					RX_BUFFER_RESERVATION,
161 					RX_BUFFER_ALIGNMENT,
162 					FALSE);
163 
164 		if (rx_netbuf == NULL) {
165 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
166 			continue;
167 		}
168 
169 		ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
170 				    QDF_DMA_BIDIRECTIONAL);
171 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
172 			qdf_nbuf_free(rx_netbuf);
173 			DP_STATS_INC(dp_pdev, replenish.map_err, 1);
174 			continue;
175 		}
176 
177 		paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
178 
179 		/*
180 		 * check if the physical address of nbuf->data is
181 		 * less then 0x50000000 then free the nbuf and try
182 		 * allocating new nbuf. We can try for 100 times.
183 		 * this is a temp WAR till we fix it properly.
184 		 */
185 		ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
186 		if (ret == QDF_STATUS_E_FAILURE) {
187 			DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
188 			break;
189 		}
190 
191 		count++;
192 
193 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
194 								rxdma_srng);
195 		qdf_assert_always(rxdma_ring_entry);
196 
197 		next = (*desc_list)->next;
198 
199 		dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
200 		(*desc_list)->rx_desc.in_use = 1;
201 
202 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
203 				"rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
204 			rx_netbuf, qdf_nbuf_data(rx_netbuf),
205 			(unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
206 
207 		hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
208 						(*desc_list)->rx_desc.cookie,
209 						rx_desc_pool->owner);
210 
211 		*desc_list = next;
212 	}
213 
214 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
215 
216 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
217 		"successfully replenished %d buffers", num_req_buffers);
218 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
219 		"%d rx desc added back to free list", num_desc_to_free);
220 
221 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
222 			(RX_BUFFER_SIZE * num_req_buffers));
223 
224 free_descs:
225 	DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
226 	/*
227 	 * add any available free desc back to the free list
228 	 */
229 	if (*desc_list)
230 		dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
231 			mac_id, rx_desc_pool);
232 
233 	return QDF_STATUS_SUCCESS;
234 }
235 
236 /*
237  * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
238  *				pkts to RAW mode simulation to
239  *				decapsulate the pkt.
240  *
241  * @vdev: vdev on which RAW mode is enabled
242  * @nbuf_list: list of RAW pkts to process
243  * @peer: peer object from which the pkt is rx
244  *
245  * Return: void
246  */
247 void
248 dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
249 					struct dp_peer *peer)
250 {
251 	qdf_nbuf_t deliver_list_head = NULL;
252 	qdf_nbuf_t deliver_list_tail = NULL;
253 	qdf_nbuf_t nbuf;
254 
255 	nbuf = nbuf_list;
256 	while (nbuf) {
257 		qdf_nbuf_t next = qdf_nbuf_next(nbuf);
258 
259 		DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
260 
261 		DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
262 		DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
263 		/*
264 		 * reset the chfrag_start and chfrag_end bits in nbuf cb
265 		 * as this is a non-amsdu pkt and RAW mode simulation expects
266 		 * these bit s to be 0 for non-amsdu pkt.
267 		 */
268 		if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
269 			 qdf_nbuf_is_rx_chfrag_end(nbuf)) {
270 			qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
271 			qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
272 		}
273 
274 		nbuf = next;
275 	}
276 
277 	vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
278 				 &deliver_list_tail, (struct cdp_peer*) peer);
279 
280 	vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
281 }
282 
283 
284 #ifdef DP_LFR
285 /*
286  * In case of LFR, data of a new peer might be sent up
287  * even before peer is added.
288  */
289 static inline struct dp_vdev *
290 dp_get_vdev_from_peer(struct dp_soc *soc,
291 			uint16_t peer_id,
292 			struct dp_peer *peer,
293 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
294 {
295 	struct dp_vdev *vdev;
296 	uint8_t vdev_id;
297 
298 	if (unlikely(!peer)) {
299 		if (peer_id != HTT_INVALID_PEER) {
300 			vdev_id = DP_PEER_METADATA_ID_GET(
301 					mpdu_desc_info.peer_meta_data);
302 			QDF_TRACE(QDF_MODULE_ID_DP,
303 				QDF_TRACE_LEVEL_DEBUG,
304 				FL("PeerID %d not found use vdevID %d"),
305 				peer_id, vdev_id);
306 			vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
307 							vdev_id);
308 		} else {
309 			QDF_TRACE(QDF_MODULE_ID_DP,
310 				QDF_TRACE_LEVEL_DEBUG,
311 				FL("Invalid PeerID %d"),
312 				peer_id);
313 			return NULL;
314 		}
315 	} else {
316 		vdev = peer->vdev;
317 	}
318 	return vdev;
319 }
320 #else
321 static inline struct dp_vdev *
322 dp_get_vdev_from_peer(struct dp_soc *soc,
323 			uint16_t peer_id,
324 			struct dp_peer *peer,
325 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
326 {
327 	if (unlikely(!peer)) {
328 		QDF_TRACE(QDF_MODULE_ID_DP,
329 			QDF_TRACE_LEVEL_DEBUG,
330 			FL("Peer not found for peerID %d"),
331 			peer_id);
332 		return NULL;
333 	} else {
334 		return peer->vdev;
335 	}
336 }
337 #endif
338 
339 /**
340  * dp_rx_da_learn() - Add AST entry based on DA lookup
341  *			This is a WAR for HK 1.0 and will
342  *			be removed in HK 2.0
343  *
344  * @soc: core txrx main context
345  * @rx_tlv_hdr	: start address of rx tlvs
346  * @sa_peer	: source peer entry
347  * @nbuf	: nbuf to retrieve destination mac for which AST will be added
348  *
349  */
350 #ifdef FEATURE_WDS
351 static void
352 dp_rx_da_learn(struct dp_soc *soc,
353 	       uint8_t *rx_tlv_hdr,
354 	       struct dp_peer *ta_peer,
355 	       qdf_nbuf_t nbuf)
356 {
357 	/* For HKv2 DA port learing is not needed */
358 	if (qdf_likely(soc->ast_override_support))
359 		return;
360 
361 	if (ta_peer && (ta_peer->vdev->opmode != wlan_op_mode_ap))
362 		return;
363 
364 	if (qdf_unlikely(!hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
365 			 !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
366 		dp_peer_add_ast(soc,
367 				ta_peer,
368 				qdf_nbuf_data(nbuf),
369 				CDP_TXRX_AST_TYPE_DA,
370 				IEEE80211_NODE_F_WDS_HM);
371 	}
372 }
373 #else
374 static void
375 dp_rx_da_learn(struct dp_soc *soc,
376 	       uint8_t *rx_tlv_hdr,
377 	       struct dp_peer *ta_peer,
378 	       qdf_nbuf_t nbuf)
379 {
380 }
381 #endif
382 
383 /**
384  * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
385  *
386  * @soc: core txrx main context
387  * @sa_peer	: source peer entry
388  * @rx_tlv_hdr	: start address of rx tlvs
389  * @nbuf	: nbuf that has to be intrabss forwarded
390  *
391  * Return: bool: true if it is forwarded else false
392  */
393 static bool
394 dp_rx_intrabss_fwd(struct dp_soc *soc,
395 			struct dp_peer *sa_peer,
396 			uint8_t *rx_tlv_hdr,
397 			qdf_nbuf_t nbuf)
398 {
399 	uint16_t da_idx;
400 	uint16_t len;
401 	struct dp_peer *da_peer;
402 	struct dp_ast_entry *ast_entry;
403 	qdf_nbuf_t nbuf_copy;
404 
405 	/* check if the destination peer is available in peer table
406 	 * and also check if the source peer and destination peer
407 	 * belong to the same vap and destination peer is not bss peer.
