xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.c (revision 06d0b5348967845f004ebe7c2348bf8f467ad2f9)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "hal_hw_headers.h"
21 #include "dp_types.h"
22 #include "dp_rx.h"
23 #include "dp_tx.h"
24 #include "dp_peer.h"
25 #include "hal_rx.h"
26 #include "hal_api.h"
27 #include "qdf_nbuf.h"
28 #ifdef MESH_MODE_SUPPORT
29 #include "if_meta_hdr.h"
30 #endif
31 #include "dp_internal.h"
32 #include "dp_ipa.h"
33 #include "dp_hist.h"
34 #include "dp_rx_buffer_pool.h"
35 #ifdef WIFI_MONITOR_SUPPORT
36 #include "dp_htt.h"
37 #include <dp_mon.h>
38 #endif
39 #ifdef FEATURE_WDS
40 #include "dp_txrx_wds.h"
41 #endif
42 #ifdef DP_RATETABLE_SUPPORT
43 #include "dp_ratetable.h"
44 #endif
45 
46 #ifdef DUP_RX_DESC_WAR
47 void dp_rx_dump_info_and_assert(struct dp_soc *soc,
48 				hal_ring_handle_t hal_ring,
49 				hal_ring_desc_t ring_desc,
50 				struct dp_rx_desc *rx_desc)
51 {
52 	void *hal_soc = soc->hal_soc;
53 
54 	hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
55 	dp_rx_desc_dump(rx_desc);
56 }
57 #else
58 void dp_rx_dump_info_and_assert(struct dp_soc *soc,
59 				hal_ring_handle_t hal_ring_hdl,
60 				hal_ring_desc_t ring_desc,
61 				struct dp_rx_desc *rx_desc)
62 {
63 	hal_soc_handle_t hal_soc = soc->hal_soc;
64 
65 	dp_rx_desc_dump(rx_desc);
66 	hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
67 	hal_srng_dump_ring(hal_soc, hal_ring_hdl);
68 	qdf_assert_always(0);
69 }
70 #endif
71 
72 #ifndef QCA_HOST_MODE_WIFI_DISABLED
73 #ifdef RX_DESC_SANITY_WAR
74 QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
75 			     hal_ring_handle_t hal_ring_hdl,
76 			     hal_ring_desc_t ring_desc,
77 			     struct dp_rx_desc *rx_desc)
78 {
79 	uint8_t return_buffer_manager;
80 
81 	if (qdf_unlikely(!rx_desc)) {
82 		/*
83 		 * This is an unlikely case where the cookie obtained
84 		 * from the ring_desc is invalid and hence we are not
85 		 * able to find the corresponding rx_desc
86 		 */
87 		goto fail;
88 	}
89 
90 	return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
91 	if (qdf_unlikely(!(return_buffer_manager ==
92 				HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
93 			 return_buffer_manager ==
94 				HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
95 		goto fail;
96 	}
97 
98 	return QDF_STATUS_SUCCESS;
99 
100 fail:
101 	DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
102 	dp_err("Ring Desc:");
103 	hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
104 				ring_desc);
105 	return QDF_STATUS_E_NULL_VALUE;
106 
107 }
108 #endif
109 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
110 
111 /**
112  * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
113  *
114  * @dp_soc: struct dp_soc *
115  * @nbuf_frag_info_t: nbuf frag info
116  * @dp_pdev: struct dp_pdev *
117  * @rx_desc_pool: Rx desc pool
118  *
119  * Return: QDF_STATUS
120  */
121 #ifdef DP_RX_MON_MEM_FRAG
122 static inline QDF_STATUS
123 dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
124 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
125 			   struct dp_pdev *dp_pdev,
126 			   struct rx_desc_pool *rx_desc_pool)
127 {
128 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
129 
130 	(nbuf_frag_info_t->virt_addr).vaddr =
131 			qdf_frag_alloc(NULL, rx_desc_pool->buf_size);
132 
133 	if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
134 		dp_err("Frag alloc failed");
135 		DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
136 		return QDF_STATUS_E_NOMEM;
137 	}
138 
139 	ret = qdf_mem_map_page(dp_soc->osdev,
140 			       (nbuf_frag_info_t->virt_addr).vaddr,
141 			       QDF_DMA_FROM_DEVICE,
142 			       rx_desc_pool->buf_size,
143 			       &nbuf_frag_info_t->paddr);
144 
145 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
146 		qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
147 		dp_err("Frag map failed");
148 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
149 		return QDF_STATUS_E_FAULT;
150 	}
151 
152 	return QDF_STATUS_SUCCESS;
153 }
154 #else
155 static inline QDF_STATUS
156 dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
157 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
158 			   struct dp_pdev *dp_pdev,
159 			   struct rx_desc_pool *rx_desc_pool)
160 {
161 	return QDF_STATUS_SUCCESS;
162 }
163 #endif /* DP_RX_MON_MEM_FRAG */
164 
165 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
166 /**
167  * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
168  * @soc: Datapath soc structure
169  * @ring_num: Refill ring number
170  * @num_req: number of buffers requested for refill
171  * @num_refill: number of buffers refilled
172  *
173  * Returns: None
174  */
175 static inline void
176 dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
177 			       hal_ring_handle_t hal_ring_hdl,
178 			       uint32_t num_req, uint32_t num_refill)
179 {
180 	struct dp_refill_info_record *record;
181 	uint32_t idx;
182 	uint32_t tp;
183 	uint32_t hp;
184 
185 	if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
186 			 !soc->rx_refill_ring_history[ring_num]))
187 		return;
188 
189 	idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
190 					DP_RX_REFILL_HIST_MAX);
191 
192 	/* No NULL check needed for record since its an array */
193 	record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
194 
195 	hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
196 	record->timestamp = qdf_get_log_timestamp();
197 	record->num_req = num_req;
198 	record->num_refill = num_refill;
199 	record->hp = hp;
200 	record->tp = tp;
201 }
202 #else
203 static inline void
204 dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
205 			       hal_ring_handle_t hal_ring_hdl,
206 			       uint32_t num_req, uint32_t num_refill)
207 {
208 }
209 #endif
210 
211 /**
212  * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
213  *
214  * @dp_soc: struct dp_soc *
215  * @mac_id: Mac id
216  * @num_entries_avail: num_entries_avail
217  * @nbuf_frag_info_t: nbuf frag info
218  * @dp_pdev: struct dp_pdev *
219  * @rx_desc_pool: Rx desc pool
220  *
221  * Return: QDF_STATUS
222  */
223 static inline QDF_STATUS
224 dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
225 				     uint32_t mac_id,
226 				     uint32_t num_entries_avail,
227 				     struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
228 				     struct dp_pdev *dp_pdev,
229 				     struct rx_desc_pool *rx_desc_pool)
230 {
231 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
232 
233 	(nbuf_frag_info_t->virt_addr).nbuf =
234 		dp_rx_buffer_pool_nbuf_alloc(dp_soc,
235 					     mac_id,
236 					     rx_desc_pool,
237 					     num_entries_avail);
238 	if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
239 		dp_err("nbuf alloc failed");
240 		DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
241 		return QDF_STATUS_E_NOMEM;
242 	}
243 
244 	ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
245 					 nbuf_frag_info_t);
246 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
247 		dp_rx_buffer_pool_nbuf_free(dp_soc,
248 			(nbuf_frag_info_t->virt_addr).nbuf, mac_id);
249 		dp_err("nbuf map failed");
250 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
251 		return QDF_STATUS_E_FAULT;
252 	}
253 
254 	nbuf_frag_info_t->paddr =
255 		qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
256 		dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, (qdf_nbuf_t)(
257 						  (nbuf_frag_info_t->virt_addr).nbuf),
258 						  rx_desc_pool->buf_size,
259 						  true, __func__, __LINE__);
260 
261 	ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
262 			     &nbuf_frag_info_t->paddr,
263 			     rx_desc_pool);
264 	if (ret == QDF_STATUS_E_FAILURE) {
265 		DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
266 		return QDF_STATUS_E_ADDRNOTAVAIL;
267 	}
268 
269 	return QDF_STATUS_SUCCESS;
270 }
271 
272 #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
273 QDF_STATUS
274 __dp_rx_buffers_no_map_lt_replenish(struct dp_soc *soc, uint32_t mac_id,
275 				    struct dp_srng *dp_rxdma_srng,
276 				    struct rx_desc_pool *rx_desc_pool)
277 {
278 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
279 	uint32_t count;
280 	void *rxdma_ring_entry;
281 	union dp_rx_desc_list_elem_t *next = NULL;
282 	void *rxdma_srng;
283 	qdf_nbuf_t nbuf;
284 	qdf_dma_addr_t paddr;
285 	uint16_t num_entries_avail = 0;
286 	uint16_t num_alloc_desc = 0;
287 	union dp_rx_desc_list_elem_t *desc_list = NULL;
288 	union dp_rx_desc_list_elem_t *tail = NULL;
289 	int sync_hw_ptr = 0;
290 
291 	rxdma_srng = dp_rxdma_srng->hal_srng;
292 
293 	if (qdf_unlikely(!dp_pdev)) {
294 		dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id);
295 		return QDF_STATUS_E_FAILURE;
296 	}
297 
298 	if (qdf_unlikely(!rxdma_srng)) {
299 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
300 		return QDF_STATUS_E_FAILURE;
301 	}
302 
303 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
304 
305 	num_entries_avail = hal_srng_src_num_avail(soc->hal_soc,
306 						   rxdma_srng,
307 						   sync_hw_ptr);
308 
309 	dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
310 		    soc, num_entries_avail);
311 
312 	if (qdf_unlikely(num_entries_avail <
313 			 ((dp_rxdma_srng->num_entries * 3) / 4))) {
314 		hal_srng_access_end(soc->hal_soc, rxdma_srng);
315 		return QDF_STATUS_E_FAILURE;
316 	}
317 
318 	DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
319 	num_alloc_desc = dp_rx_get_free_desc_list(soc, mac_id,
320 						  rx_desc_pool,
321 						  num_entries_avail,
322 						  &desc_list,
323 						  &tail);
324 
325 	if (!num_alloc_desc) {
326 		dp_rx_err("%pK: no free rx_descs in freelist", soc);
327 		DP_STATS_INC(dp_pdev, err.desc_lt_alloc_fail,
328 			     num_entries_avail);
329 		hal_srng_access_end(soc->hal_soc, rxdma_srng);
330 		return QDF_STATUS_E_NOMEM;
331 	}
332 
333 	for (count = 0; count < num_alloc_desc; count++) {
334 		next = desc_list->next;
335 		qdf_prefetch(next);
336 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
337 		if (qdf_unlikely(!nbuf)) {
338 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
339 			break;
340 		}
341 
342 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
343 					       rx_desc_pool->buf_size);
344 
345 		rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc,
346 							 rxdma_srng);
347 		qdf_assert_always(rxdma_ring_entry);
348 
349 		desc_list->rx_desc.nbuf = nbuf;
350 		desc_list->rx_desc.rx_buf_start = nbuf->data;
351 		desc_list->rx_desc.unmapped = 0;
352 
353 		/* rx_desc.in_use should be zero at this time*/
354 		qdf_assert_always(desc_list->rx_desc.in_use == 0);
355 
356 		desc_list->rx_desc.in_use = 1;
357 		desc_list->rx_desc.in_err_state = 0;
358 
359 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
360 					     paddr,
361 					     desc_list->rx_desc.cookie,
362 					     rx_desc_pool->owner);
363 
364 		desc_list = next;
365 	}
366 	qdf_dsb();
367 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
368 
369 	/* No need to count the number of bytes received during replenish.
370 	 * Therefore set replenish.pkts.bytes as 0.
371 	 */
372 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
373 	DP_STATS_INC(dp_pdev, buf_freelist, (num_alloc_desc - count));
374 	/*
375 	 * add any available free desc back to the free list
376 	 */
377 	if (desc_list)
378 		dp_rx_add_desc_list_to_free_list(soc, &desc_list, &tail,
379 						 mac_id, rx_desc_pool);
380 
381 	return QDF_STATUS_SUCCESS;
382 }
383 
384 QDF_STATUS
385 __dp_rx_buffers_no_map_replenish(struct dp_soc *soc, uint32_t mac_id,
386 				 struct dp_srng *dp_rxdma_srng,
387 				 struct rx_desc_pool *rx_desc_pool,
388 				 uint32_t num_req_buffers,
389 				 union dp_rx_desc_list_elem_t **desc_list,
390 				 union dp_rx_desc_list_elem_t **tail)
391 {
392 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
393 	uint32_t count;
394 	void *rxdma_ring_entry;
395 	union dp_rx_desc_list_elem_t *next;
396 	void *rxdma_srng;
397 	qdf_nbuf_t nbuf;
398 	qdf_nbuf_t nbuf_next;
399 	qdf_nbuf_t nbuf_head = NULL;
400 	qdf_nbuf_t nbuf_tail = NULL;
401 	qdf_dma_addr_t paddr;
402 
403 	rxdma_srng = dp_rxdma_srng->hal_srng;
404 
405 	if (qdf_unlikely(!dp_pdev)) {
406 		dp_rx_err("%pK: pdev is null for mac_id = %d",
407 			  soc, mac_id);
408 		return QDF_STATUS_E_FAILURE;
409 	}
410 
411 	if (qdf_unlikely(!rxdma_srng)) {
412 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
413 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
414 		return QDF_STATUS_E_FAILURE;
415 	}
416 
417 	/* Allocate required number of nbufs */
418 	for (count = 0; count < num_req_buffers; count++) {
419 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
420 		if (qdf_unlikely(!nbuf)) {
421 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
422 			/* Update num_req_buffers to nbufs allocated count */
423 			num_req_buffers = count;
424 			break;
425 		}
426 
427 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
428 					       rx_desc_pool->buf_size);
429 
430 		QDF_NBUF_CB_PADDR(nbuf) = paddr;
431 		DP_RX_LIST_APPEND(nbuf_head,
432 				  nbuf_tail,
433 				  nbuf);
434 	}
435 	qdf_dsb();
436 
437 	nbuf = nbuf_head;
438 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
439 
440 	for (count = 0; count < num_req_buffers; count++) {
441 		next = (*desc_list)->next;
442 		nbuf_next = nbuf->next;
443 		qdf_prefetch(next);
444 
445 		rxdma_ring_entry = (struct dp_buffer_addr_info *)
446 			hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
447 
448 		if (!rxdma_ring_entry)
449 			break;
450 
451 		(*desc_list)->rx_desc.nbuf = nbuf;
452 		(*desc_list)->rx_desc.rx_buf_start = nbuf->data;
453 		(*desc_list)->rx_desc.unmapped = 0;
454 
455 		/* rx_desc.in_use should be zero at this time*/
456 		qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
457 
458 		(*desc_list)->rx_desc.in_use = 1;
459 		(*desc_list)->rx_desc.in_err_state = 0;
460 
461 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
462 					     QDF_NBUF_CB_PADDR(nbuf),
463 					     (*desc_list)->rx_desc.cookie,
464 					     rx_desc_pool->owner);
465 
466 		*desc_list = next;
467 		nbuf = nbuf_next;
468 	}
469 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
470 
471 	/* No need to count the number of bytes received during replenish.
