xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_peer.c (revision 3149adf58a329e17232a4c0e58d460d025edd55a)
1 /*
2  * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <qdf_types.h>
20 #include <qdf_lock.h>
21 #include "dp_htt.h"
22 #include "dp_types.h"
23 #include "dp_internal.h"
24 #include "dp_peer.h"
25 #include <hal_api.h>
26 #include <hal_reo.h>
27 #ifdef CONFIG_MCL
28 #include <cds_ieee80211_common.h>
29 #include <cds_api.h>
30 #endif
31 #include <cdp_txrx_handle.h>
32 #include <wlan_cfg.h>
33 
34 #ifdef DP_LFR
35 static inline void
36 dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params,
37 					uint8_t valid)
38 {
39 	params->u.upd_queue_params.update_svld = 1;
40 	params->u.upd_queue_params.svld = valid;
41 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
42 		"%s: Setting SSN valid bit to %d\n",
43 				__func__, valid);
44 }
45 #else
46 static inline void
47 dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params,
48 					uint8_t valid) {};
49 #endif
50 
51 static inline int dp_peer_find_mac_addr_cmp(
52 	union dp_align_mac_addr *mac_addr1,
53 	union dp_align_mac_addr *mac_addr2)
54 {
55 	return !((mac_addr1->align4.bytes_abcd == mac_addr2->align4.bytes_abcd)
56 		/*
57 		 * Intentionally use & rather than &&.
58 		 * because the operands are binary rather than generic boolean,
59 		 * the functionality is equivalent.
60 		 * Using && has the advantage of short-circuited evaluation,
61 		 * but using & has the advantage of no conditional branching,
62 		 * which is a more significant benefit.
63 		 */
64 		&
65 		(mac_addr1->align4.bytes_ef == mac_addr2->align4.bytes_ef));
66 }
67 
68 static int dp_peer_find_map_attach(struct dp_soc *soc)
69 {
70 	uint32_t max_peers, peer_map_size;
71 
72 	/* allocate the peer ID -> peer object map */
73 	max_peers = wlan_cfg_max_peer_id(soc->wlan_cfg_ctx) + 1;
74 	soc->max_peers = max_peers;
75 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
76 		"\n<=== cfg max peer id %d ====>\n", max_peers);
77 	peer_map_size = max_peers * sizeof(soc->peer_id_to_obj_map[0]);
78 	soc->peer_id_to_obj_map = qdf_mem_malloc(peer_map_size);
79 	if (!soc->peer_id_to_obj_map) {
80 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
81 			"%s: peer map memory allocation failed\n", __func__);
82 		return QDF_STATUS_E_NOMEM;
83 	}
84 
85 	/*
86 	 * The peer_id_to_obj_map doesn't really need to be initialized,
87 	 * since elements are only used after they have been individually
88 	 * initialized.
89 	 * However, it is convenient for debugging to have all elements
90 	 * that are not in use set to 0.
91 	 */
92 	qdf_mem_zero(soc->peer_id_to_obj_map, peer_map_size);
93 	return 0; /* success */
94 }
95 
96 static int dp_log2_ceil(unsigned value)
97 {
98 	unsigned tmp = value;
99 	int log2 = -1;
100 
101 	while (tmp) {
102 		log2++;
103 		tmp >>= 1;
104 	}
105 	if (1 << log2 != value)
106 		log2++;
107 	return log2;
108 }
109 
110 static int dp_peer_find_add_id_to_obj(
111 	struct dp_peer *peer,
112 	uint16_t peer_id)
113 {
114 	int i;
115 
116 	for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
117 		if (peer->peer_ids[i] == HTT_INVALID_PEER) {
118 			peer->peer_ids[i] = peer_id;
119 			return 0; /* success */
120 		}
121 	}
122 	return QDF_STATUS_E_FAILURE; /* failure */
123 }
124 
125 #define DP_PEER_HASH_LOAD_MULT  2
126 #define DP_PEER_HASH_LOAD_SHIFT 0
127 
128 #define DP_AST_HASH_LOAD_MULT  2
129 #define DP_AST_HASH_LOAD_SHIFT 0
130 
131 static int dp_peer_find_hash_attach(struct dp_soc *soc)
132 {
133 	int i, hash_elems, log2;
134 
135 	/* allocate the peer MAC address -> peer object hash table */
136 	hash_elems = wlan_cfg_max_peer_id(soc->wlan_cfg_ctx) + 1;
137 	hash_elems *= DP_PEER_HASH_LOAD_MULT;
138 	hash_elems >>= DP_PEER_HASH_LOAD_SHIFT;
139 	log2 = dp_log2_ceil(hash_elems);
140 	hash_elems = 1 << log2;
141 
142 	soc->peer_hash.mask = hash_elems - 1;
143 	soc->peer_hash.idx_bits = log2;
144 	/* allocate an array of TAILQ peer object lists */
145 	soc->peer_hash.bins = qdf_mem_malloc(
146 		hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q, dp_peer)));
147 	if (!soc->peer_hash.bins)
148 		return QDF_STATUS_E_NOMEM;
149 
150 	for (i = 0; i < hash_elems; i++)
151 		TAILQ_INIT(&soc->peer_hash.bins[i]);
152 
153 	return 0;
154 }
155 
156 static void dp_peer_find_hash_detach(struct dp_soc *soc)
157 {
158 	qdf_mem_free(soc->peer_hash.bins);
159 }
160 
161 static inline unsigned dp_peer_find_hash_index(struct dp_soc *soc,
162 	union dp_align_mac_addr *mac_addr)
163 {
164 	unsigned index;
165 
166 	index =
167 		mac_addr->align2.bytes_ab ^
168 		mac_addr->align2.bytes_cd ^
169 		mac_addr->align2.bytes_ef;
170 	index ^= index >> soc->peer_hash.idx_bits;
171 	index &= soc->peer_hash.mask;
172 	return index;
173 }
174 
175 
176 void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer)
177 {
178 	unsigned index;
179 
180 	index = dp_peer_find_hash_index(soc, &peer->mac_addr);
181 	qdf_spin_lock_bh(&soc->peer_ref_mutex);
182 	/*
183 	 * It is important to add the new peer at the tail of the peer list
184 	 * with the bin index.  Together with having the hash_find function
185 	 * search from head to tail, this ensures that if two entries with
186 	 * the same MAC address are stored, the one added first will be
187 	 * found first.
188 	 */
189 	TAILQ_INSERT_TAIL(&soc->peer_hash.bins[index], peer, hash_list_elem);
190 	qdf_spin_unlock_bh(&soc->peer_ref_mutex);
191 }
192 
193 #ifdef FEATURE_WDS
194 /*
195  * dp_peer_ast_hash_attach() - Allocate and initialize AST Hash Table
196  * @soc: SoC handle
197  *
198  * Return: None
199  */
200 static int dp_peer_ast_hash_attach(struct dp_soc *soc)
201 {
202 	int i, hash_elems, log2;
203 
204 	hash_elems = ((WLAN_UMAC_PSOC_MAX_PEERS * DP_AST_HASH_LOAD_MULT) >>
205 		DP_AST_HASH_LOAD_SHIFT);
206 
207 	log2 = dp_log2_ceil(hash_elems);
208 	hash_elems = 1 << log2;
209 
210 	soc->ast_hash.mask = hash_elems - 1;
211 	soc->ast_hash.idx_bits = log2;
212 
213 	/* allocate an array of TAILQ peer object lists */
214 	soc->ast_hash.bins = qdf_mem_malloc(
215 		hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q,
216 				dp_ast_entry)));
217 
218 	if (!soc->ast_hash.bins)
219 		return QDF_STATUS_E_NOMEM;
220 
221 	for (i = 0; i < hash_elems; i++)
222 		TAILQ_INIT(&soc->ast_hash.bins[i]);
223 
224 	return 0;
225 }
226 
227 /*
228  * dp_peer_ast_hash_detach() - Free AST Hash table
229  * @soc: SoC handle
230  *
231  * Return: None
232  */
233 static void dp_peer_ast_hash_detach(struct dp_soc *soc)
234 {
235 	qdf_mem_free(soc->ast_hash.bins);
236 }
237 
238 /*
239  * dp_peer_ast_hash_index() - Compute the AST hash from MAC address
240  * @soc: SoC handle
241  *
242  * Return: AST hash
243  */
244 static inline uint32_t dp_peer_ast_hash_index(struct dp_soc *soc,
245 	union dp_align_mac_addr *mac_addr)
246 {
247 	uint32_t index;
248 
249 	index =
250 		mac_addr->align2.bytes_ab ^
251 		mac_addr->align2.bytes_cd ^
252 		mac_addr->align2.bytes_ef;
253 	index ^= index >> soc->ast_hash.idx_bits;
254 	index &= soc->ast_hash.mask;
255 	return index;
256 }
257 
258 /*
259  * dp_peer_ast_hash_add() - Add AST entry into hash table
260  * @soc: SoC handle
261  *
262  * This function adds the AST entry into SoC AST hash table
263  * It assumes caller has taken the ast lock to protect the access to this table
264  *
265  * Return: None
266  */
267 static inline void dp_peer_ast_hash_add(struct dp_soc *soc,
268 		struct dp_ast_entry *ase)
269 {
270 	uint32_t index;
271 
272 	index = dp_peer_ast_hash_index(soc, &ase->mac_addr);
273 	TAILQ_INSERT_TAIL(&soc->ast_hash.bins[index], ase, hash_list_elem);
274 }
275 
276 /*
277  * dp_peer_ast_hash_remove() - Look up and remove AST entry from hash table
278  * @soc: SoC handle
279  *
280  * This function removes the AST entry from soc AST hash table
281  * It assumes caller has taken the ast lock to protect the access to this table
282  *
283  * Return: None
284  */
285 static inline void dp_peer_ast_hash_remove(struct dp_soc *soc,
286 		struct dp_ast_entry *ase)
287 {
288 	unsigned index;
289 	struct dp_ast_entry *tmpase;
290 	int found = 0;
291 
292 	index = dp_peer_ast_hash_index(soc, &ase->mac_addr);
293 	/* Check if tail is not empty before delete*/
294 	QDF_ASSERT(!TAILQ_EMPTY(&soc->ast_hash.bins[index]));
295 
296 	TAILQ_FOREACH(tmpase, &soc->ast_hash.bins[index], hash_list_elem) {
297 		if (tmpase == ase) {
298 			found = 1;
299 			break;
300 		}
301 	}
302 
303 	QDF_ASSERT(found);
304 	TAILQ_REMOVE(&soc->ast_hash.bins[index], ase, hash_list_elem);
305 }
306 
307 /*
308  * dp_peer_ast_hash_find() - Find AST entry by MAC address
309  * @soc: SoC handle
310  *
311  * It assumes caller has taken the ast lock to protect the access to
