xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_main.c (revision b62151f8dd0743da724a4533988c78d2c7385d4f)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <wlan_ipa_obj_mgmt_api.h>
21 #include <qdf_types.h>
22 #include <qdf_lock.h>
23 #include <qdf_net_types.h>
24 #include <qdf_lro.h>
25 #include <qdf_module.h>
26 #include <hal_hw_headers.h>
27 #include <hal_api.h>
28 #include <hif.h>
29 #include <htt.h>
30 #include <wdi_event.h>
31 #include <queue.h>
32 #include "dp_types.h"
33 #include "dp_rings.h"
34 #include "dp_internal.h"
35 #include "dp_tx.h"
36 #include "dp_tx_desc.h"
37 #include "dp_rx.h"
38 #ifdef DP_RATETABLE_SUPPORT
39 #include "dp_ratetable.h"
40 #endif
41 #include <cdp_txrx_handle.h>
42 #include <wlan_cfg.h>
43 #include <wlan_utility.h>
44 #include "cdp_txrx_cmn_struct.h"
45 #include "cdp_txrx_stats_struct.h"
46 #include "cdp_txrx_cmn_reg.h"
47 #include <qdf_util.h>
48 #include "dp_peer.h"
49 #include "htt_stats.h"
50 #include "dp_htt.h"
51 #ifdef WLAN_SUPPORT_RX_FISA
52 #include <wlan_dp_fisa_rx.h>
53 #endif
54 #include "htt_ppdu_stats.h"
55 #include "qdf_mem.h"   /* qdf_mem_malloc,free */
56 #include "cfg_ucfg_api.h"
57 #include <wlan_module_ids.h>
58 
59 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
60 #include "cdp_txrx_flow_ctrl_v2.h"
61 #else
62 
63 static inline void
64 cdp_dump_flow_pool_info(struct cdp_soc_t *soc)
65 {
66 	return;
67 }
68 #endif
69 #ifdef WIFI_MONITOR_SUPPORT
70 #include <dp_mon.h>
71 #endif
72 #include "dp_ipa.h"
73 #ifdef FEATURE_WDS
74 #include "dp_txrx_wds.h"
75 #endif
76 #ifdef WLAN_SUPPORT_MSCS
77 #include "dp_mscs.h"
78 #endif
79 #ifdef WLAN_SUPPORT_MESH_LATENCY
80 #include "dp_mesh_latency.h"
81 #endif
82 #ifdef WLAN_SUPPORT_SCS
83 #include "dp_scs.h"
84 #endif
85 #ifdef ATH_SUPPORT_IQUE
86 #include "dp_txrx_me.h"
87 #endif
88 #if defined(DP_CON_MON)
89 #ifndef REMOVE_PKT_LOG
90 #include <pktlog_ac_api.h>
91 #include <pktlog_ac.h>
92 #endif
93 #endif
94 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
95 #include <wlan_dp_swlm.h>
96 #endif
97 #ifdef CONFIG_SAWF_DEF_QUEUES
98 #include "dp_sawf.h"
99 #endif
100 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
101 #include <target_if_dp.h>
102 #endif
103 
104 #if defined(DP_PEER_EXTENDED_API) || defined(WLAN_DP_PENDING_MEM_FLUSH)
105 #define SET_PEER_REF_CNT_ONE(_peer) \
106 	qdf_atomic_set(&(_peer)->ref_cnt, 1)
107 #else
108 #define SET_PEER_REF_CNT_ONE(_peer)
109 #endif
110 
111 #ifdef WLAN_SYSFS_DP_STATS
112 /* sysfs event wait time for firmware stat request unit milliseconds */
113 #define WLAN_SYSFS_STAT_REQ_WAIT_MS 3000
114 #endif
115 
116 #ifdef QCA_DP_TX_FW_METADATA_V2
117 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
118 		HTT_TX_TCL_METADATA_V2_PDEV_ID_SET(_var, _val)
119 #else
120 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
121 		HTT_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)
122 #endif
123 
124 QDF_COMPILE_TIME_ASSERT(max_rx_rings_check,
125 			MAX_REO_DEST_RINGS == CDP_MAX_RX_RINGS);
126 
127 QDF_COMPILE_TIME_ASSERT(max_tx_rings_check,
128 			MAX_TCL_DATA_RINGS == CDP_MAX_TX_COMP_RINGS);
129 
130 void dp_configure_arch_ops(struct dp_soc *soc);
131 qdf_size_t dp_get_soc_context_size(uint16_t device_id);
132 
133 /*
134  * The max size of cdp_peer_stats_param_t is limited to 16 bytes.
135  * If the buffer size is exceeding this size limit,
136  * dp_txrx_get_peer_stats is to be used instead.
137  */
138 QDF_COMPILE_TIME_ASSERT(cdp_peer_stats_param_t_max_size,
139 			(sizeof(cdp_peer_stats_param_t) <= 16));
140 
141 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
142 /*
143  * If WLAN_CFG_INT_NUM_CONTEXTS is changed, HIF_NUM_INT_CONTEXTS
144  * also should be updated accordingly
145  */
146 QDF_COMPILE_TIME_ASSERT(num_intr_grps,
147 			HIF_NUM_INT_CONTEXTS == WLAN_CFG_INT_NUM_CONTEXTS);
148 
149 /*
150  * HIF_EVENT_HIST_MAX should always be power of 2
151  */
152 QDF_COMPILE_TIME_ASSERT(hif_event_history_size,
153 			(HIF_EVENT_HIST_MAX & (HIF_EVENT_HIST_MAX - 1)) == 0);
154 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
155 
156 /*
157  * If WLAN_CFG_INT_NUM_CONTEXTS is changed,
158  * WLAN_CFG_INT_NUM_CONTEXTS_MAX should also be updated
159  */
160 QDF_COMPILE_TIME_ASSERT(wlan_cfg_num_int_ctxs,
161 			WLAN_CFG_INT_NUM_CONTEXTS_MAX >=
162 			WLAN_CFG_INT_NUM_CONTEXTS);
163 
164 static QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl);
165 static QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl);
166 
167 static void dp_pdev_srng_deinit(struct dp_pdev *pdev);
168 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev);
169 static void dp_pdev_srng_free(struct dp_pdev *pdev);
170 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev);
171 
172 static inline
173 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
174 				struct cdp_pdev_attach_params *params);
175 
176 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id);
177 
178 static QDF_STATUS
179 dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
180 		   HTC_HANDLE htc_handle,
181 		   qdf_device_t qdf_osdev,
182 		   uint8_t pdev_id);
183 
184 static QDF_STATUS
185 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id, int force);
186 
187 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc);
188 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc);
189 
190 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force);
191 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc,
192 				       uint8_t pdev_id,
193 				       int force);
194 static struct dp_soc *
195 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
196 	      struct cdp_soc_attach_params *params);
197 static inline QDF_STATUS dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl,
198 					      uint8_t vdev_id,
199 					      uint8_t *peer_mac_addr,
200 					      enum cdp_peer_type peer_type);
201 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
202 				       uint8_t vdev_id,
203 				       uint8_t *peer_mac, uint32_t bitmap,
204 				       enum cdp_peer_type peer_type);
205 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
206 				bool unmap_only,
207 				bool mlo_peers_only);
208 #ifdef ENABLE_VERBOSE_DEBUG
209 bool is_dp_verbose_debug_enabled;
210 #endif
211 
212 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
213 static bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
214 static void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
215 			   bool enable);
216 static inline void
217 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
218 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats);
219 static inline void
220 dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
221 #endif
222 
223 #ifdef DP_UMAC_HW_RESET_SUPPORT
224 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc);
225 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc);
226 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc);
227 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc);
228 #endif
229 
230 #define MON_VDEV_TIMER_INIT 0x1
231 #define MON_VDEV_TIMER_RUNNING 0x2
232 
233 #define DP_MCS_LENGTH (6*MAX_MCS)
234 
235 #define DP_CURR_FW_STATS_AVAIL 19
236 #define DP_HTT_DBG_EXT_STATS_MAX 256
237 #define DP_MAX_SLEEP_TIME 100
238 #ifndef QCA_WIFI_3_0_EMU
239 #define SUSPEND_DRAIN_WAIT 500
240 #else
241 #define SUSPEND_DRAIN_WAIT 3000
242 #endif
243 
244 #ifdef IPA_OFFLOAD
245 /* Exclude IPA rings from the interrupt context */
246 #define TX_RING_MASK_VAL	0xb
247 #define RX_RING_MASK_VAL	0x7
248 #else
249 #define TX_RING_MASK_VAL	0xF
250 #define RX_RING_MASK_VAL	0xF
251 #endif
252 
253 #define STR_MAXLEN	64
254 
255 #define RNG_ERR		"SRNG setup failed for"
256 
257 /**
258  * enum dp_stats_type - Select the type of statistics
259  * @STATS_FW: Firmware-based statistic
260  * @STATS_HOST: Host-based statistic
261  * @STATS_TYPE_MAX: maximum enumeration
262  */
263 enum dp_stats_type {
264 	STATS_FW = 0,
265 	STATS_HOST = 1,
266 	STATS_TYPE_MAX = 2,
267 };
268 
269 /**
270  * enum dp_fw_stats - General Firmware statistics options
271  * @TXRX_FW_STATS_INVALID: statistic is not available
272  */
273 enum dp_fw_stats {
274 	TXRX_FW_STATS_INVALID	= -1,
275 };
276 
277 /*
278  * dp_stats_mapping_table - Firmware and Host statistics
279  * currently supported
280  */
281 const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
282 	{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
283 	{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
284 	{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
285 	{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
286 	{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
287 	{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
288 	{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
289 	{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
290 	{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
291 	{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
292 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
293 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
294 	{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
295 	{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
296 	{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
297 	{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
298 	{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
299 	{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
300 	{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
301 	/* Last ENUM for HTT FW STATS */
302 	{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
303 	{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
304 	{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
305 	{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
306 	{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
307 	{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
308 	{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
309 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
310 	{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
311 	{TXRX_FW_STATS_INVALID, TXRX_REO_QUEUE_STATS},
312 	{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
313 	{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
314 	{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
315 	{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
316 	{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
317 	{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
318 	{TXRX_FW_STATS_INVALID, TXRX_SOC_REO_HW_DESC_DUMP},
319 	{TXRX_FW_STATS_INVALID, TXRX_SOC_WBM_IDLE_HPTP_DUMP},
320 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_USAGE_WM_STATS},
321 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
322 	{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID}
323 };
324 
325 /* MCL specific functions */
326 #if defined(DP_CON_MON)
327 
328 #ifdef IPA_OFFLOAD
329 /**
330  * dp_get_num_rx_contexts() - get number of RX contexts
331  * @soc_hdl: cdp opaque soc handle
332  *
333  * Return: number of RX contexts
334  */
335 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
336 {
337 	int num_rx_contexts;
338 	uint32_t reo_ring_map;
339 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
340 
341 	reo_ring_map = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
342 
343 	switch (soc->arch_id) {
344 	case CDP_ARCH_TYPE_BE:
345 		/* 2 REO rings are used for IPA */
346 		reo_ring_map &=  ~(BIT(3) | BIT(7));
347 
348 		break;
349 	case CDP_ARCH_TYPE_LI:
350 		/* 1 REO ring is used for IPA */
351 		reo_ring_map &=  ~BIT(3);
352 		break;
353 	default:
354 		dp_err("unknown arch_id 0x%x", soc->arch_id);
355 		QDF_BUG(0);
356 	}
357 	/*
358 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
359 	 * in future
360 	 */
361 	num_rx_contexts = qdf_get_hweight32(reo_ring_map);
362 
363 	return num_rx_contexts;
364 }
365 #else
366 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
367 {
368 	int num_rx_contexts;
369 	uint32_t reo_config;
370 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
371 
372 	reo_config = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
373 	/*
374 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
375 	 * in future
376 	 */
377 	num_rx_contexts = qdf_get_hweight32(reo_config);
378 
379 	return num_rx_contexts;
380 }
381 #endif
382 
383 #endif
384 
385 #ifdef FEATURE_MEC
386 void dp_peer_mec_flush_entries(struct dp_soc *soc)
387 {
388 	unsigned int index;
389 	struct dp_mec_entry *mecentry, *mecentry_next;
390 
391 	TAILQ_HEAD(, dp_mec_entry) free_list;
392 	TAILQ_INIT(&free_list);
393 
394 	if (!soc->mec_hash.mask)
395 		return;
396 
397 	if (!soc->mec_hash.bins)
398 		return;
399 
400 	if (!qdf_atomic_read(&soc->mec_cnt))
401 		return;
402 
403 	qdf_spin_lock_bh(&soc->mec_lock);
404 	for (index = 0; index <= soc->mec_hash.mask; index++) {
405 		if (!TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
406 			TAILQ_FOREACH_SAFE(mecentry, &soc->mec_hash.bins[index],
407 					   hash_list_elem, mecentry_next) {
408 			    dp_peer_mec_detach_entry(soc, mecentry, &free_list);
409 			}
410 		}
411 	}
412 	qdf_spin_unlock_bh(&soc->mec_lock);
413 
414 	dp_peer_mec_free_list(soc, &free_list);
415 }
416 
417 /**
418  * dp_print_mec_stats() - Dump MEC entries in table
419  * @soc: Datapath soc handle
420  *
421  * Return: none
422  */
423 static void dp_print_mec_stats(struct dp_soc *soc)
424 {
425 	int i;
426 	uint32_t index;
427 	struct dp_mec_entry *mecentry = NULL, *mec_list;
428 	uint32_t num_entries = 0;
429 
430 	DP_PRINT_STATS("MEC Stats:");
431 	DP_PRINT_STATS("   Entries Added   = %d", soc->stats.mec.added);
432 	DP_PRINT_STATS("   Entries Deleted = %d", soc->stats.mec.deleted);
433 
434 	if (!qdf_atomic_read(&soc->mec_cnt))
435 		return;
436 
437 	mec_list = qdf_mem_malloc(sizeof(*mecentry) * DP_PEER_MAX_MEC_ENTRY);
438 	if (!mec_list) {
439 		dp_peer_warn("%pK: failed to allocate mec_list", soc);
440 		return;
441 	}
442 
443 	DP_PRINT_STATS("MEC Table:");
444 	for (index = 0; index <= soc->mec_hash.mask; index++) {
445 		qdf_spin_lock_bh(&soc->mec_lock);
446 		if (TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
447 			qdf_spin_unlock_bh(&soc->mec_lock);
448 			continue;
449 		}
450 
451 		TAILQ_FOREACH(mecentry, &soc->mec_hash.bins[index],
452 			      hash_list_elem) {
453 			qdf_mem_copy(&mec_list[num_entries], mecentry,
454 				     sizeof(*mecentry));
455 			num_entries++;
456 		}
457 		qdf_spin_unlock_bh(&soc->mec_lock);
458 	}
459 
460 	if (!num_entries) {
461 		qdf_mem_free(mec_list);
462 		return;
463 	}
464 
465 	for (i = 0; i < num_entries; i++) {
466 		DP_PRINT_STATS("%6d mac_addr = " QDF_MAC_ADDR_FMT
467 			       " is_active = %d pdev_id = %d vdev_id = %d",
468 			       i,
469 			       QDF_MAC_ADDR_REF(mec_list[i].mac_addr.raw),
470 			       mec_list[i].is_active,
471 			       mec_list[i].pdev_id,
472 			       mec_list[i].vdev_id);
473 	}
474 	qdf_mem_free(mec_list);
475 }
476 #else
477 static void dp_print_mec_stats(struct dp_soc *soc)
478 {
479 }
480 #endif
481 
482 static int dp_peer_add_ast_wifi3(struct cdp_soc_t *soc_hdl,
483 				 uint8_t vdev_id,
484 				 uint8_t *peer_mac,
485 				 uint8_t *mac_addr,
486 				 enum cdp_txrx_ast_entry_type type,
487 				 uint32_t flags)
488 {
489 	int ret = -1;
490 	QDF_STATUS status = QDF_STATUS_SUCCESS;
491 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
492 						       peer_mac, 0, vdev_id,
493 						       DP_MOD_ID_CDP);
494 
495 	if (!peer) {
496 		dp_peer_debug("Peer is NULL!");
497 		return ret;
498 	}
499 
500 	status = dp_peer_add_ast((struct dp_soc *)soc_hdl,
501 				 peer,
502 				 mac_addr,
503 				 type,
504 				 flags);
505 	if ((status == QDF_STATUS_SUCCESS) ||
506 	    (status == QDF_STATUS_E_ALREADY) ||
507 	    (status == QDF_STATUS_E_AGAIN))
508 		ret = 0;
509 
510 	dp_hmwds_ast_add_notify(peer, mac_addr,
511 				type, status, false);
512 
513 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
514 
515 	return ret;
516 }
517 
518 static int dp_peer_update_ast_wifi3(struct cdp_soc_t *soc_hdl,
519 						uint8_t vdev_id,
520 						uint8_t *peer_mac,
521 						uint8_t *wds_macaddr,
522 						uint32_t flags)
523 {
524 	int status = -1;
525 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
526 	struct dp_ast_entry  *ast_entry = NULL;
527 	struct dp_peer *peer;
528 
529 	if (soc->ast_offload_support)
530 		return status;
531 
532 	peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
533 				      peer_mac, 0, vdev_id,
534 				      DP_MOD_ID_CDP);
535 
536 	if (!peer) {
537 		dp_peer_debug("Peer is NULL!");
538 		return status;
539 	}
540 
541 	qdf_spin_lock_bh(&soc->ast_lock);
542 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
543 						    peer->vdev->pdev->pdev_id);