408 	 */
409 
410 	if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
411 	   !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
412 		da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
413 
414 		ast_entry = soc->ast_table[da_idx];
415 		if (!ast_entry)
416 			return false;
417 
418 		if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
419 			ast_entry->is_active = TRUE;
420 			return false;
421 		}
422 
423 		da_peer = ast_entry->peer;
424 
425 		if (!da_peer)
426 			return false;
427 
428 		if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
429 			memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
430 			len = qdf_nbuf_len(nbuf);
431 
432 			/* linearize the nbuf just before we send to
433 			 * dp_tx_send()
434 			 */
435 			if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
436 				if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
437 					return false;
438 
439 				nbuf = qdf_nbuf_unshare(nbuf);
440 				if (!nbuf) {
441 					DP_STATS_INC_PKT(sa_peer,
442 							 rx.intra_bss.fail,
443 							 1,
444 							 len);
445 					/* return true even though the pkt is
446 					 * not forwarded. Basically skb_unshare
447 					 * failed and we want to continue with
448 					 * next nbuf.
449 					 */
450 					return true;
451 				}
452 			}
453 
454 			if (!dp_tx_send(sa_peer->vdev, nbuf)) {
455 				DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
456 						1, len);
457 				return true;
458 			} else {
459 				DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
460 						len);
461 				return false;
462 			}
463 		}
464 	}
465 	/* if it is a broadcast pkt (eg: ARP) and it is not its own
466 	 * source, then clone the pkt and send the cloned pkt for
467 	 * intra BSS forwarding and original pkt up the network stack
468 	 * Note: how do we handle multicast pkts. do we forward
469 	 * all multicast pkts as is or let a higher layer module
470 	 * like igmpsnoop decide whether to forward or not with
471 	 * Mcast enhancement.
472 	 */
473 	else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
474 		!sa_peer->bss_peer))) {
475 		nbuf_copy = qdf_nbuf_copy(nbuf);
476 		if (!nbuf_copy)
477 			return false;
478 		memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
479 		len = qdf_nbuf_len(nbuf_copy);
480 
481 		if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
482 			DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
483 			qdf_nbuf_free(nbuf_copy);
484 		} else
485 			DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
486 	}
487 	/* return false as we have to still send the original pkt
488 	 * up the stack
489 	 */
490 	return false;
491 }
492 
493 #ifdef MESH_MODE_SUPPORT
494 
495 /**
496  * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
497  *
498  * @vdev: DP Virtual device handle
499  * @nbuf: Buffer pointer
500  * @rx_tlv_hdr: start of rx tlv header
501  * @peer: pointer to peer
502  *
503  * This function allocated memory for mesh receive stats and fill the
504  * required stats. Stores the memory address in skb cb.
505  *
506  * Return: void
507  */
508 
509 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
510 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
511 {
512 	struct mesh_recv_hdr_s *rx_info = NULL;
513 	uint32_t pkt_type;
514 	uint32_t nss;
515 	uint32_t rate_mcs;
516 	uint32_t bw;
517 
518 	/* fill recv mesh stats */
519 	rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
520 
521 	/* upper layers are resposible to free this memory */
522 
523 	if (rx_info == NULL) {
524 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
525 			"Memory allocation failed for mesh rx stats");
526 		DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
527 		return;
528 	}
529 
530 	rx_info->rs_flags = MESH_RXHDR_VER1;
531 	if (qdf_nbuf_is_rx_chfrag_start(nbuf))
532 		rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
533 
534 	if (qdf_nbuf_is_rx_chfrag_end(nbuf))
535 		rx_info->rs_flags |= MESH_RX_LAST_MSDU;
536 
537 	if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
538 		rx_info->rs_flags |= MESH_RX_DECRYPTED;
539 		rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
540 		if (vdev->osif_get_key)
541 			vdev->osif_get_key(vdev->osif_vdev,
542 					&rx_info->rs_decryptkey[0],
543 					&peer->mac_addr.raw[0],
544 					rx_info->rs_keyix);
545 	}
546 
547 	rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
548 	rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
549 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
550 	rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
551 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
552 	nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
553 	rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
554 				(bw << 24);
555 
556 	qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
557 
558 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
559 		FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
560 						rx_info->rs_flags,
561 						rx_info->rs_rssi,
562 						rx_info->rs_channel,
563 						rx_info->rs_ratephy1,
564 						rx_info->rs_keyix);
565 
566 }
567 
568 /**
569  * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
570  *
571  * @vdev: DP Virtual device handle
572  * @nbuf: Buffer pointer
573  * @rx_tlv_hdr: start of rx tlv header
574  *
575  * This checks if the received packet is matching any filter out
576  * catogery and and drop the packet if it matches.