312  * AST hash table
313  *
314  * Return: AST entry
315  */
316 struct dp_ast_entry *dp_peer_ast_hash_find(struct dp_soc *soc,
317 						uint8_t *ast_mac_addr)
318 {
319 	union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
320 	unsigned index;
321 	struct dp_ast_entry *ase;
322 
323 	qdf_mem_copy(&local_mac_addr_aligned.raw[0],
324 			ast_mac_addr, DP_MAC_ADDR_LEN);
325 	mac_addr = &local_mac_addr_aligned;
326 
327 	index = dp_peer_ast_hash_index(soc, mac_addr);
328 	TAILQ_FOREACH(ase, &soc->ast_hash.bins[index], hash_list_elem) {
329 		if (dp_peer_find_mac_addr_cmp(mac_addr, &ase->mac_addr) == 0) {
330 			return ase;
331 		}
332 	}
333 
334 	return NULL;
335 }
336 
337 /*
338  * dp_peer_map_ast() - Map the ast entry with HW AST Index
339  * @soc: SoC handle
340  * @peer: peer to which ast node belongs
341  * @mac_addr: MAC address of ast node
342  * @hw_peer_id: HW AST Index returned by target in peer map event
343  * @vdev_id: vdev id for VAP to which the peer belongs to
344  *
345  * Return: None
346  */
347 static inline void dp_peer_map_ast(struct dp_soc *soc,
348 	struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id,
349 	uint8_t vdev_id)
350 {
351 	struct dp_ast_entry *ast_entry;
352 	enum cdp_txrx_ast_entry_type peer_type = CDP_TXRX_AST_TYPE_STATIC;
353 	bool ast_entry_found = FALSE;
354 
355 	if (!peer) {
356 		return;
357 	}
358 
359 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
360 		"%s: peer %pK ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x\n",
361 		__func__, peer, hw_peer_id, vdev_id, mac_addr[0],
362 		mac_addr[1], mac_addr[2], mac_addr[3],
363 		mac_addr[4], mac_addr[5]);
364 
365 	qdf_spin_lock_bh(&soc->ast_lock);
366 	TAILQ_FOREACH(ast_entry, &peer->ast_entry_list, ase_list_elem) {
367 		if (!(qdf_mem_cmp(mac_addr, ast_entry->mac_addr.raw,
368 				DP_MAC_ADDR_LEN))) {
369 			ast_entry->ast_idx = hw_peer_id;
370 			soc->ast_table[hw_peer_id] = ast_entry;
371 			ast_entry->is_active = TRUE;
372 			peer_type = ast_entry->type;
373 			ast_entry_found = TRUE;
374 		}
375 	}
376 
377 	if (ast_entry_found || (peer->vdev && peer->vdev->proxysta_vdev)) {
378 		if (soc->cdp_soc.ol_ops->peer_map_event) {
379 			soc->cdp_soc.ol_ops->peer_map_event(
380 			soc->ctrl_psoc, peer->peer_ids[0],
381 			hw_peer_id, vdev_id,
382 			mac_addr, peer_type);
383 		}
384 	} else {
385 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
386 			"AST entry not found\n");
387 	}
388 
389 	qdf_spin_unlock_bh(&soc->ast_lock);
390 	return;
391 }
392 
393 /*
394  * dp_peer_add_ast() - Allocate and add AST entry into peer list
395  * @soc: SoC handle
396  * @peer: peer to which ast node belongs
397  * @mac_addr: MAC address of ast node
398  * @is_self: Is this base AST entry with peer mac address
399  *
400  * This API is used by WDS source port learning funtion to
401  * add a new AST entry into peer AST list
402  *
403  * Return: 0 if new entry is allocated,
404  *        -1 if entry add failed
405  */
406 int dp_peer_add_ast(struct dp_soc *soc,
407 			struct dp_peer *peer,
408 			uint8_t *mac_addr,
409 			enum cdp_txrx_ast_entry_type type,
410 			uint32_t flags)
411 {
412 	struct dp_ast_entry *ast_entry;
413 	struct dp_vdev *vdev = peer->vdev;
414 	uint8_t next_node_mac[6];
415 	int  ret = -1;
416 
417 	if (!vdev) {
418 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
419 			FL("Peers vdev is NULL"));
420 		QDF_ASSERT(0);
421 		return ret;
422 	}
423 
424 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
425 		"%s: peer %pK mac %02x:%02x:%02x:%02x:%02x:%02x\n",
426 		__func__, peer, mac_addr[0], mac_addr[1], mac_addr[2],
427 		mac_addr[3], mac_addr[4], mac_addr[5]);
428 
429 	qdf_spin_lock_bh(&soc->ast_lock);
430 
431 	/* If AST entry already exists , just return from here */
432 	ast_entry = dp_peer_ast_hash_find(soc, mac_addr);
433 
434 	if (ast_entry) {
435 		if (ast_entry->type == CDP_TXRX_AST_TYPE_MEC)
436 			ast_entry->is_active = TRUE;
437 
438 		qdf_spin_unlock_bh(&soc->ast_lock);
439 		return 0;
440 	}
441 
442 	ast_entry = (struct dp_ast_entry *)
443 			qdf_mem_malloc(sizeof(struct dp_ast_entry));
444 
445 	if (!ast_entry) {
446 		qdf_spin_unlock_bh(&soc->ast_lock);
447 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
448 			FL("fail to allocate ast_entry"));
449 		QDF_ASSERT(0);
450 		return ret;
451 	}
452 
453 	qdf_mem_copy(&ast_entry->mac_addr.raw[0], mac_addr, DP_MAC_ADDR_LEN);
454 	ast_entry->peer = peer;
455 	ast_entry->pdev_id = vdev->pdev->pdev_id;
456 	ast_entry->vdev_id = vdev->vdev_id;
457 
458 	switch (type) {
459 	case CDP_TXRX_AST_TYPE_STATIC:
460 		peer->self_ast_entry = ast_entry;
461 		ast_entry->type = CDP_TXRX_AST_TYPE_STATIC;
462 		break;
463 	case CDP_TXRX_AST_TYPE_WDS:
464 		ast_entry->next_hop = 1;
465 		ast_entry->type = CDP_TXRX_AST_TYPE_WDS;
466 		break;
467 	case CDP_TXRX_AST_TYPE_WDS_HM:
468 		ast_entry->next_hop = 1;
469 		ast_entry->type = CDP_TXRX_AST_TYPE_WDS_HM;
470 		break;
471 	case CDP_TXRX_AST_TYPE_MEC:
472 		ast_entry->next_hop = 1;
473 		ast_entry->type = CDP_TXRX_AST_TYPE_MEC;
474 		break;
475 	default:
476 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
477 			FL("Incorrect AST entry type"));
478 	}
479 
480 	ast_entry->is_active = TRUE;
481 	TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem);
482 	DP_STATS_INC(soc, ast.added, 1);
483 	dp_peer_ast_hash_add(soc, ast_entry);
484 	qdf_spin_unlock_bh(&soc->ast_lock);
485 
486 	if (ast_entry->type == CDP_TXRX_AST_TYPE_WDS)
487 		qdf_mem_copy(next_node_mac, peer->mac_addr.raw, 6);
488 	else
489 		qdf_mem_copy(next_node_mac, peer->vdev->mac_addr.raw, 6);
490 
491 	if (ast_entry->type != CDP_TXRX_AST_TYPE_STATIC) {
492 		if (QDF_STATUS_SUCCESS ==
493 				soc->cdp_soc.ol_ops->peer_add_wds_entry(
494 				peer->vdev->osif_vdev,
495 				mac_addr,
496 				next_node_mac,
497 				flags))
498 			return 0;
499 	}
500 
501 	return ret;
502 }
503 
504 /*
505  * dp_peer_del_ast() - Delete and free AST entry
506  * @soc: SoC handle
507  * @ast_entry: AST entry of the node
508  *
509  * This function removes the AST entry from peer and soc tables
510  * It assumes caller has taken the ast lock to protect the access to these
511  * tables
512  *
513  * Return: None
514  */
515 void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry)
516 {
517 	struct dp_peer *peer = ast_entry->peer;
518 
519 	if (ast_entry->next_hop)
520 		soc->cdp_soc.ol_ops->peer_del_wds_entry(peer->vdev->osif_vdev,
521 						ast_entry->mac_addr.raw);
522 
523 	soc->ast_table[ast_entry->ast_idx] = NULL;
524 	TAILQ_REMOVE(&peer->ast_entry_list, ast_entry, ase_list_elem);
525 	DP_STATS_INC(soc, ast.deleted, 1);
526 	dp_peer_ast_hash_remove(soc, ast_entry);
527 	qdf_mem_free(ast_entry);
528 }
529 
530 /*
531  * dp_peer_update_ast() - Delete and free AST entry
532  * @soc: SoC handle
533  * @peer: peer to which ast node belongs
534  * @ast_entry: AST entry of the node
535  * @flags: wds or hmwds
536  *
537  * This function update the AST entry to the roamed peer and soc tables
538  * It assumes caller has taken the ast lock to protect the access to these
539  * tables
540  *
541  * Return: 0 if ast entry is updated successfully
542  *         -1 failure
543  */
544 int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer,
545 		       struct dp_ast_entry *ast_entry, uint32_t flags)
546 {
547 	int ret = -1;
548 
549 	ast_entry->peer = peer;
550 	if (ast_entry->type != CDP_TXRX_AST_TYPE_STATIC) {
551 		if (QDF_STATUS_SUCCESS ==
552 				soc->cdp_soc.ol_ops->peer_update_wds_entry(
553 				peer->vdev->osif_vdev,
554 				ast_entry->mac_addr.raw,
555 				peer->mac_addr.raw,
556 				flags))
557 			return 0;
558 	}
559 
560 	return ret;
561 }
562 
563 /*
564  * dp_peer_ast_get_pdev_id() - get pdev_id from the ast entry
565  * @soc: SoC handle
566  * @ast_entry: AST entry of the node
567  *
568  * This function gets the pdev_id from the ast entry.
569  *
570  * Return: (uint8_t) pdev_id
571  */
572 uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc,
573 				struct dp_ast_entry *ast_entry)
574 {
575 	return ast_entry->pdev_id;
576 }
577 
578 /*
579  * dp_peer_ast_get_next_hop() - get next_hop from the ast entry
580  * @soc: SoC handle
581  * @ast_entry: AST entry of the node
582  *
583  * This function gets the next hop from the ast entry.
584  *
585  * Return: (uint8_t) next_hop
586  */
587 uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc,
588 				struct dp_ast_entry *ast_entry)
589 {
590 	return ast_entry->next_hop;
591 }
592 
593 /*
594  * dp_peer_ast_set_type() - set type from the ast entry
595  * @soc: SoC handle
596  * @ast_entry: AST entry of the node
597  *
598  * This function sets the type in the ast entry.
