xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_peer.c (revision 87a8e4458319c60b618522e263ed900e36aab528)
1 /*
2  * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <qdf_types.h>
20 #include <qdf_lock.h>
21 #include <hal_hw_headers.h>
22 #include "dp_htt.h"
23 #include "dp_types.h"
24 #include "dp_internal.h"
25 #include "dp_peer.h"
26 #include "dp_rx_defrag.h"
27 #include <hal_api.h>
28 #include <hal_reo.h>
29 #ifdef CONFIG_MCL
30 #include <cds_ieee80211_common.h>
31 #include <cds_api.h>
32 #endif
33 #include <cdp_txrx_handle.h>
34 #include <wlan_cfg.h>
35 
36 #ifdef DP_LFR
37 static inline void
38 dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params,
39 					uint8_t valid)
40 {
41 	params->u.upd_queue_params.update_svld = 1;
42 	params->u.upd_queue_params.svld = valid;
43 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
44 		"%s: Setting SSN valid bit to %d",
45 				__func__, valid);
46 }
47 #else
48 static inline void
49 dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params,
50 					uint8_t valid) {};
51 #endif
52 
53 static inline int dp_peer_find_mac_addr_cmp(
54 	union dp_align_mac_addr *mac_addr1,
55 	union dp_align_mac_addr *mac_addr2)
56 {
57 	return !((mac_addr1->align4.bytes_abcd == mac_addr2->align4.bytes_abcd)
58 		/*
59 		 * Intentionally use & rather than &&.
60 		 * because the operands are binary rather than generic boolean,
61 		 * the functionality is equivalent.
62 		 * Using && has the advantage of short-circuited evaluation,
63 		 * but using & has the advantage of no conditional branching,
64 		 * which is a more significant benefit.
65 		 */
66 		&
67 		(mac_addr1->align4.bytes_ef == mac_addr2->align4.bytes_ef));
68 }
69 
70 static int dp_peer_find_map_attach(struct dp_soc *soc)
71 {
72 	uint32_t max_peers, peer_map_size;
73 
74 	max_peers = soc->max_peers;
75 	/* allocate the peer ID -> peer object map */
76 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
77 		"\n<=== cfg max peer id %d ====>", max_peers);
78 	peer_map_size = max_peers * sizeof(soc->peer_id_to_obj_map[0]);
79 	soc->peer_id_to_obj_map = qdf_mem_malloc(peer_map_size);
80 	if (!soc->peer_id_to_obj_map) {
81 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
82 			"%s: peer map memory allocation failed", __func__);
83 		return QDF_STATUS_E_NOMEM;
84 	}
85 
86 	/*
87 	 * The peer_id_to_obj_map doesn't really need to be initialized,
88 	 * since elements are only used after they have been individually
89 	 * initialized.
90 	 * However, it is convenient for debugging to have all elements
91 	 * that are not in use set to 0.
92 	 */
93 	qdf_mem_zero(soc->peer_id_to_obj_map, peer_map_size);
94 	return 0; /* success */
95 }
96 
97 static int dp_log2_ceil(unsigned value)
98 {
99 	unsigned tmp = value;
100 	int log2 = -1;
101 
102 	while (tmp) {
103 		log2++;
104 		tmp >>= 1;
105 	}
106 	if (1 << log2 != value)
107 		log2++;
108 	return log2;
109 }
110 
111 static int dp_peer_find_add_id_to_obj(
112 	struct dp_peer *peer,
113 	uint16_t peer_id)
114 {
115 	int i;
116 
117 	for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
118 		if (peer->peer_ids[i] == HTT_INVALID_PEER) {
119 			peer->peer_ids[i] = peer_id;
120 			return 0; /* success */
121 		}
122 	}
123 	return QDF_STATUS_E_FAILURE; /* failure */
124 }
125 
126 #define DP_PEER_HASH_LOAD_MULT  2
127 #define DP_PEER_HASH_LOAD_SHIFT 0
128 
129 #define DP_AST_HASH_LOAD_MULT  2
130 #define DP_AST_HASH_LOAD_SHIFT 0
131 
132 static int dp_peer_find_hash_attach(struct dp_soc *soc)
133 {
134 	int i, hash_elems, log2;
135 
136 	/* allocate the peer MAC address -> peer object hash table */
137 	hash_elems = soc->max_peers;
138 	hash_elems *= DP_PEER_HASH_LOAD_MULT;
139 	hash_elems >>= DP_PEER_HASH_LOAD_SHIFT;
140 	log2 = dp_log2_ceil(hash_elems);
141 	hash_elems = 1 << log2;
142 
143 	soc->peer_hash.mask = hash_elems - 1;
144 	soc->peer_hash.idx_bits = log2;
145 	/* allocate an array of TAILQ peer object lists */
146 	soc->peer_hash.bins = qdf_mem_malloc(
147 		hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q, dp_peer)));
148 	if (!soc->peer_hash.bins)
149 		return QDF_STATUS_E_NOMEM;
150 
151 	for (i = 0; i < hash_elems; i++)
152 		TAILQ_INIT(&soc->peer_hash.bins[i]);
153 
154 	return 0;
155 }
156 
157 static void dp_peer_find_hash_detach(struct dp_soc *soc)
158 {
159 	qdf_mem_free(soc->peer_hash.bins);
160 }
161 
162 static inline unsigned dp_peer_find_hash_index(struct dp_soc *soc,
163 	union dp_align_mac_addr *mac_addr)
164 {
165 	unsigned index;
166 
167 	index =
168 		mac_addr->align2.bytes_ab ^
169 		mac_addr->align2.bytes_cd ^
170 		mac_addr->align2.bytes_ef;
171 	index ^= index >> soc->peer_hash.idx_bits;
172 	index &= soc->peer_hash.mask;
173 	return index;
174 }
175 
176 
177 void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer)
178 {
179 	unsigned index;
180 
181 	index = dp_peer_find_hash_index(soc, &peer->mac_addr);
182 	qdf_spin_lock_bh(&soc->peer_ref_mutex);
183 	/*
184 	 * It is important to add the new peer at the tail of the peer list
185 	 * with the bin index.  Together with having the hash_find function
186 	 * search from head to tail, this ensures that if two entries with
187 	 * the same MAC address are stored, the one added first will be
188 	 * found first.
189 	 */
190 	TAILQ_INSERT_TAIL(&soc->peer_hash.bins[index], peer, hash_list_elem);
191 	qdf_spin_unlock_bh(&soc->peer_ref_mutex);
192 }
193 
194 #ifdef FEATURE_AST
195 /*
196  * dp_peer_ast_hash_attach() - Allocate and initialize AST Hash Table
197  * @soc: SoC handle
198  *
199  * Return: None
200  */
201 static int dp_peer_ast_hash_attach(struct dp_soc *soc)
202 {
203 	int i, hash_elems, log2;
204 
205 	hash_elems = ((soc->max_peers * DP_AST_HASH_LOAD_MULT) >>
206 		DP_AST_HASH_LOAD_SHIFT);
207 
208 	log2 = dp_log2_ceil(hash_elems);
209 	hash_elems = 1 << log2;
210 
211 	soc->ast_hash.mask = hash_elems - 1;
212 	soc->ast_hash.idx_bits = log2;
213 
214 	/* allocate an array of TAILQ peer object lists */
215 	soc->ast_hash.bins = qdf_mem_malloc(
216 		hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q,
217 				dp_ast_entry)));
218 
219 	if (!soc->ast_hash.bins)
220 		return QDF_STATUS_E_NOMEM;
221 
222 	for (i = 0; i < hash_elems; i++)
223 		TAILQ_INIT(&soc->ast_hash.bins[i]);
224 
225 	return 0;
226 }
227 
228 /*
229  * dp_peer_ast_hash_detach() - Free AST Hash table
230  * @soc: SoC handle
231  *
232  * Return: None
233  */
234 static void dp_peer_ast_hash_detach(struct dp_soc *soc)
235 {
236 	qdf_mem_free(soc->ast_hash.bins);
237 }
238 
239 /*
240  * dp_peer_ast_hash_index() - Compute the AST hash from MAC address
241  * @soc: SoC handle
242  *
243  * Return: AST hash
244  */
245 static inline uint32_t dp_peer_ast_hash_index(struct dp_soc *soc,
246 	union dp_align_mac_addr *mac_addr)
247 {
248 	uint32_t index;
249 
250 	index =
251 		mac_addr->align2.bytes_ab ^
252 		mac_addr->align2.bytes_cd ^
253 		mac_addr->align2.bytes_ef;
254 	index ^= index >> soc->ast_hash.idx_bits;
255 	index &= soc->ast_hash.mask;
256 	return index;
257 }
258 
259 /*
260  * dp_peer_ast_hash_add() - Add AST entry into hash table
261  * @soc: SoC handle
262  *
263  * This function adds the AST entry into SoC AST hash table
264  * It assumes caller has taken the ast lock to protect the access to this table
265  *
266  * Return: None
267  */
268 static inline void dp_peer_ast_hash_add(struct dp_soc *soc,
269 		struct dp_ast_entry *ase)
270 {
271 	uint32_t index;
272 
273 	index = dp_peer_ast_hash_index(soc, &ase->mac_addr);
274 	TAILQ_INSERT_TAIL(&soc->ast_hash.bins[index], ase, hash_list_elem);
275 }
276 
277 /*
278  * dp_peer_ast_hash_remove() - Look up and remove AST entry from hash table
279  * @soc: SoC handle
280  *
281  * This function removes the AST entry from soc AST hash table
282  * It assumes caller has taken the ast lock to protect the access to this table
283  *
284  * Return: None
285  */
286 static inline void dp_peer_ast_hash_remove(struct dp_soc *soc,
287 		struct dp_ast_entry *ase)
288 {
289 	unsigned index;
290 	struct dp_ast_entry *tmpase;
291 	int found = 0;
292 
293 	index = dp_peer_ast_hash_index(soc, &ase->mac_addr);
294 	/* Check if tail is not empty before delete*/
295 	QDF_ASSERT(!TAILQ_EMPTY(&soc->ast_hash.bins[index]));
296 
297 	TAILQ_FOREACH(tmpase, &soc->ast_hash.bins[index], hash_list_elem) {
298 		if (tmpase == ase) {
299 			found = 1;
300 			break;
301 		}
302 	}
303 
304 	QDF_ASSERT(found);
305 	TAILQ_REMOVE(&soc->ast_hash.bins[index], ase, hash_list_elem);
306 }
307 
308 /*
309  * dp_peer_ast_hash_find() - Find AST entry by MAC address
310  * @soc: SoC handle
311  *
312  * It assumes caller has taken the ast lock to protect the access to
313  * AST hash table
314  *
315  * Return: AST entry
316  */
317 struct dp_ast_entry *dp_peer_ast_hash_find(struct dp_soc *soc,
318 						uint8_t *ast_mac_addr)
319 {
320 	union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
321 	unsigned index;
322 	struct dp_ast_entry *ase;
323 
324 	qdf_mem_copy(&local_mac_addr_aligned.raw[0],
325 			ast_mac_addr, DP_MAC_ADDR_LEN);
326 	mac_addr = &local_mac_addr_aligned;
327 
328 	index = dp_peer_ast_hash_index(soc, mac_addr);
329 	TAILQ_FOREACH(ase, &soc->ast_hash.bins[index], hash_list_elem) {
330 		if (dp_peer_find_mac_addr_cmp(mac_addr, &ase->mac_addr) == 0) {
331 			return ase;
332 		}
333 	}
334 
335 	return NULL;
336 }
337 
338 /*
339  * dp_peer_map_ast() - Map the ast entry with HW AST Index
340  * @soc: SoC handle
341  * @peer: peer to which ast node belongs
342  * @mac_addr: MAC address of ast node
343  * @hw_peer_id: HW AST Index returned by target in peer map event
344  * @vdev_id: vdev id for VAP to which the peer belongs to
345  *
346  * Return: None
347  */
348 static inline void dp_peer_map_ast(struct dp_soc *soc,
349 	struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id,
350 	uint8_t vdev_id)
351 {
352 	struct dp_ast_entry *ast_entry;
353 	enum cdp_txrx_ast_entry_type peer_type = CDP_TXRX_AST_TYPE_STATIC;
354 	bool ast_entry_found = FALSE;
355 
356 	if (!peer) {
357 		return;
358 	}
359 
360 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
361 		"%s: peer %pK ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x",
362 		__func__, peer, hw_peer_id, vdev_id, mac_addr[0],
363 		mac_addr[1], mac_addr[2], mac_addr[3],
364 		mac_addr[4], mac_addr[5]);
365 
366 	qdf_spin_lock_bh(&soc->ast_lock);
367 	TAILQ_FOREACH(ast_entry, &peer->ast_entry_list, ase_list_elem) {
368 		if (!(qdf_mem_cmp(mac_addr, ast_entry->mac_addr.raw,
369 				DP_MAC_ADDR_LEN))) {
370 			ast_entry->ast_idx = hw_peer_id;
371 			soc->ast_table[hw_peer_id] = ast_entry;
372 			ast_entry->is_active = TRUE;
373 			peer_type = ast_entry->type;
374 			ast_entry_found = TRUE;
375 		}
376 	}
377 
378 	if (ast_entry_found || (peer->vdev && peer->vdev->proxysta_vdev)) {
379 		if (soc->cdp_soc.ol_ops->peer_map_event) {
380 			soc->cdp_soc.ol_ops->peer_map_event(
381 			soc->ctrl_psoc, peer->peer_ids[0],
382 			hw_peer_id, vdev_id,
383 			mac_addr, peer_type);
384 		}
385 	} else {
386 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
387 			"AST entry not found");
388 	}
389 
390 	qdf_spin_unlock_bh(&soc->ast_lock);
391 	return;
392 }
393 
394 /*
395  * dp_peer_add_ast() - Allocate and add AST entry into peer list
396  * @soc: SoC handle
397  * @peer: peer to which ast node belongs
398  * @mac_addr: MAC address of ast node
399  * @is_self: Is this base AST entry with peer mac address
400  *
401  * This API is used by WDS source port learning function to
402  * add a new AST entry into peer AST list
403  *
404  * Return: 0 if new entry is allocated,
405  *        -1 if entry add failed
406  */
407 int dp_peer_add_ast(struct dp_soc *soc,
408 			struct dp_peer *peer,
409 			uint8_t *mac_addr,
410 			enum cdp_txrx_ast_entry_type type,
411 			uint32_t flags)
412 {
413 	struct dp_ast_entry *ast_entry;
414 	struct dp_vdev *vdev = peer->vdev;
415 	uint8_t next_node_mac[6];
416 	int  ret = -1;
417 
418 	if (!vdev) {
419 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
420 			FL("Peers vdev is NULL"));
421 		QDF_ASSERT(0);
422 		return ret;
423 	}
424 
425 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
426 		"%s: peer %pK mac %02x:%02x:%02x:%02x:%02x:%02x",
427 		__func__, peer, mac_addr[0], mac_addr[1], mac_addr[2],
428 		mac_addr[3], mac_addr[4], mac_addr[5]);
429 
430 	qdf_spin_lock_bh(&soc->ast_lock);
431 
432 	/* If AST entry already exists , just return from here */
433 	ast_entry = dp_peer_ast_hash_find(soc, mac_addr);
434 
435 	if (ast_entry) {
436 		if (ast_entry->type == CDP_TXRX_AST_TYPE_MEC) {
437 			ast_entry->is_active = TRUE;
438 			qdf_spin_unlock_bh(&soc->ast_lock);
439 			return 0;
440 		}
441 
442 		/*
443 		 * WAR for HK 1.x AST issue
444 		 * If an AST entry with same mac address already exists and is
445 		 * mapped to a different radio, and if the current radio is
446 		 * primary radio , delete the existing AST entry and return.
