xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_peer.c (revision 0626a4da6c07f30da06dd6747e8cc290a60371d8)
1 /*
2  * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <qdf_types.h>
20 #include <qdf_lock.h>
21 #include <hal_hw_headers.h>
22 #include "dp_htt.h"
23 #include "dp_types.h"
24 #include "dp_internal.h"
25 #include "dp_peer.h"
26 #include "dp_rx_defrag.h"
27 #include <hal_api.h>
28 #include <hal_reo.h>
29 #ifdef CONFIG_MCL
30 #include <cds_ieee80211_common.h>
31 #include <cds_api.h>
32 #endif
33 #include <cdp_txrx_handle.h>
34 #include <wlan_cfg.h>
35 
36 #ifdef DP_LFR
37 static inline void
38 dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params,
39 					uint8_t valid)
40 {
41 	params->u.upd_queue_params.update_svld = 1;
42 	params->u.upd_queue_params.svld = valid;
43 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
44 		"%s: Setting SSN valid bit to %d",
45 				__func__, valid);
46 }
47 #else
48 static inline void
49 dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params,
50 					uint8_t valid) {};
51 #endif
52 
53 static inline int dp_peer_find_mac_addr_cmp(
54 	union dp_align_mac_addr *mac_addr1,
55 	union dp_align_mac_addr *mac_addr2)
56 {
57 	return !((mac_addr1->align4.bytes_abcd == mac_addr2->align4.bytes_abcd)
58 		/*
59 		 * Intentionally use & rather than &&.
60 		 * because the operands are binary rather than generic boolean,
61 		 * the functionality is equivalent.
62 		 * Using && has the advantage of short-circuited evaluation,
63 		 * but using & has the advantage of no conditional branching,
64 		 * which is a more significant benefit.
65 		 */
66 		&
67 		(mac_addr1->align4.bytes_ef == mac_addr2->align4.bytes_ef));
68 }
69 
70 static int dp_peer_find_map_attach(struct dp_soc *soc)
71 {
72 	uint32_t max_peers, peer_map_size;
73 
74 	max_peers = soc->max_peers;
75 	/* allocate the peer ID -> peer object map */
76 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
77 		"\n<=== cfg max peer id %d ====>", max_peers);
78 	peer_map_size = max_peers * sizeof(soc->peer_id_to_obj_map[0]);
79 	soc->peer_id_to_obj_map = qdf_mem_malloc(peer_map_size);
80 	if (!soc->peer_id_to_obj_map) {
81 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
82 			"%s: peer map memory allocation failed", __func__);
83 		return QDF_STATUS_E_NOMEM;
84 	}
85 
86 	/*
87 	 * The peer_id_to_obj_map doesn't really need to be initialized,
88 	 * since elements are only used after they have been individually
89 	 * initialized.
90 	 * However, it is convenient for debugging to have all elements
91 	 * that are not in use set to 0.
92 	 */
93 	qdf_mem_zero(soc->peer_id_to_obj_map, peer_map_size);
94 	return 0; /* success */
95 }
96 
97 static int dp_log2_ceil(unsigned value)
98 {
99 	unsigned tmp = value;
100 	int log2 = -1;
101 
102 	while (tmp) {
103 		log2++;
104 		tmp >>= 1;
105 	}
106 	if (1 << log2 != value)
107 		log2++;
108 	return log2;
109 }
110 
111 static int dp_peer_find_add_id_to_obj(
112 	struct dp_peer *peer,
113 	uint16_t peer_id)
114 {
115 	int i;
116 
117 	for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
118 		if (peer->peer_ids[i] == HTT_INVALID_PEER) {
119 			peer->peer_ids[i] = peer_id;
120 			return 0; /* success */
121 		}
122 	}
123 	return QDF_STATUS_E_FAILURE; /* failure */
124 }
125 
126 #define DP_PEER_HASH_LOAD_MULT  2
127 #define DP_PEER_HASH_LOAD_SHIFT 0
128 
129 #define DP_AST_HASH_LOAD_MULT  2
130 #define DP_AST_HASH_LOAD_SHIFT 0
131 
132 static int dp_peer_find_hash_attach(struct dp_soc *soc)
133 {
134 	int i, hash_elems, log2;
135 
136 	/* allocate the peer MAC address -> peer object hash table */
137 	hash_elems = soc->max_peers;
138 	hash_elems *= DP_PEER_HASH_LOAD_MULT;
139 	hash_elems >>= DP_PEER_HASH_LOAD_SHIFT;
140 	log2 = dp_log2_ceil(hash_elems);
141 	hash_elems = 1 << log2;
142 
143 	soc->peer_hash.mask = hash_elems - 1;
144 	soc->peer_hash.idx_bits = log2;
145 	/* allocate an array of TAILQ peer object lists */
146 	soc->peer_hash.bins = qdf_mem_malloc(
147 		hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q, dp_peer)));
148 	if (!soc->peer_hash.bins)
149 		return QDF_STATUS_E_NOMEM;
150 
151 	for (i = 0; i < hash_elems; i++)
152 		TAILQ_INIT(&soc->peer_hash.bins[i]);
153 
154 	return 0;
155 }
156 
157 static void dp_peer_find_hash_detach(struct dp_soc *soc)
158 {
159 	qdf_mem_free(soc->peer_hash.bins);
160 }
161 
162 static inline unsigned dp_peer_find_hash_index(struct dp_soc *soc,
163 	union dp_align_mac_addr *mac_addr)
164 {
165 	unsigned index;
166 
167 	index =
168 		mac_addr->align2.bytes_ab ^
169 		mac_addr->align2.bytes_cd ^
170 		mac_addr->align2.bytes_ef;
171 	index ^= index >> soc->peer_hash.idx_bits;
172 	index &= soc->peer_hash.mask;
173 	return index;
174 }
175 
176 
177 void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer)
178 {
179 	unsigned index;
180 
181 	index = dp_peer_find_hash_index(soc, &peer->mac_addr);
182 	qdf_spin_lock_bh(&soc->peer_ref_mutex);
183 	/*
184 	 * It is important to add the new peer at the tail of the peer list
185 	 * with the bin index.  Together with having the hash_find function
186 	 * search from head to tail, this ensures that if two entries with
187 	 * the same MAC address are stored, the one added first will be
188 	 * found first.
189 	 */
190 	TAILQ_INSERT_TAIL(&soc->peer_hash.bins[index], peer, hash_list_elem);
191 	qdf_spin_unlock_bh(&soc->peer_ref_mutex);
192 }
193 
194 #ifdef FEATURE_AST
195 /*
196  * dp_peer_ast_hash_attach() - Allocate and initialize AST Hash Table
197  * @soc: SoC handle
198  *
199  * Return: None
200  */
201 static int dp_peer_ast_hash_attach(struct dp_soc *soc)
202 {
203 	int i, hash_elems, log2;
204 
205 	hash_elems = ((soc->max_peers * DP_AST_HASH_LOAD_MULT) >>
206 		DP_AST_HASH_LOAD_SHIFT);
207 
208 	log2 = dp_log2_ceil(hash_elems);
209 	hash_elems = 1 << log2;
210 
211 	soc->ast_hash.mask = hash_elems - 1;
212 	soc->ast_hash.idx_bits = log2;
213 
214 	/* allocate an array of TAILQ peer object lists */
215 	soc->ast_hash.bins = qdf_mem_malloc(
216 		hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q,
217 				dp_ast_entry)));
218 
219 	if (!soc->ast_hash.bins)
220 		return QDF_STATUS_E_NOMEM;
221 
222 	for (i = 0; i < hash_elems; i++)
223 		TAILQ_INIT(&soc->ast_hash.bins[i]);
224 
225 	return 0;
226 }
227 
228 #if defined(FEATURE_AST) && defined(AST_HKV1_WORKAROUND)
229 static inline void dp_peer_ast_cleanup(struct dp_soc *soc,
230 				       struct dp_ast_entry *ast)
231 {
232 	struct cdp_soc_t *cdp_soc = &soc->cdp_soc;
233 
234 	if (ast->cp_ctx && cdp_soc->ol_ops->peer_del_wds_cp_ctx)
235 		cdp_soc->ol_ops->peer_del_wds_cp_ctx(ast->cp_ctx);
236 }
237 #else
238 static inline void dp_peer_ast_cleanup(struct dp_soc *soc,
239 				       struct dp_ast_entry *ast)
240 {
241 }
242 #endif
243 /*
244  * dp_peer_ast_hash_detach() - Free AST Hash table
245  * @soc: SoC handle
246  *
247  * Return: None
248  */
249 static void dp_peer_ast_hash_detach(struct dp_soc *soc)
250 {
251 	unsigned int index;
252 	struct dp_ast_entry *ast, *ast_next;
253 
254 	if (!soc->ast_hash.mask)
255 		return;
256 
257 	for (index = 0; index <= soc->ast_hash.mask; index++) {
258 		if (!TAILQ_EMPTY(&soc->ast_hash.bins[index])) {
259 			TAILQ_FOREACH_SAFE(ast, &soc->ast_hash.bins[index],
260 					   hash_list_elem, ast_next) {
261 				TAILQ_REMOVE(&soc->ast_hash.bins[index], ast,
262 					     hash_list_elem);
263 				dp_peer_ast_cleanup(soc, ast);
264 				qdf_mem_free(ast);
265 			}
266 		}
267 	}
268 
269 	qdf_mem_free(soc->ast_hash.bins);
270 }
271 
272 /*
273  * dp_peer_ast_hash_index() - Compute the AST hash from MAC address
274  * @soc: SoC handle
275  *
276  * Return: AST hash
277  */
278 static inline uint32_t dp_peer_ast_hash_index(struct dp_soc *soc,
279 	union dp_align_mac_addr *mac_addr)
280 {
281 	uint32_t index;
282 
283 	index =
284 		mac_addr->align2.bytes_ab ^
285 		mac_addr->align2.bytes_cd ^
286 		mac_addr->align2.bytes_ef;
287 	index ^= index >> soc->ast_hash.idx_bits;
288 	index &= soc->ast_hash.mask;
289 	return index;
290 }
291 
292 /*
293  * dp_peer_ast_hash_add() - Add AST entry into hash table
294  * @soc: SoC handle
295  *
296  * This function adds the AST entry into SoC AST hash table
297  * It assumes caller has taken the ast lock to protect the access to this table
298  *
299  * Return: None
300  */
301 static inline void dp_peer_ast_hash_add(struct dp_soc *soc,
302 		struct dp_ast_entry *ase)
303 {
304 	uint32_t index;
305 
306 	index = dp_peer_ast_hash_index(soc, &ase->mac_addr);
307 	TAILQ_INSERT_TAIL(&soc->ast_hash.bins[index], ase, hash_list_elem);
308 }
309 
310 /*
311  * dp_peer_ast_hash_remove() - Look up and remove AST entry from hash table
312  * @soc: SoC handle
313  *
314  * This function removes the AST entry from soc AST hash table
315  * It assumes caller has taken the ast lock to protect the access to this table
316  *
317  * Return: None
318  */
319 static inline void dp_peer_ast_hash_remove(struct dp_soc *soc,
320 		struct dp_ast_entry *ase)
321 {
322 	unsigned index;
323 	struct dp_ast_entry *tmpase;
324 	int found = 0;
325 
326 	index = dp_peer_ast_hash_index(soc, &ase->mac_addr);
327 	/* Check if tail is not empty before delete*/
328 	QDF_ASSERT(!TAILQ_EMPTY(&soc->ast_hash.bins[index]));
329 
330 	TAILQ_FOREACH(tmpase, &soc->ast_hash.bins[index], hash_list_elem) {
331 		if (tmpase == ase) {
332 			found = 1;
333 			break;
334 		}
335 	}
336 
337 	QDF_ASSERT(found);
338 	TAILQ_REMOVE(&soc->ast_hash.bins[index], ase, hash_list_elem);
339 }
340 
341 /*
342  * dp_peer_ast_hash_find_by_pdevid() - Find AST entry by MAC address
343  *				       and pdev id
344  * @soc: SoC handle
345  * @ast_mac_addr: mac address
346  * @pdev_id: pdev_id
347  *
348  * It assumes caller has taken the ast lock to protect the access to
349  * AST hash table
350  *
351  * Return: AST entry
352  */
353 struct dp_ast_entry *dp_peer_ast_hash_find_by_pdevid(struct dp_soc *soc,
354 						     uint8_t *ast_mac_addr,
355 						     uint8_t pdev_id)
356 {
357 	union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
358 	uint32_t index;
359 	struct dp_ast_entry *ase;
360 
361 	qdf_mem_copy(&local_mac_addr_aligned.raw[0],
362 		     ast_mac_addr, DP_MAC_ADDR_LEN);
363 	mac_addr = &local_mac_addr_aligned;
364 
365 	index = dp_peer_ast_hash_index(soc, mac_addr);
366 	TAILQ_FOREACH(ase, &soc->ast_hash.bins[index], hash_list_elem) {
367 		if ((pdev_id == ase->pdev_id) &&
368 		    !dp_peer_find_mac_addr_cmp(mac_addr, &ase->mac_addr)) {
369 			return ase;
370 		}
371 	}
372 
373 	return NULL;
374 }
375 
376 /*
377  * dp_peer_ast_hash_find() - Find AST entry by MAC address
378  * @soc: SoC handle
379  *
380  * It assumes caller has taken the ast lock to protect the access to
381  * AST hash table
382  *
383  * Return: AST entry
384  */
385 struct dp_ast_entry *dp_peer_ast_hash_find(struct dp_soc *soc,
386 						uint8_t *ast_mac_addr)
387 {
388 	union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
389 	unsigned index;
390 	struct dp_ast_entry *ase;
391 
392 	qdf_mem_copy(&local_mac_addr_aligned.raw[0],
393 			ast_mac_addr, DP_MAC_ADDR_LEN);