577  *
578  * Return: status(0 indicates drop, 1 indicate to no drop)
579  */
580 
581 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
582 					uint8_t *rx_tlv_hdr)
583 {
584 	union dp_align_mac_addr mac_addr;
585 
586 	if (qdf_unlikely(vdev->mesh_rx_filter)) {
587 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
588 			if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
589 				return  QDF_STATUS_SUCCESS;
590 
591 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
592 			if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
593 				return  QDF_STATUS_SUCCESS;
594 
595 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
596 			if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
597 				&& !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
598 				return  QDF_STATUS_SUCCESS;
599 
600 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
601 			if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
602 					&mac_addr.raw[0]))
603 				return QDF_STATUS_E_FAILURE;
604 
605 			if (!qdf_mem_cmp(&mac_addr.raw[0],
606 					&vdev->mac_addr.raw[0],
607 					DP_MAC_ADDR_LEN))
608 				return  QDF_STATUS_SUCCESS;
609 		}
610 
611 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
612 			if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
613 					&mac_addr.raw[0]))
614 				return QDF_STATUS_E_FAILURE;
615 
616 			if (!qdf_mem_cmp(&mac_addr.raw[0],
617 					&vdev->mac_addr.raw[0],
618 					DP_MAC_ADDR_LEN))
619 				return  QDF_STATUS_SUCCESS;
620 		}
621 	}
622 
623 	return QDF_STATUS_E_FAILURE;
624 }
625 
626 #else
627 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
628 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
629 {
630 }
631 
632 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
633 					uint8_t *rx_tlv_hdr)
634 {
635 	return QDF_STATUS_E_FAILURE;
636 }
637 
638 #endif
639 
640 #ifdef CONFIG_WIN
641 /**
642  * dp_rx_nac_filter(): Function to perform filtering of non-associated
643  * clients
644  * @pdev: DP pdev handle
645  * @rx_pkt_hdr: Rx packet Header
646  *
647  * return: dp_vdev*
648  */
649 static
650 struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
651 		uint8_t *rx_pkt_hdr)
652 {
653 	struct ieee80211_frame *wh;
654 	struct dp_neighbour_peer *peer = NULL;
655 
656 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
657 
658 	if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
659 		return NULL;
660 
661 	qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
662 	TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
663 				neighbour_peer_list_elem) {
664 		if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
665 				wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
666 			QDF_TRACE(
667 				QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
668 				FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
669 				peer->neighbour_peers_macaddr.raw[0],
670 				peer->neighbour_peers_macaddr.raw[1],
671 				peer->neighbour_peers_macaddr.raw[2],
672 				peer->neighbour_peers_macaddr.raw[3],
673 				peer->neighbour_peers_macaddr.raw[4],
674 				peer->neighbour_peers_macaddr.raw[5]);
675 
676 				qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
677 
678 			return pdev->monitor_vdev;
679 		}
680 	}
681 	qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
682 
683 	return NULL;
684 }
685 
686 /**
687  * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
688  * @soc: DP SOC handle
689  * @mpdu: mpdu for which peer is invalid
690  *
691  * return: integer type
692  */
693 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
694 {
695 	struct dp_invalid_peer_msg msg;
696 	struct dp_vdev *vdev = NULL;
697 	struct dp_pdev *pdev = NULL;
698 	struct ieee80211_frame *wh;
699 	uint8_t i;
700 	qdf_nbuf_t curr_nbuf, next_nbuf;
701 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
702 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
703 
704 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
705 
706 	if (!DP_FRAME_IS_DATA(wh)) {
707 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
708 				"NAWDS valid only for data frames");
709 		goto free;
710 	}
711 
712 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
713 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
714 				"Invalid nbuf length");
715 		goto free;
716 	}
717 
718 
719 	for (i = 0; i < MAX_PDEV_CNT; i++) {
720 		pdev = soc->pdev_list[i];
721 		if (!pdev) {
722 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
723 					"PDEV not found");
724 			continue;
725 		}
726 
727 		if (pdev->filter_neighbour_peers) {
728 			/* Next Hop scenario not yet handle */
729 			vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
730 			if (vdev) {
731 				dp_rx_mon_deliver(soc, i,
732 						pdev->invalid_peer_head_msdu,
733 						pdev->invalid_peer_tail_msdu);
734 
735 				pdev->invalid_peer_head_msdu = NULL;
736 				pdev->invalid_peer_tail_msdu = NULL;
737 
738 				return 0;
739 			}
740 		}
741 
742 
743 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
744 
745 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
746 						DP_MAC_ADDR_LEN) == 0) {
747 				goto out;
748 			}
749 		}
750 	}
751 
752 	if (!vdev) {
753 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
754 				"VDEV not found");
755 		goto free;
756 	}
757 
758 out:
759 	msg.wh = wh;
760 	qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
761 	msg.nbuf = mpdu;
762 	msg.vdev_id = vdev->vdev_id;
763 	if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
764 		pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
765 							&msg);
766 
767 free:
768 	/* Drop and free packet */
769 	curr_nbuf = mpdu;
770 	while (curr_nbuf) {
771 		next_nbuf = qdf_nbuf_next(curr_nbuf);
772 		qdf_nbuf_free(curr_nbuf);
773 		curr_nbuf = next_nbuf;
774 	}
775 
776 	return 0;
777 }
778 
779 /**
780  * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
781  * @soc: DP SOC handle
782  * @mpdu: mpdu for which peer is invalid
783  * @mpdu_done: if an mpdu is completed
784  *
785  * return: integer type
786  */
787 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
788 					qdf_nbuf_t mpdu, bool mpdu_done)
789 {
790 	/* Only trigger the process when mpdu is completed */
791 	if (mpdu_done)
792 		dp_rx_process_invalid_peer(soc, mpdu);
793 }
794 #else
795 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
796 {
797 	qdf_nbuf_t curr_nbuf, next_nbuf;
798 	struct dp_pdev *pdev;
799 	uint8_t i;
800 	struct dp_vdev *vdev = NULL;
801 	struct ieee80211_frame *wh;
802 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
803 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
804 
805 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
806 
807 	if (!DP_FRAME_IS_DATA(wh)) {
808 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
809 			  "only for data frames");
810 		goto free;
811 	}
812 
813 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
814 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
815 			  "Invalid nbuf length");
816 		goto free;
817 	}
818 	/* reset the head and tail pointers */
819 	for (i = 0; i < MAX_PDEV_CNT; i++) {
820 		pdev = soc->pdev_list[i];
821 		if (!pdev) {
822 			QDF_TRACE(QDF_MODULE_ID_DP,
823 				  QDF_TRACE_LEVEL_ERROR,
824 				  "PDEV not found");
825 			continue;
826 		}
827 
828 		pdev->invalid_peer_head_msdu = NULL;
829 		pdev->invalid_peer_tail_msdu = NULL;
830 
831 		qdf_spin_lock_bh(&pdev->vdev_list_lock);
832 		DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
833 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
834 					DP_MAC_ADDR_LEN) == 0) {
835 				qdf_spin_unlock_bh(&pdev->vdev_list_lock);
836 				goto out;
837 			}
838 		}
839 		qdf_spin_unlock_bh(&pdev->vdev_list_lock);
840 	}
841 
842 	if (NULL == vdev) {
843 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
844 			  "VDEV not found");
845 		goto free;
846 	}
847 
848 out:
849 	if (soc->cdp_soc.ol_ops->rx_invalid_peer)
850 		soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
851 free:
852 	/* Drop and free packet */
853 	curr_nbuf = mpdu;
854 	while (curr_nbuf) {
855 		next_nbuf = qdf_nbuf_next(curr_nbuf);
856 		DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
857 				 qdf_nbuf_len(curr_nbuf));
858 		qdf_nbuf_free(curr_nbuf);
859 		curr_nbuf = next_nbuf;
860 	}
861 
862 	return 0;
863 }
864 
865 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
866 					qdf_nbuf_t mpdu, bool mpdu_done)
867 {
868 	/* Process the nbuf */