544 
545 	if (ast_entry) {
546 		status = dp_peer_update_ast(soc,
547 					    peer,
548 					    ast_entry, flags);
549 	}
550 	qdf_spin_unlock_bh(&soc->ast_lock);
551 
552 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
553 
554 	return status;
555 }
556 
557 /**
558  * dp_peer_reset_ast_entries() - Deletes all HMWDS entries for a peer
559  * @soc:		Datapath SOC handle
560  * @peer:		DP peer
561  * @arg:		callback argument
562  *
563  * Return: None
564  */
565 static void
566 dp_peer_reset_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
567 {
568 	struct dp_ast_entry *ast_entry = NULL;
569 	struct dp_ast_entry *tmp_ast_entry;
570 
571 	DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, tmp_ast_entry) {
572 		if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
573 		    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
574 			dp_peer_del_ast(soc, ast_entry);
575 	}
576 }
577 
578 /**
579  * dp_wds_reset_ast_wifi3() - Reset the is_active param for ast entry
580  * @soc_hdl:		Datapath SOC handle
581  * @wds_macaddr:	WDS entry MAC Address
582  * @peer_mac_addr:	WDS entry MAC Address
583  * @vdev_id:		id of vdev handle
584  *
585  * Return: QDF_STATUS
586  */
587 static QDF_STATUS dp_wds_reset_ast_wifi3(struct cdp_soc_t *soc_hdl,
588 					 uint8_t *wds_macaddr,
589 					 uint8_t *peer_mac_addr,
590 					 uint8_t vdev_id)
591 {
592 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
593 	struct dp_ast_entry *ast_entry = NULL;
594 	struct dp_peer *peer;
595 	struct dp_pdev *pdev;
596 	struct dp_vdev *vdev;
597 
598 	if (soc->ast_offload_support)
599 		return QDF_STATUS_E_FAILURE;
600 
601 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
602 
603 	if (!vdev)
604 		return QDF_STATUS_E_FAILURE;
605 
606 	pdev = vdev->pdev;
607 
608 	if (peer_mac_addr) {
609 		peer = dp_peer_find_hash_find(soc, peer_mac_addr,
610 					      0, vdev->vdev_id,
611 					      DP_MOD_ID_CDP);
612 		if (!peer) {
613 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
614 			return QDF_STATUS_E_FAILURE;
615 		}
616 
617 		qdf_spin_lock_bh(&soc->ast_lock);
618 		dp_peer_reset_ast_entries(soc, peer, NULL);
619 		qdf_spin_unlock_bh(&soc->ast_lock);
620 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
621 	} else if (wds_macaddr) {
622 		qdf_spin_lock_bh(&soc->ast_lock);
623 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
624 							    pdev->pdev_id);
625 
626 		if (ast_entry) {
627 			if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
628 			    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
629 				dp_peer_del_ast(soc, ast_entry);
630 		}
631 		qdf_spin_unlock_bh(&soc->ast_lock);
632 	}
633 
634 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
635 	return QDF_STATUS_SUCCESS;
636 }
637 
638 /**
639  * dp_wds_reset_ast_table_wifi3() - Reset the is_active param for all ast entry
640  * @soc_hdl:		Datapath SOC handle
641  * @vdev_id:		id of vdev object
642  *
643  * Return: QDF_STATUS
644  */
645 static QDF_STATUS
646 dp_wds_reset_ast_table_wifi3(struct cdp_soc_t  *soc_hdl,
647 			     uint8_t vdev_id)
648 {
649 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
650 
651 	if (soc->ast_offload_support)
652 		return QDF_STATUS_SUCCESS;
653 
654 	qdf_spin_lock_bh(&soc->ast_lock);
655 
656 	dp_soc_iterate_peer(soc, dp_peer_reset_ast_entries, NULL,
657 			    DP_MOD_ID_CDP);
658 	qdf_spin_unlock_bh(&soc->ast_lock);
659 
660 	return QDF_STATUS_SUCCESS;
661 }
662 
663 /**
664  * dp_peer_flush_ast_entries() - Delete all wds and hmwds ast entries of a peer
665  * @soc:		Datapath SOC
666  * @peer:		Datapath peer
667  * @arg:		arg to callback
668  *
669  * Return: None
670  */
671 static void
672 dp_peer_flush_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
673 {
674 	struct dp_ast_entry *ase = NULL;
675 	struct dp_ast_entry *temp_ase;
676 
677 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
678 		if ((ase->type ==
679 			CDP_TXRX_AST_TYPE_STATIC) ||
680 			(ase->type ==
681 			 CDP_TXRX_AST_TYPE_SELF) ||
682 			(ase->type ==
683 			 CDP_TXRX_AST_TYPE_STA_BSS))
684 			continue;
685 		dp_peer_del_ast(soc, ase);
686 	}
687 }
688 
689 /**
690  * dp_wds_flush_ast_table_wifi3() - Delete all wds and hmwds ast entry
691  * @soc_hdl:		Datapath SOC handle
692  *
693  * Return: None
694  */
695 static void dp_wds_flush_ast_table_wifi3(struct cdp_soc_t  *soc_hdl)
696 {
697 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
698 
699 	qdf_spin_lock_bh(&soc->ast_lock);
700 
701 	dp_soc_iterate_peer(soc, dp_peer_flush_ast_entries, NULL,
702 			    DP_MOD_ID_CDP);
703 
704 	qdf_spin_unlock_bh(&soc->ast_lock);
705 	dp_peer_mec_flush_entries(soc);
706 }
707 
708 #if defined(IPA_WDS_EASYMESH_FEATURE) && defined(FEATURE_AST)
709 /**
710  * dp_peer_send_wds_disconnect() - Send Disconnect event to IPA for each peer
711  * @soc: Datapath SOC
712  * @peer: Datapath peer
713  *
714  * Return: None
715  */
716 static void
717 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
718 {
719 	struct dp_ast_entry *ase = NULL;
720 	struct dp_ast_entry *temp_ase;
721 
722 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
723 		if (ase->type == CDP_TXRX_AST_TYPE_WDS) {
724 			soc->cdp_soc.ol_ops->peer_send_wds_disconnect(soc->ctrl_psoc,
725 								      ase->mac_addr.raw,
726 								      ase->vdev_id);
727 		}
728 	}
729 }
730 #elif defined(FEATURE_AST)
731 static void
732 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
733 {
734 }
735 #endif
736 
737 /**
738  * dp_peer_get_ast_info_by_soc_wifi3() - search the soc AST hash table
739  *                                       and return ast entry information
740  *                                       of first ast entry found in the
741  *                                       table with given mac address
742  * @soc_hdl: data path soc handle
743  * @ast_mac_addr: AST entry mac address
744  * @ast_entry_info: ast entry information
745  *
746  * Return: true if ast entry found with ast_mac_addr
747  *          false if ast entry not found
748  */
749 static bool dp_peer_get_ast_info_by_soc_wifi3
750 	(struct cdp_soc_t *soc_hdl,
751 	 uint8_t *ast_mac_addr,
752 	 struct cdp_ast_entry_info *ast_entry_info)
753 {
754 	struct dp_ast_entry *ast_entry = NULL;
755 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
756 	struct dp_peer *peer = NULL;
757 
758 	if (soc->ast_offload_support)
759 		return false;
760 
761 	qdf_spin_lock_bh(&soc->ast_lock);
762 
763 	ast_entry = dp_peer_ast_hash_find_soc(soc, ast_mac_addr);
764 	if ((!ast_entry) ||
765 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
766 		qdf_spin_unlock_bh(&soc->ast_lock);
767 		return false;
768 	}
769 
770 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
771 				     DP_MOD_ID_AST);
772 	if (!peer) {
773 		qdf_spin_unlock_bh(&soc->ast_lock);
774 		return false;
775 	}
776 
777 	ast_entry_info->type = ast_entry->type;
778 	ast_entry_info->pdev_id = ast_entry->pdev_id;
779 	ast_entry_info->vdev_id = ast_entry->vdev_id;
780 	ast_entry_info->peer_id = ast_entry->peer_id;
781 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
782 		     &peer->mac_addr.raw[0],
783 		     QDF_MAC_ADDR_SIZE);
784 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
785 	qdf_spin_unlock_bh(&soc->ast_lock);
786 	return true;
787 }
788 
789 /**
790  * dp_peer_get_ast_info_by_pdevid_wifi3() - search the soc AST hash table
791  *                                          and return ast entry information
792  *                                          if mac address and pdev_id matches
793  * @soc_hdl: data path soc handle
794  * @ast_mac_addr: AST entry mac address
795  * @pdev_id: pdev_id
796  * @ast_entry_info: ast entry information
797  *
798  * Return: true if ast entry found with ast_mac_addr
799  *          false if ast entry not found
800  */
801 static bool dp_peer_get_ast_info_by_pdevid_wifi3
802 		(struct cdp_soc_t *soc_hdl,
803 		 uint8_t *ast_mac_addr,
804 		 uint8_t pdev_id,
805 		 struct cdp_ast_entry_info *ast_entry_info)
806 {
807 	struct dp_ast_entry *ast_entry;
808 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
809 	struct dp_peer *peer = NULL;
810 
811 	if (soc->ast_offload_support)
812 		return false;
813 
814 	qdf_spin_lock_bh(&soc->ast_lock);
815 
816 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, ast_mac_addr,
817 						    pdev_id);
818 
819 	if ((!ast_entry) ||
820 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
821 		qdf_spin_unlock_bh(&soc->ast_lock);
822 		return false;
823 	}
824 
825 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
826 				     DP_MOD_ID_AST);
827 	if (!peer) {
828 		qdf_spin_unlock_bh(&soc->ast_lock);
829 		return false;
830 	}
831 
832 	ast_entry_info->type = ast_entry->type;
833 	ast_entry_info->pdev_id = ast_entry->pdev_id;
834 	ast_entry_info->vdev_id = ast_entry->vdev_id;
835 	ast_entry_info->peer_id = ast_entry->peer_id;
836 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
837 		     &peer->mac_addr.raw[0],
838 		     QDF_MAC_ADDR_SIZE);
839 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
840 	qdf_spin_unlock_bh(&soc->ast_lock);
841 	return true;
842 }
843 
844 /**
845  * dp_peer_ast_entry_del_by_soc() - delete the ast entry from soc AST hash table
846  *                            with given mac address
847  * @soc_handle: data path soc handle
848  * @mac_addr: AST entry mac address
849  * @callback: callback function to called on ast delete response from FW
850  * @cookie: argument to be passed to callback
851  *
852  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
853  *          is sent
854  *          QDF_STATUS_E_INVAL false if ast entry not found
855  */
856 static QDF_STATUS dp_peer_ast_entry_del_by_soc(struct cdp_soc_t *soc_handle,
857 					       uint8_t *mac_addr,
858 					       txrx_ast_free_cb callback,
859 					       void *cookie)
860 
861 {
862 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
863 	struct dp_ast_entry *ast_entry = NULL;
864 	txrx_ast_free_cb cb = NULL;
865 	void *arg = NULL;
866 
867 	if (soc->ast_offload_support)
868 		return -QDF_STATUS_E_INVAL;
869 
870 	qdf_spin_lock_bh(&soc->ast_lock);
871 	ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
872 	if (!ast_entry) {
873 		qdf_spin_unlock_bh(&soc->ast_lock);
874 		return -QDF_STATUS_E_INVAL;
875 	}
876 
877 	if (ast_entry->callback) {
878 		cb = ast_entry->callback;
879 		arg = ast_entry->cookie;
880 	}
881 
882 	ast_entry->callback = callback;
883 	ast_entry->cookie = cookie;
884 
885 	/*
886 	 * if delete_in_progress is set AST delete is sent to target
887 	 * and host is waiting for response should not send delete
888 	 * again
889 	 */
890 	if (!ast_entry->delete_in_progress)
891 		dp_peer_del_ast(soc, ast_entry);
892 
893 	qdf_spin_unlock_bh(&soc->ast_lock);
894 	if (cb) {
895 		cb(soc->ctrl_psoc,
896 		   dp_soc_to_cdp_soc(soc),
897 		   arg,
898 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
899 	}
900 	return QDF_STATUS_SUCCESS;
901 }
902 
903 /**
904  * dp_peer_ast_entry_del_by_pdev() - delete the ast entry from soc AST hash
905  *                                   table if mac address and pdev_id matches
906  * @soc_handle: data path soc handle
907  * @mac_addr: AST entry mac address
908  * @pdev_id: pdev id
909  * @callback: callback function to called on ast delete response from FW
910  * @cookie: argument to be passed to callback
911  *
912  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
913  *          is sent
914  *          QDF_STATUS_E_INVAL false if ast entry not found
915  */
916 
917 static QDF_STATUS dp_peer_ast_entry_del_by_pdev(struct cdp_soc_t *soc_handle,
918 						uint8_t *mac_addr,
919 						uint8_t pdev_id,
920 						txrx_ast_free_cb callback,
921 						void *cookie)
922 
923 {
924 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
925 	struct dp_ast_entry *ast_entry;
926 	txrx_ast_free_cb cb = NULL;
927 	void *arg = NULL;
928 
929 	if (soc->ast_offload_support)
930 		return -QDF_STATUS_E_INVAL;
931 
932 	qdf_spin_lock_bh(&soc->ast_lock);
933 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, pdev_id);
934 
935 	if (!ast_entry) {
936 		qdf_spin_unlock_bh(&soc->ast_lock);
937 		return -QDF_STATUS_E_INVAL;
938 	}
939 
940 	if (ast_entry->callback) {
941 		cb = ast_entry->callback;
942 		arg = ast_entry->cookie;
943 	}
944 
945 	ast_entry->callback = callback;
946 	ast_entry->cookie = cookie;
947 
948 	/*
949 	 * if delete_in_progress is set AST delete is sent to target
950 	 * and host is waiting for response should not sent delete
951 	 * again
952 	 */
953 	if (!ast_entry->delete_in_progress)
954 		dp_peer_del_ast(soc, ast_entry);
955 
956 	qdf_spin_unlock_bh(&soc->ast_lock);
957 
958 	if (cb) {
959 		cb(soc->ctrl_psoc,
960 		   dp_soc_to_cdp_soc(soc),
961 		   arg,
962 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
963 	}
964 	return QDF_STATUS_SUCCESS;
965 }
966 
967 /**
968  * dp_peer_HMWDS_ast_entry_del() - delete the ast entry from soc AST hash
969  *                                 table if HMWDS rem-addr command is issued
970  *
971  * @soc_handle: data path soc handle
972  * @vdev_id: vdev id
973  * @wds_macaddr: AST entry mac address to delete
974  * @type: cdp_txrx_ast_entry_type to send to FW
975  * @delete_in_fw: flag to indicate AST entry deletion in FW
976  *
977  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
978  *         is sent
979  *         QDF_STATUS_E_INVAL false if ast entry not found
980  */
981 static QDF_STATUS dp_peer_HMWDS_ast_entry_del(struct cdp_soc_t *soc_handle,
982 					      uint8_t vdev_id,
983 					      uint8_t *wds_macaddr,
984 					      uint8_t type,
985 					      uint8_t delete_in_fw)
986 {
987 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
988 
989 	if (soc->ast_offload_support) {
990 		dp_del_wds_entry_wrapper(soc, vdev_id, wds_macaddr, type,
991 					 delete_in_fw);
992 		return QDF_STATUS_SUCCESS;
993 	}
994 
995 	return -QDF_STATUS_E_INVAL;
996 }
997 
998 #ifdef FEATURE_AST
999 /**
1000  * dp_print_mlo_ast_stats() - Print AST stats for MLO peers
1001  *
1002  * @soc: core DP soc context
1003  *
1004  * Return: void
1005  */
1006 static void dp_print_mlo_ast_stats(struct dp_soc *soc)
1007 {
1008 	if (soc->arch_ops.print_mlo_ast_stats)
1009 		soc->arch_ops.print_mlo_ast_stats(soc);
1010 }
1011 
1012 void
1013 dp_print_peer_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1014 {
1015 	struct dp_ast_entry *ase, *tmp_ase;
1016 	uint32_t num_entries = 0;
1017 	char type[CDP_TXRX_AST_TYPE_MAX][10] = {
1018 			"NONE", "STATIC", "SELF", "WDS", "HMWDS", "BSS",
1019 			"DA", "HMWDS_SEC", "MLD"};
1020 
1021 	DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
1022 	    DP_PRINT_STATS("%6d mac_addr = "QDF_MAC_ADDR_FMT
1023 		    " peer_mac_addr = "QDF_MAC_ADDR_FMT
1024 		    " peer_id = %u"
1025 		    " type = %s"
1026 		    " next_hop = %d"
1027 		    " is_active = %d"
1028 		    " ast_idx = %d"
1029 		    " ast_hash = %d"
1030 		    " delete_in_progress = %d"
1031 		    " pdev_id = %d"
1032 		    " vdev_id = %d",
1033 		    ++num_entries,
1034 		    QDF_MAC_ADDR_REF(ase->mac_addr.raw),
1035 		    QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1036 		    ase->peer_id,
1037 		    type[ase->type],
1038 		    ase->next_hop,
1039 		    ase->is_active,
1040 		    ase->ast_idx,
1041 		    ase->ast_hash_value,
1042 		    ase->delete_in_progress,
1043 		    ase->pdev_id,
1044 		    ase->vdev_id);
1045 	}
1046 }
1047 
1048 void dp_print_ast_stats(struct dp_soc *soc)
1049 {
1050 	DP_PRINT_STATS("AST Stats:");
1051 	DP_PRINT_STATS("	Entries Added   = %d", soc->stats.ast.added);
1052 	DP_PRINT_STATS("	Entries Deleted = %d", soc->stats.ast.deleted);
1053 	DP_PRINT_STATS("	Entries Agedout = %d", soc->stats.ast.aged_out);
1054 	DP_PRINT_STATS("	Entries MAP ERR  = %d", soc->stats.ast.map_err);
1055 	DP_PRINT_STATS("	Entries Mismatch ERR  = %d",
1056 		       soc->stats.ast.ast_mismatch);
1057 
1058 	DP_PRINT_STATS("AST Table:");
1059 
1060 	qdf_spin_lock_bh(&soc->ast_lock);
1061 
1062 	dp_soc_iterate_peer(soc, dp_print_peer_ast_entries, NULL,
1063 			    DP_MOD_ID_GENERIC_STATS);
1064 
1065 	qdf_spin_unlock_bh(&soc->ast_lock);
1066 
1067 	dp_print_mlo_ast_stats(soc);
1068 }
1069 #else
1070 void dp_print_ast_stats(struct dp_soc *soc)
1071 {
1072 	DP_PRINT_STATS("AST Stats not available.Enable FEATURE_AST");
1073 	return;
1074 }
1075 #endif
1076 
1077 /**
1078  * dp_print_peer_info() - Dump peer info
1079  * @soc: Datapath soc handle
1080  * @peer: Datapath peer handle
1081  * @arg: argument to iter function
1082  *
1083  * Return: void
1084  */
1085 static void
1086 dp_print_peer_info(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1087 {
1088 	struct dp_txrx_peer *txrx_peer = NULL;
1089 