394 	mac_addr = &local_mac_addr_aligned;
395 
396 	index = dp_peer_ast_hash_index(soc, mac_addr);
397 	TAILQ_FOREACH(ase, &soc->ast_hash.bins[index], hash_list_elem) {
398 		if (dp_peer_find_mac_addr_cmp(mac_addr, &ase->mac_addr) == 0) {
399 			return ase;
400 		}
401 	}
402 
403 	return NULL;
404 }
405 
406 /*
407  * dp_peer_map_ast() - Map the ast entry with HW AST Index
408  * @soc: SoC handle
409  * @peer: peer to which ast node belongs
410  * @mac_addr: MAC address of ast node
411  * @hw_peer_id: HW AST Index returned by target in peer map event
412  * @vdev_id: vdev id for VAP to which the peer belongs to
413  * @ast_hash: ast hash value in HW
414  *
415  * Return: None
416  */
417 static inline void dp_peer_map_ast(struct dp_soc *soc,
418 	struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id,
419 	uint8_t vdev_id, uint16_t ast_hash)
420 {
421 	struct dp_ast_entry *ast_entry;
422 	enum cdp_txrx_ast_entry_type peer_type = CDP_TXRX_AST_TYPE_STATIC;
423 	bool ast_entry_found = FALSE;
424 
425 	if (!peer) {
426 		return;
427 	}
428 
429 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
430 		"%s: peer %pK ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x",
431 		__func__, peer, hw_peer_id, vdev_id, mac_addr[0],
432 		mac_addr[1], mac_addr[2], mac_addr[3],
433 		mac_addr[4], mac_addr[5]);
434 
435 	qdf_spin_lock_bh(&soc->ast_lock);
436 	TAILQ_FOREACH(ast_entry, &peer->ast_entry_list, ase_list_elem) {
437 		if (!(qdf_mem_cmp(mac_addr, ast_entry->mac_addr.raw,
438 				DP_MAC_ADDR_LEN))) {
439 			ast_entry->ast_idx = hw_peer_id;
440 			soc->ast_table[hw_peer_id] = ast_entry;
441 			ast_entry->is_active = TRUE;
442 			peer_type = ast_entry->type;
443 			ast_entry_found = TRUE;
444 			ast_entry->ast_hash_value = ast_hash;
445 		}
446 	}
447 
448 	if (ast_entry_found || (peer->vdev && peer->vdev->proxysta_vdev)) {
449 		if (soc->cdp_soc.ol_ops->peer_map_event) {
450 			soc->cdp_soc.ol_ops->peer_map_event(
451 			soc->ctrl_psoc, peer->peer_ids[0],
452 			hw_peer_id, vdev_id,
453 			mac_addr, peer_type, ast_hash);
454 		}
455 	} else {
456 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
457 			"AST entry not found");
458 	}
459 
460 	qdf_spin_unlock_bh(&soc->ast_lock);
461 	return;
462 }
463 
464 /*
465  * dp_peer_add_ast() - Allocate and add AST entry into peer list
466  * @soc: SoC handle
467  * @peer: peer to which ast node belongs
468  * @mac_addr: MAC address of ast node
469  * @is_self: Is this base AST entry with peer mac address
470  *
471  * This API is used by WDS source port learning function to
472  * add a new AST entry into peer AST list
473  *
474  * Return: 0 if new entry is allocated,
475  *        -1 if entry add failed
476  */
477 int dp_peer_add_ast(struct dp_soc *soc,
478 			struct dp_peer *peer,
479 			uint8_t *mac_addr,
480 			enum cdp_txrx_ast_entry_type type,
481 			uint32_t flags)
482 {
483 	struct dp_ast_entry *ast_entry;
484 	struct dp_vdev *vdev = peer->vdev;
485 	struct dp_pdev *pdev = NULL;
486 	uint8_t next_node_mac[6];
487 	int  ret = -1;
488 
489 	if (!vdev) {
490 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
491 			FL("Peers vdev is NULL"));
492 		QDF_ASSERT(0);
493 		return ret;
494 	}
495 
496 	pdev = vdev->pdev;
497 
498 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
499 		"%s: peer %pK mac %02x:%02x:%02x:%02x:%02x:%02x",
500 		__func__, peer, mac_addr[0], mac_addr[1], mac_addr[2],
501 		mac_addr[3], mac_addr[4], mac_addr[5]);
502 
503 	qdf_spin_lock_bh(&soc->ast_lock);
504 
505 	/* If AST entry already exists , just return from here
506 	 * ast entry with same mac address can exist on different radios
507 	 * if ast_override support is enabled use search by pdev in this
508 	 * case
509 	 */
510 	if (soc->ast_override_support) {
511 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr,
512 							    pdev->pdev_id);
513 		if (ast_entry) {
514 			qdf_spin_unlock_bh(&soc->ast_lock);
515 			return 0;
516 		}
517 	} else {
518 		ast_entry = dp_peer_ast_hash_find(soc, mac_addr);
519 
520 		if (ast_entry) {
521 			if (ast_entry->type == CDP_TXRX_AST_TYPE_MEC) {
522 				ast_entry->is_active = TRUE;
523 				qdf_spin_unlock_bh(&soc->ast_lock);
524 				return 0;
525 			}
526 
527 			/*
528 			 * WAR for HK 1.x AST issue
529 			 * If an AST entry with same mac address already
530 			 * exists and is mapped to a different radio, and
531 			 * if the current radio is  primary radio , delete
532 			 * the existing AST entry and return.
533 			 *
534 			 * New AST entry will be created again on next
535 			 * SA_invalid frame
536 			 */
537 			if ((ast_entry->pdev_id != vdev->pdev->pdev_id) &&
538 			    vdev->pdev->is_primary) {
539 				QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
540 					  "Deleting ast_pdev=%d pdev=%d addr=%pM\n",
541 					  ast_entry->pdev_id,
542 					  vdev->pdev->pdev_id, mac_addr);
543 				dp_peer_del_ast(soc, ast_entry);
544 			}
545 
546 			qdf_spin_unlock_bh(&soc->ast_lock);
547 			return 0;
548 		}
549 	}
550 
551 	ast_entry = (struct dp_ast_entry *)
552 			qdf_mem_malloc(sizeof(struct dp_ast_entry));
553 
554 	if (!ast_entry) {
555 		qdf_spin_unlock_bh(&soc->ast_lock);
556 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
557 			FL("fail to allocate ast_entry"));
558 		QDF_ASSERT(0);
559 		return ret;
560 	}
561 
562 	qdf_mem_copy(&ast_entry->mac_addr.raw[0], mac_addr, DP_MAC_ADDR_LEN);
563 	ast_entry->peer = peer;
564 	ast_entry->pdev_id = vdev->pdev->pdev_id;
565 	ast_entry->vdev_id = vdev->vdev_id;
566 
567 	switch (type) {
568 	case CDP_TXRX_AST_TYPE_STATIC:
569 		peer->self_ast_entry = ast_entry;
570 		ast_entry->type = CDP_TXRX_AST_TYPE_STATIC;
571 		if (peer->vdev->opmode == wlan_op_mode_sta)
572 			ast_entry->type = CDP_TXRX_AST_TYPE_STA_BSS;
573 		break;
574 	case CDP_TXRX_AST_TYPE_SELF:
575 		peer->self_ast_entry = ast_entry;
576 		ast_entry->type = CDP_TXRX_AST_TYPE_SELF;
577 		break;
578 	case CDP_TXRX_AST_TYPE_WDS:
579 		ast_entry->next_hop = 1;
580 		ast_entry->type = CDP_TXRX_AST_TYPE_WDS;
581 		break;
582 	case CDP_TXRX_AST_TYPE_WDS_HM:
583 		ast_entry->next_hop = 1;
584 		ast_entry->type = CDP_TXRX_AST_TYPE_WDS_HM;
585 		break;
586 	case CDP_TXRX_AST_TYPE_MEC:
587 		ast_entry->next_hop = 1;
588 		ast_entry->type = CDP_TXRX_AST_TYPE_MEC;
589 		break;
590 	default:
591 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
592 			FL("Incorrect AST entry type"));
593 	}
594 
595 	ast_entry->is_active = TRUE;
596 	TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem);
597 	DP_STATS_INC(soc, ast.added, 1);
598 	dp_peer_ast_hash_add(soc, ast_entry);
599 	qdf_spin_unlock_bh(&soc->ast_lock);
600 
601 	if (ast_entry->type == CDP_TXRX_AST_TYPE_MEC)
602 		qdf_mem_copy(next_node_mac, peer->vdev->mac_addr.raw, 6);
603 	else
604 		qdf_mem_copy(next_node_mac, peer->mac_addr.raw, 6);
605 
606 	if ((ast_entry->type != CDP_TXRX_AST_TYPE_STATIC) &&
607 	    (ast_entry->type != CDP_TXRX_AST_TYPE_SELF) &&
608 	    (ast_entry->type != CDP_TXRX_AST_TYPE_STA_BSS)) {
609 		if (QDF_STATUS_SUCCESS ==
610 				soc->cdp_soc.ol_ops->peer_add_wds_entry(
611 				peer->vdev->osif_vdev,
612 				mac_addr,
613 				next_node_mac,
614 				flags))
615 			return 0;
616 	}
617 
618 	return ret;
619 }
620 
621 #if defined(FEATURE_AST) && defined(AST_HKV1_WORKAROUND)
622 void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry)
623 {
624 	struct dp_peer *peer = ast_entry->peer;
625 
626 	if (ast_entry->next_hop) {
627 		dp_peer_ast_send_wds_del(soc, ast_entry);
628 	} else {
629 		soc->ast_table[ast_entry->ast_idx] = NULL;
630 		TAILQ_REMOVE(&peer->ast_entry_list, ast_entry, ase_list_elem);
631 		DP_STATS_INC(soc, ast.deleted, 1);
632 		dp_peer_ast_hash_remove(soc, ast_entry);
633 		qdf_mem_free(ast_entry);
634 	}
635 }
636 #else
637 /*
638  * dp_peer_del_ast() - Delete and free AST entry
639  * @soc: SoC handle
640  * @ast_entry: AST entry of the node
641  *
642  * This function removes the AST entry from peer and soc tables
643  * It assumes caller has taken the ast lock to protect the access to these
644  * tables
645  *
646  * Return: None
647  */
648 void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry)
649 {
650 	struct dp_peer *peer = ast_entry->peer;
651 
652 	if (ast_entry->next_hop)
653 		soc->cdp_soc.ol_ops->peer_del_wds_entry(peer->vdev->osif_vdev,
654 						ast_entry->mac_addr.raw);
655 
656 	soc->ast_table[ast_entry->ast_idx] = NULL;
657 	TAILQ_REMOVE(&peer->ast_entry_list, ast_entry, ase_list_elem);
658 
659 	if (ast_entry == peer->self_ast_entry)
660 		peer->self_ast_entry = NULL;
661 
662 	DP_STATS_INC(soc, ast.deleted, 1);
663 	dp_peer_ast_hash_remove(soc, ast_entry);
664 	qdf_mem_free(ast_entry);
665 }
666 #endif
667 
668 /*
669  * dp_peer_update_ast() - Delete and free AST entry
670  * @soc: SoC handle
671  * @peer: peer to which ast node belongs
672  * @ast_entry: AST entry of the node
673  * @flags: wds or hmwds
674  *
675  * This function update the AST entry to the roamed peer and soc tables
676  * It assumes caller has taken the ast lock to protect the access to these
677  * tables
678  *
679  * Return: 0 if ast entry is updated successfully
680  *         -1 failure
681  */
682 int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer,
683 		       struct dp_ast_entry *ast_entry, uint32_t flags)
684 {
685 	int ret = -1;
686 	struct dp_peer *old_peer;
687 
688 	if ((ast_entry->type == CDP_TXRX_AST_TYPE_STATIC) ||
689 		(ast_entry->type == CDP_TXRX_AST_TYPE_SELF) ||
690 		(ast_entry->type == CDP_TXRX_AST_TYPE_STA_BSS))
691 		return 0;
692 
693 	old_peer = ast_entry->peer;
694 	TAILQ_REMOVE(&old_peer->ast_entry_list, ast_entry, ase_list_elem);
695 
696 	ast_entry->peer = peer;
697 	ast_entry->type = CDP_TXRX_AST_TYPE_WDS;
698 	ast_entry->pdev_id = peer->vdev->pdev->pdev_id;
699 	ast_entry->vdev_id = peer->vdev->vdev_id;
700 	ast_entry->is_active = TRUE;
701 	TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem);
702 
703 	ret = soc->cdp_soc.ol_ops->peer_update_wds_entry(
704 				peer->vdev->osif_vdev,
705 				ast_entry->mac_addr.raw,
706 				peer->mac_addr.raw,
707 				flags);
708 
709 	return ret;
710 }
711 
712 /*
713  * dp_peer_ast_get_pdev_id() - get pdev_id from the ast entry
714  * @soc: SoC handle
715  * @ast_entry: AST entry of the node
716  *
717  * This function gets the pdev_id from the ast entry.
718  *
719  * Return: (uint8_t) pdev_id
720  */
721 uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc,
722 				struct dp_ast_entry *ast_entry)
723 {
724 	return ast_entry->pdev_id;
725 }
726 
727 /*
728  * dp_peer_ast_get_next_hop() - get next_hop from the ast entry
729  * @soc: SoC handle
730  * @ast_entry: AST entry of the node
731  *
732  * This function gets the next hop from the ast entry.
733  *
734  * Return: (uint8_t) next_hop
735  */
736 uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc,
737 				struct dp_ast_entry *ast_entry)
738 {
739 	return ast_entry->next_hop;
740 }
741 
742 /*
743  * dp_peer_ast_set_type() - set type from the ast entry
744  * @soc: SoC handle
745  * @ast_entry: AST entry of the node
746  *
747  * This function sets the type in the ast entry.