599  *
600  * Return:
601  */
602 void dp_peer_ast_set_type(struct dp_soc *soc,
603 				struct dp_ast_entry *ast_entry,
604 				enum cdp_txrx_ast_entry_type type)
605 {
606 	ast_entry->type = type;
607 }
608 
609 #else
610 int dp_peer_add_ast(struct dp_soc *soc, struct dp_peer *peer,
611 		uint8_t *mac_addr, enum cdp_txrx_ast_entry_type type,
612 		uint32_t flags)
613 {
614 	return 1;
615 }
616 
617 void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry)
618 {
619 }
620 
621 int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer,
622 			struct dp_ast_entry *ast_entry, uint32_t flags)
623 {
624 	return 1;
625 }
626 
627 struct dp_ast_entry *dp_peer_ast_hash_find(struct dp_soc *soc,
628 						uint8_t *ast_mac_addr)
629 {
630 	return NULL;
631 }
632 
633 static int dp_peer_ast_hash_attach(struct dp_soc *soc)
634 {
635 	return 0;
636 }
637 
638 static inline void dp_peer_map_ast(struct dp_soc *soc,
639 	struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id,
640 	uint8_t vdev_id)
641 {
642 	return;
643 }
644 
645 static void dp_peer_ast_hash_detach(struct dp_soc *soc)
646 {
647 }
648 
649 void dp_peer_ast_set_type(struct dp_soc *soc,
650 				struct dp_ast_entry *ast_entry,
651 				enum cdp_txrx_ast_entry_type type)
652 {
653 }
654 
655 uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc,
656 				struct dp_ast_entry *ast_entry)
657 {
658 	return 0xff;
659 }
660 
661 
662 uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc,
663 				struct dp_ast_entry *ast_entry)
664 {
665 	return 0xff;
666 }
667 #endif
668 
669 #if ATH_SUPPORT_WRAP
670 static struct dp_peer *dp_peer_find_hash_find(struct dp_soc *soc,
671 	uint8_t *peer_mac_addr, int mac_addr_is_aligned, uint8_t vdev_id)
672 #else
673 static struct dp_peer *dp_peer_find_hash_find(struct dp_soc *soc,
674 	uint8_t *peer_mac_addr, int mac_addr_is_aligned)
675 #endif
676 {
677 	union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
678 	unsigned index;
679 	struct dp_peer *peer;
680 
681 	if (mac_addr_is_aligned) {
682 		mac_addr = (union dp_align_mac_addr *) peer_mac_addr;
683 	} else {
684 		qdf_mem_copy(
685 			&local_mac_addr_aligned.raw[0],
686 			peer_mac_addr, DP_MAC_ADDR_LEN);
687 		mac_addr = &local_mac_addr_aligned;
688 	}
689 	index = dp_peer_find_hash_index(soc, mac_addr);
690 	qdf_spin_lock_bh(&soc->peer_ref_mutex);
691 	TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) {
692 #if ATH_SUPPORT_WRAP
693 		/* ProxySTA may have multiple BSS peer with same MAC address,
694 		 * modified find will take care of finding the correct BSS peer.
695 		 */
696 		if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 &&
697 			(peer->vdev->vdev_id == vdev_id)) {
698 #else
699 		if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0) {
700 #endif
701 			/* found it - increment the ref count before releasing
702 			 * the lock
703 			 */
704 			qdf_atomic_inc(&peer->ref_cnt);
705 			qdf_spin_unlock_bh(&soc->peer_ref_mutex);
706 			return peer;
707 		}
708 	}
709 	qdf_spin_unlock_bh(&soc->peer_ref_mutex);
710 	return NULL; /* failure */
711 }
712 
713 void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer)
714 {
715 	unsigned index;
716 	struct dp_peer *tmppeer = NULL;
717 	int found = 0;
718 
719 	index = dp_peer_find_hash_index(soc, &peer->mac_addr);
720 	/* Check if tail is not empty before delete*/
721 	QDF_ASSERT(!TAILQ_EMPTY(&soc->peer_hash.bins[index]));
722 	/*
723 	 * DO NOT take the peer_ref_mutex lock here - it needs to be taken
724 	 * by the caller.
725 	 * The caller needs to hold the lock from the time the peer object's
726 	 * reference count is decremented and tested up through the time the
727 	 * reference to the peer object is removed from the hash table, by
728 	 * this function.
729 	 * Holding the lock only while removing the peer object reference
730 	 * from the hash table keeps the hash table consistent, but does not
731 	 * protect against a new HL tx context starting to use the peer object
732 	 * if it looks up the peer object from its MAC address just after the
733 	 * peer ref count is decremented to zero, but just before the peer
734 	 * object reference is removed from the hash table.
735 	 */
736 	 TAILQ_FOREACH(tmppeer, &soc->peer_hash.bins[index], hash_list_elem) {
737 		if (tmppeer == peer) {
738 			found = 1;
739 			break;
740 		}
741 	}
742 	QDF_ASSERT(found);
743 	TAILQ_REMOVE(&soc->peer_hash.bins[index], peer, hash_list_elem);
744 }
745 
746 void dp_peer_find_hash_erase(struct dp_soc *soc)
747 {
748 	int i;
749 
750 	/*
751 	 * Not really necessary to take peer_ref_mutex lock - by this point,
752 	 * it's known that the soc is no longer in use.
753 	 */
754 	for (i = 0; i <= soc->peer_hash.mask; i++) {
755 		if (!TAILQ_EMPTY(&soc->peer_hash.bins[i])) {
756 			struct dp_peer *peer, *peer_next;
757 
758 			/*
759 			 * TAILQ_FOREACH_SAFE must be used here to avoid any
760 			 * memory access violation after peer is freed
761 			 */
762 			TAILQ_FOREACH_SAFE(peer, &soc->peer_hash.bins[i],
763 				hash_list_elem, peer_next) {
764 				/*
765 				 * Don't remove the peer from the hash table -
766 				 * that would modify the list we are currently
767 				 * traversing, and it's not necessary anyway.
768 				 */
769 				/*
770 				 * Artificially adjust the peer's ref count to
771 				 * 1, so it will get deleted by
772 				 * dp_peer_unref_delete.
773 				 */
774 				/* set to zero */
775 				qdf_atomic_init(&peer->ref_cnt);
776 				/* incr to one */
777 				qdf_atomic_inc(&peer->ref_cnt);
778 				dp_peer_unref_delete(peer);
779 			}
780 		}
781 	}
782 }
783 
784 static void dp_peer_find_map_detach(struct dp_soc *soc)
785 {
786 	qdf_mem_free(soc->peer_id_to_obj_map);
787 }
788 
789 int dp_peer_find_attach(struct dp_soc *soc)
790 {
791 	if (dp_peer_find_map_attach(soc))
792 		return 1;
793 
794 	if (dp_peer_find_hash_attach(soc)) {
795 		dp_peer_find_map_detach(soc);
796 		return 1;
797 	}
798 
799 	if (dp_peer_ast_hash_attach(soc)) {
800 		dp_peer_find_hash_detach(soc);
801 		dp_peer_find_map_detach(soc);
802 		return 1;
803 	}
804 	return 0; /* success */
805 }
806 
807 void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt,
808 	union hal_reo_status *reo_status)
809 {
810 	struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt;
811 	struct hal_reo_queue_status *queue_status = &(reo_status->queue_status);
812 
813 	if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
814 		DP_TRACE_STATS(FATAL, "REO stats failure %d for TID %d\n",
815 			queue_status->header.status, rx_tid->tid);
816 		return;
817 	}
818 
819 	DP_TRACE_STATS(FATAL, "REO queue stats (TID: %d): \n"
820 		"ssn: %d\n"
821 		"curr_idx  : %d\n"
822 		"pn_31_0   : %08x\n"
823 		"pn_63_32  : %08x\n"
824 		"pn_95_64  : %08x\n"
825 		"pn_127_96 : %08x\n"
826 		"last_rx_enq_tstamp : %08x\n"
827 		"last_rx_deq_tstamp : %08x\n"
828 		"rx_bitmap_31_0     : %08x\n"
829 		"rx_bitmap_63_32    : %08x\n"
830 		"rx_bitmap_95_64    : %08x\n"
831 		"rx_bitmap_127_96   : %08x\n"
832 		"rx_bitmap_159_128  : %08x\n"
833 		"rx_bitmap_191_160  : %08x\n"
834 		"rx_bitmap_223_192  : %08x\n"
835 		"rx_bitmap_255_224  : %08x\n",
836 		rx_tid->tid,
837 		queue_status->ssn, queue_status->curr_idx,
838 		queue_status->pn_31_0, queue_status->pn_63_32,
839 		queue_status->pn_95_64, queue_status->pn_127_96,
840 		queue_status->last_rx_enq_tstamp,
841 		queue_status->last_rx_deq_tstamp,
842 		queue_status->rx_bitmap_31_0, queue_status->rx_bitmap_63_32,
843 		queue_status->rx_bitmap_95_64, queue_status->rx_bitmap_127_96,
844 		queue_status->rx_bitmap_159_128,
845 		queue_status->rx_bitmap_191_160,
846 		queue_status->rx_bitmap_223_192,
847 		queue_status->rx_bitmap_255_224);
848 
849 	DP_TRACE_STATS(FATAL,
850 		"curr_mpdu_cnt      : %d\n"
851 		"curr_msdu_cnt      : %d\n"
852 		"fwd_timeout_cnt    : %d\n"
853 		"fwd_bar_cnt        : %d\n"
854 		"dup_cnt            : %d\n"
855 		"frms_in_order_cnt  : %d\n"
856 		"bar_rcvd_cnt       : %d\n"
857 		"mpdu_frms_cnt      : %d\n"
858 		"msdu_frms_cnt      : %d\n"
859 		"total_byte_cnt     : %d\n"
860 		"late_recv_mpdu_cnt : %d\n"
861 		"win_jump_2k 	    : %d\n"
862 		"hole_cnt 	    : %d\n",
863 		queue_status->curr_mpdu_cnt, queue_status->curr_msdu_cnt,
864 		queue_status->fwd_timeout_cnt, queue_status->fwd_bar_cnt,
865 		queue_status->dup_cnt, queue_status->frms_in_order_cnt,
866 		queue_status->bar_rcvd_cnt, queue_status->mpdu_frms_cnt,
867 		queue_status->msdu_frms_cnt, queue_status->total_cnt,
868 		queue_status->late_recv_mpdu_cnt, queue_status->win_jump_2k,
869 		queue_status->hole_cnt);
870 
871 	DP_PRINT_STATS("Num of Addba Req = %d\n", rx_tid->num_of_addba_req);
872 	DP_PRINT_STATS("Num of Addba Resp = %d\n", rx_tid->num_of_addba_resp);
873 	DP_PRINT_STATS("Num of Delba Req = %d\n", rx_tid->num_of_delba_req);
874 	DP_PRINT_STATS("BA window size   = %d\n", rx_tid->ba_win_size);
875 	DP_PRINT_STATS("Pn size = %d\n", rx_tid->pn_size);
876 }
877 
878 static inline struct dp_peer *dp_peer_find_add_id(struct dp_soc *soc,
879 	uint8_t *peer_mac_addr, uint16_t peer_id, uint16_t hw_peer_id,
880 	uint8_t vdev_id)
881 {
882 	struct dp_peer *peer;
883 
884 	QDF_ASSERT(peer_id <= wlan_cfg_max_peer_id(soc->wlan_cfg_ctx) + 1);
885 	/* check if there's already a peer object with this MAC address */
886 #if ATH_SUPPORT_WRAP
887 	peer = dp_peer_find_hash_find(soc, peer_mac_addr,
888 		0 /* is aligned */, vdev_id);
889 #else
890 	peer = dp_peer_find_hash_find(soc, peer_mac_addr, 0 /* is aligned */);
891 #endif
892 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
893 		"%s: peer %pK ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x\n",
894 		__func__, peer, peer_id, vdev_id, peer_mac_addr[0],
895 		peer_mac_addr[1], peer_mac_addr[2], peer_mac_addr[3],
896 		peer_mac_addr[4], peer_mac_addr[5]);
897 
898 	if (peer) {
899 		/* peer's ref count was already incremented by
900 		 * peer_find_hash_find
901 		 */
902 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
903 			  "%s: ref_cnt: %d", __func__,
904 			   qdf_atomic_read(&peer->ref_cnt));
905 		soc->peer_id_to_obj_map[peer_id] = peer;
906 
907 		if (dp_peer_find_add_id_to_obj(peer, peer_id)) {
908 			/* TBDXXX: assert for now */
909 			QDF_ASSERT(0);
910 		}
911 
912 		return peer;
913 	}
914 
915 	return NULL;
916 }
917 
918 /**
919  * dp_rx_peer_map_handler() - handle peer map event from firmware
920  * @soc_handle - genereic soc handle
921  * @peeri_id - peer_id from firmware
922  * @hw_peer_id - ast index for this peer
923  * vdev_id - vdev ID
924  * peer_mac_addr - macc assress of the peer
925  *
926  * associate the peer_id that firmware provided with peer entry
927  * and update the ast table in the host with the hw_peer_id.