472 	 * Therefore set replenish.pkts.bytes as 0.
473 	 */
474 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
475 	DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
476 	/*
477 	 * add any available free desc back to the free list
478 	 */
479 	if (*desc_list)
480 		dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
481 						 mac_id, rx_desc_pool);
482 	while (nbuf) {
483 		nbuf_next = nbuf->next;
484 		dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, nbuf);
485 		qdf_nbuf_free(nbuf);
486 		nbuf = nbuf_next;
487 	}
488 
489 	return QDF_STATUS_SUCCESS;
490 }
491 
492 QDF_STATUS __dp_pdev_rx_buffers_no_map_attach(struct dp_soc *soc,
493 					      uint32_t mac_id,
494 					      struct dp_srng *dp_rxdma_srng,
495 					      struct rx_desc_pool *rx_desc_pool,
496 					      uint32_t num_req_buffers)
497 {
498 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
499 	uint32_t count;
500 	uint32_t nr_descs = 0;
501 	void *rxdma_ring_entry;
502 	union dp_rx_desc_list_elem_t *next;
503 	void *rxdma_srng;
504 	qdf_nbuf_t nbuf;
505 	qdf_dma_addr_t paddr;
506 	union dp_rx_desc_list_elem_t *desc_list = NULL;
507 	union dp_rx_desc_list_elem_t *tail = NULL;
508 
509 	rxdma_srng = dp_rxdma_srng->hal_srng;
510 
511 	if (qdf_unlikely(!dp_pdev)) {
512 		dp_rx_err("%pK: pdev is null for mac_id = %d",
513 			  soc, mac_id);
514 		return QDF_STATUS_E_FAILURE;
515 	}
516 
517 	if (qdf_unlikely(!rxdma_srng)) {
518 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
519 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
520 		return QDF_STATUS_E_FAILURE;
521 	}
522 
523 	dp_rx_debug("%pK: requested %d buffers for replenish",
524 		    soc, num_req_buffers);
525 
526 	nr_descs = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool,
527 					    num_req_buffers, &desc_list, &tail);
528 	if (!nr_descs) {
529 		dp_err("no free rx_descs in freelist");
530 		DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
531 		return QDF_STATUS_E_NOMEM;
532 	}
533 
534 	dp_debug("got %u RX descs for driver attach", nr_descs);
535 
536 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
537 
538 	for (count = 0; count < nr_descs; count++) {
539 		next = desc_list->next;
540 		qdf_prefetch(next);
541 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
542 		if (qdf_unlikely(!nbuf)) {
543 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
544 			break;
545 		}
546 
547 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
548 					       rx_desc_pool->buf_size);
549 		rxdma_ring_entry = (struct dp_buffer_addr_info *)
550 			hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
551 		if (!rxdma_ring_entry)
552 			break;
553 
554 		qdf_assert_always(rxdma_ring_entry);
555 
556 		desc_list->rx_desc.nbuf = nbuf;
557 		desc_list->rx_desc.rx_buf_start = nbuf->data;
558 		desc_list->rx_desc.unmapped = 0;
559 
560 		/* rx_desc.in_use should be zero at this time*/
561 		qdf_assert_always(desc_list->rx_desc.in_use == 0);
562 
563 		desc_list->rx_desc.in_use = 1;
564 		desc_list->rx_desc.in_err_state = 0;
565 
566 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
567 					     paddr,
568 					     desc_list->rx_desc.cookie,
569 					     rx_desc_pool->owner);
570 
571 		desc_list = next;
572 	}
573 	qdf_dsb();
574 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
575 
576 	/* No need to count the number of bytes received during replenish.
577 	 * Therefore set replenish.pkts.bytes as 0.
578 	 */
579 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
580 
581 	return QDF_STATUS_SUCCESS;
582 }
583 #endif
584 
585 #ifdef DP_UMAC_HW_RESET_SUPPORT
586 #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
587 static inline
588 qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
589 					uint32_t buf_size)
590 {
591 	return dp_rx_nbuf_sync_no_dsb(dp_soc, nbuf, buf_size);
592 }
593 #else
594 static inline
595 qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
596 					uint32_t buf_size)
597 {
598 	return qdf_nbuf_get_frag_paddr(nbuf, 0);
599 }
600 #endif
601 
602 /*
603  * dp_rx_desc_replenish() - Replenish the rx descriptors one at a time
604  *
605  * @soc: core txrx main context
606  * @dp_rxdma_srng: rxdma ring
607  * @rx_desc_pool: rx descriptor pool
608  * @rx_desc:rx descriptor
609  *
610  * Return: void
611  */
612 static inline
613 void dp_rx_desc_replenish(struct dp_soc *soc, struct dp_srng *dp_rxdma_srng,
614 			  struct rx_desc_pool *rx_desc_pool,
615 			  struct dp_rx_desc *rx_desc)
616 {
617 	void *rxdma_srng;
618 	void *rxdma_ring_entry;
619 	qdf_dma_addr_t paddr;
620 
621 	rxdma_srng = dp_rxdma_srng->hal_srng;
622 
623 	/* No one else should be accessing the srng at this point */
624 	hal_srng_access_start_unlocked(soc->hal_soc, rxdma_srng);
625 
626 	rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
627 
628 	qdf_assert_always(rxdma_ring_entry);
629 	rx_desc->in_err_state = 0;
630 
631 	paddr = dp_rx_rep_retrieve_paddr(soc, rx_desc->nbuf,
632 					 rx_desc_pool->buf_size);
633 	hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry, paddr,
634 				     rx_desc->cookie, rx_desc_pool->owner);
635 
636 	hal_srng_access_end_unlocked(soc->hal_soc, rxdma_srng);
637 }
638 
639 /*
640  * dp_rx_desc_reuse() - Reuse the rx descriptors to fill the rx buf ring
641  *
642  * @soc: core txrx main context
643  * @nbuf_list: nbuf list for delayed free
644  *
645  * Return: void
646  */
647 void dp_rx_desc_reuse(struct dp_soc *soc, qdf_nbuf_t *nbuf_list)
648 {
649 	int mac_id, i, j;
650 	union dp_rx_desc_list_elem_t *head = NULL;
651 	union dp_rx_desc_list_elem_t *tail = NULL;
652 
653 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
654 		struct dp_srng *dp_rxdma_srng =
655 					&soc->rx_refill_buf_ring[mac_id];
656 		struct rx_desc_pool *rx_desc_pool = &soc->rx_desc_buf[mac_id];
657 		uint32_t rx_sw_desc_num = rx_desc_pool->pool_size;
658 		/* Only fill up 1/3 of the ring size */
659 		uint32_t num_req_decs;
660 
661 		if (!dp_rxdma_srng || !dp_rxdma_srng->hal_srng ||
662 		    !rx_desc_pool->array)
663 			continue;
664 
665 		num_req_decs = dp_rxdma_srng->num_entries / 3;
666 
667 		for (i = 0, j = 0; i < rx_sw_desc_num; i++) {
668 			struct dp_rx_desc *rx_desc =
669 				(struct dp_rx_desc *)&rx_desc_pool->array[i];
670 
671 			if (rx_desc->in_use) {
672 				if (j < dp_rxdma_srng->num_entries) {
673 					dp_rx_desc_replenish(soc, dp_rxdma_srng,
674 							     rx_desc_pool,
675 							     rx_desc);
676 				} else {
677 					dp_rx_nbuf_unmap(soc, rx_desc, 0);
678 					rx_desc->unmapped = 0;
679 
680 					rx_desc->nbuf->next = *nbuf_list;
681 					*nbuf_list = rx_desc->nbuf;
682 
683 					dp_rx_add_to_free_desc_list(&head,
684 								    &tail,
685 								    rx_desc);
686 				}
687 				j++;
688 			}
689 		}
690 
691 		if (head)
692 			dp_rx_add_desc_list_to_free_list(soc, &head, &tail,
693 							 mac_id, rx_desc_pool);
694 
695 		/* If num of descs in use were less, then we need to replenish
696 		 * the ring with some buffers
697 		 */
698 		head = NULL;
699 		tail = NULL;
700 
701 		if (j < (num_req_decs - 1))
702 			dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
703 						rx_desc_pool,
704 						((num_req_decs - 1) - j),
705 						&head, &tail, true);
706 	}
707 }
708 #endif
709 
710 /*
711  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
712  *			       called during dp rx initialization
713  *			       and at the end of dp_rx_process.
714  *
715  * @soc: core txrx main context
716  * @mac_id: mac_id which is one of 3 mac_ids
717  * @dp_rxdma_srng: dp rxdma circular ring
718  * @rx_desc_pool: Pointer to free Rx descriptor pool
719  * @num_req_buffers: number of buffer to be replenished
720  * @desc_list: list of descs if called from dp_rx_process
721  *	       or NULL during dp rx initialization or out of buffer
722  *	       interrupt.
723  * @tail: tail of descs list
724  * @req_only: If true don't replenish more than req buffers
725  * @func_name: name of the caller function
726  * Return: return success or failure
727  */
728 QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
729 				struct dp_srng *dp_rxdma_srng,
730 				struct rx_desc_pool *rx_desc_pool,
731 				uint32_t num_req_buffers,
732 				union dp_rx_desc_list_elem_t **desc_list,
733 				union dp_rx_desc_list_elem_t **tail,
734 				bool req_only, const char *func_name)
735 {
736 	uint32_t num_alloc_desc;
737 	uint16_t num_desc_to_free = 0;
738 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
739 	uint32_t num_entries_avail;
740 	uint32_t count;
741 	uint32_t extra_buffers;
742 	int sync_hw_ptr = 1;
743 	struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
744 	void *rxdma_ring_entry;
745 	union dp_rx_desc_list_elem_t *next;
746 	QDF_STATUS ret;
747 	void *rxdma_srng;
748 	union dp_rx_desc_list_elem_t *desc_list_append = NULL;
749 	union dp_rx_desc_list_elem_t *tail_append = NULL;
750 	union dp_rx_desc_list_elem_t *temp_list = NULL;
751 
752 	rxdma_srng = dp_rxdma_srng->hal_srng;
753 
754 	if (qdf_unlikely(!dp_pdev)) {
755 		dp_rx_err("%pK: pdev is null for mac_id = %d",
756 			  dp_soc, mac_id);
757 		return QDF_STATUS_E_FAILURE;
758 	}
759 
760 	if (qdf_unlikely(!rxdma_srng)) {
761 		dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
762 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
763 		return QDF_STATUS_E_FAILURE;
764 	}
765 
766 	dp_verbose_debug("%pK: requested %d buffers for replenish",
767 			 dp_soc, num_req_buffers);
768 
769 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
770 
771 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
772 						   rxdma_srng,
773 						   sync_hw_ptr);
774 
775 	dp_verbose_debug("%pK: no of available entries in rxdma ring: %d",
776 			 dp_soc, num_entries_avail);
777 
778 	if (!req_only && !(*desc_list) && (num_entries_avail >
779 		((dp_rxdma_srng->num_entries * 3) / 4))) {
780 		num_req_buffers = num_entries_avail;
781 		DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
782 	} else if (num_entries_avail < num_req_buffers) {
783 		num_desc_to_free = num_req_buffers - num_entries_avail;
784 		num_req_buffers = num_entries_avail;
785 	} else if ((*desc_list) &&
786 		   dp_rxdma_srng->num_entries - num_entries_avail <
787 		   CRITICAL_BUFFER_THRESHOLD) {
788 		/* set extra buffers to CRITICAL_BUFFER_THRESHOLD only if
789 		 * total buff requested after adding extra buffers is less
790 		 * than or equal to num entries available, else set it to max
791 		 * possible additional buffers available at that moment
792 		 */
793 		extra_buffers =
794 			((num_req_buffers + CRITICAL_BUFFER_THRESHOLD) > num_entries_avail) ?