748  *
749  * Return:
750  */
751 void dp_peer_ast_set_type(struct dp_soc *soc,
752 				struct dp_ast_entry *ast_entry,
753 				enum cdp_txrx_ast_entry_type type)
754 {
755 	ast_entry->type = type;
756 }
757 
758 #else
759 int dp_peer_add_ast(struct dp_soc *soc, struct dp_peer *peer,
760 		uint8_t *mac_addr, enum cdp_txrx_ast_entry_type type,
761 		uint32_t flags)
762 {
763 	return 1;
764 }
765 
766 void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry)
767 {
768 }
769 
770 int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer,
771 			struct dp_ast_entry *ast_entry, uint32_t flags)
772 {
773 	return 1;
774 }
775 
776 struct dp_ast_entry *dp_peer_ast_hash_find(struct dp_soc *soc,
777 						uint8_t *ast_mac_addr)
778 {
779 	return NULL;
780 }
781 
782 static int dp_peer_ast_hash_attach(struct dp_soc *soc)
783 {
784 	return 0;
785 }
786 
787 static inline void dp_peer_map_ast(struct dp_soc *soc,
788 	struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id,
789 	uint8_t vdev_id, uint16_t ast_hash)
790 {
791 	return;
792 }
793 
794 static void dp_peer_ast_hash_detach(struct dp_soc *soc)
795 {
796 }
797 
798 void dp_peer_ast_set_type(struct dp_soc *soc,
799 				struct dp_ast_entry *ast_entry,
800 				enum cdp_txrx_ast_entry_type type)
801 {
802 }
803 
804 uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc,
805 				struct dp_ast_entry *ast_entry)
806 {
807 	return 0xff;
808 }
809 
810 
811 uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc,
812 				struct dp_ast_entry *ast_entry)
813 {
814 	return 0xff;
815 }
816 #endif
817 
818 #if defined(FEATURE_AST) && defined(AST_HKV1_WORKAROUND)
819 void dp_peer_ast_set_cp_ctx(struct dp_soc *soc,
820 			    struct dp_ast_entry *ast_entry,
821 			    void *cp_ctx)
822 {
823 	ast_entry->cp_ctx = cp_ctx;
824 }
825 
826 void *dp_peer_ast_get_cp_ctx(struct dp_soc *soc,
827 			     struct dp_ast_entry *ast_entry)
828 {
829 	void *cp_ctx = NULL;
830 
831 	cp_ctx = ast_entry->cp_ctx;
832 	ast_entry->cp_ctx = NULL;
833 
834 	return cp_ctx;
835 }
836 
837 void dp_peer_ast_send_wds_del(struct dp_soc *soc,
838 			      struct dp_ast_entry *ast_entry)
839 {
840 	struct dp_peer *peer = ast_entry->peer;
841 	struct cdp_soc_t *cdp_soc = &soc->cdp_soc;
842 
843 	if (!ast_entry->wmi_sent) {
844 		cdp_soc->ol_ops->peer_del_wds_entry(peer->vdev->osif_vdev,
845 						    ast_entry->mac_addr.raw);
846 		ast_entry->wmi_sent = true;
847 	}
848 }
849 
850 bool dp_peer_ast_get_wmi_sent(struct dp_soc *soc,
851 			      struct dp_ast_entry *ast_entry)
852 {
853 	return ast_entry->wmi_sent;
854 }
855 
856 void dp_peer_ast_free_entry(struct dp_soc *soc,
857 			    struct dp_ast_entry *ast_entry)
858 {
859 	struct dp_peer *peer = ast_entry->peer;
860 
861 	soc->ast_table[ast_entry->ast_idx] = NULL;
862 	TAILQ_REMOVE(&peer->ast_entry_list, ast_entry, ase_list_elem);
863 	DP_STATS_INC(soc, ast.deleted, 1);
864 	dp_peer_ast_hash_remove(soc, ast_entry);
865 	qdf_mem_free(ast_entry);
866 }
867 #endif
868 
869 struct dp_peer *dp_peer_find_hash_find(struct dp_soc *soc,
870 	uint8_t *peer_mac_addr, int mac_addr_is_aligned, uint8_t vdev_id)
871 {
872 	union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
873 	unsigned index;
874 	struct dp_peer *peer;
875 
876 	if (mac_addr_is_aligned) {
877 		mac_addr = (union dp_align_mac_addr *) peer_mac_addr;
878 	} else {
879 		qdf_mem_copy(
880 			&local_mac_addr_aligned.raw[0],
881 			peer_mac_addr, DP_MAC_ADDR_LEN);
882 		mac_addr = &local_mac_addr_aligned;
883 	}
884 	index = dp_peer_find_hash_index(soc, mac_addr);
885 	qdf_spin_lock_bh(&soc->peer_ref_mutex);
886 	TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) {
887 #if ATH_SUPPORT_WRAP
888 		/* ProxySTA may have multiple BSS peer with same MAC address,
889 		 * modified find will take care of finding the correct BSS peer.
890 		 */
891 		if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 &&
892 			((peer->vdev->vdev_id == vdev_id) ||
893 			 (vdev_id == DP_VDEV_ALL))) {
894 #else
895 		if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0) {
896 #endif
897 			/* found it - increment the ref count before releasing
898 			 * the lock
899 			 */
900 			qdf_atomic_inc(&peer->ref_cnt);
901 			qdf_spin_unlock_bh(&soc->peer_ref_mutex);
902 			return peer;
903 		}
904 	}
905 	qdf_spin_unlock_bh(&soc->peer_ref_mutex);
906 	return NULL; /* failure */
907 }
908 
909 void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer)
910 {
911 	unsigned index;
912 	struct dp_peer *tmppeer = NULL;
913 	int found = 0;
914 
915 	index = dp_peer_find_hash_index(soc, &peer->mac_addr);
916 	/* Check if tail is not empty before delete*/
917 	QDF_ASSERT(!TAILQ_EMPTY(&soc->peer_hash.bins[index]));
918 	/*
919 	 * DO NOT take the peer_ref_mutex lock here - it needs to be taken
920 	 * by the caller.
921 	 * The caller needs to hold the lock from the time the peer object's
922 	 * reference count is decremented and tested up through the time the
923 	 * reference to the peer object is removed from the hash table, by
924 	 * this function.
925 	 * Holding the lock only while removing the peer object reference
926 	 * from the hash table keeps the hash table consistent, but does not
927 	 * protect against a new HL tx context starting to use the peer object
928 	 * if it looks up the peer object from its MAC address just after the
929 	 * peer ref count is decremented to zero, but just before the peer
930 	 * object reference is removed from the hash table.
931 	 */
932 	 TAILQ_FOREACH(tmppeer, &soc->peer_hash.bins[index], hash_list_elem) {
933 		if (tmppeer == peer) {
934 			found = 1;
935 			break;
936 		}
937 	}
938 	QDF_ASSERT(found);
939 	TAILQ_REMOVE(&soc->peer_hash.bins[index], peer, hash_list_elem);
940 }
941 
942 void dp_peer_find_hash_erase(struct dp_soc *soc)
943 {
944 	int i;
945 
946 	/*
947 	 * Not really necessary to take peer_ref_mutex lock - by this point,
948 	 * it's known that the soc is no longer in use.
949 	 */
950 	for (i = 0; i <= soc->peer_hash.mask; i++) {
951 		if (!TAILQ_EMPTY(&soc->peer_hash.bins[i])) {
952 			struct dp_peer *peer, *peer_next;
953 
954 			/*
955 			 * TAILQ_FOREACH_SAFE must be used here to avoid any
956 			 * memory access violation after peer is freed
957 			 */
958 			TAILQ_FOREACH_SAFE(peer, &soc->peer_hash.bins[i],
959 				hash_list_elem, peer_next) {
960 				/*
961 				 * Don't remove the peer from the hash table -
962 				 * that would modify the list we are currently
963 				 * traversing, and it's not necessary anyway.
964 				 */
965 				/*
966 				 * Artificially adjust the peer's ref count to
967 				 * 1, so it will get deleted by
968 				 * dp_peer_unref_delete.
969 				 */
970 				/* set to zero */
971 				qdf_atomic_init(&peer->ref_cnt);
972 				/* incr to one */
973 				qdf_atomic_inc(&peer->ref_cnt);
974 				dp_peer_unref_delete(peer);
975 			}
976 		}
977 	}
978 }
979 
980 static void dp_peer_find_map_detach(struct dp_soc *soc)
981 {
982 	qdf_mem_free(soc->peer_id_to_obj_map);
983 }
984 
985 int dp_peer_find_attach(struct dp_soc *soc)
986 {
987 	if (dp_peer_find_map_attach(soc))
988 		return 1;
989 
990 	if (dp_peer_find_hash_attach(soc)) {
991 		dp_peer_find_map_detach(soc);
992 		return 1;
993 	}
994 
995 	if (dp_peer_ast_hash_attach(soc)) {
996 		dp_peer_find_hash_detach(soc);
997 		dp_peer_find_map_detach(soc);
998 		return 1;
999 	}
1000 	return 0; /* success */
1001 }
1002 
1003 void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt,
1004 	union hal_reo_status *reo_status)
1005 {
1006 	struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt;
1007 	struct hal_reo_queue_status *queue_status = &(reo_status->queue_status);
1008 
1009 	if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
1010 		DP_TRACE_STATS(FATAL, "REO stats failure %d for TID %d\n",
1011 			queue_status->header.status, rx_tid->tid);
1012 		return;
1013 	}
1014 
1015 	DP_TRACE_STATS(FATAL, "REO queue stats (TID: %d): \n"
1016 		"ssn: %d\n"
1017 		"curr_idx  : %d\n"
1018 		"pn_31_0   : %08x\n"
1019 		"pn_63_32  : %08x\n"
1020 		"pn_95_64  : %08x\n"
1021 		"pn_127_96 : %08x\n"
1022 		"last_rx_enq_tstamp : %08x\n"
1023 		"last_rx_deq_tstamp : %08x\n"
1024 		"rx_bitmap_31_0     : %08x\n"
1025 		"rx_bitmap_63_32    : %08x\n"
1026 		"rx_bitmap_95_64    : %08x\n"
1027 		"rx_bitmap_127_96   : %08x\n"
1028 		"rx_bitmap_159_128  : %08x\n"
1029 		"rx_bitmap_191_160  : %08x\n"
1030 		"rx_bitmap_223_192  : %08x\n"
1031 		"rx_bitmap_255_224  : %08x\n",
1032 		rx_tid->tid,
1033 		queue_status->ssn, queue_status->curr_idx,
1034 		queue_status->pn_31_0, queue_status->pn_63_32,
1035 		queue_status->pn_95_64, queue_status->pn_127_96,
1036 		queue_status->last_rx_enq_tstamp,
1037 		queue_status->last_rx_deq_tstamp,
1038 		queue_status->rx_bitmap_31_0, queue_status->rx_bitmap_63_32,
1039 		queue_status->rx_bitmap_95_64, queue_status->rx_bitmap_127_96,
1040 		queue_status->rx_bitmap_159_128,
1041 		queue_status->rx_bitmap_191_160,
1042 		queue_status->rx_bitmap_223_192,
1043 		queue_status->rx_bitmap_255_224);
1044 
1045 	DP_TRACE_STATS(FATAL,
1046 		"curr_mpdu_cnt      : %d\n"
1047 		"curr_msdu_cnt      : %d\n"
1048 		"fwd_timeout_cnt    : %d\n"
1049 		"fwd_bar_cnt        : %d\n"
1050 		"dup_cnt            : %d\n"
1051 		"frms_in_order_cnt  : %d\n"
1052 		"bar_rcvd_cnt       : %d\n"
1053 		"mpdu_frms_cnt      : %d\n"
1054 		"msdu_frms_cnt      : %d\n"
1055 		"total_byte_cnt     : %d\n"
1056 		"late_recv_mpdu_cnt : %d\n"
1057 		"win_jump_2k 	    : %d\n"
1058 		"hole_cnt 	    : %d\n",
1059 		queue_status->curr_mpdu_cnt, queue_status->curr_msdu_cnt,
1060 		queue_status->fwd_timeout_cnt, queue_status->fwd_bar_cnt,
1061 		queue_status->dup_cnt, queue_status->frms_in_order_cnt,
1062 		queue_status->bar_rcvd_cnt, queue_status->mpdu_frms_cnt,
1063 		queue_status->msdu_frms_cnt, queue_status->total_cnt,
1064 		queue_status->late_recv_mpdu_cnt, queue_status->win_jump_2k,
1065 		queue_status->hole_cnt);
1066 
1067 	DP_PRINT_STATS("Addba Req          : %d\n"
1068 			"Addba Resp         : %d\n"
1069 			"Addba Resp success : %d\n"
1070 			"Addba Resp failed  : %d\n"
1071 			"Delba Req received : %d\n"
1072 			"Delba Tx success   : %d\n"
1073 			"Delba Tx Fail      : %d\n"
1074 			"BA window size     : %d\n"
1075 			"Pn size            : %d\n",
1076 			rx_tid->num_of_addba_req,
1077 			rx_tid->num_of_addba_resp,
1078 			rx_tid->num_addba_rsp_success,
1079 			rx_tid->num_addba_rsp_failed,
1080 			rx_tid->num_of_delba_req,
1081 			rx_tid->delba_tx_success_cnt,
1082 			rx_tid->delba_tx_fail_cnt,
1083 			rx_tid->ba_win_size,
1084 			rx_tid->pn_size);
1085 }
1086 
1087 static inline struct dp_peer *dp_peer_find_add_id(struct dp_soc *soc,
1088 	uint8_t *peer_mac_addr, uint16_t peer_id, uint16_t hw_peer_id,
1089 	uint8_t vdev_id)
1090 {
1091 	struct dp_peer *peer;
1092 
1093 	QDF_ASSERT(peer_id <= soc->max_peers);
1094 	/* check if there's already a peer object with this MAC address */
1095 	peer = dp_peer_find_hash_find(soc, peer_mac_addr,
1096 		0 /* is aligned */, vdev_id);
1097 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1098 		"%s: peer %pK ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x",
1099 		__func__, peer, peer_id, vdev_id, peer_mac_addr[0],
1100 		peer_mac_addr[1], peer_mac_addr[2], peer_mac_addr[3],
1101 		peer_mac_addr[4], peer_mac_addr[5]);
1102 
1103 	if (peer) {
1104 		/* peer's ref count was already incremented by
1105 		 * peer_find_hash_find
1106 		 */
1107 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
1108 			  "%s: ref_cnt: %d", __func__,
1109 			   qdf_atomic_read(&peer->ref_cnt));
1110 		if (!soc->peer_id_to_obj_map[peer_id])
1111 			soc->peer_id_to_obj_map[peer_id] = peer;
1112 		else {
1113 			/* Peer map event came for peer_id which
1114 			 * is already mapped, this is not expected
1115 			 */
1116 			QDF_ASSERT(0);
1117 		}
1118 
1119 		if (dp_peer_find_add_id_to_obj(peer, peer_id)) {
1120 			/* TBDXXX: assert for now */
1121 			QDF_ASSERT(0);
1122 		}
1123 
1124 		return peer;
1125 	}
1126 
1127 	return NULL;
1128 }
1129 
1130 /**
1131  * dp_rx_peer_map_handler() - handle peer map event from firmware
1132  * @soc_handle - genereic soc handle
1133  * @peeri_id - peer_id from firmware
1134  * @hw_peer_id - ast index for this peer
1135  * @vdev_id - vdev ID
1136  * @peer_mac_addr - mac address of the peer
1137  * @ast_hash - ast hash value
1138  * @is_wds - flag to indicate peer map event for WDS ast entry
1139  *
1140  * associate the peer_id that firmware provided with peer entry
1141  * and update the ast table in the host with the hw_peer_id.