447 		 *
448 		 * New AST entry will be created again on next SA_invalid
449 		 * frame
450 		 */
451 		if ((ast_entry->pdev_id != vdev->pdev->pdev_id) &&
452 		    vdev->pdev->is_primary) {
453 			qdf_print("Deleting ast_pdev=%d pdev=%d addr=%pM\n",
454 				  ast_entry->pdev_id,
455 				  vdev->pdev->pdev_id, mac_addr);
456 			dp_peer_del_ast(soc, ast_entry);
457 		}
458 
459 		qdf_spin_unlock_bh(&soc->ast_lock);
460 		return 0;
461 	}
462 
463 	ast_entry = (struct dp_ast_entry *)
464 			qdf_mem_malloc(sizeof(struct dp_ast_entry));
465 
466 	if (!ast_entry) {
467 		qdf_spin_unlock_bh(&soc->ast_lock);
468 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
469 			FL("fail to allocate ast_entry"));
470 		QDF_ASSERT(0);
471 		return ret;
472 	}
473 
474 	qdf_mem_copy(&ast_entry->mac_addr.raw[0], mac_addr, DP_MAC_ADDR_LEN);
475 	ast_entry->peer = peer;
476 	ast_entry->pdev_id = vdev->pdev->pdev_id;
477 	ast_entry->vdev_id = vdev->vdev_id;
478 
479 	switch (type) {
480 	case CDP_TXRX_AST_TYPE_STATIC:
481 		peer->self_ast_entry = ast_entry;
482 		ast_entry->type = CDP_TXRX_AST_TYPE_STATIC;
483 		break;
484 	case CDP_TXRX_AST_TYPE_SELF:
485 		peer->self_ast_entry = ast_entry;
486 		ast_entry->type = CDP_TXRX_AST_TYPE_SELF;
487 		break;
488 	case CDP_TXRX_AST_TYPE_WDS:
489 		ast_entry->next_hop = 1;
490 		ast_entry->type = CDP_TXRX_AST_TYPE_WDS;
491 		break;
492 	case CDP_TXRX_AST_TYPE_WDS_HM:
493 		ast_entry->next_hop = 1;
494 		ast_entry->type = CDP_TXRX_AST_TYPE_WDS_HM;
495 		break;
496 	case CDP_TXRX_AST_TYPE_MEC:
497 		ast_entry->next_hop = 1;
498 		ast_entry->type = CDP_TXRX_AST_TYPE_MEC;
499 		break;
500 	default:
501 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
502 			FL("Incorrect AST entry type"));
503 	}
504 
505 	ast_entry->is_active = TRUE;
506 	TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem);
507 	DP_STATS_INC(soc, ast.added, 1);
508 	dp_peer_ast_hash_add(soc, ast_entry);
509 	qdf_spin_unlock_bh(&soc->ast_lock);
510 
511 	if (ast_entry->type == CDP_TXRX_AST_TYPE_MEC)
512 		qdf_mem_copy(next_node_mac, peer->vdev->mac_addr.raw, 6);
513 	else
514 		qdf_mem_copy(next_node_mac, peer->mac_addr.raw, 6);
515 
516 	if ((ast_entry->type != CDP_TXRX_AST_TYPE_STATIC) &&
517 	    (ast_entry->type != CDP_TXRX_AST_TYPE_SELF)) {
518 		if (QDF_STATUS_SUCCESS ==
519 				soc->cdp_soc.ol_ops->peer_add_wds_entry(
520 				peer->vdev->osif_vdev,
521 				mac_addr,
522 				next_node_mac,
523 				flags))
524 			return 0;
525 	}
526 
527 	return ret;
528 }
529 
530 /*
531  * dp_peer_del_ast() - Delete and free AST entry
532  * @soc: SoC handle
533  * @ast_entry: AST entry of the node
534  *
535  * This function removes the AST entry from peer and soc tables
536  * It assumes caller has taken the ast lock to protect the access to these
537  * tables
538  *
539  * Return: None
540  */
541 void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry)
542 {
543 	struct dp_peer *peer = ast_entry->peer;
544 
545 	if (ast_entry->next_hop)
546 		soc->cdp_soc.ol_ops->peer_del_wds_entry(peer->vdev->osif_vdev,
547 						ast_entry->mac_addr.raw);
548 
549 	soc->ast_table[ast_entry->ast_idx] = NULL;
550 	TAILQ_REMOVE(&peer->ast_entry_list, ast_entry, ase_list_elem);
551 	DP_STATS_INC(soc, ast.deleted, 1);
552 	dp_peer_ast_hash_remove(soc, ast_entry);
553 	qdf_mem_free(ast_entry);
554 }
555 
556 /*
557  * dp_peer_update_ast() - Delete and free AST entry
558  * @soc: SoC handle
559  * @peer: peer to which ast node belongs
560  * @ast_entry: AST entry of the node
561  * @flags: wds or hmwds
562  *
563  * This function update the AST entry to the roamed peer and soc tables
564  * It assumes caller has taken the ast lock to protect the access to these
565  * tables
566  *
567  * Return: 0 if ast entry is updated successfully
568  *         -1 failure
569  */
570 int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer,
571 		       struct dp_ast_entry *ast_entry, uint32_t flags)
572 {
573 	int ret = -1;
574 	struct dp_peer *old_peer;
575 
576 	if ((ast_entry->type == CDP_TXRX_AST_TYPE_STATIC) ||
577 	    (ast_entry->type == CDP_TXRX_AST_TYPE_SELF))
578 		return 0;
579 
580 	old_peer = ast_entry->peer;
581 	TAILQ_REMOVE(&old_peer->ast_entry_list, ast_entry, ase_list_elem);
582 
583 	ast_entry->peer = peer;
584 	ast_entry->type = CDP_TXRX_AST_TYPE_WDS;
585 	ast_entry->pdev_id = peer->vdev->pdev->pdev_id;
586 	ast_entry->vdev_id = peer->vdev->vdev_id;
587 	ast_entry->is_active = TRUE;
588 	TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem);
589 
590 	ret = soc->cdp_soc.ol_ops->peer_update_wds_entry(
591 				peer->vdev->osif_vdev,
592 				ast_entry->mac_addr.raw,
593 				peer->mac_addr.raw,
594 				flags);
595 
596 	return ret;
597 }
598 
599 /*
600  * dp_peer_ast_get_pdev_id() - get pdev_id from the ast entry
601  * @soc: SoC handle
602  * @ast_entry: AST entry of the node
603  *
604  * This function gets the pdev_id from the ast entry.
605  *
606  * Return: (uint8_t) pdev_id
607  */
608 uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc,
609 				struct dp_ast_entry *ast_entry)
610 {
611 	return ast_entry->pdev_id;
612 }
613 
614 /*
615  * dp_peer_ast_get_next_hop() - get next_hop from the ast entry
616  * @soc: SoC handle
617  * @ast_entry: AST entry of the node
618  *
619  * This function gets the next hop from the ast entry.
620  *
621  * Return: (uint8_t) next_hop
622  */
623 uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc,
624 				struct dp_ast_entry *ast_entry)
625 {
626 	return ast_entry->next_hop;
627 }
628 
629 /*
630  * dp_peer_ast_set_type() - set type from the ast entry
631  * @soc: SoC handle
632  * @ast_entry: AST entry of the node
633  *
634  * This function sets the type in the ast entry.
635  *
636  * Return:
637  */
638 void dp_peer_ast_set_type(struct dp_soc *soc,
639 				struct dp_ast_entry *ast_entry,
640 				enum cdp_txrx_ast_entry_type type)
641 {
642 	ast_entry->type = type;
643 }
644 
645 #else
646 int dp_peer_add_ast(struct dp_soc *soc, struct dp_peer *peer,
647 		uint8_t *mac_addr, enum cdp_txrx_ast_entry_type type,
648 		uint32_t flags)
649 {
650 	return 1;
651 }
652 
653 void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry)
654 {
655 }
656 
657 int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer,
658 			struct dp_ast_entry *ast_entry, uint32_t flags)
659 {
660 	return 1;
661 }
662 
663 struct dp_ast_entry *dp_peer_ast_hash_find(struct dp_soc *soc,
664 						uint8_t *ast_mac_addr)
665 {
666 	return NULL;
667 }
668 
669 static int dp_peer_ast_hash_attach(struct dp_soc *soc)
670 {
671 	return 0;
672 }
673 
674 static inline void dp_peer_map_ast(struct dp_soc *soc,
675 	struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id,
676 	uint8_t vdev_id)
677 {
678 	return;
679 }
680 
681 static void dp_peer_ast_hash_detach(struct dp_soc *soc)
682 {
683 }
684 
685 void dp_peer_ast_set_type(struct dp_soc *soc,
686 				struct dp_ast_entry *ast_entry,
687 				enum cdp_txrx_ast_entry_type type)
688 {
689 }
690 
691 uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc,
692 				struct dp_ast_entry *ast_entry)
693 {
694 	return 0xff;
695 }
696 
697 
698 uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc,
699 				struct dp_ast_entry *ast_entry)
700 {
701 	return 0xff;
702 }
703 #endif
704 
705 struct dp_peer *dp_peer_find_hash_find(struct dp_soc *soc,
706 	uint8_t *peer_mac_addr, int mac_addr_is_aligned, uint8_t vdev_id)
707 {
708 	union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
709 	unsigned index;
710 	struct dp_peer *peer;
711 
712 	if (mac_addr_is_aligned) {
713 		mac_addr = (union dp_align_mac_addr *) peer_mac_addr;
714 	} else {
715 		qdf_mem_copy(
716 			&local_mac_addr_aligned.raw[0],
717 			peer_mac_addr, DP_MAC_ADDR_LEN);
718 		mac_addr = &local_mac_addr_aligned;
719 	}
720 	index = dp_peer_find_hash_index(soc, mac_addr);
721 	qdf_spin_lock_bh(&soc->peer_ref_mutex);
722 	TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) {
723 #if ATH_SUPPORT_WRAP
724 		/* ProxySTA may have multiple BSS peer with same MAC address,
725 		 * modified find will take care of finding the correct BSS peer.
