xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.c (revision 1f55ed1a9f5050d8da228aa8dd3fff7c0242aa71)
1 /*
2  * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "dp_types.h"
21 #include "dp_rx.h"
22 #include "dp_peer.h"
23 #include "hal_rx.h"
24 #include "hal_api.h"
25 #include "qdf_nbuf.h"
26 #ifdef MESH_MODE_SUPPORT
27 #include "if_meta_hdr.h"
28 #endif
29 #include "dp_internal.h"
30 #include "dp_rx_mon.h"
31 
32 #ifdef RX_DESC_DEBUG_CHECK
33 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
34 {
35 	rx_desc->magic = DP_RX_DESC_MAGIC;
36 	rx_desc->nbuf = nbuf;
37 }
38 #else
39 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
40 {
41 	rx_desc->nbuf = nbuf;
42 }
43 #endif
44 
45 #ifdef CONFIG_WIN
46 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
47 {
48 	return vdev->ap_bridge_enabled;
49 }
50 #else
51 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
52 {
53 	if (vdev->opmode != wlan_op_mode_sta)
54 		return true;
55 	else
56 		return false;
57 }
58 #endif
59 
60 /*
61  * dp_rx_dump_info_and_assert() - dump RX Ring info and Rx Desc info
62  *
63  * @soc: core txrx main context
64  * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
65  * @ring_desc: opaque pointer to the RX ring descriptor
66  * @rx_desc: host rs descriptor
67  *
68  * Return: void
69  */
70 void dp_rx_dump_info_and_assert(struct dp_soc *soc, void *hal_ring,
71 				void *ring_desc, struct dp_rx_desc *rx_desc)
72 {
73 	void *hal_soc = soc->hal_soc;
74 
75 	dp_rx_desc_dump(rx_desc);
76 	hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
77 	hal_srng_dump_ring(hal_soc, hal_ring);
78 	qdf_assert_always(rx_desc->in_use);
79 }
80 
81 /*
82  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
83  *			       called during dp rx initialization
84  *			       and at the end of dp_rx_process.
85  *
86  * @soc: core txrx main context
87  * @mac_id: mac_id which is one of 3 mac_ids
88  * @dp_rxdma_srng: dp rxdma circular ring
89  * @rx_desc_pool: Pointer to free Rx descriptor pool
90  * @num_req_buffers: number of buffer to be replenished
91  * @desc_list: list of descs if called from dp_rx_process
92  *	       or NULL during dp rx initialization or out of buffer
93  *	       interrupt.
94  * @tail: tail of descs list
95  * Return: return success or failure
96  */
97 QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
98 				struct dp_srng *dp_rxdma_srng,
99 				struct rx_desc_pool *rx_desc_pool,
100 				uint32_t num_req_buffers,
101 				union dp_rx_desc_list_elem_t **desc_list,
102 				union dp_rx_desc_list_elem_t **tail)
103 {
104 	uint32_t num_alloc_desc;
105 	uint16_t num_desc_to_free = 0;
106 	struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
107 	uint32_t num_entries_avail;
108 	uint32_t count;
109 	int sync_hw_ptr = 1;
110 	qdf_dma_addr_t paddr;
111 	qdf_nbuf_t rx_netbuf;
112 	void *rxdma_ring_entry;
113 	union dp_rx_desc_list_elem_t *next;
114 	QDF_STATUS ret;
115 
116 	void *rxdma_srng;
117 
118 	rxdma_srng = dp_rxdma_srng->hal_srng;
119 
120 	if (!rxdma_srng) {
121 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
122 				  "rxdma srng not initialized");
123 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
124 		return QDF_STATUS_E_FAILURE;
125 	}
126 
127 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
128 		"requested %d buffers for replenish", num_req_buffers);
129 
130 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
131 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
132 						   rxdma_srng,
133 						   sync_hw_ptr);
134 
135 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
136 		"no of available entries in rxdma ring: %d",
137 		num_entries_avail);
138 
139 	if (!(*desc_list) && (num_entries_avail >
140 		((dp_rxdma_srng->num_entries * 3) / 4))) {
141 		num_req_buffers = num_entries_avail;
142 	} else if (num_entries_avail < num_req_buffers) {
143 		num_desc_to_free = num_req_buffers - num_entries_avail;
144 		num_req_buffers = num_entries_avail;
145 	}
146 
147 	if (qdf_unlikely(!num_req_buffers)) {
148 		num_desc_to_free = num_req_buffers;
149 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
150 		goto free_descs;
151 	}
152 
153 	/*
154 	 * if desc_list is NULL, allocate the descs from freelist
155 	 */
156 	if (!(*desc_list)) {
157 		num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
158 							  rx_desc_pool,
159 							  num_req_buffers,
160 							  desc_list,
161 							  tail);
162 
163 		if (!num_alloc_desc) {
164 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
165 				"no free rx_descs in freelist");
166 			DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
167 					num_req_buffers);
168 			hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
169 			return QDF_STATUS_E_NOMEM;
170 		}
171 
172 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
173 			"%d rx desc allocated", num_alloc_desc);
174 		num_req_buffers = num_alloc_desc;
175 	}
176 
177 
178 	count = 0;
179 
180 	while (count < num_req_buffers) {
181 		rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
182 					RX_BUFFER_SIZE,
183 					RX_BUFFER_RESERVATION,
184 					RX_BUFFER_ALIGNMENT,
185 					FALSE);
186 
187 		if (rx_netbuf == NULL) {
188 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
189 			continue;
190 		}
191 
192 		ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
193 				    QDF_DMA_BIDIRECTIONAL);
194 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
195 			qdf_nbuf_free(rx_netbuf);
196 			DP_STATS_INC(dp_pdev, replenish.map_err, 1);
197 			continue;
198 		}
199 
200 		paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
201 
202 		/*
203 		 * check if the physical address of nbuf->data is
204 		 * less then 0x50000000 then free the nbuf and try
205 		 * allocating new nbuf. We can try for 100 times.
206 		 * this is a temp WAR till we fix it properly.
207 		 */
208 		ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
209 		if (ret == QDF_STATUS_E_FAILURE) {
210 			DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
211 			break;
212 		}
213 
214 		count++;
215 
216 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
217 								rxdma_srng);
218 		qdf_assert_always(rxdma_ring_entry);
219 
220 		next = (*desc_list)->next;
221 
222 		dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
223 		(*desc_list)->rx_desc.in_use = 1;
224 
225 		dp_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
226 			 rx_netbuf, qdf_nbuf_data(rx_netbuf),
227 			 (unsigned long long)paddr,
228 			 (*desc_list)->rx_desc.cookie);
229 
230 		hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
231 						(*desc_list)->rx_desc.cookie,
232 						rx_desc_pool->owner);
233 
234 		*desc_list = next;
235 	}
236 
237 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
238 
239 	dp_debug("replenished buffers %d, rx desc added back to free list %u",
240 		 num_req_buffers, num_desc_to_free);
241 
242 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
243 			(RX_BUFFER_SIZE * num_req_buffers));
244 
245 free_descs:
246 	DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
247 	/*
248 	 * add any available free desc back to the free list
249 	 */
250 	if (*desc_list)
251 		dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
252 			mac_id, rx_desc_pool);
253 
254 	return QDF_STATUS_SUCCESS;
255 }
256 
257 /*
258  * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
259  *				pkts to RAW mode simulation to
260  *				decapsulate the pkt.