795 			(num_entries_avail - num_req_buffers) :
796 			CRITICAL_BUFFER_THRESHOLD;
797 		/* Append some free descriptors to tail */
798 		num_alloc_desc =
799 			dp_rx_get_free_desc_list(dp_soc, mac_id,
800 						 rx_desc_pool,
801 						 extra_buffers,
802 						 &desc_list_append,
803 						 &tail_append);
804 
805 		if (num_alloc_desc) {
806 			temp_list = *desc_list;
807 			*desc_list = desc_list_append;
808 			tail_append->next = temp_list;
809 			num_req_buffers += num_alloc_desc;
810 
811 			DP_STATS_DEC(dp_pdev,
812 				     replenish.free_list,
813 				     num_alloc_desc);
814 		} else
815 			dp_err_rl("%pK:  no free rx_descs in freelist", dp_soc);
816 	}
817 
818 	if (qdf_unlikely(!num_req_buffers)) {
819 		num_desc_to_free = num_req_buffers;
820 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
821 		goto free_descs;
822 	}
823 
824 	/*
825 	 * if desc_list is NULL, allocate the descs from freelist
826 	 */
827 	if (!(*desc_list)) {
828 		num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
829 							  rx_desc_pool,
830 							  num_req_buffers,
831 							  desc_list,
832 							  tail);
833 
834 		if (!num_alloc_desc) {
835 			dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
836 			DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
837 					num_req_buffers);
838 			hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
839 			return QDF_STATUS_E_NOMEM;
840 		}
841 
842 		dp_verbose_debug("%pK: %d rx desc allocated", dp_soc,
843 				 num_alloc_desc);
844 		num_req_buffers = num_alloc_desc;
845 	}
846 
847 
848 	count = 0;
849 
850 	while (count < num_req_buffers) {
851 		/* Flag is set while pdev rx_desc_pool initialization */
852 		if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
853 			ret = dp_pdev_frag_alloc_and_map(dp_soc,
854 							 &nbuf_frag_info,
855 							 dp_pdev,
856 							 rx_desc_pool);
857 		else
858 			ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
859 								   mac_id,
860 					num_entries_avail, &nbuf_frag_info,
861 					dp_pdev, rx_desc_pool);
862 
863 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
864 			if (qdf_unlikely(ret  == QDF_STATUS_E_FAULT))
865 				continue;
866 			break;
867 		}
868 
869 		count++;
870 
871 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
872 							 rxdma_srng);
873 		qdf_assert_always(rxdma_ring_entry);
874 
875 		next = (*desc_list)->next;
876 
877 		/* Flag is set while pdev rx_desc_pool initialization */
878 		if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
879 			dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
880 					     &nbuf_frag_info);
881 		else
882 			dp_rx_desc_prep(&((*desc_list)->rx_desc),
883 					&nbuf_frag_info);
884 
885 		/* rx_desc.in_use should be zero at this time*/
886 		qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
887 
888 		(*desc_list)->rx_desc.in_use = 1;
889 		(*desc_list)->rx_desc.in_err_state = 0;
890 		dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
891 					   func_name, RX_DESC_REPLENISHED);
892 		dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
893 				 nbuf_frag_info.virt_addr.nbuf,
894 				 (unsigned long long)(nbuf_frag_info.paddr),
895 				 (*desc_list)->rx_desc.cookie);
896 
897 		hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
898 					     nbuf_frag_info.paddr,
899 						(*desc_list)->rx_desc.cookie,
900 						rx_desc_pool->owner);
901 
902 		*desc_list = next;
903 
904 	}
905 
906 	dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
907 				       num_req_buffers, count);
908 
909 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
910 
911 	dp_rx_schedule_refill_thread(dp_soc);
912 
913 	dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
914 			 count, num_desc_to_free);
915 
916 	/* No need to count the number of bytes received during replenish.
917 	 * Therefore set replenish.pkts.bytes as 0.
918 	 */
919 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
920 	DP_STATS_INC(dp_pdev, replenish.free_list, num_req_buffers - count);
921 
922 free_descs:
923 	DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
924 	/*
925 	 * add any available free desc back to the free list
926 	 */
927 	if (*desc_list)
928 		dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
929 			mac_id, rx_desc_pool);
930 
931 	return QDF_STATUS_SUCCESS;
932 }
933 
934 qdf_export_symbol(__dp_rx_buffers_replenish);
935 
936 /*
937  * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
938  *				pkts to RAW mode simulation to
939  *				decapsulate the pkt.
940  *
941  * @vdev: vdev on which RAW mode is enabled
942  * @nbuf_list: list of RAW pkts to process
943  * @txrx_peer: peer object from which the pkt is rx
944  *
945  * Return: void
946  */
947 void
948 dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
949 		  struct dp_txrx_peer *txrx_peer)
950 {
951 	qdf_nbuf_t deliver_list_head = NULL;
952 	qdf_nbuf_t deliver_list_tail = NULL;
953 	qdf_nbuf_t nbuf;
954 
955 	nbuf = nbuf_list;
956 	while (nbuf) {
957 		qdf_nbuf_t next = qdf_nbuf_next(nbuf);
958 
959 		DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
960 
961 		DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
962 		DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1,
963 					      qdf_nbuf_len(nbuf));
964 		/*
965 		 * reset the chfrag_start and chfrag_end bits in nbuf cb
966 		 * as this is a non-amsdu pkt and RAW mode simulation expects
967 		 * these bit s to be 0 for non-amsdu pkt.
968 		 */
969 		if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
970 			 qdf_nbuf_is_rx_chfrag_end(nbuf)) {
971 			qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
972 			qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
973 		}
974 
975 		nbuf = next;
976 	}
977 
978 	vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
979 				 &deliver_list_tail);
980 
981 	vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
982 }
983 
984 #ifndef QCA_HOST_MODE_WIFI_DISABLED
985 #ifndef FEATURE_WDS
986 void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
987 		    struct dp_txrx_peer *ta_peer, qdf_nbuf_t nbuf)
988 {
989 }
990 #endif
991 
992 #ifdef QCA_SUPPORT_TX_MIN_RATES_FOR_SPECIAL_FRAMES
993 /*
994  * dp_classify_critical_pkts() - API for marking critical packets
995  * @soc: dp_soc context
996  * @vdev: vdev on which packet is to be sent
997  * @nbuf: nbuf that has to be classified
998  *
999  * The function parses the packet, identifies whether its a critical frame and
1000  * marks QDF_NBUF_CB_TX_EXTRA_IS_CRITICAL bit in qdf_nbuf_cb for the nbuf.
1001  * Code for marking which frames are CRITICAL is accessed via callback.
1002  * EAPOL, ARP, DHCP, DHCPv6, ICMPv6 NS/NA are the typical critical frames.
1003  *
1004  * Return: None
1005  */
1006 static
1007 void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
1008 			       qdf_nbuf_t nbuf)
1009 {
1010 	if (vdev->tx_classify_critical_pkt_cb)
1011 		vdev->tx_classify_critical_pkt_cb(vdev->osif_vdev, nbuf);
1012 }
1013 #else
1014 static inline
1015 void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
1016 			       qdf_nbuf_t nbuf)
1017 {
1018 }
1019 #endif
1020 
1021 #ifdef QCA_OL_TX_MULTIQ_SUPPORT
1022 static inline
1023 void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
1024 {
1025 	qdf_nbuf_set_queue_mapping(nbuf, ring_id);
1026 }
1027 #else
1028 static inline
1029 void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
1030 {
1031 }
1032 #endif
1033 
1034 /*
1035  * dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets
1036  *
1037  * @soc: core txrx main context
1038  * @ta_peer	: source peer entry
1039  * @rx_tlv_hdr	: start address of rx tlvs
1040  * @nbuf	: nbuf that has to be intrabss forwarded
1041  * @tid_stats	: tid stats pointer
1042  *
1043  * Return: bool: true if it is forwarded else false
1044  */
1045 bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
1046 			     uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
1047 			     struct cdp_tid_rx_stats *tid_stats)
1048 {
1049 	uint16_t len;
1050 	qdf_nbuf_t nbuf_copy;
1051 
1052 	if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
1053 					    nbuf))
1054 		return true;
1055 
1056 	if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
1057 		return false;
1058 
1059 	/* If the source peer in the isolation list
1060 	 * then dont forward instead push to bridge stack
1061 	 */
1062 	if (dp_get_peer_isolation(ta_peer))
1063 		return false;
1064 
1065 	nbuf_copy = qdf_nbuf_copy(nbuf);
1066 	if (!nbuf_copy)
1067 		return false;
1068 
1069 	len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1070 
1071 	qdf_mem_set(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
1072 	dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf_copy);
1073 
1074 	if (soc->arch_ops.dp_rx_intrabss_mcast_handler(soc, ta_peer,
1075 						       nbuf_copy,
1076 						       tid_stats))
1077 		return false;
1078 
1079 	/* Don't send packets if tx is paused */
1080 	if (!soc->is_tx_pause &&
1081 	    !dp_tx_send((struct cdp_soc_t *)soc,
1082 			ta_peer->vdev->vdev_id, nbuf_copy)) {
1083 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
1084 					      len);
1085 		tid_stats->intrabss_cnt++;
1086 	} else {
1087 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
1088 					      len);
1089 		tid_stats->fail_cnt[INTRABSS_DROP]++;
1090 		dp_rx_nbuf_free(nbuf_copy);
1091 	}
1092 	return false;
1093 }
1094 
1095 /*
1096  * dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets
1097  *
1098  * @soc: core txrx main context
1099  * @ta_peer: source peer entry
1100  * @tx_vdev_id: VDEV ID for Intra-BSS TX
1101  * @rx_tlv_hdr: start address of rx tlvs
1102  * @nbuf: nbuf that has to be intrabss forwarded
1103  * @tid_stats: tid stats pointer
1104  *
1105  * Return: bool: true if it is forwarded else false
1106  */
1107 bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
1108 			      uint8_t tx_vdev_id,
1109 			      uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
1110 			      struct cdp_tid_rx_stats *tid_stats)
1111 {
1112 	uint16_t len;
1113 
1114 	len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1115 
1116 	/* linearize the nbuf just before we send to
1117 	 * dp_tx_send()
1118 	 */
1119 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
1120 		if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
1121 			return false;
1122 
1123 		nbuf = qdf_nbuf_unshare(nbuf);
1124 		if (!nbuf) {
1125 			DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer,
1126 						      rx.intra_bss.fail,
1127 						      1, len);
1128 			/* return true even though the pkt is
1129 			 * not forwarded. Basically skb_unshare
1130 			 * failed and we want to continue with
1131 			 * next nbuf.
1132 			 */
1133 			tid_stats->fail_cnt[INTRABSS_DROP]++;
1134 			return false;
1135 		}
1136 	}
1137 
1138 	qdf_mem_set(nbuf->cb, 0x0, sizeof(nbuf->cb));
1139 	dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf);
1140 
1141 	/* Don't send packets if tx is paused */
1142 	if (!soc->is_tx_pause && !dp_tx_send((struct cdp_soc_t *)soc,
1143 					     tx_vdev_id, nbuf)) {
1144 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
1145 					      len);
1146 	} else {
1147 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
1148 					      len);
1149 		tid_stats->fail_cnt[INTRABSS_DROP]++;
1150 		return false;
1151 	}
1152 
1153 	return true;
1154 }
1155 
1156 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
1157 
1158 #ifdef MESH_MODE_SUPPORT
1159 
1160 /**
1161  * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
1162  *
1163  * @vdev: DP Virtual device handle
1164  * @nbuf: Buffer pointer
1165  * @rx_tlv_hdr: start of rx tlv header
1166  * @txrx_peer: pointer to peer
1167  *
1168  * This function allocated memory for mesh receive stats and fill the
1169  * required stats. Stores the memory address in skb cb.
1170  *
1171  * Return: void
1172  */
1173 
1174 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1175 			   uint8_t *rx_tlv_hdr,
1176 			   struct dp_txrx_peer *txrx_peer)
1177 {
1178 	struct mesh_recv_hdr_s *rx_info = NULL;
1179 	uint32_t pkt_type;
1180 	uint32_t nss;
1181 	uint32_t rate_mcs;
1182 	uint32_t bw;
1183 	uint8_t primary_chan_num;
1184 	uint32_t center_chan_freq;
1185 	struct dp_soc *soc = vdev->pdev->soc;
1186 	struct dp_peer *peer;
1187 	struct dp_peer *primary_link_peer;
1188 	struct dp_soc *link_peer_soc;
1189 	cdp_peer_stats_param_t buf = {0};
1190 
1191 	/* fill recv mesh stats */
1192 	rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
1193 
1194 	/* upper layers are responsible to free this memory */
1195 
1196 	if (!rx_info) {
1197 		dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
1198 			  vdev->pdev->soc);
1199 		DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
1200 		return;
1201 	}
1202 
1203 	rx_info->rs_flags = MESH_RXHDR_VER1;
1204 	if (qdf_nbuf_is_rx_chfrag_start(nbuf))
1205 		rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
1206 
1207 	if (qdf_nbuf_is_rx_chfrag_end(nbuf))
1208 		rx_info->rs_flags |= MESH_RX_LAST_MSDU;
1209 
1210 	peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_MESH);
1211 	if (peer) {
1212 		if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
1213 			rx_info->rs_flags |= MESH_RX_DECRYPTED;
1214 			rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
1215 								  rx_tlv_hdr);
1216 			if (vdev->osif_get_key)
1217 				vdev->osif_get_key(vdev->osif_vdev,
1218 						   &rx_info->rs_decryptkey[0],
1219 						   &peer->mac_addr.raw[0],
1220 						   rx_info->rs_keyix);
1221 		}
1222 
1223 		dp_peer_unref_delete(peer, DP_MOD_ID_MESH);
1224 	}
1225 
1226 	primary_link_peer = dp_get_primary_link_peer_by_id(soc,
1227 							   txrx_peer->peer_id,
1228 							   DP_MOD_ID_MESH);
1229 
1230 	if (qdf_likely(primary_link_peer)) {
1231 		link_peer_soc = primary_link_peer->vdev->pdev->soc;
1232 		dp_monitor_peer_get_stats_param(link_peer_soc,
1233 						primary_link_peer,
1234 						cdp_peer_rx_snr, &buf);
1235 		rx_info->rs_snr = buf.rx_snr;
1236 		dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_MESH);
1237 	}
1238 
1239 	rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
1240 
1241 	soc = vdev->pdev->soc;
1242 	primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
1243 	center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
1244 
1245 	if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
1246 		rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
1247 							soc->ctrl_psoc,
1248 							vdev->pdev->pdev_id,
1249 							center_chan_freq);
1250 	}
1251 	rx_info->rs_channel = primary_chan_num;
1252 	pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
1253 	rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
1254 	bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
1255 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
1256 	rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
1257 				(bw << 24);
1258 
1259 	qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
1260 
1261 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
1262 		FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
1263 						rx_info->rs_flags,
1264 						rx_info->rs_rssi,
1265 						rx_info->rs_channel,
1266 						rx_info->rs_ratephy1,
1267 						rx_info->rs_keyix,
1268 						rx_info->rs_snr);
1269 
1270 }
1271 
1272 /**
1273  * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
1274  *
1275  * @vdev: DP Virtual device handle
1276  * @nbuf: Buffer pointer
1277  * @rx_tlv_hdr: start of rx tlv header
1278  *
1279  * This checks if the received packet is matching any filter out
1280  * catogery and and drop the packet if it matches.