928  *
929  * Return: none
930  */
931 
932 void
933 dp_rx_peer_map_handler(void *soc_handle, uint16_t peer_id, uint16_t hw_peer_id,
934 			uint8_t vdev_id, uint8_t *peer_mac_addr)
935 {
936 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
937 	struct dp_peer *peer = NULL;
938 
939 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
940 		"peer_map_event (soc:%pK): peer_id %di, hw_peer_id %d, peer_mac "
941 		"%02x:%02x:%02x:%02x:%02x:%02x, vdev_id %d\n", soc, peer_id,
942 		hw_peer_id, peer_mac_addr[0], peer_mac_addr[1],
943 		peer_mac_addr[2], peer_mac_addr[3], peer_mac_addr[4],
944 		peer_mac_addr[5], vdev_id);
945 
946 	peer = soc->peer_id_to_obj_map[peer_id];
947 
948 	if ((hw_peer_id < 0) || (hw_peer_id > (WLAN_UMAC_PSOC_MAX_PEERS * 2))) {
949 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
950 			"invalid hw_peer_id: %d", hw_peer_id);
951 		qdf_assert_always(0);
952 	}
953 
954 	/*
955 	 * check if peer already exists for this peer_id, if so
956 	 * this peer map event is in response for a wds peer add
957 	 * wmi command sent during wds source port learning.
958 	 * in this case just add the ast entry to the existing
959 	 * peer ast_list.
960 	 */
961 	if (!peer)
962 		peer = dp_peer_find_add_id(soc, peer_mac_addr, peer_id,
963 					hw_peer_id, vdev_id);
964 
965 	dp_peer_map_ast(soc, peer, peer_mac_addr,
966 			hw_peer_id, vdev_id);
967 }
968 
969 void
970 dp_rx_peer_unmap_handler(void *soc_handle, uint16_t peer_id)
971 {
972 	struct dp_peer *peer;
973 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
974 	uint8_t i;
975 	peer = dp_peer_find_by_id(soc, peer_id);
976 
977 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
978 		"peer_unmap_event (soc:%pK) peer_id %d peer %pK\n",
979 		soc, peer_id, peer);
980 
981 	/*
982 	 * Currently peer IDs are assigned for vdevs as well as peers.
983 	 * If the peer ID is for a vdev, then the peer pointer stored
984 	 * in peer_id_to_obj_map will be NULL.
985 	 */
986 	if (!peer)
987 		return;
988 
989 	soc->peer_id_to_obj_map[peer_id] = NULL;
990 	for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
991 		if (peer->peer_ids[i] == peer_id) {
992 			peer->peer_ids[i] = HTT_INVALID_PEER;
993 			break;
994 		}
995 	}
996 
997 	if (soc->cdp_soc.ol_ops->peer_unmap_event) {
998 		soc->cdp_soc.ol_ops->peer_unmap_event(soc->ctrl_psoc,
999 				peer_id);
1000 	}
1001 
1002 	/*
1003 	 * Remove a reference to the peer.
1004 	 * If there are no more references, delete the peer object.
1005 	 */
1006 	dp_peer_unref_delete(peer);
1007 }
1008 
1009 void
1010 dp_peer_find_detach(struct dp_soc *soc)
1011 {
1012 	dp_peer_find_map_detach(soc);
1013 	dp_peer_find_hash_detach(soc);
1014 	dp_peer_ast_hash_detach(soc);
1015 }
1016 
1017 static void dp_rx_tid_update_cb(struct dp_soc *soc, void *cb_ctxt,
1018 	union hal_reo_status *reo_status)
1019 {
1020 	struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt;
1021 
1022 	if ((reo_status->rx_queue_status.header.status !=
1023 		HAL_REO_CMD_SUCCESS) &&
1024 		(reo_status->rx_queue_status.header.status !=
1025 		HAL_REO_CMD_DRAIN)) {
1026 		/* Should not happen normally. Just print error for now */
1027 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1028 			"%s: Rx tid HW desc update failed(%d): tid %d\n",
1029 			__func__,
1030 			reo_status->rx_queue_status.header.status,
1031 			rx_tid->tid);
1032 	}
1033 }
1034 
1035 /*
1036  * dp_find_peer_by_addr - find peer instance by mac address
1037  * @dev: physical device instance
1038  * @peer_mac_addr: peer mac address
1039  * @local_id: local id for the peer
1040  *
1041  * Return: peer instance pointer
1042  */
1043 void *dp_find_peer_by_addr(struct cdp_pdev *dev, uint8_t *peer_mac_addr,
1044 		uint8_t *local_id)
1045 {
1046 	struct dp_pdev *pdev = (struct dp_pdev *)dev;
1047 	struct dp_peer *peer;
1048 
1049 #if ATH_SUPPORT_WRAP
1050 	peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr, 0, 0);
1051 	/* WAR, VDEV ID? TEMP 0 */
1052 #else
1053 	peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr, 0);
1054 #endif
1055 	if (!peer)
1056 		return NULL;
1057 
1058 	/* Multiple peer ids? How can know peer id? */
1059 	*local_id = peer->local_id;
1060 	DP_TRACE(INFO, "%s: peer %pK id %d", __func__, peer, *local_id);
1061 
1062 	/* ref_cnt is incremented inside dp_peer_find_hash_find().
1063 	 * Decrement it here.
1064 	 */
1065 	qdf_atomic_dec(&peer->ref_cnt);
1066 
1067 	return peer;
1068 }
1069 
1070 /*
1071  * dp_rx_tid_update_wifi3() – Update receive TID state
1072  * @peer: Datapath peer handle
1073  * @tid: TID
1074  * @ba_window_size: BlockAck window size
1075  * @start_seq: Starting sequence number
1076  *
1077  * Return: 0 on success, error code on failure
1078  */
1079 static int dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t
1080 				  ba_window_size, uint32_t start_seq)
1081 {
1082 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1083 	struct dp_soc *soc = peer->vdev->pdev->soc;
1084 	struct hal_reo_cmd_params params;
1085 
1086 	qdf_mem_zero(&params, sizeof(params));
1087 
1088 	params.std.need_status = 1;
1089 	params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff;
1090 	params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1091 	params.u.upd_queue_params.update_ba_window_size = 1;
1092 	params.u.upd_queue_params.ba_window_size = ba_window_size;
1093 
1094 	if (start_seq < IEEE80211_SEQ_MAX) {
1095 		params.u.upd_queue_params.update_ssn = 1;
1096 		params.u.upd_queue_params.ssn = start_seq;
1097 	}
1098 
1099 	dp_set_ssn_valid_flag(&params, 0);
1100 
1101 	dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params, dp_rx_tid_update_cb, rx_tid);
1102 	return 0;
1103 }
1104 
1105 /*
1106  * dp_reo_desc_free() - Callback free reo descriptor memory after
1107  * HW cache flush
1108  *
1109  * @soc: DP SOC handle
1110  * @cb_ctxt: Callback context
1111  * @reo_status: REO command status
1112  */
1113 static void dp_reo_desc_free(struct dp_soc *soc, void *cb_ctxt,
1114 	union hal_reo_status *reo_status)
1115 {
1116 	struct reo_desc_list_node *freedesc =
1117 		(struct reo_desc_list_node *)cb_ctxt;
1118 	struct dp_rx_tid *rx_tid = &freedesc->rx_tid;
1119 
1120 	if ((reo_status->fl_cache_status.header.status !=
1121 		HAL_REO_CMD_SUCCESS) &&
1122 		(reo_status->fl_cache_status.header.status !=
1123 		HAL_REO_CMD_DRAIN)) {
1124 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1125 			"%s: Rx tid HW desc flush failed(%d): tid %d\n",
1126 			__func__,
1127 			reo_status->rx_queue_status.header.status,
1128 			freedesc->rx_tid.tid);
1129 	}
1130 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1131 		"%s: hw_qdesc_paddr: %pK, tid:%d\n", __func__,
1132 		(void *)(rx_tid->hw_qdesc_paddr), rx_tid->tid);
1133 	qdf_mem_unmap_nbytes_single(soc->osdev,
1134 		rx_tid->hw_qdesc_paddr,
1135 		QDF_DMA_BIDIRECTIONAL,
1136 		rx_tid->hw_qdesc_alloc_size);
1137 	qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
1138 	qdf_mem_free(freedesc);
1139 }
1140 
1141 #if defined(QCA_WIFI_QCA8074) && defined(BUILD_X86)
1142 /* Hawkeye emulation requires bus address to be >= 0x50000000 */
1143 static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr)
1144 {
1145 	if (dma_addr < 0x50000000)
1146 		return QDF_STATUS_E_FAILURE;
1147 	else
1148 		return QDF_STATUS_SUCCESS;
1149 }
1150 #else
1151 static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr)
1152 {
1153 	return QDF_STATUS_SUCCESS;
1154 }
1155 #endif
1156 
1157 
1158 /*
1159  * dp_rx_tid_setup_wifi3() – Setup receive TID state
1160  * @peer: Datapath peer handle
1161  * @tid: TID
1162  * @ba_window_size: BlockAck window size
1163  * @start_seq: Starting sequence number
1164  *
1165  * Return: 0 on success, error code on failure
1166  */
1167 int dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
1168 	uint32_t ba_window_size, uint32_t start_seq)
1169 {
1170 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1171 	struct dp_vdev *vdev = peer->vdev;
1172 	struct dp_soc *soc = vdev->pdev->soc;
1173 	uint32_t hw_qdesc_size;
1174 	uint32_t hw_qdesc_align;
1175 	int hal_pn_type;
1176 	void *hw_qdesc_vaddr;
1177 	uint32_t alloc_tries = 0;
1178 
1179 	if (peer->delete_in_progress)
1180 		return QDF_STATUS_E_FAILURE;
1181 
1182 	rx_tid->ba_win_size = ba_window_size;
1183 	if (rx_tid->hw_qdesc_vaddr_unaligned != NULL)
1184 		return dp_rx_tid_update_wifi3(peer, tid, ba_window_size,
1185 			start_seq);
1186 	rx_tid->num_of_addba_req = 0;
1187 	rx_tid->num_of_delba_req = 0;
1188 	rx_tid->num_of_addba_resp = 0;
1189 #ifdef notyet
1190 	hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc, ba_window_size);
1191 #else
1192 	/* TODO: Allocating HW queue descriptors based on max BA window size
1193 	 * for all QOS TIDs so that same descriptor can be used later when
1194 	 * ADDBA request is recevied. This should be changed to allocate HW
1195 	 * queue descriptors based on BA window size being negotiated (0 for
1196 	 * non BA cases), and reallocate when BA window size changes and also
1197 	 * send WMI message to FW to change the REO queue descriptor in Rx
1198 	 * peer entry as part of dp_rx_tid_update.