261  *
262  * @vdev: vdev on which RAW mode is enabled
263  * @nbuf_list: list of RAW pkts to process
264  * @peer: peer object from which the pkt is rx
265  *
266  * Return: void
267  */
268 void
269 dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
270 					struct dp_peer *peer)
271 {
272 	qdf_nbuf_t deliver_list_head = NULL;
273 	qdf_nbuf_t deliver_list_tail = NULL;
274 	qdf_nbuf_t nbuf;
275 
276 	nbuf = nbuf_list;
277 	while (nbuf) {
278 		qdf_nbuf_t next = qdf_nbuf_next(nbuf);
279 
280 		DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
281 
282 		DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
283 		DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
284 		/*
285 		 * reset the chfrag_start and chfrag_end bits in nbuf cb
286 		 * as this is a non-amsdu pkt and RAW mode simulation expects
287 		 * these bit s to be 0 for non-amsdu pkt.
288 		 */
289 		if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
290 			 qdf_nbuf_is_rx_chfrag_end(nbuf)) {
291 			qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
292 			qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
293 		}
294 
295 		nbuf = next;
296 	}
297 
298 	vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
299 				 &deliver_list_tail, (struct cdp_peer*) peer);
300 
301 	vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
302 }
303 
304 
305 #ifdef DP_LFR
306 /*
307  * In case of LFR, data of a new peer might be sent up
308  * even before peer is added.
309  */
310 static inline struct dp_vdev *
311 dp_get_vdev_from_peer(struct dp_soc *soc,
312 			uint16_t peer_id,
313 			struct dp_peer *peer,
314 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
315 {
316 	struct dp_vdev *vdev;
317 	uint8_t vdev_id;
318 
319 	if (unlikely(!peer)) {
320 		if (peer_id != HTT_INVALID_PEER) {
321 			vdev_id = DP_PEER_METADATA_ID_GET(
322 					mpdu_desc_info.peer_meta_data);
323 			QDF_TRACE(QDF_MODULE_ID_DP,
324 				QDF_TRACE_LEVEL_DEBUG,
325 				FL("PeerID %d not found use vdevID %d"),
326 				peer_id, vdev_id);
327 			vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
328 							vdev_id);
329 		} else {
330 			QDF_TRACE(QDF_MODULE_ID_DP,
331 				QDF_TRACE_LEVEL_DEBUG,
332 				FL("Invalid PeerID %d"),
333 				peer_id);
334 			return NULL;
335 		}
336 	} else {
337 		vdev = peer->vdev;
338 	}
339 	return vdev;
340 }
341 #else
342 static inline struct dp_vdev *
343 dp_get_vdev_from_peer(struct dp_soc *soc,
344 			uint16_t peer_id,
345 			struct dp_peer *peer,
346 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
347 {
348 	if (unlikely(!peer)) {
349 		QDF_TRACE(QDF_MODULE_ID_DP,
350 			QDF_TRACE_LEVEL_DEBUG,
351 			FL("Peer not found for peerID %d"),
352 			peer_id);
353 		return NULL;
354 	} else {
355 		return peer->vdev;
356 	}
357 }
358 #endif
359 
360 /**
361  * dp_rx_da_learn() - Add AST entry based on DA lookup
362  *			This is a WAR for HK 1.0 and will
363  *			be removed in HK 2.0
364  *
365  * @soc: core txrx main context
366  * @rx_tlv_hdr	: start address of rx tlvs
367  * @ta_peer	: Transmitter peer entry
368  * @nbuf	: nbuf to retrieve destination mac for which AST will be added
369  *
370  */
371 #ifdef FEATURE_WDS
372 static void
373 dp_rx_da_learn(struct dp_soc *soc,
374 	       uint8_t *rx_tlv_hdr,
375 	       struct dp_peer *ta_peer,
376 	       qdf_nbuf_t nbuf)
377 {
378 	/* For HKv2 DA port learing is not needed */
379 	if (qdf_likely(soc->ast_override_support))
380 		return;
381 
382 	if (qdf_unlikely(!ta_peer))
383 		return;
384 
385 	if (qdf_unlikely(ta_peer->vdev->opmode != wlan_op_mode_ap))
386 		return;
387 
388 	if (qdf_unlikely(!hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
389 			 !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
390 		dp_peer_add_ast(soc,
391 				ta_peer,
392 				qdf_nbuf_data(nbuf),
393 				CDP_TXRX_AST_TYPE_DA,
394 				IEEE80211_NODE_F_WDS_HM);
395 	}
396 }
397 #else
398 static void
399 dp_rx_da_learn(struct dp_soc *soc,
400 	       uint8_t *rx_tlv_hdr,
401 	       struct dp_peer *ta_peer,
402 	       qdf_nbuf_t nbuf)
403 {
404 }
405 #endif
406 
407 /**
408  * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
409  *
410  * @soc: core txrx main context
411  * @ta_peer	: source peer entry
412  * @rx_tlv_hdr	: start address of rx tlvs
413  * @nbuf	: nbuf that has to be intrabss forwarded
414  *
415  * Return: bool: true if it is forwarded else false
416  */
417 static bool
418 dp_rx_intrabss_fwd(struct dp_soc *soc,
419 			struct dp_peer *ta_peer,
420 			uint8_t *rx_tlv_hdr,
421 			qdf_nbuf_t nbuf)
422 {
423 	uint16_t da_idx;
424 	uint16_t len;
425 	struct dp_peer *da_peer;
426 	struct dp_ast_entry *ast_entry;
427 	qdf_nbuf_t nbuf_copy;
428 
429 	/* check if the destination peer is available in peer table
430 	 * and also check if the source peer and destination peer
431 	 * belong to the same vap and destination peer is not bss peer.
432 	 */
433 
434 	if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
435 	   !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
436 		da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
437 
438 		ast_entry = soc->ast_table[da_idx];
439 		if (!ast_entry)
440 			return false;
441 
442 		if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
443 			ast_entry->is_active = TRUE;
444 			return false;
445 		}
446 
447 		da_peer = ast_entry->peer;
448 
449 		if (!da_peer)
450 			return false;
451 		/* TA peer cannot be same as peer(DA) on which AST is present
452 		 * this indicates a change in topology and that AST entries
453 		 * are yet to be updated.
454 		 */
455 		if (da_peer == ta_peer)
456 			return false;
457 
458 		if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
459 			memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
460 			len = qdf_nbuf_len(nbuf);
461 
462 			/* linearize the nbuf just before we send to
463 			 * dp_tx_send()
464 			 */
465 			if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
466 				if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
467 					return false;
468 
469 				nbuf = qdf_nbuf_unshare(nbuf);
470 				if (!nbuf) {
471 					DP_STATS_INC_PKT(ta_peer,
472 							 rx.intra_bss.fail,
473 							 1,
474 							 len);
475 					/* return true even though the pkt is
476 					 * not forwarded. Basically skb_unshare
477 					 * failed and we want to continue with
478 					 * next nbuf.
479 					 */
480 					return true;
481 				}
482 			}
483 
484 			if (!dp_tx_send(ta_peer->vdev, nbuf)) {
485 				DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
486 						 len);
487 				return true;
488 			} else {
489 				DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
490 						 len);
491 				return false;
492 			}
493 		}
494 	}
495 	/* if it is a broadcast pkt (eg: ARP) and it is not its own
496 	 * source, then clone the pkt and send the cloned pkt for
497 	 * intra BSS forwarding and original pkt up the network stack
498 	 * Note: how do we handle multicast pkts. do we forward
499 	 * all multicast pkts as is or let a higher layer module
500 	 * like igmpsnoop decide whether to forward or not with
501 	 * Mcast enhancement.
