xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.c (revision 1b9674e21e24478fba4530f5ae7396b9555e9c6a)
1 /*
2  * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "hal_hw_headers.h"
20 #include "dp_types.h"
21 #include "dp_rx.h"
22 #include "dp_peer.h"
23 #include "hal_rx.h"
24 #include "hal_api.h"
25 #include "qdf_nbuf.h"
26 #ifdef MESH_MODE_SUPPORT
27 #include "if_meta_hdr.h"
28 #endif
29 #include "dp_internal.h"
30 #include "dp_rx_mon.h"
31 #ifdef RX_DESC_DEBUG_CHECK
32 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
33 {
34 	rx_desc->magic = DP_RX_DESC_MAGIC;
35 	rx_desc->nbuf = nbuf;
36 }
37 #else
38 static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
39 {
40 	rx_desc->nbuf = nbuf;
41 }
42 #endif
43 
44 #ifdef CONFIG_WIN
45 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
46 {
47 	return vdev->ap_bridge_enabled;
48 }
49 #else
50 static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
51 {
52 	if (vdev->opmode != wlan_op_mode_sta)
53 		return true;
54 	else
55 		return false;
56 }
57 #endif
58 /*
59  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
60  *			       called during dp rx initialization
61  *			       and at the end of dp_rx_process.
62  *
63  * @soc: core txrx main context
64  * @mac_id: mac_id which is one of 3 mac_ids
65  * @dp_rxdma_srng: dp rxdma circular ring
66  * @rx_desc_pool: Pointer to free Rx descriptor pool
67  * @num_req_buffers: number of buffer to be replenished
68  * @desc_list: list of descs if called from dp_rx_process
69  *	       or NULL during dp rx initialization or out of buffer
70  *	       interrupt.
71  * @tail: tail of descs list
72  * Return: return success or failure
73  */
74 QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
75 				struct dp_srng *dp_rxdma_srng,
76 				struct rx_desc_pool *rx_desc_pool,
77 				uint32_t num_req_buffers,
78 				union dp_rx_desc_list_elem_t **desc_list,
79 				union dp_rx_desc_list_elem_t **tail)
80 {
81 	uint32_t num_alloc_desc;
82 	uint16_t num_desc_to_free = 0;
83 	struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
84 	uint32_t num_entries_avail;
85 	uint32_t count;
86 	int sync_hw_ptr = 1;
87 	qdf_dma_addr_t paddr;
88 	qdf_nbuf_t rx_netbuf;
89 	void *rxdma_ring_entry;
90 	union dp_rx_desc_list_elem_t *next;
91 	QDF_STATUS ret;
92 
93 	void *rxdma_srng;
94 
95 	rxdma_srng = dp_rxdma_srng->hal_srng;
96 
97 	if (!rxdma_srng) {
98 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
99 				  "rxdma srng not initialized");
100 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
101 		return QDF_STATUS_E_FAILURE;
102 	}
103 
104 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
105 		"requested %d buffers for replenish", num_req_buffers);
106 
107 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
108 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
109 						   rxdma_srng,
110 						   sync_hw_ptr);
111 
112 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
113 		"no of available entries in rxdma ring: %d",
114 		num_entries_avail);
115 
116 	if (!(*desc_list) && (num_entries_avail >
117 		((dp_rxdma_srng->num_entries * 3) / 4))) {
118 		num_req_buffers = num_entries_avail;
119 	} else if (num_entries_avail < num_req_buffers) {
120 		num_desc_to_free = num_req_buffers - num_entries_avail;
121 		num_req_buffers = num_entries_avail;
122 	}
123 
124 	if (qdf_unlikely(!num_req_buffers)) {
125 		num_desc_to_free = num_req_buffers;
126 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
127 		goto free_descs;
128 	}
129 
130 	/*
131 	 * if desc_list is NULL, allocate the descs from freelist
132 	 */
133 	if (!(*desc_list)) {
134 		num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
135 							  rx_desc_pool,
136 							  num_req_buffers,
137 							  desc_list,
138 							  tail);
139 
140 		if (!num_alloc_desc) {
141 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
142 				"no free rx_descs in freelist");
143 			DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
144 					num_req_buffers);
145 			hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
146 			return QDF_STATUS_E_NOMEM;
147 		}
148 
149 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
150 			"%d rx desc allocated", num_alloc_desc);
151 		num_req_buffers = num_alloc_desc;
152 	}
153 
154 
155 	count = 0;
156 
157 	while (count < num_req_buffers) {
158 		rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
159 					RX_BUFFER_SIZE,
160 					RX_BUFFER_RESERVATION,
161 					RX_BUFFER_ALIGNMENT,
162 					FALSE);
163 
164 		if (rx_netbuf == NULL) {
165 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
166 			continue;
167 		}
168 
169 		ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
170 				    QDF_DMA_BIDIRECTIONAL);
171 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
172 			qdf_nbuf_free(rx_netbuf);
173 			DP_STATS_INC(dp_pdev, replenish.map_err, 1);
174 			continue;
175 		}
176 
177 		paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
178 
179 		/*
180 		 * check if the physical address of nbuf->data is
181 		 * less then 0x50000000 then free the nbuf and try
182 		 * allocating new nbuf. We can try for 100 times.
183 		 * this is a temp WAR till we fix it properly.
184 		 */
185 		ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
186 		if (ret == QDF_STATUS_E_FAILURE) {
187 			DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
188 			break;
189 		}
190 
191 		count++;
192 
193 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
194 								rxdma_srng);
195 		qdf_assert_always(rxdma_ring_entry);
196 
197 		next = (*desc_list)->next;
198 
199 		dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
200 		(*desc_list)->rx_desc.in_use = 1;
201 
202 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
203 				"rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
204 			rx_netbuf, qdf_nbuf_data(rx_netbuf),
205 			(unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
206 
207 		hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
208 						(*desc_list)->rx_desc.cookie,
209 						rx_desc_pool->owner);
210 
211 		*desc_list = next;
212 	}
213 
214 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
215 
216 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
217 		"successfully replenished %d buffers", num_req_buffers);
218 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
219 		"%d rx desc added back to free list", num_desc_to_free);
220 
221 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
222 			(RX_BUFFER_SIZE * num_req_buffers));
223 
224 free_descs:
225 	DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
226 	/*
227 	 * add any available free desc back to the free list
228 	 */
229 	if (*desc_list)
230 		dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
231 			mac_id, rx_desc_pool);
232 
233 	return QDF_STATUS_SUCCESS;
234 }
235 
236 /*
237  * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
238  *				pkts to RAW mode simulation to
239  *				decapsulate the pkt.