869 	dp_rx_process_invalid_peer(soc, mpdu);
870 }
871 #endif
872 
873 #if defined(FEATURE_LRO)
874 static void dp_rx_print_lro_info(uint8_t *rx_tlv)
875 {
876 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
877 	FL("----------------------RX DESC LRO----------------------"));
878 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
879 		FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
880 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
881 		FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
882 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
883 		FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
884 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
885 		FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
886 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
887 		FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
888 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
889 		FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
890 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
891 		FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
892 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
893 		FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
894 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
895 		FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
896 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
897 	FL("---------------------------------------------------------"));
898 }
899 
900 /**
901  * dp_rx_lro() - LRO related processing
902  * @rx_tlv: TLV data extracted from the rx packet
903  * @peer: destination peer of the msdu
904  * @msdu: network buffer
905  * @ctx: LRO context
906  *
907  * This function performs the LRO related processing of the msdu
908  *
909  * Return: true: LRO enabled false: LRO is not enabled
910  */
911 static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
912 	 qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
913 {
914 	if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
915 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
916 			 FL("no peer, no vdev or LRO disabled"));
917 		QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
918 		return;
919 	}
920 	qdf_assert(rx_tlv);
921 	dp_rx_print_lro_info(rx_tlv);
922 
923 	QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
924 		 HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
925 
926 	QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
927 			HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
928 
929 	QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
930 			 HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
931 	QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
932 			 HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
933 	QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
934 			 HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
935 	QDF_NBUF_CB_RX_TCP_WIN(msdu) =
936 			 HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
937 	QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
938 			 HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
939 	QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
940 			 HAL_RX_TLV_GET_IPV6(rx_tlv);
941 	QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
942 			 HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
943 	QDF_NBUF_CB_RX_FLOW_ID(msdu) =
944 			 HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
945 	QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
946 
947 }
948 #else
949 static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
950 	 qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
951 {
952 }
953 #endif
954 
955 /**
956  * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
957  *
958  * @nbuf: pointer to msdu.
959  * @mpdu_len: mpdu length
960  *
961  * Return: returns true if nbuf is last msdu of mpdu else retuns false.
962  */
963 static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
964 {
965 	bool last_nbuf;
966 
967 	if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
968 		qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
969 		last_nbuf = false;
970 	} else {
971 		qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
972 		last_nbuf = true;
973 	}
974 
975 	*mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
976 
977 	return last_nbuf;
978 }
979 
980 /**
981  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
982  *		     multiple nbufs.
983  * @nbuf: pointer to the first msdu of an amsdu.
984  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
985  *
986  *
987  * This function implements the creation of RX frag_list for cases
988  * where an MSDU is spread across multiple nbufs.
989  *
990  * Return: returns the head nbuf which contains complete frag_list.
991  */
992 qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
993 {
994 	qdf_nbuf_t parent, next, frag_list;
995 	uint16_t frag_list_len = 0;
996 	uint16_t mpdu_len;
997 	bool last_nbuf;
998 
999 	mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1000 	/*
1001 	 * this is a case where the complete msdu fits in one single nbuf.
1002 	 * in this case HW sets both start and end bit and we only need to
1003 	 * reset these bits for RAW mode simulator to decap the pkt
1004 	 */
1005 	if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
1006 					qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1007 		qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
1008 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1009 		return nbuf;
1010 	}
1011 
1012 	/*
1013 	 * This is a case where we have multiple msdus (A-MSDU) spread across
1014 	 * multiple nbufs. here we create a fraglist out of these nbufs.
1015 	 *
1016 	 * the moment we encounter a nbuf with continuation bit set we
1017 	 * know for sure we have an MSDU which is spread across multiple
1018 	 * nbufs. We loop through and reap nbufs till we reach last nbuf.
1019 	 */
1020 	parent = nbuf;
1021 	frag_list = nbuf->next;
1022 	nbuf = nbuf->next;
1023 
1024 	/*
1025 	 * set the start bit in the first nbuf we encounter with continuation
1026 	 * bit set. This has the proper mpdu length set as it is the first
1027 	 * msdu of the mpdu. this becomes the parent nbuf and the subsequent
1028 	 * nbufs will form the frag_list of the parent nbuf.
1029 	 */
1030 	qdf_nbuf_set_rx_chfrag_start(parent, 1);
1031 	last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
1032 
1033 	/*
1034 	 * this is where we set the length of the fragments which are
1035 	 * associated to the parent nbuf. We iterate through the frag_list
1036 	 * till we hit the last_nbuf of the list.
1037 	 */
1038 	do {
1039 		last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
1040 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1041 		frag_list_len += qdf_nbuf_len(nbuf);
1042 
1043 		if (last_nbuf) {
1044 			next = nbuf->next;
1045 			nbuf->next = NULL;
1046 			break;
1047 		}
1048 
1049 		nbuf = nbuf->next;
1050 	} while (!last_nbuf);
1051 
1052 	qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
1053 	qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
1054 	parent->next = next;
1055 
1056 	qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
1057 	return parent;
1058 }
1059 
1060 static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
1061 						struct dp_peer *peer,
1062 						qdf_nbuf_t nbuf_head,
1063 						qdf_nbuf_t nbuf_tail)
1064 {
1065 	/*
1066 	 * highly unlikely to have a vdev without a registered rx
1067 	 * callback function. if so let us free the nbuf_list.
1068 	 */
1069 	if (qdf_unlikely(!vdev->osif_rx)) {
1070 		qdf_nbuf_t nbuf;
1071 		do {
1072 			nbuf = nbuf_head;
1073 			nbuf_head = nbuf_head->next;
1074 			qdf_nbuf_free(nbuf);
1075 		} while (nbuf_head);
1076 
1077 		return;
1078 	}
1079 
1080 	if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
1081 			(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
1082 		vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
1083 				&nbuf_tail, (struct cdp_peer *) peer);
1084 	}
1085 
1086 	vdev->osif_rx(vdev->osif_vdev, nbuf_head);
1087 
1088 }
1089 
1090 /**
1091  * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
1092  * @nbuf: pointer to the first msdu of an amsdu.
1093  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1094  *
1095  * The ipsumed field of the skb is set based on whether HW validated the
1096  * IP/TCP/UDP checksum.