502 	 */
503 	else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
504 		!ta_peer->bss_peer))) {
505 		nbuf_copy = qdf_nbuf_copy(nbuf);
506 		if (!nbuf_copy)
507 			return false;
508 		memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
509 		len = qdf_nbuf_len(nbuf_copy);
510 
511 		if (dp_tx_send(ta_peer->vdev, nbuf_copy)) {
512 			DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
513 			qdf_nbuf_free(nbuf_copy);
514 		} else {
515 			DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
516 		}
517 	}
518 	/* return false as we have to still send the original pkt
519 	 * up the stack
520 	 */
521 	return false;
522 }
523 
524 #ifdef MESH_MODE_SUPPORT
525 
526 /**
527  * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
528  *
529  * @vdev: DP Virtual device handle
530  * @nbuf: Buffer pointer
531  * @rx_tlv_hdr: start of rx tlv header
532  * @peer: pointer to peer
533  *
534  * This function allocated memory for mesh receive stats and fill the
535  * required stats. Stores the memory address in skb cb.
536  *
537  * Return: void
538  */
539 
540 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
541 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
542 {
543 	struct mesh_recv_hdr_s *rx_info = NULL;
544 	uint32_t pkt_type;
545 	uint32_t nss;
546 	uint32_t rate_mcs;
547 	uint32_t bw;
548 
549 	/* fill recv mesh stats */
550 	rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
551 
552 	/* upper layers are resposible to free this memory */
553 
554 	if (rx_info == NULL) {
555 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
556 			"Memory allocation failed for mesh rx stats");
557 		DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
558 		return;
559 	}
560 
561 	rx_info->rs_flags = MESH_RXHDR_VER1;
562 	if (qdf_nbuf_is_rx_chfrag_start(nbuf))
563 		rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
564 
565 	if (qdf_nbuf_is_rx_chfrag_end(nbuf))
566 		rx_info->rs_flags |= MESH_RX_LAST_MSDU;
567 
568 	if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
569 		rx_info->rs_flags |= MESH_RX_DECRYPTED;
570 		rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
571 		if (vdev->osif_get_key)
572 			vdev->osif_get_key(vdev->osif_vdev,
573 					&rx_info->rs_decryptkey[0],
574 					&peer->mac_addr.raw[0],
575 					rx_info->rs_keyix);
576 	}
577 
578 	rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
579 	rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
580 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
581 	rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
582 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
583 	nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
584 	rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
585 				(bw << 24);
586 
587 	qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
588 
589 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
590 		FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
591 						rx_info->rs_flags,
592 						rx_info->rs_rssi,
593 						rx_info->rs_channel,
594 						rx_info->rs_ratephy1,
595 						rx_info->rs_keyix);
596 
597 }
598 
599 /**
600  * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
601  *
602  * @vdev: DP Virtual device handle
603  * @nbuf: Buffer pointer
604  * @rx_tlv_hdr: start of rx tlv header
605  *
606  * This checks if the received packet is matching any filter out
607  * catogery and and drop the packet if it matches.
608  *
609  * Return: status(0 indicates drop, 1 indicate to no drop)
610  */
611 
612 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
613 					uint8_t *rx_tlv_hdr)
614 {
615 	union dp_align_mac_addr mac_addr;
616 
617 	if (qdf_unlikely(vdev->mesh_rx_filter)) {
618 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
619 			if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
620 				return  QDF_STATUS_SUCCESS;
621 
622 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
623 			if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
624 				return  QDF_STATUS_SUCCESS;
625 
626 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
627 			if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
628 				&& !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
629 				return  QDF_STATUS_SUCCESS;
630 
631 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
632 			if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
633 					&mac_addr.raw[0]))
634 				return QDF_STATUS_E_FAILURE;
635 
636 			if (!qdf_mem_cmp(&mac_addr.raw[0],
637 					&vdev->mac_addr.raw[0],
638 					DP_MAC_ADDR_LEN))
639 				return  QDF_STATUS_SUCCESS;
640 		}
641 
642 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
643 			if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
644 					&mac_addr.raw[0]))
645 				return QDF_STATUS_E_FAILURE;
646 
647 			if (!qdf_mem_cmp(&mac_addr.raw[0],
648 					&vdev->mac_addr.raw[0],
649 					DP_MAC_ADDR_LEN))
650 				return  QDF_STATUS_SUCCESS;
651 		}
652 	}
653 
654 	return QDF_STATUS_E_FAILURE;
655 }
656 
657 #else
658 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
659 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
660 {
661 }
662 
663 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
664 					uint8_t *rx_tlv_hdr)
665 {
666 	return QDF_STATUS_E_FAILURE;
667 }
668 
669 #endif
670 
671 #ifdef CONFIG_WIN
672 /**
673  * dp_rx_nac_filter(): Function to perform filtering of non-associated
674  * clients
675  * @pdev: DP pdev handle
676  * @rx_pkt_hdr: Rx packet Header
677  *
678  * return: dp_vdev*
679  */
680 static
681 struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
682 		uint8_t *rx_pkt_hdr)
683 {
684 	struct ieee80211_frame *wh;
685 	struct dp_neighbour_peer *peer = NULL;
686 
687 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
688 
689 	if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
690 		return NULL;
691 
692 	qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
693 	TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
694 				neighbour_peer_list_elem) {
695 		if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
696 				wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
697 			QDF_TRACE(
698 				QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
699 				FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
700 				peer->neighbour_peers_macaddr.raw[0],
701 				peer->neighbour_peers_macaddr.raw[1],
702 				peer->neighbour_peers_macaddr.raw[2],
703 				peer->neighbour_peers_macaddr.raw[3],
704 				peer->neighbour_peers_macaddr.raw[4],
705 				peer->neighbour_peers_macaddr.raw[5]);
706 
707 				qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
708 
709 			return pdev->monitor_vdev;
710 		}
711 	}
712 	qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
713 
714 	return NULL;
715 }
716 
717 /**
718  * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
719  * @soc: DP SOC handle
720  * @mpdu: mpdu for which peer is invalid
721  *
722  * return: integer type
723  */
724 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
725 {
726 	struct dp_invalid_peer_msg msg;
727 	struct dp_vdev *vdev = NULL;
728 	struct dp_pdev *pdev = NULL;
729 	struct ieee80211_frame *wh;
730 	uint8_t i;
731 	qdf_nbuf_t curr_nbuf, next_nbuf;
732 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
733 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
734 
735 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
736 
737 	if (!DP_FRAME_IS_DATA(wh)) {
738 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
739 				"NAWDS valid only for data frames");
740 		goto free;
741 	}
742 
743 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
744 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
745 				"Invalid nbuf length");
746 		goto free;
747 	}
748 
749 
750 	for (i = 0; i < MAX_PDEV_CNT; i++) {
751 		pdev = soc->pdev_list[i];
752 		if (!pdev) {
753 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
754 					"PDEV not found");
755 			continue;
756 		}
757 
758 		if (pdev->filter_neighbour_peers) {
759 			/* Next Hop scenario not yet handle */
760 			vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
761 			if (vdev) {
762 				dp_rx_mon_deliver(soc, i,
763 						pdev->invalid_peer_head_msdu,
764 						pdev->invalid_peer_tail_msdu);
765 
766 				pdev->invalid_peer_head_msdu = NULL;
767 				pdev->invalid_peer_tail_msdu = NULL;
768 
769 				return 0;
770 			}
771 		}
772 
773 
774 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
775 
776 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
777 						DP_MAC_ADDR_LEN) == 0) {
778 				goto out;
779 			}
780 		}
781 	}
782 
783 	if (!vdev) {
784 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
785 				"VDEV not found");