1142  *
1143  * Return: none
1144  */
1145 
1146 void
1147 dp_rx_peer_map_handler(void *soc_handle, uint16_t peer_id,
1148 		       uint16_t hw_peer_id, uint8_t vdev_id,
1149 		       uint8_t *peer_mac_addr, uint16_t ast_hash,
1150 		       uint8_t is_wds)
1151 {
1152 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1153 	struct dp_peer *peer = NULL;
1154 
1155 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1156 		"peer_map_event (soc:%pK): peer_id %di, hw_peer_id %d, peer_mac "
1157 		"%02x:%02x:%02x:%02x:%02x:%02x, vdev_id %d", soc, peer_id,
1158 		hw_peer_id, peer_mac_addr[0], peer_mac_addr[1],
1159 		peer_mac_addr[2], peer_mac_addr[3], peer_mac_addr[4],
1160 		peer_mac_addr[5], vdev_id);
1161 
1162 	if ((hw_peer_id < 0) || (hw_peer_id > (WLAN_UMAC_PSOC_MAX_PEERS * 2))) {
1163 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1164 			"invalid hw_peer_id: %d", hw_peer_id);
1165 		qdf_assert_always(0);
1166 	}
1167 
1168 	/* Peer map event for WDS ast entry get the peer from
1169 	 * obj map
1170 	 */
1171 	if (is_wds) {
1172 		peer = soc->peer_id_to_obj_map[peer_id];
1173 	} else {
1174 		peer = dp_peer_find_add_id(soc, peer_mac_addr, peer_id,
1175 					   hw_peer_id, vdev_id);
1176 
1177 		if (peer) {
1178 			/*
1179 			 * For every peer MAp message search and set if bss_peer
1180 			 */
1181 			if (!(qdf_mem_cmp(peer->mac_addr.raw,
1182 					  peer->vdev->mac_addr.raw,
1183 					  DP_MAC_ADDR_LEN))) {
1184 				QDF_TRACE(QDF_MODULE_ID_DP,
1185 					  QDF_TRACE_LEVEL_INFO_HIGH,
1186 					  "vdev bss_peer!!!!");
1187 				peer->bss_peer = 1;
1188 				peer->vdev->vap_bss_peer = peer;
1189 			}
1190 
1191 			if (peer->vdev->opmode == wlan_op_mode_sta)
1192 				peer->vdev->bss_ast_hash = ast_hash;
1193 		}
1194 	}
1195 
1196 	dp_peer_map_ast(soc, peer, peer_mac_addr,
1197 			hw_peer_id, vdev_id, ast_hash);
1198 }
1199 
1200 /**
1201  * dp_rx_peer_unmap_handler() - handle peer unmap event from firmware
1202  * @soc_handle - genereic soc handle
1203  * @peeri_id - peer_id from firmware
1204  * @vdev_id - vdev ID
1205  * @peer_mac_addr - mac address of the peer
1206  * @is_wds - flag to indicate peer map event for WDS ast entry
1207  *
1208  * Return: none
1209  */
1210 void
1211 dp_rx_peer_unmap_handler(void *soc_handle, uint16_t peer_id,
1212 			 uint8_t vdev_id, uint8_t *peer_mac_addr,
1213 			 uint8_t is_wds)
1214 {
1215 	struct dp_peer *peer;
1216 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1217 	uint8_t i;
1218 
1219 	if (is_wds)
1220 		return;
1221 
1222 	peer = __dp_peer_find_by_id(soc, peer_id);
1223 
1224 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
1225 		"peer_unmap_event (soc:%pK) peer_id %d peer %pK",
1226 		soc, peer_id, peer);
1227 
1228 	/*
1229 	 * Currently peer IDs are assigned for vdevs as well as peers.
1230 	 * If the peer ID is for a vdev, then the peer pointer stored
1231 	 * in peer_id_to_obj_map will be NULL.
1232 	 */
1233 	if (!peer) {
1234 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1235 			"%s: Received unmap event for invalid peer_id"
1236 			" %u", __func__, peer_id);
1237 		return;
1238 	}
1239 
1240 	soc->peer_id_to_obj_map[peer_id] = NULL;
1241 	for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
1242 		if (peer->peer_ids[i] == peer_id) {
1243 			peer->peer_ids[i] = HTT_INVALID_PEER;
1244 			break;
1245 		}
1246 	}
1247 
1248 	if (soc->cdp_soc.ol_ops->peer_unmap_event) {
1249 		soc->cdp_soc.ol_ops->peer_unmap_event(soc->ctrl_psoc,
1250 				peer_id);
1251 	}
1252 
1253 	/*
1254 	 * Remove a reference to the peer.
1255 	 * If there are no more references, delete the peer object.
1256 	 */
1257 	dp_peer_unref_delete(peer);
1258 }
1259 
1260 void
1261 dp_peer_find_detach(struct dp_soc *soc)
1262 {
1263 	dp_peer_find_map_detach(soc);
1264 	dp_peer_find_hash_detach(soc);
1265 	dp_peer_ast_hash_detach(soc);
1266 }
1267 
1268 static void dp_rx_tid_update_cb(struct dp_soc *soc, void *cb_ctxt,
1269 	union hal_reo_status *reo_status)
1270 {
1271 	struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt;
1272 
1273 	if ((reo_status->rx_queue_status.header.status !=
1274 		HAL_REO_CMD_SUCCESS) &&
1275 		(reo_status->rx_queue_status.header.status !=
1276 		HAL_REO_CMD_DRAIN)) {
1277 		/* Should not happen normally. Just print error for now */
1278 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1279 			"%s: Rx tid HW desc update failed(%d): tid %d",
1280 			__func__,
1281 			reo_status->rx_queue_status.header.status,
1282 			rx_tid->tid);
1283 	}
1284 }
1285 
1286 /*
1287  * dp_find_peer_by_addr - find peer instance by mac address
1288  * @dev: physical device instance
1289  * @peer_mac_addr: peer mac address
1290  * @local_id: local id for the peer
1291  *
1292  * Return: peer instance pointer
1293  */
1294 void *dp_find_peer_by_addr(struct cdp_pdev *dev, uint8_t *peer_mac_addr,
1295 		uint8_t *local_id)
1296 {
1297 	struct dp_pdev *pdev = (struct dp_pdev *)dev;
1298 	struct dp_peer *peer;
1299 
1300 	peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr, 0, DP_VDEV_ALL);
1301 
1302 	if (!peer)
1303 		return NULL;
1304 
1305 	/* Multiple peer ids? How can know peer id? */
1306 	*local_id = peer->local_id;
1307 	DP_TRACE(INFO, "%s: peer %pK id %d", __func__, peer, *local_id);
1308 
1309 	/* ref_cnt is incremented inside dp_peer_find_hash_find().
1310 	 * Decrement it here.
1311 	 */
1312 	qdf_atomic_dec(&peer->ref_cnt);
1313 
1314 	return peer;
1315 }
1316 
1317 /*
1318  * dp_rx_tid_update_wifi3() – Update receive TID state
1319  * @peer: Datapath peer handle
1320  * @tid: TID
1321  * @ba_window_size: BlockAck window size
1322  * @start_seq: Starting sequence number
1323  *
1324  * Return: 0 on success, error code on failure
1325  */
1326 static int dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t
1327 				  ba_window_size, uint32_t start_seq)
1328 {
1329 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1330 	struct dp_soc *soc = peer->vdev->pdev->soc;
1331 	struct hal_reo_cmd_params params;
1332 
1333 	qdf_mem_zero(&params, sizeof(params));
1334 
1335 	params.std.need_status = 1;
1336 	params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff;
1337 	params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1338 	params.u.upd_queue_params.update_ba_window_size = 1;
1339 	params.u.upd_queue_params.ba_window_size = ba_window_size;
1340 
1341 	if (start_seq < IEEE80211_SEQ_MAX) {
1342 		params.u.upd_queue_params.update_ssn = 1;
1343 		params.u.upd_queue_params.ssn = start_seq;
1344 	}
1345 
1346 	dp_set_ssn_valid_flag(&params, 0);
1347 
1348 	dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params, dp_rx_tid_update_cb, rx_tid);
1349 
1350 	rx_tid->ba_win_size = ba_window_size;
1351 	if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup) {
1352 		soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup(
1353 			peer->vdev->pdev->ctrl_pdev,
1354 			peer->vdev->vdev_id, peer->mac_addr.raw,
1355 			rx_tid->hw_qdesc_paddr, tid, tid, 1, ba_window_size);
1356 
1357 	}
1358 	return 0;
1359 }
1360 
1361 /*
1362  * dp_reo_desc_free() - Callback free reo descriptor memory after
1363  * HW cache flush
1364  *
1365  * @soc: DP SOC handle
1366  * @cb_ctxt: Callback context
1367  * @reo_status: REO command status
1368  */
1369 static void dp_reo_desc_free(struct dp_soc *soc, void *cb_ctxt,
1370 	union hal_reo_status *reo_status)
1371 {
1372 	struct reo_desc_list_node *freedesc =
1373 		(struct reo_desc_list_node *)cb_ctxt;
1374 	struct dp_rx_tid *rx_tid = &freedesc->rx_tid;
1375 
1376 	if ((reo_status->fl_cache_status.header.status !=
1377 		HAL_REO_CMD_SUCCESS) &&
1378 		(reo_status->fl_cache_status.header.status !=
1379 		HAL_REO_CMD_DRAIN)) {
1380 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1381 			"%s: Rx tid HW desc flush failed(%d): tid %d",
1382 			__func__,
1383 			reo_status->rx_queue_status.header.status,
1384 			freedesc->rx_tid.tid);
1385 	}
1386 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1387 		"%s: hw_qdesc_paddr: %pK, tid:%d", __func__,
1388 		(void *)(rx_tid->hw_qdesc_paddr), rx_tid->tid);
1389 	qdf_mem_unmap_nbytes_single(soc->osdev,
1390 		rx_tid->hw_qdesc_paddr,
1391 		QDF_DMA_BIDIRECTIONAL,
1392 		rx_tid->hw_qdesc_alloc_size);
1393 	qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
1394 	qdf_mem_free(freedesc);
1395 }
1396 
1397 #if defined(QCA_WIFI_QCA8074) && defined(BUILD_X86)
1398 /* Hawkeye emulation requires bus address to be >= 0x50000000 */
1399 static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr)
1400 {
1401 	if (dma_addr < 0x50000000)
1402 		return QDF_STATUS_E_FAILURE;
1403 	else
1404 		return QDF_STATUS_SUCCESS;
1405 }
1406 #else
1407 static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr)
1408 {
1409 	return QDF_STATUS_SUCCESS;
1410 }
1411 #endif
1412 
1413 
1414 /*
1415  * dp_rx_tid_setup_wifi3() – Setup receive TID state
1416  * @peer: Datapath peer handle
1417  * @tid: TID
1418  * @ba_window_size: BlockAck window size
1419  * @start_seq: Starting sequence number
1420  *
1421  * Return: 0 on success, error code on failure
1422  */
1423 int dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
1424 	uint32_t ba_window_size, uint32_t start_seq)
1425 {
1426 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1427 	struct dp_vdev *vdev = peer->vdev;
1428 	struct dp_soc *soc = vdev->pdev->soc;
1429 	uint32_t hw_qdesc_size;
1430 	uint32_t hw_qdesc_align;
1431 	int hal_pn_type;
1432 	void *hw_qdesc_vaddr;
1433 	uint32_t alloc_tries = 0;
1434 
1435 	if (peer->delete_in_progress)
1436 		return QDF_STATUS_E_FAILURE;
1437 
1438 	rx_tid->ba_win_size = ba_window_size;
1439 	if (rx_tid->hw_qdesc_vaddr_unaligned != NULL)
1440 		return dp_rx_tid_update_wifi3(peer, tid, ba_window_size,
1441 			start_seq);
1442 	rx_tid->delba_tx_status = 0;
1443 	rx_tid->ppdu_id_2k = 0;
1444 	rx_tid->num_of_addba_req = 0;
1445 	rx_tid->num_of_delba_req = 0;
1446 	rx_tid->num_of_addba_resp = 0;
1447 	rx_tid->num_addba_rsp_failed = 0;
1448 	rx_tid->num_addba_rsp_success = 0;
1449 	rx_tid->delba_tx_success_cnt = 0;
1450 	rx_tid->delba_tx_fail_cnt = 0;
1451 	rx_tid->statuscode = 0;
1452 #ifdef notyet
1453 	hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc, ba_window_size);
1454 #else
1455 	/* TODO: Allocating HW queue descriptors based on max BA window size
1456 	 * for all QOS TIDs so that same descriptor can be used later when
1457 	 * ADDBA request is recevied. This should be changed to allocate HW
1458 	 * queue descriptors based on BA window size being negotiated (0 for
1459 	 * non BA cases), and reallocate when BA window size changes and also
1460 	 * send WMI message to FW to change the REO queue descriptor in Rx
1461 	 * peer entry as part of dp_rx_tid_update.
1462 	 */
1463 	if (tid != DP_NON_QOS_TID)
1464 		hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
1465 			HAL_RX_MAX_BA_WINDOW);
1466 	else
1467 		hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
1468 			ba_window_size);
1469 #endif
1470 
1471 	hw_qdesc_align = hal_get_reo_qdesc_align(soc->hal_soc);
1472 	/* To avoid unnecessary extra allocation for alignment, try allocating
1473 	 * exact size and see if we already have aligned address.