1199 	 */
1200 	if (tid != DP_NON_QOS_TID)
1201 		hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
1202 			HAL_RX_MAX_BA_WINDOW);
1203 	else
1204 		hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
1205 			ba_window_size);
1206 #endif
1207 
1208 	hw_qdesc_align = hal_get_reo_qdesc_align(soc->hal_soc);
1209 	/* To avoid unnecessary extra allocation for alignment, try allocating
1210 	 * exact size and see if we already have aligned address.
1211 	 */
1212 	rx_tid->hw_qdesc_alloc_size = hw_qdesc_size;
1213 
1214 try_desc_alloc:
1215 	rx_tid->hw_qdesc_vaddr_unaligned =
1216 		qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size);
1217 
1218 	if (!rx_tid->hw_qdesc_vaddr_unaligned) {
1219 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1220 			"%s: Rx tid HW desc alloc failed: tid %d\n",
1221 			__func__, tid);
1222 		return QDF_STATUS_E_NOMEM;
1223 	}
1224 
1225 	if ((unsigned long)(rx_tid->hw_qdesc_vaddr_unaligned) %
1226 		hw_qdesc_align) {
1227 		/* Address allocated above is not alinged. Allocate extra
1228 		 * memory for alignment
1229 		 */
1230 		qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
1231 		rx_tid->hw_qdesc_vaddr_unaligned =
1232 			qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size +
1233 					hw_qdesc_align - 1);
1234 
1235 		if (!rx_tid->hw_qdesc_vaddr_unaligned) {
1236 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1237 				"%s: Rx tid HW desc alloc failed: tid %d\n",
1238 				__func__, tid);
1239 			return QDF_STATUS_E_NOMEM;
1240 		}
1241 
1242 		hw_qdesc_vaddr = (void *)qdf_align((unsigned long)
1243 			rx_tid->hw_qdesc_vaddr_unaligned,
1244 			hw_qdesc_align);
1245 
1246 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1247 			"%s: Total Size %d Aligned Addr %pK\n",
1248 			__func__, rx_tid->hw_qdesc_alloc_size,
1249 			hw_qdesc_vaddr);
1250 
1251 	} else {
1252 		hw_qdesc_vaddr = rx_tid->hw_qdesc_vaddr_unaligned;
1253 	}
1254 
1255 	/* TODO: Ensure that sec_type is set before ADDBA is received.
1256 	 * Currently this is set based on htt indication
1257 	 * HTT_T2H_MSG_TYPE_SEC_IND from target
1258 	 */
1259 	switch (peer->security[dp_sec_ucast].sec_type) {
1260 	case cdp_sec_type_tkip_nomic:
1261 	case cdp_sec_type_aes_ccmp:
1262 	case cdp_sec_type_aes_ccmp_256:
1263 	case cdp_sec_type_aes_gcmp:
1264 	case cdp_sec_type_aes_gcmp_256:
1265 		hal_pn_type = HAL_PN_WPA;
1266 		break;
1267 	case cdp_sec_type_wapi:
1268 		if (vdev->opmode == wlan_op_mode_ap)
1269 			hal_pn_type = HAL_PN_WAPI_EVEN;
1270 		else
1271 			hal_pn_type = HAL_PN_WAPI_UNEVEN;
1272 		break;
1273 	default:
1274 		hal_pn_type = HAL_PN_NONE;
1275 		break;
1276 	}
1277 
1278 	hal_reo_qdesc_setup(soc->hal_soc, tid, ba_window_size, start_seq,
1279 		hw_qdesc_vaddr, rx_tid->hw_qdesc_paddr, hal_pn_type);
1280 
1281 	qdf_mem_map_nbytes_single(soc->osdev, hw_qdesc_vaddr,
1282 		QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size,
1283 		&(rx_tid->hw_qdesc_paddr));
1284 
1285 	if (dp_reo_desc_addr_chk(rx_tid->hw_qdesc_paddr) !=
1286 			QDF_STATUS_SUCCESS) {
1287 		if (alloc_tries++ < 10)
1288 			goto try_desc_alloc;
1289 		else {
1290 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1291 			"%s: Rx tid HW desc alloc failed (lowmem): tid %d\n",
1292 			__func__, tid);
1293 			return QDF_STATUS_E_NOMEM;
1294 		}
1295 	}
1296 
1297 	if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup) {
1298 		soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup(
1299 			vdev->pdev->osif_pdev,
1300 			peer->vdev->vdev_id, peer->mac_addr.raw,
1301 			rx_tid->hw_qdesc_paddr, tid, tid);
1302 
1303 	}
1304 	return 0;
1305 }
1306 
1307 /*
1308  * dp_rx_tid_delete_cb() - Callback to flush reo descriptor HW cache
1309  * after deleting the entries (ie., setting valid=0)
1310  *
1311  * @soc: DP SOC handle
1312  * @cb_ctxt: Callback context
1313  * @reo_status: REO command status
1314  */
1315 static void dp_rx_tid_delete_cb(struct dp_soc *soc, void *cb_ctxt,
1316 	union hal_reo_status *reo_status)
1317 {
1318 	struct reo_desc_list_node *freedesc =
1319 		(struct reo_desc_list_node *)cb_ctxt;
1320 	uint32_t list_size;
1321 	struct reo_desc_list_node *desc;
1322 	unsigned long curr_ts = qdf_get_system_timestamp();
1323 	uint32_t desc_size, tot_desc_size;
1324 	struct hal_reo_cmd_params params;
1325 
1326 	if (reo_status->rx_queue_status.header.status == HAL_REO_CMD_DRAIN) {
1327 		qdf_mem_zero(reo_status, sizeof(*reo_status));
1328 		reo_status->fl_cache_status.header.status = HAL_REO_CMD_DRAIN;
1329 		dp_reo_desc_free(soc, (void *)freedesc, reo_status);
1330 		return;
1331 	} else if (reo_status->rx_queue_status.header.status !=
1332 		HAL_REO_CMD_SUCCESS) {
1333 		/* Should not happen normally. Just print error for now */
1334 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1335 			"%s: Rx tid HW desc deletion failed(%d): tid %d\n",
1336 			__func__,
1337 			reo_status->rx_queue_status.header.status,
1338 			freedesc->rx_tid.tid);
1339 	}
1340 
1341 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
1342 		"%s: rx_tid: %d status: %d\n", __func__,
1343 		freedesc->rx_tid.tid,
1344 		reo_status->rx_queue_status.header.status);
1345 
1346 	qdf_spin_lock_bh(&soc->reo_desc_freelist_lock);
1347 	freedesc->free_ts = curr_ts;
1348 	qdf_list_insert_back_size(&soc->reo_desc_freelist,
1349 		(qdf_list_node_t *)freedesc, &list_size);
1350 
1351 	while ((qdf_list_peek_front(&soc->reo_desc_freelist,
1352 		(qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) &&
1353 		((list_size >= REO_DESC_FREELIST_SIZE) ||
1354 		((curr_ts - desc->free_ts) > REO_DESC_FREE_DEFER_MS))) {
1355 		struct dp_rx_tid *rx_tid;
1356 
1357 		qdf_list_remove_front(&soc->reo_desc_freelist,
1358 				(qdf_list_node_t **)&desc);
1359 		list_size--;
1360 		rx_tid = &desc->rx_tid;
1361 
1362 		/* Flush and invalidate REO descriptor from HW cache: Base and
1363 		 * extension descriptors should be flushed separately */
1364 		tot_desc_size = hal_get_reo_qdesc_size(soc->hal_soc,
1365 			rx_tid->ba_win_size);
1366 		desc_size = hal_get_reo_qdesc_size(soc->hal_soc, 0);
1367 
1368 		/* Flush reo extension descriptors */
1369 		while ((tot_desc_size -= desc_size) > 0) {
1370 			qdf_mem_zero(&params, sizeof(params));
1371 			params.std.addr_lo =
1372 				((uint64_t)(rx_tid->hw_qdesc_paddr) +
1373 				tot_desc_size) & 0xffffffff;
1374 			params.std.addr_hi =
1375 				(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1376 
1377 			if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc,
1378 							CMD_FLUSH_CACHE,
1379 							&params,
1380 							NULL,
1381 							NULL)) {
1382 				QDF_TRACE(QDF_MODULE_ID_DP,
1383 					QDF_TRACE_LEVEL_ERROR,
1384 					"%s: fail to send CMD_CACHE_FLUSH:"
1385 					"tid %d desc %pK\n", __func__,
1386 					rx_tid->tid,
1387 					(void *)(rx_tid->hw_qdesc_paddr));
1388 			}
1389 		}
1390 
1391 		/* Flush base descriptor */
1392 		qdf_mem_zero(&params, sizeof(params));
1393 		params.std.need_status = 1;
1394 		params.std.addr_lo =
1395 			(uint64_t)(rx_tid->hw_qdesc_paddr) & 0xffffffff;
1396 		params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1397 
1398 		if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc,
1399 							  CMD_FLUSH_CACHE,
1400 							  &params,
1401 							  dp_reo_desc_free,
1402 							  (void *)desc)) {
1403 			union hal_reo_status reo_status;
1404 			/*
1405 			 * If dp_reo_send_cmd return failure, related TID queue desc
1406 			 * should be unmapped. Also locally reo_desc, together with
1407 			 * TID queue desc also need to be freed accordingly.
1408 			 *
1409 			 * Here invoke desc_free function directly to do clean up.