786 		goto free;
787 	}
788 
789 out:
790 	msg.wh = wh;
791 	qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
792 	msg.nbuf = mpdu;
793 	msg.vdev_id = vdev->vdev_id;
794 	if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
795 		pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
796 							&msg);
797 
798 free:
799 	/* Drop and free packet */
800 	curr_nbuf = mpdu;
801 	while (curr_nbuf) {
802 		next_nbuf = qdf_nbuf_next(curr_nbuf);
803 		qdf_nbuf_free(curr_nbuf);
804 		curr_nbuf = next_nbuf;
805 	}
806 
807 	return 0;
808 }
809 
810 /**
811  * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
812  * @soc: DP SOC handle
813  * @mpdu: mpdu for which peer is invalid
814  * @mpdu_done: if an mpdu is completed
815  *
816  * return: integer type
817  */
818 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
819 					qdf_nbuf_t mpdu, bool mpdu_done)
820 {
821 	/* Only trigger the process when mpdu is completed */
822 	if (mpdu_done)
823 		dp_rx_process_invalid_peer(soc, mpdu);
824 }
825 #else
826 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
827 {
828 	qdf_nbuf_t curr_nbuf, next_nbuf;
829 	struct dp_pdev *pdev;
830 	uint8_t i;
831 	struct dp_vdev *vdev = NULL;
832 	struct ieee80211_frame *wh;
833 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
834 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
835 
836 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
837 
838 	if (!DP_FRAME_IS_DATA(wh)) {
839 		QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
840 				   "only for data frames");
841 		goto free;
842 	}
843 
844 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
845 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
846 			  "Invalid nbuf length");
847 		goto free;
848 	}
849 
850 	for (i = 0; i < MAX_PDEV_CNT; i++) {
851 		pdev = soc->pdev_list[i];
852 		if (!pdev) {
853 			QDF_TRACE(QDF_MODULE_ID_DP,
854 				  QDF_TRACE_LEVEL_ERROR,
855 				  "PDEV not found");
856 			continue;
857 		}
858 
859 		qdf_spin_lock_bh(&pdev->vdev_list_lock);
860 		DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
861 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
862 					DP_MAC_ADDR_LEN) == 0) {
863 				qdf_spin_unlock_bh(&pdev->vdev_list_lock);
864 				goto out;
865 			}
866 		}
867 		qdf_spin_unlock_bh(&pdev->vdev_list_lock);
868 	}
869 
870 	if (NULL == vdev) {
871 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
872 			  "VDEV not found");
873 		goto free;
874 	}
875 
876 out:
877 	if (soc->cdp_soc.ol_ops->rx_invalid_peer)
878 		soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
879 free:
880 	/* reset the head and tail pointers */
881 	for (i = 0; i < MAX_PDEV_CNT; i++) {
882 		pdev = soc->pdev_list[i];
883 		if (!pdev) {
884 			QDF_TRACE(QDF_MODULE_ID_DP,
885 				  QDF_TRACE_LEVEL_ERROR,
886 				  "PDEV not found");
887 			continue;
888 		}
889 
890 		pdev->invalid_peer_head_msdu = NULL;
891 		pdev->invalid_peer_tail_msdu = NULL;
892 	}
893 
894 	/* Drop and free packet */
895 	curr_nbuf = mpdu;
896 	while (curr_nbuf) {
897 		next_nbuf = qdf_nbuf_next(curr_nbuf);
898 		DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
899 				 qdf_nbuf_len(curr_nbuf));
900 		qdf_nbuf_free(curr_nbuf);
901 		curr_nbuf = next_nbuf;
902 	}
903 
904 	return 0;
905 }
906 
907 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
908 					qdf_nbuf_t mpdu, bool mpdu_done)
909 {
910 	/* Process the nbuf */
911 	dp_rx_process_invalid_peer(soc, mpdu);
912 }
913 #endif
914 
915 #ifdef RECEIVE_OFFLOAD
916 /**
917  * dp_rx_print_offload_info() - Print offload info from RX TLV
918  * @rx_tlv: RX TLV for which offload information is to be printed
919  *
920  * Return: None
921  */
922 static void dp_rx_print_offload_info(uint8_t *rx_tlv)
923 {
924 	dp_debug("----------------------RX DESC LRO/GRO----------------------");
925 	dp_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
926 	dp_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
927 	dp_debug("chksum 0x%x", HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
928 	dp_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
929 	dp_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
930 	dp_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
931 	dp_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
932 	dp_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
933 	dp_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
934 	dp_debug("---------------------------------------------------------");
935 }
936 
937 /**
938  * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
939  * @soc: DP SOC handle
940  * @rx_tlv: RX TLV received for the msdu
941  * @msdu: msdu for which GRO info needs to be filled
942  *
943  * Return: None
944  */
945 static
946 void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
947 			 qdf_nbuf_t msdu)
948 {
949 	if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
950 		return;
951 
952 	/* Filling up RX offload info only for TCP packets */
953 	if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
954 		return;
955 
956 	QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
957 		 HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
958 	QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
959 			HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
960 	QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
961 			 HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
962 	QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
963 			 HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
964 	QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
965 			 HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
966 	QDF_NBUF_CB_RX_TCP_WIN(msdu) =
967 			 HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
968 	QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
969 			 HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
970 	QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
971 			 HAL_RX_TLV_GET_IPV6(rx_tlv);
972 	QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
973 			 HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
974 	QDF_NBUF_CB_RX_FLOW_ID(msdu) =
975 			 HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
976 
977 	dp_rx_print_offload_info(rx_tlv);
978 }
979 #else
980 static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
981 				qdf_nbuf_t msdu)
982 {
983 }
984 #endif /* RECEIVE_OFFLOAD */
985 
986 /**
987  * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
988  *
989  * @nbuf: pointer to msdu.
990  * @mpdu_len: mpdu length
991  *
992  * Return: returns true if nbuf is last msdu of mpdu else retuns false.
993  */
994 static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
995 {
996 	bool last_nbuf;
997 
998 	if (*mpdu_len > (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
999 		qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
1000 		last_nbuf = false;
1001 	} else {
1002 		qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
1003 		last_nbuf = true;
1004 	}
1005 
1006 	*mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
1007 
1008 	return last_nbuf;
1009 }
1010 
1011 /**
1012  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
1013  *		     multiple nbufs.
1014  * @nbuf: pointer to the first msdu of an amsdu.
1015  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1016  *
1017  *
1018  * This function implements the creation of RX frag_list for cases
1019  * where an MSDU is spread across multiple nbufs.
1020  *
1021  * Return: returns the head nbuf which contains complete frag_list.
1022  */
1023 qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
1024 {
1025 	qdf_nbuf_t parent, next, frag_list;
1026 	uint16_t frag_list_len = 0;
1027 	uint16_t mpdu_len;
1028 	bool last_nbuf;
1029 
1030 	mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1031 	/*
1032 	 * this is a case where the complete msdu fits in one single nbuf.
1033 	 * in this case HW sets both start and end bit and we only need to
1034 	 * reset these bits for RAW mode simulator to decap the pkt
1035 	 */
1036 	if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
1037 					qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1038 		qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
1039 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1040 		return nbuf;
1041 	}
1042 
1043 	/*
1044 	 * This is a case where we have multiple msdus (A-MSDU) spread across
1045 	 * multiple nbufs. here we create a fraglist out of these nbufs.
1046 	 *
1047 	 * the moment we encounter a nbuf with continuation bit set we
1048 	 * know for sure we have an MSDU which is spread across multiple
1049 	 * nbufs. We loop through and reap nbufs till we reach last nbuf.