1090 	txrx_peer = dp_get_txrx_peer(peer);
1091 	if (!txrx_peer)
1092 		return;
1093 
1094 	DP_PRINT_STATS(" peer id = %d"
1095 		       " peer_mac_addr = "QDF_MAC_ADDR_FMT
1096 		       " nawds_enabled = %d"
1097 		       " bss_peer = %d"
1098 		       " wds_enabled = %d"
1099 		       " tx_cap_enabled = %d"
1100 		       " rx_cap_enabled = %d",
1101 		       peer->peer_id,
1102 		       QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1103 		       txrx_peer->nawds_enabled,
1104 		       txrx_peer->bss_peer,
1105 		       txrx_peer->wds_enabled,
1106 		       dp_monitor_is_tx_cap_enabled(peer),
1107 		       dp_monitor_is_rx_cap_enabled(peer));
1108 }
1109 
1110 /**
1111  * dp_print_peer_table() - Dump all Peer stats
1112  * @vdev: Datapath Vdev handle
1113  *
1114  * Return: void
1115  */
1116 static void dp_print_peer_table(struct dp_vdev *vdev)
1117 {
1118 	DP_PRINT_STATS("Dumping Peer Table  Stats:");
1119 	dp_vdev_iterate_peer(vdev, dp_print_peer_info, NULL,
1120 			     DP_MOD_ID_GENERIC_STATS);
1121 }
1122 
1123 #ifdef DP_MEM_PRE_ALLOC
1124 
1125 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1126 			   size_t ctxt_size)
1127 {
1128 	void *ctxt_mem;
1129 
1130 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_context) {
1131 		dp_warn("dp_prealloc_get_context null!");
1132 		goto dynamic_alloc;
1133 	}
1134 
1135 	ctxt_mem = soc->cdp_soc.ol_ops->dp_prealloc_get_context(ctxt_type,
1136 								ctxt_size);
1137 
1138 	if (ctxt_mem)
1139 		goto end;
1140 
1141 dynamic_alloc:
1142 	dp_info("switch to dynamic-alloc for type %d, size %zu",
1143 		ctxt_type, ctxt_size);
1144 	ctxt_mem = qdf_mem_malloc(ctxt_size);
1145 end:
1146 	return ctxt_mem;
1147 }
1148 
1149 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1150 			 void *vaddr)
1151 {
1152 	QDF_STATUS status;
1153 
1154 	if (soc->cdp_soc.ol_ops->dp_prealloc_put_context) {
1155 		status = soc->cdp_soc.ol_ops->dp_prealloc_put_context(
1156 								ctxt_type,
1157 								vaddr);
1158 	} else {
1159 		dp_warn("dp_prealloc_put_context null!");
1160 		status = QDF_STATUS_E_NOSUPPORT;
1161 	}
1162 
1163 	if (QDF_IS_STATUS_ERROR(status)) {
1164 		dp_info("Context type %d not pre-allocated", ctxt_type);
1165 		qdf_mem_free(vaddr);
1166 	}
1167 }
1168 
1169 static inline
1170 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1171 					   struct dp_srng *srng,
1172 					   uint32_t ring_type)
1173 {
1174 	void *mem;
1175 
1176 	qdf_assert(!srng->is_mem_prealloc);
1177 
1178 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_consistent) {
1179 		dp_warn("dp_prealloc_get_consistent is null!");
1180 		goto qdf;
1181 	}
1182 
1183 	mem =
1184 		soc->cdp_soc.ol_ops->dp_prealloc_get_consistent
1185 						(&srng->alloc_size,
1186 						 &srng->base_vaddr_unaligned,
1187 						 &srng->base_paddr_unaligned,
1188 						 &srng->base_paddr_aligned,
1189 						 DP_RING_BASE_ALIGN, ring_type);
1190 
1191 	if (mem) {
1192 		srng->is_mem_prealloc = true;
1193 		goto end;
1194 	}
1195 qdf:
1196 	mem =  qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1197 						&srng->base_vaddr_unaligned,
1198 						&srng->base_paddr_unaligned,
1199 						&srng->base_paddr_aligned,
1200 						DP_RING_BASE_ALIGN);
1201 end:
1202 	dp_info("%s memory %pK dp_srng %pK ring_type %d alloc_size %d num_entries %d",
1203 		srng->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc", mem,
1204 		srng, ring_type, srng->alloc_size, srng->num_entries);
1205 	return mem;
1206 }
1207 
1208 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1209 					       struct dp_srng *srng)
1210 {
1211 	if (srng->is_mem_prealloc) {
1212 		if (!soc->cdp_soc.ol_ops->dp_prealloc_put_consistent) {
1213 			dp_warn("dp_prealloc_put_consistent is null!");
1214 			QDF_BUG(0);
1215 			return;
1216 		}
1217 		soc->cdp_soc.ol_ops->dp_prealloc_put_consistent
1218 						(srng->alloc_size,
1219 						 srng->base_vaddr_unaligned,
1220 						 srng->base_paddr_unaligned);
1221 
1222 	} else {
1223 		qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1224 					srng->alloc_size,
1225 					srng->base_vaddr_unaligned,
1226 					srng->base_paddr_unaligned, 0);
1227 	}
1228 }
1229 
1230 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
1231 				   enum dp_desc_type desc_type,
1232 				   struct qdf_mem_multi_page_t *pages,
1233 				   size_t element_size,
1234 				   uint32_t element_num,
1235 				   qdf_dma_context_t memctxt,
1236 				   bool cacheable)
1237 {
1238 	if (!soc->cdp_soc.ol_ops->dp_get_multi_pages) {
1239 		dp_warn("dp_get_multi_pages is null!");
1240 		goto qdf;
1241 	}
1242 
1243 	pages->num_pages = 0;
1244 	pages->is_mem_prealloc = 0;
1245 	soc->cdp_soc.ol_ops->dp_get_multi_pages(desc_type,
1246 						element_size,
1247 						element_num,
1248 						pages,
1249 						cacheable);
1250 	if (pages->num_pages)
1251 		goto end;
1252 
1253 qdf:
1254 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
1255 				  element_num, memctxt, cacheable);
1256 end:
1257 	dp_info("%s desc_type %d element_size %d element_num %d cacheable %d",
1258 		pages->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc",
1259 		desc_type, (int)element_size, element_num, cacheable);
1260 }
1261 
1262 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
1263 				  enum dp_desc_type desc_type,
1264 				  struct qdf_mem_multi_page_t *pages,
1265 				  qdf_dma_context_t memctxt,
1266 				  bool cacheable)
1267 {
1268 	if (pages->is_mem_prealloc) {
1269 		if (!soc->cdp_soc.ol_ops->dp_put_multi_pages) {
1270 			dp_warn("dp_put_multi_pages is null!");
1271 			QDF_BUG(0);
1272 			return;
1273 		}
1274 
1275 		soc->cdp_soc.ol_ops->dp_put_multi_pages(desc_type, pages);
1276 		qdf_mem_zero(pages, sizeof(*pages));
1277 	} else {
1278 		qdf_mem_multi_pages_free(soc->osdev, pages,
1279 					 memctxt, cacheable);
1280 	}
1281 }
1282 
1283 #else
1284 
1285 static inline
1286 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1287 					   struct dp_srng *srng,
1288 					   uint32_t ring_type)
1289 
1290 {
1291 	void *mem;
1292 
1293 	mem = qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1294 					       &srng->base_vaddr_unaligned,
1295 					       &srng->base_paddr_unaligned,
1296 					       &srng->base_paddr_aligned,
1297 					       DP_RING_BASE_ALIGN);
1298 	if (mem)
1299 		qdf_mem_set(srng->base_vaddr_unaligned, 0, srng->alloc_size);
1300 
1301 	return mem;
1302 }
1303 
1304 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1305 					       struct dp_srng *srng)
1306 {
1307 	qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1308 				srng->alloc_size,
1309 				srng->base_vaddr_unaligned,
1310 				srng->base_paddr_unaligned, 0);
1311 }
1312 
1313 #endif /* DP_MEM_PRE_ALLOC */
1314 
1315 #ifdef QCA_SUPPORT_WDS_EXTENDED
1316 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1317 {
1318 	return vdev->wds_ext_enabled;
1319 }
1320 #else
1321 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1322 {
1323 	return false;
1324 }
1325 #endif
1326 
1327 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev)
1328 {
1329 	struct dp_vdev *vdev = NULL;
1330 	uint8_t rx_fast_flag = true;
1331 
1332 	/* Check if protocol tagging enable */
1333 	if (pdev->is_rx_protocol_tagging_enabled && !pdev->enhanced_stats_en) {
1334 		rx_fast_flag = false;
1335 		goto update_flag;
1336 	}
1337 
1338 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
1339 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1340 		/* Check if any VDEV has NAWDS enabled */
1341 		if (vdev->nawds_enabled) {
1342 			rx_fast_flag = false;
1343 			break;
1344 		}
1345 
1346 		/* Check if any VDEV has multipass enabled */
1347 		if (vdev->multipass_en) {
1348 			rx_fast_flag = false;
1349 			break;
1350 		}
1351 
1352 		/* Check if any VDEV has mesh enabled */
1353 		if (vdev->mesh_vdev) {
1354 			rx_fast_flag = false;
1355 			break;
1356 		}
1357 	}
1358 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1359 
1360 update_flag:
1361 	dp_init_info("Updated Rx fast flag to %u", rx_fast_flag);
1362 	pdev->rx_fast_flag = rx_fast_flag;
1363 }
1364 
1365 void dp_srng_free(struct dp_soc *soc, struct dp_srng *srng)
1366 {
1367 	if (srng->alloc_size && srng->base_vaddr_unaligned) {
1368 		if (!srng->cached) {
1369 			dp_srng_mem_free_consistent(soc, srng);
1370 		} else {
1371 			qdf_mem_free(srng->base_vaddr_unaligned);
1372 		}
1373 		srng->alloc_size = 0;
1374 		srng->base_vaddr_unaligned = NULL;
1375 	}
1376 	srng->hal_srng = NULL;
1377 }
1378 
1379 qdf_export_symbol(dp_srng_free);
1380 
1381 QDF_STATUS dp_srng_init(struct dp_soc *soc, struct dp_srng *srng, int ring_type,
1382 			int ring_num, int mac_id)
1383 {
1384 	return soc->arch_ops.txrx_srng_init(soc, srng, ring_type,
1385 					    ring_num, mac_id);
1386 }
1387 
1388 qdf_export_symbol(dp_srng_init);
1389 
1390 QDF_STATUS dp_srng_alloc(struct dp_soc *soc, struct dp_srng *srng,
1391 			 int ring_type, uint32_t num_entries,
1392 			 bool cached)
1393 {
1394 	hal_soc_handle_t hal_soc = soc->hal_soc;
1395 	uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
1396 	uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type);
1397 
1398 	if (srng->base_vaddr_unaligned) {
1399 		dp_init_err("%pK: Ring type: %d, is already allocated",
1400 			    soc, ring_type);
1401 		return QDF_STATUS_SUCCESS;
1402 	}
1403 
1404 	num_entries = (num_entries > max_entries) ? max_entries : num_entries;
1405 	srng->hal_srng = NULL;
1406 	srng->alloc_size = num_entries * entry_size;
1407 	srng->num_entries = num_entries;
1408 	srng->cached = cached;
1409 
1410 	if (!cached) {
1411 		srng->base_vaddr_aligned =
1412 		    dp_srng_aligned_mem_alloc_consistent(soc,
1413 							 srng,
1414 							 ring_type);
1415 	} else {
1416 		srng->base_vaddr_aligned = qdf_aligned_malloc(
1417 					&srng->alloc_size,
1418 					&srng->base_vaddr_unaligned,
1419 					&srng->base_paddr_unaligned,
1420 					&srng->base_paddr_aligned,
1421 					DP_RING_BASE_ALIGN);
1422 	}
1423 
1424 	if (!srng->base_vaddr_aligned)
1425 		return QDF_STATUS_E_NOMEM;
1426 
1427 	return QDF_STATUS_SUCCESS;
1428 }
1429 
1430 qdf_export_symbol(dp_srng_alloc);
1431 
1432 void dp_srng_deinit(struct dp_soc *soc, struct dp_srng *srng,
1433 		    int ring_type, int ring_num)
1434 {
1435 	if (!srng->hal_srng) {
1436 		dp_init_err("%pK: Ring type: %d, num:%d not setup",
1437 			    soc, ring_type, ring_num);
1438 		return;
1439 	}
1440 
1441 	if (dp_check_umac_reset_in_progress(soc))
1442 		goto srng_cleanup;
1443 
1444 	if (soc->arch_ops.dp_free_ppeds_interrupts)
1445 		soc->arch_ops.dp_free_ppeds_interrupts(soc, srng, ring_type,
1446 						       ring_num);
1447 
1448 srng_cleanup:
1449 	hal_srng_cleanup(soc->hal_soc, srng->hal_srng,
1450 			 dp_check_umac_reset_in_progress(soc));
1451 	srng->hal_srng = NULL;
1452 }
1453 
1454 qdf_export_symbol(dp_srng_deinit);
1455 
1456 /* TODO: Need this interface from HIF */
1457 void *hif_get_hal_handle(struct hif_opaque_softc *hif_handle);
1458 
1459 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
1460 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
1461 			 hal_ring_handle_t hal_ring_hdl)
1462 {
1463 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
1464 	uint32_t hp, tp;
1465 	uint8_t ring_id;
1466 
1467 	if (!int_ctx)
1468 		return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
1469 
1470 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
1471 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
1472 
1473 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
1474 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_START);
1475 
1476 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
1477 }
1478 
1479 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
1480 			hal_ring_handle_t hal_ring_hdl)
1481 {
1482 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
1483 	uint32_t hp, tp;
1484 	uint8_t ring_id;
1485 
1486 	if (!int_ctx)
1487 		return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
1488 
1489 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
1490 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
1491 
1492 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
1493 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_END);
1494 
1495 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
1496 }
1497 
1498 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
1499 					      uint8_t hist_group_id)
1500 {
1501 	hif_record_event(dp_soc->hif_handle, hist_group_id,
1502 			 0, 0, 0, HIF_EVENT_TIMER_ENTRY);
1503 }
1504 
1505 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
1506 					     uint8_t hist_group_id)
1507 {
1508 	hif_record_event(dp_soc->hif_handle, hist_group_id,
1509 			 0, 0, 0, HIF_EVENT_TIMER_EXIT);
1510 }
1511 #else
1512 
1513 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
1514 					      uint8_t hist_group_id)
1515 {
1516 }
1517 
1518 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
1519 					     uint8_t hist_group_id)
1520 {
1521 }
1522 
1523 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
1524 
1525 enum timer_yield_status
1526 dp_should_timer_irq_yield(struct dp_soc *soc, uint32_t work_done,
1527 			  uint64_t start_time)
1528 {
1529 	uint64_t cur_time = qdf_get_log_timestamp();
1530 
1531 	if (!work_done)
1532 		return DP_TIMER_WORK_DONE;
1533 
1534 	if (cur_time - start_time > DP_MAX_TIMER_EXEC_TIME_TICKS)
1535 		return DP_TIMER_TIME_EXHAUST;
1536 
1537 	return DP_TIMER_NO_YIELD;
1538 }
1539 
1540 qdf_export_symbol(dp_should_timer_irq_yield);
1541 
1542 void dp_interrupt_timer(void *arg)
1543 {
1544 	struct dp_soc *soc = (struct dp_soc *) arg;
1545 	struct dp_pdev *pdev = soc->pdev_list[0];
1546 	enum timer_yield_status yield = DP_TIMER_NO_YIELD;
1547 	uint32_t work_done  = 0, total_work_done = 0;
1548 	int budget = 0xffff, i;
1549 	uint32_t remaining_quota = budget;
1550 	uint64_t start_time;
1551 	uint32_t lmac_id = DP_MON_INVALID_LMAC_ID;
1552 	uint8_t dp_intr_id = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
1553 	uint32_t lmac_iter;
1554 	int max_mac_rings = wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx);
1555 	enum reg_wifi_band mon_band;
1556 	int cpu = dp_srng_get_cpu();
1557 
1558 	/*
1559 	 * this logic makes all data path interfacing rings (UMAC/LMAC)
1560 	 * and Monitor rings polling mode when NSS offload is disabled
1561 	 */
1562 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx) &&
1563 	    !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
1564 		if (qdf_atomic_read(&soc->cmn_init_done)) {
1565 			for (i = 0; i < wlan_cfg_get_num_contexts(
1566 						soc->wlan_cfg_ctx); i++)
1567 				dp_service_srngs(&soc->intr_ctx[i], 0xffff,
1568 						 cpu);
1569 
1570 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
1571 		}
1572 		return;
1573 	}
1574 
1575 	if (!qdf_atomic_read(&soc->cmn_init_done))
1576 		return;
1577 
1578 	if (dp_monitor_is_chan_band_known(pdev)) {
1579 		mon_band = dp_monitor_get_chan_band(pdev);
1580 		lmac_id = pdev->ch_band_lmac_id_mapping[mon_band];
1581 		if (qdf_likely(lmac_id != DP_MON_INVALID_LMAC_ID)) {
1582 			dp_intr_id = soc->mon_intr_id_lmac_map[lmac_id];
1583 			dp_srng_record_timer_entry(soc, dp_intr_id);
1584 		}
1585 	}
1586 
1587 	start_time = qdf_get_log_timestamp();
1588 	dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
1589 
1590 	while (yield == DP_TIMER_NO_YIELD) {
1591 		for (lmac_iter = 0; lmac_iter < max_mac_rings; lmac_iter++) {
1592 			if (lmac_iter == lmac_id)
1593 				work_done = dp_monitor_process(soc,
1594 						&soc->intr_ctx[dp_intr_id],
1595 						lmac_iter, remaining_quota);
1596 			else
1597 				work_done =
1598 					dp_monitor_drop_packets_for_mac(pdev,
1599 							     lmac_iter,
1600 							     remaining_quota);
1601 			if (work_done) {
1602 				budget -=  work_done;
1603 				if (budget <= 0) {
1604 					yield = DP_TIMER_WORK_EXHAUST;
1605 					goto budget_done;
1606 				}
1607 				remaining_quota = budget;
1608 				total_work_done += work_done;
1609 			}
1610 		}
1611 
1612 		yield = dp_should_timer_irq_yield(soc, total_work_done,
1613 						  start_time);
1614 		total_work_done = 0;
1615 	}
1616 
1617 budget_done:
1618 	if (yield == DP_TIMER_WORK_EXHAUST ||
1619 	    yield == DP_TIMER_TIME_EXHAUST)
1620 		qdf_timer_mod(&soc->int_timer, 1);
1621 	else
1622 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
1623 
1624 	if (lmac_id != DP_MON_INVALID_LMAC_ID)
1625 		dp_srng_record_timer_exit(soc, dp_intr_id);
1626 }
1627 
1628 #if defined(DP_INTR_POLL_BOTH)
1629 /**
1630  * dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts
1631  * @txrx_soc: DP SOC handle
1632  *
1633  * Call the appropriate attach function based on the mode of operation.
1634  * This is a WAR for enabling monitor mode.
1635  *
1636  * Return: 0 for success. nonzero for failure.