726 		 */
727 		if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 &&
728 			((peer->vdev->vdev_id == vdev_id) ||
729 			 (vdev_id == DP_VDEV_ALL))) {
730 #else
731 		if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0) {
732 #endif
733 			/* found it - increment the ref count before releasing
734 			 * the lock
735 			 */
736 			qdf_atomic_inc(&peer->ref_cnt);
737 			qdf_spin_unlock_bh(&soc->peer_ref_mutex);
738 			return peer;
739 		}
740 	}
741 	qdf_spin_unlock_bh(&soc->peer_ref_mutex);
742 	return NULL; /* failure */
743 }
744 
745 void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer)
746 {
747 	unsigned index;
748 	struct dp_peer *tmppeer = NULL;
749 	int found = 0;
750 
751 	index = dp_peer_find_hash_index(soc, &peer->mac_addr);
752 	/* Check if tail is not empty before delete*/
753 	QDF_ASSERT(!TAILQ_EMPTY(&soc->peer_hash.bins[index]));
754 	/*
755 	 * DO NOT take the peer_ref_mutex lock here - it needs to be taken
756 	 * by the caller.
757 	 * The caller needs to hold the lock from the time the peer object's
758 	 * reference count is decremented and tested up through the time the
759 	 * reference to the peer object is removed from the hash table, by
760 	 * this function.
761 	 * Holding the lock only while removing the peer object reference
762 	 * from the hash table keeps the hash table consistent, but does not
763 	 * protect against a new HL tx context starting to use the peer object
764 	 * if it looks up the peer object from its MAC address just after the
765 	 * peer ref count is decremented to zero, but just before the peer
766 	 * object reference is removed from the hash table.
767 	 */
768 	 TAILQ_FOREACH(tmppeer, &soc->peer_hash.bins[index], hash_list_elem) {
769 		if (tmppeer == peer) {
770 			found = 1;
771 			break;
772 		}
773 	}
774 	QDF_ASSERT(found);
775 	TAILQ_REMOVE(&soc->peer_hash.bins[index], peer, hash_list_elem);
776 }
777 
778 void dp_peer_find_hash_erase(struct dp_soc *soc)
779 {
780 	int i;
781 
782 	/*
783 	 * Not really necessary to take peer_ref_mutex lock - by this point,
784 	 * it's known that the soc is no longer in use.
785 	 */
786 	for (i = 0; i <= soc->peer_hash.mask; i++) {
787 		if (!TAILQ_EMPTY(&soc->peer_hash.bins[i])) {
788 			struct dp_peer *peer, *peer_next;
789 
790 			/*
791 			 * TAILQ_FOREACH_SAFE must be used here to avoid any
792 			 * memory access violation after peer is freed
793 			 */
794 			TAILQ_FOREACH_SAFE(peer, &soc->peer_hash.bins[i],
795 				hash_list_elem, peer_next) {
796 				/*
797 				 * Don't remove the peer from the hash table -
798 				 * that would modify the list we are currently
799 				 * traversing, and it's not necessary anyway.
800 				 */
801 				/*
802 				 * Artificially adjust the peer's ref count to
803 				 * 1, so it will get deleted by
804 				 * dp_peer_unref_delete.
805 				 */
806 				/* set to zero */
807 				qdf_atomic_init(&peer->ref_cnt);
808 				/* incr to one */
809 				qdf_atomic_inc(&peer->ref_cnt);
810 				dp_peer_unref_delete(peer);
811 			}
812 		}
813 	}
814 }
815 
816 static void dp_peer_find_map_detach(struct dp_soc *soc)
817 {
818 	qdf_mem_free(soc->peer_id_to_obj_map);
819 }
820 
821 int dp_peer_find_attach(struct dp_soc *soc)
822 {
823 	if (dp_peer_find_map_attach(soc))
824 		return 1;
825 
826 	if (dp_peer_find_hash_attach(soc)) {
827 		dp_peer_find_map_detach(soc);
828 		return 1;
829 	}
830 
831 	if (dp_peer_ast_hash_attach(soc)) {
832 		dp_peer_find_hash_detach(soc);
833 		dp_peer_find_map_detach(soc);
834 		return 1;
835 	}
836 	return 0; /* success */
837 }
838 
839 void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt,
840 	union hal_reo_status *reo_status)
841 {
842 	struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt;
843 	struct hal_reo_queue_status *queue_status = &(reo_status->queue_status);
844 
845 	if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
846 		DP_TRACE_STATS(FATAL, "REO stats failure %d for TID %d\n",
847 			queue_status->header.status, rx_tid->tid);
848 		return;
849 	}
850 
851 	DP_TRACE_STATS(FATAL, "REO queue stats (TID: %d): \n"
852 		"ssn: %d\n"
853 		"curr_idx  : %d\n"
854 		"pn_31_0   : %08x\n"
855 		"pn_63_32  : %08x\n"
856 		"pn_95_64  : %08x\n"
857 		"pn_127_96 : %08x\n"
858 		"last_rx_enq_tstamp : %08x\n"
859 		"last_rx_deq_tstamp : %08x\n"
860 		"rx_bitmap_31_0     : %08x\n"
861 		"rx_bitmap_63_32    : %08x\n"
862 		"rx_bitmap_95_64    : %08x\n"
863 		"rx_bitmap_127_96   : %08x\n"
864 		"rx_bitmap_159_128  : %08x\n"
865 		"rx_bitmap_191_160  : %08x\n"
866 		"rx_bitmap_223_192  : %08x\n"
867 		"rx_bitmap_255_224  : %08x\n",
868 		rx_tid->tid,
869 		queue_status->ssn, queue_status->curr_idx,
870 		queue_status->pn_31_0, queue_status->pn_63_32,
871 		queue_status->pn_95_64, queue_status->pn_127_96,
872 		queue_status->last_rx_enq_tstamp,
873 		queue_status->last_rx_deq_tstamp,
874 		queue_status->rx_bitmap_31_0, queue_status->rx_bitmap_63_32,
875 		queue_status->rx_bitmap_95_64, queue_status->rx_bitmap_127_96,
876 		queue_status->rx_bitmap_159_128,
877 		queue_status->rx_bitmap_191_160,
878 		queue_status->rx_bitmap_223_192,
879 		queue_status->rx_bitmap_255_224);
880 
881 	DP_TRACE_STATS(FATAL,
882 		"curr_mpdu_cnt      : %d\n"
883 		"curr_msdu_cnt      : %d\n"
884 		"fwd_timeout_cnt    : %d\n"
885 		"fwd_bar_cnt        : %d\n"
886 		"dup_cnt            : %d\n"
887 		"frms_in_order_cnt  : %d\n"
888 		"bar_rcvd_cnt       : %d\n"
889 		"mpdu_frms_cnt      : %d\n"
890 		"msdu_frms_cnt      : %d\n"
891 		"total_byte_cnt     : %d\n"
892 		"late_recv_mpdu_cnt : %d\n"
893 		"win_jump_2k 	    : %d\n"
894 		"hole_cnt 	    : %d\n",
895 		queue_status->curr_mpdu_cnt, queue_status->curr_msdu_cnt,
896 		queue_status->fwd_timeout_cnt, queue_status->fwd_bar_cnt,
897 		queue_status->dup_cnt, queue_status->frms_in_order_cnt,
898 		queue_status->bar_rcvd_cnt, queue_status->mpdu_frms_cnt,
899 		queue_status->msdu_frms_cnt, queue_status->total_cnt,
900 		queue_status->late_recv_mpdu_cnt, queue_status->win_jump_2k,
901 		queue_status->hole_cnt);
902 
903 	DP_PRINT_STATS("Addba Req          : %d\n"
904 			"Addba Resp         : %d\n"
905 			"Addba Resp success : %d\n"
906 			"Addba Resp failed  : %d\n"
907 			"Delba Req received : %d\n"
908 			"Delba Tx success   : %d\n"
909 			"Delba Tx Fail      : %d\n"
910 			"BA window size     : %d\n"
911 			"Pn size            : %d\n",
912 			rx_tid->num_of_addba_req,
913 			rx_tid->num_of_addba_resp,
914 			rx_tid->num_addba_rsp_success,
915 			rx_tid->num_addba_rsp_failed,
916 			rx_tid->num_of_delba_req,
917 			rx_tid->delba_tx_success_cnt,
918 			rx_tid->delba_tx_fail_cnt,
919 			rx_tid->ba_win_size,
920 			rx_tid->pn_size);
921 }
922 
923 static inline struct dp_peer *dp_peer_find_add_id(struct dp_soc *soc,
924 	uint8_t *peer_mac_addr, uint16_t peer_id, uint16_t hw_peer_id,
925 	uint8_t vdev_id)
926 {
927 	struct dp_peer *peer;
928 
929 	QDF_ASSERT(peer_id <= soc->max_peers);
930 	/* check if there's already a peer object with this MAC address */
931 	peer = dp_peer_find_hash_find(soc, peer_mac_addr,
932 		0 /* is aligned */, vdev_id);
933 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
934 		"%s: peer %pK ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x",
935 		__func__, peer, peer_id, vdev_id, peer_mac_addr[0],
936 		peer_mac_addr[1], peer_mac_addr[2], peer_mac_addr[3],
937 		peer_mac_addr[4], peer_mac_addr[5]);
938 
939 	if (peer) {
940 		/* peer's ref count was already incremented by
941 		 * peer_find_hash_find
942 		 */
943 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
944 			  "%s: ref_cnt: %d", __func__,
945 			   qdf_atomic_read(&peer->ref_cnt));
946 		soc->peer_id_to_obj_map[peer_id] = peer;
947 
948 		if (dp_peer_find_add_id_to_obj(peer, peer_id)) {
949 			/* TBDXXX: assert for now */
950 			QDF_ASSERT(0);
951 		}
952 
953 		return peer;
954 	}
955 
956 	return NULL;
957 }
958 
959 /**
960  * dp_rx_peer_map_handler() - handle peer map event from firmware
961  * @soc_handle - genereic soc handle
962  * @peeri_id - peer_id from firmware
963  * @hw_peer_id - ast index for this peer
964  * vdev_id - vdev ID
965  * peer_mac_addr - macc assress of the peer
966  *
967  * associate the peer_id that firmware provided with peer entry
968  * and update the ast table in the host with the hw_peer_id.
969  *
970  * Return: none
971  */
972 
973 void
974 dp_rx_peer_map_handler(void *soc_handle, uint16_t peer_id, uint16_t hw_peer_id,
975 			uint8_t vdev_id, uint8_t *peer_mac_addr)
976 {
977 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
978 	struct dp_peer *peer = NULL;
979 
980 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
981 		"peer_map_event (soc:%pK): peer_id %di, hw_peer_id %d, peer_mac "
982 		"%02x:%02x:%02x:%02x:%02x:%02x, vdev_id %d", soc, peer_id,
983 		hw_peer_id, peer_mac_addr[0], peer_mac_addr[1],
984 		peer_mac_addr[2], peer_mac_addr[3], peer_mac_addr[4],
985 		peer_mac_addr[5], vdev_id);
986 
987 	peer = soc->peer_id_to_obj_map[peer_id];
988 
989 	if ((hw_peer_id < 0) || (hw_peer_id > (WLAN_UMAC_PSOC_MAX_PEERS * 2))) {
990 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
991 			"invalid hw_peer_id: %d", hw_peer_id);
992 		qdf_assert_always(0);
993 	}
994 
995 	/*
996 	 * check if peer already exists for this peer_id, if so
997 	 * this peer map event is in response for a wds peer add
998 	 * wmi command sent during wds source port learning.
999 	 * in this case just add the ast entry to the existing
1000 	 * peer ast_list.
1001 	 */
1002 	if (!peer)
1003 		peer = dp_peer_find_add_id(soc, peer_mac_addr, peer_id,
1004 					hw_peer_id, vdev_id);
1005 
1006 	if (peer) {
1007 		qdf_assert_always(peer->vdev);
1008 		/*
1009 		 * For every peer MAp message search and set if bss_peer
1010 		 */
1011 		if (!(qdf_mem_cmp(peer->mac_addr.raw, peer->vdev->mac_addr.raw,
1012 				 DP_MAC_ADDR_LEN))) {
1013 			QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
1014 				"vdev bss_peer!!!!");
1015 			peer->bss_peer = 1;
1016 			peer->vdev->vap_bss_peer = peer;
1017 		}
1018 	}
1019 
1020 	dp_peer_map_ast(soc, peer, peer_mac_addr,
1021 			hw_peer_id, vdev_id);
1022 }
1023 
1024 void
1025 dp_rx_peer_unmap_handler(void *soc_handle, uint16_t peer_id)
1026 {
1027 	struct dp_peer *peer;
1028 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1029 	uint8_t i;
1030 
1031 	peer = __dp_peer_find_by_id(soc, peer_id);
1032 
1033 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1034 		"peer_unmap_event (soc:%pK) peer_id %d peer %pK",
1035 		soc, peer_id, peer);
1036 
1037 	/*
1038 	 * Currently peer IDs are assigned for vdevs as well as peers.