240  *
241  * @vdev: vdev on which RAW mode is enabled
242  * @nbuf_list: list of RAW pkts to process
243  * @peer: peer object from which the pkt is rx
244  *
245  * Return: void
246  */
247 void
248 dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
249 					struct dp_peer *peer)
250 {
251 	qdf_nbuf_t deliver_list_head = NULL;
252 	qdf_nbuf_t deliver_list_tail = NULL;
253 	qdf_nbuf_t nbuf;
254 
255 	nbuf = nbuf_list;
256 	while (nbuf) {
257 		qdf_nbuf_t next = qdf_nbuf_next(nbuf);
258 
259 		DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
260 
261 		DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
262 		DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
263 		/*
264 		 * reset the chfrag_start and chfrag_end bits in nbuf cb
265 		 * as this is a non-amsdu pkt and RAW mode simulation expects
266 		 * these bit s to be 0 for non-amsdu pkt.
267 		 */
268 		if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
269 			 qdf_nbuf_is_rx_chfrag_end(nbuf)) {
270 			qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
271 			qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
272 		}
273 
274 		nbuf = next;
275 	}
276 
277 	vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
278 				 &deliver_list_tail, (struct cdp_peer*) peer);
279 
280 	vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
281 }
282 
283 
284 #ifdef DP_LFR
285 /*
286  * In case of LFR, data of a new peer might be sent up
287  * even before peer is added.
288  */
289 static inline struct dp_vdev *
290 dp_get_vdev_from_peer(struct dp_soc *soc,
291 			uint16_t peer_id,
292 			struct dp_peer *peer,
293 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
294 {
295 	struct dp_vdev *vdev;
296 	uint8_t vdev_id;
297 
298 	if (unlikely(!peer)) {
299 		if (peer_id != HTT_INVALID_PEER) {
300 			vdev_id = DP_PEER_METADATA_ID_GET(
301 					mpdu_desc_info.peer_meta_data);
302 			QDF_TRACE(QDF_MODULE_ID_DP,
303 				QDF_TRACE_LEVEL_DEBUG,
304 				FL("PeerID %d not found use vdevID %d"),
305 				peer_id, vdev_id);
306 			vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
307 							vdev_id);
308 		} else {
309 			QDF_TRACE(QDF_MODULE_ID_DP,
310 				QDF_TRACE_LEVEL_DEBUG,
311 				FL("Invalid PeerID %d"),
312 				peer_id);
313 			return NULL;
314 		}
315 	} else {
316 		vdev = peer->vdev;
317 	}
318 	return vdev;
319 }
320 #else
321 static inline struct dp_vdev *
322 dp_get_vdev_from_peer(struct dp_soc *soc,
323 			uint16_t peer_id,
324 			struct dp_peer *peer,
325 			struct hal_rx_mpdu_desc_info mpdu_desc_info)
326 {
327 	if (unlikely(!peer)) {
328 		QDF_TRACE(QDF_MODULE_ID_DP,
329 			QDF_TRACE_LEVEL_DEBUG,
330 			FL("Peer not found for peerID %d"),
331 			peer_id);
332 		return NULL;
333 	} else {
334 		return peer->vdev;
335 	}
336 }
337 #endif
338 
339 /**
340  * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
341  *
342  * @soc: core txrx main context
343  * @sa_peer	: source peer entry
344  * @rx_tlv_hdr	: start address of rx tlvs
345  * @nbuf	: nbuf that has to be intrabss forwarded
346  *
347  * Return: bool: true if it is forwarded else false
348  */
349 static bool
350 dp_rx_intrabss_fwd(struct dp_soc *soc,
351 			struct dp_peer *sa_peer,
352 			uint8_t *rx_tlv_hdr,
353 			qdf_nbuf_t nbuf)
354 {
355 	uint16_t da_idx;
356 	uint16_t len;
357 	struct dp_peer *da_peer;
358 	struct dp_ast_entry *ast_entry;
359 	qdf_nbuf_t nbuf_copy;
360 
361 	/* check if the destination peer is available in peer table
362 	 * and also check if the source peer and destination peer
363 	 * belong to the same vap and destination peer is not bss peer.
364 	 */
365 
366 	if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
367 	   !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
368 		da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
369 
370 		ast_entry = soc->ast_table[da_idx];
371 		if (!ast_entry)
372 			return false;
373 
374 		da_peer = ast_entry->peer;
375 
376 		if (!da_peer)
377 			return false;
378 
379 		if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
380 			memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
381 			len = qdf_nbuf_len(nbuf);
382 
383 			/* linearize the nbuf just before we send to
384 			 * dp_tx_send()
385 			 */
386 			if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
387 				if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
388 					return false;
389 
390 				nbuf = qdf_nbuf_unshare(nbuf);
391 				if (!nbuf) {
392 					DP_STATS_INC_PKT(sa_peer,
393 							 rx.intra_bss.fail,
394 							 1,
395 							 len);
396 					/* return true even though the pkt is
397 					 * not forwarded. Basically skb_unshare
398 					 * failed and we want to continue with
399 					 * next nbuf.
400 					 */
401 					return true;
402 				}
403 			}
404 
405 			if (!dp_tx_send(sa_peer->vdev, nbuf)) {
406 				DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
407 						1, len);
408 				return true;
409 			} else {
410 				DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
411 						len);
412 				return false;
413 			}
414 		}
415 	}
416 	/* if it is a broadcast pkt (eg: ARP) and it is not its own
417 	 * source, then clone the pkt and send the cloned pkt for
418 	 * intra BSS forwarding and original pkt up the network stack
419 	 * Note: how do we handle multicast pkts. do we forward
420 	 * all multicast pkts as is or let a higher layer module
421 	 * like igmpsnoop decide whether to forward or not with
422 	 * Mcast enhancement.
423 	 */
424 	else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
425 		!sa_peer->bss_peer))) {
426 		nbuf_copy = qdf_nbuf_copy(nbuf);
427 		if (!nbuf_copy)
428 			return false;
429 		memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
430 		len = qdf_nbuf_len(nbuf_copy);
431 
432 		if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
433 			DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
434 			qdf_nbuf_free(nbuf_copy);
435 		} else
436 			DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
437 	}
438 	/* return false as we have to still send the original pkt
439 	 * up the stack
440 	 */
441 	return false;
442 }
443 
444 #ifdef MESH_MODE_SUPPORT
445 
446 /**
447  * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
448  *
449  * @vdev: DP Virtual device handle
450  * @nbuf: Buffer pointer
451  * @rx_tlv_hdr: start of rx tlv header
452  * @peer: pointer to peer
453  *
454  * This function allocated memory for mesh receive stats and fill the
455  * required stats. Stores the memory address in skb cb.