1474 	 */
1475 	rx_tid->hw_qdesc_alloc_size = hw_qdesc_size;
1476 
1477 try_desc_alloc:
1478 	rx_tid->hw_qdesc_vaddr_unaligned =
1479 		qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size);
1480 
1481 	if (!rx_tid->hw_qdesc_vaddr_unaligned) {
1482 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1483 			"%s: Rx tid HW desc alloc failed: tid %d",
1484 			__func__, tid);
1485 		return QDF_STATUS_E_NOMEM;
1486 	}
1487 
1488 	if ((unsigned long)(rx_tid->hw_qdesc_vaddr_unaligned) %
1489 		hw_qdesc_align) {
1490 		/* Address allocated above is not alinged. Allocate extra
1491 		 * memory for alignment
1492 		 */
1493 		qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
1494 		rx_tid->hw_qdesc_vaddr_unaligned =
1495 			qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size +
1496 					hw_qdesc_align - 1);
1497 
1498 		if (!rx_tid->hw_qdesc_vaddr_unaligned) {
1499 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1500 				"%s: Rx tid HW desc alloc failed: tid %d",
1501 				__func__, tid);
1502 			return QDF_STATUS_E_NOMEM;
1503 		}
1504 
1505 		hw_qdesc_vaddr = (void *)qdf_align((unsigned long)
1506 			rx_tid->hw_qdesc_vaddr_unaligned,
1507 			hw_qdesc_align);
1508 
1509 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1510 			"%s: Total Size %d Aligned Addr %pK",
1511 			__func__, rx_tid->hw_qdesc_alloc_size,
1512 			hw_qdesc_vaddr);
1513 
1514 	} else {
1515 		hw_qdesc_vaddr = rx_tid->hw_qdesc_vaddr_unaligned;
1516 	}
1517 
1518 	/* TODO: Ensure that sec_type is set before ADDBA is received.
1519 	 * Currently this is set based on htt indication
1520 	 * HTT_T2H_MSG_TYPE_SEC_IND from target
1521 	 */
1522 	switch (peer->security[dp_sec_ucast].sec_type) {
1523 	case cdp_sec_type_tkip_nomic:
1524 	case cdp_sec_type_aes_ccmp:
1525 	case cdp_sec_type_aes_ccmp_256:
1526 	case cdp_sec_type_aes_gcmp:
1527 	case cdp_sec_type_aes_gcmp_256:
1528 		hal_pn_type = HAL_PN_WPA;
1529 		break;
1530 	case cdp_sec_type_wapi:
1531 		if (vdev->opmode == wlan_op_mode_ap)
1532 			hal_pn_type = HAL_PN_WAPI_EVEN;
1533 		else
1534 			hal_pn_type = HAL_PN_WAPI_UNEVEN;
1535 		break;
1536 	default:
1537 		hal_pn_type = HAL_PN_NONE;
1538 		break;
1539 	}
1540 
1541 	hal_reo_qdesc_setup(soc->hal_soc, tid, ba_window_size, start_seq,
1542 		hw_qdesc_vaddr, rx_tid->hw_qdesc_paddr, hal_pn_type);
1543 
1544 	qdf_mem_map_nbytes_single(soc->osdev, hw_qdesc_vaddr,
1545 		QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size,
1546 		&(rx_tid->hw_qdesc_paddr));
1547 
1548 	if (dp_reo_desc_addr_chk(rx_tid->hw_qdesc_paddr) !=
1549 			QDF_STATUS_SUCCESS) {
1550 		if (alloc_tries++ < 10)
1551 			goto try_desc_alloc;
1552 		else {
1553 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1554 			"%s: Rx tid HW desc alloc failed (lowmem): tid %d",
1555 			__func__, tid);
1556 			return QDF_STATUS_E_NOMEM;
1557 		}
1558 	}
1559 
1560 	if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup) {
1561 		soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup(
1562 			vdev->pdev->ctrl_pdev,
1563 			peer->vdev->vdev_id, peer->mac_addr.raw,
1564 			rx_tid->hw_qdesc_paddr, tid, tid, 1, ba_window_size);
1565 
1566 	}
1567 	return 0;
1568 }
1569 
1570 /*
1571  * dp_rx_tid_delete_cb() - Callback to flush reo descriptor HW cache
1572  * after deleting the entries (ie., setting valid=0)
1573  *
1574  * @soc: DP SOC handle
1575  * @cb_ctxt: Callback context
1576  * @reo_status: REO command status
1577  */
1578 static void dp_rx_tid_delete_cb(struct dp_soc *soc, void *cb_ctxt,
1579 	union hal_reo_status *reo_status)
1580 {
1581 	struct reo_desc_list_node *freedesc =
1582 		(struct reo_desc_list_node *)cb_ctxt;
1583 	uint32_t list_size;
1584 	struct reo_desc_list_node *desc;
1585 	unsigned long curr_ts = qdf_get_system_timestamp();
1586 	uint32_t desc_size, tot_desc_size;
1587 	struct hal_reo_cmd_params params;
1588 
1589 	if (reo_status->rx_queue_status.header.status == HAL_REO_CMD_DRAIN) {
1590 		qdf_mem_zero(reo_status, sizeof(*reo_status));
1591 		reo_status->fl_cache_status.header.status = HAL_REO_CMD_DRAIN;
1592 		dp_reo_desc_free(soc, (void *)freedesc, reo_status);
1593 		return;
1594 	} else if (reo_status->rx_queue_status.header.status !=
1595 		HAL_REO_CMD_SUCCESS) {
1596 		/* Should not happen normally. Just print error for now */
1597 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1598 			"%s: Rx tid HW desc deletion failed(%d): tid %d",
1599 			__func__,
1600 			reo_status->rx_queue_status.header.status,
1601 			freedesc->rx_tid.tid);
1602 	}
1603 
1604 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
1605 		"%s: rx_tid: %d status: %d", __func__,
1606 		freedesc->rx_tid.tid,
1607 		reo_status->rx_queue_status.header.status);
1608 
1609 	qdf_spin_lock_bh(&soc->reo_desc_freelist_lock);
1610 	freedesc->free_ts = curr_ts;
1611 	qdf_list_insert_back_size(&soc->reo_desc_freelist,
1612 		(qdf_list_node_t *)freedesc, &list_size);
1613 
1614 	while ((qdf_list_peek_front(&soc->reo_desc_freelist,
1615 		(qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) &&
1616 		((list_size >= REO_DESC_FREELIST_SIZE) ||
1617 		((curr_ts - desc->free_ts) > REO_DESC_FREE_DEFER_MS))) {
1618 		struct dp_rx_tid *rx_tid;
1619 
1620 		qdf_list_remove_front(&soc->reo_desc_freelist,
1621 				(qdf_list_node_t **)&desc);
1622 		list_size--;
1623 		rx_tid = &desc->rx_tid;
1624 
1625 		/* Flush and invalidate REO descriptor from HW cache: Base and
1626 		 * extension descriptors should be flushed separately */
1627 		tot_desc_size = hal_get_reo_qdesc_size(soc->hal_soc,
1628 			rx_tid->ba_win_size);
1629 		desc_size = hal_get_reo_qdesc_size(soc->hal_soc, 0);
1630 
1631 		/* Flush reo extension descriptors */
1632 		while ((tot_desc_size -= desc_size) > 0) {
1633 			qdf_mem_zero(&params, sizeof(params));
1634 			params.std.addr_lo =
1635 				((uint64_t)(rx_tid->hw_qdesc_paddr) +
1636 				tot_desc_size) & 0xffffffff;
1637 			params.std.addr_hi =
1638 				(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1639 
1640 			if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc,
1641 							CMD_FLUSH_CACHE,
1642 							&params,
1643 							NULL,
1644 							NULL)) {
1645 				QDF_TRACE(QDF_MODULE_ID_DP,
1646 					QDF_TRACE_LEVEL_ERROR,
1647 					"%s: fail to send CMD_CACHE_FLUSH:"
1648 					"tid %d desc %pK", __func__,
1649 					rx_tid->tid,
1650 					(void *)(rx_tid->hw_qdesc_paddr));
1651 			}
1652 		}
1653 
1654 		/* Flush base descriptor */
1655 		qdf_mem_zero(&params, sizeof(params));
1656 		params.std.need_status = 1;
1657 		params.std.addr_lo =
1658 			(uint64_t)(rx_tid->hw_qdesc_paddr) & 0xffffffff;
1659 		params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1660 
1661 		if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc,
1662 							  CMD_FLUSH_CACHE,
1663 							  &params,
1664 							  dp_reo_desc_free,
1665 							  (void *)desc)) {
1666 			union hal_reo_status reo_status;
1667 			/*
1668 			 * If dp_reo_send_cmd return failure, related TID queue desc
1669 			 * should be unmapped. Also locally reo_desc, together with
1670 			 * TID queue desc also need to be freed accordingly.
1671 			 *
1672 			 * Here invoke desc_free function directly to do clean up.
1673 			 */
1674 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1675 				"%s: fail to send REO cmd to flush cache: tid %d",
1676 				__func__, rx_tid->tid);
1677 			qdf_mem_zero(&reo_status, sizeof(reo_status));
1678 			reo_status.fl_cache_status.header.status = 0;
1679 			dp_reo_desc_free(soc, (void *)desc, &reo_status);
1680 		}
1681 	}
1682 	qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock);
1683 }
1684 
1685 /*
1686  * dp_rx_tid_delete_wifi3() – Delete receive TID queue
1687  * @peer: Datapath peer handle
1688  * @tid: TID
1689  *
1690  * Return: 0 on success, error code on failure
1691  */
1692 static int dp_rx_tid_delete_wifi3(struct dp_peer *peer, int tid)
1693 {
1694 	struct dp_rx_tid *rx_tid = &(peer->rx_tid[tid]);
1695 	struct dp_soc *soc = peer->vdev->pdev->soc;
1696 	struct hal_reo_cmd_params params;
1697 	struct reo_desc_list_node *freedesc =
1698 		qdf_mem_malloc(sizeof(*freedesc));
1699 
1700 	if (!freedesc) {
1701 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1702 			"%s: malloc failed for freedesc: tid %d",
1703 			__func__, tid);
1704 		return -ENOMEM;
1705 	}
1706 
1707 	freedesc->rx_tid = *rx_tid;
1708 
1709 	qdf_mem_zero(&params, sizeof(params));
1710 
1711 	params.std.need_status = 1;
1712 	params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff;
1713 	params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
1714 	params.u.upd_queue_params.update_vld = 1;
1715 	params.u.upd_queue_params.vld = 0;
1716 
1717 	dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params,
1718 		dp_rx_tid_delete_cb, (void *)freedesc);
1719 
1720 	rx_tid->hw_qdesc_vaddr_unaligned = NULL;
1721 	rx_tid->hw_qdesc_alloc_size = 0;
1722 	rx_tid->hw_qdesc_paddr = 0;
1723 
1724 	return 0;
1725 }
1726 
1727 #ifdef DP_LFR
1728 static void dp_peer_setup_remaining_tids(struct dp_peer *peer)
1729 {
1730 	int tid;
1731 
1732 	for (tid = 1; tid < DP_MAX_TIDS-1; tid++) {
1733 		dp_rx_tid_setup_wifi3(peer, tid, 1, 0);
1734 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1735 			"Setting up TID %d for peer %pK peer->local_id %d",
1736 			tid, peer, peer->local_id);
1737 	}
1738 }
1739 #else
1740 static void dp_peer_setup_remaining_tids(struct dp_peer *peer) {};
1741 #endif
1742 /*
1743  * dp_peer_rx_init() – Initialize receive TID state
1744  * @pdev: Datapath pdev
1745  * @peer: Datapath peer
1746  *
1747  */
1748 void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer)
1749 {
1750 	int tid;
1751 	struct dp_rx_tid *rx_tid;
1752 	for (tid = 0; tid < DP_MAX_TIDS; tid++) {
1753 		rx_tid = &peer->rx_tid[tid];
1754 		rx_tid->array = &rx_tid->base;
1755 		rx_tid->base.head = rx_tid->base.tail = NULL;
1756 		rx_tid->tid = tid;
1757 		rx_tid->defrag_timeout_ms = 0;
1758 		rx_tid->ba_win_size = 0;
1759 		rx_tid->ba_status = DP_RX_BA_INACTIVE;
1760 
1761 		rx_tid->defrag_waitlist_elem.tqe_next = NULL;
1762 		rx_tid->defrag_waitlist_elem.tqe_prev = NULL;
1763 
1764 #ifdef notyet /* TODO: See if this is required for exception handling */
1765 		/* invalid sequence number */
1766 		peer->tids_last_seq[tid] = 0xffff;
1767 #endif
1768 	}
1769 
1770 	peer->active_ba_session_cnt = 0;
1771 	peer->hw_buffer_size = 0;
1772 	peer->kill_256_sessions = 0;
1773 
1774 	/* Setup default (non-qos) rx tid queue */
1775 	dp_rx_tid_setup_wifi3(peer, DP_NON_QOS_TID, 1, 0);
1776 
1777 	/* Setup rx tid queue for TID 0.
1778 	 * Other queues will be setup on receiving first packet, which will cause
1779 	 * NULL REO queue error
1780 	 */
1781 	dp_rx_tid_setup_wifi3(peer, 0, 1, 0);
1782 
1783 	/*
1784 	 * Setup the rest of TID's to handle LFR
1785 	 */
1786 	dp_peer_setup_remaining_tids(peer);
1787 
1788 	/*
1789 	 * Set security defaults: no PN check, no security. The target may
1790 	 * send a HTT SEC_IND message to overwrite these defaults.