1039 	 * If the peer ID is for a vdev, then the peer pointer stored
1040 	 * in peer_id_to_obj_map will be NULL.
1041 	 */
1042 	if (!peer) {
1043 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1044 			"%s: Received unmap event for invalid peer_id"
1045 			" %u", __func__, peer_id);
1046 		return;
1047 	}
1048 
1049 	soc->peer_id_to_obj_map[peer_id] = NULL;
1050 	for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
1051 		if (peer->peer_ids[i] == peer_id) {
1052 			peer->peer_ids[i] = HTT_INVALID_PEER;
1053 			break;
1054 		}
1055 	}
1056 
1057 	if (soc->cdp_soc.ol_ops->peer_unmap_event) {
1058 		soc->cdp_soc.ol_ops->peer_unmap_event(soc->ctrl_psoc,
1059 				peer_id);
1060 	}
1061 
1062 	/*
1063 	 * Remove a reference to the peer.
1064 	 * If there are no more references, delete the peer object.
1065 	 */
1066 	dp_peer_unref_delete(peer);
1067 }
1068 
1069 void
1070 dp_peer_find_detach(struct dp_soc *soc)
1071 {
1072 	dp_peer_find_map_detach(soc);
1073 	dp_peer_find_hash_detach(soc);
1074 	dp_peer_ast_hash_detach(soc);
1075 }
1076 
1077 static void dp_rx_tid_update_cb(struct dp_soc *soc, void *cb_ctxt,
1078 	union hal_reo_status *reo_status)
1079 {
1080 	struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt;
1081 
1082 	if ((reo_status->rx_queue_status.header.status !=
1083 		HAL_REO_CMD_SUCCESS) &&
1084 		(reo_status->rx_queue_status.header.status !=
1085 		HAL_REO_CMD_DRAIN)) {
1086 		/* Should not happen normally. Just print error for now */
1087 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1088 			"%s: Rx tid HW desc update failed(%d): tid %d",
1089 			__func__,
1090 			reo_status->rx_queue_status.header.status,
1091 			rx_tid->tid);
1092 	}
1093 }
1094 
1095 /*
1096  * dp_find_peer_by_addr - find peer instance by mac address
1097  * @dev: physical device instance
1098  * @peer_mac_addr: peer mac address
1099  * @local_id: local id for the peer
1100  *
1101  * Return: peer instance pointer
1102  */
1103 void *dp_find_peer_by_addr(struct cdp_pdev *dev, uint8_t *peer_mac_addr,
1104 		uint8_t *local_id)
1105 {
1106 	struct dp_pdev *pdev = (struct dp_pdev *)dev;
1107 	struct dp_peer *peer;
1108 
1109 	peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr, 0, DP_VDEV_ALL);
1110 
1111 	if (!peer)
1112 		return NULL;
1113 
1114 	/* Multiple peer ids? How can know peer id? */
1115 	*local_id = peer->local_id;
1116 	DP_TRACE(INFO, "%s: peer %pK id %d", __func__, peer, *local_id);
1117 
1118 	/* ref_cnt is incremented inside dp_peer_find_hash_find().
1119 	 * Decrement it here.
1120 	 */
1121 	qdf_atomic_dec(&peer->ref_cnt);
1122 
1123 	return peer;
1124 }
1125 
1126 /*
1127  * dp_rx_tid_update_wifi3() – Update receive TID state
1128  * @peer: Datapath peer handle
1129  * @tid: TID
1130  * @ba_window_size: BlockAck window size
1131  * @start_seq: Starting sequence number
1132  *
1133  * Return: 0 on success, error code on failure
1134  */
1135 static int dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t
1136 				  ba_window_size, uint32_t start_seq)
1137 {
1138 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1139 	struct dp_soc *soc = peer->vdev->pdev->soc;
1140 	struct hal_reo_cmd_params params;
1141 
1142 	qdf_mem_zero(&params, sizeof(params));
1143 
1144 	params.std.need_status = 1;
1145 	params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff;
1146 	params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1147 	params.u.upd_queue_params.update_ba_window_size = 1;
1148 	params.u.upd_queue_params.ba_window_size = ba_window_size;
1149 
1150 	if (start_seq < IEEE80211_SEQ_MAX) {
1151 		params.u.upd_queue_params.update_ssn = 1;
1152 		params.u.upd_queue_params.ssn = start_seq;
1153 	}
1154 
1155 	dp_set_ssn_valid_flag(&params, 0);
1156 
1157 	dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params, dp_rx_tid_update_cb, rx_tid);
1158 
1159 	rx_tid->ba_win_size = ba_window_size;
1160 	if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup) {
1161 		soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup(
1162 			peer->vdev->pdev->ctrl_pdev,
1163 			peer->vdev->vdev_id, peer->mac_addr.raw,
1164 			rx_tid->hw_qdesc_paddr, tid, tid, 1, ba_window_size);
1165 
1166 	}
1167 	return 0;
1168 }
1169 
1170 /*
1171  * dp_reo_desc_free() - Callback free reo descriptor memory after
1172  * HW cache flush
1173  *
1174  * @soc: DP SOC handle
1175  * @cb_ctxt: Callback context
1176  * @reo_status: REO command status
1177  */
1178 static void dp_reo_desc_free(struct dp_soc *soc, void *cb_ctxt,
1179 	union hal_reo_status *reo_status)
1180 {
1181 	struct reo_desc_list_node *freedesc =
1182 		(struct reo_desc_list_node *)cb_ctxt;
1183 	struct dp_rx_tid *rx_tid = &freedesc->rx_tid;
1184 
1185 	if ((reo_status->fl_cache_status.header.status !=
1186 		HAL_REO_CMD_SUCCESS) &&
1187 		(reo_status->fl_cache_status.header.status !=
1188 		HAL_REO_CMD_DRAIN)) {
1189 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1190 			"%s: Rx tid HW desc flush failed(%d): tid %d",
1191 			__func__,
1192 			reo_status->rx_queue_status.header.status,
1193 			freedesc->rx_tid.tid);
1194 	}
1195 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1196 		"%s: hw_qdesc_paddr: %pK, tid:%d", __func__,
1197 		(void *)(rx_tid->hw_qdesc_paddr), rx_tid->tid);
1198 	qdf_mem_unmap_nbytes_single(soc->osdev,
1199 		rx_tid->hw_qdesc_paddr,
1200 		QDF_DMA_BIDIRECTIONAL,
1201 		rx_tid->hw_qdesc_alloc_size);
1202 	qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
1203 	qdf_mem_free(freedesc);
1204 }
1205 
1206 #if defined(QCA_WIFI_QCA8074) && defined(BUILD_X86)
1207 /* Hawkeye emulation requires bus address to be >= 0x50000000 */
1208 static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr)
1209 {
1210 	if (dma_addr < 0x50000000)
1211 		return QDF_STATUS_E_FAILURE;
1212 	else
1213 		return QDF_STATUS_SUCCESS;
1214 }
1215 #else
1216 static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr)
1217 {
1218 	return QDF_STATUS_SUCCESS;
1219 }
1220 #endif
1221 
1222 
1223 /*
1224  * dp_rx_tid_setup_wifi3() – Setup receive TID state
1225  * @peer: Datapath peer handle
1226  * @tid: TID
1227  * @ba_window_size: BlockAck window size
1228  * @start_seq: Starting sequence number
1229  *
1230  * Return: 0 on success, error code on failure
1231  */
1232 int dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
1233 	uint32_t ba_window_size, uint32_t start_seq)
1234 {
1235 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1236 	struct dp_vdev *vdev = peer->vdev;
1237 	struct dp_soc *soc = vdev->pdev->soc;
1238 	uint32_t hw_qdesc_size;
1239 	uint32_t hw_qdesc_align;
1240 	int hal_pn_type;
1241 	void *hw_qdesc_vaddr;
1242 	uint32_t alloc_tries = 0;
1243 
1244 	if (peer->delete_in_progress)
1245 		return QDF_STATUS_E_FAILURE;
1246 
1247 	rx_tid->ba_win_size = ba_window_size;
1248 	if (rx_tid->hw_qdesc_vaddr_unaligned != NULL)
1249 		return dp_rx_tid_update_wifi3(peer, tid, ba_window_size,
1250 			start_seq);
1251 	rx_tid->delba_tx_status = 0;
1252 	rx_tid->ppdu_id_2k = 0;
1253 	rx_tid->num_of_addba_req = 0;
1254 	rx_tid->num_of_delba_req = 0;
1255 	rx_tid->num_of_addba_resp = 0;
1256 	rx_tid->num_addba_rsp_failed = 0;
1257 	rx_tid->num_addba_rsp_success = 0;
1258 	rx_tid->delba_tx_success_cnt = 0;
1259 	rx_tid->delba_tx_fail_cnt = 0;
1260 	rx_tid->statuscode = 0;
1261 #ifdef notyet
1262 	hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc, ba_window_size);
1263 #else
1264 	/* TODO: Allocating HW queue descriptors based on max BA window size
1265 	 * for all QOS TIDs so that same descriptor can be used later when
1266 	 * ADDBA request is recevied. This should be changed to allocate HW
1267 	 * queue descriptors based on BA window size being negotiated (0 for
1268 	 * non BA cases), and reallocate when BA window size changes and also
1269 	 * send WMI message to FW to change the REO queue descriptor in Rx
1270 	 * peer entry as part of dp_rx_tid_update.
1271 	 */
1272 	if (tid != DP_NON_QOS_TID)
1273 		hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
1274 			HAL_RX_MAX_BA_WINDOW);
1275 	else
1276 		hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
1277 			ba_window_size);
1278 #endif
1279 
1280 	hw_qdesc_align = hal_get_reo_qdesc_align(soc->hal_soc);
1281 	/* To avoid unnecessary extra allocation for alignment, try allocating
1282 	 * exact size and see if we already have aligned address.
1283 	 */
1284 	rx_tid->hw_qdesc_alloc_size = hw_qdesc_size;
1285 
1286 try_desc_alloc:
1287 	rx_tid->hw_qdesc_vaddr_unaligned =
1288 		qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size);
1289 
1290 	if (!rx_tid->hw_qdesc_vaddr_unaligned) {
1291 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1292 			"%s: Rx tid HW desc alloc failed: tid %d",
1293 			__func__, tid);
1294 		return QDF_STATUS_E_NOMEM;
1295 	}
1296 
1297 	if ((unsigned long)(rx_tid->hw_qdesc_vaddr_unaligned) %
1298 		hw_qdesc_align) {
1299 		/* Address allocated above is not alinged. Allocate extra
1300 		 * memory for alignment
1301 		 */
1302 		qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
1303 		rx_tid->hw_qdesc_vaddr_unaligned =
1304 			qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size +
1305 					hw_qdesc_align - 1);
1306 
1307 		if (!rx_tid->hw_qdesc_vaddr_unaligned) {
1308 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1309 				"%s: Rx tid HW desc alloc failed: tid %d",
1310 				__func__, tid);
1311 			return QDF_STATUS_E_NOMEM;
1312 		}
1313 
1314 		hw_qdesc_vaddr = (void *)qdf_align((unsigned long)
1315 			rx_tid->hw_qdesc_vaddr_unaligned,
1316 			hw_qdesc_align);
1317 
1318 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1319 			"%s: Total Size %d Aligned Addr %pK",
1320 			__func__, rx_tid->hw_qdesc_alloc_size,
1321 			hw_qdesc_vaddr);
1322 
1323 	} else {
1324 		hw_qdesc_vaddr = rx_tid->hw_qdesc_vaddr_unaligned;
1325 	}
1326 
1327 	/* TODO: Ensure that sec_type is set before ADDBA is received.