1410 			 */
1411 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1412 				"%s: fail to send REO cmd to flush cache: tid %d\n",
1413 				__func__, rx_tid->tid);
1414 			qdf_mem_zero(&reo_status, sizeof(reo_status));
1415 			reo_status.fl_cache_status.header.status = 0;
1416 			dp_reo_desc_free(soc, (void *)desc, &reo_status);
1417 		}
1418 	}
1419 	qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock);
1420 }
1421 
1422 /*
1423  * dp_rx_tid_delete_wifi3() – Delete receive TID queue
1424  * @peer: Datapath peer handle
1425  * @tid: TID
1426  *
1427  * Return: 0 on success, error code on failure
1428  */
1429 static int dp_rx_tid_delete_wifi3(struct dp_peer *peer, int tid)
1430 {
1431 	struct dp_rx_tid *rx_tid = &(peer->rx_tid[tid]);
1432 	struct dp_soc *soc = peer->vdev->pdev->soc;
1433 	struct hal_reo_cmd_params params;
1434 	struct reo_desc_list_node *freedesc =
1435 		qdf_mem_malloc(sizeof(*freedesc));
1436 
1437 	if (!freedesc) {
1438 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1439 			"%s: malloc failed for freedesc: tid %d\n",
1440 			__func__, tid);
1441 		return -ENOMEM;
1442 	}
1443 
1444 	freedesc->rx_tid = *rx_tid;
1445 
1446 	qdf_mem_zero(&params, sizeof(params));
1447 
1448 	params.std.need_status = 0;
1449 	params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff;
1450 	params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1451 	params.u.upd_queue_params.update_vld = 1;
1452 	params.u.upd_queue_params.vld = 0;
1453 
1454 	dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params,
1455 		dp_rx_tid_delete_cb, (void *)freedesc);
1456 
1457 	rx_tid->hw_qdesc_vaddr_unaligned = NULL;
1458 	rx_tid->hw_qdesc_alloc_size = 0;
1459 	rx_tid->hw_qdesc_paddr = 0;
1460 
1461 	return 0;
1462 }
1463 
1464 #ifdef DP_LFR
1465 static void dp_peer_setup_remaining_tids(struct dp_peer *peer)
1466 {
1467 	int tid;
1468 
1469 	for (tid = 1; tid < DP_MAX_TIDS-1; tid++) {
1470 		dp_rx_tid_setup_wifi3(peer, tid, 1, 0);
1471 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1472 			"Setting up TID %d for peer %pK peer->local_id %d\n",
1473 			tid, peer, peer->local_id);
1474 	}
1475 }
1476 #else
1477 static void dp_peer_setup_remaining_tids(struct dp_peer *peer) {};
1478 #endif
1479 /*
1480  * dp_peer_rx_init() – Initialize receive TID state
1481  * @pdev: Datapath pdev
1482  * @peer: Datapath peer
1483  *
1484  */
1485 void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer)
1486 {
1487 	int tid;
1488 	struct dp_rx_tid *rx_tid;
1489 	for (tid = 0; tid < DP_MAX_TIDS; tid++) {
1490 		rx_tid = &peer->rx_tid[tid];
1491 		rx_tid->array = &rx_tid->base;
1492 		rx_tid->base.head = rx_tid->base.tail = NULL;
1493 		rx_tid->tid = tid;
1494 		rx_tid->defrag_timeout_ms = 0;
1495 		rx_tid->ba_win_size = 0;
1496 		rx_tid->ba_status = DP_RX_BA_INACTIVE;
1497 
1498 		rx_tid->defrag_waitlist_elem.tqe_next = NULL;
1499 		rx_tid->defrag_waitlist_elem.tqe_prev = NULL;
1500 
1501 #ifdef notyet /* TODO: See if this is required for exception handling */
1502 		/* invalid sequence number */
1503 		peer->tids_last_seq[tid] = 0xffff;
1504 #endif
1505 	}
1506 
1507 	/* Setup default (non-qos) rx tid queue */
1508 	dp_rx_tid_setup_wifi3(peer, DP_NON_QOS_TID, 1, 0);
1509 
1510 	/* Setup rx tid queue for TID 0.
1511 	 * Other queues will be setup on receiving first packet, which will cause
1512 	 * NULL REO queue error
1513 	 */
1514 	dp_rx_tid_setup_wifi3(peer, 0, 1, 0);
1515 
1516 	/*
1517 	 * Setup the rest of TID's to handle LFR
1518 	 */
1519 	dp_peer_setup_remaining_tids(peer);
1520 
1521 	/*
1522 	 * Set security defaults: no PN check, no security. The target may
1523 	 * send a HTT SEC_IND message to overwrite these defaults.
1524 	 */
1525 	peer->security[dp_sec_ucast].sec_type =
1526 		peer->security[dp_sec_mcast].sec_type = cdp_sec_type_none;
1527 }
1528 
1529 /*
1530  * dp_peer_rx_cleanup() – Cleanup receive TID state
1531  * @vdev: Datapath vdev
1532  * @peer: Datapath peer
1533  *
1534  */
1535 void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer)
1536 {
1537 	int tid;
1538 	uint32_t tid_delete_mask = 0;
1539 	for (tid = 0; tid < DP_MAX_TIDS; tid++) {
1540 		if (peer->rx_tid[tid].hw_qdesc_vaddr_unaligned != NULL) {
1541 			dp_rx_tid_delete_wifi3(peer, tid);
1542 			tid_delete_mask |= (1 << tid);
1543 		}
1544 	}
1545 #ifdef notyet /* See if FW can remove queues as part of peer cleanup */
1546 	if (soc->ol_ops->peer_rx_reorder_queue_remove) {
1547 		soc->ol_ops->peer_rx_reorder_queue_remove(vdev->pdev->osif_pdev,
1548 			peer->vdev->vdev_id, peer->mac_addr.raw,
1549 			tid_delete_mask);
1550 	}
1551 #endif
1552 }
1553 
1554 /*
1555  * dp_peer_cleanup() – Cleanup peer information
1556  * @vdev: Datapath vdev
1557  * @peer: Datapath peer
1558  *
1559  */
1560 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer)
1561 {
1562 	peer->last_assoc_rcvd = 0;
1563 	peer->last_disassoc_rcvd = 0;
1564 	peer->last_deauth_rcvd = 0;
1565 
1566 	/* cleanup the Rx reorder queues for this peer */
1567 	dp_peer_rx_cleanup(vdev, peer);
1568 }
1569 
1570 /*
1571 * dp_rx_addba_requestprocess_wifi3() – Process ADDBA request from peer
1572 *
1573 * @peer: Datapath peer handle
1574 * @dialogtoken: dialogtoken from ADDBA frame
1575 * @tid: TID number
1576 * @startseqnum: Start seq. number received in BA sequence control
1577 * in ADDBA frame
1578 *
1579 * Return: 0 on success, error code on failure
1580 */
1581 int dp_addba_requestprocess_wifi3(void *peer_handle,
1582 	uint8_t dialogtoken, uint16_t tid, uint16_t batimeout,
1583 	uint16_t buffersize, uint16_t startseqnum)
1584 {
1585 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
1586 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1587 
1588 	if ((rx_tid->ba_status == DP_RX_BA_ACTIVE) &&
1589 			(rx_tid->hw_qdesc_vaddr_unaligned != NULL))
1590 		rx_tid->ba_status = DP_RX_BA_INACTIVE;
1591 
1592 	if (dp_rx_tid_setup_wifi3(peer, tid, buffersize,
1593 		startseqnum)) {
1594 		/* TODO: Should we send addba reject in this case */
1595 		return QDF_STATUS_E_FAILURE;
1596 	}
1597 
1598 	if (rx_tid->userstatuscode != IEEE80211_STATUS_SUCCESS)
1599 		rx_tid->statuscode = rx_tid->userstatuscode;
1600 	else
1601 		rx_tid->statuscode = IEEE80211_STATUS_SUCCESS;
1602 
1603 	rx_tid->dialogtoken = dialogtoken;
1604 	rx_tid->ba_status = DP_RX_BA_ACTIVE;
1605 	rx_tid->num_of_addba_req++;
1606 
1607 	return 0;
1608 }
1609 
1610 /*
1611 * dp_rx_addba_responsesetup_wifi3() – Process ADDBA request from peer
1612 *
1613 * @peer: Datapath peer handle
1614 * @tid: TID number
1615 * @dialogtoken: output dialogtoken
1616 * @statuscode: output dialogtoken
1617 * @buffersize: Ouput BA window sizze
1618 * @batimeout: Ouput BA timeout
1619 */
1620 void dp_addba_responsesetup_wifi3(void *peer_handle, uint8_t tid,
1621 	uint8_t *dialogtoken, uint16_t *statuscode,
1622 	uint16_t *buffersize, uint16_t *batimeout)
1623 {
1624 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
1625 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1626 
1627 	rx_tid->num_of_addba_resp++;
1628 	/* setup ADDBA response paramters */
1629 	*dialogtoken = rx_tid->dialogtoken;
1630 	*statuscode = rx_tid->statuscode;
1631 	*buffersize = rx_tid->ba_win_size;
1632 	*batimeout  = 0;
1633 }
1634 
1635 /*
1636 * dp_set_addba_response() – Set a user defined ADDBA response status code
1637 *
1638 * @peer: Datapath peer handle
1639 * @tid: TID number
1640 * @statuscode: response status code to be set
1641 */
1642 void dp_set_addba_response(void *peer_handle, uint8_t tid,
1643 	uint16_t statuscode)
1644 {
1645 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
1646 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1647 
1648 	rx_tid->userstatuscode = statuscode;
1649 }
1650 
1651 /*
1652 * dp_rx_delba_process_wifi3() – Process DELBA from peer
1653 * @peer: Datapath peer handle
1654 * @tid: TID number
1655 * @reasoncode: Reason code received in DELBA frame
1656 *
1657 * Return: 0 on success, error code on failure
1658 */
1659 int dp_delba_process_wifi3(void *peer_handle,
1660 	int tid, uint16_t reasoncode)
1661 {
1662 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
1663 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1664 
1665 	if (rx_tid->ba_status != DP_RX_BA_ACTIVE)
1666 		return QDF_STATUS_E_FAILURE;
1667 
1668 	/* TODO: See if we can delete the existing REO queue descriptor and
1669 	 * replace with a new one without queue extenstion descript to save
1670 	 * memory
1671 	 */
1672 	rx_tid->num_of_delba_req++;
1673 	dp_rx_tid_update_wifi3(peer, tid, 1, 0);
1674 
1675 	rx_tid->ba_status = DP_RX_BA_INACTIVE;
1676 
1677 	return 0;
1678 }
1679 
1680 void dp_rx_discard(struct dp_vdev *vdev, struct dp_peer *peer, unsigned tid,
1681 	qdf_nbuf_t msdu_list)
1682 {
1683 	while (msdu_list) {
1684 		qdf_nbuf_t msdu = msdu_list;
1685 
1686 		msdu_list = qdf_nbuf_next(msdu_list);
1687 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1688 			"discard rx %pK from partly-deleted peer %pK "
1689 			"(%02x:%02x:%02x:%02x:%02x:%02x)\n",
1690 			msdu, peer,
1691 			peer->mac_addr.raw[0], peer->mac_addr.raw[1],
1692 			peer->mac_addr.raw[2], peer->mac_addr.raw[3],
1693 			peer->mac_addr.raw[4], peer->mac_addr.raw[5]);
1694 		qdf_nbuf_free(msdu);
1695 	}
1696 }
1697 
1698 
1699 /**
1700  * dp_set_pn_check_wifi3() - enable PN check in REO for security
1701  * @peer: Datapath peer handle
1702  * @vdev: Datapath vdev
1703  * @pdev - data path device instance
1704  * @sec_type - security type
1705  * @rx_pn - Receive pn starting number
1706  *
1707  */
1708 
1709 void
1710 dp_set_pn_check_wifi3(struct cdp_vdev *vdev_handle, struct cdp_peer *peer_handle, enum cdp_sec_type sec_type,  uint32_t *rx_pn)
1711 {
1712 	struct dp_peer *peer =  (struct dp_peer *)peer_handle;
1713 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
1714 	struct dp_pdev *pdev;
1715 	struct dp_soc *soc;
1716 	int i;
1717 	uint8_t pn_size;
1718 	struct hal_reo_cmd_params params;
1719 
1720 	/* preconditions */
1721 	qdf_assert(vdev);
1722 
1723 	pdev = vdev->pdev;
1724 	soc = pdev->soc;
1725 
1726 