1637  */
1638 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
1639 {
1640 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
1641 
1642 	if (!(soc->wlan_cfg_ctx->napi_enabled) ||
1643 	    (dp_is_monitor_mode_using_poll(soc) &&
1644 	     soc->cdp_soc.ol_ops->get_con_mode &&
1645 	     soc->cdp_soc.ol_ops->get_con_mode() ==
1646 	     QDF_GLOBAL_MONITOR_MODE)) {
1647 		dp_info("Poll mode");
1648 		return dp_soc_attach_poll(txrx_soc);
1649 	} else {
1650 		dp_info("Interrupt  mode");
1651 		return dp_soc_interrupt_attach(txrx_soc);
1652 	}
1653 }
1654 #else
1655 #if defined(DP_INTR_POLL_BASED) && DP_INTR_POLL_BASED
1656 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
1657 {
1658 	return dp_soc_attach_poll(txrx_soc);
1659 }
1660 #else
1661 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
1662 {
1663 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
1664 
1665 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx))
1666 		return dp_soc_attach_poll(txrx_soc);
1667 	else
1668 		return dp_soc_interrupt_attach(txrx_soc);
1669 }
1670 #endif
1671 #endif
1672 
1673 /**
1674  * dp_soc_ppeds_stop() - Stop PPE DS processing
1675  * @soc_handle: DP SOC handle
1676  *
1677  * Return: none
1678  */
1679 static void dp_soc_ppeds_stop(struct cdp_soc_t *soc_handle)
1680 {
1681 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1682 
1683 	if (soc->arch_ops.txrx_soc_ppeds_stop)
1684 		soc->arch_ops.txrx_soc_ppeds_stop(soc);
1685 }
1686 
1687 #ifdef ENABLE_VERBOSE_DEBUG
1688 void dp_enable_verbose_debug(struct dp_soc *soc)
1689 {
1690 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
1691 
1692 	soc_cfg_ctx = soc->wlan_cfg_ctx;
1693 
1694 	if (soc_cfg_ctx->per_pkt_trace & dp_verbose_debug_mask)
1695 		is_dp_verbose_debug_enabled = true;
1696 
1697 	if (soc_cfg_ctx->per_pkt_trace & hal_verbose_debug_mask)
1698 		hal_set_verbose_debug(true);
1699 	else
1700 		hal_set_verbose_debug(false);
1701 }
1702 #else
1703 void dp_enable_verbose_debug(struct dp_soc *soc)
1704 {
1705 }
1706 #endif
1707 
1708 static QDF_STATUS dp_lro_hash_setup(struct dp_soc *soc, struct dp_pdev *pdev)
1709 {
1710 	struct cdp_lro_hash_config lro_hash;
1711 	QDF_STATUS status;
1712 
1713 	if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
1714 	    !wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx) &&
1715 	    !wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
1716 		dp_err("LRO, GRO and RX hash disabled");
1717 		return QDF_STATUS_E_FAILURE;
1718 	}
1719 
1720 	qdf_mem_zero(&lro_hash, sizeof(lro_hash));
1721 
1722 	if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) ||
1723 	    wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) {
1724 		lro_hash.lro_enable = 1;
1725 		lro_hash.tcp_flag = QDF_TCPHDR_ACK;
1726 		lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN |
1727 			 QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG |
1728 			 QDF_TCPHDR_ECE | QDF_TCPHDR_CWR;
1729 	}
1730 
1731 	soc->arch_ops.get_rx_hash_key(soc, &lro_hash);
1732 
1733 	qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config);
1734 
1735 	if (!soc->cdp_soc.ol_ops->lro_hash_config) {
1736 		QDF_BUG(0);
1737 		dp_err("lro_hash_config not configured");
1738 		return QDF_STATUS_E_FAILURE;
1739 	}
1740 
1741 	status = soc->cdp_soc.ol_ops->lro_hash_config(soc->ctrl_psoc,
1742 						      pdev->pdev_id,
1743 						      &lro_hash);
1744 	if (!QDF_IS_STATUS_SUCCESS(status)) {
1745 		dp_err("failed to send lro_hash_config to FW %u", status);
1746 		return status;
1747 	}
1748 
1749 	dp_info("LRO CMD config: lro_enable: 0x%x tcp_flag 0x%x tcp_flag_mask 0x%x",
1750 		lro_hash.lro_enable, lro_hash.tcp_flag,
1751 		lro_hash.tcp_flag_mask);
1752 
1753 	dp_info("toeplitz_hash_ipv4:");
1754 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1755 			   lro_hash.toeplitz_hash_ipv4,
1756 			   (sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
1757 			   LRO_IPV4_SEED_ARR_SZ));
1758 
1759 	dp_info("toeplitz_hash_ipv6:");
1760 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
1761 			   lro_hash.toeplitz_hash_ipv6,
1762 			   (sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
1763 			   LRO_IPV6_SEED_ARR_SZ));
1764 
1765 	return status;
1766 }
1767 
1768 #if defined(WLAN_MAX_PDEVS) && (WLAN_MAX_PDEVS == 1)
1769 /**
1770  * dp_reap_timer_init() - initialize the reap timer
1771  * @soc: data path SoC handle
1772  *
1773  * Return: void
1774  */
1775 static void dp_reap_timer_init(struct dp_soc *soc)
1776 {
1777 	/*
1778 	 * Timer to reap rxdma status rings.
1779 	 * Needed until we enable ppdu end interrupts
1780 	 */
1781 	dp_monitor_reap_timer_init(soc);
1782 	dp_monitor_vdev_timer_init(soc);
1783 }
1784 
1785 /**
1786  * dp_reap_timer_deinit() - de-initialize the reap timer
1787  * @soc: data path SoC handle
1788  *
1789  * Return: void
1790  */
1791 static void dp_reap_timer_deinit(struct dp_soc *soc)
1792 {
1793 	dp_monitor_reap_timer_deinit(soc);
1794 }
1795 #else
1796 /* WIN use case */
1797 static void dp_reap_timer_init(struct dp_soc *soc)
1798 {
1799 	/* Configure LMAC rings in Polled mode */
1800 	if (soc->lmac_polled_mode) {
1801 		/*
1802 		 * Timer to reap lmac rings.
1803 		 */
1804 		qdf_timer_init(soc->osdev, &soc->lmac_reap_timer,
1805 			       dp_service_lmac_rings, (void *)soc,
1806 			       QDF_TIMER_TYPE_WAKE_APPS);
1807 		soc->lmac_timer_init = 1;
1808 		qdf_timer_mod(&soc->lmac_reap_timer, DP_INTR_POLL_TIMER_MS);
1809 	}
1810 }
1811 
1812 static void dp_reap_timer_deinit(struct dp_soc *soc)
1813 {
1814 	if (soc->lmac_timer_init) {
1815 		qdf_timer_stop(&soc->lmac_reap_timer);
1816 		qdf_timer_free(&soc->lmac_reap_timer);
1817 		soc->lmac_timer_init = 0;
1818 	}
1819 }
1820 #endif
1821 
1822 #ifdef QCA_HOST2FW_RXBUF_RING
1823 /**
1824  * dp_rxdma_ring_alloc() - allocate the RXDMA rings
1825  * @soc: data path SoC handle
1826  * @pdev: Physical device handle
1827  *
1828  * Return: 0 - success, > 0 - failure
1829  */
1830 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
1831 {
1832 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
1833 	int max_mac_rings;
1834 	int i;
1835 	int ring_size;
1836 
1837 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
1838 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
1839 	ring_size =  wlan_cfg_get_rx_dma_buf_ring_size(pdev_cfg_ctx);
1840 
1841 	for (i = 0; i < max_mac_rings; i++) {
1842 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
1843 		if (dp_srng_alloc(soc, &pdev->rx_mac_buf_ring[i],
1844 				  RXDMA_BUF, ring_size, 0)) {
1845 			dp_init_err("%pK: failed rx mac ring setup", soc);
1846 			return QDF_STATUS_E_FAILURE;
1847 		}
1848 	}
1849 	return QDF_STATUS_SUCCESS;
1850 }
1851 
1852 /**
1853  * dp_rxdma_ring_setup() - configure the RXDMA rings
1854  * @soc: data path SoC handle
1855  * @pdev: Physical device handle
1856  *
1857  * Return: 0 - success, > 0 - failure
1858  */
1859 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
1860 {
1861 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
1862 	int max_mac_rings;
1863 	int i;
1864 
1865 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
1866 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
1867 
1868 	for (i = 0; i < max_mac_rings; i++) {
1869 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
1870 		if (dp_srng_init(soc, &pdev->rx_mac_buf_ring[i],
1871 				 RXDMA_BUF, 1, i)) {
1872 			dp_init_err("%pK: failed rx mac ring setup", soc);
1873 			return QDF_STATUS_E_FAILURE;
1874 		}
1875 	}
1876 	return QDF_STATUS_SUCCESS;
1877 }
1878 
1879 /**
1880  * dp_rxdma_ring_cleanup() - Deinit the RXDMA rings and reap timer
1881  * @soc: data path SoC handle
1882  * @pdev: Physical device handle
1883  *
1884  * Return: void
1885  */
1886 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
1887 {
1888 	int i;
1889 
1890 	for (i = 0; i < MAX_RX_MAC_RINGS; i++)
1891 		dp_srng_deinit(soc, &pdev->rx_mac_buf_ring[i], RXDMA_BUF, 1);
1892 
1893 	dp_reap_timer_deinit(soc);
1894 }
1895 
1896 /**
1897  * dp_rxdma_ring_free() - Free the RXDMA rings
1898  * @pdev: Physical device handle
1899  *
1900  * Return: void
1901  */
1902 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
1903 {
1904 	int i;
1905 
1906 	for (i = 0; i < MAX_RX_MAC_RINGS; i++)
1907 		dp_srng_free(pdev->soc, &pdev->rx_mac_buf_ring[i]);
1908 }
1909 
1910 #else
1911 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
1912 {
1913 	return QDF_STATUS_SUCCESS;
1914 }
1915 
1916 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
1917 {
1918 	return QDF_STATUS_SUCCESS;
1919 }
1920 
1921 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
1922 {
1923 	dp_reap_timer_deinit(soc);
1924 }
1925 
1926 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
1927 {
1928 }
1929 #endif
1930 
1931 #ifdef IPA_OFFLOAD
1932 /**
1933  * dp_setup_ipa_rx_refill_buf_ring - Setup second Rx refill buffer ring
1934  * @soc: data path instance
1935  * @pdev: core txrx pdev context
1936  *
1937  * Return: QDF_STATUS_SUCCESS: success
1938  *         QDF_STATUS_E_RESOURCES: Error return
1939  */
1940 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
1941 					   struct dp_pdev *pdev)
1942 {
1943 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
1944 	int entries;
1945 
1946 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
1947 		soc_cfg_ctx = soc->wlan_cfg_ctx;
1948 		entries =
1949 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
1950 
1951 		/* Setup second Rx refill buffer ring */
1952 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
1953 				  entries, 0)) {
1954 			dp_init_err("%pK: dp_srng_alloc failed second"
1955 				    "rx refill ring", soc);
1956 			return QDF_STATUS_E_FAILURE;
1957 		}
1958 	}
1959 
1960 	return QDF_STATUS_SUCCESS;
1961 }
1962 
1963 #ifdef IPA_WDI3_VLAN_SUPPORT
1964 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
1965 					       struct dp_pdev *pdev)
1966 {
1967 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
1968 	int entries;
1969 
1970 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
1971 	    wlan_ipa_is_vlan_enabled()) {
1972 		soc_cfg_ctx = soc->wlan_cfg_ctx;
1973 		entries =
1974 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
1975 
1976 		/* Setup second Rx refill buffer ring */
1977 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
1978 				  entries, 0)) {
1979 			dp_init_err("%pK: alloc failed for 3rd rx refill ring",
1980 				    soc);
1981 			return QDF_STATUS_E_FAILURE;
1982 		}
1983 	}
1984 
1985 	return QDF_STATUS_SUCCESS;
1986 }
1987 
1988 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
1989 					      struct dp_pdev *pdev)
1990 {
1991 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
1992 	    wlan_ipa_is_vlan_enabled()) {
1993 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
1994 				 IPA_RX_ALT_REFILL_BUF_RING_IDX,
1995 				 pdev->pdev_id)) {
1996 			dp_init_err("%pK: init failed for 3rd rx refill ring",
1997 				    soc);
1998 			return QDF_STATUS_E_FAILURE;
1999 		}
2000 	}
2001 
2002 	return QDF_STATUS_SUCCESS;
2003 }
2004 
2005 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2006 						 struct dp_pdev *pdev)
2007 {
2008 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
2009 	    wlan_ipa_is_vlan_enabled())
2010 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF, 0);
2011 }
2012 
2013 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2014 					       struct dp_pdev *pdev)
2015 {
2016 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
2017 	    wlan_ipa_is_vlan_enabled())
2018 		dp_srng_free(soc, &pdev->rx_refill_buf_ring3);
2019 }
2020 #else
2021 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2022 					       struct dp_pdev *pdev)
2023 {
2024 	return QDF_STATUS_SUCCESS;
2025 }
2026 
2027 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2028 					      struct dp_pdev *pdev)
2029 {
2030 	return QDF_STATUS_SUCCESS;
2031 }
2032 
2033 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2034 						 struct dp_pdev *pdev)
2035 {
2036 }
2037 
2038 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2039 					       struct dp_pdev *pdev)
2040 {
2041 }
2042 #endif
2043 
2044 /**
2045  * dp_deinit_ipa_rx_refill_buf_ring - deinit second Rx refill buffer ring
2046  * @soc: data path instance
2047  * @pdev: core txrx pdev context
2048  *
2049  * Return: void
2050  */
2051 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2052 					     struct dp_pdev *pdev)
2053 {
2054 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
2055 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF, 0);
2056 }
2057 
2058 /**
2059  * dp_init_ipa_rx_refill_buf_ring - Init second Rx refill buffer ring
2060  * @soc: data path instance
2061  * @pdev: core txrx pdev context
2062  *
2063  * Return: QDF_STATUS_SUCCESS: success
2064  *         QDF_STATUS_E_RESOURCES: Error return
2065  */
2066 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2067 					  struct dp_pdev *pdev)
2068 {
2069 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
2070 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
2071 				 IPA_RX_REFILL_BUF_RING_IDX, pdev->pdev_id)) {
2072 			dp_init_err("%pK: dp_srng_init failed second"
2073 				    "rx refill ring", soc);
2074 			return QDF_STATUS_E_FAILURE;
2075 		}
2076 	}
2077 
2078 	if (dp_init_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
2079 		dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
2080 		return QDF_STATUS_E_FAILURE;
2081 	}
2082 
2083 	return QDF_STATUS_SUCCESS;
2084 }
2085 
2086 /**
2087  * dp_free_ipa_rx_refill_buf_ring - free second Rx refill buffer ring
2088  * @soc: data path instance
2089  * @pdev: core txrx pdev context
2090  *
2091  * Return: void
2092  */
2093 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2094 					   struct dp_pdev *pdev)
2095 {
2096 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
2097 		dp_srng_free(soc, &pdev->rx_refill_buf_ring2);
2098 }
2099 #else
2100 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2101 					   struct dp_pdev *pdev)
2102 {
2103 	return QDF_STATUS_SUCCESS;
2104 }
2105 
2106 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2107 					  struct dp_pdev *pdev)
2108 {
2109 	return QDF_STATUS_SUCCESS;
2110 }
2111 
2112 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2113 					     struct dp_pdev *pdev)
2114 {
2115 }
2116 
2117 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2118 					   struct dp_pdev *pdev)
2119 {
2120 }
2121 
2122 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2123 					       struct dp_pdev *pdev)
2124 {
2125 	return QDF_STATUS_SUCCESS;
2126 }
2127 
2128 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2129 						 struct dp_pdev *pdev)
2130 {
2131 }
2132 
2133 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2134 					       struct dp_pdev *pdev)
2135 {
2136 }
2137 #endif
2138 
2139 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
2140 
2141 /**
2142  * dp_soc_cfg_history_attach() - Allocate and attach datapath config events
2143  *				 history
2144  * @soc: DP soc handle
2145  *
2146  * Return: None
2147  */
2148 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
2149 {
2150 	dp_soc_frag_history_attach(soc, &soc->cfg_event_history,
2151 				   DP_CFG_EVT_HIST_MAX_SLOTS,
2152 				   DP_CFG_EVT_HIST_PER_SLOT_MAX,
2153 				   sizeof(struct dp_cfg_event),
2154 				   true, DP_CFG_EVENT_HIST_TYPE);
2155 }
2156 
2157 /**
2158  * dp_soc_cfg_history_detach() - Detach and free DP config events history
2159  * @soc: DP soc handle
2160  *
2161  * Return: none
2162  */
2163 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
2164 {
2165 	dp_soc_frag_history_detach(soc, &soc->cfg_event_history,
2166 				   DP_CFG_EVT_HIST_MAX_SLOTS,
2167 				   true, DP_CFG_EVENT_HIST_TYPE);
2168 }
2169 
2170 #else
2171 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
2172 {
2173 }
2174 
2175 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
2176 {
2177 }
2178 #endif
2179 
2180 #ifdef DP_TX_HW_DESC_HISTORY
2181 /**
2182  * dp_soc_tx_hw_desc_history_attach - Attach TX HW descriptor history
2183  *
2184  * @soc: DP soc handle
2185  *
2186  * Return: None
2187  */
2188 static void dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
2189 {
2190 	dp_soc_frag_history_attach(soc, &soc->tx_hw_desc_history,
2191 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
2192 				   DP_TX_HW_DESC_HIST_PER_SLOT_MAX,
2193 				   sizeof(struct dp_tx_hw_desc_evt),
2194 				   true, DP_TX_HW_DESC_HIST_TYPE);
2195 }
2196 
2197 static void dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
2198 {
2199 	dp_soc_frag_history_detach(soc, &soc->tx_hw_desc_history,
2200 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
2201 				   true, DP_TX_HW_DESC_HIST_TYPE);
2202 }
2203 
2204 #else /* DP_TX_HW_DESC_HISTORY */
2205 static inline void
2206 dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
2207 {
2208 }
2209 
2210 static inline void
2211 dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
2212 {
2213 }
2214 #endif /* DP_TX_HW_DESC_HISTORY */
2215 
2216 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
2217 #ifndef RX_DEFRAG_DO_NOT_REINJECT
2218 /**
2219  * dp_soc_rx_reinject_ring_history_attach - Attach the reo reinject ring
2220  *					    history.
2221  * @soc: DP soc handle
2222  *
2223  * Return: None
2224  */
2225 static void dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
2226 {
2227 	soc->rx_reinject_ring_history =
2228 		dp_context_alloc_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
2229 				     sizeof(struct dp_rx_reinject_history));
2230 	if (soc->rx_reinject_ring_history)
2231 		qdf_atomic_init(&soc->rx_reinject_ring_history->index);
2232 }
2233 #else /* RX_DEFRAG_DO_NOT_REINJECT */
2234 static inline void
2235 dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
2236 {
2237 }
2238 #endif /* RX_DEFRAG_DO_NOT_REINJECT */
2239 
2240 /**
2241  * dp_soc_rx_history_attach() - Attach the ring history record buffers
2242  * @soc: DP soc structure
2243  *
2244  * This function allocates the memory for recording the rx ring, rx error
2245  * ring and the reinject ring entries. There is no error returned in case
2246  * of allocation failure since the record function checks if the history is
2247  * initialized or not. We do not want to fail the driver load in case of
2248  * failure to allocate memory for debug history.
2249  *
2250  * Return: None
2251  */
2252 static void dp_soc_rx_history_attach(struct dp_soc *soc)
2253 {
2254 	int i;
2255 	uint32_t rx_ring_hist_size;
2256 	uint32_t rx_refill_ring_hist_size;
2257 
2258 	rx_ring_hist_size = sizeof(*soc->rx_ring_history[0]);
2259 	rx_refill_ring_hist_size = sizeof(*soc->rx_refill_ring_history[0]);
2260 
2261 	for (i = 0; i < MAX_REO_DEST_RINGS; i++) {
2262 		soc->rx_ring_history[i] = dp_context_alloc_mem(
2263 				soc, DP_RX_RING_HIST_TYPE, rx_ring_hist_size);
2264 		if (soc->rx_ring_history[i])
2265 			qdf_atomic_init(&soc->rx_ring_history[i]->index);
2266 	}
2267 
2268 	soc->rx_err_ring_history = dp_context_alloc_mem(
2269 			soc, DP_RX_ERR_RING_HIST_TYPE, rx_ring_hist_size);
2270 	if (soc->rx_err_ring_history)
2271 		qdf_atomic_init(&soc->rx_err_ring_history->index);
2272 
2273 	dp_soc_rx_reinject_ring_history_attach(soc);
2274 
2275 	for (i = 0; i < MAX_PDEV_CNT; i++) {
2276 		soc->rx_refill_ring_history[i] = dp_context_alloc_mem(
2277 						soc,
2278 						DP_RX_REFILL_RING_HIST_TYPE,
2279 						rx_refill_ring_hist_size);
2280 
2281 		if (soc->rx_refill_ring_history[i])
2282 			qdf_atomic_init(&soc->rx_refill_ring_history[i]->index);
2283 	}
2284 }
2285 
2286 static void dp_soc_rx_history_detach(struct dp_soc *soc)
2287 {
2288 	int i;
2289 
2290 	for (i = 0; i < MAX_REO_DEST_RINGS; i++)
2291 		dp_context_free_mem(soc, DP_RX_RING_HIST_TYPE,
2292 				    soc->rx_ring_history[i]);
2293 
2294 	dp_context_free_mem(soc, DP_RX_ERR_RING_HIST_TYPE,
2295 			    soc->rx_err_ring_history);
2296 
2297 	/*
2298 	 * No need for a featurized detach since qdf_mem_free takes
2299 	 * care of NULL pointer.