1097  *
1098  * Return: void
1099  */
1100 static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
1101 				       qdf_nbuf_t nbuf,
1102 				       uint8_t *rx_tlv_hdr)
1103 {
1104 	qdf_nbuf_rx_cksum_t cksum = {0};
1105 	bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
1106 	bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
1107 
1108 	if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
1109 		cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
1110 		qdf_nbuf_set_rx_cksum(nbuf, &cksum);
1111 	} else {
1112 		DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
1113 		DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
1114 	}
1115 }
1116 
1117 /**
1118  * dp_rx_msdu_stats_update() - update per msdu stats.
1119  * @soc: core txrx main context
1120  * @nbuf: pointer to the first msdu of an amsdu.
1121  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1122  * @peer: pointer to the peer object.
1123  * @ring_id: reo dest ring number on which pkt is reaped.
1124  *
1125  * update all the per msdu stats for that nbuf.
1126  * Return: void
1127  */
1128 static void dp_rx_msdu_stats_update(struct dp_soc *soc,
1129 				    qdf_nbuf_t nbuf,
1130 				    uint8_t *rx_tlv_hdr,
1131 				    struct dp_peer *peer,
1132 				    uint8_t ring_id)
1133 {
1134 	bool is_ampdu, is_not_amsdu;
1135 	uint16_t peer_id;
1136 	uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
1137 	struct dp_vdev *vdev = peer->vdev;
1138 	struct ether_header *eh;
1139 	uint16_t msdu_len = qdf_nbuf_len(nbuf);
1140 
1141 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1142 			       hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
1143 
1144 	is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
1145 			qdf_nbuf_is_rx_chfrag_end(nbuf);
1146 
1147 	DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
1148 	DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
1149 	DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
1150 
1151 	if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
1152 			 (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
1153 		eh = (struct ether_header *)qdf_nbuf_data(nbuf);
1154 		DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
1155 		if (IEEE80211_IS_BROADCAST(eh->ether_dhost)) {
1156 			DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
1157 
1158 		}
1159 	}
1160 
1161 	/*
1162 	 * currently we can return from here as we have similar stats
1163 	 * updated at per ppdu level instead of msdu level
1164 	 */
1165 	if (!soc->process_rx_status)
1166 		return;
1167 
1168 	is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
1169 	DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
1170 	DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
1171 
1172 	sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
1173 	mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
1174 	tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_tlv_hdr);
1175 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
1176 	reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
1177 							      rx_tlv_hdr);
1178 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
1179 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
1180 
1181 	/* Save tid to skb->priority */
1182 	DP_RX_TID_SAVE(nbuf, tid);
1183 
1184 	DP_STATS_INC(peer, rx.bw[bw], 1);
1185 	DP_STATS_INC(peer, rx.nss[nss], 1);
1186 	DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
1187 	DP_STATS_INCC(peer, rx.err.mic_err, 1,
1188 		      hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
1189 	DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
1190 		      hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
1191 
1192 	DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
1193 	DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
1194 
1195 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1196 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1197 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1198 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1199 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1200 		      ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1201 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1202 		      ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1203 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1204 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1205 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1206 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1207 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1208 		      ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1209 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1210 		      ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1211 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1212 		      ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
1213 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1214 		      ((mcs <= MAX_MCS) && (pkt_type == DOT11_AX)));
1215 
1216 	if ((soc->process_rx_status) &&
1217 	    hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
1218 		if (soc->cdp_soc.ol_ops->update_dp_stats) {
1219 			soc->cdp_soc.ol_ops->update_dp_stats(
1220 					vdev->pdev->ctrl_pdev,
1221 					&peer->stats,
1222 					peer_id,
1223 					UPDATE_PEER_STATS);
1224 		}
1225 	}
1226 }
1227 
1228 #ifdef WDS_VENDOR_EXTENSION
1229 int dp_wds_rx_policy_check(
1230 		uint8_t *rx_tlv_hdr,
1231 		struct dp_vdev *vdev,
1232 		struct dp_peer *peer,
1233 		int rx_mcast
1234 		)
1235 {
1236 	struct dp_peer *bss_peer;
1237 	int fr_ds, to_ds, rx_3addr, rx_4addr;
1238 	int rx_policy_ucast, rx_policy_mcast;
1239 
1240 	if (vdev->opmode == wlan_op_mode_ap) {
1241 		TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
1242 			if (bss_peer->bss_peer) {
1243 				/* if wds policy check is not enabled on this vdev, accept all frames */
1244 				if (!bss_peer->wds_ecm.wds_rx_filter) {
1245 					return 1;
1246 				}
1247 				break;
1248 			}
1249 		}
1250 		rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
1251 		rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
1252 	} else {             /* sta mode */
1253 		if (!peer->wds_ecm.wds_rx_filter) {
1254 			return 1;
1255 		}
1256 		rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
1257 		rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
1258 	}
1259 
1260 	/* ------------------------------------------------
1261 	 *                       self
1262 	 * peer-             rx  rx-
1263 	 * wds  ucast mcast dir policy accept note
1264 	 * ------------------------------------------------
1265 	 * 1     1     0     11  x1     1      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
1266 	 * 1     1     0     01  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1267 	 * 1     1     0     10  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1268 	 * 1     1     0     00  x1     0      bad frame, won't see it
1269 	 * 1     0     1     11  1x     1      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
1270 	 * 1     0     1     01  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1271 	 * 1     0     1     10  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1272 	 * 1     0     1     00  1x     0      bad frame, won't see it
1273 	 * 1     1     0     11  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1274 	 * 1     1     0     01  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1275 	 * 1     1     0     10  x0     1      AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
1276 	 * 1     1     0     00  x0     0      bad frame, won't see it
1277 	 * 1     0     1     11  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1278 	 * 1     0     1     01  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1279 	 * 1     0     1     10  0x     1      AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
1280 	 * 1     0     1     00  0x     0      bad frame, won't see it
1281 	 *
1282 	 * 0     x     x     11  xx     0      we only accept td-ds Rx frames from non-wds peers in mode.
1283 	 * 0     x     x     01  xx     1
1284 	 * 0     x     x     10  xx     0
1285 	 * 0     x     x     00  xx     0      bad frame, won't see it
1286 	 * ------------------------------------------------
1287 	 */
1288 
1289 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
1290 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
1291 	rx_3addr = fr_ds ^ to_ds;
1292 	rx_4addr = fr_ds & to_ds;
1293 
1294 	if (vdev->opmode == wlan_op_mode_ap) {
1295 		if ((!peer->wds_enabled && rx_3addr && to_ds) ||
1296 				(peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1297 				(peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
1298 			return 1;
1299 		}
1300 	} else {           /* sta mode */
1301 		if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1302 				(rx_mcast && (rx_4addr == rx_policy_mcast))) {
1303 			return 1;
1304 		}
1305 	}
1306 	return 0;
1307 }
1308 #else
1309 int dp_wds_rx_policy_check(
1310 		uint8_t *rx_tlv_hdr,
1311 		struct dp_vdev *vdev,
1312 		struct dp_peer *peer,
1313 		int rx_mcast
1314 		)
1315 {
1316 	return 1;
1317 }
1318 #endif
1319 
1320 /**
1321  * dp_rx_process() - Brain of the Rx processing functionality
1322  *		     Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
1323  * @soc: core txrx main context
1324  * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
1325  * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
1326  * @quota: No. of units (packets) that can be serviced in one shot.