1281  *
1282  * Return: status(0 indicates drop, 1 indicate to no drop)
1283  */
1284 
1285 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1286 					uint8_t *rx_tlv_hdr)
1287 {
1288 	union dp_align_mac_addr mac_addr;
1289 	struct dp_soc *soc = vdev->pdev->soc;
1290 
1291 	if (qdf_unlikely(vdev->mesh_rx_filter)) {
1292 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
1293 			if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
1294 						  rx_tlv_hdr))
1295 				return  QDF_STATUS_SUCCESS;
1296 
1297 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
1298 			if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
1299 						  rx_tlv_hdr))
1300 				return  QDF_STATUS_SUCCESS;
1301 
1302 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
1303 			if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
1304 						   rx_tlv_hdr) &&
1305 			    !hal_rx_mpdu_get_to_ds(soc->hal_soc,
1306 						   rx_tlv_hdr))
1307 				return  QDF_STATUS_SUCCESS;
1308 
1309 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
1310 			if (hal_rx_mpdu_get_addr1(soc->hal_soc,
1311 						  rx_tlv_hdr,
1312 					&mac_addr.raw[0]))
1313 				return QDF_STATUS_E_FAILURE;
1314 
1315 			if (!qdf_mem_cmp(&mac_addr.raw[0],
1316 					&vdev->mac_addr.raw[0],
1317 					QDF_MAC_ADDR_SIZE))
1318 				return  QDF_STATUS_SUCCESS;
1319 		}
1320 
1321 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
1322 			if (hal_rx_mpdu_get_addr2(soc->hal_soc,
1323 						  rx_tlv_hdr,
1324 						  &mac_addr.raw[0]))
1325 				return QDF_STATUS_E_FAILURE;
1326 
1327 			if (!qdf_mem_cmp(&mac_addr.raw[0],
1328 					&vdev->mac_addr.raw[0],
1329 					QDF_MAC_ADDR_SIZE))
1330 				return  QDF_STATUS_SUCCESS;
1331 		}
1332 	}
1333 
1334 	return QDF_STATUS_E_FAILURE;
1335 }
1336 
1337 #else
1338 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1339 				uint8_t *rx_tlv_hdr, struct dp_txrx_peer *peer)
1340 {
1341 }
1342 
1343 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1344 					uint8_t *rx_tlv_hdr)
1345 {
1346 	return QDF_STATUS_E_FAILURE;
1347 }
1348 
1349 #endif
1350 
1351 #ifdef RX_PEER_INVALID_ENH
1352 /**
1353  * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
1354  * @soc: DP SOC handle
1355  * @mpdu: mpdu for which peer is invalid
1356  * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
1357  * pool_id has same mapping)
1358  *
1359  * return: integer type
1360  */
1361 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
1362 				   uint8_t mac_id)
1363 {
1364 	struct dp_invalid_peer_msg msg;
1365 	struct dp_vdev *vdev = NULL;
1366 	struct dp_pdev *pdev = NULL;
1367 	struct ieee80211_frame *wh;
1368 	qdf_nbuf_t curr_nbuf, next_nbuf;
1369 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
1370 	uint8_t *rx_pkt_hdr = NULL;
1371 	int i = 0;
1372 
1373 	if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
1374 		dp_rx_debug("%pK: Drop decapped frames", soc);
1375 		goto free;
1376 	}
1377 
1378 	/* In RAW packet, packet header will be part of data */
1379 	rx_pkt_hdr = rx_tlv_hdr + soc->rx_pkt_tlv_size;
1380 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
1381 
1382 	if (!DP_FRAME_IS_DATA(wh)) {
1383 		dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
1384 		goto free;
1385 	}
1386 
1387 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
1388 		dp_rx_err("%pK: Invalid nbuf length", soc);
1389 		goto free;
1390 	}
1391 
1392 	/* In DMAC case the rx_desc_pools are common across PDEVs
1393 	 * so PDEV cannot be derived from the pool_id.
1394 	 *
1395 	 * link_id need to derived from the TLV tag word which is
1396 	 * disabled by default. For now adding a WAR to get vdev
1397 	 * with brute force this need to fixed with word based subscription
1398 	 * support is added by enabling TLV tag word
1399 	 */
1400 	if (soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
1401 		for (i = 0; i < MAX_PDEV_CNT; i++) {
1402 			pdev = soc->pdev_list[i];
1403 
1404 			if (!pdev || qdf_unlikely(pdev->is_pdev_down))
1405 				continue;
1406 
1407 			TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1408 				if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1409 						QDF_MAC_ADDR_SIZE) == 0) {
1410 					goto out;
1411 				}
1412 			}
1413 		}
1414 	} else {
1415 		pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1416 
1417 		if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
1418 			dp_rx_err("%pK: PDEV %s",
1419 				  soc, !pdev ? "not found" : "down");
1420 			goto free;
1421 		}
1422 
1423 		if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
1424 		    QDF_STATUS_SUCCESS)
1425 			return 0;
1426 
1427 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1428 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1429 					QDF_MAC_ADDR_SIZE) == 0) {
1430 				goto out;
1431 			}
1432 		}
1433 	}
1434 
1435 	if (!vdev) {
1436 		dp_rx_err("%pK: VDEV not found", soc);
1437 		goto free;
1438 	}
1439 out:
1440 	msg.wh = wh;
1441 	qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
1442 	msg.nbuf = mpdu;
1443 	msg.vdev_id = vdev->vdev_id;
1444 
1445 	/*
1446 	 * NOTE: Only valid for HKv1.
1447 	 * If smart monitor mode is enabled on RE, we are getting invalid
1448 	 * peer frames with RA as STA mac of RE and the TA not matching
1449 	 * with any NAC list or the the BSSID.Such frames need to dropped
1450 	 * in order to avoid HM_WDS false addition.
1451 	 */
1452 	if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
1453 		if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
1454 			dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
1455 				   soc, wh->i_addr1);
1456 			goto free;
1457 		}
1458 		pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
1459 				(struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
1460 				pdev->pdev_id, &msg);
1461 	}
1462 
1463 free:
1464 	/* Drop and free packet */
1465 	curr_nbuf = mpdu;
1466 	while (curr_nbuf) {
1467 		next_nbuf = qdf_nbuf_next(curr_nbuf);
1468 		dp_rx_nbuf_free(curr_nbuf);
1469 		curr_nbuf = next_nbuf;
1470 	}
1471 
1472 	return 0;
1473 }
1474 
1475 /**
1476  * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
1477  * @soc: DP SOC handle
1478  * @mpdu: mpdu for which peer is invalid
1479  * @mpdu_done: if an mpdu is completed
1480  * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
1481  * pool_id has same mapping)
1482  *
1483  * return: integer type
1484  */
1485 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
1486 					qdf_nbuf_t mpdu, bool mpdu_done,
1487 					uint8_t mac_id)
1488 {
1489 	/* Only trigger the process when mpdu is completed */
1490 	if (mpdu_done)
1491 		dp_rx_process_invalid_peer(soc, mpdu, mac_id);
1492 }
1493 #else
1494 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
1495 				   uint8_t mac_id)
1496 {
1497 	qdf_nbuf_t curr_nbuf, next_nbuf;
1498 	struct dp_pdev *pdev;
1499 	struct dp_vdev *vdev = NULL;
1500 	struct ieee80211_frame *wh;
1501 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
1502 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
1503 
1504 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
1505 
1506 	if (!DP_FRAME_IS_DATA(wh)) {
1507 		QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
1508 				   "only for data frames");
1509 		goto free;
1510 	}
1511 
1512 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
1513 		dp_rx_info_rl("%pK: Invalid nbuf length", soc);
1514 		goto free;
1515 	}
1516 
1517 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1518 	if (!pdev) {
1519 		dp_rx_info_rl("%pK: PDEV not found", soc);
1520 		goto free;
1521 	}
1522 
1523 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
1524 	DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
1525 		if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1526 				QDF_MAC_ADDR_SIZE) == 0) {
1527 			qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1528 			goto out;
1529 		}
1530 	}
1531 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1532 
1533 	if (!vdev) {
1534 		dp_rx_info_rl("%pK: VDEV not found", soc);
1535 		goto free;
1536 	}
1537 
1538 out:
1539 	if (soc->cdp_soc.ol_ops->rx_invalid_peer)
1540 		soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
1541 free:
1542 
1543 	/* Drop and free packet */
1544 	curr_nbuf = mpdu;
1545 	while (curr_nbuf) {
1546 		next_nbuf = qdf_nbuf_next(curr_nbuf);
1547 		dp_rx_nbuf_free(curr_nbuf);
1548 		curr_nbuf = next_nbuf;
1549 	}
1550 
1551 	/* Reset the head and tail pointers */
1552 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1553 	if (pdev) {
1554 		pdev->invalid_peer_head_msdu = NULL;
1555 		pdev->invalid_peer_tail_msdu = NULL;
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
1562 					qdf_nbuf_t mpdu, bool mpdu_done,
1563 					uint8_t mac_id)
1564 {
1565 	/* Process the nbuf */
1566 	dp_rx_process_invalid_peer(soc, mpdu, mac_id);
1567 }
1568 #endif
1569 
1570 #ifndef QCA_HOST_MODE_WIFI_DISABLED
1571 
1572 #ifdef RECEIVE_OFFLOAD
1573 /**
1574  * dp_rx_print_offload_info() - Print offload info from RX TLV
1575  * @soc: dp soc handle
1576  * @msdu: MSDU for which the offload info is to be printed
1577  *
1578  * Return: None
1579  */
1580 static void dp_rx_print_offload_info(struct dp_soc *soc,
1581 				     qdf_nbuf_t msdu)
1582 {
1583 	dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
1584 	dp_verbose_debug("lro_eligible 0x%x",
1585 			 QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
1586 	dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
1587 	dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
1588 	dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
1589 	dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
1590 	dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
1591 	dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
1592 	dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
1593 	dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
1594 	dp_verbose_debug("---------------------------------------------------------");
1595 }
1596 
1597 /**
1598  * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
1599  * @soc: DP SOC handle
1600  * @rx_tlv: RX TLV received for the msdu
1601  * @msdu: msdu for which GRO info needs to be filled
1602  * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
1603  *
1604  * Return: None
1605  */
1606 void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
1607 			 qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
1608 {
1609 	struct hal_offload_info offload_info;
1610 
1611 	if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
1612 		return;
1613 
1614 	if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
1615 		return;
1616 
1617 	*rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
1618 
1619 	QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
1620 	QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
1621 	QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
1622 			hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
1623 						  rx_tlv);
1624 	QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
1625 	QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
1626 	QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
1627 	QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
1628 	QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
1629 	QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
1630 	QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
1631 
1632 	dp_rx_print_offload_info(soc, msdu);
1633 }
1634 #endif /* RECEIVE_OFFLOAD */
1635 
1636 /**
1637  * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
1638  *
1639  * @soc: DP soc handle
1640  * @nbuf: pointer to msdu.
1641  * @mpdu_len: mpdu length
1642  * @l3_pad_len: L3 padding length by HW
1643  *
1644  * Return: returns true if nbuf is last msdu of mpdu else returns false.
1645  */
1646 static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
1647 					 qdf_nbuf_t nbuf,
1648 					 uint16_t *mpdu_len,
1649 					 uint32_t l3_pad_len)
1650 {
1651 	bool last_nbuf;
1652 	uint32_t pkt_hdr_size;
1653 
1654 	pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
1655 
1656 	if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
1657 		qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
1658 		last_nbuf = false;
1659 		*mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
1660 	} else {
1661 		qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
1662 		last_nbuf = true;
1663 		*mpdu_len = 0;
1664 	}
1665 
1666 	return last_nbuf;
1667 }
1668 
1669 /**
1670  * dp_get_l3_hdr_pad_len() - get L3 header padding length.
1671  *
1672  * @soc: DP soc handle
1673  * @nbuf: pointer to msdu.
1674  *
1675  * Return: returns padding length in bytes.
1676  */
1677 static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
1678 					     qdf_nbuf_t nbuf)
1679 {
1680 	uint32_t l3_hdr_pad = 0;
1681 	uint8_t *rx_tlv_hdr;
1682 	struct hal_rx_msdu_metadata msdu_metadata;
1683 
1684 	while (nbuf) {
1685 		if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
1686 			/* scattered msdu end with continuation is 0 */
1687 			rx_tlv_hdr = qdf_nbuf_data(nbuf);
1688 			hal_rx_msdu_metadata_get(soc->hal_soc,
1689 						 rx_tlv_hdr,
1690 						 &msdu_metadata);
1691 			l3_hdr_pad = msdu_metadata.l3_hdr_pad;
1692 			break;
1693 		}
1694 		nbuf = nbuf->next;
1695 	}
1696 
1697 	return l3_hdr_pad;
1698 }
1699 
1700 /**
1701  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
1702  *		     multiple nbufs.
1703  * @soc: DP SOC handle
1704  * @nbuf: pointer to the first msdu of an amsdu.
1705  *
1706  * This function implements the creation of RX frag_list for cases
1707  * where an MSDU is spread across multiple nbufs.
1708  *
1709  * Return: returns the head nbuf which contains complete frag_list.
1710  */
1711 qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
1712 {
1713 	qdf_nbuf_t parent, frag_list, next = NULL;
1714 	uint16_t frag_list_len = 0;
1715 	uint16_t mpdu_len;
1716 	bool last_nbuf;
1717 	uint32_t l3_hdr_pad_offset = 0;
1718 
1719 	/*
1720 	 * Use msdu len got from REO entry descriptor instead since
1721 	 * there is case the RX PKT TLV is corrupted while msdu_len
1722 	 * from REO descriptor is right for non-raw RX scatter msdu.
1723 	 */
1724 	mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1725 
1726 	/*
1727 	 * this is a case where the complete msdu fits in one single nbuf.
1728 	 * in this case HW sets both start and end bit and we only need to
1729 	 * reset these bits for RAW mode simulator to decap the pkt
1730 	 */
1731 	if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
1732 					qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1733 		qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
1734 		qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
1735 		return nbuf;
1736 	}
1737 
1738 	l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
1739 	/*
1740 	 * This is a case where we have multiple msdus (A-MSDU) spread across
1741 	 * multiple nbufs. here we create a fraglist out of these nbufs.
1742 	 *
1743 	 * the moment we encounter a nbuf with continuation bit set we
1744 	 * know for sure we have an MSDU which is spread across multiple
1745 	 * nbufs. We loop through and reap nbufs till we reach last nbuf.
1746 	 */
1747 	parent = nbuf;
1748 	frag_list = nbuf->next;
1749 	nbuf = nbuf->next;
1750 
1751 	/*
1752 	 * set the start bit in the first nbuf we encounter with continuation
1753 	 * bit set. This has the proper mpdu length set as it is the first
1754 	 * msdu of the mpdu. this becomes the parent nbuf and the subsequent
1755 	 * nbufs will form the frag_list of the parent nbuf.