1050 	 */
1051 	parent = nbuf;
1052 	frag_list = nbuf->next;
1053 	nbuf = nbuf->next;
1054 
1055 	/*
1056 	 * set the start bit in the first nbuf we encounter with continuation
1057 	 * bit set. This has the proper mpdu length set as it is the first
1058 	 * msdu of the mpdu. this becomes the parent nbuf and the subsequent
1059 	 * nbufs will form the frag_list of the parent nbuf.
1060 	 */
1061 	qdf_nbuf_set_rx_chfrag_start(parent, 1);
1062 	last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
1063 
1064 	/*
1065 	 * this is where we set the length of the fragments which are
1066 	 * associated to the parent nbuf. We iterate through the frag_list
1067 	 * till we hit the last_nbuf of the list.
1068 	 */
1069 	do {
1070 		last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
1071 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1072 		frag_list_len += qdf_nbuf_len(nbuf);
1073 
1074 		if (last_nbuf) {
1075 			next = nbuf->next;
1076 			nbuf->next = NULL;
1077 			break;
1078 		}
1079 
1080 		nbuf = nbuf->next;
1081 	} while (!last_nbuf);
1082 
1083 	qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
1084 	qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
1085 	parent->next = next;
1086 
1087 	qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
1088 	return parent;
1089 }
1090 
1091 static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
1092 						struct dp_peer *peer,
1093 						qdf_nbuf_t nbuf_head,
1094 						qdf_nbuf_t nbuf_tail)
1095 {
1096 	/*
1097 	 * highly unlikely to have a vdev without a registered rx
1098 	 * callback function. if so let us free the nbuf_list.
1099 	 */
1100 	if (qdf_unlikely(!vdev->osif_rx)) {
1101 		qdf_nbuf_t nbuf;
1102 		do {
1103 			nbuf = nbuf_head;
1104 			nbuf_head = nbuf_head->next;
1105 			qdf_nbuf_free(nbuf);
1106 		} while (nbuf_head);
1107 
1108 		return;
1109 	}
1110 
1111 	if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
1112 			(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
1113 		vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
1114 				&nbuf_tail, (struct cdp_peer *) peer);
1115 	}
1116 
1117 	vdev->osif_rx(vdev->osif_vdev, nbuf_head);
1118 
1119 }
1120 
1121 /**
1122  * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
1123  * @nbuf: pointer to the first msdu of an amsdu.
1124  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1125  *
1126  * The ipsumed field of the skb is set based on whether HW validated the
1127  * IP/TCP/UDP checksum.
1128  *
1129  * Return: void
1130  */
1131 static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
1132 				       qdf_nbuf_t nbuf,
1133 				       uint8_t *rx_tlv_hdr)
1134 {
1135 	qdf_nbuf_rx_cksum_t cksum = {0};
1136 	bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
1137 	bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
1138 
1139 	if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
1140 		cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
1141 		qdf_nbuf_set_rx_cksum(nbuf, &cksum);
1142 	} else {
1143 		DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
1144 		DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
1145 	}
1146 }
1147 
1148 /**
1149  * dp_rx_msdu_stats_update() - update per msdu stats.
1150  * @soc: core txrx main context
1151  * @nbuf: pointer to the first msdu of an amsdu.
1152  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1153  * @peer: pointer to the peer object.
1154  * @ring_id: reo dest ring number on which pkt is reaped.
1155  *
1156  * update all the per msdu stats for that nbuf.
1157  * Return: void
1158  */
1159 static void dp_rx_msdu_stats_update(struct dp_soc *soc,
1160 				    qdf_nbuf_t nbuf,
1161 				    uint8_t *rx_tlv_hdr,
1162 				    struct dp_peer *peer,
1163 				    uint8_t ring_id)
1164 {
1165 	bool is_ampdu, is_not_amsdu;
1166 	uint16_t peer_id;
1167 	uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
1168 	struct dp_vdev *vdev = peer->vdev;
1169 	struct ether_header *eh;
1170 	uint16_t msdu_len = qdf_nbuf_len(nbuf);
1171 
1172 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1173 			       hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
1174 
1175 	is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
1176 			qdf_nbuf_is_rx_chfrag_end(nbuf);
1177 
1178 	DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
1179 	DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
1180 	DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
1181 
1182 	if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
1183 			 (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
1184 		eh = (struct ether_header *)qdf_nbuf_data(nbuf);
1185 		DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
1186 		if (IEEE80211_IS_BROADCAST(eh->ether_dhost)) {
1187 			DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
1188 
1189 		}
1190 	}
1191 
1192 	/*
1193 	 * currently we can return from here as we have similar stats
1194 	 * updated at per ppdu level instead of msdu level
1195 	 */
1196 	if (!soc->process_rx_status)
1197 		return;
1198 
1199 	is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
1200 	DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
1201 	DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
1202 
1203 	sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
1204 	mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
1205 	tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_tlv_hdr);
1206 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
1207 	reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
1208 							      rx_tlv_hdr);
1209 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
1210 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
1211 
1212 	/* Save tid to skb->priority */
1213 	DP_RX_TID_SAVE(nbuf, tid);
1214 
1215 	DP_STATS_INC(peer, rx.bw[bw], 1);
1216 	DP_STATS_INC(peer, rx.nss[nss], 1);
1217 	DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
1218 	DP_STATS_INCC(peer, rx.err.mic_err, 1,
1219 		      hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
1220 	DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
1221 		      hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
1222 
1223 	DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
1224 	DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
1225 
1226 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1227 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1228 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1229 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1230 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1231 		      ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1232 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1233 		      ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1234 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1235 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1236 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1237 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1238 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1239 		      ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1240 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1241 		      ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1242 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
1243 		      ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
1244 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1245 		      ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
1246 
1247 	if ((soc->process_rx_status) &&
1248 	    hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
1249 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
1250 		if (!vdev->pdev)
1251 			return;
1252 
1253 		dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
1254 				     &peer->stats, peer_id,
1255 				     UPDATE_PEER_STATS,
1256 				     vdev->pdev->pdev_id);
1257 #endif
1258 
1259 	}
1260 }
1261 
1262 #ifdef WDS_VENDOR_EXTENSION
1263 int dp_wds_rx_policy_check(
1264 		uint8_t *rx_tlv_hdr,
1265 		struct dp_vdev *vdev,
1266 		struct dp_peer *peer,
1267 		int rx_mcast
1268 		)
1269 {
1270 	struct dp_peer *bss_peer;
1271 	int fr_ds, to_ds, rx_3addr, rx_4addr;
1272 	int rx_policy_ucast, rx_policy_mcast;
1273 
1274 	if (vdev->opmode == wlan_op_mode_ap) {
1275 		TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
1276 			if (bss_peer->bss_peer) {
1277 				/* if wds policy check is not enabled on this vdev, accept all frames */
1278 				if (!bss_peer->wds_ecm.wds_rx_filter) {
1279 					return 1;
1280 				}
1281 				break;
1282 			}
1283 		}
1284 		rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
1285 		rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
1286 	} else {             /* sta mode */
1287 		if (!peer->wds_ecm.wds_rx_filter) {
1288 			return 1;
1289 		}
1290 		rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
1291 		rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
1292 	}
1293 
1294 	/* ------------------------------------------------
1295 	 *                       self
1296 	 * peer-             rx  rx-
1297 	 * wds  ucast mcast dir policy accept note
1298 	 * ------------------------------------------------
1299 	 * 1     1     0     11  x1     1      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
1300 	 * 1     1     0     01  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1301 	 * 1     1     0     10  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1302 	 * 1     1     0     00  x1     0      bad frame, won't see it
1303 	 * 1     0     1     11  1x     1      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
1304 	 * 1     0     1     01  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1305 	 * 1     0     1     10  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1306 	 * 1     0     1     00  1x     0      bad frame, won't see it
1307 	 * 1     1     0     11  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1308 	 * 1     1     0     01  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1309 	 * 1     1     0     10  x0     1      AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
1310 	 * 1     1     0     00  x0     0      bad frame, won't see it
1311 	 * 1     0     1     11  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1312 	 * 1     0     1     01  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1313 	 * 1     0     1     10  0x     1      AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
1314 	 * 1     0     1     00  0x     0      bad frame, won't see it
1315 	 *
1316 	 * 0     x     x     11  xx     0      we only accept td-ds Rx frames from non-wds peers in mode.