1327  *
1328  * This function implements the core of Rx functionality. This is
1329  * expected to handle only non-error frames.
1330  *
1331  * Return: uint32_t: No. of elements processed
1332  */
1333 uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring,
1334 		       uint8_t reo_ring_num, uint32_t quota)
1335 {
1336 	void *hal_soc;
1337 	void *ring_desc;
1338 	struct dp_rx_desc *rx_desc = NULL;
1339 	qdf_nbuf_t nbuf, next;
1340 	union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
1341 	union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
1342 	uint32_t rx_bufs_used = 0, rx_buf_cookie;
1343 	uint32_t l2_hdr_offset = 0;
1344 	uint16_t msdu_len = 0;
1345 	uint16_t peer_id;
1346 	struct dp_peer *peer = NULL;
1347 	struct dp_vdev *vdev = NULL;
1348 	uint32_t pkt_len = 0;
1349 	struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
1350 	struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
1351 	enum hal_reo_error_status error;
1352 	uint32_t peer_mdata;
1353 	uint8_t *rx_tlv_hdr;
1354 	uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
1355 	uint8_t mac_id = 0;
1356 	struct dp_pdev *pdev;
1357 	struct dp_srng *dp_rxdma_srng;
1358 	struct rx_desc_pool *rx_desc_pool;
1359 	struct dp_soc *soc = int_ctx->soc;
1360 	uint8_t ring_id = 0;
1361 	uint8_t core_id = 0;
1362 	qdf_nbuf_t nbuf_head = NULL;
1363 	qdf_nbuf_t nbuf_tail = NULL;
1364 	qdf_nbuf_t deliver_list_head = NULL;
1365 	qdf_nbuf_t deliver_list_tail = NULL;
1366 
1367 	DP_HIST_INIT();
1368 	/* Debug -- Remove later */
1369 	qdf_assert(soc && hal_ring);
1370 
1371 	hal_soc = soc->hal_soc;
1372 
1373 	/* Debug -- Remove later */
1374 	qdf_assert(hal_soc);
1375 
1376 	hif_pm_runtime_mark_last_busy(soc->osdev->dev);
1377 
1378 	if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
1379 
1380 		/*
1381 		 * Need API to convert from hal_ring pointer to
1382 		 * Ring Type / Ring Id combo
1383 		 */
1384 		DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
1385 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1386 			FL("HAL RING Access Failed -- %pK"), hal_ring);
1387 		hal_srng_access_end(hal_soc, hal_ring);
1388 		goto done;
1389 	}
1390 
1391 	/*
1392 	 * start reaping the buffers from reo ring and queue
1393 	 * them in per vdev queue.
1394 	 * Process the received pkts in a different per vdev loop.
1395 	 */
1396 	while (qdf_likely(quota)) {
1397 		ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
1398 
1399 		/*
1400 		 * in case HW has updated hp after we cached the hp
1401 		 * ring_desc can be NULL even there are entries
1402 		 * available in the ring. Update the cached_hp
1403 		 * and reap the buffers available to read complete
1404 		 * mpdu in one reap
1405 		 *
1406 		 * This is needed for RAW mode we have to read all
1407 		 * msdus corresponding to amsdu in one reap to create
1408 		 * SG list properly but due to mismatch in cached_hp
1409 		 * and actual hp sometimes we are unable to read
1410 		 * complete mpdu in one reap.
1411 		 */
1412 		if (qdf_unlikely(!ring_desc)) {
1413 			hal_srng_access_start_unlocked(hal_soc, hal_ring);
1414 			ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
1415 			if (!ring_desc)
1416 				break;
1417 			DP_STATS_INC(soc, rx.hp_oos, 1);
1418 		}
1419 
1420 		error = HAL_RX_ERROR_STATUS_GET(ring_desc);
1421 		ring_id = hal_srng_ring_id_get(hal_ring);
1422 
1423 		if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
1424 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1425 			FL("HAL RING 0x%pK:error %d"), hal_ring, error);
1426 			DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
1427 			/* Don't know how to deal with this -- assert */
1428 			qdf_assert(0);
1429 		}
1430 
1431 		rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
1432 
1433 		rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
1434 
1435 
1436 		qdf_assert(rx_desc);
1437 		rx_bufs_reaped[rx_desc->pool_id]++;
1438 
1439 		/* TODO */
1440 		/*
1441 		 * Need a separate API for unmapping based on
1442 		 * phyiscal address
1443 		 */
1444 		qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
1445 					QDF_DMA_BIDIRECTIONAL);
1446 
1447 		core_id = smp_processor_id();
1448 		DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
1449 
1450 		/* Get MPDU DESC info */
1451 		hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
1452 
1453 		hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
1454 						mpdu_desc_info.peer_meta_data);
1455 
1456 		/* Get MSDU DESC info */
1457 		hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
1458 
1459 		/*
1460 		 * save msdu flags first, last and continuation msdu in
1461 		 * nbuf->cb
1462 		 */
1463 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
1464 			qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
1465 
1466 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
1467 			qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
1468 
1469 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
1470 			qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
1471 
1472 		QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
1473 		DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
1474 
1475 		/*
1476 		 * if continuation bit is set then we have MSDU spread
1477 		 * across multiple buffers, let us not decrement quota
1478 		 * till we reap all buffers of that MSDU.
1479 		 */
1480 		if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
1481 			quota -= 1;
1482 
1483 
1484 		dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
1485 						&tail[rx_desc->pool_id],
1486 						rx_desc);
1487 	}
1488 done:
1489 	hal_srng_access_end(hal_soc, hal_ring);
1490 
1491 	if (nbuf_tail)
1492 		QDF_NBUF_CB_RX_FLUSH_IND(nbuf_tail) = 1;
1493 
1494 	/* Update histogram statistics by looping through pdev's */
1495 	DP_RX_HIST_STATS_PER_PDEV();
1496 
1497 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
1498 		/*
1499 		 * continue with next mac_id if no pkts were reaped
1500 		 * from that pool
1501 		 */
1502 		if (!rx_bufs_reaped[mac_id])
1503 			continue;
1504 
1505 		pdev = soc->pdev_list[mac_id];
1506 		dp_rxdma_srng = &pdev->rx_refill_buf_ring;
1507 		rx_desc_pool = &soc->rx_desc_buf[mac_id];
1508 
1509 		dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
1510 					rx_desc_pool, rx_bufs_reaped[mac_id],
1511 					&head[mac_id], &tail[mac_id]);
1512 	}
1513 
1514 	/* Peer can be NULL is case of LFR */
1515 	if (qdf_likely(peer != NULL))
1516 		vdev = NULL;
1517 
1518 	/*
1519 	 * BIG loop where each nbuf is dequeued from global queue,
1520 	 * processed and queued back on a per vdev basis. These nbufs
1521 	 * are sent to stack as and when we run out of nbufs
1522 	 * or a new nbuf dequeued from global queue has a different
1523 	 * vdev when compared to previous nbuf.