456  *
457  * Return: void
458  */
459 
460 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
461 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
462 {
463 	struct mesh_recv_hdr_s *rx_info = NULL;
464 	uint32_t pkt_type;
465 	uint32_t nss;
466 	uint32_t rate_mcs;
467 	uint32_t bw;
468 
469 	/* fill recv mesh stats */
470 	rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
471 
472 	/* upper layers are resposible to free this memory */
473 
474 	if (rx_info == NULL) {
475 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
476 			"Memory allocation failed for mesh rx stats");
477 		DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
478 		return;
479 	}
480 
481 	rx_info->rs_flags = MESH_RXHDR_VER1;
482 	if (qdf_nbuf_is_rx_chfrag_start(nbuf))
483 		rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
484 
485 	if (qdf_nbuf_is_rx_chfrag_end(nbuf))
486 		rx_info->rs_flags |= MESH_RX_LAST_MSDU;
487 
488 	if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
489 		rx_info->rs_flags |= MESH_RX_DECRYPTED;
490 		rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
491 		if (vdev->osif_get_key)
492 			vdev->osif_get_key(vdev->osif_vdev,
493 					&rx_info->rs_decryptkey[0],
494 					&peer->mac_addr.raw[0],
495 					rx_info->rs_keyix);
496 	}
497 
498 	rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
499 	rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
500 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
501 	rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
502 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
503 	nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
504 	rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
505 				(bw << 24);
506 
507 	qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
508 
509 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
510 		FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
511 						rx_info->rs_flags,
512 						rx_info->rs_rssi,
513 						rx_info->rs_channel,
514 						rx_info->rs_ratephy1,
515 						rx_info->rs_keyix);
516 
517 }
518 
519 /**
520  * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
521  *
522  * @vdev: DP Virtual device handle
523  * @nbuf: Buffer pointer
524  * @rx_tlv_hdr: start of rx tlv header
525  *
526  * This checks if the received packet is matching any filter out
527  * catogery and and drop the packet if it matches.
528  *
529  * Return: status(0 indicates drop, 1 indicate to no drop)
530  */
531 
532 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
533 					uint8_t *rx_tlv_hdr)
534 {
535 	union dp_align_mac_addr mac_addr;
536 
537 	if (qdf_unlikely(vdev->mesh_rx_filter)) {
538 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
539 			if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
540 				return  QDF_STATUS_SUCCESS;
541 
542 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
543 			if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
544 				return  QDF_STATUS_SUCCESS;
545 
546 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
547 			if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
548 				&& !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
549 				return  QDF_STATUS_SUCCESS;
550 
551 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
552 			if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
553 					&mac_addr.raw[0]))
554 				return QDF_STATUS_E_FAILURE;
555 
556 			if (!qdf_mem_cmp(&mac_addr.raw[0],
557 					&vdev->mac_addr.raw[0],
558 					DP_MAC_ADDR_LEN))
559 				return  QDF_STATUS_SUCCESS;
560 		}
561 
562 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
563 			if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
564 					&mac_addr.raw[0]))
565 				return QDF_STATUS_E_FAILURE;
566 
567 			if (!qdf_mem_cmp(&mac_addr.raw[0],
568 					&vdev->mac_addr.raw[0],
569 					DP_MAC_ADDR_LEN))
570 				return  QDF_STATUS_SUCCESS;
571 		}
572 	}
573 
574 	return QDF_STATUS_E_FAILURE;
575 }
576 
577 #else
578 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
579 				uint8_t *rx_tlv_hdr, struct dp_peer *peer)
580 {
581 }
582 
583 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
584 					uint8_t *rx_tlv_hdr)
585 {
586 	return QDF_STATUS_E_FAILURE;
587 }
588 
589 #endif
590 
591 #ifdef CONFIG_WIN
592 /**
593  * dp_rx_nac_filter(): Function to perform filtering of non-associated
594  * clients
595  * @pdev: DP pdev handle
596  * @rx_pkt_hdr: Rx packet Header
597  *
598  * return: dp_vdev*
599  */
600 static
601 struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
602 		uint8_t *rx_pkt_hdr)
603 {
604 	struct ieee80211_frame *wh;
605 	struct dp_neighbour_peer *peer = NULL;
606 
607 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
608 
609 	if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
610 		return NULL;
611 
612 	qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
613 	TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
614 				neighbour_peer_list_elem) {
615 		if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
616 				wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
617 			QDF_TRACE(
618 				QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
619 				FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
620 				peer->neighbour_peers_macaddr.raw[0],
621 				peer->neighbour_peers_macaddr.raw[1],
622 				peer->neighbour_peers_macaddr.raw[2],
623 				peer->neighbour_peers_macaddr.raw[3],
624 				peer->neighbour_peers_macaddr.raw[4],
625 				peer->neighbour_peers_macaddr.raw[5]);
626 
627 				qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
628 
629 			return pdev->monitor_vdev;
630 		}
631 	}
632 	qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
633 
634 	return NULL;
635 }
636 
637 /**
638  * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
639  * @soc: DP SOC handle
640  * @mpdu: mpdu for which peer is invalid
641  *
642  * return: integer type
643  */
644 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
645 {
646 	struct dp_invalid_peer_msg msg;
647 	struct dp_vdev *vdev = NULL;
648 	struct dp_pdev *pdev = NULL;
649 	struct ieee80211_frame *wh;
650 	uint8_t i;
651 	qdf_nbuf_t curr_nbuf, next_nbuf;
652 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
653 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
654 
655 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
656 
657 	if (!DP_FRAME_IS_DATA(wh)) {
658 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
659 				"NAWDS valid only for data frames");
660 		goto free;
661 	}
662 
663 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
664 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
665 				"Invalid nbuf length");
666 		goto free;
667 	}
668 
669 
670 	for (i = 0; i < MAX_PDEV_CNT; i++) {
671 		pdev = soc->pdev_list[i];
672 		if (!pdev) {
673 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
674 					"PDEV not found");
675 			continue;
676 		}
677 
678 		if (pdev->filter_neighbour_peers) {
679 			/* Next Hop scenario not yet handle */
680 			vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
681 			if (vdev) {
682 				dp_rx_mon_deliver(soc, i,
683 						pdev->invalid_peer_head_msdu,
684 						pdev->invalid_peer_tail_msdu);
685 
686 				pdev->invalid_peer_head_msdu = NULL;
687 				pdev->invalid_peer_tail_msdu = NULL;
688 
689 				return 0;
690 			}
691 		}
692 
693 
694 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
695 
696 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
697 						DP_MAC_ADDR_LEN) == 0) {
698 				goto out;
699 			}
700 		}
701 	}
702 
703 	if (!vdev) {
704 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
705 				"VDEV not found");
706 		goto free;
707 	}
708 
709 out:
710 	msg.wh = wh;
711 	qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
712 	msg.nbuf = mpdu;
713 	msg.vdev_id = vdev->vdev_id;
714 	if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
715 		pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
716 							&msg);
717 
718 free:
719 	/* Drop and free packet */
720 	curr_nbuf = mpdu;
721 	while (curr_nbuf) {
722 		next_nbuf = qdf_nbuf_next(curr_nbuf);
723 		qdf_nbuf_free(curr_nbuf);
724 		curr_nbuf = next_nbuf;
725 	}
726 
727 	return 0;
728 }
729 
730 /**
731  * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
732  * @soc: DP SOC handle
733  * @mpdu: mpdu for which peer is invalid
734  * @mpdu_done: if an mpdu is completed
735  *
736  * return: integer type
737  */
738 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
739 					qdf_nbuf_t mpdu, bool mpdu_done)
740 {
741 	/* Only trigger the process when mpdu is completed */
742 	if (mpdu_done)