2300 	 */
2301 	dp_context_free_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
2302 			    soc->rx_reinject_ring_history);
2303 
2304 	for (i = 0; i < MAX_PDEV_CNT; i++)
2305 		dp_context_free_mem(soc, DP_RX_REFILL_RING_HIST_TYPE,
2306 				    soc->rx_refill_ring_history[i]);
2307 }
2308 
2309 #else
2310 static inline void dp_soc_rx_history_attach(struct dp_soc *soc)
2311 {
2312 }
2313 
2314 static inline void dp_soc_rx_history_detach(struct dp_soc *soc)
2315 {
2316 }
2317 #endif
2318 
2319 #ifdef WLAN_FEATURE_DP_MON_STATUS_RING_HISTORY
2320 /**
2321  * dp_soc_mon_status_ring_history_attach() - Attach the monitor status
2322  *					     buffer record history.
2323  * @soc: DP soc handle
2324  *
2325  * This function allocates memory to track the event for a monitor
2326  * status buffer, before its parsed and freed.
2327  *
2328  * Return: None
2329  */
2330 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
2331 {
2332 	soc->mon_status_ring_history = dp_context_alloc_mem(soc,
2333 				DP_MON_STATUS_BUF_HIST_TYPE,
2334 				sizeof(struct dp_mon_status_ring_history));
2335 	if (!soc->mon_status_ring_history) {
2336 		dp_err("Failed to alloc memory for mon status ring history");
2337 		return;
2338 	}
2339 }
2340 
2341 /**
2342  * dp_soc_mon_status_ring_history_detach() - Detach the monitor status buffer
2343  *					     record history.
2344  * @soc: DP soc handle
2345  *
2346  * Return: None
2347  */
2348 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
2349 {
2350 	dp_context_free_mem(soc, DP_MON_STATUS_BUF_HIST_TYPE,
2351 			    soc->mon_status_ring_history);
2352 }
2353 #else
2354 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
2355 {
2356 }
2357 
2358 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
2359 {
2360 }
2361 #endif
2362 
2363 #ifdef WLAN_FEATURE_DP_TX_DESC_HISTORY
2364 /**
2365  * dp_soc_tx_history_attach() - Attach the ring history record buffers
2366  * @soc: DP soc structure
2367  *
2368  * This function allocates the memory for recording the tx tcl ring and
2369  * the tx comp ring entries. There is no error returned in case
2370  * of allocation failure since the record function checks if the history is
2371  * initialized or not. We do not want to fail the driver load in case of
2372  * failure to allocate memory for debug history.
2373  *
2374  * Return: None
2375  */
2376 static void dp_soc_tx_history_attach(struct dp_soc *soc)
2377 {
2378 	dp_soc_frag_history_attach(soc, &soc->tx_tcl_history,
2379 				   DP_TX_TCL_HIST_MAX_SLOTS,
2380 				   DP_TX_TCL_HIST_PER_SLOT_MAX,
2381 				   sizeof(struct dp_tx_desc_event),
2382 				   true, DP_TX_TCL_HIST_TYPE);
2383 	dp_soc_frag_history_attach(soc, &soc->tx_comp_history,
2384 				   DP_TX_COMP_HIST_MAX_SLOTS,
2385 				   DP_TX_COMP_HIST_PER_SLOT_MAX,
2386 				   sizeof(struct dp_tx_desc_event),
2387 				   true, DP_TX_COMP_HIST_TYPE);
2388 }
2389 
2390 /**
2391  * dp_soc_tx_history_detach() - Detach the ring history record buffers
2392  * @soc: DP soc structure
2393  *
2394  * This function frees the memory for recording the tx tcl ring and
2395  * the tx comp ring entries.
2396  *
2397  * Return: None
2398  */
2399 static void dp_soc_tx_history_detach(struct dp_soc *soc)
2400 {
2401 	dp_soc_frag_history_detach(soc, &soc->tx_tcl_history,
2402 				   DP_TX_TCL_HIST_MAX_SLOTS,
2403 				   true, DP_TX_TCL_HIST_TYPE);
2404 	dp_soc_frag_history_detach(soc, &soc->tx_comp_history,
2405 				   DP_TX_COMP_HIST_MAX_SLOTS,
2406 				   true, DP_TX_COMP_HIST_TYPE);
2407 }
2408 
2409 #else
2410 static inline void dp_soc_tx_history_attach(struct dp_soc *soc)
2411 {
2412 }
2413 
2414 static inline void dp_soc_tx_history_detach(struct dp_soc *soc)
2415 {
2416 }
2417 #endif /* WLAN_FEATURE_DP_TX_DESC_HISTORY */
2418 
2419 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
2420 QDF_STATUS
2421 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
2422 {
2423 	struct dp_rx_fst *rx_fst = NULL;
2424 	QDF_STATUS ret = QDF_STATUS_SUCCESS;
2425 
2426 	/* for Lithium the below API is not registered
2427 	 * hence fst attach happens for each pdev
2428 	 */
2429 	if (!soc->arch_ops.dp_get_rx_fst)
2430 		return dp_rx_fst_attach(soc, pdev);
2431 
2432 	rx_fst = soc->arch_ops.dp_get_rx_fst();
2433 
2434 	/* for BE the FST attach is called only once per
2435 	 * ML context. if rx_fst is already registered
2436 	 * increase the ref count and return.
2437 	 */
2438 	if (rx_fst) {
2439 		soc->rx_fst = rx_fst;
2440 		pdev->rx_fst = rx_fst;
2441 		soc->arch_ops.dp_rx_fst_ref();
2442 	} else {
2443 		ret = dp_rx_fst_attach(soc, pdev);
2444 		if ((ret != QDF_STATUS_SUCCESS) &&
2445 		    (ret != QDF_STATUS_E_NOSUPPORT))
2446 			return ret;
2447 
2448 		soc->arch_ops.dp_set_rx_fst(soc->rx_fst);
2449 		soc->arch_ops.dp_rx_fst_ref();
2450 	}
2451 	return ret;
2452 }
2453 
2454 void
2455 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
2456 {
2457 	struct dp_rx_fst *rx_fst = NULL;
2458 
2459 	/* for Lithium the below API is not registered
2460 	 * hence fst detach happens for each pdev
2461 	 */
2462 	if (!soc->arch_ops.dp_get_rx_fst) {
2463 		dp_rx_fst_detach(soc, pdev);
2464 		return;
2465 	}
2466 
2467 	rx_fst = soc->arch_ops.dp_get_rx_fst();
2468 
2469 	/* for BE the FST detach is called only when last
2470 	 * ref count reaches 1.
2471 	 */
2472 	if (rx_fst) {
2473 		if (soc->arch_ops.dp_rx_fst_deref() == 1)
2474 			dp_rx_fst_detach(soc, pdev);
2475 	}
2476 	pdev->rx_fst = NULL;
2477 }
2478 #elif defined(WLAN_SUPPORT_RX_FISA)
2479 QDF_STATUS
2480 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
2481 {
2482 	return dp_rx_fst_attach(soc, pdev);
2483 }
2484 
2485 void
2486 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
2487 {
2488 	dp_rx_fst_detach(soc, pdev);
2489 }
2490 #else
2491 QDF_STATUS
2492 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
2493 {
2494 	return QDF_STATUS_SUCCESS;
2495 }
2496 
2497 void
2498 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
2499 {
2500 }
2501 #endif
2502 
2503 /**
2504  * dp_pdev_attach_wifi3() - attach txrx pdev
2505  * @txrx_soc: Datapath SOC handle
2506  * @params: Params for PDEV attach
2507  *
2508  * Return: QDF_STATUS
2509  */
2510 static inline
2511 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
2512 				struct cdp_pdev_attach_params *params)
2513 {
2514 	qdf_size_t pdev_context_size;
2515 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2516 	struct dp_pdev *pdev = NULL;
2517 	uint8_t pdev_id = params->pdev_id;
2518 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
2519 	int nss_cfg;
2520 	QDF_STATUS ret;
2521 
2522 	pdev_context_size =
2523 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_PDEV);
2524 	if (pdev_context_size)
2525 		pdev = dp_context_alloc_mem(soc, DP_PDEV_TYPE,
2526 					    pdev_context_size);
2527 
2528 	if (!pdev) {
2529 		dp_init_err("%pK: DP PDEV memory allocation failed",
2530 			    soc);
2531 		goto fail0;
2532 	}
2533 	wlan_minidump_log(pdev, sizeof(*pdev), soc->ctrl_psoc,
2534 			  WLAN_MD_DP_PDEV, "dp_pdev");
2535 
2536 	soc_cfg_ctx = soc->wlan_cfg_ctx;
2537 	pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach(soc->ctrl_psoc);
2538 
2539 	if (!pdev->wlan_cfg_ctx) {
2540 		dp_init_err("%pK: pdev cfg_attach failed", soc);
2541 		goto fail1;
2542 	}
2543 
2544 	/*
2545 	 * set nss pdev config based on soc config
2546 	 */
2547 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
2548 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
2549 					 (nss_cfg & (1 << pdev_id)));
2550 
2551 	pdev->soc = soc;
2552 	pdev->pdev_id = pdev_id;
2553 	soc->pdev_list[pdev_id] = pdev;
2554 
2555 	pdev->lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, pdev_id);
2556 	soc->pdev_count++;
2557 
2558 	/* Allocate memory for pdev srng rings */
2559 	if (dp_pdev_srng_alloc(pdev)) {
2560 		dp_init_err("%pK: dp_pdev_srng_alloc failed", soc);
2561 		goto fail2;
2562 	}
2563 
2564 	/* Setup second Rx refill buffer ring */
2565 	if (dp_setup_ipa_rx_refill_buf_ring(soc, pdev)) {
2566 		dp_init_err("%pK: dp_srng_alloc failed rxrefill2 ring",
2567 			    soc);
2568 		goto fail3;
2569 	}
2570 
2571 	/* Allocate memory for pdev rxdma rings */
2572 	if (dp_rxdma_ring_alloc(soc, pdev)) {
2573 		dp_init_err("%pK: dp_rxdma_ring_alloc failed", soc);
2574 		goto fail4;
2575 	}
2576 
2577 	/* Rx specific init */
2578 	if (dp_rx_pdev_desc_pool_alloc(pdev)) {
2579 		dp_init_err("%pK: dp_rx_pdev_attach failed", soc);
2580 		goto fail4;
2581 	}
2582 
2583 	if (dp_monitor_pdev_attach(pdev)) {
2584 		dp_init_err("%pK: dp_monitor_pdev_attach failed", soc);
2585 		goto fail5;
2586 	}
2587 
2588 	soc->arch_ops.txrx_pdev_attach(pdev, params);
2589 
2590 	/* Setup third Rx refill buffer ring */
2591 	if (dp_setup_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
2592 		dp_init_err("%pK: dp_srng_alloc failed rxrefill3 ring",
2593 			    soc);
2594 		goto fail6;
2595 	}
2596 
2597 	ret = dp_rx_fst_attach_wrapper(soc, pdev);
2598 	if ((ret != QDF_STATUS_SUCCESS) && (ret != QDF_STATUS_E_NOSUPPORT)) {
2599 		dp_init_err("%pK: RX FST attach failed: pdev %d err %d",
2600 			    soc, pdev_id, ret);
2601 		goto fail7;
2602 	}
2603 
2604 	return QDF_STATUS_SUCCESS;
2605 
2606 fail7:
2607 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
2608 fail6:
2609 	dp_monitor_pdev_detach(pdev);
2610 fail5:
2611 	dp_rx_pdev_desc_pool_free(pdev);
2612 fail4:
2613 	dp_rxdma_ring_free(pdev);
2614 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
2615 fail3:
2616 	dp_pdev_srng_free(pdev);
2617 fail2:
2618 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
2619 fail1:
2620 	soc->pdev_list[pdev_id] = NULL;
2621 	qdf_mem_free(pdev);
2622 fail0:
2623 	return QDF_STATUS_E_FAILURE;
2624 }
2625 
2626 /**
2627  * dp_pdev_flush_pending_vdevs() - Flush all delete pending vdevs in pdev
2628  * @pdev: Datapath PDEV handle
2629  *
2630  * This is the last chance to flush all pending dp vdevs/peers,
2631  * some peer/vdev leak case like Non-SSR + peer unmap missing
2632  * will be covered here.
2633  *
2634  * Return: None
2635  */
2636 static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
2637 {
2638 	struct dp_soc *soc = pdev->soc;
2639 	struct dp_vdev *vdev_arr[MAX_VDEV_CNT] = {0};
2640 	uint32_t i = 0;
2641 	uint32_t num_vdevs = 0;
2642 	struct dp_vdev *vdev = NULL;
2643 
2644 	if (TAILQ_EMPTY(&soc->inactive_vdev_list))
2645 		return;
2646 
2647 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
2648 	TAILQ_FOREACH(vdev, &soc->inactive_vdev_list,
2649 		      inactive_list_elem) {
2650 		if (vdev->pdev != pdev)
2651 			continue;
2652 
2653 		vdev_arr[num_vdevs] = vdev;
2654 		num_vdevs++;
2655 		/* take reference to free */
2656 		dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CDP);
2657 	}
2658 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
2659 
2660 	for (i = 0; i < num_vdevs; i++) {
2661 		dp_vdev_flush_peers((struct cdp_vdev *)vdev_arr[i], 0, 0);
2662 		dp_vdev_unref_delete(soc, vdev_arr[i], DP_MOD_ID_CDP);
2663 	}
2664 }
2665 
2666 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
2667 /**
2668  * dp_vdev_stats_hw_offload_target_config() - Send HTT command to FW
2669  *                                          for enable/disable of HW vdev stats
2670  * @soc: Datapath soc handle
2671  * @pdev_id: INVALID_PDEV_ID for all pdevs or 0,1,2 for individual pdev
2672  * @enable: flag to represent enable/disable of hw vdev stats
2673  *
2674  * Return: none
2675  */
2676 static void dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc,
2677 						   uint8_t pdev_id,
2678 						   bool enable)
2679 {
2680 	/* Check SOC level config for HW offload vdev stats support */
2681 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
2682 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
2683 		return;
2684 	}
2685 
2686 	/* Send HTT command to FW for enable of stats */
2687 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, enable, false, 0);
2688 }
2689 
2690 /**
2691  * dp_vdev_stats_hw_offload_target_clear() - Clear HW vdev stats on target
2692  * @soc: Datapath soc handle
2693  * @pdev_id: pdev_id (0,1,2)
2694  * @vdev_id_bitmask: bitmask with vdev_id(s) for which stats are to be
2695  *                   cleared on HW
2696  *
2697  * Return: none
2698  */
2699 static
2700 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
2701 					   uint64_t vdev_id_bitmask)
2702 {
2703 	/* Check SOC level config for HW offload vdev stats support */
2704 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
2705 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
2706 		return;
2707 	}
2708 
2709 	/* Send HTT command to FW for reset of stats */
2710 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, true, true,
2711 					 vdev_id_bitmask);
2712 }
2713 #else
2714 static void
2715 dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc, uint8_t pdev_id,
2716 				       bool enable)
2717 {
2718 }
2719 
2720 static
2721 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
2722 					   uint64_t vdev_id_bitmask)
2723 {
2724 }
2725 #endif /*QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT */
2726 
2727 /**
2728  * dp_pdev_deinit() - Deinit txrx pdev
2729  * @txrx_pdev: Datapath PDEV handle
2730  * @force: Force deinit
2731  *
2732  * Return: None
2733  */
2734 static void dp_pdev_deinit(struct cdp_pdev *txrx_pdev, int force)
2735 {
2736 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
2737 	qdf_nbuf_t curr_nbuf, next_nbuf;
2738 
2739 	if (pdev->pdev_deinit)
2740 		return;
2741 
2742 	dp_tx_me_exit(pdev);
2743 	dp_rx_pdev_buffers_free(pdev);
2744 	dp_rx_pdev_desc_pool_deinit(pdev);
2745 	dp_pdev_bkp_stats_detach(pdev);
2746 	qdf_event_destroy(&pdev->fw_peer_stats_event);
2747 	qdf_event_destroy(&pdev->fw_stats_event);
2748 	qdf_event_destroy(&pdev->fw_obss_stats_event);
2749 	if (pdev->sojourn_buf)
2750 		qdf_nbuf_free(pdev->sojourn_buf);
2751 
2752 	dp_pdev_flush_pending_vdevs(pdev);
2753 	dp_tx_desc_flush(pdev, NULL, true);
2754 
2755 	qdf_spinlock_destroy(&pdev->tx_mutex);
2756 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
2757 
2758 	dp_monitor_pdev_deinit(pdev);
2759 
2760 	dp_pdev_srng_deinit(pdev);
2761 
2762 	dp_ipa_uc_detach(pdev->soc, pdev);
2763 	dp_deinit_ipa_rx_alt_refill_buf_ring(pdev->soc, pdev);
2764 	dp_deinit_ipa_rx_refill_buf_ring(pdev->soc, pdev);
2765 	dp_rxdma_ring_cleanup(pdev->soc, pdev);
2766 
2767 	curr_nbuf = pdev->invalid_peer_head_msdu;
2768 	while (curr_nbuf) {
2769 		next_nbuf = qdf_nbuf_next(curr_nbuf);
2770 		dp_rx_nbuf_free(curr_nbuf);
2771 		curr_nbuf = next_nbuf;
2772 	}
2773 	pdev->invalid_peer_head_msdu = NULL;
2774 	pdev->invalid_peer_tail_msdu = NULL;
2775 
2776 	dp_wdi_event_detach(pdev);
2777 	pdev->pdev_deinit = 1;
2778 }
2779 
2780 /**
2781  * dp_pdev_deinit_wifi3() - Deinit txrx pdev
2782  * @psoc: Datapath psoc handle