1328 	 * Currently this is set based on htt indication
1329 	 * HTT_T2H_MSG_TYPE_SEC_IND from target
1330 	 */
1331 	switch (peer->security[dp_sec_ucast].sec_type) {
1332 	case cdp_sec_type_tkip_nomic:
1333 	case cdp_sec_type_aes_ccmp:
1334 	case cdp_sec_type_aes_ccmp_256:
1335 	case cdp_sec_type_aes_gcmp:
1336 	case cdp_sec_type_aes_gcmp_256:
1337 		hal_pn_type = HAL_PN_WPA;
1338 		break;
1339 	case cdp_sec_type_wapi:
1340 		if (vdev->opmode == wlan_op_mode_ap)
1341 			hal_pn_type = HAL_PN_WAPI_EVEN;
1342 		else
1343 			hal_pn_type = HAL_PN_WAPI_UNEVEN;
1344 		break;
1345 	default:
1346 		hal_pn_type = HAL_PN_NONE;
1347 		break;
1348 	}
1349 
1350 	hal_reo_qdesc_setup(soc->hal_soc, tid, ba_window_size, start_seq,
1351 		hw_qdesc_vaddr, rx_tid->hw_qdesc_paddr, hal_pn_type);
1352 
1353 	qdf_mem_map_nbytes_single(soc->osdev, hw_qdesc_vaddr,
1354 		QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size,
1355 		&(rx_tid->hw_qdesc_paddr));
1356 
1357 	if (dp_reo_desc_addr_chk(rx_tid->hw_qdesc_paddr) !=
1358 			QDF_STATUS_SUCCESS) {
1359 		if (alloc_tries++ < 10)
1360 			goto try_desc_alloc;
1361 		else {
1362 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1363 			"%s: Rx tid HW desc alloc failed (lowmem): tid %d",
1364 			__func__, tid);
1365 			return QDF_STATUS_E_NOMEM;
1366 		}
1367 	}
1368 
1369 	if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup) {
1370 		soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup(
1371 			vdev->pdev->ctrl_pdev,
1372 			peer->vdev->vdev_id, peer->mac_addr.raw,
1373 			rx_tid->hw_qdesc_paddr, tid, tid, 1, ba_window_size);
1374 
1375 	}
1376 	return 0;
1377 }
1378 
1379 /*
1380  * dp_rx_tid_delete_cb() - Callback to flush reo descriptor HW cache
1381  * after deleting the entries (ie., setting valid=0)
1382  *
1383  * @soc: DP SOC handle
1384  * @cb_ctxt: Callback context
1385  * @reo_status: REO command status
1386  */
1387 static void dp_rx_tid_delete_cb(struct dp_soc *soc, void *cb_ctxt,
1388 	union hal_reo_status *reo_status)
1389 {
1390 	struct reo_desc_list_node *freedesc =
1391 		(struct reo_desc_list_node *)cb_ctxt;
1392 	uint32_t list_size;
1393 	struct reo_desc_list_node *desc;
1394 	unsigned long curr_ts = qdf_get_system_timestamp();
1395 	uint32_t desc_size, tot_desc_size;
1396 	struct hal_reo_cmd_params params;
1397 
1398 	if (reo_status->rx_queue_status.header.status == HAL_REO_CMD_DRAIN) {
1399 		qdf_mem_zero(reo_status, sizeof(*reo_status));
1400 		reo_status->fl_cache_status.header.status = HAL_REO_CMD_DRAIN;
1401 		dp_reo_desc_free(soc, (void *)freedesc, reo_status);
1402 		return;
1403 	} else if (reo_status->rx_queue_status.header.status !=
1404 		HAL_REO_CMD_SUCCESS) {
1405 		/* Should not happen normally. Just print error for now */
1406 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1407 			"%s: Rx tid HW desc deletion failed(%d): tid %d",
1408 			__func__,
1409 			reo_status->rx_queue_status.header.status,
1410 			freedesc->rx_tid.tid);
1411 	}
1412 
1413 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
1414 		"%s: rx_tid: %d status: %d", __func__,
1415 		freedesc->rx_tid.tid,
1416 		reo_status->rx_queue_status.header.status);
1417 
1418 	qdf_spin_lock_bh(&soc->reo_desc_freelist_lock);
1419 	freedesc->free_ts = curr_ts;
1420 	qdf_list_insert_back_size(&soc->reo_desc_freelist,
1421 		(qdf_list_node_t *)freedesc, &list_size);
1422 
1423 	while ((qdf_list_peek_front(&soc->reo_desc_freelist,
1424 		(qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) &&
1425 		((list_size >= REO_DESC_FREELIST_SIZE) ||
1426 		((curr_ts - desc->free_ts) > REO_DESC_FREE_DEFER_MS))) {
1427 		struct dp_rx_tid *rx_tid;
1428 
1429 		qdf_list_remove_front(&soc->reo_desc_freelist,
1430 				(qdf_list_node_t **)&desc);
1431 		list_size--;
1432 		rx_tid = &desc->rx_tid;
1433 
1434 		/* Flush and invalidate REO descriptor from HW cache: Base and
1435 		 * extension descriptors should be flushed separately */
1436 		tot_desc_size = hal_get_reo_qdesc_size(soc->hal_soc,
1437 			rx_tid->ba_win_size);
1438 		desc_size = hal_get_reo_qdesc_size(soc->hal_soc, 0);
1439 
1440 		/* Flush reo extension descriptors */
1441 		while ((tot_desc_size -= desc_size) > 0) {
1442 			qdf_mem_zero(&params, sizeof(params));
1443 			params.std.addr_lo =
1444 				((uint64_t)(rx_tid->hw_qdesc_paddr) +
1445 				tot_desc_size) & 0xffffffff;
1446 			params.std.addr_hi =
1447 				(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1448 
1449 			if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc,
1450 							CMD_FLUSH_CACHE,
1451 							&params,
1452 							NULL,
1453 							NULL)) {
1454 				QDF_TRACE(QDF_MODULE_ID_DP,
1455 					QDF_TRACE_LEVEL_ERROR,
1456 					"%s: fail to send CMD_CACHE_FLUSH:"
1457 					"tid %d desc %pK", __func__,
1458 					rx_tid->tid,
1459 					(void *)(rx_tid->hw_qdesc_paddr));
1460 			}
1461 		}
1462 
1463 		/* Flush base descriptor */
1464 		qdf_mem_zero(&params, sizeof(params));
1465 		params.std.need_status = 1;
1466 		params.std.addr_lo =
1467 			(uint64_t)(rx_tid->hw_qdesc_paddr) & 0xffffffff;
1468 		params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1469 
1470 		if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc,
1471 							  CMD_FLUSH_CACHE,
1472 							  &params,
1473 							  dp_reo_desc_free,
1474 							  (void *)desc)) {
1475 			union hal_reo_status reo_status;
1476 			/*
1477 			 * If dp_reo_send_cmd return failure, related TID queue desc
1478 			 * should be unmapped. Also locally reo_desc, together with
1479 			 * TID queue desc also need to be freed accordingly.
1480 			 *
1481 			 * Here invoke desc_free function directly to do clean up.
1482 			 */
1483 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1484 				"%s: fail to send REO cmd to flush cache: tid %d",
1485 				__func__, rx_tid->tid);
1486 			qdf_mem_zero(&reo_status, sizeof(reo_status));
1487 			reo_status.fl_cache_status.header.status = 0;
1488 			dp_reo_desc_free(soc, (void *)desc, &reo_status);
1489 		}
1490 	}
1491 	qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock);
1492 }
1493 
1494 /*
1495  * dp_rx_tid_delete_wifi3() – Delete receive TID queue
1496  * @peer: Datapath peer handle
1497  * @tid: TID
1498  *
1499  * Return: 0 on success, error code on failure
1500  */
1501 static int dp_rx_tid_delete_wifi3(struct dp_peer *peer, int tid)
1502 {
1503 	struct dp_rx_tid *rx_tid = &(peer->rx_tid[tid]);
1504 	struct dp_soc *soc = peer->vdev->pdev->soc;
1505 	struct hal_reo_cmd_params params;
1506 	struct reo_desc_list_node *freedesc =
1507 		qdf_mem_malloc(sizeof(*freedesc));
1508 
1509 	if (!freedesc) {
1510 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1511 			"%s: malloc failed for freedesc: tid %d",
1512 			__func__, tid);
1513 		return -ENOMEM;
1514 	}
1515 
1516 	freedesc->rx_tid = *rx_tid;
1517 
1518 	qdf_mem_zero(&params, sizeof(params));
1519 
1520 	params.std.need_status = 0;
1521 	params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff;
1522 	params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1523 	params.u.upd_queue_params.update_vld = 1;
1524 	params.u.upd_queue_params.vld = 0;
1525 
1526 	dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params,
1527 		dp_rx_tid_delete_cb, (void *)freedesc);
1528 
1529 	rx_tid->hw_qdesc_vaddr_unaligned = NULL;
1530 	rx_tid->hw_qdesc_alloc_size = 0;
1531 	rx_tid->hw_qdesc_paddr = 0;
1532 
1533 	return 0;
1534 }
1535 
1536 #ifdef DP_LFR
1537 static void dp_peer_setup_remaining_tids(struct dp_peer *peer)
1538 {
1539 	int tid;
1540 
1541 	for (tid = 1; tid < DP_MAX_TIDS-1; tid++) {
1542 		dp_rx_tid_setup_wifi3(peer, tid, 1, 0);
1543 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1544 			"Setting up TID %d for peer %pK peer->local_id %d",
1545 			tid, peer, peer->local_id);
1546 	}
1547 }
1548 #else
1549 static void dp_peer_setup_remaining_tids(struct dp_peer *peer) {};
1550 #endif
1551 /*
1552  * dp_peer_rx_init() – Initialize receive TID state
1553  * @pdev: Datapath pdev
1554  * @peer: Datapath peer
1555  *
1556  */
1557 void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer)
1558 {
1559 	int tid;
1560 	struct dp_rx_tid *rx_tid;
1561 	for (tid = 0; tid < DP_MAX_TIDS; tid++) {
1562 		rx_tid = &peer->rx_tid[tid];
1563 		rx_tid->array = &rx_tid->base;
1564 		rx_tid->base.head = rx_tid->base.tail = NULL;
1565 		rx_tid->tid = tid;
1566 		rx_tid->defrag_timeout_ms = 0;
1567 		rx_tid->ba_win_size = 0;
1568 		rx_tid->ba_status = DP_RX_BA_INACTIVE;
1569 
1570 		rx_tid->defrag_waitlist_elem.tqe_next = NULL;
1571 		rx_tid->defrag_waitlist_elem.tqe_prev = NULL;
1572 
1573 #ifdef notyet /* TODO: See if this is required for exception handling */
1574 		/* invalid sequence number */
1575 		peer->tids_last_seq[tid] = 0xffff;
1576 #endif
1577 	}
1578 
1579 	/* Setup default (non-qos) rx tid queue */
1580 	dp_rx_tid_setup_wifi3(peer, DP_NON_QOS_TID, 1, 0);
1581 
1582 	/* Setup rx tid queue for TID 0.
1583 	 * Other queues will be setup on receiving first packet, which will cause
1584 	 * NULL REO queue error
1585 	 */
1586 	dp_rx_tid_setup_wifi3(peer, 0, 1, 0);
1587 
1588 	/*
1589 	 * Setup the rest of TID's to handle LFR
1590 	 */
1591 	dp_peer_setup_remaining_tids(peer);
1592 
1593 	/*
1594 	 * Set security defaults: no PN check, no security. The target may
1595 	 * send a HTT SEC_IND message to overwrite these defaults.