743 		dp_rx_process_invalid_peer(soc, mpdu);
744 }
745 #else
746 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
747 {
748 	qdf_nbuf_t curr_nbuf, next_nbuf;
749 	struct dp_pdev *pdev;
750 	uint8_t i;
751 
752 	curr_nbuf = mpdu;
753 	while (curr_nbuf) {
754 		next_nbuf = qdf_nbuf_next(curr_nbuf);
755 		/* Drop and free packet */
756 		DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
757 				qdf_nbuf_len(curr_nbuf));
758 		qdf_nbuf_free(curr_nbuf);
759 		curr_nbuf = next_nbuf;
760 	}
761 
762 	/* reset the head and tail pointers */
763 	for (i = 0; i < MAX_PDEV_CNT; i++) {
764 		pdev = soc->pdev_list[i];
765 		if (!pdev) {
766 			QDF_TRACE(QDF_MODULE_ID_DP,
767 				QDF_TRACE_LEVEL_ERROR,
768 				"PDEV not found");
769 			continue;
770 		}
771 
772 		pdev->invalid_peer_head_msdu = NULL;
773 		pdev->invalid_peer_tail_msdu = NULL;
774 	}
775 	return 0;
776 }
777 
778 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
779 					qdf_nbuf_t mpdu, bool mpdu_done)
780 {
781 	/* To avoid compiler warning */
782 	mpdu_done = mpdu_done;
783 
784 	/* Process the nbuf */
785 	dp_rx_process_invalid_peer(soc, mpdu);
786 }
787 #endif
788 
789 #if defined(FEATURE_LRO)
790 static void dp_rx_print_lro_info(uint8_t *rx_tlv)
791 {
792 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
793 	FL("----------------------RX DESC LRO----------------------"));
794 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
795 		FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
796 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
797 		FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
798 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
799 		FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
800 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
801 		FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
802 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
803 		FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
804 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
805 		FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
806 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
807 		FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
808 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
809 		FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
810 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
811 		FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
812 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
813 	FL("---------------------------------------------------------"));
814 }
815 
816 /**
817  * dp_rx_lro() - LRO related processing
818  * @rx_tlv: TLV data extracted from the rx packet
819  * @peer: destination peer of the msdu
820  * @msdu: network buffer
821  * @ctx: LRO context
822  *
823  * This function performs the LRO related processing of the msdu
824  *
825  * Return: true: LRO enabled false: LRO is not enabled
826  */
827 static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
828 	 qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
829 {
830 	if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
831 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
832 			 FL("no peer, no vdev or LRO disabled"));
833 		QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
834 		return;
835 	}
836 	qdf_assert(rx_tlv);
837 	dp_rx_print_lro_info(rx_tlv);
838 
839 	QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
840 		 HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
841 
842 	QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
843 			HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
844 
845 	QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
846 			 HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
847 	QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
848 			 HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
849 	QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
850 			 HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
851 	QDF_NBUF_CB_RX_TCP_WIN(msdu) =
852 			 HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
853 	QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
854 			 HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
855 	QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
856 			 HAL_RX_TLV_GET_IPV6(rx_tlv);
857 	QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
858 			 HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
859 	QDF_NBUF_CB_RX_FLOW_ID(msdu) =
860 			 HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
861 	QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
862 
863 }
864 #else
865 static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
866 	 qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
867 {
868 }
869 #endif
870 
871 /**
872  * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
873  *
874  * @nbuf: pointer to msdu.
875  * @mpdu_len: mpdu length
876  *
877  * Return: returns true if nbuf is last msdu of mpdu else retuns false.
878  */
879 static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
880 {
881 	bool last_nbuf;
882 
883 	if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
884 		qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
885 		last_nbuf = false;
886 	} else {
887 		qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
888 		last_nbuf = true;
889 	}
890 
891 	*mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
892 
893 	return last_nbuf;
894 }
895 
896 /**
897  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
898  *		     multiple nbufs.
899  * @nbuf: pointer to the first msdu of an amsdu.
900  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
901  *
902  *
903  * This function implements the creation of RX frag_list for cases
904  * where an MSDU is spread across multiple nbufs.
905  *
906  * Return: returns the head nbuf which contains complete frag_list.
907  */
908 qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
909 {
910 	qdf_nbuf_t parent, next, frag_list;
911 	uint16_t frag_list_len = 0;
912 	uint16_t mpdu_len;
913 	bool last_nbuf;
914 
915 	mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
916 	/*
917 	 * this is a case where the complete msdu fits in one single nbuf.
918 	 * in this case HW sets both start and end bit and we only need to
919 	 * reset these bits for RAW mode simulator to decap the pkt
920 	 */
921 	if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
922 					qdf_nbuf_is_rx_chfrag_end(nbuf)) {
923 		qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
924 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
925 		return nbuf;
926 	}
927 
928 	/*
929 	 * This is a case where we have multiple msdus (A-MSDU) spread across
930 	 * multiple nbufs. here we create a fraglist out of these nbufs.
931 	 *
932 	 * the moment we encounter a nbuf with continuation bit set we
933 	 * know for sure we have an MSDU which is spread across multiple
934 	 * nbufs. We loop through and reap nbufs till we reach last nbuf.
935 	 */
936 	parent = nbuf;
937 	frag_list = nbuf->next;
938 	nbuf = nbuf->next;
939 
940 	/*
941 	 * set the start bit in the first nbuf we encounter with continuation
942 	 * bit set. This has the proper mpdu length set as it is the first
943 	 * msdu of the mpdu. this becomes the parent nbuf and the subsequent
944 	 * nbufs will form the frag_list of the parent nbuf.
945 	 */
946 	qdf_nbuf_set_rx_chfrag_start(parent, 1);
947 	last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
948 
949 	/*
950 	 * this is where we set the length of the fragments which are
951 	 * associated to the parent nbuf. We iterate through the frag_list
952 	 * till we hit the last_nbuf of the list.
953 	 */
954 	do {
955 		last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
956 		qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
957 		frag_list_len += qdf_nbuf_len(nbuf);
958 
959 		if (last_nbuf) {
960 			next = nbuf->next;
961 			nbuf->next = NULL;
962 			break;
963 		}
964 
965 		nbuf = nbuf->next;
966 	} while (!last_nbuf);
967 
968 	qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
969 	qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
970 	parent->next = next;
971 
972 	qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
973 	return parent;
974 }
975 
976 static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
977 						struct dp_peer *peer,
978 						qdf_nbuf_t nbuf_head,
979 						qdf_nbuf_t nbuf_tail)
980 {
981 	/*
982 	 * highly unlikely to have a vdev without a registered rx
983 	 * callback function. if so let us free the nbuf_list.