2783  * @pdev_id: Id of datapath PDEV handle
2784  * @force: Force deinit
2785  *
2786  * Return: QDF_STATUS
2787  */
2788 static QDF_STATUS
2789 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
2790 		     int force)
2791 {
2792 	struct dp_pdev *txrx_pdev;
2793 
2794 	txrx_pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
2795 						       pdev_id);
2796 
2797 	if (!txrx_pdev)
2798 		return QDF_STATUS_E_FAILURE;
2799 
2800 	dp_pdev_deinit((struct cdp_pdev *)txrx_pdev, force);
2801 
2802 	return QDF_STATUS_SUCCESS;
2803 }
2804 
2805 /**
2806  * dp_pdev_post_attach() - Do post pdev attach after dev_alloc_name
2807  * @txrx_pdev: Datapath PDEV handle
2808  *
2809  * Return: None
2810  */
2811 static void dp_pdev_post_attach(struct cdp_pdev *txrx_pdev)
2812 {
2813 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
2814 
2815 	dp_monitor_tx_capture_debugfs_init(pdev);
2816 
2817 	if (dp_pdev_htt_stats_dbgfs_init(pdev)) {
2818 		dp_init_err("%pK: Failed to initialize pdev HTT stats debugfs", pdev->soc);
2819 	}
2820 }
2821 
2822 /**
2823  * dp_pdev_post_attach_wifi3() - attach txrx pdev post
2824  * @soc: Datapath soc handle
2825  * @pdev_id: pdev id of pdev
2826  *
2827  * Return: QDF_STATUS
2828  */
2829 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *soc,
2830 				     uint8_t pdev_id)
2831 {
2832 	struct dp_pdev *pdev;
2833 
2834 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
2835 						  pdev_id);
2836 
2837 	if (!pdev) {
2838 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
2839 			    (struct dp_soc *)soc, pdev_id);
2840 		return QDF_STATUS_E_FAILURE;
2841 	}
2842 
2843 	dp_pdev_post_attach((struct cdp_pdev *)pdev);
2844 	return QDF_STATUS_SUCCESS;
2845 }
2846 
2847 /**
2848  * dp_pdev_detach() - Complete rest of pdev detach
2849  * @txrx_pdev: Datapath PDEV handle
2850  * @force: Force deinit
2851  *
2852  * Return: None
2853  */
2854 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force)
2855 {
2856 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
2857 	struct dp_soc *soc = pdev->soc;
2858 
2859 	dp_rx_fst_detach_wrapper(soc, pdev);
2860 	dp_pdev_htt_stats_dbgfs_deinit(pdev);
2861 	dp_rx_pdev_desc_pool_free(pdev);
2862 	dp_monitor_pdev_detach(pdev);
2863 	dp_rxdma_ring_free(pdev);
2864 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
2865 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
2866 	dp_pdev_srng_free(pdev);
2867 
2868 	soc->pdev_count--;
2869 	soc->pdev_list[pdev->pdev_id] = NULL;
2870 
2871 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
2872 	wlan_minidump_remove(pdev, sizeof(*pdev), soc->ctrl_psoc,
2873 			     WLAN_MD_DP_PDEV, "dp_pdev");
2874 	dp_context_free_mem(soc, DP_PDEV_TYPE, pdev);
2875 }
2876 
2877 /**
2878  * dp_pdev_detach_wifi3() - detach txrx pdev
2879  * @psoc: Datapath soc handle
2880  * @pdev_id: pdev id of pdev
2881  * @force: Force detach
2882  *
2883  * Return: QDF_STATUS
2884  */
2885 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
2886 				       int force)
2887 {
2888 	struct dp_pdev *pdev;
2889 	struct dp_soc *soc = (struct dp_soc *)psoc;
2890 
2891 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
2892 						  pdev_id);
2893 
2894 	if (!pdev) {
2895 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
2896 			    (struct dp_soc *)psoc, pdev_id);
2897 		return QDF_STATUS_E_FAILURE;
2898 	}
2899 
2900 	soc->arch_ops.txrx_pdev_detach(pdev);
2901 
2902 	dp_pdev_detach((struct cdp_pdev *)pdev, force);
2903 	return QDF_STATUS_SUCCESS;
2904 }
2905 
2906 void dp_soc_print_inactive_objects(struct dp_soc *soc)
2907 {
2908 	struct dp_peer *peer = NULL;
2909 	struct dp_peer *tmp_peer = NULL;
2910 	struct dp_vdev *vdev = NULL;
2911 	struct dp_vdev *tmp_vdev = NULL;
2912 	int i = 0;
2913 	uint32_t count;
2914 
2915 	if (TAILQ_EMPTY(&soc->inactive_peer_list) &&
2916 	    TAILQ_EMPTY(&soc->inactive_vdev_list))
2917 		return;
2918 
2919 	TAILQ_FOREACH_SAFE(peer, &soc->inactive_peer_list,
2920 			   inactive_list_elem, tmp_peer) {
2921 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
2922 			count = qdf_atomic_read(&peer->mod_refs[i]);
2923 			if (count)
2924 				DP_PRINT_STATS("peer %pK Module id %u ==> %u",
2925 					       peer, i, count);
2926 		}
2927 	}
2928 
2929 	TAILQ_FOREACH_SAFE(vdev, &soc->inactive_vdev_list,
2930 			   inactive_list_elem, tmp_vdev) {
2931 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
2932 			count = qdf_atomic_read(&vdev->mod_refs[i]);
2933 			if (count)
2934 				DP_PRINT_STATS("vdev %pK Module id %u ==> %u",
2935 					       vdev, i, count);
2936 		}
2937 	}
2938 	QDF_BUG(0);
2939 }
2940 
2941 /**
2942  * dp_soc_deinit_wifi3() - Deinitialize txrx SOC
2943  * @txrx_soc: Opaque DP SOC handle
2944  *
2945  * Return: None
2946  */
2947 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc)
2948 {
2949 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2950 
2951 	soc->arch_ops.txrx_soc_deinit(soc);
2952 }
2953 
2954 /**
2955  * dp_soc_detach() - Detach rest of txrx SOC
2956  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
2957  *
2958  * Return: None
2959  */
2960 static void dp_soc_detach(struct cdp_soc_t *txrx_soc)
2961 {
2962 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2963 
2964 	soc->arch_ops.txrx_soc_detach(soc);
2965 
2966 	dp_runtime_deinit();
2967 
2968 	dp_sysfs_deinitialize_stats(soc);
2969 	dp_soc_swlm_detach(soc);
2970 	dp_soc_tx_desc_sw_pools_free(soc);
2971 	dp_soc_srng_free(soc);
2972 	dp_hw_link_desc_ring_free(soc);
2973 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
2974 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
2975 	dp_soc_tx_hw_desc_history_detach(soc);
2976 	dp_soc_tx_history_detach(soc);
2977 	dp_soc_mon_status_ring_history_detach(soc);
2978 	dp_soc_rx_history_detach(soc);
2979 	dp_soc_cfg_history_detach(soc);
2980 
2981 	if (!dp_monitor_modularized_enable()) {
2982 		dp_mon_soc_detach_wrapper(soc);
2983 	}
2984 
2985 	qdf_mem_free(soc->cdp_soc.ops);
2986 	qdf_mem_common_free(soc);
2987 }
2988 
2989 /**
2990  * dp_soc_detach_wifi3() - Detach txrx SOC
2991  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
2992  *
2993  * Return: None
2994  */
2995 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc)
2996 {
2997 	dp_soc_detach(txrx_soc);
2998 }
2999 
3000 #ifdef QCA_HOST2FW_RXBUF_RING
3001 #ifdef IPA_WDI3_VLAN_SUPPORT
3002 static inline
3003 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
3004 				 struct dp_pdev *pdev,
3005 				 uint8_t idx)
3006 {
3007 	if (pdev->rx_refill_buf_ring3.hal_srng)
3008 		htt_srng_setup(soc->htt_handle, idx,
3009 			       pdev->rx_refill_buf_ring3.hal_srng,
3010 			       RXDMA_BUF);
3011 }
3012 #else
3013 static inline
3014 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
3015 				 struct dp_pdev *pdev,
3016 				 uint8_t idx)
3017 { }
3018 #endif
3019 
3020 /**
3021  * dp_rxdma_ring_config() - configure the RX DMA rings
3022  * @soc: data path SoC handle
3023  *
3024  * This function is used to configure the MAC rings.
3025  * On MCL host provides buffers in Host2FW ring
3026  * FW refills (copies) buffers to the ring and updates
3027  * ring_idx in register
3028  *
3029  * Return: zero on success, non-zero on failure
3030  */
3031 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
3032 {
3033 	int i;
3034 	QDF_STATUS status = QDF_STATUS_SUCCESS;
3035 
3036 	for (i = 0; i < MAX_PDEV_CNT; i++) {
3037 		struct dp_pdev *pdev = soc->pdev_list[i];
3038 
3039 		if (pdev) {
3040 			int mac_id;
3041 			int max_mac_rings =
3042 				 wlan_cfg_get_num_mac_rings
3043 				(pdev->wlan_cfg_ctx);
3044 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
3045 
3046 			htt_srng_setup(soc->htt_handle, i,
3047 				       soc->rx_refill_buf_ring[lmac_id]
3048 				       .hal_srng,
3049 				       RXDMA_BUF);
3050 
3051 			if (pdev->rx_refill_buf_ring2.hal_srng)
3052 				htt_srng_setup(soc->htt_handle, i,
3053 					       pdev->rx_refill_buf_ring2
3054 					       .hal_srng,
3055 					       RXDMA_BUF);
3056 
3057 			dp_rxdma_setup_refill_ring3(soc, pdev, i);
3058 
3059 			dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
3060 			dp_err("pdev_id %d max_mac_rings %d",
3061 			       pdev->pdev_id, max_mac_rings);
3062 
3063 			for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
3064 				int mac_for_pdev =
3065 					dp_get_mac_id_for_pdev(mac_id,
3066 							       pdev->pdev_id);
3067 				/*
3068 				 * Obtain lmac id from pdev to access the LMAC
3069 				 * ring in soc context
3070 				 */
3071 				lmac_id =
3072 				dp_get_lmac_id_for_pdev_id(soc,
3073 							   mac_id,
3074 							   pdev->pdev_id);
3075 				QDF_TRACE(QDF_MODULE_ID_TXRX,
3076 					 QDF_TRACE_LEVEL_ERROR,
3077 					 FL("mac_id %d"), mac_for_pdev);
3078 
3079 				htt_srng_setup(soc->htt_handle, mac_for_pdev,
3080 					 pdev->rx_mac_buf_ring[mac_id]
3081 						.hal_srng,
3082 					 RXDMA_BUF);
3083 
3084 				if (!soc->rxdma2sw_rings_not_supported)
3085 					dp_htt_setup_rxdma_err_dst_ring(soc,
3086 						mac_for_pdev, lmac_id);
3087 
3088 				/* Configure monitor mode rings */
3089 				status = dp_monitor_htt_srng_setup(soc, pdev,
3090 								   lmac_id,
3091 								   mac_for_pdev);
3092 				if (status != QDF_STATUS_SUCCESS) {
3093 					dp_err("Failed to send htt monitor messages to target");
3094 					return status;
3095 				}
3096 
3097 			}
3098 		}
3099 	}
3100 
3101 	dp_reap_timer_init(soc);
3102 	return status;
3103 }
3104 #else
3105 /* This is only for WIN */
3106 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
3107 {
3108 	int i;
3109 	QDF_STATUS status = QDF_STATUS_SUCCESS;
3110 	int mac_for_pdev;
3111 	int lmac_id;
3112 
3113 	/* Configure monitor mode rings */
3114 	dp_monitor_soc_htt_srng_setup(soc);
3115 
3116 	for (i = 0; i < MAX_PDEV_CNT; i++) {
3117 		struct dp_pdev *pdev =  soc->pdev_list[i];
3118 
3119 		if (!pdev)
3120 			continue;
3121 
3122 		mac_for_pdev = i;
3123 		lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
3124 
3125 		if (soc->rx_refill_buf_ring[lmac_id].hal_srng)
3126 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
3127 				       soc->rx_refill_buf_ring[lmac_id].
3128 				       hal_srng, RXDMA_BUF);
3129 
3130 		/* Configure monitor mode rings */
3131 		dp_monitor_htt_srng_setup(soc, pdev,
3132 					  lmac_id,
3133 					  mac_for_pdev);
3134 		if (!soc->rxdma2sw_rings_not_supported)
3135 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
3136 				       soc->rxdma_err_dst_ring[lmac_id].hal_srng,
3137 				       RXDMA_DST);
3138 	}
3139 
3140 	dp_reap_timer_init(soc);
3141 	return status;
3142 }
3143 #endif
3144 
3145 /**
3146  * dp_rx_target_fst_config() - configure the RXOLE Flow Search Engine
3147  *
3148  * This function is used to configure the FSE HW block in RX OLE on a
3149  * per pdev basis. Here, we will be programming parameters related to
3150  * the Flow Search Table.
3151  *
3152  * @soc: data path SoC handle
3153  *
3154  * Return: zero on success, non-zero on failure
3155  */
3156 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
3157 static QDF_STATUS
3158 dp_rx_target_fst_config(struct dp_soc *soc)
3159 {
3160 	int i;
3161 	QDF_STATUS status = QDF_STATUS_SUCCESS;
3162 
3163 	for (i = 0; i < MAX_PDEV_CNT; i++) {
3164 		struct dp_pdev *pdev = soc->pdev_list[i];
3165 
3166 		/* Flow search is not enabled if NSS offload is enabled */
3167 		if (pdev &&
3168 		    !wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
3169 			status = dp_rx_flow_send_fst_fw_setup(pdev->soc, pdev);
3170 			if (status != QDF_STATUS_SUCCESS)
3171 				break;
3172 		}
3173 	}
3174 	return status;
3175 }
3176 #elif defined(WLAN_SUPPORT_RX_FISA)
3177 /**
3178  * dp_rx_target_fst_config() - Configure RX OLE FSE engine in HW
3179  * @soc: SoC handle
3180  *
3181  * Return: Success
3182  */
3183 static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc)
3184 {
3185 	QDF_STATUS status;
3186 	struct dp_rx_fst *fst = soc->rx_fst;
3187 
3188 	/* Check if it is enabled in the INI */
3189 	if (!soc->fisa_enable) {
3190 		dp_err("RX FISA feature is disabled");
3191 		return QDF_STATUS_E_NOSUPPORT;
3192 	}
3193 
3194 	status = dp_rx_flow_send_fst_fw_setup(soc, soc->pdev_list[0]);
3195 	if (QDF_IS_STATUS_ERROR(status)) {
3196 		dp_err("dp_rx_flow_send_fst_fw_setup failed %d",
3197 		       status);
3198 		return status;
3199 	}
3200 
3201 	if (soc->fst_cmem_base) {
3202 		soc->fst_in_cmem = true;
3203 		dp_rx_fst_update_cmem_params(soc, fst->max_entries,
3204 					     soc->fst_cmem_base & 0xffffffff,
3205 					     soc->fst_cmem_base >> 32);
3206 	}
3207 	return status;
3208 }
3209 
3210 #define FISA_MAX_TIMEOUT 0xffffffff
3211 #define FISA_DISABLE_TIMEOUT 0
3212 static QDF_STATUS dp_rx_fisa_config(struct dp_soc *soc)
3213 {
3214 	struct dp_htt_rx_fisa_cfg fisa_config;
3215 
3216 	fisa_config.pdev_id = 0;
3217 	fisa_config.fisa_timeout = FISA_MAX_TIMEOUT;
3218 
3219 	return dp_htt_rx_fisa_config(soc->pdev_list[0], &fisa_config);
3220 }
3221 
3222 #else /* !WLAN_SUPPORT_RX_FISA */
3223 static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc)
3224 {
3225 	return QDF_STATUS_SUCCESS;
3226 }
3227 #endif /* !WLAN_SUPPORT_RX_FISA */
3228 
3229 #ifndef WLAN_SUPPORT_RX_FISA
3230 static QDF_STATUS dp_rx_fisa_config(struct dp_soc *soc)
3231 {
3232 	return QDF_STATUS_SUCCESS;
3233 }
3234 
3235 static QDF_STATUS dp_rx_dump_fisa_stats(struct dp_soc *soc)
3236 {
3237 	return QDF_STATUS_SUCCESS;
3238 }
3239 
3240 static void dp_rx_dump_fisa_table(struct dp_soc *soc)
3241 {
3242 }
3243 
3244 static void dp_suspend_fse_cache_flush(struct dp_soc *soc)
3245 {
3246 }
3247 
3248 static void dp_resume_fse_cache_flush(struct dp_soc *soc)
3249 {
3250 }
3251 #endif /* !WLAN_SUPPORT_RX_FISA */
3252 
3253 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
3254 static inline QDF_STATUS dp_print_swlm_stats(struct dp_soc *soc)
3255 {
3256 	return QDF_STATUS_SUCCESS;
3257 }
3258 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
3259 
3260 #ifdef WLAN_SUPPORT_PPEDS
3261 /**
3262  * dp_soc_target_ppe_rxole_rxdma_cfg() - Configure the RxOLe and RxDMA for PPE
3263  * @soc: DP Tx/Rx handle
3264  *
3265  * Return: QDF_STATUS
3266  */
3267 static
3268 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
3269 {
3270 	struct dp_htt_rxdma_rxole_ppe_config htt_cfg = {0};
3271 	QDF_STATUS status;
3272 
3273 	/*
3274 	 * Program RxDMA to override the reo destination indication
3275 	 * with REO2PPE_DST_IND, when use_ppe is set to 1 in RX_MSDU_END,
3276 	 * thereby driving the packet to REO2PPE ring.
3277 	 * If the MSDU is spanning more than 1 buffer, then this
3278 	 * override is not done.
3279 	 */
3280 	htt_cfg.override = 1;
3281 	htt_cfg.reo_destination_indication = REO2PPE_DST_IND;
3282 	htt_cfg.multi_buffer_msdu_override_en = 0;
3283 
3284 	/*
3285 	 * Override use_ppe to 0 in RxOLE for the following
3286 	 * cases.