1756 	 */
1757 	qdf_nbuf_set_rx_chfrag_start(parent, 1);
1758 	/*
1759 	 * L3 header padding is only needed for the 1st buffer
1760 	 * in a scattered msdu
1761 	 */
1762 	last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
1763 					  l3_hdr_pad_offset);
1764 
1765 	/*
1766 	 * MSDU cont bit is set but reported MPDU length can fit
1767 	 * in to single buffer
1768 	 *
1769 	 * Increment error stats and avoid SG list creation
1770 	 */
1771 	if (last_nbuf) {
1772 		DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
1773 		qdf_nbuf_pull_head(parent,
1774 				   soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
1775 		return parent;
1776 	}
1777 
1778 	/*
1779 	 * this is where we set the length of the fragments which are
1780 	 * associated to the parent nbuf. We iterate through the frag_list
1781 	 * till we hit the last_nbuf of the list.
1782 	 */
1783 	do {
1784 		last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
1785 		qdf_nbuf_pull_head(nbuf,
1786 				   soc->rx_pkt_tlv_size);
1787 		frag_list_len += qdf_nbuf_len(nbuf);
1788 
1789 		if (last_nbuf) {
1790 			next = nbuf->next;
1791 			nbuf->next = NULL;
1792 			break;
1793 		} else if (qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1794 			dp_err("Invalid packet length\n");
1795 			qdf_assert_always(0);
1796 		}
1797 		nbuf = nbuf->next;
1798 	} while (!last_nbuf);
1799 
1800 	qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
1801 	qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
1802 	parent->next = next;
1803 
1804 	qdf_nbuf_pull_head(parent,
1805 			   soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
1806 	return parent;
1807 }
1808 
1809 #ifdef DP_RX_SG_FRAME_SUPPORT
1810 /**
1811  * dp_rx_is_sg_supported() - SG packets processing supported or not.
1812  *
1813  * Return: returns true when processing is supported else false.
1814  */
1815 bool dp_rx_is_sg_supported(void)
1816 {
1817 	return true;
1818 }
1819 #else
1820 bool dp_rx_is_sg_supported(void)
1821 {
1822 	return false;
1823 }
1824 #endif
1825 
1826 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
1827 
1828 #ifdef QCA_PEER_EXT_STATS
1829 /*
1830  * dp_rx_compute_tid_delay - Computer per TID delay stats
1831  * @peer: DP soc context
1832  * @nbuf: NBuffer
1833  *
1834  * Return: Void
1835  */
1836 void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
1837 			     qdf_nbuf_t nbuf)
1838 {
1839 	struct cdp_delay_rx_stats  *rx_delay = &stats->rx_delay;
1840 	uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
1841 
1842 	dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
1843 }
1844 #endif /* QCA_PEER_EXT_STATS */
1845 
1846 /**
1847  * dp_rx_compute_delay() - Compute and fill in all timestamps
1848  *				to pass in correct fields
1849  *
1850  * @vdev: pdev handle
1851  * @tx_desc: tx descriptor
1852  * @tid: tid value
1853  * Return: none
1854  */
1855 void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
1856 {
1857 	uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
1858 	int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
1859 	uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
1860 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
1861 	uint32_t interframe_delay =
1862 		(uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
1863 	struct cdp_tid_rx_stats *rstats =
1864 		&vdev->pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
1865 
1866 	dp_update_delay_stats(NULL, rstats, to_stack, tid,
1867 			      CDP_DELAY_STATS_REAP_STACK, ring_id, false);
1868 	/*
1869 	 * Update interframe delay stats calculated at deliver_data_ol point.
1870 	 * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
1871 	 * interframe delay will not be calculate correctly for 1st frame.
1872 	 * On the other side, this will help in avoiding extra per packet check
1873 	 * of vdev->prev_rx_deliver_tstamp.
1874 	 */
1875 	dp_update_delay_stats(NULL, rstats, interframe_delay, tid,
1876 			      CDP_DELAY_STATS_RX_INTERFRAME, ring_id, false);
1877 	vdev->prev_rx_deliver_tstamp = current_ts;
1878 }
1879 
1880 /**
1881  * dp_rx_drop_nbuf_list() - drop an nbuf list
1882  * @pdev: dp pdev reference
1883  * @buf_list: buffer list to be dropepd
1884  *
1885  * Return: int (number of bufs dropped)
1886  */
1887 static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
1888 				       qdf_nbuf_t buf_list)
1889 {
1890 	struct cdp_tid_rx_stats *stats = NULL;
1891 	uint8_t tid = 0, ring_id = 0;
1892 	int num_dropped = 0;
1893 	qdf_nbuf_t buf, next_buf;
1894 
1895 	buf = buf_list;
1896 	while (buf) {
1897 		ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
1898 		next_buf = qdf_nbuf_queue_next(buf);
1899 		tid = qdf_nbuf_get_tid_val(buf);
1900 		if (qdf_likely(pdev)) {
1901 			stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
1902 			stats->fail_cnt[INVALID_PEER_VDEV]++;
1903 			stats->delivered_to_stack--;
1904 		}
1905 		dp_rx_nbuf_free(buf);
1906 		buf = next_buf;
1907 		num_dropped++;
1908 	}
1909 
1910 	return num_dropped;
1911 }
1912 
1913 #ifdef QCA_SUPPORT_WDS_EXTENDED
1914 /**
1915  * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
1916  * @soc: core txrx main context
1917  * @vdev: vdev
1918  * @txrx_peer: txrx peer
1919  * @nbuf_head: skb list head
1920  *
1921  * Return: true if packet is delivered to netdev per STA.
1922  */
1923 static inline bool
1924 dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
1925 			   struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
1926 {
1927 	/*
1928 	 * When extended WDS is disabled, frames are sent to AP netdevice.
1929 	 */
1930 	if (qdf_likely(!vdev->wds_ext_enabled))
1931 		return false;
1932 
1933 	/*
1934 	 * There can be 2 cases:
1935 	 * 1. Send frame to parent netdev if its not for netdev per STA
1936 	 * 2. If frame is meant for netdev per STA:
1937 	 *    a. Send frame to appropriate netdev using registered fp.
1938 	 *    b. If fp is NULL, drop the frames.
1939 	 */
1940 	if (!txrx_peer->wds_ext.init)
1941 		return false;
1942 
1943 	if (txrx_peer->osif_rx)
1944 		txrx_peer->osif_rx(txrx_peer->wds_ext.osif_peer, nbuf_head);
1945 	else
1946 		dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
1947 
1948 	return true;
1949 }
1950 
1951 #else
1952 static inline bool
1953 dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
1954 			   struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
1955 {
1956 	return false;
1957 }
1958 #endif
1959 
1960 #ifdef PEER_CACHE_RX_PKTS
1961 /**
1962  * dp_rx_flush_rx_cached() - flush cached rx frames
1963  * @peer: peer
1964  * @drop: flag to drop frames or forward to net stack
1965  *
1966  * Return: None
1967  */
1968 void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
1969 {
1970 	struct dp_peer_cached_bufq *bufqi;
1971 	struct dp_rx_cached_buf *cache_buf = NULL;
1972 	ol_txrx_rx_fp data_rx = NULL;
1973 	int num_buff_elem;
1974 	QDF_STATUS status;
1975 
1976 	/*
1977 	 * Flush dp cached frames only for mld peers and legacy peers, as
1978 	 * link peers don't store cached frames
1979 	 */
1980 	if (IS_MLO_DP_LINK_PEER(peer))
1981 		return;
1982 
1983 	if (!peer->txrx_peer) {
1984 		dp_err("txrx_peer NULL!! peer mac_addr("QDF_MAC_ADDR_FMT")",
1985 			QDF_MAC_ADDR_REF(peer->mac_addr.raw));
1986 		return;
1987 	}
1988 
1989 	if (qdf_atomic_inc_return(&peer->txrx_peer->flush_in_progress) > 1) {
1990 		qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
1991 		return;
1992 	}
1993 
1994 	qdf_spin_lock_bh(&peer->peer_info_lock);
1995 	if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
1996 		data_rx = peer->vdev->osif_rx;
1997 	else
1998 		drop = true;
1999 	qdf_spin_unlock_bh(&peer->peer_info_lock);
2000 
2001 	bufqi = &peer->txrx_peer->bufq_info;
2002 
2003 	qdf_spin_lock_bh(&bufqi->bufq_lock);
2004 	qdf_list_remove_front(&bufqi->cached_bufq,
2005 			      (qdf_list_node_t **)&cache_buf);
2006 	while (cache_buf) {
2007 		num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
2008 								cache_buf->buf);
2009 		bufqi->entries -= num_buff_elem;
2010 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
2011 		if (drop) {
2012 			bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
2013 							      cache_buf->buf);
2014 		} else {
2015 			/* Flush the cached frames to OSIF DEV */
2016 			status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
2017 			if (status != QDF_STATUS_SUCCESS)
2018 				bufqi->dropped = dp_rx_drop_nbuf_list(
2019 							peer->vdev->pdev,
2020 							cache_buf->buf);
2021 		}
2022 		qdf_mem_free(cache_buf);
2023 		cache_buf = NULL;
2024 		qdf_spin_lock_bh(&bufqi->bufq_lock);
2025 		qdf_list_remove_front(&bufqi->cached_bufq,
2026 				      (qdf_list_node_t **)&cache_buf);
2027 	}
2028 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
2029 	qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
2030 }
2031 
2032 /**
2033  * dp_rx_enqueue_rx() - cache rx frames
2034  * @peer: peer
2035  * @txrx_peer: DP txrx_peer
2036  * @rx_buf_list: cache buffer list
2037  *
2038  * Return: None
2039  */
2040 static QDF_STATUS
2041 dp_rx_enqueue_rx(struct dp_peer *peer,
2042 		 struct dp_txrx_peer *txrx_peer,
2043 		 qdf_nbuf_t rx_buf_list)
2044 {
2045 	struct dp_rx_cached_buf *cache_buf;
2046 	struct dp_peer_cached_bufq *bufqi = &txrx_peer->bufq_info;
2047 	int num_buff_elem;
2048 	QDF_STATUS ret = QDF_STATUS_SUCCESS;
2049 	struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
2050 	struct dp_peer *ta_peer = NULL;
2051 
2052 	/*
2053 	 * If peer id is invalid which likely peer map has not completed,
2054 	 * then need caller provide dp_peer pointer, else it's ok to use
2055 	 * txrx_peer->peer_id to get dp_peer.
2056 	 */
2057 	if (peer) {
2058 		if (QDF_STATUS_SUCCESS ==
2059 		    dp_peer_get_ref(soc, peer, DP_MOD_ID_RX))
2060 			ta_peer = peer;
2061 	} else {
2062 		ta_peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id,
2063 						DP_MOD_ID_RX);
2064 	}
2065 
2066 	if (!ta_peer) {
2067 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2068 						      rx_buf_list);
2069 		return QDF_STATUS_E_INVAL;
2070 	}
2071 
2072 	dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
2073 		    bufqi->dropped);
2074 	if (!ta_peer->valid) {
2075 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2076 						      rx_buf_list);
2077 		ret = QDF_STATUS_E_INVAL;
2078 		goto fail;
2079 	}
2080 
2081 	qdf_spin_lock_bh(&bufqi->bufq_lock);
2082 	if (bufqi->entries >= bufqi->thresh) {
2083 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2084 						      rx_buf_list);
2085 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
2086 		ret = QDF_STATUS_E_RESOURCES;
2087 		goto fail;
2088 	}
2089 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
2090 
2091 	num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
2092 
2093 	cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
2094 	if (!cache_buf) {
2095 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2096 			  "Failed to allocate buf to cache rx frames");
2097 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2098 						      rx_buf_list);
2099 		ret = QDF_STATUS_E_NOMEM;
2100 		goto fail;
2101 	}
2102 
2103 	cache_buf->buf = rx_buf_list;
2104 
2105 	qdf_spin_lock_bh(&bufqi->bufq_lock);
2106 	qdf_list_insert_back(&bufqi->cached_bufq,
2107 			     &cache_buf->node);
2108 	bufqi->entries += num_buff_elem;
2109 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
2110 
2111 fail:
2112 	dp_peer_unref_delete(ta_peer, DP_MOD_ID_RX);
2113 	return ret;
2114 }
2115 
2116 static inline
2117 bool dp_rx_is_peer_cache_bufq_supported(void)
2118 {
2119 	return true;
2120 }
2121 #else
2122 static inline
2123 bool dp_rx_is_peer_cache_bufq_supported(void)
2124 {
2125 	return false;
2126 }
2127 
2128 static inline QDF_STATUS
2129 dp_rx_enqueue_rx(struct dp_peer *peer,
2130 		 struct dp_txrx_peer *txrx_peer,
2131 		 qdf_nbuf_t rx_buf_list)
2132 {
2133 	return QDF_STATUS_SUCCESS;
2134 }
2135 #endif
2136 
2137 #ifndef DELIVERY_TO_STACK_STATUS_CHECK
2138 /**
2139  * dp_rx_check_delivery_to_stack() - Deliver pkts to network
2140  * using the appropriate call back functions.
2141  * @soc: soc
2142  * @vdev: vdev
2143  * @peer: peer
2144  * @nbuf_head: skb list head
2145  * @nbuf_tail: skb list tail
2146  *
2147  * Return: None
2148  */
2149 static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
2150 					  struct dp_vdev *vdev,
2151 					  struct dp_txrx_peer *txrx_peer,
2152 					  qdf_nbuf_t nbuf_head)
2153 {
2154 	if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
2155 						    txrx_peer, nbuf_head)))
2156 		return;
2157 
2158 	/* Function pointer initialized only when FISA is enabled */
2159 	if (vdev->osif_fisa_rx)
2160 		/* on failure send it via regular path */
2161 		vdev->osif_fisa_rx(soc, vdev, nbuf_head);
2162 	else
2163 		vdev->osif_rx(vdev->osif_vdev, nbuf_head);
2164 }
2165 
2166 #else
2167 /**
2168  * dp_rx_check_delivery_to_stack() - Deliver pkts to network
2169  * using the appropriate call back functions.
2170  * @soc: soc
2171  * @vdev: vdev
2172  * @txrx_peer: txrx peer
2173  * @nbuf_head: skb list head
2174  * @nbuf_tail: skb list tail
2175  *
2176  * Check the return status of the call back function and drop
2177  * the packets if the return status indicates a failure.