984 	 */
985 	if (qdf_unlikely(!vdev->osif_rx)) {
986 		qdf_nbuf_t nbuf;
987 		do {
988 			nbuf = nbuf_head;
989 			nbuf_head = nbuf_head->next;
990 			qdf_nbuf_free(nbuf);
991 		} while (nbuf_head);
992 
993 		return;
994 	}
995 
996 	if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
997 			(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
998 		vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
999 				&nbuf_tail, (struct cdp_peer *) peer);
1000 	}
1001 
1002 	vdev->osif_rx(vdev->osif_vdev, nbuf_head);
1003 
1004 }
1005 
1006 /**
1007  * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
1008  * @nbuf: pointer to the first msdu of an amsdu.
1009  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1010  *
1011  * The ipsumed field of the skb is set based on whether HW validated the
1012  * IP/TCP/UDP checksum.
1013  *
1014  * Return: void
1015  */
1016 static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
1017 				       qdf_nbuf_t nbuf,
1018 				       uint8_t *rx_tlv_hdr)
1019 {
1020 	qdf_nbuf_rx_cksum_t cksum = {0};
1021 	bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
1022 	bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
1023 
1024 	if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
1025 		cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
1026 		qdf_nbuf_set_rx_cksum(nbuf, &cksum);
1027 	} else {
1028 		DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
1029 		DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
1030 	}
1031 }
1032 
1033 /**
1034  * dp_rx_msdu_stats_update() - update per msdu stats.
1035  * @soc: core txrx main context
1036  * @nbuf: pointer to the first msdu of an amsdu.
1037  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
1038  * @peer: pointer to the peer object.
1039  * @ring_id: reo dest ring number on which pkt is reaped.
1040  *
1041  * update all the per msdu stats for that nbuf.
1042  * Return: void
1043  */
1044 static void dp_rx_msdu_stats_update(struct dp_soc *soc,
1045 				    qdf_nbuf_t nbuf,
1046 				    uint8_t *rx_tlv_hdr,
1047 				    struct dp_peer *peer,
1048 				    uint8_t ring_id)
1049 {
1050 	bool is_ampdu, is_not_amsdu;
1051 	uint16_t peer_id;
1052 	uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
1053 	struct dp_vdev *vdev = peer->vdev;
1054 	struct ether_header *eh;
1055 	uint16_t msdu_len = qdf_nbuf_len(nbuf);
1056 
1057 	peer_id = DP_PEER_METADATA_PEER_ID_GET(
1058 			       hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
1059 
1060 	is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
1061 			qdf_nbuf_is_rx_chfrag_end(nbuf);
1062 
1063 	DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
1064 	DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
1065 	DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
1066 
1067 	if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
1068 			 (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
1069 		eh = (struct ether_header *)qdf_nbuf_data(nbuf);
1070 		if (IEEE80211_IS_BROADCAST(eh->ether_dhost)) {
1071 			DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
1072 		} else {
1073 			DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
1074 		}
1075 	}
1076 
1077 	/*
1078 	 * currently we can return from here as we have similar stats
1079 	 * updated at per ppdu level instead of msdu level
1080 	 */
1081 	if (!soc->process_rx_status)
1082 		return;
1083 
1084 	is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
1085 	DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
1086 	DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
1087 
1088 	sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
1089 	mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
1090 	tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_tlv_hdr);
1091 	bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
1092 	reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
1093 							      rx_tlv_hdr);
1094 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
1095 	pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
1096 
1097 	/* Save tid to skb->priority */
1098 	DP_RX_TID_SAVE(nbuf, tid);
1099 
1100 	DP_STATS_INC(peer, rx.bw[bw], 1);
1101 	DP_STATS_INC(peer, rx.nss[nss], 1);
1102 	DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
1103 	DP_STATS_INCC(peer, rx.err.mic_err, 1,
1104 		      hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
1105 	DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
1106 		      hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
1107 
1108 	DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
1109 	DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
1110 
1111 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1112 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1113 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1114 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
1115 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1116 		      ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1117 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1118 		      ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
1119 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1120 		      ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1121 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1122 		      ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
1123 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1124 		      ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1125 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1126 		      ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
1127 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
1128 		      ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
1129 	DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
1130 		      ((mcs <= MAX_MCS) && (pkt_type == DOT11_AX)));
1131 
1132 	if ((soc->process_rx_status) &&
1133 	    hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
1134 		if (soc->cdp_soc.ol_ops->update_dp_stats) {
1135 			soc->cdp_soc.ol_ops->update_dp_stats(
1136 					vdev->pdev->ctrl_pdev,
1137 					&peer->stats,
1138 					peer_id,
1139 					UPDATE_PEER_STATS);
1140 		}
1141 	}
1142 }
1143 
1144 #ifdef WDS_VENDOR_EXTENSION
1145 int dp_wds_rx_policy_check(
1146 		uint8_t *rx_tlv_hdr,
1147 		struct dp_vdev *vdev,
1148 		struct dp_peer *peer,
1149 		int rx_mcast
1150 		)
1151 {
1152 	struct dp_peer *bss_peer;
1153 	int fr_ds, to_ds, rx_3addr, rx_4addr;
1154 	int rx_policy_ucast, rx_policy_mcast;
1155 
1156 	if (vdev->opmode == wlan_op_mode_ap) {
1157 		TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
1158 			if (bss_peer->bss_peer) {
1159 				/* if wds policy check is not enabled on this vdev, accept all frames */
1160 				if (!bss_peer->wds_ecm.wds_rx_filter) {
1161 					return 1;
1162 				}
1163 				break;
1164 			}
1165 		}
1166 		rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
1167 		rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
1168 	} else {             /* sta mode */
1169 		if (!peer->wds_ecm.wds_rx_filter) {
1170 			return 1;
1171 		}
1172 		rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
1173 		rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
1174 	}
1175 
1176 	/* ------------------------------------------------
1177 	 *                       self
1178 	 * peer-             rx  rx-
1179 	 * wds  ucast mcast dir policy accept note
1180 	 * ------------------------------------------------
1181 	 * 1     1     0     11  x1     1      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
1182 	 * 1     1     0     01  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1183 	 * 1     1     0     10  x1     0      AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
1184 	 * 1     1     0     00  x1     0      bad frame, won't see it
1185 	 * 1     0     1     11  1x     1      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
1186 	 * 1     0     1     01  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1187 	 * 1     0     1     10  1x     0      AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
1188 	 * 1     0     1     00  1x     0      bad frame, won't see it
1189 	 * 1     1     0     11  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1190 	 * 1     1     0     01  x0     0      AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
1191 	 * 1     1     0     10  x0     1      AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
1192 	 * 1     1     0     00  x0     0      bad frame, won't see it
1193 	 * 1     0     1     11  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1194 	 * 1     0     1     01  0x     0      AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
1195 	 * 1     0     1     10  0x     1      AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
1196 	 * 1     0     1     00  0x     0      bad frame, won't see it
1197 	 *
1198 	 * 0     x     x     11  xx     0      we only accept td-ds Rx frames from non-wds peers in mode.