1317 	 * 0     x     x     01  xx     1
1318 	 * 0     x     x     10  xx     0
1319 	 * 0     x     x     00  xx     0      bad frame, won't see it
1320 	 * ------------------------------------------------
1321 	 */
1322 
1323 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
1324 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
1325 	rx_3addr = fr_ds ^ to_ds;
1326 	rx_4addr = fr_ds & to_ds;
1327 
1328 	if (vdev->opmode == wlan_op_mode_ap) {
1329 		if ((!peer->wds_enabled && rx_3addr && to_ds) ||
1330 				(peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1331 				(peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
1332 			return 1;
1333 		}
1334 	} else {           /* sta mode */
1335 		if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1336 				(rx_mcast && (rx_4addr == rx_policy_mcast))) {
1337 			return 1;
1338 		}
1339 	}
1340 	return 0;
1341 }
1342 #else
1343 int dp_wds_rx_policy_check(
1344 		uint8_t *rx_tlv_hdr,
1345 		struct dp_vdev *vdev,
1346 		struct dp_peer *peer,
1347 		int rx_mcast
1348 		)
1349 {
1350 	return 1;
1351 }
1352 #endif
1353 
1354 /**
1355  * dp_rx_process() - Brain of the Rx processing functionality
1356  *		     Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
1357  * @soc: core txrx main context
1358  * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
1359  * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
1360  * @quota: No. of units (packets) that can be serviced in one shot.
1361  *
1362  * This function implements the core of Rx functionality. This is
1363  * expected to handle only non-error frames.
1364  *
1365  * Return: uint32_t: No. of elements processed
1366  */
1367 uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring,
1368 		       uint8_t reo_ring_num, uint32_t quota)
1369 {
1370 	void *hal_soc;
1371 	void *ring_desc;
1372 	struct dp_rx_desc *rx_desc = NULL;
1373 	qdf_nbuf_t nbuf, next;
1374 	union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
1375 	union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
1376 	uint32_t rx_bufs_used = 0, rx_buf_cookie;
1377 	uint32_t l2_hdr_offset = 0;
1378 	uint16_t msdu_len = 0;
1379 	uint16_t peer_id;
1380 	struct dp_peer *peer = NULL;
1381 	struct dp_vdev *vdev = NULL;
1382 	uint32_t pkt_len = 0;
1383 	struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
1384 	struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
1385 	enum hal_reo_error_status error;
1386 	uint32_t peer_mdata;
1387 	uint8_t *rx_tlv_hdr;
1388 	uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
1389 	uint8_t mac_id = 0;
1390 	struct dp_pdev *pdev;
1391 	struct dp_srng *dp_rxdma_srng;
1392 	struct rx_desc_pool *rx_desc_pool;
1393 	struct dp_soc *soc = int_ctx->soc;
1394 	uint8_t ring_id = 0;
1395 	uint8_t core_id = 0;
1396 	qdf_nbuf_t nbuf_head = NULL;
1397 	qdf_nbuf_t nbuf_tail = NULL;
1398 	qdf_nbuf_t deliver_list_head = NULL;
1399 	qdf_nbuf_t deliver_list_tail = NULL;
1400 
1401 	DP_HIST_INIT();
1402 	/* Debug -- Remove later */
1403 	qdf_assert(soc && hal_ring);
1404 
1405 	hal_soc = soc->hal_soc;
1406 
1407 	/* Debug -- Remove later */
1408 	qdf_assert(hal_soc);
1409 
1410 	hif_pm_runtime_mark_last_busy(soc->osdev->dev);
1411 
1412 	if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
1413 
1414 		/*
1415 		 * Need API to convert from hal_ring pointer to
1416 		 * Ring Type / Ring Id combo
1417 		 */
1418 		DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
1419 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1420 			FL("HAL RING Access Failed -- %pK"), hal_ring);
1421 		hal_srng_access_end(hal_soc, hal_ring);
1422 		goto done;
1423 	}
1424 
1425 	/*
1426 	 * start reaping the buffers from reo ring and queue
1427 	 * them in per vdev queue.
1428 	 * Process the received pkts in a different per vdev loop.
1429 	 */
1430 	while (qdf_likely(quota)) {
1431 		ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
1432 
1433 		/*
1434 		 * in case HW has updated hp after we cached the hp
1435 		 * ring_desc can be NULL even there are entries
1436 		 * available in the ring. Update the cached_hp
1437 		 * and reap the buffers available to read complete
1438 		 * mpdu in one reap
1439 		 *
1440 		 * This is needed for RAW mode we have to read all
1441 		 * msdus corresponding to amsdu in one reap to create
1442 		 * SG list properly but due to mismatch in cached_hp
1443 		 * and actual hp sometimes we are unable to read
1444 		 * complete mpdu in one reap.
1445 		 */
1446 		if (qdf_unlikely(!ring_desc)) {
1447 			hal_srng_access_start_unlocked(hal_soc, hal_ring);
1448 			ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
1449 			if (!ring_desc)
1450 				break;
1451 			DP_STATS_INC(soc, rx.hp_oos, 1);
1452 			/*
1453 			 * update TP here in case loop takes long,
1454 			 * then the ring is easily full.
1455 			 */
1456 			hal_srng_access_end_unlocked(hal_soc, hal_ring);
1457 		}
1458 
1459 		error = HAL_RX_ERROR_STATUS_GET(ring_desc);
1460 		ring_id = hal_srng_ring_id_get(hal_ring);
1461 
1462 		if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
1463 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1464 			FL("HAL RING 0x%pK:error %d"), hal_ring, error);
1465 			DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
1466 			/* Don't know how to deal with this -- assert */
1467 			qdf_assert(0);
1468 		}
1469 
1470 		rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
1471 
1472 		rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
1473 		qdf_assert(rx_desc);
1474 
1475 		/*
1476 		 * this is a unlikely scenario where the host is reaping
1477 		 * a descriptor which it already reaped just a while ago
1478 		 * but is yet to replenish it back to HW.
1479 		 * In this case host will dump the last 128 descriptors
1480 		 * including the software descriptor rx_desc and assert.
1481 		 */
1482 		if (qdf_unlikely(!rx_desc->in_use)) {
1483 			DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
1484 			dp_rx_dump_info_and_assert(soc, hal_ring,
1485 						   ring_desc, rx_desc);
1486 		}
1487 
1488 		rx_bufs_reaped[rx_desc->pool_id]++;
1489 
1490 		/* TODO */
1491 		/*
1492 		 * Need a separate API for unmapping based on
1493 		 * phyiscal address
1494 		 */
1495 		qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
1496 					QDF_DMA_BIDIRECTIONAL);
1497 
1498 		core_id = smp_processor_id();
1499 		DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
1500 
1501 		/* Get MPDU DESC info */
1502 		hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
1503 
1504 		hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
1505 						mpdu_desc_info.peer_meta_data);
1506 
1507 		/* Get MSDU DESC info */
1508 		hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
1509 
1510 		/*
1511 		 * save msdu flags first, last and continuation msdu in
1512 		 * nbuf->cb
1513 		 */
1514 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
1515 			qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
1516 
1517 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
1518 			qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
1519 
1520 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
1521 			qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
1522 
1523 		QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
1524 		DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
1525 
1526 		/*
1527 		 * if continuation bit is set then we have MSDU spread
1528 		 * across multiple buffers, let us not decrement quota
1529 		 * till we reap all buffers of that MSDU.