2178  *
2179  * Return: None
2180  */
2181 static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
2182 					  struct dp_vdev *vdev,
2183 					  struct dp_txrx_peer *txrx_peer,
2184 					  qdf_nbuf_t nbuf_head)
2185 {
2186 	int num_nbuf = 0;
2187 	QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
2188 
2189 	/* Function pointer initialized only when FISA is enabled */
2190 	if (vdev->osif_fisa_rx)
2191 		/* on failure send it via regular path */
2192 		ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
2193 	else if (vdev->osif_rx)
2194 		ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
2195 
2196 	if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
2197 		num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
2198 		DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
2199 		if (txrx_peer)
2200 			DP_PEER_STATS_FLAT_DEC(txrx_peer, to_stack.num,
2201 					       num_nbuf);
2202 	}
2203 }
2204 #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
2205 
2206 /*
2207  * dp_rx_validate_rx_callbacks() - validate rx callbacks
2208  * @soc DP soc
2209  * @vdev: DP vdev handle
2210  * @txrx_peer: pointer to the txrx peer object
2211  * nbuf_head: skb list head
2212  *
2213  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
2214  *			QDF_STATUS_E_FAILURE
2215  */
2216 static inline QDF_STATUS
2217 dp_rx_validate_rx_callbacks(struct dp_soc *soc,
2218 			    struct dp_vdev *vdev,
2219 			    struct dp_txrx_peer *txrx_peer,
2220 			    qdf_nbuf_t nbuf_head)
2221 {
2222 	int num_nbuf;
2223 
2224 	if (qdf_unlikely(!vdev || vdev->delete.pending)) {
2225 		num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
2226 		/*
2227 		 * This is a special case where vdev is invalid,
2228 		 * so we cannot know the pdev to which this packet
2229 		 * belonged. Hence we update the soc rx error stats.
2230 		 */
2231 		DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
2232 		return QDF_STATUS_E_FAILURE;
2233 	}
2234 
2235 	/*
2236 	 * highly unlikely to have a vdev without a registered rx
2237 	 * callback function. if so let us free the nbuf_list.
2238 	 */
2239 	if (qdf_unlikely(!vdev->osif_rx)) {
2240 		if (txrx_peer && dp_rx_is_peer_cache_bufq_supported()) {
2241 			dp_rx_enqueue_rx(NULL, txrx_peer, nbuf_head);
2242 		} else {
2243 			num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
2244 							nbuf_head);
2245 			DP_PEER_TO_STACK_DECC(txrx_peer, num_nbuf,
2246 					      vdev->pdev->enhanced_stats_en);
2247 		}
2248 		return QDF_STATUS_E_FAILURE;
2249 	}
2250 
2251 	return QDF_STATUS_SUCCESS;
2252 }
2253 
2254 QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
2255 				  struct dp_vdev *vdev,
2256 				  struct dp_txrx_peer *txrx_peer,
2257 				  qdf_nbuf_t nbuf_head,
2258 				  qdf_nbuf_t nbuf_tail)
2259 {
2260 	if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
2261 					QDF_STATUS_SUCCESS)
2262 		return QDF_STATUS_E_FAILURE;
2263 
2264 	if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
2265 			(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
2266 		vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
2267 					 &nbuf_tail);
2268 	}
2269 
2270 	dp_rx_check_delivery_to_stack(soc, vdev, txrx_peer, nbuf_head);
2271 
2272 	return QDF_STATUS_SUCCESS;
2273 }
2274 
2275 #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
2276 QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
2277 					struct dp_vdev *vdev,
2278 					struct dp_txrx_peer *txrx_peer,
2279 					qdf_nbuf_t nbuf_head,
2280 					qdf_nbuf_t nbuf_tail)
2281 {
2282 	if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
2283 					QDF_STATUS_SUCCESS)
2284 		return QDF_STATUS_E_FAILURE;
2285 
2286 	vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
2287 
2288 	return QDF_STATUS_SUCCESS;
2289 }
2290 #endif
2291 
2292 #ifndef QCA_HOST_MODE_WIFI_DISABLED
2293 #ifdef VDEV_PEER_PROTOCOL_COUNT
2294 #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer) \
2295 { \
2296 	qdf_nbuf_t nbuf_local; \
2297 	struct dp_txrx_peer *txrx_peer_local; \
2298 	struct dp_vdev *vdev_local = vdev_hdl; \
2299 	do { \
2300 		if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
2301 			break; \
2302 		nbuf_local = nbuf; \
2303 		txrx_peer_local = txrx_peer; \
2304 		if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
2305 			break; \
2306 		else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
2307 			break; \
2308 		dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
2309 						       (nbuf_local), \
2310 						       (txrx_peer_local), 0, 1); \
2311 	} while (0); \
2312 }
2313 #else
2314 #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer)
2315 #endif
2316 
2317 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
2318 /**
2319  * dp_rx_rates_stats_update() - update rate stats
2320  * from rx msdu.
2321  * @soc: datapath soc handle
2322  * @nbuf: received msdu buffer
2323  * @rx_tlv_hdr: rx tlv header
2324  * @txrx_peer: datapath txrx_peer handle
2325  * @sgi: Short Guard Interval
2326  * @mcs: Modulation and Coding Set
2327  * @nss: Number of Spatial Streams
2328  * @bw: BandWidth
2329  * @pkt_type: Corresponds to preamble
2330  *
2331  * To be precisely record rates, following factors are considered:
2332  * Exclude specific frames, ARP, DHCP, ssdp, etc.
2333  * Make sure to affect rx throughput as least as possible.
2334  *
2335  * Return: void
2336  */
2337 static void
2338 dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2339 			 uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
2340 			 uint32_t sgi, uint32_t mcs,
2341 			 uint32_t nss, uint32_t bw, uint32_t pkt_type)
2342 {
2343 	uint32_t rix;
2344 	uint16_t ratecode;
2345 	uint32_t avg_rx_rate;
2346 	uint32_t ratekbps;
2347 	enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
2348 
2349 	if (soc->high_throughput ||
2350 	    dp_rx_data_is_specific(soc->hal_soc, rx_tlv_hdr, nbuf)) {
2351 		return;
2352 	}
2353 
2354 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.rx_rate, mcs);
2355 
2356 	/* In 11b mode, the nss we get from tlv is 0, invalid and should be 1 */
2357 	if (qdf_unlikely(pkt_type == DOT11_B))
2358 		nss = 1;
2359 
2360 	/* here pkt_type corresponds to preamble */
2361 	ratekbps = dp_getrateindex(sgi,
2362 				   mcs,
2363 				   nss - 1,
2364 				   pkt_type,
2365 				   bw,
2366 				   punc_mode,
2367 				   &rix,
2368 				   &ratecode);
2369 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.last_rx_rate, ratekbps);
2370 	avg_rx_rate =
2371 		dp_ath_rate_lpf(txrx_peer->stats.extd_stats.rx.avg_rx_rate,
2372 				ratekbps);
2373 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.avg_rx_rate, avg_rx_rate);
2374 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.nss_info, nss);
2375 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.mcs_info, mcs);
2376 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.bw_info, bw);
2377 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.gi_info, sgi);
2378 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.preamble_info, pkt_type);
2379 }
2380 #else
2381 static inline void
2382 dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2383 			 uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
2384 			 uint32_t sgi, uint32_t mcs,
2385 			 uint32_t nss, uint32_t bw, uint32_t pkt_type)
2386 {
2387 }
2388 #endif /* FEATURE_RX_LINKSPEED_ROAM_TRIGGER */
2389 
2390 #ifndef QCA_ENHANCED_STATS_SUPPORT
2391 /**
2392  * dp_rx_msdu_extd_stats_update(): Update Rx extended path stats for peer
2393  *
2394  * @soc: datapath soc handle
2395  * @nbuf: received msdu buffer
2396  * @rx_tlv_hdr: rx tlv header
2397  * @txrx_peer: datapath txrx_peer handle
2398  *
2399  * Return: void
2400  */
2401 static inline
2402 void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2403 				  uint8_t *rx_tlv_hdr,
2404 				  struct dp_txrx_peer *txrx_peer)
2405 {
2406 	bool is_ampdu;
2407 	uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
2408 	uint8_t dst_mcs_idx;
2409 
2410 	/*
2411 	 * TODO - For KIWI this field is present in ring_desc
2412 	 * Try to use ring desc instead of tlv.
2413 	 */
2414 	is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
2415 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.ampdu_cnt, 1, is_ampdu);
2416 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
2417 
2418 	sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
2419 	mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
2420 	tid = qdf_nbuf_get_tid_val(nbuf);
2421 	bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
2422 	reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
2423 							      rx_tlv_hdr);
2424 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
2425 	pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
2426 	/* do HW to SW pkt type conversion */
2427 	pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX :
2428 		    hal_2_dp_pkt_type_map[pkt_type]);
2429 
2430 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[mcs], 1,
2431 		      ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
2432 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
2433 		      ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
2434 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.bw[bw], 1);
2435 	/*
2436 	 * only if nss > 0 and pkt_type is 11N/AC/AX,
2437 	 * then increase index [nss - 1] in array counter.
2438 	 */
2439 	if (nss > 0 && CDP_IS_PKT_TYPE_SUPPORT_NSS(pkt_type))
2440 		DP_PEER_EXTD_STATS_INC(txrx_peer, rx.nss[nss - 1], 1);
2441 
2442 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.sgi_count[sgi], 1);
2443 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.mic_err, 1,
2444 				   hal_rx_tlv_mic_err_get(soc->hal_soc,
2445 				   rx_tlv_hdr));
2446 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.decrypt_err, 1,
2447 				   hal_rx_tlv_decrypt_err_get(soc->hal_soc,
2448 				   rx_tlv_hdr));
2449 
2450 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
2451 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.reception_type[reception_type], 1);
2452 
2453 	dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs);
2454 	if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx)
2455 		DP_PEER_EXTD_STATS_INC(txrx_peer,
2456 				       rx.pkt_type[pkt_type].mcs_count[dst_mcs_idx],
2457 				       1);
2458 
2459 	dp_rx_rates_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer,
2460 				 sgi, mcs, nss, bw, pkt_type);
2461 }
2462 #else
2463 static inline
2464 void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2465 				  uint8_t *rx_tlv_hdr,
2466 				  struct dp_txrx_peer *txrx_peer)
2467 {
2468 }
2469 #endif
2470 
2471 #if defined(DP_PKT_STATS_PER_LMAC) && defined(WLAN_FEATURE_11BE_MLO)
2472 static inline void
2473 dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
2474 			       qdf_nbuf_t nbuf)
2475 {
2476 	uint8_t lmac_id = qdf_nbuf_get_lmac_id(nbuf);
2477 
2478 	if (qdf_unlikely(lmac_id >= CDP_MAX_LMACS)) {
2479 		dp_err_rl("Invalid lmac_id: %u vdev_id: %u",
2480 			  lmac_id, QDF_NBUF_CB_RX_VDEV_ID(nbuf));
2481 
2482 		if (qdf_likely(txrx_peer))
2483 			dp_err_rl("peer_id: %u", txrx_peer->peer_id);
2484 
2485 		return;
2486 	}
2487 
2488 	/* only count stats per lmac for MLO connection*/
2489 	DP_PEER_PER_PKT_STATS_INCC_PKT(txrx_peer, rx.rx_lmac[lmac_id], 1,
2490 				       QDF_NBUF_CB_RX_PKT_LEN(nbuf),
2491 				       txrx_peer->mld_peer);
2492 }
2493 #else
2494 static inline void
2495 dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
2496 			       qdf_nbuf_t nbuf)
2497 {
2498 }
2499 #endif
2500 
2501 /**
2502  * dp_rx_msdu_stats_update() - update per msdu stats.
2503  * @soc: core txrx main context
2504  * @nbuf: pointer to the first msdu of an amsdu.
2505  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
2506  * @txrx_peer: pointer to the txrx peer object.
2507  * @ring_id: reo dest ring number on which pkt is reaped.
2508  * @tid_stats: per tid rx stats.
2509  *
2510  * update all the per msdu stats for that nbuf.
2511  * Return: void
2512  */
2513 void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2514 			     uint8_t *rx_tlv_hdr,
2515 			     struct dp_txrx_peer *txrx_peer,
2516 			     uint8_t ring_id,
2517 			     struct cdp_tid_rx_stats *tid_stats)
2518 {
2519 	bool is_not_amsdu;
2520 	struct dp_vdev *vdev = txrx_peer->vdev;
2521 	bool enh_flag;
2522 	qdf_ether_header_t *eh;
2523 	uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2524 
2525 	dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, txrx_peer);
2526 	is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
2527 			qdf_nbuf_is_rx_chfrag_end(nbuf);
2528 	DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.rcvd_reo[ring_id], 1,
2529 				      msdu_len);
2530 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.non_amsdu_cnt, 1,
2531 				   is_not_amsdu);
2532 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.amsdu_cnt, 1, !is_not_amsdu);
2533 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.rx_retries, 1,
2534 				   qdf_nbuf_is_rx_retry_flag(nbuf));
2535 	dp_peer_update_rx_pkt_per_lmac(txrx_peer, nbuf);
2536 	tid_stats->msdu_cnt++;
2537 	if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
2538 			 (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
2539 		eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
2540 		enh_flag = vdev->pdev->enhanced_stats_en;
2541 		DP_PEER_MC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
2542 		tid_stats->mcast_msdu_cnt++;
2543 		if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
2544 			DP_PEER_BC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
2545 			tid_stats->bcast_msdu_cnt++;
2546 		}
2547 	}
2548 
2549 	txrx_peer->stats.per_pkt_stats.rx.last_rx_ts = qdf_system_ticks();
2550 
2551 	dp_rx_msdu_extd_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer);
2552 }
2553 
2554 #ifndef WDS_VENDOR_EXTENSION
2555 int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
2556 			   struct dp_vdev *vdev,
2557 			   struct dp_txrx_peer *txrx_peer)
2558 {
2559 	return 1;
2560 }
2561 #endif
2562 
2563 #ifdef RX_DESC_DEBUG_CHECK
2564 /**
2565  * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
2566  *				  corruption
2567  *
2568  * @ring_desc: REO ring descriptor
2569  * @rx_desc: Rx descriptor
2570  *
2571  * Return: NONE
2572  */
2573 QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
2574 					hal_ring_desc_t ring_desc,
2575 					struct dp_rx_desc *rx_desc)
2576 {
2577 	struct hal_buf_info hbi;
2578 
2579 	hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
2580 	/* Sanity check for possible buffer paddr corruption */
2581 	if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
2582 		return QDF_STATUS_SUCCESS;
2583 
2584 	return QDF_STATUS_E_FAILURE;
2585 }
2586 
2587 /**
2588  * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
2589  *				      out of bound access from H.W
2590  *
2591  * @soc: DP soc
2592  * @pkt_len: Packet length received from H.W
2593  *
2594  * Return: NONE
2595  */
2596 static inline void
2597 dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
2598 				 uint32_t pkt_len)
2599 {
2600 	struct rx_desc_pool *rx_desc_pool;
2601 
2602 	rx_desc_pool = &soc->rx_desc_buf[0];
2603 	qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
2604 }
2605 #else
2606 static inline void
2607 dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
2608 #endif
2609 
2610 #ifdef DP_RX_PKT_NO_PEER_DELIVER
2611 #ifdef DP_RX_UDP_OVER_PEER_ROAM
2612 /**
2613  * dp_rx_is_udp_allowed_over_roam_peer() - check if udp data received
2614  *					   during roaming
2615  * @vdev: dp_vdev pointer
2616  * @rx_tlv_hdr: rx tlv header
2617  * @nbuf: pkt skb pointer
2618  *
2619  * This function will check if rx udp data is received from authorised
2620  * roamed peer before peer map indication is received from FW after
2621  * roaming. This is needed for VoIP scenarios in which packet loss
2622  * expected during roaming is minimal.