1199 	 * 0     x     x     01  xx     1
1200 	 * 0     x     x     10  xx     0
1201 	 * 0     x     x     00  xx     0      bad frame, won't see it
1202 	 * ------------------------------------------------
1203 	 */
1204 
1205 	fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
1206 	to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
1207 	rx_3addr = fr_ds ^ to_ds;
1208 	rx_4addr = fr_ds & to_ds;
1209 
1210 	if (vdev->opmode == wlan_op_mode_ap) {
1211 		if ((!peer->wds_enabled && rx_3addr && to_ds) ||
1212 				(peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1213 				(peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
1214 			return 1;
1215 		}
1216 	} else {           /* sta mode */
1217 		if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
1218 				(rx_mcast && (rx_4addr == rx_policy_mcast))) {
1219 			return 1;
1220 		}
1221 	}
1222 	return 0;
1223 }
1224 #else
1225 int dp_wds_rx_policy_check(
1226 		uint8_t *rx_tlv_hdr,
1227 		struct dp_vdev *vdev,
1228 		struct dp_peer *peer,
1229 		int rx_mcast
1230 		)
1231 {
1232 	return 1;
1233 }
1234 #endif
1235 
1236 /**
1237  * dp_rx_process() - Brain of the Rx processing functionality
1238  *		     Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
1239  * @soc: core txrx main context
1240  * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
1241  * @quota: No. of units (packets) that can be serviced in one shot.
1242  *
1243  * This function implements the core of Rx functionality. This is
1244  * expected to handle only non-error frames.
1245  *
1246  * Return: uint32_t: No. of elements processed
1247  */
1248 uint32_t
1249 dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint32_t quota)
1250 {
1251 	void *hal_soc;
1252 	void *ring_desc;
1253 	struct dp_rx_desc *rx_desc = NULL;
1254 	qdf_nbuf_t nbuf, next;
1255 	union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
1256 	union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
1257 	uint32_t rx_bufs_used = 0, rx_buf_cookie;
1258 	uint32_t l2_hdr_offset = 0;
1259 	uint16_t msdu_len = 0;
1260 	uint16_t peer_id;
1261 	struct dp_peer *peer = NULL;
1262 	struct dp_vdev *vdev = NULL;
1263 	uint32_t pkt_len = 0;
1264 	struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
1265 	struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
1266 	enum hal_reo_error_status error;
1267 	uint32_t peer_mdata;
1268 	uint8_t *rx_tlv_hdr;
1269 	uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
1270 	uint8_t mac_id = 0;
1271 	struct dp_pdev *pdev;
1272 	struct dp_srng *dp_rxdma_srng;
1273 	struct rx_desc_pool *rx_desc_pool;
1274 	struct dp_soc *soc = int_ctx->soc;
1275 	uint8_t ring_id = 0;
1276 	uint8_t core_id = 0;
1277 	qdf_nbuf_t nbuf_head = NULL;
1278 	qdf_nbuf_t nbuf_tail = NULL;
1279 	qdf_nbuf_t deliver_list_head = NULL;
1280 	qdf_nbuf_t deliver_list_tail = NULL;
1281 
1282 	DP_HIST_INIT();
1283 	/* Debug -- Remove later */
1284 	qdf_assert(soc && hal_ring);
1285 
1286 	hal_soc = soc->hal_soc;
1287 
1288 	/* Debug -- Remove later */
1289 	qdf_assert(hal_soc);
1290 
1291 	hif_pm_runtime_mark_last_busy(soc->osdev->dev);
1292 
1293 	if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
1294 
1295 		/*
1296 		 * Need API to convert from hal_ring pointer to
1297 		 * Ring Type / Ring Id combo
1298 		 */
1299 		DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
1300 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1301 			FL("HAL RING Access Failed -- %pK"), hal_ring);
1302 		hal_srng_access_end(hal_soc, hal_ring);
1303 		goto done;
1304 	}
1305 
1306 	/*
1307 	 * start reaping the buffers from reo ring and queue
1308 	 * them in per vdev queue.
1309 	 * Process the received pkts in a different per vdev loop.
1310 	 */
1311 	while (qdf_likely(quota)) {
1312 		ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
1313 
1314 		/*
1315 		 * in case HW has updated hp after we cached the hp
1316 		 * ring_desc can be NULL even there are entries
1317 		 * available in the ring. Update the cached_hp
1318 		 * and reap the buffers available to read complete
1319 		 * mpdu in one reap
1320 		 *
1321 		 * This is needed for RAW mode we have to read all
1322 		 * msdus corresponding to amsdu in one reap to create
1323 		 * SG list properly but due to mismatch in cached_hp
1324 		 * and actual hp sometimes we are unable to read
1325 		 * complete mpdu in one reap.
1326 		 */
1327 		if (qdf_unlikely(!ring_desc)) {
1328 			hal_srng_access_start_unlocked(hal_soc, hal_ring);
1329 			ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
1330 			if (!ring_desc)
1331 				break;
1332 		}
1333 
1334 		error = HAL_RX_ERROR_STATUS_GET(ring_desc);
1335 		ring_id = hal_srng_ring_id_get(hal_ring);
1336 
1337 		if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
1338 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1339 			FL("HAL RING 0x%pK:error %d"), hal_ring, error);
1340 			DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
1341 			/* Don't know how to deal with this -- assert */
1342 			qdf_assert(0);
1343 		}
1344 
1345 		rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
1346 
1347 		rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
1348 
1349 
1350 		qdf_assert(rx_desc);
1351 		rx_bufs_reaped[rx_desc->pool_id]++;
1352 
1353 		/* TODO */
1354 		/*
1355 		 * Need a separate API for unmapping based on
1356 		 * phyiscal address
1357 		 */
1358 		qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
1359 					QDF_DMA_BIDIRECTIONAL);
1360 
1361 		core_id = smp_processor_id();
1362 		DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
1363 
1364 		/* Get MPDU DESC info */
1365 		hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
1366 
1367 		hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
1368 						mpdu_desc_info.peer_meta_data);
1369 
1370 		/* Get MSDU DESC info */
1371 		hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
1372 
1373 		/*
1374 		 * save msdu flags first, last and continuation msdu in
1375 		 * nbuf->cb
1376 		 */
1377 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
1378 			qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
1379 
1380 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
1381 			qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
1382 
1383 		if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
1384 			qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
1385 
1386 		DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
1387 
1388 		/*
1389 		 * if continuation bit is set then we have MSDU spread
1390 		 * across multiple buffers, let us not decrement quota
1391 		 * till we reap all buffers of that MSDU.