1530 		 */
1531 		if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
1532 			quota -= 1;
1533 
1534 
1535 		dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
1536 						&tail[rx_desc->pool_id],
1537 						rx_desc);
1538 	}
1539 done:
1540 	hal_srng_access_end(hal_soc, hal_ring);
1541 
1542 	if (nbuf_tail)
1543 		QDF_NBUF_CB_RX_FLUSH_IND(nbuf_tail) = 1;
1544 
1545 	/* Update histogram statistics by looping through pdev's */
1546 	DP_RX_HIST_STATS_PER_PDEV();
1547 
1548 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
1549 		/*
1550 		 * continue with next mac_id if no pkts were reaped
1551 		 * from that pool
1552 		 */
1553 		if (!rx_bufs_reaped[mac_id])
1554 			continue;
1555 
1556 		pdev = soc->pdev_list[mac_id];
1557 		dp_rxdma_srng = &pdev->rx_refill_buf_ring;
1558 		rx_desc_pool = &soc->rx_desc_buf[mac_id];
1559 
1560 		dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
1561 					rx_desc_pool, rx_bufs_reaped[mac_id],
1562 					&head[mac_id], &tail[mac_id]);
1563 	}
1564 
1565 	/* Peer can be NULL is case of LFR */
1566 	if (qdf_likely(peer != NULL))
1567 		vdev = NULL;
1568 
1569 	/*
1570 	 * BIG loop where each nbuf is dequeued from global queue,
1571 	 * processed and queued back on a per vdev basis. These nbufs
1572 	 * are sent to stack as and when we run out of nbufs
1573 	 * or a new nbuf dequeued from global queue has a different
1574 	 * vdev when compared to previous nbuf.
1575 	 */
1576 	nbuf = nbuf_head;
1577 	while (nbuf) {
1578 		next = nbuf->next;
1579 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
1580 
1581 		/*
1582 		 * Check if DMA completed -- msdu_done is the last bit
1583 		 * to be written
1584 		 */
1585 		if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
1586 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1587 				  FL("MSDU DONE failure"));
1588 			hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
1589 					     QDF_TRACE_LEVEL_INFO);
1590 			qdf_assert(0);
1591 		}
1592 
1593 		peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
1594 		peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
1595 		peer = dp_peer_find_by_id(soc, peer_id);
1596 
1597 		if (peer) {
1598 			QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
1599 			qdf_dp_trace_set_track(nbuf, QDF_RX);
1600 			QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
1601 			QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
1602 				QDF_NBUF_RX_PKT_DATA_TRACK;
1603 		}
1604 
1605 		rx_bufs_used++;
1606 
1607 		if (deliver_list_head && peer && (vdev != peer->vdev)) {
1608 			dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
1609 					deliver_list_tail);
1610 			deliver_list_head = NULL;
1611 			deliver_list_tail = NULL;
1612 		}
1613 
1614 		if (qdf_likely(peer != NULL)) {
1615 			vdev = peer->vdev;
1616 		} else {
1617 			DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
1618 					 qdf_nbuf_len(nbuf));
1619 			qdf_nbuf_free(nbuf);
1620 			nbuf = next;
1621 			continue;
1622 		}
1623 
1624 		if (qdf_unlikely(vdev == NULL)) {
1625 			qdf_nbuf_free(nbuf);
1626 			nbuf = next;
1627 			DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
1628 			dp_peer_unref_del_find_by_id(peer);
1629 			continue;
1630 		}
1631 
1632 		DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
1633 		/*
1634 		 * First IF condition:
1635 		 * 802.11 Fragmented pkts are reinjected to REO
1636 		 * HW block as SG pkts and for these pkts we only
1637 		 * need to pull the RX TLVS header length.
1638 		 * Second IF condition:
1639 		 * The below condition happens when an MSDU is spread
1640 		 * across multiple buffers. This can happen in two cases
1641 		 * 1. The nbuf size is smaller then the received msdu.
1642 		 *    ex: we have set the nbuf size to 2048 during
1643 		 *        nbuf_alloc. but we received an msdu which is
1644 		 *        2304 bytes in size then this msdu is spread
1645 		 *        across 2 nbufs.
1646 		 *
1647 		 * 2. AMSDUs when RAW mode is enabled.
1648 		 *    ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
1649 		 *        across 1st nbuf and 2nd nbuf and last MSDU is
1650 		 *        spread across 2nd nbuf and 3rd nbuf.
1651 		 *
1652 		 * for these scenarios let us create a skb frag_list and
1653 		 * append these buffers till the last MSDU of the AMSDU
1654 		 * Third condition:
1655 		 * This is the most likely case, we receive 802.3 pkts
1656 		 * decapsulated by HW, here we need to set the pkt length.
1657 		 */
1658 		if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf)))
1659 			qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1660 		else if (qdf_unlikely(vdev->rx_decap_type ==
1661 				htt_cmn_pkt_type_raw)) {
1662 			msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1663 			nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
1664 
1665 			DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
1666 			DP_STATS_INC_PKT(peer, rx.raw, 1,
1667 					 msdu_len);
1668 
1669 			next = nbuf->next;
1670 		} else {
1671 			l2_hdr_offset =
1672 				hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
1673 
1674 			msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1675 			pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
1676 
1677 			qdf_nbuf_set_pktlen(nbuf, pkt_len);
1678 			qdf_nbuf_pull_head(nbuf,
1679 					   RX_PKT_TLVS_LEN +
1680 					   l2_hdr_offset);
1681 		}
1682 
1683 		if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
1684 				hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
1685 			QDF_TRACE(QDF_MODULE_ID_DP,
1686 					QDF_TRACE_LEVEL_ERROR,
1687 					FL("Policy Check Drop pkt"));
1688 			/* Drop & free packet */
1689 			qdf_nbuf_free(nbuf);
1690 			/* Statistics */
1691 			nbuf = next;
1692 			dp_peer_unref_del_find_by_id(peer);
1693 			continue;
1694 		}
1695 
1696 		if (qdf_unlikely(peer && peer->bss_peer)) {
1697 			QDF_TRACE(QDF_MODULE_ID_DP,
1698 				QDF_TRACE_LEVEL_ERROR,
1699 				FL("received pkt with same src MAC"));
1700 			DP_STATS_INC_PKT(peer, rx.mec_drop, 1, msdu_len);
1701 
1702 			/* Drop & free packet */
1703 			qdf_nbuf_free(nbuf);
1704 			/* Statistics */
1705 			nbuf = next;
1706 			dp_peer_unref_del_find_by_id(peer);
1707 			continue;
1708 		}
1709 
1710 		if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
1711 			(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
1712 			(hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
1713 			DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
1714 			qdf_nbuf_free(nbuf);
1715 			nbuf = next;
1716 			dp_peer_unref_del_find_by_id(peer);
1717 			continue;
1718 		}
1719 
1720 		dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
1721 
1722 		dp_set_rx_queue(nbuf, ring_id);
1723 
1724 		/*
1725 		 * HW structures call this L3 header padding --
1726 		 * even though this is actually the offset from
1727 		 * the buffer beginning where the L2 header
1728 		 * begins.