1791 	 */
1792 	peer->security[dp_sec_ucast].sec_type =
1793 		peer->security[dp_sec_mcast].sec_type = cdp_sec_type_none;
1794 }
1795 
1796 /*
1797  * dp_peer_rx_cleanup() – Cleanup receive TID state
1798  * @vdev: Datapath vdev
1799  * @peer: Datapath peer
1800  *
1801  */
1802 void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer)
1803 {
1804 	int tid;
1805 	uint32_t tid_delete_mask = 0;
1806 
1807 	DP_TRACE(INFO_HIGH, FL("Remove tids for peer: %pK"), peer);
1808 	for (tid = 0; tid < DP_MAX_TIDS; tid++) {
1809 		struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
1810 
1811 		qdf_spin_lock_bh(&rx_tid->tid_lock);
1812 		if (peer->rx_tid[tid].hw_qdesc_vaddr_unaligned != NULL) {
1813 			dp_rx_tid_delete_wifi3(peer, tid);
1814 
1815 			/* Cleanup defrag related resource */
1816 			dp_rx_defrag_waitlist_remove(peer, tid);
1817 			dp_rx_reorder_flush_frag(peer, tid);
1818 
1819 			tid_delete_mask |= (1 << tid);
1820 		}
1821 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
1822 	}
1823 #ifdef notyet /* See if FW can remove queues as part of peer cleanup */
1824 	if (soc->ol_ops->peer_rx_reorder_queue_remove) {
1825 		soc->ol_ops->peer_rx_reorder_queue_remove(vdev->pdev->ctrl_pdev,
1826 			peer->vdev->vdev_id, peer->mac_addr.raw,
1827 			tid_delete_mask);
1828 	}
1829 #endif
1830 	for (tid = 0; tid < DP_MAX_TIDS; tid++)
1831 		qdf_spinlock_destroy(&peer->rx_tid[tid].tid_lock);
1832 }
1833 
1834 /*
1835  * dp_peer_cleanup() – Cleanup peer information
1836  * @vdev: Datapath vdev
1837  * @peer: Datapath peer
1838  *
1839  */
1840 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer)
1841 {
1842 	peer->last_assoc_rcvd = 0;
1843 	peer->last_disassoc_rcvd = 0;
1844 	peer->last_deauth_rcvd = 0;
1845 
1846 	/* cleanup the Rx reorder queues for this peer */
1847 	dp_peer_rx_cleanup(vdev, peer);
1848 }
1849 
1850 /* dp_teardown_256_ba_session() - Teardown sessions using 256
1851  *                                window size when a request with
1852  *                                64 window size is received.
1853  *                                This is done as a WAR since HW can
1854  *                                have only one setting per peer (64 or 256).
1855  * @peer: Datapath peer
1856  *
1857  * Return: void
1858  */
1859 static void dp_teardown_256_ba_sessions(struct dp_peer *peer)
1860 {
1861 	uint8_t delba_rcode = 0;
1862 	int tid;
1863 	struct dp_rx_tid *rx_tid = NULL;
1864 
1865 	for (tid = 0; tid < DP_MAX_TIDS; tid++) {
1866 		rx_tid = &peer->rx_tid[tid];
1867 		qdf_spin_lock_bh(&rx_tid->tid_lock);
1868 
1869 		if (rx_tid->ba_win_size <= 64) {
1870 			qdf_spin_unlock_bh(&rx_tid->tid_lock);
1871 			continue;
1872 		} else {
1873 			if (rx_tid->ba_status == DP_RX_BA_ACTIVE ||
1874 			    rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) {
1875 				/* send delba */
1876 				if (!rx_tid->delba_tx_status) {
1877 					rx_tid->delba_tx_retry++;
1878 					rx_tid->delba_tx_status = 1;
1879 					rx_tid->delba_rcode =
1880 					IEEE80211_REASON_QOS_SETUP_REQUIRED;
1881 					delba_rcode = rx_tid->delba_rcode;
1882 
1883 					qdf_spin_unlock_bh(&rx_tid->tid_lock);
1884 					peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba(
1885 							peer->vdev->pdev->ctrl_pdev,
1886 							peer->ctrl_peer,
1887 							peer->mac_addr.raw,
1888 							tid, peer->vdev->ctrl_vdev,
1889 							delba_rcode);
1890 				} else {
1891 					qdf_spin_unlock_bh(&rx_tid->tid_lock);
1892 				}
1893 			} else {
1894 				qdf_spin_unlock_bh(&rx_tid->tid_lock);
1895 			}
1896 		}
1897 	}
1898 }
1899 
1900 /*
1901 * dp_rx_addba_resp_tx_completion_wifi3() – Update Rx Tid State
1902 *
1903 * @peer: Datapath peer handle
1904 * @tid: TID number
1905 * @status: tx completion status
1906 * Return: 0 on success, error code on failure
1907 */
1908 int dp_addba_resp_tx_completion_wifi3(void *peer_handle,
1909 				      uint8_t tid, int status)
1910 {
1911 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
1912 	struct dp_rx_tid *rx_tid = NULL;
1913 
1914 	if (!peer || peer->delete_in_progress) {
1915 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1916 			  "%s: Peer is NULL!\n", __func__);
1917 		return QDF_STATUS_E_FAILURE;
1918 	}
1919 	rx_tid = &peer->rx_tid[tid];
1920 	qdf_spin_lock_bh(&rx_tid->tid_lock);
1921 	if (status) {
1922 		rx_tid->num_addba_rsp_failed++;
1923 		dp_rx_tid_update_wifi3(peer, tid, 1, 0);
1924 		rx_tid->ba_status = DP_RX_BA_INACTIVE;
1925 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
1926 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1927 			  "%s: Rx Tid- %d addba rsp tx completion failed!",
1928 			 __func__, tid);
1929 		return QDF_STATUS_SUCCESS;
1930 	}
1931 
1932 	rx_tid->num_addba_rsp_success++;
1933 	if (rx_tid->ba_status == DP_RX_BA_INACTIVE) {
1934 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
1935 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
1936 			  "%s: Rx Tid- %d hw qdesc is not in IN_PROGRESS",
1937 			__func__, tid);
1938 		return QDF_STATUS_E_FAILURE;
1939 	}
1940 
1941 	/* First Session */
1942 	if (peer->active_ba_session_cnt == 0) {
1943 		if (rx_tid->ba_win_size > 64 && rx_tid->ba_win_size <= 256)
1944 			peer->hw_buffer_size = 256;
1945 		else
1946 			peer->hw_buffer_size = 64;
1947 	}
1948 
1949 	rx_tid->ba_status = DP_RX_BA_ACTIVE;
1950 
1951 	peer->active_ba_session_cnt++;
1952 
1953 	qdf_spin_unlock_bh(&rx_tid->tid_lock);
1954 
1955 	/* Kill any session having 256 buffer size
1956 	 * when 64 buffer size request is received.
1957 	 * Also, latch on to 64 as new buffer size.
1958 	 */
1959 	if (peer->kill_256_sessions) {
1960 		dp_teardown_256_ba_sessions(peer);
1961 		peer->kill_256_sessions = 0;
1962 	}
1963 	return QDF_STATUS_SUCCESS;
1964 }
1965 
1966 /*
1967 * dp_rx_addba_responsesetup_wifi3() – Process ADDBA request from peer
1968 *
1969 * @peer: Datapath peer handle
1970 * @tid: TID number
1971 * @dialogtoken: output dialogtoken
1972 * @statuscode: output dialogtoken
1973 * @buffersize: Output BA window size
1974 * @batimeout: Output BA timeout
1975 */
1976 void dp_addba_responsesetup_wifi3(void *peer_handle, uint8_t tid,
1977 	uint8_t *dialogtoken, uint16_t *statuscode,
1978 	uint16_t *buffersize, uint16_t *batimeout)
1979 {
1980 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
1981 	struct dp_rx_tid *rx_tid = NULL;
1982 
1983 	if (!peer || peer->delete_in_progress) {
1984 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
1985 			  "%s: Peer is NULL!\n", __func__);
1986 		return;
1987 	}
1988 	rx_tid = &peer->rx_tid[tid];
1989 	qdf_spin_lock_bh(&rx_tid->tid_lock);
1990 	rx_tid->num_of_addba_resp++;
1991 	/* setup ADDBA response parameters */
1992 	*dialogtoken = rx_tid->dialogtoken;
1993 	*statuscode = rx_tid->statuscode;
1994 	*buffersize = rx_tid->ba_win_size;
1995 	*batimeout  = 0;
1996 	qdf_spin_unlock_bh(&rx_tid->tid_lock);
1997 }
1998 
1999 /* dp_check_ba_buffersize() - Check buffer size in request
2000  *                            and latch onto this size based on
2001  *                            size used in first active session.
2002  * @peer: Datapath peer
2003  * @tid: Tid
2004  * @buffersize: Block ack window size
2005  *
2006  * Return: void
2007  */
2008 static void dp_check_ba_buffersize(struct dp_peer *peer,
2009 				   uint16_t tid,
2010 				   uint16_t buffersize)
2011 {
2012 	struct dp_rx_tid *rx_tid = NULL;
2013 
2014 	rx_tid = &peer->rx_tid[tid];
2015 
2016 	if (peer->active_ba_session_cnt == 0) {
2017 		rx_tid->ba_win_size = buffersize;
2018 	} else {
2019 		if (peer->hw_buffer_size == 64) {
2020 			if (buffersize <= 64)
2021 				rx_tid->ba_win_size = buffersize;
2022 			else
2023 				rx_tid->ba_win_size = peer->hw_buffer_size;
2024 		} else if (peer->hw_buffer_size == 256) {
2025 			if (buffersize > 64) {
2026 				rx_tid->ba_win_size = buffersize;
2027 			} else {
2028 				rx_tid->ba_win_size = buffersize;
2029 				peer->hw_buffer_size = 64;
2030 				peer->kill_256_sessions = 1;
2031 			}
2032 		}
2033 	}
2034 }
2035 
2036 /*
2037  * dp_addba_requestprocess_wifi3() - Process ADDBA request from peer
2038  *
2039  * @peer: Datapath peer handle
2040  * @dialogtoken: dialogtoken from ADDBA frame
2041  * @tid: TID number
2042  * @batimeout: BA timeout
2043  * @buffersize: BA window size
2044  * @startseqnum: Start seq. number received in BA sequence control
2045  *
2046  * Return: 0 on success, error code on failure
2047  */
2048 int dp_addba_requestprocess_wifi3(void *peer_handle,
2049 				  uint8_t dialogtoken,
2050 				  uint16_t tid, uint16_t batimeout,
2051 				  uint16_t buffersize,
2052 				  uint16_t startseqnum)
2053 {
2054 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
2055 	struct dp_rx_tid *rx_tid = NULL;
2056 
2057 	if (!peer || peer->delete_in_progress) {
2058 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
2059 			  "%s: Peer is NULL!\n", __func__);
2060 		return QDF_STATUS_E_FAILURE;
2061 	}
2062 	rx_tid = &peer->rx_tid[tid];
2063 	qdf_spin_lock_bh(&rx_tid->tid_lock);
2064 	rx_tid->num_of_addba_req++;
2065 	if ((rx_tid->ba_status == DP_RX_BA_ACTIVE &&
2066 	     rx_tid->hw_qdesc_vaddr_unaligned != NULL) ||
2067 	    (rx_tid->ba_status == DP_RX_BA_IN_PROGRESS)) {
2068 		dp_rx_tid_update_wifi3(peer, tid, 1, 0);
2069 		rx_tid->ba_status = DP_RX_BA_INACTIVE;
2070 		peer->active_ba_session_cnt--;
2071 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
2072 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2073 			  "%s: Rx Tid- %d hw qdesc is already setup",
2074 			__func__, tid);
2075 		return QDF_STATUS_E_FAILURE;
2076 	}
2077 
2078 	if (rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) {
2079 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
2080 		return QDF_STATUS_E_FAILURE;
2081 	}
2082 
2083 	dp_check_ba_buffersize(peer, tid, buffersize);
2084 
2085 	if (dp_rx_tid_setup_wifi3(peer, tid, buffersize, startseqnum)) {
2086 		rx_tid->ba_status = DP_RX_BA_INACTIVE;
2087 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
2088 		return QDF_STATUS_E_FAILURE;
2089 	}
2090 	rx_tid->ba_status = DP_RX_BA_IN_PROGRESS;
2091 
2092 	rx_tid->ba_win_size = buffersize;
2093 	rx_tid->dialogtoken = dialogtoken;
2094 	rx_tid->startseqnum = startseqnum;
2095 
2096 	if (rx_tid->userstatuscode != IEEE80211_STATUS_SUCCESS)
2097 		rx_tid->statuscode = rx_tid->userstatuscode;
2098 	else
2099 		rx_tid->statuscode = IEEE80211_STATUS_SUCCESS;
2100 
2101 	qdf_spin_unlock_bh(&rx_tid->tid_lock);
2102 
2103 	return QDF_STATUS_SUCCESS;
2104 }
2105 
2106 /*
2107 * dp_set_addba_response() – Set a user defined ADDBA response status code
2108 *
2109 * @peer: Datapath peer handle
2110 * @tid: TID number
2111 * @statuscode: response status code to be set
2112 */
2113 void dp_set_addba_response(void *peer_handle, uint8_t tid,
2114 	uint16_t statuscode)
2115 {
2116 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
2117 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
2118 
2119 	qdf_spin_lock_bh(&rx_tid->tid_lock);
2120 	rx_tid->userstatuscode = statuscode;
2121 	qdf_spin_unlock_bh(&rx_tid->tid_lock);
2122 }
2123 
2124 /*
2125 * dp_rx_delba_process_wifi3() – Process DELBA from peer
2126 * @peer: Datapath peer handle
2127 * @tid: TID number
2128 * @reasoncode: Reason code received in DELBA frame
2129 *
2130 * Return: 0 on success, error code on failure
2131 */
2132 int dp_delba_process_wifi3(void *peer_handle,
2133 	int tid, uint16_t reasoncode)
2134 {
2135 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
2136 	struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
2137 
2138 	qdf_spin_lock_bh(&rx_tid->tid_lock);
2139 	if (rx_tid->ba_status == DP_RX_BA_INACTIVE ||
2140 	    rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) {
2141 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
2142 		return QDF_STATUS_E_FAILURE;
2143 	}
2144 	/* TODO: See if we can delete the existing REO queue descriptor and
2145 	 * replace with a new one without queue extenstion descript to save