1392 		 */
1393 		if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
1394 			quota -= 1;
1395 
1396 
1397 		dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
1398 						&tail[rx_desc->pool_id],
1399 						rx_desc);
1400 	}
1401 done:
1402 	hal_srng_access_end(hal_soc, hal_ring);
1403 
1404 	/* Update histogram statistics by looping through pdev's */
1405 	DP_RX_HIST_STATS_PER_PDEV();
1406 
1407 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
1408 		/*
1409 		 * continue with next mac_id if no pkts were reaped
1410 		 * from that pool
1411 		 */
1412 		if (!rx_bufs_reaped[mac_id])
1413 			continue;
1414 
1415 		pdev = soc->pdev_list[mac_id];
1416 		dp_rxdma_srng = &pdev->rx_refill_buf_ring;
1417 		rx_desc_pool = &soc->rx_desc_buf[mac_id];
1418 
1419 		dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
1420 					rx_desc_pool, rx_bufs_reaped[mac_id],
1421 					&head[mac_id], &tail[mac_id]);
1422 	}
1423 
1424 	/* Peer can be NULL is case of LFR */
1425 	if (qdf_likely(peer != NULL))
1426 		vdev = NULL;
1427 
1428 	/*
1429 	 * BIG loop where each nbuf is dequeued from global queue,
1430 	 * processed and queued back on a per vdev basis. These nbufs
1431 	 * are sent to stack as and when we run out of nbufs
1432 	 * or a new nbuf dequeued from global queue has a different
1433 	 * vdev when compared to previous nbuf.
1434 	 */
1435 	nbuf = nbuf_head;
1436 	while (nbuf) {
1437 		next = nbuf->next;
1438 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
1439 
1440 		/*
1441 		 * Check if DMA completed -- msdu_done is the last bit
1442 		 * to be written
1443 		 */
1444 		if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
1445 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1446 				  FL("MSDU DONE failure"));
1447 			hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
1448 					     QDF_TRACE_LEVEL_INFO);
1449 			qdf_assert(0);
1450 		}
1451 
1452 		peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
1453 		peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
1454 		peer = dp_peer_find_by_id(soc, peer_id);
1455 
1456 		if (peer) {
1457 			QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
1458 			qdf_dp_trace_set_track(nbuf, QDF_RX);
1459 			QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
1460 			QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
1461 				QDF_NBUF_RX_PKT_DATA_TRACK;
1462 		}
1463 
1464 		rx_bufs_used++;
1465 
1466 		if (deliver_list_head && peer && (vdev != peer->vdev)) {
1467 			dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
1468 					deliver_list_tail);
1469 			deliver_list_head = NULL;
1470 			deliver_list_tail = NULL;
1471 		}
1472 
1473 		if (qdf_likely(peer != NULL)) {
1474 			vdev = peer->vdev;
1475 		} else {
1476 			qdf_nbuf_free(nbuf);
1477 			nbuf = next;
1478 			continue;
1479 		}
1480 
1481 		if (qdf_unlikely(vdev == NULL)) {
1482 			qdf_nbuf_free(nbuf);
1483 			nbuf = next;
1484 			DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
1485 			continue;
1486 		}
1487 
1488 		DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
1489 		/*
1490 		 * First IF condition:
1491 		 * 802.11 Fragmented pkts are reinjected to REO
1492 		 * HW block as SG pkts and for these pkts we only
1493 		 * need to pull the RX TLVS header length.
1494 		 * Second IF condition:
1495 		 * The below condition happens when an MSDU is spread
1496 		 * across multiple buffers. This can happen in two cases
1497 		 * 1. The nbuf size is smaller then the received msdu.
1498 		 *    ex: we have set the nbuf size to 2048 during
1499 		 *        nbuf_alloc. but we received an msdu which is
1500 		 *        2304 bytes in size then this msdu is spread
1501 		 *        across 2 nbufs.
1502 		 *
1503 		 * 2. AMSDUs when RAW mode is enabled.
1504 		 *    ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
1505 		 *        across 1st nbuf and 2nd nbuf and last MSDU is
1506 		 *        spread across 2nd nbuf and 3rd nbuf.
1507 		 *
1508 		 * for these scenarios let us create a skb frag_list and
1509 		 * append these buffers till the last MSDU of the AMSDU
1510 		 * Third condition:
1511 		 * This is the most likely case, we receive 802.3 pkts
1512 		 * decapsulated by HW, here we need to set the pkt length.
1513 		 */
1514 		if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf)))
1515 			qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
1516 		else if (qdf_unlikely(vdev->rx_decap_type ==
1517 				htt_cmn_pkt_type_raw)) {
1518 			msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1519 			nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
1520 
1521 			DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
1522 			DP_STATS_INC_PKT(peer, rx.raw, 1,
1523 					 msdu_len);
1524 
1525 			next = nbuf->next;
1526 		} else {
1527 			l2_hdr_offset =
1528 				hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
1529 
1530 			msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
1531 			pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
1532 
1533 			qdf_nbuf_set_pktlen(nbuf, pkt_len);
1534 			qdf_nbuf_pull_head(nbuf,
1535 					   RX_PKT_TLVS_LEN +
1536 					   l2_hdr_offset);
1537 		}
1538 
1539 		if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
1540 				hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
1541 			QDF_TRACE(QDF_MODULE_ID_DP,
1542 					QDF_TRACE_LEVEL_ERROR,
1543 					FL("Policy Check Drop pkt"));
1544 			/* Drop & free packet */
1545 			qdf_nbuf_free(nbuf);
1546 			/* Statistics */
1547 			nbuf = next;
1548 			continue;
1549 		}
1550 
1551 		if (qdf_unlikely(peer && peer->bss_peer)) {
1552 			QDF_TRACE(QDF_MODULE_ID_DP,
1553 				QDF_TRACE_LEVEL_ERROR,
1554 				FL("received pkt with same src MAC"));
1555 			DP_STATS_INC(vdev->pdev, dropped.mec, 1);
1556 
1557 			/* Drop & free packet */
1558 			qdf_nbuf_free(nbuf);
1559 			/* Statistics */
1560 			nbuf = next;
1561 			continue;
1562 		}
1563 
1564 		if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
1565 			(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
1566 			(hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
1567 			DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
1568 			qdf_nbuf_free(nbuf);
1569 			nbuf = next;
1570 			continue;
1571 		}
1572 
1573 		dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
1574 
1575 		dp_set_rx_queue(nbuf, ring_id);
1576 
1577 		/*
1578 		 * HW structures call this L3 header padding --
1579 		 * even though this is actually the offset from
1580 		 * the buffer beginning where the L2 header
1581 		 * begins.