1524 	 */
1525 	nbuf = nbuf_head;
1526 	while (nbuf) {
1527 		next = nbuf->next;
1528 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
1529 
1530 		/*
1531 		 * Check if DMA completed -- msdu_done is the last bit
1532 		 * to be written
1533 		 */
1534 		if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
1535 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1536 				  FL("MSDU DONE failure"));
1537 			hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
1538 					     QDF_TRACE_LEVEL_INFO);
1539 			qdf_assert(0);
1540 		}
1541 
1542 		peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
1543 		peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
1544 		peer = dp_peer_find_by_id(soc, peer_id);
1545 
1546 		if (peer) {
1547 			QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
1548 			qdf_dp_trace_set_track(nbuf, QDF_RX);
1549 			QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
1550 			QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
1551 				QDF_NBUF_RX_PKT_DATA_TRACK;
1552 		}
1553 
1554 		rx_bufs_used++;
1555 
1556 		if (deliver_list_head && peer && (vdev != peer->vdev)) {
1557 			dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
1558 					deliver_list_tail);
1559 			deliver_list_head = NULL;
1560 			deliver_list_tail = NULL;
1561 		}
1562 
1563 		if (qdf_likely(peer != NULL)) {
1564 			vdev = peer->vdev;
1565 		} else {
1566 			DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
1567 					 qdf_nbuf_len(nbuf));
1568 			qdf_nbuf_free(nbuf);
1569 			nbuf = next;
1570 			continue;
1571 		}
1572 
1573 		if (qdf_unlikely(vdev == NULL)) {
1574 			qdf_nbuf_free(nbuf);
1575 			nbuf = next;
1576 			DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
1577 			dp_peer_unref_del_find_by_id(peer);
1578 			continue;
1579 		}
1580 
1581 		DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
1582 		/*
1583 		 * First IF condition:
1584 		 * 802.11 Fragmented pkts are reinjected to REO
1585 		 * HW block as SG pkts and for these pkts we only
1586 		 * need to pull the RX TLVS header length.
1587 		 * Second IF condition:
1588 		 * The below condition happens when an MSDU is spread
1589 		 * across multiple buffers. This can happen in two cases
1590 		 * 1. The nbuf size is smaller then the received msdu.
1591 		 *    ex: we have set the nbuf size to 2048 during
1592 		 *        nbuf_alloc. but we received an msdu which is
1593 		 *        2304 bytes in size then this msdu is spread
1594 		 *        across 2 nbufs.
1595 		 *
1596 		 * 2. AMSDUs when RAW mode is enabled.
1597 		 *    ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
1598 		 *        across 1st nbuf and 2nd nbuf and last MSDU is
1599 		 *        spread across 2nd nbuf and 3rd nbuf.
1600 		 *
1601 		 * for these scenarios let us create a skb frag_list and
1602 		 * append these buffers till the last MSDU of the AMSDU
1603 		 * Third condition:
1604 		 * This is the most likely case, we receive 802.3 pkts
1605 		 * decapsulated by HW, here we need to set the pkt length.
1606 		 */
1607 		if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf)))
1608 			qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1609 		else if (qdf_unlikely(vdev->rx_decap_type ==
1610 				htt_cmn_pkt_type_raw)) {
1611 			msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1612 			nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
1613 
1614 			DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
1615 			DP_STATS_INC_PKT(peer, rx.raw, 1,
1616 					 msdu_len);
1617 
1618 			next = nbuf->next;
1619 		} else {
1620 			l2_hdr_offset =
1621 				hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
1622 
1623 			msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1624 			pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
1625 
1626 			qdf_nbuf_set_pktlen(nbuf, pkt_len);
1627 			qdf_nbuf_pull_head(nbuf,
1628 					   RX_PKT_TLVS_LEN +
1629 					   l2_hdr_offset);
1630 		}
1631 
1632 		if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
1633 				hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
1634 			QDF_TRACE(QDF_MODULE_ID_DP,
1635 					QDF_TRACE_LEVEL_ERROR,
1636 					FL("Policy Check Drop pkt"));
1637 			/* Drop & free packet */
1638 			qdf_nbuf_free(nbuf);
1639 			/* Statistics */
1640 			nbuf = next;
1641 			dp_peer_unref_del_find_by_id(peer);
1642 			continue;
1643 		}
1644 
1645 		if (qdf_unlikely(peer && peer->bss_peer)) {
1646 			QDF_TRACE(QDF_MODULE_ID_DP,
1647 				QDF_TRACE_LEVEL_ERROR,
1648 				FL("received pkt with same src MAC"));
1649 			DP_STATS_INC_PKT(peer, rx.mec_drop, 1, msdu_len);
1650 
1651 			/* Drop & free packet */
1652 			qdf_nbuf_free(nbuf);
1653 			/* Statistics */
1654 			nbuf = next;
1655 			dp_peer_unref_del_find_by_id(peer);
1656 			continue;
1657 		}
1658 
1659 		if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
1660 			(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
1661 			(hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
1662 			DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
1663 			qdf_nbuf_free(nbuf);
1664 			nbuf = next;
1665 			dp_peer_unref_del_find_by_id(peer);
1666 			continue;
1667 		}
1668 
1669 		dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
1670 
1671 		dp_set_rx_queue(nbuf, ring_id);
1672 
1673 		/*
1674 		 * HW structures call this L3 header padding --
1675 		 * even though this is actually the offset from
1676 		 * the buffer beginning where the L2 header
1677 		 * begins.