2623  *
2624  * Return: bool
2625  */
2626 static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
2627 						uint8_t *rx_tlv_hdr,
2628 						qdf_nbuf_t nbuf)
2629 {
2630 	char *hdr_desc;
2631 	struct ieee80211_frame *wh = NULL;
2632 
2633 	hdr_desc = hal_rx_desc_get_80211_hdr(vdev->pdev->soc->hal_soc,
2634 					     rx_tlv_hdr);
2635 	wh = (struct ieee80211_frame *)hdr_desc;
2636 
2637 	if (vdev->roaming_peer_status ==
2638 	    WLAN_ROAM_PEER_AUTH_STATUS_AUTHENTICATED &&
2639 	    !qdf_mem_cmp(vdev->roaming_peer_mac.raw, wh->i_addr2,
2640 	    QDF_MAC_ADDR_SIZE) && (qdf_nbuf_is_ipv4_udp_pkt(nbuf) ||
2641 	    qdf_nbuf_is_ipv6_udp_pkt(nbuf)))
2642 		return true;
2643 
2644 	return false;
2645 }
2646 #else
2647 static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
2648 						uint8_t *rx_tlv_hdr,
2649 						qdf_nbuf_t nbuf)
2650 {
2651 	return false;
2652 }
2653 #endif
2654 /**
2655  * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
2656  *				      no corresbonding peer found
2657  * @soc: core txrx main context
2658  * @nbuf: pkt skb pointer
2659  *
2660  * This function will try to deliver some RX special frames to stack
2661  * even there is no peer matched found. for instance, LFR case, some
2662  * eapol data will be sent to host before peer_map done.
2663  *
2664  * Return: None
2665  */
2666 void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
2667 {
2668 	uint16_t peer_id;
2669 	uint8_t vdev_id;
2670 	struct dp_vdev *vdev = NULL;
2671 	uint32_t l2_hdr_offset = 0;
2672 	uint16_t msdu_len = 0;
2673 	uint32_t pkt_len = 0;
2674 	uint8_t *rx_tlv_hdr;
2675 	uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
2676 				FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
2677 	bool is_special_frame = false;
2678 	struct dp_peer *peer = NULL;
2679 
2680 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
2681 	if (peer_id > soc->max_peer_id)
2682 		goto deliver_fail;
2683 
2684 	vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
2685 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
2686 	if (!vdev || vdev->delete.pending)
2687 		goto deliver_fail;
2688 
2689 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
2690 		goto deliver_fail;
2691 
2692 	rx_tlv_hdr = qdf_nbuf_data(nbuf);
2693 	l2_hdr_offset =
2694 		hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
2695 
2696 	msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2697 	pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
2698 	QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
2699 
2700 	qdf_nbuf_set_pktlen(nbuf, pkt_len);
2701 	qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
2702 
2703 	is_special_frame = dp_rx_is_special_frame(nbuf, frame_mask);
2704 	if (qdf_likely(vdev->osif_rx)) {
2705 		if (is_special_frame ||
2706 		    dp_rx_is_udp_allowed_over_roam_peer(vdev, rx_tlv_hdr,
2707 							nbuf)) {
2708 			qdf_nbuf_set_exc_frame(nbuf, 1);
2709 			if (QDF_STATUS_SUCCESS !=
2710 			    vdev->osif_rx(vdev->osif_vdev, nbuf))
2711 				goto deliver_fail;
2712 
2713 			DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
2714 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2715 			return;
2716 		}
2717 	} else if (is_special_frame) {
2718 		/*
2719 		 * If MLO connection, txrx_peer for link peer does not exist,
2720 		 * try to store these RX packets to txrx_peer's bufq of MLD
2721 		 * peer until vdev->osif_rx is registered from CP and flush
2722 		 * them to stack.
2723 		 */
2724 		peer = dp_peer_get_tgt_peer_by_id(soc, peer_id,
2725 						  DP_MOD_ID_RX);
2726 		if (!peer)
2727 			goto deliver_fail;
2728 
2729 		/* only check for MLO connection */
2730 		if (IS_MLO_DP_MLD_PEER(peer) && peer->txrx_peer &&
2731 		    dp_rx_is_peer_cache_bufq_supported()) {
2732 			qdf_nbuf_set_exc_frame(nbuf, 1);
2733 
2734 			if (QDF_STATUS_SUCCESS ==
2735 			    dp_rx_enqueue_rx(peer, peer->txrx_peer, nbuf)) {
2736 				DP_STATS_INC(soc,
2737 					     rx.err.pkt_delivered_no_peer,
2738 					     1);
2739 			} else {
2740 				DP_STATS_INC(soc,
2741 					     rx.err.rx_invalid_peer.num,
2742 					     1);
2743 			}
2744 
2745 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2746 			dp_peer_unref_delete(peer, DP_MOD_ID_RX);
2747 			return;
2748 		}
2749 
2750 		dp_peer_unref_delete(peer, DP_MOD_ID_RX);
2751 	}
2752 
2753 deliver_fail:
2754 	DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
2755 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2756 	dp_rx_nbuf_free(nbuf);
2757 	if (vdev)
2758 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2759 }
2760 #else
2761 void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
2762 {
2763 	DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
2764 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2765 	dp_rx_nbuf_free(nbuf);
2766 }
2767 #endif
2768 
2769 /**
2770  * dp_rx_srng_get_num_pending() - get number of pending entries
2771  * @hal_soc: hal soc opaque pointer
2772  * @hal_ring: opaque pointer to the HAL Rx Ring
2773  * @num_entries: number of entries in the hal_ring.
2774  * @near_full: pointer to a boolean. This is set if ring is near full.
2775  *
2776  * The function returns the number of entries in a destination ring which are
2777  * yet to be reaped. The function also checks if the ring is near full.
2778  * If more than half of the ring needs to be reaped, the ring is considered
2779  * approaching full.
2780  * The function useses hal_srng_dst_num_valid_locked to get the number of valid
2781  * entries. It should not be called within a SRNG lock. HW pointer value is
2782  * synced into cached_hp.
2783  *
2784  * Return: Number of pending entries if any
2785  */
2786 uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
2787 				    hal_ring_handle_t hal_ring_hdl,
2788 				    uint32_t num_entries,
2789 				    bool *near_full)
2790 {
2791 	uint32_t num_pending = 0;
2792 
2793 	num_pending = hal_srng_dst_num_valid_locked(hal_soc,
2794 						    hal_ring_hdl,
2795 						    true);
2796 
2797 	if (num_entries && (num_pending >= num_entries >> 1))
2798 		*near_full = true;
2799 	else
2800 		*near_full = false;
2801 
2802 	return num_pending;
2803 }
2804 
2805 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
2806 
2807 #ifdef WLAN_SUPPORT_RX_FISA
2808 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
2809 {
2810 	QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
2811 	qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
2812 }
2813 #else
2814 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
2815 {
2816 	qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
2817 }
2818 #endif
2819 
2820 #ifndef QCA_HOST_MODE_WIFI_DISABLED
2821 
2822 #ifdef DP_RX_DROP_RAW_FRM
2823 /**
2824  * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
2825  * @nbuf: pkt skb pointer
2826  *
2827  * Return: true - raw frame, dropped
2828  *	   false - not raw frame, do nothing
2829  */
2830 bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
2831 {
2832 	if (qdf_nbuf_is_raw_frame(nbuf)) {
2833 		dp_rx_nbuf_free(nbuf);
2834 		return true;
2835 	}
2836 
2837 	return false;
2838 }
2839 #endif
2840 
2841 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
2842 /**
2843  * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
2844  * @soc: Datapath soc structure
2845  * @ring_num: REO ring number
2846  * @ring_desc: REO ring descriptor
2847  *
2848  * Returns: None
2849  */
2850 void
2851 dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
2852 			hal_ring_desc_t ring_desc)
2853 {
2854 	struct dp_buf_info_record *record;
2855 	struct hal_buf_info hbi;
2856 	uint32_t idx;
2857 
2858 	if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
2859 		return;
2860 
2861 	hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
2862 
2863 	/* buffer_addr_info is the first element of ring_desc */
2864 	hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
2865 				  &hbi);
2866 
2867 	idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
2868 					DP_RX_HIST_MAX);
2869 
2870 	/* No NULL check needed for record since its an array */
2871 	record = &soc->rx_ring_history[ring_num]->entry[idx];
2872 
2873 	record->timestamp = qdf_get_log_timestamp();
2874 	record->hbi.paddr = hbi.paddr;
2875 	record->hbi.sw_cookie = hbi.sw_cookie;
2876 	record->hbi.rbm = hbi.rbm;
2877 }
2878 #endif
2879 
2880 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
2881 /**
2882  * dp_rx_update_stats() - Update soc level rx packet count
2883  * @soc: DP soc handle
2884  * @nbuf: nbuf received
2885  *
2886  * Returns: none
2887  */
2888 void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
2889 {
2890 	DP_STATS_INC_PKT(soc, rx.ingress, 1,
2891 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2892 }
2893 #endif
2894 
2895 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
2896 /**
2897  * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
2898  * @soc : dp_soc handle
2899  * @pdev: dp_pdev handle
2900  * @peer_id: peer_id of the peer for which completion came
2901  * @ppdu_id: ppdu_id
2902  * @netbuf: Buffer pointer
2903  *
2904  * This function is used to deliver rx packet to packet capture
2905  */
2906 void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc,  struct dp_pdev *pdev,
2907 				  uint16_t peer_id, uint32_t is_offload,
2908 				  qdf_nbuf_t netbuf)
2909 {
2910 	if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
2911 		dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
2912 				     peer_id, is_offload, pdev->pdev_id);
2913 }
2914 
2915 void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
2916 					  uint32_t is_offload)
2917 {
2918 	if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
2919 		dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
2920 				     soc, nbuf, HTT_INVALID_VDEV,
2921 				     is_offload, 0);
2922 }
2923 #endif
2924 
2925 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
2926 
2927 QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
2928 {
2929 	QDF_STATUS ret;
2930 
2931 	if (vdev->osif_rx_flush) {
2932 		ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
2933 		if (!QDF_IS_STATUS_SUCCESS(ret)) {
2934 			dp_err("Failed to flush rx pkts for vdev %d\n",
2935 			       vdev->vdev_id);
2936 			return ret;
2937 		}
2938 	}
2939 
2940 	return QDF_STATUS_SUCCESS;
2941 }
2942 
2943 static QDF_STATUS
2944 dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
2945 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
2946 			   struct dp_pdev *dp_pdev,
2947 			   struct rx_desc_pool *rx_desc_pool)
2948 {
2949 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
2950 
2951 	(nbuf_frag_info_t->virt_addr).nbuf =
2952 		qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
2953 			       RX_BUFFER_RESERVATION,
2954 			       rx_desc_pool->buf_alignment, FALSE);
2955 	if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
2956 		dp_err("nbuf alloc failed");
2957 		DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
2958 		return ret;
2959 	}
2960 
2961 	ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
2962 					 (nbuf_frag_info_t->virt_addr).nbuf,
2963 					 QDF_DMA_FROM_DEVICE,
2964 					 rx_desc_pool->buf_size);
2965 
2966 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
2967 		qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
2968 		dp_err("nbuf map failed");
2969 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
2970 		return ret;
2971 	}
2972 
2973 	nbuf_frag_info_t->paddr =
2974 		qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
2975 
2976 	ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
2977 			     &nbuf_frag_info_t->paddr,
2978 			     rx_desc_pool);
2979 	if (ret == QDF_STATUS_E_FAILURE) {
2980 		dp_err("nbuf check x86 failed");
2981 		DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
2982 		return ret;
2983 	}
2984 
2985 	return QDF_STATUS_SUCCESS;
2986 }
2987 
2988 QDF_STATUS
2989 dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
2990 			  struct dp_srng *dp_rxdma_srng,
2991 			  struct rx_desc_pool *rx_desc_pool,
2992 			  uint32_t num_req_buffers)
2993 {
2994 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
2995 	hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
2996 	union dp_rx_desc_list_elem_t *next;
2997 	void *rxdma_ring_entry;
2998 	qdf_dma_addr_t paddr;
2999 	struct dp_rx_nbuf_frag_info *nf_info;
3000 	uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
3001 	uint32_t buffer_index, nbuf_ptrs_per_page;
3002 	qdf_nbuf_t nbuf;
3003 	QDF_STATUS ret;
3004 	int page_idx, total_pages;
3005 	union dp_rx_desc_list_elem_t *desc_list = NULL;
3006 	union dp_rx_desc_list_elem_t *tail = NULL;
3007 	int sync_hw_ptr = 1;
3008 	uint32_t num_entries_avail;
3009 
3010 	if (qdf_unlikely(!dp_pdev)) {
3011 		dp_rx_err("%pK: pdev is null for mac_id = %d",
3012 			  dp_soc, mac_id);
3013 		return QDF_STATUS_E_FAILURE;
3014 	}
3015 
3016 	if (qdf_unlikely(!rxdma_srng)) {
3017 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
3018 		return QDF_STATUS_E_FAILURE;
3019 	}
3020 
3021 	dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
3022 
3023 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
3024 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
3025 						   rxdma_srng,
3026 						   sync_hw_ptr);
3027 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
3028 
3029 	if (!num_entries_avail) {
3030 		dp_err("Num of available entries is zero, nothing to do");
3031 		return QDF_STATUS_E_NOMEM;
3032 	}
3033 
3034 	if (num_entries_avail < num_req_buffers)
3035 		num_req_buffers = num_entries_avail;
3036 
3037 	nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
3038 					    num_req_buffers, &desc_list, &tail);
3039 	if (!nr_descs) {
3040 		dp_err("no free rx_descs in freelist");
3041 		DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
3042 		return QDF_STATUS_E_NOMEM;
3043 	}
3044 
3045 	dp_debug("got %u RX descs for driver attach", nr_descs);
3046 
3047 	/*
3048 	 * Try to allocate pointers to the nbuf one page at a time.