1729 		 */
1730 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1731 			FL("rxhash: flow id toeplitz: 0x%x"),
1732 			hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
1733 
1734 		dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
1735 
1736 		if (qdf_unlikely(vdev->mesh_vdev)) {
1737 			if (dp_rx_filter_mesh_packets(vdev, nbuf,
1738 							rx_tlv_hdr)
1739 					== QDF_STATUS_SUCCESS) {
1740 				QDF_TRACE(QDF_MODULE_ID_DP,
1741 					QDF_TRACE_LEVEL_INFO_MED,
1742 					FL("mesh pkt filtered"));
1743 			DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
1744 					1);
1745 
1746 				qdf_nbuf_free(nbuf);
1747 				nbuf = next;
1748 				dp_peer_unref_del_find_by_id(peer);
1749 				continue;
1750 			}
1751 			dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
1752 		}
1753 
1754 #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
1755 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1756 			"p_id %d msdu_len %d hdr_off %d",
1757 			peer_id, msdu_len, l2_hdr_offset);
1758 
1759 		print_hex_dump(KERN_ERR,
1760 			       "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
1761 				qdf_nbuf_data(nbuf), 128, false);
1762 #endif /* NAPIER_EMULATION */
1763 
1764 		if (qdf_likely(vdev->rx_decap_type ==
1765 			       htt_cmn_pkt_type_ethernet) &&
1766 		    qdf_likely(!vdev->mesh_vdev)) {
1767 			/* WDS Destination Address Learning */
1768 			if (vdev->da_war_enabled)
1769 				dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
1770 
1771 			/* WDS Source Port Learning */
1772 			if (vdev->wds_enabled)
1773 				dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
1774 							peer, nbuf);
1775 
1776 			/* Intrabss-fwd */
1777 			if (dp_rx_check_ap_bridge(vdev))
1778 				if (dp_rx_intrabss_fwd(soc,
1779 							peer,
1780 							rx_tlv_hdr,
1781 							nbuf)) {
1782 					nbuf = next;
1783 					dp_peer_unref_del_find_by_id(peer);
1784 					continue; /* Get next desc */
1785 				}
1786 		}
1787 
1788 		dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf);
1789 		qdf_nbuf_cb_update_peer_local_id(nbuf, peer->local_id);
1790 		DP_RX_LIST_APPEND(deliver_list_head,
1791 				  deliver_list_tail,
1792 				  nbuf);
1793 		DP_STATS_INC_PKT(peer, rx.to_stack, 1,
1794 				qdf_nbuf_len(nbuf));
1795 
1796 		nbuf = next;
1797 		dp_peer_unref_del_find_by_id(peer);
1798 	}
1799 
1800 	if (deliver_list_head)
1801 		dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
1802 				       deliver_list_tail);
1803 
1804 	return rx_bufs_used; /* Assume no scale factor for now */
1805 }
1806 
1807 /**
1808  * dp_rx_detach() - detach dp rx
1809  * @pdev: core txrx pdev context
1810  *
1811  * This function will detach DP RX into main device context
1812  * will free DP Rx resources.
1813  *
1814  * Return: void
1815  */
1816 void
1817 dp_rx_pdev_detach(struct dp_pdev *pdev)
1818 {
1819 	uint8_t pdev_id = pdev->pdev_id;
1820 	struct dp_soc *soc = pdev->soc;
1821 	struct rx_desc_pool *rx_desc_pool;
1822 
1823 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
1824 
1825 	if (rx_desc_pool->pool_size != 0) {
1826 		dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
1827 	}
1828 
1829 	return;
1830 }
1831 
1832 /**
1833  * dp_rx_attach() - attach DP RX
1834  * @pdev: core txrx pdev context
1835  *
1836  * This function will attach a DP RX instance into the main
1837  * device (SOC) context. Will allocate dp rx resource and
1838  * initialize resources.
1839  *
1840  * Return: QDF_STATUS_SUCCESS: success
1841  *         QDF_STATUS_E_RESOURCES: Error return
1842  */
1843 QDF_STATUS
1844 dp_rx_pdev_attach(struct dp_pdev *pdev)
1845 {
1846 	uint8_t pdev_id = pdev->pdev_id;
1847 	struct dp_soc *soc = pdev->soc;
1848 	uint32_t rxdma_entries;
1849 	union dp_rx_desc_list_elem_t *desc_list = NULL;
1850 	union dp_rx_desc_list_elem_t *tail = NULL;
1851 	struct dp_srng *dp_rxdma_srng;
1852 	struct rx_desc_pool *rx_desc_pool;
1853 
1854 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
1855 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1856 			  "nss-wifi<4> skip Rx refil %d", pdev_id);
1857 		return QDF_STATUS_SUCCESS;
1858 	}
1859 
1860 	pdev = soc->pdev_list[pdev_id];
1861 	dp_rxdma_srng = &pdev->rx_refill_buf_ring;
1862 	rxdma_entries = dp_rxdma_srng->num_entries;
1863 
1864 	soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
1865 
1866 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
1867 	dp_rx_desc_pool_alloc(soc, pdev_id,
1868 			      DP_RX_DESC_ALLOC_MULTIPLIER * rxdma_entries,
1869 			      rx_desc_pool);
1870 
1871 	rx_desc_pool->owner = DP_WBM2SW_RBM;
1872 	/* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
1873 
1874 	dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
1875 				0, &desc_list, &tail);
1876 
1877 	return QDF_STATUS_SUCCESS;
1878 }
1879 
1880 /*
1881  * dp_rx_nbuf_prepare() - prepare RX nbuf
1882  * @soc: core txrx main context
1883  * @pdev: core txrx pdev context
1884  *
1885  * This function alloc & map nbuf for RX dma usage, retry it if failed
1886  * until retry times reaches max threshold or succeeded.
1887  *
1888  * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
1889  */
1890 qdf_nbuf_t
1891 dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
1892 {
1893 	uint8_t *buf;
1894 	int32_t nbuf_retry_count;
1895 	QDF_STATUS ret;
1896 	qdf_nbuf_t nbuf = NULL;
1897 
1898 	for (nbuf_retry_count = 0; nbuf_retry_count <
1899 		QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
1900 			nbuf_retry_count++) {
1901 		/* Allocate a new skb */
1902 		nbuf = qdf_nbuf_alloc(soc->osdev,
1903 					RX_BUFFER_SIZE,
1904 					RX_BUFFER_RESERVATION,
1905 					RX_BUFFER_ALIGNMENT,
1906 					FALSE);
1907 
1908 		if (nbuf == NULL) {
1909 			DP_STATS_INC(pdev,
1910 				replenish.nbuf_alloc_fail, 1);
1911 			continue;
1912 		}
1913 
1914 		buf = qdf_nbuf_data(nbuf);
1915 
1916 		memset(buf, 0, RX_BUFFER_SIZE);
1917 
1918 		ret = qdf_nbuf_map_single(soc->osdev, nbuf,
1919 				    QDF_DMA_BIDIRECTIONAL);
1920 
1921 		/* nbuf map failed */
1922 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
1923 			qdf_nbuf_free(nbuf);
1924 			DP_STATS_INC(pdev, replenish.map_err, 1);
1925 			continue;
1926 		}
1927 		/* qdf_nbuf alloc and map succeeded */
1928 		break;
1929 	}
1930 
1931 	/* qdf_nbuf still alloc or map failed */
1932 	if (qdf_unlikely(nbuf_retry_count >=
1933 			QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
1934 		return NULL;
1935 
1936 	return nbuf;
1937 }
1938