2146 	 * memory
2147 	 */
2148 	rx_tid->delba_rcode = reasoncode;
2149 	rx_tid->num_of_delba_req++;
2150 	dp_rx_tid_update_wifi3(peer, tid, 1, 0);
2151 
2152 	rx_tid->ba_status = DP_RX_BA_INACTIVE;
2153 	peer->active_ba_session_cnt--;
2154 	qdf_spin_unlock_bh(&rx_tid->tid_lock);
2155 	return 0;
2156 }
2157 
2158 /*
2159  * dp_rx_delba_tx_completion_wifi3() – Send Delba Request
2160  *
2161  * @peer: Datapath peer handle
2162  * @tid: TID number
2163  * @status: tx completion status
2164  * Return: 0 on success, error code on failure
2165  */
2166 
2167 int dp_delba_tx_completion_wifi3(void *peer_handle,
2168 				 uint8_t tid, int status)
2169 {
2170 	struct dp_peer *peer = (struct dp_peer *)peer_handle;
2171 	struct dp_rx_tid *rx_tid = NULL;
2172 
2173 	if (!peer || peer->delete_in_progress) {
2174 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
2175 			  "%s: Peer is NULL!", __func__);
2176 		return QDF_STATUS_E_FAILURE;
2177 	}
2178 	rx_tid = &peer->rx_tid[tid];
2179 	qdf_spin_lock_bh(&rx_tid->tid_lock);
2180 	if (status) {
2181 		rx_tid->delba_tx_fail_cnt++;
2182 		if (rx_tid->delba_tx_retry >= DP_MAX_DELBA_RETRY) {
2183 			rx_tid->delba_tx_retry = 0;
2184 			rx_tid->delba_tx_status = 0;
2185 			qdf_spin_unlock_bh(&rx_tid->tid_lock);
2186 		} else {
2187 			rx_tid->delba_tx_retry++;
2188 			rx_tid->delba_tx_status = 1;
2189 			qdf_spin_unlock_bh(&rx_tid->tid_lock);
2190 			peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba(
2191 				peer->vdev->pdev->ctrl_pdev, peer->ctrl_peer,
2192 				peer->mac_addr.raw, tid, peer->vdev->ctrl_vdev,
2193 				rx_tid->delba_rcode);
2194 		}
2195 		return QDF_STATUS_SUCCESS;
2196 	} else {
2197 		rx_tid->delba_tx_success_cnt++;
2198 		rx_tid->delba_tx_retry = 0;
2199 		rx_tid->delba_tx_status = 0;
2200 	}
2201 	if (rx_tid->ba_status == DP_RX_BA_ACTIVE) {
2202 		dp_rx_tid_update_wifi3(peer, tid, 1, 0);
2203 		rx_tid->ba_status = DP_RX_BA_INACTIVE;
2204 		peer->active_ba_session_cnt--;
2205 	}
2206 	if (rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) {
2207 		dp_rx_tid_update_wifi3(peer, tid, 1, 0);
2208 		rx_tid->ba_status = DP_RX_BA_INACTIVE;
2209 	}
2210 	qdf_spin_unlock_bh(&rx_tid->tid_lock);
2211 
2212 	return QDF_STATUS_SUCCESS;
2213 }
2214 
2215 void dp_rx_discard(struct dp_vdev *vdev, struct dp_peer *peer, unsigned tid,
2216 	qdf_nbuf_t msdu_list)
2217 {
2218 	while (msdu_list) {
2219 		qdf_nbuf_t msdu = msdu_list;
2220 
2221 		msdu_list = qdf_nbuf_next(msdu_list);
2222 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2223 			"discard rx %pK from partly-deleted peer %pK "
2224 			"(%02x:%02x:%02x:%02x:%02x:%02x)",
2225 			msdu, peer,
2226 			peer->mac_addr.raw[0], peer->mac_addr.raw[1],
2227 			peer->mac_addr.raw[2], peer->mac_addr.raw[3],
2228 			peer->mac_addr.raw[4], peer->mac_addr.raw[5]);
2229 		qdf_nbuf_free(msdu);
2230 	}
2231 }
2232 
2233 
2234 /**
2235  * dp_set_pn_check_wifi3() - enable PN check in REO for security
2236  * @peer: Datapath peer handle
2237  * @vdev: Datapath vdev
2238  * @pdev - data path device instance
2239  * @sec_type - security type
2240  * @rx_pn - Receive pn starting number
2241  *
2242  */
2243 
2244 void
2245 dp_set_pn_check_wifi3(struct cdp_vdev *vdev_handle, struct cdp_peer *peer_handle, enum cdp_sec_type sec_type,  uint32_t *rx_pn)
2246 {
2247 	struct dp_peer *peer =  (struct dp_peer *)peer_handle;
2248 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
2249 	struct dp_pdev *pdev;
2250 	struct dp_soc *soc;
2251 	int i;
2252 	uint8_t pn_size;
2253 	struct hal_reo_cmd_params params;
2254 
2255 	/* preconditions */
2256 	qdf_assert(vdev);
2257 
2258 	pdev = vdev->pdev;
2259 	soc = pdev->soc;
2260 
2261 
2262 	qdf_mem_zero(&params, sizeof(params));
2263 
2264 	params.std.need_status = 1;
2265 	params.u.upd_queue_params.update_pn_valid = 1;
2266 	params.u.upd_queue_params.update_pn_size = 1;
2267 	params.u.upd_queue_params.update_pn = 1;
2268 	params.u.upd_queue_params.update_pn_check_needed = 1;
2269 	params.u.upd_queue_params.update_svld = 1;
2270 	params.u.upd_queue_params.svld = 0;
2271 
2272 	peer->security[dp_sec_ucast].sec_type = sec_type;
2273 
2274 	switch (sec_type) {
2275 	case cdp_sec_type_tkip_nomic:
2276 	case cdp_sec_type_aes_ccmp:
2277 	case cdp_sec_type_aes_ccmp_256:
2278 	case cdp_sec_type_aes_gcmp:
2279 	case cdp_sec_type_aes_gcmp_256:
2280 		params.u.upd_queue_params.pn_check_needed = 1;
2281 		params.u.upd_queue_params.pn_size = 48;
2282 		pn_size = 48;
2283 		break;
2284 	case cdp_sec_type_wapi:
2285 		params.u.upd_queue_params.pn_check_needed = 1;
2286 		params.u.upd_queue_params.pn_size = 128;
2287 		pn_size = 128;
2288 		if (vdev->opmode == wlan_op_mode_ap) {
2289 			params.u.upd_queue_params.pn_even = 1;
2290 			params.u.upd_queue_params.update_pn_even = 1;
2291 		} else {
2292 			params.u.upd_queue_params.pn_uneven = 1;
2293 			params.u.upd_queue_params.update_pn_uneven = 1;
2294 		}
2295 		break;
2296 	default:
2297 		params.u.upd_queue_params.pn_check_needed = 0;
2298 		pn_size = 0;
2299 		break;
2300 	}
2301 
2302 
2303 	for (i = 0; i < DP_MAX_TIDS; i++) {
2304 		struct dp_rx_tid *rx_tid = &peer->rx_tid[i];
2305 		qdf_spin_lock_bh(&rx_tid->tid_lock);
2306 		if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) {
2307 			params.std.addr_lo =
2308 				rx_tid->hw_qdesc_paddr & 0xffffffff;
2309 			params.std.addr_hi =
2310 				(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
2311 
2312 			if (sec_type != cdp_sec_type_wapi) {
2313 				params.u.upd_queue_params.update_pn_valid = 0;
2314 			} else {
2315 				/*
2316 				 * Setting PN valid bit for WAPI sec_type,
2317 				 * since WAPI PN has to be started with
2318 				 * predefined value
2319 				 */
2320 				params.u.upd_queue_params.update_pn_valid = 1;
2321 				params.u.upd_queue_params.pn_31_0 = rx_pn[0];
2322 				params.u.upd_queue_params.pn_63_32 = rx_pn[1];
2323 				params.u.upd_queue_params.pn_95_64 = rx_pn[2];
2324 				params.u.upd_queue_params.pn_127_96 = rx_pn[3];
2325 			}
2326 			rx_tid->pn_size = pn_size;
2327 			dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params,
2328 				dp_rx_tid_update_cb, rx_tid);
2329 		} else {
2330 			QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2331 				"PN Check not setup for TID :%d ", i);
2332 		}
2333 		qdf_spin_unlock_bh(&rx_tid->tid_lock);
2334 	}
2335 }
2336 
2337 
2338 void
2339 dp_rx_sec_ind_handler(void *soc_handle, uint16_t peer_id,
2340 	enum htt_sec_type sec_type, int is_unicast, u_int32_t *michael_key,
2341 	u_int32_t *rx_pn)
2342 {
2343 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
2344 	struct dp_peer *peer;
2345 	int sec_index;
2346 
2347 	peer = dp_peer_find_by_id(soc, peer_id);
2348 	if (!peer) {
2349 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2350 			"Couldn't find peer from ID %d - skipping security inits",
2351 			peer_id);
2352 		return;
2353 	}
2354 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2355 		"sec spec for peer %pK (%02x:%02x:%02x:%02x:%02x:%02x): "
2356 		"%s key of type %d",
2357 		peer,
2358 		peer->mac_addr.raw[0], peer->mac_addr.raw[1],
2359 		peer->mac_addr.raw[2], peer->mac_addr.raw[3],
2360 		peer->mac_addr.raw[4], peer->mac_addr.raw[5],
2361 		is_unicast ? "ucast" : "mcast",
2362 		sec_type);
2363 	sec_index = is_unicast ? dp_sec_ucast : dp_sec_mcast;
2364 	peer->security[sec_index].sec_type = sec_type;
2365 #ifdef notyet /* TODO: See if this is required for defrag support */
2366 	/* michael key only valid for TKIP, but for simplicity,
2367 	 * copy it anyway
2368 	 */
2369 	qdf_mem_copy(
2370 		&peer->security[sec_index].michael_key[0],
2371 		michael_key,
2372 		sizeof(peer->security[sec_index].michael_key));
2373 #ifdef BIG_ENDIAN_HOST
2374 	OL_IF_SWAPBO(peer->security[sec_index].michael_key[0],
2375 				 sizeof(peer->security[sec_index].michael_key));
2376 #endif /* BIG_ENDIAN_HOST */
2377 #endif
2378 
2379 #ifdef notyet /* TODO: Check if this is required for wifi3.0 */
2380 	if (sec_type != htt_sec_type_wapi) {
2381 		qdf_mem_set(peer->tids_last_pn_valid, _EXT_TIDS, 0x00);
2382 	} else {
2383 		for (i = 0; i < DP_MAX_TIDS; i++) {
2384 			/*
2385 			 * Setting PN valid bit for WAPI sec_type,
2386 			 * since WAPI PN has to be started with predefined value
2387 			 */
2388 			peer->tids_last_pn_valid[i] = 1;
2389 			qdf_mem_copy(
2390 				(u_int8_t *) &peer->tids_last_pn[i],
2391 				(u_int8_t *) rx_pn, sizeof(union htt_rx_pn_t));
2392 			peer->tids_last_pn[i].pn128[1] =
2393 				qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[1]);
2394 			peer->tids_last_pn[i].pn128[0] =
2395 				qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[0]);
2396 		}
2397 	}
2398 #endif
2399 	/* TODO: Update HW TID queue with PN check parameters (pn type for
2400 	 * all security types and last pn for WAPI) once REO command API
2401 	 * is available
2402 	 */
2403 
2404 	dp_peer_unref_del_find_by_id(peer);
2405 }
2406 
2407 #ifndef CONFIG_WIN
2408 /**
2409  * dp_register_peer() - Register peer into physical device
2410  * @pdev - data path device instance
2411  * @sta_desc - peer description
2412  *
2413  * Register peer into physical device
2414  *
2415  * Return: QDF_STATUS_SUCCESS registration success
2416  *         QDF_STATUS_E_FAULT peer not found
2417  */
2418 QDF_STATUS dp_register_peer(struct cdp_pdev *pdev_handle,
2419 		struct ol_txrx_desc_type *sta_desc)
2420 {
2421 	struct dp_peer *peer;
2422 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2423 
2424 	peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev,
2425 			sta_desc->sta_id);
2426 	if (!peer)
2427 		return QDF_STATUS_E_FAULT;
2428 
2429 	qdf_spin_lock_bh(&peer->peer_info_lock);
2430 	peer->state = OL_TXRX_PEER_STATE_CONN;
2431 	qdf_spin_unlock_bh(&peer->peer_info_lock);
2432 
2433 	return QDF_STATUS_SUCCESS;
2434 }
2435 
2436 /**
2437  * dp_clear_peer() - remove peer from physical device
2438  * @pdev - data path device instance
2439  * @sta_id - local peer id
2440  *
2441  * remove peer from physical device
2442  *
2443  * Return: QDF_STATUS_SUCCESS registration success
2444  *         QDF_STATUS_E_FAULT peer not found
2445  */
2446 QDF_STATUS dp_clear_peer(struct cdp_pdev *pdev_handle, uint8_t local_id)
2447 {
2448 	struct dp_peer *peer;
2449 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2450 
2451 	peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev, local_id);
2452 	if (!peer)
2453 		return QDF_STATUS_E_FAULT;
2454 
2455 	qdf_spin_lock_bh(&peer->peer_info_lock);
2456 	peer->state = OL_TXRX_PEER_STATE_DISC;
2457 	qdf_spin_unlock_bh(&peer->peer_info_lock);
2458 
2459 	return QDF_STATUS_SUCCESS;
2460 }
2461 
2462 /**
2463  * dp_find_peer_by_addr_and_vdev() - Find peer by peer mac address within vdev
2464  * @pdev - data path device instance
2465  * @vdev - virtual interface instance
2466  * @peer_addr - peer mac address
2467  * @peer_id - local peer id with target mac address
2468  *
2469  * Find peer by peer mac address within vdev
2470  *
2471  * Return: peer instance void pointer
2472  *         NULL cannot find target peer
2473  */
2474 void *dp_find_peer_by_addr_and_vdev(struct cdp_pdev *pdev_handle,
2475 		struct cdp_vdev *vdev_handle,
2476 		uint8_t *peer_addr, uint8_t *local_id)
2477 {
2478 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2479 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
2480 	struct dp_peer *peer;
2481 
2482 	DP_TRACE(INFO, "vdev %pK peer_addr %pK", vdev, peer_addr);
2483 	peer = dp_peer_find_hash_find(pdev->soc, peer_addr, 0, 0);
2484 	DP_TRACE(INFO, "peer %pK vdev %pK", peer, vdev);
2485 
2486 	if (!peer)
2487 		return NULL;
2488 
2489 	if (peer->vdev != vdev) {
2490 		qdf_atomic_dec(&peer->ref_cnt);
2491 		return NULL;
2492 	}
2493 
2494 	*local_id = peer->local_id;
2495 	DP_TRACE(INFO, "peer %pK vdev %pK local id %d", peer, vdev, *local_id);
2496 
2497 	/* ref_cnt is incremented inside dp_peer_find_hash_find().