1596 	 */
1597 	peer->security[dp_sec_ucast].sec_type =
1598 		peer->security[dp_sec_mcast].sec_type = cdp_sec_type_none;
1599 }
1600 
1601 /*
1602  * dp_peer_rx_cleanup() – Cleanup receive TID state
1603  * @vdev: Datapath vdev
1604  * @peer: Datapath peer
1605  *
1606  */
1607 void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer)
1608 {
1609 	int tid;
1610 	uint32_t tid_delete_mask = 0;
1611 	for (tid = 0; tid < DP_MAX_TIDS; tid++) {
1612 		struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1613 
1614 		qdf_spin_lock_bh(&rx_tid->tid_lock);
1615 		if (peer->rx_tid[tid].hw_qdesc_vaddr_unaligned != NULL) {
1616 			dp_rx_tid_delete_wifi3(peer, tid);
1617 
1618 			/* Cleanup defrag related resource */
1619 			dp_rx_defrag_waitlist_remove(peer, tid);
1620 			dp_rx_reorder_flush_frag(peer, tid);
1621 
1622 			tid_delete_mask |= (1 << tid);
1623 		}
1624 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
1625 	}
1626 #ifdef notyet /* See if FW can remove queues as part of peer cleanup */
1627 	if (soc->ol_ops->peer_rx_reorder_queue_remove) {
1628 		soc->ol_ops->peer_rx_reorder_queue_remove(vdev->pdev->ctrl_pdev,
1629 			peer->vdev->vdev_id, peer->mac_addr.raw,
1630 			tid_delete_mask);
1631 	}
1632 #endif
1633 	for (tid = 0; tid < DP_MAX_TIDS; tid++)
1634 		qdf_spinlock_destroy(&peer->rx_tid[tid].tid_lock);
1635 }
1636 
1637 /*
1638  * dp_peer_cleanup() – Cleanup peer information
1639  * @vdev: Datapath vdev
1640  * @peer: Datapath peer
1641  *
1642  */
1643 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer)
1644 {
1645 	peer->last_assoc_rcvd = 0;
1646 	peer->last_disassoc_rcvd = 0;
1647 	peer->last_deauth_rcvd = 0;
1648 
1649 	/* cleanup the Rx reorder queues for this peer */
1650 	dp_peer_rx_cleanup(vdev, peer);
1651 }
1652 
1653 /*
1654 * dp_rx_addba_resp_tx_completion_wifi3() – Update Rx Tid State
1655 *
1656 * @peer: Datapath peer handle
1657 * @tid: TID number
1658 * @status: tx completion status
1659 * Return: 0 on success, error code on failure
1660 */
1661 int dp_addba_resp_tx_completion_wifi3(void *peer_handle,
1662 				      uint8_t tid, int status)
1663 {
1664 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
1665 	struct dp_rx_tid *rx_tid = NULL;
1666 
1667 	if (!peer || peer->delete_in_progress) {
1668 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1669 			  "%s: Peer is NULL!\n", __func__);
1670 		return QDF_STATUS_E_FAILURE;
1671 	}
1672 	rx_tid = &peer->rx_tid[tid];
1673 	qdf_spin_lock_bh(&rx_tid->tid_lock);
1674 	if (status) {
1675 		rx_tid->num_addba_rsp_failed++;
1676 		dp_rx_tid_update_wifi3(peer, tid, 1, 0);
1677 		rx_tid->ba_status = DP_RX_BA_INACTIVE;
1678 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
1679 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1680 			  "%s: Rx Tid- %d addba rsp tx completion failed!",
1681 			 __func__, tid);
1682 		return QDF_STATUS_SUCCESS;
1683 	}
1684 
1685 	rx_tid->num_addba_rsp_success++;
1686 	if (rx_tid->ba_status == DP_RX_BA_INACTIVE) {
1687 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
1688 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1689 			  "%s: Rx Tid- %d hw qdesc is not in IN_PROGRESS",
1690 			__func__, tid);
1691 		return QDF_STATUS_E_FAILURE;
1692 	}
1693 
1694 	rx_tid->ba_status = DP_RX_BA_ACTIVE;
1695 	qdf_spin_unlock_bh(&rx_tid->tid_lock);
1696 	return QDF_STATUS_SUCCESS;
1697 }
1698 
1699 /*
1700 * dp_rx_addba_responsesetup_wifi3() – Process ADDBA request from peer
1701 *
1702 * @peer: Datapath peer handle
1703 * @tid: TID number
1704 * @dialogtoken: output dialogtoken
1705 * @statuscode: output dialogtoken
1706 * @buffersize: Output BA window size
1707 * @batimeout: Output BA timeout
1708 */
1709 void dp_addba_responsesetup_wifi3(void *peer_handle, uint8_t tid,
1710 	uint8_t *dialogtoken, uint16_t *statuscode,
1711 	uint16_t *buffersize, uint16_t *batimeout)
1712 {
1713 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
1714 	struct dp_rx_tid *rx_tid = NULL;
1715 
1716 	if (!peer || peer->delete_in_progress) {
1717 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1718 			  "%s: Peer is NULL!\n", __func__);
1719 		return;
1720 	}
1721 	rx_tid = &peer->rx_tid[tid];
1722 	qdf_spin_lock_bh(&rx_tid->tid_lock);
1723 	rx_tid->num_of_addba_resp++;
1724 	/* setup ADDBA response parameters */
1725 	*dialogtoken = rx_tid->dialogtoken;
1726 	*statuscode = rx_tid->statuscode;
1727 	*buffersize = rx_tid->ba_win_size;
1728 	*batimeout  = 0;
1729 	qdf_spin_unlock_bh(&rx_tid->tid_lock);
1730 }
1731 
1732 /*
1733  * dp_addba_requestprocess_wifi3() - Process ADDBA request from peer
1734  *
1735  * @peer: Datapath peer handle
1736  * @dialogtoken: dialogtoken from ADDBA frame
1737  * @tid: TID number
1738  * @batimeout: BA timeout
1739  * @buffersize: BA window size
1740  * @startseqnum: Start seq. number received in BA sequence control
1741  *
1742  * Return: 0 on success, error code on failure
1743  */
1744 int dp_addba_requestprocess_wifi3(void *peer_handle,
1745 				  uint8_t dialogtoken,
1746 				  uint16_t tid, uint16_t batimeout,
1747 				  uint16_t buffersize,
1748 				  uint16_t startseqnum)
1749 {
1750 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
1751 	struct dp_rx_tid *rx_tid = NULL;
1752 
1753 	if (!peer || peer->delete_in_progress) {
1754 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1755 			  "%s: Peer is NULL!\n", __func__);
1756 		return QDF_STATUS_E_FAILURE;
1757 	}
1758 	rx_tid = &peer->rx_tid[tid];
1759 	qdf_spin_lock_bh(&rx_tid->tid_lock);
1760 	rx_tid->num_of_addba_req++;
1761 	if ((rx_tid->ba_status == DP_RX_BA_ACTIVE &&
1762 	     rx_tid->hw_qdesc_vaddr_unaligned != NULL) ||
1763 	    (rx_tid->ba_status == DP_RX_BA_IN_PROGRESS)) {
1764 		dp_rx_tid_update_wifi3(peer, tid, 1, 0);
1765 		rx_tid->ba_status = DP_RX_BA_INACTIVE;
1766 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
1767 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1768 			  "%s: Rx Tid- %d hw qdesc is already setup",
1769 			__func__, tid);
1770 		return QDF_STATUS_E_FAILURE;
1771 	}
1772 
1773 	if (dp_rx_tid_setup_wifi3(peer, tid, buffersize, 0)) {
1774 		rx_tid->ba_status = DP_RX_BA_INACTIVE;
1775 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
1776 		return QDF_STATUS_E_FAILURE;
1777 	}
1778 	rx_tid->ba_status = DP_RX_BA_IN_PROGRESS;
1779 
1780 	rx_tid->ba_win_size = buffersize;
1781 	rx_tid->dialogtoken = dialogtoken;
1782 	rx_tid->startseqnum = startseqnum;
1783 
1784 	if (rx_tid->userstatuscode != IEEE80211_STATUS_SUCCESS)
1785 		rx_tid->statuscode = rx_tid->userstatuscode;
1786 	else
1787 		rx_tid->statuscode = IEEE80211_STATUS_SUCCESS;
1788 
1789 	qdf_spin_unlock_bh(&rx_tid->tid_lock);
1790 
1791 	return QDF_STATUS_SUCCESS;
1792 }
1793 
1794 /*
1795 * dp_set_addba_response() – Set a user defined ADDBA response status code
1796 *
1797 * @peer: Datapath peer handle
1798 * @tid: TID number
1799 * @statuscode: response status code to be set
1800 */
1801 void dp_set_addba_response(void *peer_handle, uint8_t tid,
1802 	uint16_t statuscode)
1803 {
1804 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
1805 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1806 
1807 	qdf_spin_lock_bh(&rx_tid->tid_lock);
1808 	rx_tid->userstatuscode = statuscode;
1809 	qdf_spin_unlock_bh(&rx_tid->tid_lock);
1810 }
1811 
1812 /*
1813 * dp_rx_delba_process_wifi3() – Process DELBA from peer
1814 * @peer: Datapath peer handle
1815 * @tid: TID number
1816 * @reasoncode: Reason code received in DELBA frame
1817 *
1818 * Return: 0 on success, error code on failure
1819 */
1820 int dp_delba_process_wifi3(void *peer_handle,
1821 	int tid, uint16_t reasoncode)
1822 {
1823 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
1824 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1825 
1826 	qdf_spin_lock_bh(&rx_tid->tid_lock);
1827 	if (rx_tid->ba_status == DP_RX_BA_INACTIVE) {
1828 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
1829 		return QDF_STATUS_E_FAILURE;
1830 	}
1831 	/* TODO: See if we can delete the existing REO queue descriptor and
1832 	 * replace with a new one without queue extenstion descript to save
1833 	 * memory
1834 	 */
1835 	rx_tid->num_of_delba_req++;
1836 	dp_rx_tid_update_wifi3(peer, tid, 1, 0);
1837 
1838 	rx_tid->ba_status = DP_RX_BA_INACTIVE;
1839 	qdf_spin_unlock_bh(&rx_tid->tid_lock);
1840 	return 0;
1841 }
1842 
1843 /*
1844  * dp_rx_delba_tx_completion_wifi3() – Send Delba Request
1845  *
1846  * @peer: Datapath peer handle
1847  * @tid: TID number
1848  * @status: tx completion status
1849  * Return: 0 on success, error code on failure
1850  */
1851 
1852 int dp_delba_tx_completion_wifi3(void *peer_handle,
1853 				 uint8_t tid, int status)
1854 {
1855 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
1856 	struct dp_rx_tid *rx_tid = NULL;
1857 
1858 	if (!peer || peer->delete_in_progress) {
1859 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1860 			  "%s: Peer is NULL!", __func__);
1861 		return QDF_STATUS_E_FAILURE;
1862 	}
1863 	rx_tid = &peer->rx_tid[tid];
1864 	qdf_spin_lock_bh(&rx_tid->tid_lock);
1865 	if (status) {
1866 		rx_tid->delba_tx_fail_cnt++;
1867 		if (rx_tid->delba_tx_retry >= DP_MAX_DELBA_RETRY) {
1868 			rx_tid->delba_tx_retry = 0;
1869 			rx_tid->delba_tx_status = 0;
1870 			qdf_spin_unlock_bh(&rx_tid->tid_lock);
1871 		} else {
1872 			rx_tid->delba_tx_retry++;
1873 			rx_tid->delba_tx_status = 1;
1874 			qdf_spin_unlock_bh(&rx_tid->tid_lock);
1875 			peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba(
1876 				peer->vdev->pdev->ctrl_pdev, peer->ctrl_peer,
1877 				peer->mac_addr.raw, tid, peer->vdev->ctrl_vdev);
1878 		}
1879 		return QDF_STATUS_SUCCESS;
1880 	} else {
1881 		rx_tid->delba_tx_success_cnt++;
1882 		rx_tid->delba_tx_retry = 0;
1883 		rx_tid->delba_tx_status = 0;
1884 	}
1885 	qdf_spin_unlock_bh(&rx_tid->tid_lock);
1886 
1887 	return QDF_STATUS_SUCCESS;
1888 }
1889 
1890 void dp_rx_discard(struct dp_vdev *vdev, struct dp_peer *peer, unsigned tid,
1891 	qdf_nbuf_t msdu_list)
1892 {
1893 	while (msdu_list) {
1894 		qdf_nbuf_t msdu = msdu_list;
1895 
1896 		msdu_list = qdf_nbuf_next(msdu_list);
1897 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1898 			"discard rx %pK from partly-deleted peer %pK "
1899 			"(%02x:%02x:%02x:%02x:%02x:%02x)",
1900 			msdu, peer,
1901 			peer->mac_addr.raw[0], peer->mac_addr.raw[1],
1902 			peer->mac_addr.raw[2], peer->mac_addr.raw[3],
1903 			peer->mac_addr.raw[4], peer->mac_addr.raw[5]);
1904 		qdf_nbuf_free(msdu);
1905 	}
1906 }
1907 
1908 
1909 /**
1910  * dp_set_pn_check_wifi3() - enable PN check in REO for security
1911  * @peer: Datapath peer handle
1912  * @vdev: Datapath vdev
1913  * @pdev - data path device instance
1914  * @sec_type - security type
1915  * @rx_pn - Receive pn starting number
1916  *
1917  */
1918 
1919 void
1920 dp_set_pn_check_wifi3(struct cdp_vdev *vdev_handle, struct cdp_peer *peer_handle, enum cdp_sec_type sec_type,  uint32_t *rx_pn)