1582 		 */
1583 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1584 			FL("rxhash: flow id toeplitz: 0x%x"),
1585 			hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
1586 
1587 		dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
1588 
1589 		if (qdf_unlikely(vdev->mesh_vdev)) {
1590 			if (dp_rx_filter_mesh_packets(vdev, nbuf,
1591 							rx_tlv_hdr)
1592 					== QDF_STATUS_SUCCESS) {
1593 				QDF_TRACE(QDF_MODULE_ID_DP,
1594 					QDF_TRACE_LEVEL_INFO_MED,
1595 					FL("mesh pkt filtered"));
1596 			DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
1597 					1);
1598 
1599 				qdf_nbuf_free(nbuf);
1600 				nbuf = next;
1601 				continue;
1602 			}
1603 			dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
1604 		}
1605 
1606 #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
1607 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
1608 			"p_id %d msdu_len %d hdr_off %d",
1609 			peer_id, msdu_len, l2_hdr_offset);
1610 
1611 		print_hex_dump(KERN_ERR,
1612 			       "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
1613 				qdf_nbuf_data(nbuf), 128, false);
1614 #endif /* NAPIER_EMULATION */
1615 
1616 		if (qdf_likely(vdev->rx_decap_type ==
1617 					htt_cmn_pkt_type_ethernet) &&
1618 				(qdf_likely(!vdev->mesh_vdev)) &&
1619 				(vdev->wds_enabled)) {
1620 			/* WDS Source Port Learning */
1621 			dp_rx_wds_srcport_learn(soc,
1622 						rx_tlv_hdr,
1623 						peer,
1624 						nbuf);
1625 
1626 			/* Intrabss-fwd */
1627 			if (dp_rx_check_ap_bridge(vdev))
1628 				if (dp_rx_intrabss_fwd(soc,
1629 							peer,
1630 							rx_tlv_hdr,
1631 							nbuf)) {
1632 					nbuf = next;
1633 					continue; /* Get next desc */
1634 				}
1635 		}
1636 
1637 		dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
1638 
1639 		DP_RX_LIST_APPEND(deliver_list_head,
1640 					deliver_list_tail,
1641 					nbuf);
1642 
1643 		DP_STATS_INC_PKT(peer, rx.to_stack, 1,
1644 				qdf_nbuf_len(nbuf));
1645 
1646 		nbuf = next;
1647 	}
1648 
1649 	if (deliver_list_head)
1650 		dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
1651 				deliver_list_tail);
1652 
1653 	return rx_bufs_used; /* Assume no scale factor for now */
1654 }
1655 
1656 /**
1657  * dp_rx_detach() - detach dp rx
1658  * @pdev: core txrx pdev context
1659  *
1660  * This function will detach DP RX into main device context
1661  * will free DP Rx resources.
1662  *
1663  * Return: void
1664  */
1665 void
1666 dp_rx_pdev_detach(struct dp_pdev *pdev)
1667 {
1668 	uint8_t pdev_id = pdev->pdev_id;
1669 	struct dp_soc *soc = pdev->soc;
1670 	struct rx_desc_pool *rx_desc_pool;
1671 
1672 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
1673 
1674 	if (rx_desc_pool->pool_size != 0) {
1675 		dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
1676 	}
1677 
1678 	return;
1679 }
1680 
1681 /**
1682  * dp_rx_attach() - attach DP RX
1683  * @pdev: core txrx pdev context
1684  *
1685  * This function will attach a DP RX instance into the main
1686  * device (SOC) context. Will allocate dp rx resource and
1687  * initialize resources.
1688  *
1689  * Return: QDF_STATUS_SUCCESS: success
1690  *         QDF_STATUS_E_RESOURCES: Error return
1691  */
1692 QDF_STATUS
1693 dp_rx_pdev_attach(struct dp_pdev *pdev)
1694 {
1695 	uint8_t pdev_id = pdev->pdev_id;
1696 	struct dp_soc *soc = pdev->soc;
1697 	struct dp_srng rxdma_srng;
1698 	uint32_t rxdma_entries;
1699 	union dp_rx_desc_list_elem_t *desc_list = NULL;
1700 	union dp_rx_desc_list_elem_t *tail = NULL;
1701 	struct dp_srng *dp_rxdma_srng;
1702 	struct rx_desc_pool *rx_desc_pool;
1703 
1704 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
1705 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1706 			  "nss-wifi<4> skip Rx refil %d", pdev_id);
1707 		return QDF_STATUS_SUCCESS;
1708 	}
1709 
1710 	pdev = soc->pdev_list[pdev_id];
1711 	rxdma_srng = pdev->rx_refill_buf_ring;
1712 	soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
1713 	rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
1714 						     soc->hal_soc, RXDMA_BUF);
1715 
1716 	rx_desc_pool = &soc->rx_desc_buf[pdev_id];
1717 
1718 	dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
1719 
1720 	rx_desc_pool->owner = DP_WBM2SW_RBM;
1721 	/* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
1722 	dp_rxdma_srng = &pdev->rx_refill_buf_ring;
1723 	dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
1724 		0, &desc_list, &tail);
1725 
1726 	return QDF_STATUS_SUCCESS;
1727 }
1728 
1729 /*
1730  * dp_rx_nbuf_prepare() - prepare RX nbuf
1731  * @soc: core txrx main context
1732  * @pdev: core txrx pdev context
1733  *
1734  * This function alloc & map nbuf for RX dma usage, retry it if failed
1735  * until retry times reaches max threshold or succeeded.
1736  *
1737  * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
1738  */
1739 qdf_nbuf_t
1740 dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
1741 {
1742 	uint8_t *buf;
1743 	int32_t nbuf_retry_count;
1744 	QDF_STATUS ret;
1745 	qdf_nbuf_t nbuf = NULL;
1746 
1747 	for (nbuf_retry_count = 0; nbuf_retry_count <
1748 		QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
1749 			nbuf_retry_count++) {
1750 		/* Allocate a new skb */
1751 		nbuf = qdf_nbuf_alloc(soc->osdev,
1752 					RX_BUFFER_SIZE,
1753 					RX_BUFFER_RESERVATION,
1754 					RX_BUFFER_ALIGNMENT,
1755 					FALSE);
1756 
1757 		if (nbuf == NULL) {
1758 			DP_STATS_INC(pdev,
1759 				replenish.nbuf_alloc_fail, 1);
1760 			continue;
1761 		}
1762 
1763 		buf = qdf_nbuf_data(nbuf);
1764 
1765 		memset(buf, 0, RX_BUFFER_SIZE);
1766 
1767 		ret = qdf_nbuf_map_single(soc->osdev, nbuf,
1768 				    QDF_DMA_BIDIRECTIONAL);
1769 
1770 		/* nbuf map failed */
1771 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
1772 			qdf_nbuf_free(nbuf);
1773 			DP_STATS_INC(pdev, replenish.map_err, 1);
1774 			continue;
1775 		}
1776 		/* qdf_nbuf alloc and map succeeded */
1777 		break;
1778 	}
1779 
1780 	/* qdf_nbuf still alloc or map failed */
1781 	if (qdf_unlikely(nbuf_retry_count >=
1782 			QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
1783 		return NULL;
1784 
1785 	return nbuf;
1786 }
1787