3287 	 */
3288 	htt_cfg.intra_bss_override = 1;
3289 	htt_cfg.decap_raw_override = 1;
3290 	htt_cfg.decap_nwifi_override = 1;
3291 	htt_cfg.ip_frag_override = 1;
3292 
3293 	status = dp_htt_rxdma_rxole_ppe_cfg_set(soc, &htt_cfg);
3294 	if (status != QDF_STATUS_SUCCESS)
3295 		dp_err("RxOLE and RxDMA PPE config failed %d", status);
3296 
3297 	return status;
3298 }
3299 
3300 #else
3301 static inline
3302 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
3303 {
3304 	return QDF_STATUS_SUCCESS;
3305 }
3306 
3307 #endif /* WLAN_SUPPORT_PPEDS */
3308 
3309 #ifdef DP_UMAC_HW_RESET_SUPPORT
3310 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
3311 {
3312 	dp_umac_reset_register_rx_action_callback(soc,
3313 					dp_umac_reset_action_trigger_recovery,
3314 					UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY);
3315 
3316 	dp_umac_reset_register_rx_action_callback(soc,
3317 		dp_umac_reset_handle_pre_reset, UMAC_RESET_ACTION_DO_PRE_RESET);
3318 
3319 	dp_umac_reset_register_rx_action_callback(soc,
3320 					dp_umac_reset_handle_post_reset,
3321 					UMAC_RESET_ACTION_DO_POST_RESET_START);
3322 
3323 	dp_umac_reset_register_rx_action_callback(soc,
3324 				dp_umac_reset_handle_post_reset_complete,
3325 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
3326 
3327 }
3328 #else
3329 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
3330 {
3331 }
3332 #endif
3333 /**
3334  * dp_soc_attach_target_wifi3() - SOC initialization in the target
3335  * @cdp_soc: Opaque Datapath SOC handle
3336  *
3337  * Return: zero on success, non-zero on failure
3338  */
3339 static QDF_STATUS
3340 dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
3341 {
3342 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
3343 	QDF_STATUS status = QDF_STATUS_SUCCESS;
3344 	struct hal_reo_params reo_params;
3345 
3346 	htt_soc_attach_target(soc->htt_handle);
3347 
3348 	status = dp_soc_target_ppe_rxole_rxdma_cfg(soc);
3349 	if (status != QDF_STATUS_SUCCESS) {
3350 		dp_err("Failed to send htt RxOLE and RxDMA messages to target");
3351 		return status;
3352 	}
3353 
3354 	status = dp_rxdma_ring_config(soc);
3355 	if (status != QDF_STATUS_SUCCESS) {
3356 		dp_err("Failed to send htt srng setup messages to target");
3357 		return status;
3358 	}
3359 
3360 	status = soc->arch_ops.dp_rxdma_ring_sel_cfg(soc);
3361 	if (status != QDF_STATUS_SUCCESS) {
3362 		dp_err("Failed to send htt ring config message to target");
3363 		return status;
3364 	}
3365 
3366 	status = dp_soc_umac_reset_init(cdp_soc);
3367 	if (status != QDF_STATUS_SUCCESS &&
3368 	    status != QDF_STATUS_E_NOSUPPORT) {
3369 		dp_err("Failed to initialize UMAC reset");
3370 		return status;
3371 	}
3372 
3373 	dp_register_umac_reset_handlers(soc);
3374 
3375 	status = dp_rx_target_fst_config(soc);
3376 	if (status != QDF_STATUS_SUCCESS &&
3377 	    status != QDF_STATUS_E_NOSUPPORT) {
3378 		dp_err("Failed to send htt fst setup config message to target");
3379 		return status;
3380 	}
3381 
3382 	if (status == QDF_STATUS_SUCCESS) {
3383 		status = dp_rx_fisa_config(soc);
3384 		if (status != QDF_STATUS_SUCCESS) {
3385 			dp_err("Failed to send htt FISA config message to target");
3386 			return status;
3387 		}
3388 	}
3389 
3390 	DP_STATS_INIT(soc);
3391 
3392 	dp_runtime_init(soc);
3393 
3394 	/* Enable HW vdev offload stats if feature is supported */
3395 	dp_vdev_stats_hw_offload_target_config(soc, INVALID_PDEV_ID, true);
3396 
3397 	/* initialize work queue for stats processing */
3398 	qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
3399 
3400 	wlan_cfg_soc_update_tgt_params(soc->wlan_cfg_ctx,
3401 				       soc->ctrl_psoc);
3402 	/* Setup HW REO */
3403 	qdf_mem_zero(&reo_params, sizeof(reo_params));
3404 
3405 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
3406 		/*
3407 		 * Reo ring remap is not required if both radios
3408 		 * are offloaded to NSS
3409 		 */
3410 
3411 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
3412 						   &reo_params.remap1,
3413 						   &reo_params.remap2))
3414 			reo_params.rx_hash_enabled = true;
3415 		else
3416 			reo_params.rx_hash_enabled = false;
3417 	}
3418 
3419 	/*
3420 	 * set the fragment destination ring
3421 	 */
3422 	dp_reo_frag_dst_set(soc, &reo_params.frag_dst_ring);
3423 
3424 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
3425 		reo_params.alt_dst_ind_0 = REO_REMAP_RELEASE;
3426 
3427 	reo_params.reo_qref = &soc->reo_qref;
3428 	hal_reo_setup(soc->hal_soc, &reo_params, 1);
3429 
3430 	hal_reo_set_err_dst_remap(soc->hal_soc);
3431 
3432 	soc->features.pn_in_reo_dest = hal_reo_enable_pn_in_dest(soc->hal_soc);
3433 
3434 	return QDF_STATUS_SUCCESS;
3435 }
3436 
3437 /**
3438  * dp_vdev_id_map_tbl_add() - Add vdev into vdev_id table
3439  * @soc: SoC handle
3440  * @vdev: vdev handle
3441  * @vdev_id: vdev_id
3442  *
3443  * Return: None
3444  */
3445 static void dp_vdev_id_map_tbl_add(struct dp_soc *soc,
3446 				   struct dp_vdev *vdev,
3447 				   uint8_t vdev_id)
3448 {
3449 	QDF_ASSERT(vdev_id <= MAX_VDEV_CNT);
3450 
3451 	qdf_spin_lock_bh(&soc->vdev_map_lock);
3452 
3453 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
3454 			QDF_STATUS_SUCCESS) {
3455 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK vdev_id %u",
3456 			     soc, vdev, vdev_id);
3457 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
3458 		return;
3459 	}
3460 
3461 	if (!soc->vdev_id_map[vdev_id])
3462 		soc->vdev_id_map[vdev_id] = vdev;
3463 	else
3464 		QDF_ASSERT(0);
3465 
3466 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
3467 }
3468 
3469 /**
3470  * dp_vdev_id_map_tbl_remove() - remove vdev from vdev_id table
3471  * @soc: SoC handle
3472  * @vdev: vdev handle
3473  *
3474  * Return: None
3475  */
3476 static void dp_vdev_id_map_tbl_remove(struct dp_soc *soc,
3477 				      struct dp_vdev *vdev)
3478 {
3479 	qdf_spin_lock_bh(&soc->vdev_map_lock);
3480 	QDF_ASSERT(soc->vdev_id_map[vdev->vdev_id] == vdev);
3481 
3482 	soc->vdev_id_map[vdev->vdev_id] = NULL;
3483 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
3484 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
3485 }
3486 
3487 /**
3488  * dp_vdev_pdev_list_add() - add vdev into pdev's list
3489  * @soc: soc handle
3490  * @pdev: pdev handle
3491  * @vdev: vdev handle
3492  *
3493  * Return: none
3494  */
3495 static void dp_vdev_pdev_list_add(struct dp_soc *soc,
3496 				  struct dp_pdev *pdev,
3497 				  struct dp_vdev *vdev)
3498 {
3499 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
3500 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
3501 			QDF_STATUS_SUCCESS) {
3502 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK",
3503 			     soc, vdev);
3504 		qdf_spin_unlock_bh(&pdev->vdev_list_lock);
3505 		return;
3506 	}
3507 	/* add this vdev into the pdev's list */
3508 	TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
3509 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
3510 }
3511 
3512 /**
3513  * dp_vdev_pdev_list_remove() - remove vdev from pdev's list
3514  * @soc: SoC handle
3515  * @pdev: pdev handle
3516  * @vdev: VDEV handle
3517  *
3518  * Return: none
3519  */
3520 static void dp_vdev_pdev_list_remove(struct dp_soc *soc,
3521 				     struct dp_pdev *pdev,
3522 				     struct dp_vdev *vdev)
3523 {
3524 	uint8_t found = 0;
3525 	struct dp_vdev *tmpvdev = NULL;
3526 
3527 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
3528 	TAILQ_FOREACH(tmpvdev, &pdev->vdev_list, vdev_list_elem) {
3529 		if (tmpvdev == vdev) {
3530 			found = 1;
3531 			break;
3532 		}
3533 	}
3534 
3535 	if (found) {
3536 		TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
3537 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
3538 	} else {
3539 		dp_vdev_debug("%pK: vdev:%pK not found in pdev:%pK vdevlist:%pK",
3540 			      soc, vdev, pdev, &pdev->vdev_list);
3541 		QDF_ASSERT(0);
3542 	}
3543 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
3544 }
3545 
3546 #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
3547 /**
3548  * dp_vdev_init_rx_eapol() - initializing osif_rx_eapol
3549  * @vdev: Datapath VDEV handle
3550  *
3551  * Return: None
3552  */
3553 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
3554 {
3555 	vdev->osif_rx_eapol = NULL;
3556 }
3557 
3558 /**
3559  * dp_vdev_register_rx_eapol() - Register VDEV operations for rx_eapol
3560  * @vdev: DP vdev handle
3561  * @txrx_ops: Tx and Rx operations
3562  *
3563  * Return: None
3564  */
3565 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
3566 					     struct ol_txrx_ops *txrx_ops)
3567 {
3568 	vdev->osif_rx_eapol = txrx_ops->rx.rx_eapol;
3569 }
3570 #else
3571 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
3572 {
3573 }
3574 
3575 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
3576 					     struct ol_txrx_ops *txrx_ops)
3577 {
3578 }
3579 #endif
3580 
3581 #ifdef WLAN_FEATURE_11BE_MLO
3582 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
3583 					 struct cdp_vdev_info *vdev_info)
3584 {
3585 	if (vdev_info->mld_mac_addr)
3586 		qdf_mem_copy(&vdev->mld_mac_addr.raw[0],
3587 			     vdev_info->mld_mac_addr, QDF_MAC_ADDR_SIZE);
3588 }
3589 #else
3590 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
3591 					 struct cdp_vdev_info *vdev_info)
3592 {
3593 
3594 }
3595 #endif
3596 
3597 #ifdef DP_TRAFFIC_END_INDICATION
3598 /**
3599  * dp_tx_vdev_traffic_end_indication_attach() - Initialize data end indication
3600  *                                              related members in VDEV
3601  * @vdev: DP vdev handle
3602  *
3603  * Return: None
3604  */
3605 static inline void
3606 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
3607 {
3608 	qdf_nbuf_queue_init(&vdev->end_ind_pkt_q);
3609 }
3610 
3611 /**
3612  * dp_tx_vdev_traffic_end_indication_detach() - De-init data end indication
3613  *                                              related members in VDEV
3614  * @vdev: DP vdev handle
3615  *
3616  * Return: None
3617  */
3618 static inline void
3619 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
3620 {
3621 	qdf_nbuf_t nbuf;
3622 
3623 	while ((nbuf = qdf_nbuf_queue_remove(&vdev->end_ind_pkt_q)) != NULL)
3624 		qdf_nbuf_free(nbuf);
3625 }
3626 #else
3627 static inline void
3628 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
3629 {}
3630 
3631 static inline void
3632 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
3633 {}
3634 #endif
3635 
3636 /**
3637  * dp_vdev_attach_wifi3() - attach txrx vdev
3638  * @cdp_soc: CDP SoC context
3639  * @pdev_id: PDEV ID for vdev creation
3640  * @vdev_info: parameters used for vdev creation
3641  *
3642  * Return: status
3643  */
3644 static QDF_STATUS dp_vdev_attach_wifi3(struct cdp_soc_t *cdp_soc,
3645 				       uint8_t pdev_id,
3646 				       struct cdp_vdev_info *vdev_info)
3647 {
3648 	int i = 0;
3649 	qdf_size_t vdev_context_size;
3650 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
3651 	struct dp_pdev *pdev =
3652 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
3653 						   pdev_id);
3654 	struct dp_vdev *vdev;
3655 	uint8_t *vdev_mac_addr = vdev_info->vdev_mac_addr;
3656 	uint8_t vdev_id = vdev_info->vdev_id;
3657 	enum wlan_op_mode op_mode = vdev_info->op_mode;
3658 	enum wlan_op_subtype subtype = vdev_info->subtype;
3659 	uint8_t vdev_stats_id = vdev_info->vdev_stats_id;
3660 
3661 	vdev_context_size =
3662 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_VDEV);
3663 	vdev = qdf_mem_malloc(vdev_context_size);
3664 
3665 	if (!pdev) {
3666 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3667 			    cdp_soc, pdev_id);
3668 		qdf_mem_free(vdev);
3669 		goto fail0;
3670 	}
3671 
3672 	if (!vdev) {
3673 		dp_init_err("%pK: DP VDEV memory allocation failed",
3674 			    cdp_soc);
3675 		goto fail0;
3676 	}
3677 
3678 	wlan_minidump_log(vdev, sizeof(*vdev), soc->ctrl_psoc,
3679 			  WLAN_MD_DP_VDEV, "dp_vdev");
3680 
3681 	vdev->pdev = pdev;
3682 	vdev->vdev_id = vdev_id;
3683 	vdev->vdev_stats_id = vdev_stats_id;
3684 	vdev->opmode = op_mode;
3685 	vdev->subtype = subtype;
3686 	vdev->osdev = soc->osdev;
3687 
3688 	vdev->osif_rx = NULL;
3689 	vdev->osif_rsim_rx_decap = NULL;
3690 	vdev->osif_get_key = NULL;
3691 	vdev->osif_tx_free_ext = NULL;
3692 	vdev->osif_vdev = NULL;
3693 
3694 	vdev->delete.pending = 0;
3695 	vdev->safemode = 0;
3696 	vdev->drop_unenc = 1;
3697 	vdev->sec_type = cdp_sec_type_none;
3698 	vdev->multipass_en = false;
3699 	vdev->wrap_vdev = false;
3700 	dp_vdev_init_rx_eapol(vdev);
3701 	qdf_atomic_init(&vdev->ref_cnt);
3702 	for (i = 0; i < DP_MOD_ID_MAX; i++)
3703 		qdf_atomic_init(&vdev->mod_refs[i]);
3704 
3705 	/* Take one reference for create*/
3706 	qdf_atomic_inc(&vdev->ref_cnt);
3707 	qdf_atomic_inc(&vdev->mod_refs[DP_MOD_ID_CONFIG]);
3708 	vdev->num_peers = 0;
3709 #ifdef notyet
3710 	vdev->filters_num = 0;
3711 #endif
3712 	vdev->lmac_id = pdev->lmac_id;
3713 
3714 	qdf_mem_copy(&vdev->mac_addr.raw[0], vdev_mac_addr, QDF_MAC_ADDR_SIZE);
3715 
3716 	dp_vdev_save_mld_addr(vdev, vdev_info);
3717 
3718 	/* TODO: Initialize default HTT meta data that will be used in
3719 	 * TCL descriptors for packets transmitted from this VDEV
3720 	 */
3721 
3722 	qdf_spinlock_create(&vdev->peer_list_lock);
3723 	TAILQ_INIT(&vdev->peer_list);
3724 	dp_peer_multipass_list_init(vdev);
3725 	if ((soc->intr_mode == DP_INTR_POLL) &&
3726 	    wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) {
3727 		if ((pdev->vdev_count == 0) ||
3728 		    (wlan_op_mode_monitor == vdev->opmode))
3729 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
3730 	} else if (dp_soc_get_con_mode(soc) == QDF_GLOBAL_MISSION_MODE &&
3731 		   soc->intr_mode == DP_INTR_MSI &&
3732 		   wlan_op_mode_monitor == vdev->opmode) {
3733 		/* Timer to reap status ring in mission mode */
3734 		dp_monitor_vdev_timer_start(soc);
3735 	}
3736 
3737 	dp_vdev_id_map_tbl_add(soc, vdev, vdev_id);
3738 
3739 	if (wlan_op_mode_monitor == vdev->opmode) {
3740 		if (dp_monitor_vdev_attach(vdev) == QDF_STATUS_SUCCESS) {
3741 			dp_monitor_pdev_set_mon_vdev(vdev);
3742 			return dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
3743 		}
3744 		return QDF_STATUS_E_FAILURE;
3745 	}
3746 
3747 	vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
3748 	vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
3749 	vdev->dscp_tid_map_id = 0;
3750 	vdev->mcast_enhancement_en = 0;
3751 	vdev->igmp_mcast_enhanc_en = 0;
3752 	vdev->raw_mode_war = wlan_cfg_get_raw_mode_war(soc->wlan_cfg_ctx);
3753 	vdev->prev_tx_enq_tstamp = 0;
3754 	vdev->prev_rx_deliver_tstamp = 0;
3755 	vdev->skip_sw_tid_classification = DP_TX_HW_DSCP_TID_MAP_VALID;
3756 	dp_tx_vdev_traffic_end_indication_attach(vdev);
3757 
3758 	dp_vdev_pdev_list_add(soc, pdev, vdev);
3759 	pdev->vdev_count++;
3760 
3761 	if (wlan_op_mode_sta != vdev->opmode &&
3762 	    wlan_op_mode_ndi != vdev->opmode)
3763 		vdev->ap_bridge_enabled = true;
3764 	else
3765 		vdev->ap_bridge_enabled = false;
3766 	dp_init_info("%pK: wlan_cfg_ap_bridge_enabled %d",
3767 		     cdp_soc, vdev->ap_bridge_enabled);
3768 
3769 	dp_tx_vdev_attach(vdev);
3770 
3771 	dp_monitor_vdev_attach(vdev);
3772 	if (!pdev->is_lro_hash_configured) {
3773 		if (QDF_IS_STATUS_SUCCESS(dp_lro_hash_setup(soc, pdev)))
3774 			pdev->is_lro_hash_configured = true;
3775 		else
3776 			dp_err("LRO hash setup failure!");
3777 	}
3778 
3779 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_ATTACH, vdev);
3780 	dp_info("Created vdev %pK ("QDF_MAC_ADDR_FMT") vdev_id %d", vdev,
3781 		QDF_MAC_ADDR_REF(vdev->mac_addr.raw), vdev->vdev_id);
3782 	DP_STATS_INIT(vdev);
3783 
3784 	if (QDF_IS_STATUS_ERROR(soc->arch_ops.txrx_vdev_attach(soc, vdev)))
3785 		goto fail0;
3786 
3787 	if (wlan_op_mode_sta == vdev->opmode)
3788 		dp_peer_create_wifi3((struct cdp_soc_t *)soc, vdev_id,
3789 				     vdev->mac_addr.raw, CDP_LINK_PEER_TYPE);
3790 
3791 	dp_pdev_update_fast_rx_flag(soc, pdev);
3792 
3793 	return QDF_STATUS_SUCCESS;
3794 
3795 fail0:
3796 	return QDF_STATUS_E_FAILURE;
3797 }
3798 
3799 #ifndef QCA_HOST_MODE_WIFI_DISABLED
3800 /**
3801  * dp_vdev_fetch_tx_handler() - Fetch Tx handlers
3802  * @vdev: struct dp_vdev *
3803  * @soc: struct dp_soc *
3804  * @ctx: struct ol_txrx_hardtart_ctxt *
3805  */
3806 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
3807 					    struct dp_soc *soc,
3808 					    struct ol_txrx_hardtart_ctxt *ctx)
3809 {
3810 	/* Enable vdev_id check only for ap, if flag is enabled */
3811 	if (vdev->mesh_vdev)
3812 		ctx->tx = dp_tx_send_mesh;
3813 	else if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
3814 		 (vdev->opmode == wlan_op_mode_ap)) {
3815 		ctx->tx = dp_tx_send_vdev_id_check;
3816 		ctx->tx_fast = dp_tx_send_vdev_id_check;
3817 	} else {
3818 		ctx->tx = dp_tx_send;
3819 		ctx->tx_fast = soc->arch_ops.dp_tx_send_fast;
3820 	}
3821 
3822 	/* Avoid check in regular exception Path */
3823 	if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
3824 	    (vdev->opmode == wlan_op_mode_ap))
3825 		ctx->tx_exception = dp_tx_send_exception_vdev_id_check;
3826 	else
3827 		ctx->tx_exception = dp_tx_send_exception;
3828 }
3829 
3830 /**
3831  * dp_vdev_register_tx_handler() - Register Tx handler
3832  * @vdev: struct dp_vdev *
3833  * @soc: struct dp_soc *
3834  * @txrx_ops: struct ol_txrx_ops *
3835  */