1727 	qdf_mem_zero(&params, sizeof(params));
1728 
1729 	params.std.need_status = 1;
1730 	params.u.upd_queue_params.update_pn_valid = 1;
1731 	params.u.upd_queue_params.update_pn_size = 1;
1732 	params.u.upd_queue_params.update_pn = 1;
1733 	params.u.upd_queue_params.update_pn_check_needed = 1;
1734 
1735 	peer->security[dp_sec_ucast].sec_type = sec_type;
1736 
1737 	switch (sec_type) {
1738 	case cdp_sec_type_tkip_nomic:
1739 	case cdp_sec_type_aes_ccmp:
1740 	case cdp_sec_type_aes_ccmp_256:
1741 	case cdp_sec_type_aes_gcmp:
1742 	case cdp_sec_type_aes_gcmp_256:
1743 		params.u.upd_queue_params.pn_check_needed = 1;
1744 		params.u.upd_queue_params.pn_size = 48;
1745 		pn_size = 48;
1746 		break;
1747 	case cdp_sec_type_wapi:
1748 		params.u.upd_queue_params.pn_check_needed = 1;
1749 		params.u.upd_queue_params.pn_size = 128;
1750 		pn_size = 128;
1751 		if (vdev->opmode == wlan_op_mode_ap) {
1752 			params.u.upd_queue_params.pn_even = 1;
1753 			params.u.upd_queue_params.update_pn_even = 1;
1754 		} else {
1755 			params.u.upd_queue_params.pn_uneven = 1;
1756 			params.u.upd_queue_params.update_pn_uneven = 1;
1757 		}
1758 		break;
1759 	default:
1760 		params.u.upd_queue_params.pn_check_needed = 0;
1761 		pn_size = 0;
1762 		break;
1763 	}
1764 
1765 
1766 	for (i = 0; i < DP_MAX_TIDS; i++) {
1767 		struct dp_rx_tid *rx_tid = &peer->rx_tid[i];
1768 		if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) {
1769 			params.std.addr_lo =
1770 				rx_tid->hw_qdesc_paddr & 0xffffffff;
1771 			params.std.addr_hi =
1772 				(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1773 
1774 			if (sec_type != cdp_sec_type_wapi) {
1775 				params.u.upd_queue_params.update_pn_valid = 0;
1776 			} else {
1777 				/*
1778 				 * Setting PN valid bit for WAPI sec_type,
1779 				 * since WAPI PN has to be started with
1780 				 * predefined value
1781 				 */
1782 				params.u.upd_queue_params.update_pn_valid = 1;
1783 				params.u.upd_queue_params.pn_31_0 = rx_pn[0];
1784 				params.u.upd_queue_params.pn_63_32 = rx_pn[1];
1785 				params.u.upd_queue_params.pn_95_64 = rx_pn[2];
1786 				params.u.upd_queue_params.pn_127_96 = rx_pn[3];
1787 			}
1788 			rx_tid->pn_size = pn_size;
1789 			dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params,
1790 				dp_rx_tid_update_cb, rx_tid);
1791 		} else {
1792 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1793 				"PN Check not setup for TID :%d \n", i);
1794 		}
1795 	}
1796 }
1797 
1798 
1799 void
1800 dp_rx_sec_ind_handler(void *soc_handle, uint16_t peer_id,
1801 	enum htt_sec_type sec_type, int is_unicast, u_int32_t *michael_key,
1802 	u_int32_t *rx_pn)
1803 {
1804 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1805 	struct dp_peer *peer;
1806 	int sec_index;
1807 
1808 	peer = dp_peer_find_by_id(soc, peer_id);
1809 	if (!peer) {
1810 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1811 			"Couldn't find peer from ID %d - skipping security inits\n",
1812 			peer_id);
1813 		return;
1814 	}
1815 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1816 		"sec spec for peer %pK (%02x:%02x:%02x:%02x:%02x:%02x): "
1817 		"%s key of type %d\n",
1818 		peer,
1819 		peer->mac_addr.raw[0], peer->mac_addr.raw[1],
1820 		peer->mac_addr.raw[2], peer->mac_addr.raw[3],
1821 		peer->mac_addr.raw[4], peer->mac_addr.raw[5],
1822 		is_unicast ? "ucast" : "mcast",
1823 		sec_type);
1824 	sec_index = is_unicast ? dp_sec_ucast : dp_sec_mcast;
1825 	peer->security[sec_index].sec_type = sec_type;
1826 #ifdef notyet /* TODO: See if this is required for defrag support */
1827 	/* michael key only valid for TKIP, but for simplicity,
1828 	 * copy it anyway
1829 	 */
1830 	qdf_mem_copy(
1831 		&peer->security[sec_index].michael_key[0],
1832 		michael_key,
1833 		sizeof(peer->security[sec_index].michael_key));
1834 #ifdef BIG_ENDIAN_HOST
1835 	OL_IF_SWAPBO(peer->security[sec_index].michael_key[0],
1836 				 sizeof(peer->security[sec_index].michael_key));
1837 #endif /* BIG_ENDIAN_HOST */
1838 #endif
1839 
1840 #ifdef notyet /* TODO: Check if this is required for wifi3.0 */
1841 	if (sec_type != htt_sec_type_wapi) {
1842 		qdf_mem_set(peer->tids_last_pn_valid, _EXT_TIDS, 0x00);
1843 	} else {
1844 		for (i = 0; i < DP_MAX_TIDS; i++) {
1845 			/*
1846 			 * Setting PN valid bit for WAPI sec_type,
1847 			 * since WAPI PN has to be started with predefined value
1848 			 */
1849 			peer->tids_last_pn_valid[i] = 1;
1850 			qdf_mem_copy(
1851 				(u_int8_t *) &peer->tids_last_pn[i],
1852 				(u_int8_t *) rx_pn, sizeof(union htt_rx_pn_t));
1853 			peer->tids_last_pn[i].pn128[1] =
1854 				qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[1]);
1855 			peer->tids_last_pn[i].pn128[0] =
1856 				qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[0]);
1857 		}
1858 	}
1859 #endif
1860 	/* TODO: Update HW TID queue with PN check parameters (pn type for
1861 	 * all security types and last pn for WAPI) once REO command API
1862 	 * is available
1863 	 */
1864 }
1865 
1866 #ifndef CONFIG_WIN
1867 /**
1868  * dp_register_peer() - Register peer into physical device
1869  * @pdev - data path device instance
1870  * @sta_desc - peer description
1871  *
1872  * Register peer into physical device
1873  *
1874  * Return: QDF_STATUS_SUCCESS registration success
1875  *         QDF_STATUS_E_FAULT peer not found
1876  */
1877 QDF_STATUS dp_register_peer(struct cdp_pdev *pdev_handle,
1878 		struct ol_txrx_desc_type *sta_desc)
1879 {
1880 	struct dp_peer *peer;
1881 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
1882 
1883 	peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev,
1884 			sta_desc->sta_id);
1885 	if (!peer)
1886 		return QDF_STATUS_E_FAULT;
1887 
1888 	qdf_spin_lock_bh(&peer->peer_info_lock);
1889 	peer->state = OL_TXRX_PEER_STATE_CONN;
1890 	qdf_spin_unlock_bh(&peer->peer_info_lock);
1891 
1892 	return QDF_STATUS_SUCCESS;
1893 }
1894 
1895 /**
1896  * dp_clear_peer() - remove peer from physical device
1897  * @pdev - data path device instance
1898  * @sta_id - local peer id
1899  *
1900  * remove peer from physical device
1901  *
1902  * Return: QDF_STATUS_SUCCESS registration success
1903  *         QDF_STATUS_E_FAULT peer not found
1904  */
1905 QDF_STATUS dp_clear_peer(struct cdp_pdev *pdev_handle, uint8_t local_id)
1906 {
1907 	struct dp_peer *peer;
1908 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
1909 
1910 	peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev, local_id);
1911 	if (!peer)
1912 		return QDF_STATUS_E_FAULT;
1913 
1914 	qdf_spin_lock_bh(&peer->peer_info_lock);
1915 	peer->state = OL_TXRX_PEER_STATE_DISC;
1916 	qdf_spin_unlock_bh(&peer->peer_info_lock);
1917 
1918 	return QDF_STATUS_SUCCESS;
1919 }
1920 
1921 /**
1922  * dp_find_peer_by_addr_and_vdev() - Find peer by peer mac address within vdev
1923  * @pdev - data path device instance
1924  * @vdev - virtual interface instance
1925  * @peer_addr - peer mac address
1926  * @peer_id - local peer id with target mac address
1927  *
1928  * Find peer by peer mac address within vdev
1929  *
1930  * Return: peer instance void pointer
1931  *         NULL cannot find target peer
1932  */
1933 void *dp_find_peer_by_addr_and_vdev(struct cdp_pdev *pdev_handle,
1934 		struct cdp_vdev *vdev_handle,
1935 		uint8_t *peer_addr, uint8_t *local_id)
1936 {
1937 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
1938 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
1939 	struct dp_peer *peer;
1940 
1941 	DP_TRACE(INFO, "vdev %pK peer_addr %pK", vdev, peer_addr);
1942 	peer = dp_peer_find_hash_find(pdev->soc, peer_addr, 0);
1943 	DP_TRACE(INFO, "peer %pK vdev %pK", peer, vdev);
1944 
1945 	if (!peer)
1946 		return NULL;
1947 
1948 	if (peer->vdev != vdev)
1949 		return NULL;
1950 
1951 	*local_id = peer->local_id;
1952 	DP_TRACE(INFO, "peer %pK vdev %pK local id %d", peer, vdev, *local_id);
1953 
1954 	/* ref_cnt is incremented inside dp_peer_find_hash_find().
1955 	 * Decrement it here.
1956 	 */
1957 	qdf_atomic_dec(&peer->ref_cnt);
1958 
1959 	return peer;
1960 }
1961 
1962 /**
1963  * dp_local_peer_id() - Find local peer id within peer instance
1964  * @peer - peer instance
1965  *
1966  * Find local peer id within peer instance
1967  *
1968  * Return: local peer id
1969  */
1970 uint16_t dp_local_peer_id(void *peer)
1971 {
1972 	return ((struct dp_peer *)peer)->local_id;
1973 }
1974 
1975 /**
1976  * dp_peer_find_by_local_id() - Find peer by local peer id
1977  * @pdev - data path device instance
1978  * @local_peer_id - local peer id want to find
1979  *
1980  * Find peer by local peer id within physical device
1981  *
1982  * Return: peer instance void pointer
1983  *         NULL cannot find target peer
1984  */
1985 void *dp_peer_find_by_local_id(struct cdp_pdev *pdev_handle, uint8_t local_id)
1986 {
1987 	struct dp_peer *peer;
1988 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
1989 
1990 	qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
1991 	peer = pdev->local_peer_ids.map[local_id];
1992 	qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
1993 	DP_TRACE(DEBUG, "peer %pK local id %d", peer, local_id);
1994 	return peer;
1995 }
1996 
1997 /**
1998  * dp_peer_state_update() - update peer local state
1999  * @pdev - data path device instance
2000  * @peer_addr - peer mac address
2001  * @state - new peer local state
2002  *
2003  * update peer local state
2004  *
2005  * Return: QDF_STATUS_SUCCESS registration success
2006  */
2007 QDF_STATUS dp_peer_state_update(struct cdp_pdev *pdev_handle, uint8_t *peer_mac,
2008 		enum ol_txrx_peer_state state)
2009 {
2010 	struct dp_peer *peer;
2011 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2012 
2013 	peer =  dp_peer_find_hash_find(pdev->soc, peer_mac, 0);
2014 	if (NULL == peer) {
2015 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2016 		"Failed to find peer for: [%pM]", peer_mac);
2017 		return QDF_STATUS_E_FAILURE;
2018 	}
2019 	peer->state = state;
2020 
2021 	DP_TRACE(INFO, "peer %pK state %d", peer, peer->state);
2022 	/* ref_cnt is incremented inside dp_peer_find_hash_find().