3049 	 * Take pointers that can fit in one page of memory and
3050 	 * iterate through the total descriptors that need to be
3051 	 * allocated in order of pages. Reuse the pointers that
3052 	 * have been allocated to fit in one page across each
3053 	 * iteration to index into the nbuf.
3054 	 */
3055 	total_pages = (nr_descs * sizeof(*nf_info)) / DP_BLOCKMEM_SIZE;
3056 
3057 	/*
3058 	 * Add an extra page to store the remainder if any
3059 	 */
3060 	if ((nr_descs * sizeof(*nf_info)) % DP_BLOCKMEM_SIZE)
3061 		total_pages++;
3062 	nf_info = qdf_mem_malloc(DP_BLOCKMEM_SIZE);
3063 	if (!nf_info) {
3064 		dp_err("failed to allocate nbuf array");
3065 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
3066 		QDF_BUG(0);
3067 		return QDF_STATUS_E_NOMEM;
3068 	}
3069 	nbuf_ptrs_per_page = DP_BLOCKMEM_SIZE / sizeof(*nf_info);
3070 
3071 	for (page_idx = 0; page_idx < total_pages; page_idx++) {
3072 		qdf_mem_zero(nf_info, DP_BLOCKMEM_SIZE);
3073 
3074 		for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
3075 			/*
3076 			 * The last page of buffer pointers may not be required
3077 			 * completely based on the number of descriptors. Below
3078 			 * check will ensure we are allocating only the
3079 			 * required number of descriptors.
3080 			 */
3081 			if (nr_nbuf_total >= nr_descs)
3082 				break;
3083 			/* Flag is set while pdev rx_desc_pool initialization */
3084 			if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
3085 				ret = dp_pdev_frag_alloc_and_map(dp_soc,
3086 						&nf_info[nr_nbuf], dp_pdev,
3087 						rx_desc_pool);
3088 			else
3089 				ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
3090 						&nf_info[nr_nbuf], dp_pdev,
3091 						rx_desc_pool);
3092 			if (QDF_IS_STATUS_ERROR(ret))
3093 				break;
3094 
3095 			nr_nbuf_total++;
3096 		}
3097 
3098 		hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
3099 
3100 		for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
3101 			rxdma_ring_entry =
3102 				hal_srng_src_get_next(dp_soc->hal_soc,
3103 						      rxdma_srng);
3104 			qdf_assert_always(rxdma_ring_entry);
3105 
3106 			next = desc_list->next;
3107 			paddr = nf_info[buffer_index].paddr;
3108 			nbuf = nf_info[buffer_index].virt_addr.nbuf;
3109 
3110 			/* Flag is set while pdev rx_desc_pool initialization */
3111 			if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
3112 				dp_rx_desc_frag_prep(&desc_list->rx_desc,
3113 						     &nf_info[buffer_index]);
3114 			else
3115 				dp_rx_desc_prep(&desc_list->rx_desc,
3116 						&nf_info[buffer_index]);
3117 			desc_list->rx_desc.in_use = 1;
3118 			dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
3119 			dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
3120 						   __func__,
3121 						   RX_DESC_REPLENISHED);
3122 
3123 			hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
3124 						     desc_list->rx_desc.cookie,
3125 						     rx_desc_pool->owner);
3126 
3127 			dp_ipa_handle_rx_buf_smmu_mapping(
3128 					dp_soc, nbuf,
3129 					rx_desc_pool->buf_size, true,
3130 					__func__, __LINE__);
3131 
3132 			dp_audio_smmu_map(dp_soc->osdev,
3133 					  qdf_mem_paddr_from_dmaaddr(dp_soc->osdev,
3134 								     QDF_NBUF_CB_PADDR(nbuf)),
3135 					  QDF_NBUF_CB_PADDR(nbuf),
3136 					  rx_desc_pool->buf_size);
3137 
3138 			desc_list = next;
3139 		}
3140 
3141 		dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
3142 					       rxdma_srng, nr_nbuf, nr_nbuf);
3143 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
3144 	}
3145 
3146 	dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
3147 	qdf_mem_free(nf_info);
3148 
3149 	if (!nr_nbuf_total) {
3150 		dp_err("No nbuf's allocated");
3151 		QDF_BUG(0);
3152 		return QDF_STATUS_E_RESOURCES;
3153 	}
3154 
3155 	/* No need to count the number of bytes received during replenish.
3156 	 * Therefore set replenish.pkts.bytes as 0.
3157 	 */
3158 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
3159 
3160 	return QDF_STATUS_SUCCESS;
3161 }
3162 
3163 qdf_export_symbol(dp_pdev_rx_buffers_attach);
3164 
3165 /**
3166  * dp_rx_enable_mon_dest_frag() - Enable frag processing for
3167  *              monitor destination ring via frag.
3168  *
3169  * Enable this flag only for monitor destination buffer processing
3170  * if DP_RX_MON_MEM_FRAG feature is enabled.
3171  * If flag is set then frag based function will be called for alloc,
3172  * map, prep desc and free ops for desc buffer else normal nbuf based
3173  * function will be called.
3174  *
3175  * @rx_desc_pool: Rx desc pool
3176  * @is_mon_dest_desc: Is it for monitor dest buffer
3177  *
3178  * Return: None
3179  */
3180 #ifdef DP_RX_MON_MEM_FRAG
3181 void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
3182 				bool is_mon_dest_desc)
3183 {
3184 	rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
3185 	if (is_mon_dest_desc)
3186 		dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
3187 }
3188 #else
3189 void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
3190 				bool is_mon_dest_desc)
3191 {
3192 	rx_desc_pool->rx_mon_dest_frag_enable = false;
3193 	if (is_mon_dest_desc)
3194 		dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
3195 }
3196 #endif
3197 
3198 qdf_export_symbol(dp_rx_enable_mon_dest_frag);
3199 
3200 /*
3201  * dp_rx_pdev_desc_pool_alloc() -  allocate memory for software rx descriptor
3202  *				   pool
3203  *
3204  * @pdev: core txrx pdev context
3205  *
3206  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3207  *			QDF_STATUS_E_NOMEM
3208  */
3209 QDF_STATUS
3210 dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
3211 {
3212 	struct dp_soc *soc = pdev->soc;
3213 	uint32_t rxdma_entries;
3214 	uint32_t rx_sw_desc_num;
3215 	struct dp_srng *dp_rxdma_srng;
3216 	struct rx_desc_pool *rx_desc_pool;
3217 	uint32_t status = QDF_STATUS_SUCCESS;
3218 	int mac_for_pdev;
3219 
3220 	mac_for_pdev = pdev->lmac_id;
3221 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
3222 		dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
3223 			   soc, mac_for_pdev);
3224 		return status;
3225 	}
3226 
3227 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3228 	rxdma_entries = dp_rxdma_srng->num_entries;
3229 
3230 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3231 	rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
3232 
3233 	rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
3234 	status = dp_rx_desc_pool_alloc(soc,
3235 				       rx_sw_desc_num,
3236 				       rx_desc_pool);
3237 	if (status != QDF_STATUS_SUCCESS)
3238 		return status;
3239 
3240 	return status;
3241 }
3242 
3243 /*
3244  * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
3245  *
3246  * @pdev: core txrx pdev context
3247  */
3248 void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
3249 {
3250 	int mac_for_pdev = pdev->lmac_id;
3251 	struct dp_soc *soc = pdev->soc;
3252 	struct rx_desc_pool *rx_desc_pool;
3253 
3254 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3255 
3256 	dp_rx_desc_pool_free(soc, rx_desc_pool);
3257 }
3258 
3259 /*
3260  * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
3261  *
3262  * @pdev: core txrx pdev context
3263  *
3264  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3265  *			QDF_STATUS_E_NOMEM
3266  */
3267 QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
3268 {
3269 	int mac_for_pdev = pdev->lmac_id;
3270 	struct dp_soc *soc = pdev->soc;
3271 	uint32_t rxdma_entries;
3272 	uint32_t rx_sw_desc_num;
3273 	struct dp_srng *dp_rxdma_srng;
3274 	struct rx_desc_pool *rx_desc_pool;
3275 
3276 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3277 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
3278 		/**
3279 		 * If NSS is enabled, rx_desc_pool is already filled.
3280 		 * Hence, just disable desc_pool frag flag.
3281 		 */
3282 		dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
3283 
3284 		dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
3285 			   soc, mac_for_pdev);
3286 		return QDF_STATUS_SUCCESS;
3287 	}
3288 
3289 	if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
3290 		return QDF_STATUS_E_NOMEM;
3291 
3292 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3293 	rxdma_entries = dp_rxdma_srng->num_entries;
3294 
3295 	soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
3296 
3297 	rx_sw_desc_num =
3298 	wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
3299 
3300 	rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
3301 	rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
3302 	rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
3303 	/* Disable monitor dest processing via frag */
3304 	dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
3305 
3306 	dp_rx_desc_pool_init(soc, mac_for_pdev,
3307 			     rx_sw_desc_num, rx_desc_pool);
3308 	return QDF_STATUS_SUCCESS;
3309 }
3310 
3311 /*
3312  * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
3313  * @pdev: core txrx pdev context
3314  *
3315  * This function resets the freelist of rx descriptors and destroys locks
3316  * associated with this list of descriptors.
3317  */
3318 void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
3319 {
3320 	int mac_for_pdev = pdev->lmac_id;
3321 	struct dp_soc *soc = pdev->soc;
3322 	struct rx_desc_pool *rx_desc_pool;
3323 
3324 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3325 
3326 	dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
3327 }
3328 
3329 /*
3330  * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
3331  *
3332  * @pdev: core txrx pdev context
3333  *
3334  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3335  *			QDF_STATUS_E_NOMEM
3336  */
3337 QDF_STATUS
3338 dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
3339 {
3340 	int mac_for_pdev = pdev->lmac_id;
3341 	struct dp_soc *soc = pdev->soc;
3342 	struct dp_srng *dp_rxdma_srng;
3343 	struct rx_desc_pool *rx_desc_pool;
3344 	uint32_t rxdma_entries;
3345 
3346 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3347 	rxdma_entries = dp_rxdma_srng->num_entries;
3348 
3349 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3350 
3351 	/* Initialize RX buffer pool which will be
3352 	 * used during low memory conditions
3353 	 */
3354 	dp_rx_buffer_pool_init(soc, mac_for_pdev);
3355 
3356 	return dp_pdev_rx_buffers_attach_simple(soc, mac_for_pdev,
3357 						dp_rxdma_srng,
3358 						rx_desc_pool,
3359 						rxdma_entries - 1);
3360 }
3361 
3362 /*
3363  * dp_rx_pdev_buffers_free - Free nbufs (skbs)
3364  *
3365  * @pdev: core txrx pdev context
3366  */
3367 void
3368 dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
3369 {
3370 	int mac_for_pdev = pdev->lmac_id;
3371 	struct dp_soc *soc = pdev->soc;
3372 	struct rx_desc_pool *rx_desc_pool;
3373 
3374 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3375 
3376 	dp_rx_desc_nbuf_free(soc, rx_desc_pool, false);
3377 	dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
3378 }
3379 
3380 #ifdef DP_RX_SPECIAL_FRAME_NEED
3381 bool dp_rx_deliver_special_frame(struct dp_soc *soc,
3382 				 struct dp_txrx_peer *txrx_peer,
3383 				 qdf_nbuf_t nbuf, uint32_t frame_mask,
3384 				 uint8_t *rx_tlv_hdr)
3385 {
3386 	uint32_t l2_hdr_offset = 0;
3387 	uint16_t msdu_len = 0;
3388 	uint32_t skip_len;
3389 
3390 	l2_hdr_offset =
3391 		hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
3392 
3393 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
3394 		skip_len = l2_hdr_offset;
3395 	} else {
3396 		msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
3397 		skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
3398 		qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
3399 	}
3400 
3401 	QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
3402 	dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
3403 	qdf_nbuf_pull_head(nbuf, skip_len);
3404 
3405 	if (txrx_peer->vdev) {
3406 		dp_rx_send_pktlog(soc, txrx_peer->vdev->pdev, nbuf,
3407 				  QDF_TX_RX_STATUS_OK);
3408 	}
3409 
3410 	if (dp_rx_is_special_frame(nbuf, frame_mask)) {
3411 		dp_info("special frame, mpdu sn 0x%x",
3412 			hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
3413 		qdf_nbuf_set_exc_frame(nbuf, 1);
3414 		dp_rx_deliver_to_stack(soc, txrx_peer->vdev, txrx_peer,
3415 				       nbuf, NULL);
3416 		return true;
3417 	}
3418 
3419 	return false;
3420 }
3421 #endif
3422 
3423 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
3424 void dp_rx_mark_first_packet_after_wow_wakeup(struct dp_pdev *pdev,
3425 					      uint8_t *rx_tlv,
3426 					      qdf_nbuf_t nbuf)
3427 {
3428 	struct dp_soc *soc;
3429 
3430 	if (!pdev->is_first_wakeup_packet)
3431 		return;
3432 
3433 	soc = pdev->soc;
3434 	if (hal_get_first_wow_wakeup_packet(soc->hal_soc, rx_tlv)) {
3435 		qdf_nbuf_mark_wakeup_frame(nbuf);
3436 		dp_info("First packet after WOW Wakeup rcvd");
3437 	}
3438 }
3439 #endif
3440