1921 {
1922 	struct dp_peer *peer =  (struct dp_peer *)peer_handle;
1923 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
1924 	struct dp_pdev *pdev;
1925 	struct dp_soc *soc;
1926 	int i;
1927 	uint8_t pn_size;
1928 	struct hal_reo_cmd_params params;
1929 
1930 	/* preconditions */
1931 	qdf_assert(vdev);
1932 
1933 	pdev = vdev->pdev;
1934 	soc = pdev->soc;
1935 
1936 
1937 	qdf_mem_zero(&params, sizeof(params));
1938 
1939 	params.std.need_status = 1;
1940 	params.u.upd_queue_params.update_pn_valid = 1;
1941 	params.u.upd_queue_params.update_pn_size = 1;
1942 	params.u.upd_queue_params.update_pn = 1;
1943 	params.u.upd_queue_params.update_pn_check_needed = 1;
1944 	params.u.upd_queue_params.update_svld = 1;
1945 	params.u.upd_queue_params.svld = 0;
1946 
1947 	peer->security[dp_sec_ucast].sec_type = sec_type;
1948 
1949 	switch (sec_type) {
1950 	case cdp_sec_type_tkip_nomic:
1951 	case cdp_sec_type_aes_ccmp:
1952 	case cdp_sec_type_aes_ccmp_256:
1953 	case cdp_sec_type_aes_gcmp:
1954 	case cdp_sec_type_aes_gcmp_256:
1955 		params.u.upd_queue_params.pn_check_needed = 1;
1956 		params.u.upd_queue_params.pn_size = 48;
1957 		pn_size = 48;
1958 		break;
1959 	case cdp_sec_type_wapi:
1960 		params.u.upd_queue_params.pn_check_needed = 1;
1961 		params.u.upd_queue_params.pn_size = 128;
1962 		pn_size = 128;
1963 		if (vdev->opmode == wlan_op_mode_ap) {
1964 			params.u.upd_queue_params.pn_even = 1;
1965 			params.u.upd_queue_params.update_pn_even = 1;
1966 		} else {
1967 			params.u.upd_queue_params.pn_uneven = 1;
1968 			params.u.upd_queue_params.update_pn_uneven = 1;
1969 		}
1970 		break;
1971 	default:
1972 		params.u.upd_queue_params.pn_check_needed = 0;
1973 		pn_size = 0;
1974 		break;
1975 	}
1976 
1977 
1978 	for (i = 0; i < DP_MAX_TIDS; i++) {
1979 		struct dp_rx_tid *rx_tid = &peer->rx_tid[i];
1980 		qdf_spin_lock_bh(&rx_tid->tid_lock);
1981 		if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) {
1982 			params.std.addr_lo =
1983 				rx_tid->hw_qdesc_paddr & 0xffffffff;
1984 			params.std.addr_hi =
1985 				(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1986 
1987 			if (sec_type != cdp_sec_type_wapi) {
1988 				params.u.upd_queue_params.update_pn_valid = 0;
1989 			} else {
1990 				/*
1991 				 * Setting PN valid bit for WAPI sec_type,
1992 				 * since WAPI PN has to be started with
1993 				 * predefined value
1994 				 */
1995 				params.u.upd_queue_params.update_pn_valid = 1;
1996 				params.u.upd_queue_params.pn_31_0 = rx_pn[0];
1997 				params.u.upd_queue_params.pn_63_32 = rx_pn[1];
1998 				params.u.upd_queue_params.pn_95_64 = rx_pn[2];
1999 				params.u.upd_queue_params.pn_127_96 = rx_pn[3];
2000 			}
2001 			rx_tid->pn_size = pn_size;
2002 			dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params,
2003 				dp_rx_tid_update_cb, rx_tid);
2004 		} else {
2005 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2006 				"PN Check not setup for TID :%d ", i);
2007 		}
2008 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
2009 	}
2010 }
2011 
2012 
2013 void
2014 dp_rx_sec_ind_handler(void *soc_handle, uint16_t peer_id,
2015 	enum htt_sec_type sec_type, int is_unicast, u_int32_t *michael_key,
2016 	u_int32_t *rx_pn)
2017 {
2018 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
2019 	struct dp_peer *peer;
2020 	int sec_index;
2021 
2022 	peer = dp_peer_find_by_id(soc, peer_id);
2023 	if (!peer) {
2024 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2025 			"Couldn't find peer from ID %d - skipping security inits",
2026 			peer_id);
2027 		return;
2028 	}
2029 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2030 		"sec spec for peer %pK (%02x:%02x:%02x:%02x:%02x:%02x): "
2031 		"%s key of type %d",
2032 		peer,
2033 		peer->mac_addr.raw[0], peer->mac_addr.raw[1],
2034 		peer->mac_addr.raw[2], peer->mac_addr.raw[3],
2035 		peer->mac_addr.raw[4], peer->mac_addr.raw[5],
2036 		is_unicast ? "ucast" : "mcast",
2037 		sec_type);
2038 	sec_index = is_unicast ? dp_sec_ucast : dp_sec_mcast;
2039 	peer->security[sec_index].sec_type = sec_type;
2040 #ifdef notyet /* TODO: See if this is required for defrag support */
2041 	/* michael key only valid for TKIP, but for simplicity,
2042 	 * copy it anyway
2043 	 */
2044 	qdf_mem_copy(
2045 		&peer->security[sec_index].michael_key[0],
2046 		michael_key,
2047 		sizeof(peer->security[sec_index].michael_key));
2048 #ifdef BIG_ENDIAN_HOST
2049 	OL_IF_SWAPBO(peer->security[sec_index].michael_key[0],
2050 				 sizeof(peer->security[sec_index].michael_key));
2051 #endif /* BIG_ENDIAN_HOST */
2052 #endif
2053 
2054 #ifdef notyet /* TODO: Check if this is required for wifi3.0 */
2055 	if (sec_type != htt_sec_type_wapi) {
2056 		qdf_mem_set(peer->tids_last_pn_valid, _EXT_TIDS, 0x00);
2057 	} else {
2058 		for (i = 0; i < DP_MAX_TIDS; i++) {
2059 			/*
2060 			 * Setting PN valid bit for WAPI sec_type,
2061 			 * since WAPI PN has to be started with predefined value
2062 			 */
2063 			peer->tids_last_pn_valid[i] = 1;
2064 			qdf_mem_copy(
2065 				(u_int8_t *) &peer->tids_last_pn[i],
2066 				(u_int8_t *) rx_pn, sizeof(union htt_rx_pn_t));
2067 			peer->tids_last_pn[i].pn128[1] =
2068 				qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[1]);
2069 			peer->tids_last_pn[i].pn128[0] =
2070 				qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[0]);
2071 		}
2072 	}
2073 #endif
2074 	/* TODO: Update HW TID queue with PN check parameters (pn type for
2075 	 * all security types and last pn for WAPI) once REO command API
2076 	 * is available
2077 	 */
2078 }
2079 
2080 #ifndef CONFIG_WIN
2081 /**
2082  * dp_register_peer() - Register peer into physical device
2083  * @pdev - data path device instance
2084  * @sta_desc - peer description
2085  *
2086  * Register peer into physical device
2087  *
2088  * Return: QDF_STATUS_SUCCESS registration success
2089  *         QDF_STATUS_E_FAULT peer not found
2090  */
2091 QDF_STATUS dp_register_peer(struct cdp_pdev *pdev_handle,
2092 		struct ol_txrx_desc_type *sta_desc)
2093 {
2094 	struct dp_peer *peer;
2095 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2096 
2097 	peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev,
2098 			sta_desc->sta_id);
2099 	if (!peer)
2100 		return QDF_STATUS_E_FAULT;
2101 
2102 	qdf_spin_lock_bh(&peer->peer_info_lock);
2103 	peer->state = OL_TXRX_PEER_STATE_CONN;
2104 	qdf_spin_unlock_bh(&peer->peer_info_lock);
2105 
2106 	return QDF_STATUS_SUCCESS;
2107 }
2108 
2109 /**
2110  * dp_clear_peer() - remove peer from physical device
2111  * @pdev - data path device instance
2112  * @sta_id - local peer id
2113  *
2114  * remove peer from physical device
2115  *
2116  * Return: QDF_STATUS_SUCCESS registration success
2117  *         QDF_STATUS_E_FAULT peer not found
2118  */
2119 QDF_STATUS dp_clear_peer(struct cdp_pdev *pdev_handle, uint8_t local_id)
2120 {
2121 	struct dp_peer *peer;
2122 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2123 
2124 	peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev, local_id);
2125 	if (!peer)
2126 		return QDF_STATUS_E_FAULT;
2127 
2128 	qdf_spin_lock_bh(&peer->peer_info_lock);
2129 	peer->state = OL_TXRX_PEER_STATE_DISC;
2130 	qdf_spin_unlock_bh(&peer->peer_info_lock);
2131 
2132 	return QDF_STATUS_SUCCESS;
2133 }
2134 
2135 /**
2136  * dp_find_peer_by_addr_and_vdev() - Find peer by peer mac address within vdev
2137  * @pdev - data path device instance
2138  * @vdev - virtual interface instance
2139  * @peer_addr - peer mac address
2140  * @peer_id - local peer id with target mac address
2141  *
2142  * Find peer by peer mac address within vdev
2143  *
2144  * Return: peer instance void pointer
2145  *         NULL cannot find target peer
2146  */
2147 void *dp_find_peer_by_addr_and_vdev(struct cdp_pdev *pdev_handle,
2148 		struct cdp_vdev *vdev_handle,
2149 		uint8_t *peer_addr, uint8_t *local_id)
2150 {
2151 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2152 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
2153 	struct dp_peer *peer;
2154 
2155 	DP_TRACE(INFO, "vdev %pK peer_addr %pK", vdev, peer_addr);
2156 	peer = dp_peer_find_hash_find(pdev->soc, peer_addr, 0, 0);
2157 	DP_TRACE(INFO, "peer %pK vdev %pK", peer, vdev);
2158 
2159 	if (!peer)
2160 		return NULL;
2161 
2162 	if (peer->vdev != vdev) {
2163 		qdf_atomic_dec(&peer->ref_cnt);
2164 		return NULL;
2165 	}
2166 
2167 	*local_id = peer->local_id;
2168 	DP_TRACE(INFO, "peer %pK vdev %pK local id %d", peer, vdev, *local_id);
2169 
2170 	/* ref_cnt is incremented inside dp_peer_find_hash_find().
2171 	 * Decrement it here.
2172 	 */
2173 	qdf_atomic_dec(&peer->ref_cnt);
2174 
2175 	return peer;
2176 }
2177 
2178 /**
2179  * dp_local_peer_id() - Find local peer id within peer instance
2180  * @peer - peer instance
2181  *
2182  * Find local peer id within peer instance
2183  *
2184  * Return: local peer id
2185  */
2186 uint16_t dp_local_peer_id(void *peer)
2187 {
2188 	return ((struct dp_peer *)peer)->local_id;
2189 }
2190 
2191 /**
2192  * dp_peer_find_by_local_id() - Find peer by local peer id
2193  * @pdev - data path device instance
2194  * @local_peer_id - local peer id want to find
2195  *
2196  * Find peer by local peer id within physical device
2197  *
2198  * Return: peer instance void pointer
2199  *         NULL cannot find target peer
2200  */
2201 void *dp_peer_find_by_local_id(struct cdp_pdev *pdev_handle, uint8_t local_id)
2202 {
2203 	struct dp_peer *peer;
2204 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2205 
2206 	if (local_id >= OL_TXRX_NUM_LOCAL_PEER_IDS) {
2207 		QDF_TRACE_DEBUG_RL(QDF_MODULE_ID_DP,
2208 				   "Incorrect local id %u", local_id);
2209 		return NULL;
2210 	}
2211 	qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
2212 	peer = pdev->local_peer_ids.map[local_id];
2213 	qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
2214 	DP_TRACE(DEBUG, "peer %pK local id %d", peer, local_id);
2215 	return peer;
2216 }
2217 
2218 /**
2219  * dp_peer_state_update() - update peer local state
2220  * @pdev - data path device instance
2221  * @peer_addr - peer mac address
2222  * @state - new peer local state
2223  *
2224  * update peer local state
2225  *
2226  * Return: QDF_STATUS_SUCCESS registration success
2227  */
2228 QDF_STATUS dp_peer_state_update(struct cdp_pdev *pdev_handle, uint8_t *peer_mac,
2229 		enum ol_txrx_peer_state state)
2230 {
2231 	struct dp_peer *peer;
2232 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2233 
2234 	peer =  dp_peer_find_hash_find(pdev->soc, peer_mac, 0, DP_VDEV_ALL);
2235 	if (NULL == peer) {
2236 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2237 		"Failed to find peer for: [%pM]", peer_mac);
2238 		return QDF_STATUS_E_FAILURE;
2239 	}
2240 	peer->state = state;
2241 
2242 	DP_TRACE(INFO, "peer %pK state %d", peer, peer->state);
2243 	/* ref_cnt is incremented inside dp_peer_find_hash_find().
2244 	 * Decrement it here.