2023 	 * Decrement it here.
2024 	 */
2025 	qdf_atomic_dec(&peer->ref_cnt);
2026 
2027 	return QDF_STATUS_SUCCESS;
2028 }
2029 
2030 /**
2031  * dp_get_vdevid() - Get virtaul interface id which peer registered
2032  * @peer - peer instance
2033  * @vdev_id - virtaul interface id which peer registered
2034  *
2035  * Get virtaul interface id which peer registered
2036  *
2037  * Return: QDF_STATUS_SUCCESS registration success
2038  */
2039 QDF_STATUS dp_get_vdevid(void *peer_handle, uint8_t *vdev_id)
2040 {
2041 	struct dp_peer *peer = peer_handle;
2042 
2043 	DP_TRACE(INFO, "peer %pK vdev %pK vdev id %d",
2044 			peer, peer->vdev, peer->vdev->vdev_id);
2045 	*vdev_id = peer->vdev->vdev_id;
2046 	return QDF_STATUS_SUCCESS;
2047 }
2048 
2049 struct cdp_vdev *dp_get_vdev_by_sta_id(struct cdp_pdev *pdev_handle,
2050 				       uint8_t sta_id)
2051 {
2052 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2053 	struct dp_peer *peer = NULL;
2054 
2055 	if (sta_id >= WLAN_MAX_STA_COUNT) {
2056 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2057 			  "Invalid sta id passed");
2058 		return NULL;
2059 	}
2060 
2061 	if (!pdev) {
2062 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2063 			  "PDEV not found for sta_id [%d]", sta_id);
2064 		return NULL;
2065 	}
2066 
2067 	peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev, sta_id);
2068 	if (!peer) {
2069 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2070 			  "PEER [%d] not found", sta_id);
2071 		return NULL;
2072 	}
2073 
2074 	return (struct cdp_vdev *)peer->vdev;
2075 }
2076 
2077 /**
2078  * dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs
2079  * @peer - peer instance
2080  *
2081  * Get virtual interface instance which peer belongs
2082  *
2083  * Return: virtual interface instance pointer
2084  *         NULL in case cannot find
2085  */
2086 struct cdp_vdev *dp_get_vdev_for_peer(void *peer_handle)
2087 {
2088 	struct dp_peer *peer = peer_handle;
2089 
2090 	DP_TRACE(INFO, "peer %pK vdev %pK", peer, peer->vdev);
2091 	return (struct cdp_vdev *)peer->vdev;
2092 }
2093 
2094 /**
2095  * dp_peer_get_peer_mac_addr() - Get peer mac address
2096  * @peer - peer instance
2097  *
2098  * Get peer mac address
2099  *
2100  * Return: peer mac address pointer
2101  *         NULL in case cannot find
2102  */
2103 uint8_t *dp_peer_get_peer_mac_addr(void *peer_handle)
2104 {
2105 	struct dp_peer *peer = peer_handle;
2106 	uint8_t *mac;
2107 
2108 	mac = peer->mac_addr.raw;
2109 	DP_TRACE(INFO, "peer %pK mac 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x",
2110 		peer, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
2111 	return peer->mac_addr.raw;
2112 }
2113 
2114 /**
2115  * dp_get_peer_state() - Get local peer state
2116  * @peer - peer instance
2117  *
2118  * Get local peer state
2119  *
2120  * Return: peer status
2121  */
2122 int dp_get_peer_state(void *peer_handle)
2123 {
2124 	struct dp_peer *peer = peer_handle;
2125 
2126 	DP_TRACE(DEBUG, "peer %pK stats %d", peer, peer->state);
2127 	return peer->state;
2128 }
2129 
2130 /**
2131  * dp_get_last_assoc_received() - get time of last assoc received
2132  * @peer_handle: peer handle
2133  *
2134  * Return: pointer for the time of last assoc received
2135  */
2136 qdf_time_t *dp_get_last_assoc_received(void *peer_handle)
2137 {
2138 	struct dp_peer *peer = peer_handle;
2139 
2140 	DP_TRACE(INFO, "peer %pK last_assoc_rcvd: %lu", peer,
2141 		peer->last_assoc_rcvd);
2142 	return &peer->last_assoc_rcvd;
2143 }
2144 
2145 /**
2146  * dp_get_last_disassoc_received() - get time of last disassoc received
2147  * @peer_handle: peer handle
2148  *
2149  * Return: pointer for the time of last disassoc received
2150  */
2151 qdf_time_t *dp_get_last_disassoc_received(void *peer_handle)
2152 {
2153 	struct dp_peer *peer = peer_handle;
2154 
2155 	DP_TRACE(INFO, "peer %pK last_disassoc_rcvd: %lu", peer,
2156 		peer->last_disassoc_rcvd);
2157 	return &peer->last_disassoc_rcvd;
2158 }
2159 
2160 /**
2161  * dp_get_last_deauth_received() - get time of last deauth received
2162  * @peer_handle: peer handle
2163  *
2164  * Return: pointer for the time of last deauth received
2165  */
2166 qdf_time_t *dp_get_last_deauth_received(void *peer_handle)
2167 {
2168 	struct dp_peer *peer = peer_handle;
2169 
2170 	DP_TRACE(INFO, "peer %pK last_deauth_rcvd: %lu", peer,
2171 		peer->last_deauth_rcvd);
2172 	return &peer->last_deauth_rcvd;
2173 }
2174 
2175 /**
2176  * dp_local_peer_id_pool_init() - local peer id pool alloc for physical device
2177  * @pdev - data path device instance
2178  *
2179  * local peer id pool alloc for physical device
2180  *
2181  * Return: none
2182  */
2183 void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2184 {
2185 	int i;
2186 
2187 	/* point the freelist to the first ID */
2188 	pdev->local_peer_ids.freelist = 0;
2189 
2190 	/* link each ID to the next one */
2191 	for (i = 0; i < OL_TXRX_NUM_LOCAL_PEER_IDS; i++) {
2192 		pdev->local_peer_ids.pool[i] = i + 1;
2193 		pdev->local_peer_ids.map[i] = NULL;
2194 	}
2195 
2196 	/* link the last ID to itself, to mark the end of the list */
2197 	i = OL_TXRX_NUM_LOCAL_PEER_IDS;
2198 	pdev->local_peer_ids.pool[i] = i;
2199 
2200 	qdf_spinlock_create(&pdev->local_peer_ids.lock);
2201 	DP_TRACE(INFO, "Peer pool init");
2202 }
2203 
2204 /**
2205  * dp_local_peer_id_alloc() - allocate local peer id
2206  * @pdev - data path device instance
2207  * @peer - new peer instance
2208  *
2209  * allocate local peer id
2210  *
2211  * Return: none
2212  */
2213 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2214 {
2215 	int i;
2216 
2217 	qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
2218 	i = pdev->local_peer_ids.freelist;
2219 	if (pdev->local_peer_ids.pool[i] == i) {
2220 		/* the list is empty, except for the list-end marker */
2221 		peer->local_id = OL_TXRX_INVALID_LOCAL_PEER_ID;
2222 	} else {
2223 		/* take the head ID and advance the freelist */
2224 		peer->local_id = i;
2225 		pdev->local_peer_ids.freelist = pdev->local_peer_ids.pool[i];
2226 		pdev->local_peer_ids.map[i] = peer;
2227 	}
2228 	qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
2229 	DP_TRACE(INFO, "peer %pK, local id %d", peer, peer->local_id);
2230 }
2231 
2232 /**
2233  * dp_local_peer_id_free() - remove local peer id
2234  * @pdev - data path device instance
2235  * @peer - peer instance should be removed
2236  *
2237  * remove local peer id
2238  *
2239  * Return: none
2240  */
2241 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2242 {
2243 	int i = peer->local_id;
2244 	if ((i == OL_TXRX_INVALID_LOCAL_PEER_ID) ||
2245 	    (i >= OL_TXRX_NUM_LOCAL_PEER_IDS)) {
2246 		return;
2247 	}
2248 
2249 	/* put this ID on the head of the freelist */
2250 	qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
2251 	pdev->local_peer_ids.pool[i] = pdev->local_peer_ids.freelist;
2252 	pdev->local_peer_ids.freelist = i;
2253 	pdev->local_peer_ids.map[i] = NULL;
2254 	qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
2255 }
2256 #endif
2257 
2258 /**
2259  * dp_get_peer_mac_addr_frm_id(): get mac address of the peer
2260  * @soc_handle: DP SOC handle
2261  * @peer_id:peer_id of the peer
2262  *
2263  * return: vdev_id of the vap
2264  */
2265 uint8_t dp_get_peer_mac_addr_frm_id(struct cdp_soc_t *soc_handle,
2266 		uint16_t peer_id, uint8_t *peer_mac)
2267 {
2268 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
2269 	struct dp_peer *peer;
2270 
2271 	peer = dp_peer_find_by_id(soc, peer_id);
2272 
2273 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
2274 			"soc %pK peer_id %d", soc, peer_id);
2275 
2276 	if (!peer) {
2277 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2278 				"peer not found ");
2279 		return CDP_INVALID_VDEV_ID;
2280 	}
2281 
2282 	qdf_mem_copy(peer_mac, peer->mac_addr.raw, 6);
2283 	return peer->vdev->vdev_id;
2284 }
2285 
2286 /**
2287  * dp_peer_rxtid_stats: Retried Rx TID (REO queue) stats from HW
2288  * @peer: DP peer handle
2289  * @dp_stats_cmd_cb: REO command callback function
2290  * @cb_ctxt: Callback context
2291  *
2292  * Return: none
2293  */
2294 void dp_peer_rxtid_stats(struct dp_peer *peer, void (*dp_stats_cmd_cb),
2295 			void *cb_ctxt)
2296 {
2297 	struct dp_soc *soc = peer->vdev->pdev->soc;
2298 	struct hal_reo_cmd_params params;
2299 	int i;
2300 
2301 	if (!dp_stats_cmd_cb)
2302 		return;
2303 
2304 	qdf_mem_zero(&params, sizeof(params));
2305 	for (i = 0; i < DP_MAX_TIDS; i++) {
2306 		struct dp_rx_tid *rx_tid = &peer->rx_tid[i];
2307 		if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) {
2308 			params.std.need_status = 1;
2309 			params.std.addr_lo =
2310 				rx_tid->hw_qdesc_paddr & 0xffffffff;
2311 			params.std.addr_hi =
2312 				(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
2313 
2314 			if (cb_ctxt) {
2315 				dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS,
2316 					&params, dp_stats_cmd_cb, cb_ctxt);
2317 			} else {
2318 				dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS,
2319 					&params, dp_stats_cmd_cb, rx_tid);
2320 			}
2321 
2322 			/* Flush REO descriptor from HW cache to update stats
2323 			 * in descriptor memory. This is to help debugging */
2324 			qdf_mem_zero(&params, sizeof(params));
2325 			params.std.need_status = 0;
2326 			params.std.addr_lo =
2327 				rx_tid->hw_qdesc_paddr & 0xffffffff;
2328 			params.std.addr_hi =
2329 				(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
2330 			params.u.fl_cache_params.flush_no_inval = 1;
2331 			dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, &params, NULL,
2332 				NULL);
2333 		}
2334 	}
2335 }
2336