2498 	 * Decrement it here.
2499 	 */
2500 	qdf_atomic_dec(&peer->ref_cnt);
2501 
2502 	return peer;
2503 }
2504 
2505 /**
2506  * dp_local_peer_id() - Find local peer id within peer instance
2507  * @peer - peer instance
2508  *
2509  * Find local peer id within peer instance
2510  *
2511  * Return: local peer id
2512  */
2513 uint16_t dp_local_peer_id(void *peer)
2514 {
2515 	return ((struct dp_peer *)peer)->local_id;
2516 }
2517 
2518 /**
2519  * dp_peer_find_by_local_id() - Find peer by local peer id
2520  * @pdev - data path device instance
2521  * @local_peer_id - local peer id want to find
2522  *
2523  * Find peer by local peer id within physical device
2524  *
2525  * Return: peer instance void pointer
2526  *         NULL cannot find target peer
2527  */
2528 void *dp_peer_find_by_local_id(struct cdp_pdev *pdev_handle, uint8_t local_id)
2529 {
2530 	struct dp_peer *peer;
2531 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2532 
2533 	if (local_id >= OL_TXRX_NUM_LOCAL_PEER_IDS) {
2534 		QDF_TRACE_DEBUG_RL(QDF_MODULE_ID_DP,
2535 				   "Incorrect local id %u", local_id);
2536 		return NULL;
2537 	}
2538 	qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
2539 	peer = pdev->local_peer_ids.map[local_id];
2540 	qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
2541 	DP_TRACE(DEBUG, "peer %pK local id %d", peer, local_id);
2542 	return peer;
2543 }
2544 
2545 /**
2546  * dp_peer_state_update() - update peer local state
2547  * @pdev - data path device instance
2548  * @peer_addr - peer mac address
2549  * @state - new peer local state
2550  *
2551  * update peer local state
2552  *
2553  * Return: QDF_STATUS_SUCCESS registration success
2554  */
2555 QDF_STATUS dp_peer_state_update(struct cdp_pdev *pdev_handle, uint8_t *peer_mac,
2556 		enum ol_txrx_peer_state state)
2557 {
2558 	struct dp_peer *peer;
2559 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2560 
2561 	peer =  dp_peer_find_hash_find(pdev->soc, peer_mac, 0, DP_VDEV_ALL);
2562 	if (NULL == peer) {
2563 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2564 		"Failed to find peer for: [%pM]", peer_mac);
2565 		return QDF_STATUS_E_FAILURE;
2566 	}
2567 	peer->state = state;
2568 
2569 	DP_TRACE(INFO, "peer %pK state %d", peer, peer->state);
2570 	/* ref_cnt is incremented inside dp_peer_find_hash_find().
2571 	 * Decrement it here.
2572 	 */
2573 	qdf_atomic_dec(&peer->ref_cnt);
2574 
2575 	return QDF_STATUS_SUCCESS;
2576 }
2577 
2578 /**
2579  * dp_get_vdevid() - Get virtual interface id which peer registered
2580  * @peer - peer instance
2581  * @vdev_id - virtual interface id which peer registered
2582  *
2583  * Get virtual interface id which peer registered
2584  *
2585  * Return: QDF_STATUS_SUCCESS registration success
2586  */
2587 QDF_STATUS dp_get_vdevid(void *peer_handle, uint8_t *vdev_id)
2588 {
2589 	struct dp_peer *peer = peer_handle;
2590 
2591 	DP_TRACE(INFO, "peer %pK vdev %pK vdev id %d",
2592 			peer, peer->vdev, peer->vdev->vdev_id);
2593 	*vdev_id = peer->vdev->vdev_id;
2594 	return QDF_STATUS_SUCCESS;
2595 }
2596 
2597 struct cdp_vdev *dp_get_vdev_by_sta_id(struct cdp_pdev *pdev_handle,
2598 				       uint8_t sta_id)
2599 {
2600 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
2601 	struct dp_peer *peer = NULL;
2602 
2603 	if (sta_id >= WLAN_MAX_STA_COUNT) {
2604 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2605 			  "Invalid sta id passed");
2606 		return NULL;
2607 	}
2608 
2609 	if (!pdev) {
2610 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2611 			  "PDEV not found for sta_id [%d]", sta_id);
2612 		return NULL;
2613 	}
2614 
2615 	peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev, sta_id);
2616 	if (!peer) {
2617 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
2618 			  "PEER [%d] not found", sta_id);
2619 		return NULL;
2620 	}
2621 
2622 	return (struct cdp_vdev *)peer->vdev;
2623 }
2624 
2625 /**
2626  * dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs
2627  * @peer - peer instance
2628  *
2629  * Get virtual interface instance which peer belongs
2630  *
2631  * Return: virtual interface instance pointer
2632  *         NULL in case cannot find
2633  */
2634 struct cdp_vdev *dp_get_vdev_for_peer(void *peer_handle)
2635 {
2636 	struct dp_peer *peer = peer_handle;
2637 
2638 	DP_TRACE(DEBUG, "peer %pK vdev %pK", peer, peer->vdev);
2639 	return (struct cdp_vdev *)peer->vdev;
2640 }
2641 
2642 /**
2643  * dp_peer_get_peer_mac_addr() - Get peer mac address
2644  * @peer - peer instance
2645  *
2646  * Get peer mac address
2647  *
2648  * Return: peer mac address pointer
2649  *         NULL in case cannot find
2650  */
2651 uint8_t *dp_peer_get_peer_mac_addr(void *peer_handle)
2652 {
2653 	struct dp_peer *peer = peer_handle;
2654 	uint8_t *mac;
2655 
2656 	mac = peer->mac_addr.raw;
2657 	DP_TRACE(INFO, "peer %pK mac 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x",
2658 		peer, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
2659 	return peer->mac_addr.raw;
2660 }
2661 
2662 /**
2663  * dp_get_peer_state() - Get local peer state
2664  * @peer - peer instance
2665  *
2666  * Get local peer state
2667  *
2668  * Return: peer status
2669  */
2670 int dp_get_peer_state(void *peer_handle)
2671 {
2672 	struct dp_peer *peer = peer_handle;
2673 
2674 	DP_TRACE(DEBUG, "peer %pK stats %d", peer, peer->state);
2675 	return peer->state;
2676 }
2677 
2678 /**
2679  * dp_local_peer_id_pool_init() - local peer id pool alloc for physical device
2680  * @pdev - data path device instance
2681  *
2682  * local peer id pool alloc for physical device
2683  *
2684  * Return: none
2685  */
2686 void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2687 {
2688 	int i;
2689 
2690 	/* point the freelist to the first ID */
2691 	pdev->local_peer_ids.freelist = 0;
2692 
2693 	/* link each ID to the next one */
2694 	for (i = 0; i < OL_TXRX_NUM_LOCAL_PEER_IDS; i++) {
2695 		pdev->local_peer_ids.pool[i] = i + 1;
2696 		pdev->local_peer_ids.map[i] = NULL;
2697 	}
2698 
2699 	/* link the last ID to itself, to mark the end of the list */
2700 	i = OL_TXRX_NUM_LOCAL_PEER_IDS;
2701 	pdev->local_peer_ids.pool[i] = i;
2702 
2703 	qdf_spinlock_create(&pdev->local_peer_ids.lock);
2704 	DP_TRACE(INFO, "Peer pool init");
2705 }
2706 
2707 /**
2708  * dp_local_peer_id_alloc() - allocate local peer id
2709  * @pdev - data path device instance
2710  * @peer - new peer instance
2711  *
2712  * allocate local peer id
2713  *
2714  * Return: none
2715  */
2716 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2717 {
2718 	int i;
2719 
2720 	qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
2721 	i = pdev->local_peer_ids.freelist;
2722 	if (pdev->local_peer_ids.pool[i] == i) {
2723 		/* the list is empty, except for the list-end marker */
2724 		peer->local_id = OL_TXRX_INVALID_LOCAL_PEER_ID;
2725 	} else {
2726 		/* take the head ID and advance the freelist */
2727 		peer->local_id = i;
2728 		pdev->local_peer_ids.freelist = pdev->local_peer_ids.pool[i];
2729 		pdev->local_peer_ids.map[i] = peer;
2730 	}
2731 	qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
2732 	DP_TRACE(INFO, "peer %pK, local id %d", peer, peer->local_id);
2733 }
2734 
2735 /**
2736  * dp_local_peer_id_free() - remove local peer id
2737  * @pdev - data path device instance
2738  * @peer - peer instance should be removed
2739  *
2740  * remove local peer id
2741  *
2742  * Return: none
2743  */
2744 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2745 {
2746 	int i = peer->local_id;
2747 	if ((i == OL_TXRX_INVALID_LOCAL_PEER_ID) ||
2748 	    (i >= OL_TXRX_NUM_LOCAL_PEER_IDS)) {
2749 		return;
2750 	}
2751 
2752 	/* put this ID on the head of the freelist */
2753 	qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
2754 	pdev->local_peer_ids.pool[i] = pdev->local_peer_ids.freelist;
2755 	pdev->local_peer_ids.freelist = i;
2756 	pdev->local_peer_ids.map[i] = NULL;
2757 	qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
2758 }
2759 #endif
2760 
2761 /**
2762  * dp_get_peer_mac_addr_frm_id(): get mac address of the peer
2763  * @soc_handle: DP SOC handle
2764  * @peer_id:peer_id of the peer
2765  *
2766  * return: vdev_id of the vap
2767  */
2768 uint8_t dp_get_peer_mac_addr_frm_id(struct cdp_soc_t *soc_handle,
2769 		uint16_t peer_id, uint8_t *peer_mac)
2770 {
2771 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
2772 	struct dp_peer *peer;
2773 	uint8_t vdev_id;
2774 
2775 	peer = dp_peer_find_by_id(soc, peer_id);
2776 
2777 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
2778 			"soc %pK peer_id %d", soc, peer_id);
2779 
2780 	if (!peer) {
2781 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2782 				"peer not found ");
2783 		return CDP_INVALID_VDEV_ID;
2784 	}
2785 
2786 	qdf_mem_copy(peer_mac, peer->mac_addr.raw, 6);
2787 	vdev_id = peer->vdev->vdev_id;
2788 
2789 	dp_peer_unref_del_find_by_id(peer);
2790 
2791 	return vdev_id;
2792 }
2793 
2794 /**
2795  * dp_peer_rxtid_stats: Retried Rx TID (REO queue) stats from HW
2796  * @peer: DP peer handle
2797  * @dp_stats_cmd_cb: REO command callback function
2798  * @cb_ctxt: Callback context
2799  *
2800  * Return: none
2801  */
2802 void dp_peer_rxtid_stats(struct dp_peer *peer, void (*dp_stats_cmd_cb),
2803 			void *cb_ctxt)
2804 {
2805 	struct dp_soc *soc = peer->vdev->pdev->soc;
2806 	struct hal_reo_cmd_params params;
2807 	int i;
2808 
2809 	if (!dp_stats_cmd_cb)
2810 		return;
2811 
2812 	qdf_mem_zero(&params, sizeof(params));
2813 	for (i = 0; i < DP_MAX_TIDS; i++) {
2814 		struct dp_rx_tid *rx_tid = &peer->rx_tid[i];
2815 		if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) {
2816 			params.std.need_status = 1;
2817 			params.std.addr_lo =
2818 				rx_tid->hw_qdesc_paddr & 0xffffffff;
2819 			params.std.addr_hi =
2820 				(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
2821 
2822 			if (cb_ctxt) {
2823 				dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS,
2824 					&params, dp_stats_cmd_cb, cb_ctxt);
2825 			} else {
2826 				dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS,
2827 					&params, dp_stats_cmd_cb, rx_tid);
2828 			}
2829 
2830 			/* Flush REO descriptor from HW cache to update stats
2831 			 * in descriptor memory. This is to help debugging */
2832 			qdf_mem_zero(&params, sizeof(params));
2833 			params.std.need_status = 0;
2834 			params.std.addr_lo =
2835 				rx_tid->hw_qdesc_paddr & 0xffffffff;
2836 			params.std.addr_hi =
2837 				(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
2838 			params.u.fl_cache_params.flush_no_inval = 1;
2839 			dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, &params, NULL,
2840 				NULL);
2841 		}
2842 	}
2843 }
2844 
2845 void dp_set_michael_key(struct cdp_peer *peer_handle,
2846 			bool is_unicast, uint32_t *key)
2847 {
2848 	struct dp_peer *peer =  (struct dp_peer *)peer_handle;
2849 	uint8_t sec_index = is_unicast ? 1 : 0;
2850 
2851 	if (!peer) {
2852 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2853 			  "peer not found ");
2854 		return;
2855 	}
2856 
2857 	qdf_mem_copy(&peer->security[sec_index].michael_key[0],
2858 		     key, IEEE80211_WEP_MICLEN);
2859 }
2860 
2861 bool dp_peer_find_by_id_valid(struct dp_soc *soc, uint16_t peer_id)
2862 {
2863 	struct dp_peer *peer = dp_peer_find_by_id(soc, peer_id);
2864 
2865 	if (peer) {
2866 		/*
2867 		 * Decrement the peer ref which is taken as part of
2868 		 * dp_peer_find_by_id if PEER_LOCK_REF_PROTECT is enabled
2869 		 */
2870 		dp_peer_unref_del_find_by_id(peer);
2871 
2872 		return true;
2873 	}
2874 
2875 	return false;
2876 }
2877