2245 	 */
2246 	qdf_atomic_dec(&peer->ref_cnt);
2247 
2248 	return QDF_STATUS_SUCCESS;
2249 }
2250 
2251 /**
2252  * dp_get_vdevid() - Get virtual interface id which peer registered
2253  * @peer - peer instance
2254  * @vdev_id - virtual interface id which peer registered
2255  *
2256  * Get virtual interface id which peer registered
2257  *
2258  * Return: QDF_STATUS_SUCCESS registration success
2259  */
2260 QDF_STATUS dp_get_vdevid(void *peer_handle, uint8_t *vdev_id)
2261 {
2262 	struct dp_peer *peer = peer_handle;
2263 
2264 	DP_TRACE(INFO, "peer %pK vdev %pK vdev id %d",
2265 			peer, peer->vdev, peer->vdev->vdev_id);
2266 	*vdev_id = peer->vdev->vdev_id;
2267 	return QDF_STATUS_SUCCESS;
2268 }
2269 
2270 struct cdp_vdev *dp_get_vdev_by_sta_id(struct cdp_pdev *pdev_handle,
2271 				       uint8_t sta_id)
2272 {
2273 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2274 	struct dp_peer *peer = NULL;
2275 
2276 	if (sta_id >= WLAN_MAX_STA_COUNT) {
2277 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2278 			  "Invalid sta id passed");
2279 		return NULL;
2280 	}
2281 
2282 	if (!pdev) {
2283 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2284 			  "PDEV not found for sta_id [%d]", sta_id);
2285 		return NULL;
2286 	}
2287 
2288 	peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev, sta_id);
2289 	if (!peer) {
2290 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2291 			  "PEER [%d] not found", sta_id);
2292 		return NULL;
2293 	}
2294 
2295 	return (struct cdp_vdev *)peer->vdev;
2296 }
2297 
2298 /**
2299  * dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs
2300  * @peer - peer instance
2301  *
2302  * Get virtual interface instance which peer belongs
2303  *
2304  * Return: virtual interface instance pointer
2305  *         NULL in case cannot find
2306  */
2307 struct cdp_vdev *dp_get_vdev_for_peer(void *peer_handle)
2308 {
2309 	struct dp_peer *peer = peer_handle;
2310 
2311 	DP_TRACE(INFO, "peer %pK vdev %pK", peer, peer->vdev);
2312 	return (struct cdp_vdev *)peer->vdev;
2313 }
2314 
2315 /**
2316  * dp_peer_get_peer_mac_addr() - Get peer mac address
2317  * @peer - peer instance
2318  *
2319  * Get peer mac address
2320  *
2321  * Return: peer mac address pointer
2322  *         NULL in case cannot find
2323  */
2324 uint8_t *dp_peer_get_peer_mac_addr(void *peer_handle)
2325 {
2326 	struct dp_peer *peer = peer_handle;
2327 	uint8_t *mac;
2328 
2329 	mac = peer->mac_addr.raw;
2330 	DP_TRACE(INFO, "peer %pK mac 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x",
2331 		peer, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
2332 	return peer->mac_addr.raw;
2333 }
2334 
2335 /**
2336  * dp_get_peer_state() - Get local peer state
2337  * @peer - peer instance
2338  *
2339  * Get local peer state
2340  *
2341  * Return: peer status
2342  */
2343 int dp_get_peer_state(void *peer_handle)
2344 {
2345 	struct dp_peer *peer = peer_handle;
2346 
2347 	DP_TRACE(DEBUG, "peer %pK stats %d", peer, peer->state);
2348 	return peer->state;
2349 }
2350 
2351 /**
2352  * dp_get_last_mgmt_timestamp() - get timestamp of last mgmt frame
2353  * @pdev: pdev handle
2354  * @ppeer_addr: peer mac addr
2355  * @subtype: management frame type
2356  * @timestamp: last timestamp
2357  *
2358  * Return: true if timestamp is retrieved for valid peer else false
2359  */
2360 bool dp_get_last_mgmt_timestamp(struct cdp_pdev *ppdev, u8 *peer_addr,
2361 				u8 subtype, qdf_time_t *timestamp)
2362 {
2363 	union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
2364 	unsigned int index;
2365 	struct dp_peer *peer;
2366 	struct dp_soc *soc;
2367 
2368 	bool ret = false;
2369 	struct dp_pdev *pdev = (struct dp_pdev *)ppdev;
2370 
2371 	soc = pdev->soc;
2372 	qdf_mem_copy(
2373 		&local_mac_addr_aligned.raw[0],
2374 		peer_addr, DP_MAC_ADDR_LEN);
2375 	mac_addr = &local_mac_addr_aligned;
2376 
2377 	index = dp_peer_find_hash_index(soc, mac_addr);
2378 
2379 	qdf_spin_lock_bh(&soc->peer_ref_mutex);
2380 	TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) {
2381 #if ATH_SUPPORT_WRAP
2382 		/* ProxySTA may have multiple BSS peer with same MAC address,
2383 		 * modified find will take care of finding the correct BSS peer.
2384 		 */
2385 		if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 &&
2386 		    (peer->vdev->vdev_id == DP_VDEV_ALL)) {
2387 #else
2388 		if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0) {
2389 #endif
2390 			/* found it */
2391 			switch (subtype) {
2392 			case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2393 				*timestamp = peer->last_assoc_rcvd;
2394 				ret = true;
2395 				break;
2396 			case IEEE80211_FC0_SUBTYPE_DISASSOC:
2397 			case IEEE80211_FC0_SUBTYPE_DEAUTH:
2398 				*timestamp = peer->last_disassoc_rcvd;
2399 				ret = true;
2400 				break;
2401 			default:
2402 				break;
2403 			}
2404 			qdf_spin_unlock_bh(&soc->peer_ref_mutex);
2405 			return ret;
2406 		}
2407 	}
2408 	qdf_spin_unlock_bh(&soc->peer_ref_mutex);
2409 	return false;		/*failure*/
2410 }
2411 
2412 /**
2413  * dp_update_last_mgmt_timestamp() - set timestamp of last mgmt frame
2414  * @pdev: pdev handle
2415  * @ppeer_addr: peer mac addr
2416  * @timestamp: time to be set
2417  * @subtype: management frame type
2418  *
2419  * Return: true if timestamp is updated for valid peer else false
2420  */
2421 
2422 bool dp_update_last_mgmt_timestamp(struct cdp_pdev *ppdev, u8 *peer_addr,
2423 				   qdf_time_t timestamp, u8 subtype)
2424 {
2425 	union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
2426 	unsigned int index;
2427 	struct dp_peer *peer;
2428 	struct dp_soc *soc;
2429 
2430 	bool ret = false;
2431 	struct dp_pdev *pdev = (struct dp_pdev *)ppdev;
2432 
2433 	soc = pdev->soc;
2434 	qdf_mem_copy(&local_mac_addr_aligned.raw[0],
2435 		     peer_addr, DP_MAC_ADDR_LEN);
2436 	mac_addr = &local_mac_addr_aligned;
2437 
2438 	index = dp_peer_find_hash_index(soc, mac_addr);
2439 
2440 	qdf_spin_lock_bh(&soc->peer_ref_mutex);
2441 	TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) {
2442 #if ATH_SUPPORT_WRAP
2443 		/* ProxySTA may have multiple BSS peer with same MAC address,
2444 		 * modified find will take care of finding the correct BSS peer.
2445 		 */
2446 		if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 &&
2447 		    (peer->vdev->vdev_id == DP_VDEV_ALL)) {
2448 #else
2449 		if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0) {
2450 #endif
2451 			/* found it */
2452 			switch (subtype) {
2453 			case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2454 				peer->last_assoc_rcvd = timestamp;
2455 				ret = true;
2456 				break;
2457 			case IEEE80211_FC0_SUBTYPE_DISASSOC:
2458 			case IEEE80211_FC0_SUBTYPE_DEAUTH:
2459 				peer->last_disassoc_rcvd = timestamp;
2460 				ret = true;
2461 				break;
2462 			default:
2463 				break;
2464 			}
2465 			qdf_spin_unlock_bh(&soc->peer_ref_mutex);
2466 			return ret;
2467 		}
2468 	}
2469 	qdf_spin_unlock_bh(&soc->peer_ref_mutex);
2470 	return false;		/*failure*/
2471 }
2472 
2473 /**
2474  * dp_local_peer_id_pool_init() - local peer id pool alloc for physical device
2475  * @pdev - data path device instance
2476  *
2477  * local peer id pool alloc for physical device
2478  *
2479  * Return: none
2480  */
2481 void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2482 {
2483 	int i;
2484 
2485 	/* point the freelist to the first ID */
2486 	pdev->local_peer_ids.freelist = 0;
2487 
2488 	/* link each ID to the next one */
2489 	for (i = 0; i < OL_TXRX_NUM_LOCAL_PEER_IDS; i++) {
2490 		pdev->local_peer_ids.pool[i] = i + 1;
2491 		pdev->local_peer_ids.map[i] = NULL;
2492 	}
2493 
2494 	/* link the last ID to itself, to mark the end of the list */
2495 	i = OL_TXRX_NUM_LOCAL_PEER_IDS;
2496 	pdev->local_peer_ids.pool[i] = i;
2497 
2498 	qdf_spinlock_create(&pdev->local_peer_ids.lock);
2499 	DP_TRACE(INFO, "Peer pool init");
2500 }
2501 
2502 /**
2503  * dp_local_peer_id_alloc() - allocate local peer id
2504  * @pdev - data path device instance
2505  * @peer - new peer instance
2506  *
2507  * allocate local peer id
2508  *
2509  * Return: none
2510  */
2511 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2512 {
2513 	int i;
2514 
2515 	qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
2516 	i = pdev->local_peer_ids.freelist;
2517 	if (pdev->local_peer_ids.pool[i] == i) {
2518 		/* the list is empty, except for the list-end marker */
2519 		peer->local_id = OL_TXRX_INVALID_LOCAL_PEER_ID;
2520 	} else {
2521 		/* take the head ID and advance the freelist */
2522 		peer->local_id = i;
2523 		pdev->local_peer_ids.freelist = pdev->local_peer_ids.pool[i];
2524 		pdev->local_peer_ids.map[i] = peer;
2525 	}
2526 	qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
2527 	DP_TRACE(INFO, "peer %pK, local id %d", peer, peer->local_id);
2528 }
2529 
2530 /**
2531  * dp_local_peer_id_free() - remove local peer id
2532  * @pdev - data path device instance
2533  * @peer - peer instance should be removed
2534  *
2535  * remove local peer id
2536  *
2537  * Return: none
2538  */
2539 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2540 {
2541 	int i = peer->local_id;
2542 	if ((i == OL_TXRX_INVALID_LOCAL_PEER_ID) ||
2543 	    (i >= OL_TXRX_NUM_LOCAL_PEER_IDS)) {
2544 		return;
2545 	}
2546 
2547 	/* put this ID on the head of the freelist */
2548 	qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
2549 	pdev->local_peer_ids.pool[i] = pdev->local_peer_ids.freelist;
2550 	pdev->local_peer_ids.freelist = i;
2551 	pdev->local_peer_ids.map[i] = NULL;
2552 	qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
2553 }
2554 #endif
2555 
2556 /**
2557  * dp_get_peer_mac_addr_frm_id(): get mac address of the peer
2558  * @soc_handle: DP SOC handle
2559  * @peer_id:peer_id of the peer
2560  *
2561  * return: vdev_id of the vap
2562  */
2563 uint8_t dp_get_peer_mac_addr_frm_id(struct cdp_soc_t *soc_handle,
2564 		uint16_t peer_id, uint8_t *peer_mac)
2565 {
2566 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
2567 	struct dp_peer *peer;
2568 
2569 	peer = dp_peer_find_by_id(soc, peer_id);
2570 
2571 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
2572 			"soc %pK peer_id %d", soc, peer_id);
2573 
2574 	if (!peer) {
2575 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2576 				"peer not found ");
2577 		return CDP_INVALID_VDEV_ID;
2578 	}
2579 
2580 	qdf_mem_copy(peer_mac, peer->mac_addr.raw, 6);
2581 	return peer->vdev->vdev_id;
2582 }
2583 
2584 /**
2585  * dp_peer_rxtid_stats: Retried Rx TID (REO queue) stats from HW
2586  * @peer: DP peer handle
2587  * @dp_stats_cmd_cb: REO command callback function
2588  * @cb_ctxt: Callback context
2589  *
2590  * Return: none
2591  */
2592 void dp_peer_rxtid_stats(struct dp_peer *peer, void (*dp_stats_cmd_cb),
2593 			void *cb_ctxt)
2594 {
2595 	struct dp_soc *soc = peer->vdev->pdev->soc;
2596 	struct hal_reo_cmd_params params;
2597 	int i;
2598 
2599 	if (!dp_stats_cmd_cb)
2600 		return;
2601 
2602 	qdf_mem_zero(&params, sizeof(params));
2603 	for (i = 0; i < DP_MAX_TIDS; i++) {
2604 		struct dp_rx_tid *rx_tid = &peer->rx_tid[i];
2605 		if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) {
2606 			params.std.need_status = 1;
2607 			params.std.addr_lo =
2608 				rx_tid->hw_qdesc_paddr & 0xffffffff;
2609 			params.std.addr_hi =
2610 				(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
2611 
2612 			if (cb_ctxt) {
2613 				dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS,
2614 					&params, dp_stats_cmd_cb, cb_ctxt);
2615 			} else {
2616 				dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS,
2617 					&params, dp_stats_cmd_cb, rx_tid);
2618 			}
2619 
2620 			/* Flush REO descriptor from HW cache to update stats
2621 			 * in descriptor memory. This is to help debugging */
2622 			qdf_mem_zero(&params, sizeof(params));
2623 			params.std.need_status = 0;
2624 			params.std.addr_lo =
2625 				rx_tid->hw_qdesc_paddr & 0xffffffff;
2626 			params.std.addr_hi =
2627 				(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
2628 			params.u.fl_cache_params.flush_no_inval = 1;
2629 			dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, &params, NULL,
2630 				NULL);
2631 		}
2632 	}
2633 }
2634 
2635 void dp_set_michael_key(struct cdp_peer *peer_handle,
2636 			bool is_unicast, uint32_t *key)
2637 {
2638 	struct dp_peer *peer =  (struct dp_peer *)peer_handle;
2639 	uint8_t sec_index = is_unicast ? 1 : 0;
2640 
2641 	if (!peer) {
2642 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2643 			  "peer not found ");
2644 		return;
2645 	}
2646 
2647 	qdf_mem_copy(&peer->security[sec_index].michael_key[0],
2648 		     key, IEEE80211_WEP_MICLEN);
2649 }
2650