1678 		 */
1679 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1680 			FL("rxhash: flow id toeplitz: 0x%x"),
1681 			hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
1682 
1683 		dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
1684 
1685 		if (qdf_unlikely(vdev->mesh_vdev)) {
1686 			if (dp_rx_filter_mesh_packets(vdev, nbuf,
1687 							rx_tlv_hdr)
1688 					== QDF_STATUS_SUCCESS) {
1689 				QDF_TRACE(QDF_MODULE_ID_DP,
1690 					QDF_TRACE_LEVEL_INFO_MED,
1691 					FL("mesh pkt filtered"));
1692 			DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
1693 					1);
1694 
1695 				qdf_nbuf_free(nbuf);
1696 				nbuf = next;
1697 				dp_peer_unref_del_find_by_id(peer);
1698 				continue;
1699 			}
1700 			dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
1701 		}
1702 
1703 #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
1704 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1705 			"p_id %d msdu_len %d hdr_off %d",
1706 			peer_id, msdu_len, l2_hdr_offset);
1707 
1708 		print_hex_dump(KERN_ERR,
1709 			       "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
1710 				qdf_nbuf_data(nbuf), 128, false);
1711 #endif /* NAPIER_EMULATION */
1712 
1713 		if (qdf_likely(vdev->rx_decap_type ==
1714 			       htt_cmn_pkt_type_ethernet) &&
1715 		    qdf_likely(!vdev->mesh_vdev)) {
1716 			/* WDS Source Port Learning */
1717 			if (vdev->wds_enabled) {
1718 				dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
1719 				dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
1720 							peer, nbuf);
1721 			}
1722 
1723 			/* Intrabss-fwd */
1724 			if (dp_rx_check_ap_bridge(vdev))
1725 				if (dp_rx_intrabss_fwd(soc,
1726 							peer,
1727 							rx_tlv_hdr,
1728 							nbuf)) {
1729 					nbuf = next;
1730 					dp_peer_unref_del_find_by_id(peer);
1731 					continue; /* Get next desc */
1732 				}
1733 		}
1734 
1735 		dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
1736 		qdf_nbuf_cb_update_peer_local_id(nbuf, peer->local_id);
1737 		DP_RX_LIST_APPEND(deliver_list_head,
1738 				  deliver_list_tail,
1739 				  nbuf);
1740 		DP_STATS_INC_PKT(peer, rx.to_stack, 1,
1741 				qdf_nbuf_len(nbuf));
1742 
1743 		nbuf = next;
1744 		dp_peer_unref_del_find_by_id(peer);
1745 	}
1746 
1747 	if (deliver_list_head)
1748 		dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
1749 				       deliver_list_tail);
1750 
1751 	return rx_bufs_used; /* Assume no scale factor for now */
1752 }
1753 
1754 /**
1755  * dp_rx_detach() - detach dp rx
1756  * @pdev: core txrx pdev context
1757  *
1758  * This function will detach DP RX into main device context
1759  * will free DP Rx resources.
1760  *
1761  * Return: void
1762  */
1763 void
1764 dp_rx_pdev_detach(struct dp_pdev *pdev)
1765 {
1766 	uint8_t pdev_id = pdev->pdev_id;
1767 	struct dp_soc *soc = pdev->soc;
1768 	struct rx_desc_pool *rx_desc_pool;
1769 
1770 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
1771 
1772 	if (rx_desc_pool->pool_size != 0) {
1773 		dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
1774 	}
1775 
1776 	return;
1777 }
1778 
1779 /**
1780  * dp_rx_attach() - attach DP RX
1781  * @pdev: core txrx pdev context
1782  *
1783  * This function will attach a DP RX instance into the main
1784  * device (SOC) context. Will allocate dp rx resource and
1785  * initialize resources.
1786  *
1787  * Return: QDF_STATUS_SUCCESS: success
1788  *         QDF_STATUS_E_RESOURCES: Error return
1789  */
1790 QDF_STATUS
1791 dp_rx_pdev_attach(struct dp_pdev *pdev)
1792 {
1793 	uint8_t pdev_id = pdev->pdev_id;
1794 	struct dp_soc *soc = pdev->soc;
1795 	struct dp_srng rxdma_srng;
1796 	uint32_t rxdma_entries;
1797 	union dp_rx_desc_list_elem_t *desc_list = NULL;
1798 	union dp_rx_desc_list_elem_t *tail = NULL;
1799 	struct dp_srng *dp_rxdma_srng;
1800 	struct rx_desc_pool *rx_desc_pool;
1801 
1802 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
1803 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1804 			  "nss-wifi<4> skip Rx refil %d", pdev_id);
1805 		return QDF_STATUS_SUCCESS;
1806 	}
1807 
1808 	pdev = soc->pdev_list[pdev_id];
1809 	rxdma_srng = pdev->rx_refill_buf_ring;
1810 	soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
1811 	rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
1812 						     soc->hal_soc, RXDMA_BUF);
1813 
1814 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
1815 
1816 	dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
1817 
1818 	rx_desc_pool->owner = DP_WBM2SW_RBM;
1819 	/* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
1820 	dp_rxdma_srng = &pdev->rx_refill_buf_ring;
1821 	dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
1822 		0, &desc_list, &tail);
1823 
1824 	return QDF_STATUS_SUCCESS;
1825 }
1826 
1827 /*
1828  * dp_rx_nbuf_prepare() - prepare RX nbuf
1829  * @soc: core txrx main context
1830  * @pdev: core txrx pdev context
1831  *
1832  * This function alloc & map nbuf for RX dma usage, retry it if failed
1833  * until retry times reaches max threshold or succeeded.
1834  *
1835  * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
1836  */
1837 qdf_nbuf_t
1838 dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
1839 {
1840 	uint8_t *buf;
1841 	int32_t nbuf_retry_count;
1842 	QDF_STATUS ret;
1843 	qdf_nbuf_t nbuf = NULL;
1844 
1845 	for (nbuf_retry_count = 0; nbuf_retry_count <
1846 		QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
1847 			nbuf_retry_count++) {
1848 		/* Allocate a new skb */
1849 		nbuf = qdf_nbuf_alloc(soc->osdev,
1850 					RX_BUFFER_SIZE,
1851 					RX_BUFFER_RESERVATION,
1852 					RX_BUFFER_ALIGNMENT,
1853 					FALSE);
1854 
1855 		if (nbuf == NULL) {
1856 			DP_STATS_INC(pdev,
1857 				replenish.nbuf_alloc_fail, 1);
1858 			continue;
1859 		}
1860 
1861 		buf = qdf_nbuf_data(nbuf);
1862 
1863 		memset(buf, 0, RX_BUFFER_SIZE);
1864 
1865 		ret = qdf_nbuf_map_single(soc->osdev, nbuf,
1866 				    QDF_DMA_BIDIRECTIONAL);
1867 
1868 		/* nbuf map failed */
1869 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
1870 			qdf_nbuf_free(nbuf);
1871 			DP_STATS_INC(pdev, replenish.map_err, 1);
1872 			continue;
1873 		}
1874 		/* qdf_nbuf alloc and map succeeded */
1875 		break;
1876 	}
1877 
1878 	/* qdf_nbuf still alloc or map failed */
1879 	if (qdf_unlikely(nbuf_retry_count >=
1880 			QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
1881 		return NULL;
1882 
1883 	return nbuf;
1884 }
1885