3836 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
3837 					       struct dp_soc *soc,
3838 					       struct ol_txrx_ops *txrx_ops)
3839 {
3840 	struct ol_txrx_hardtart_ctxt ctx = {0};
3841 
3842 	dp_vdev_fetch_tx_handler(vdev, soc, &ctx);
3843 
3844 	txrx_ops->tx.tx = ctx.tx;
3845 	txrx_ops->tx.tx_fast = ctx.tx_fast;
3846 	txrx_ops->tx.tx_exception = ctx.tx_exception;
3847 
3848 	dp_info("Configure tx_vdev_id_chk_handler Feature Flag: %d and mode:%d for vdev_id:%d",
3849 		wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx),
3850 		vdev->opmode, vdev->vdev_id);
3851 }
3852 #else /* QCA_HOST_MODE_WIFI_DISABLED */
3853 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
3854 					       struct dp_soc *soc,
3855 					       struct ol_txrx_ops *txrx_ops)
3856 {
3857 }
3858 
3859 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
3860 					    struct dp_soc *soc,
3861 					    struct ol_txrx_hardtart_ctxt *ctx)
3862 {
3863 }
3864 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
3865 
3866 /**
3867  * dp_vdev_register_wifi3() - Register VDEV operations from osif layer
3868  * @soc_hdl: Datapath soc handle
3869  * @vdev_id: id of Datapath VDEV handle
3870  * @osif_vdev: OSIF vdev handle
3871  * @txrx_ops: Tx and Rx operations
3872  *
3873  * Return: DP VDEV handle on success, NULL on failure
3874  */
3875 static QDF_STATUS dp_vdev_register_wifi3(struct cdp_soc_t *soc_hdl,
3876 					 uint8_t vdev_id,
3877 					 ol_osif_vdev_handle osif_vdev,
3878 					 struct ol_txrx_ops *txrx_ops)
3879 {
3880 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
3881 	struct dp_vdev *vdev =	dp_vdev_get_ref_by_id(soc, vdev_id,
3882 						      DP_MOD_ID_CDP);
3883 
3884 	if (!vdev)
3885 		return QDF_STATUS_E_FAILURE;
3886 
3887 	vdev->osif_vdev = osif_vdev;
3888 	vdev->osif_rx = txrx_ops->rx.rx;
3889 	vdev->osif_rx_stack = txrx_ops->rx.rx_stack;
3890 	vdev->osif_rx_flush = txrx_ops->rx.rx_flush;
3891 	vdev->osif_gro_flush = txrx_ops->rx.rx_gro_flush;
3892 	vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap;
3893 	vdev->osif_fisa_rx = txrx_ops->rx.osif_fisa_rx;
3894 	vdev->osif_fisa_flush = txrx_ops->rx.osif_fisa_flush;
3895 	vdev->osif_get_key = txrx_ops->get_key;
3896 	dp_monitor_vdev_register_osif(vdev, txrx_ops);
3897 	vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext;
3898 	vdev->tx_comp = txrx_ops->tx.tx_comp;
3899 	vdev->stats_cb = txrx_ops->rx.stats_rx;
3900 	vdev->tx_classify_critical_pkt_cb =
3901 		txrx_ops->tx.tx_classify_critical_pkt_cb;
3902 #ifdef notyet
3903 #if ATH_SUPPORT_WAPI
3904 	vdev->osif_check_wai = txrx_ops->rx.wai_check;
3905 #endif
3906 #endif
3907 #ifdef UMAC_SUPPORT_PROXY_ARP
3908 	vdev->osif_proxy_arp = txrx_ops->proxy_arp;
3909 #endif
3910 	vdev->me_convert = txrx_ops->me_convert;
3911 	vdev->get_tsf_time = txrx_ops->get_tsf_time;
3912 
3913 	dp_vdev_register_rx_eapol(vdev, txrx_ops);
3914 
3915 	dp_vdev_register_tx_handler(vdev, soc, txrx_ops);
3916 
3917 	dp_init_info("%pK: DP Vdev Register success", soc);
3918 
3919 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
3920 	return QDF_STATUS_SUCCESS;
3921 }
3922 
3923 #ifdef WLAN_FEATURE_11BE_MLO
3924 void dp_peer_delete(struct dp_soc *soc,
3925 		    struct dp_peer *peer,
3926 		    void *arg)
3927 {
3928 	if (!peer->valid)
3929 		return;
3930 
3931 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
3932 			     peer->vdev->vdev_id,
3933 			     peer->mac_addr.raw, 0,
3934 			     peer->peer_type);
3935 }
3936 #else
3937 void dp_peer_delete(struct dp_soc *soc,
3938 		    struct dp_peer *peer,
3939 		    void *arg)
3940 {
3941 	if (!peer->valid)
3942 		return;
3943 
3944 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
3945 			     peer->vdev->vdev_id,
3946 			     peer->mac_addr.raw, 0,
3947 			     CDP_LINK_PEER_TYPE);
3948 }
3949 #endif
3950 
3951 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
3952 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
3953 {
3954 	if (!peer->valid)
3955 		return;
3956 
3957 	if (IS_MLO_DP_LINK_PEER(peer))
3958 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
3959 				     peer->vdev->vdev_id,
3960 				     peer->mac_addr.raw, 0,
3961 				     CDP_LINK_PEER_TYPE);
3962 }
3963 #else
3964 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
3965 {
3966 }
3967 #endif
3968 /**
3969  * dp_vdev_flush_peers() - Forcibily Flush peers of vdev
3970  * @vdev_handle: Datapath VDEV handle
3971  * @unmap_only: Flag to indicate "only unmap"
3972  * @mlo_peers_only: true if only MLO peers should be flushed
3973  *
3974  * Return: void
3975  */
3976 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
3977 				bool unmap_only,
3978 				bool mlo_peers_only)
3979 {
3980 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
3981 	struct dp_pdev *pdev = vdev->pdev;
3982 	struct dp_soc *soc = pdev->soc;
3983 	struct dp_peer *peer;
3984 	uint32_t i = 0;
3985 
3986 
3987 	if (!unmap_only) {
3988 		if (!mlo_peers_only)
3989 			dp_vdev_iterate_peer_lock_safe(vdev,
3990 						       dp_peer_delete,
3991 						       NULL,
3992 						       DP_MOD_ID_CDP);
3993 		else
3994 			dp_vdev_iterate_peer_lock_safe(vdev,
3995 						       dp_mlo_peer_delete,
3996 						       NULL,
3997 						       DP_MOD_ID_CDP);
3998 	}
3999 
4000 	for (i = 0; i < soc->max_peer_id ; i++) {
4001 		peer = __dp_peer_get_ref_by_id(soc, i, DP_MOD_ID_CDP);
4002 
4003 		if (!peer)
4004 			continue;
4005 
4006 		if (peer->vdev != vdev) {
4007 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
4008 			continue;
4009 		}
4010 
4011 		if (!mlo_peers_only) {
4012 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
4013 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
4014 			dp_rx_peer_unmap_handler(soc, i,
4015 						 vdev->vdev_id,
4016 						 peer->mac_addr.raw, 0,
4017 						 DP_PEER_WDS_COUNT_INVALID);
4018 			SET_PEER_REF_CNT_ONE(peer);
4019 		} else if (IS_MLO_DP_LINK_PEER(peer) ||
4020 			   IS_MLO_DP_MLD_PEER(peer)) {
4021 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
4022 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
4023 			dp_rx_peer_unmap_handler(soc, i,
4024 						 vdev->vdev_id,
4025 						 peer->mac_addr.raw, 0,
4026 						 DP_PEER_WDS_COUNT_INVALID);
4027 			SET_PEER_REF_CNT_ONE(peer);
4028 		}
4029 
4030 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
4031 	}
4032 }
4033 
4034 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
4035 /**
4036  * dp_txrx_alloc_vdev_stats_id()- Allocate vdev_stats_id
4037  * @soc_hdl: Datapath soc handle
4038  * @vdev_stats_id: Address of vdev_stats_id
4039  *
4040  * Return: QDF_STATUS
4041  */
4042 static QDF_STATUS dp_txrx_alloc_vdev_stats_id(struct cdp_soc_t *soc_hdl,
4043 					      uint8_t *vdev_stats_id)
4044 {
4045 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
4046 	uint8_t id = 0;
4047 
4048 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
4049 		*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
4050 		return QDF_STATUS_E_FAILURE;
4051 	}
4052 
4053 	while (id < CDP_MAX_VDEV_STATS_ID) {
4054 		if (!qdf_atomic_test_and_set_bit(id, &soc->vdev_stats_id_map)) {
4055 			*vdev_stats_id = id;
4056 			return QDF_STATUS_SUCCESS;
4057 		}
4058 		id++;
4059 	}
4060 
4061 	*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
4062 	return QDF_STATUS_E_FAILURE;
4063 }
4064 
4065 /**
4066  * dp_txrx_reset_vdev_stats_id() - Reset vdev_stats_id in dp_soc
4067  * @soc_hdl: Datapath soc handle
4068  * @vdev_stats_id: vdev_stats_id to reset in dp_soc
4069  *
4070  * Return: none
4071  */
4072 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc_hdl,
4073 					uint8_t vdev_stats_id)
4074 {
4075 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
4076 
4077 	if ((!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) ||
4078 	    (vdev_stats_id >= CDP_MAX_VDEV_STATS_ID))
4079 		return;
4080 
4081 	qdf_atomic_clear_bit(vdev_stats_id, &soc->vdev_stats_id_map);
4082 }
4083 #else
4084 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc,
4085 					uint8_t vdev_stats_id)
4086 {}
4087 #endif
4088 /**
4089  * dp_vdev_detach_wifi3() - Detach txrx vdev
4090  * @cdp_soc: Datapath soc handle
4091  * @vdev_id: VDEV Id
4092  * @callback: Callback OL_IF on completion of detach
4093  * @cb_context:	Callback context
4094  *
4095  */
4096 static QDF_STATUS dp_vdev_detach_wifi3(struct cdp_soc_t *cdp_soc,
4097 				       uint8_t vdev_id,
4098 				       ol_txrx_vdev_delete_cb callback,
4099 				       void *cb_context)
4100 {
4101 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
4102 	struct dp_pdev *pdev;
4103 	struct dp_neighbour_peer *peer = NULL;
4104 	struct dp_peer *vap_self_peer = NULL;
4105 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
4106 						     DP_MOD_ID_CDP);
4107 
4108 	if (!vdev)
4109 		return QDF_STATUS_E_FAILURE;
4110 
4111 	soc->arch_ops.txrx_vdev_detach(soc, vdev);
4112 
4113 	pdev = vdev->pdev;
4114 
4115 	vap_self_peer = dp_sta_vdev_self_peer_ref_n_get(soc, vdev,
4116 							DP_MOD_ID_CONFIG);
4117 	if (vap_self_peer) {
4118 		qdf_spin_lock_bh(&soc->ast_lock);
4119 		if (vap_self_peer->self_ast_entry) {
4120 			dp_peer_del_ast(soc, vap_self_peer->self_ast_entry);
4121 			vap_self_peer->self_ast_entry = NULL;
4122 		}
4123 		qdf_spin_unlock_bh(&soc->ast_lock);
4124 
4125 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc, vdev->vdev_id,
4126 				     vap_self_peer->mac_addr.raw, 0,
4127 				     CDP_LINK_PEER_TYPE);
4128 		dp_peer_unref_delete(vap_self_peer, DP_MOD_ID_CONFIG);
4129 	}
4130 
4131 	/*
4132 	 * If Target is hung, flush all peers before detaching vdev
4133 	 * this will free all references held due to missing
4134 	 * unmap commands from Target
4135 	 */
4136 	if (!hif_is_target_ready(HIF_GET_SOFTC(soc->hif_handle)))
4137 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, false);
4138 	else if (hif_get_target_status(soc->hif_handle) == TARGET_STATUS_RESET)
4139 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, true, false);
4140 
4141 	/* indicate that the vdev needs to be deleted */
4142 	vdev->delete.pending = 1;
4143 	dp_rx_vdev_detach(vdev);
4144 	/*
4145 	 * move it after dp_rx_vdev_detach(),
4146 	 * as the call back done in dp_rx_vdev_detach()
4147 	 * still need to get vdev pointer by vdev_id.
4148 	 */
4149 	dp_vdev_id_map_tbl_remove(soc, vdev);
4150 
4151 	dp_monitor_neighbour_peer_list_remove(pdev, vdev, peer);
4152 
4153 	dp_txrx_reset_vdev_stats_id(cdp_soc, vdev->vdev_stats_id);
4154 
4155 	dp_tx_vdev_multipass_deinit(vdev);
4156 	dp_tx_vdev_traffic_end_indication_detach(vdev);
4157 
4158 	if (vdev->vdev_dp_ext_handle) {
4159 		qdf_mem_free(vdev->vdev_dp_ext_handle);
4160 		vdev->vdev_dp_ext_handle = NULL;
4161 	}
4162 	vdev->delete.callback = callback;
4163 	vdev->delete.context = cb_context;
4164 
4165 	if (vdev->opmode != wlan_op_mode_monitor)
4166 		dp_vdev_pdev_list_remove(soc, pdev, vdev);
4167 
4168 	pdev->vdev_count--;
4169 	/* release reference taken above for find */
4170 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4171 
4172 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
4173 	TAILQ_INSERT_TAIL(&soc->inactive_vdev_list, vdev, inactive_list_elem);
4174 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
4175 
4176 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_DETACH, vdev);
4177 	dp_info("detach vdev %pK id %d pending refs %d",
4178 		vdev, vdev->vdev_id, qdf_atomic_read(&vdev->ref_cnt));
4179 
4180 	/* release reference taken at dp_vdev_create */
4181 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
4182 
4183 	return QDF_STATUS_SUCCESS;
4184 }
4185 
4186 #ifdef WLAN_FEATURE_11BE_MLO
4187 /**
4188  * is_dp_peer_can_reuse() - check if the dp_peer match condition to be reused
4189  * @vdev: Target DP vdev handle
4190  * @peer: DP peer handle to be checked
4191  * @peer_mac_addr: Target peer mac address
4192  * @peer_type: Target peer type
4193  *
4194  * Return: true - if match, false - not match
4195  */
4196 static inline
4197 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
4198 			  struct dp_peer *peer,
4199 			  uint8_t *peer_mac_addr,
4200 			  enum cdp_peer_type peer_type)
4201 {
4202 	if (peer->bss_peer && (peer->vdev == vdev) &&
4203 	    (peer->peer_type == peer_type) &&
4204 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
4205 			 QDF_MAC_ADDR_SIZE) == 0))
4206 		return true;
4207 
4208 	return false;
4209 }
4210 #else
4211 static inline
4212 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
4213 			  struct dp_peer *peer,
4214 			  uint8_t *peer_mac_addr,
4215 			  enum cdp_peer_type peer_type)
4216 {
4217 	if (peer->bss_peer && (peer->vdev == vdev) &&
4218 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
4219 			 QDF_MAC_ADDR_SIZE) == 0))
4220 		return true;
4221 
4222 	return false;
4223 }
4224 #endif
4225 
4226 static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev,
4227 						uint8_t *peer_mac_addr,
4228 						enum cdp_peer_type peer_type)
4229 {
4230 	struct dp_peer *peer;
4231 	struct dp_soc *soc = vdev->pdev->soc;
4232 
4233 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
4234 	TAILQ_FOREACH(peer, &soc->inactive_peer_list,
4235 		      inactive_list_elem) {
4236 
4237 		/* reuse bss peer only when vdev matches*/
4238 		if (is_dp_peer_can_reuse(vdev, peer,
4239 					 peer_mac_addr, peer_type)) {
4240 			/* increment ref count for cdp_peer_create*/
4241 			if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
4242 						QDF_STATUS_SUCCESS) {
4243 				TAILQ_REMOVE(&soc->inactive_peer_list, peer,
4244 					     inactive_list_elem);
4245 				qdf_spin_unlock_bh
4246 					(&soc->inactive_peer_list_lock);
4247 				return peer;
4248 			}
4249 		}
4250 	}
4251 
4252 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
4253 	return NULL;
4254 }
4255 
4256 #ifdef FEATURE_AST
4257 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
4258 					       struct dp_pdev *pdev,
4259 					       uint8_t *peer_mac_addr)
4260 {
4261 	struct dp_ast_entry *ast_entry;
4262 
4263 	if (soc->ast_offload_support)
4264 		return;
4265 
4266 	qdf_spin_lock_bh(&soc->ast_lock);
4267 	if (soc->ast_override_support)
4268 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, peer_mac_addr,
4269 							    pdev->pdev_id);
4270 	else
4271 		ast_entry = dp_peer_ast_hash_find_soc(soc, peer_mac_addr);
4272 
4273 	if (ast_entry && ast_entry->next_hop && !ast_entry->delete_in_progress)
4274 		dp_peer_del_ast(soc, ast_entry);
4275 
4276 	qdf_spin_unlock_bh(&soc->ast_lock);
4277 }
4278 #else
4279 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
4280 					       struct dp_pdev *pdev,
4281 					       uint8_t *peer_mac_addr)
4282 {
4283 }
4284 #endif
4285 
4286 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
4287 /**
4288  * dp_peer_hw_txrx_stats_init() - Initialize hw_txrx_stats_en in dp_peer
4289  * @soc: Datapath soc handle
4290  * @txrx_peer: Datapath peer handle
4291  *
4292  * Return: none
4293  */
4294 static inline
4295 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
4296 				struct dp_txrx_peer *txrx_peer)
4297 {
4298 	txrx_peer->hw_txrx_stats_en =
4299 		wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx);
4300 }
4301 #else
4302 static inline
4303 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
4304 				struct dp_txrx_peer *txrx_peer)
4305 {
4306 	txrx_peer->hw_txrx_stats_en = 0;
4307 }
4308 #endif
4309 
4310 static QDF_STATUS dp_txrx_peer_detach(struct dp_soc *soc, struct dp_peer *peer)
4311 {
4312 	struct dp_txrx_peer *txrx_peer;
4313 	struct dp_pdev *pdev;
4314 	struct cdp_txrx_peer_params_update params = {0};
4315 
4316 	/* dp_txrx_peer exists for mld peer and legacy peer */
4317 	if (peer->txrx_peer) {
4318 		txrx_peer = peer->txrx_peer;
4319 		peer->txrx_peer = NULL;
4320 		pdev = txrx_peer->vdev->pdev;
4321 
4322 		params.osif_vdev = (void *)peer->vdev->osif_vdev;
4323 		params.peer_mac = peer->mac_addr.raw;
4324 
4325 		dp_wdi_event_handler(WDI_EVENT_PEER_DELETE, soc,
4326 				     (void *)&params, peer->peer_id,
4327 				     WDI_NO_VAL, pdev->pdev_id);
4328 
4329 		dp_peer_defrag_rx_tids_deinit(txrx_peer);
4330 		/*
4331 		 * Deallocate the extended stats contenxt
4332 		 */
4333 		dp_peer_delay_stats_ctx_dealloc(soc, txrx_peer);
4334 		dp_peer_rx_bufq_resources_deinit(txrx_peer);
4335 		dp_peer_jitter_stats_ctx_dealloc(pdev, txrx_peer);
4336 		dp_peer_sawf_stats_ctx_free(soc, txrx_peer);
4337 
4338 		qdf_mem_free(txrx_peer);
4339 	}
4340 
4341 	return QDF_STATUS_SUCCESS;
4342 }
4343 
4344 static inline
4345 uint8_t dp_txrx_peer_calculate_stats_size(struct dp_soc *soc,
4346 					  struct dp_peer *peer)
4347 {
4348 	if ((wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx)) &&
4349 	    IS_MLO_DP_MLD_PEER(peer)) {
4350 		return (DP_MAX_MLO_LINKS + 1);
4351 	}
4352 	return 1;
4353 }
4354 
4355 static QDF_STATUS dp_txrx_peer_attach(struct dp_soc *soc, struct dp_peer *peer)
4356 {
4357 	struct dp_txrx_peer *txrx_peer;
4358 	struct dp_pdev *pdev;
4359 	struct cdp_txrx_peer_params_update params = {0};
4360 	uint8_t stats_arr_size = 0;
4361 
4362 	stats_arr_size = dp_txrx_peer_calculate_stats_size(soc, peer);
4363 
4364 	txrx_peer = (struct dp_txrx_peer *)qdf_mem_malloc(sizeof(*txrx_peer) +
4365 							  (stats_arr_size *
4366 							   sizeof(struct dp_peer_stats)));
4367 
4368 	if (!txrx_peer)
4369 		return QDF_STATUS_E_NOMEM; /* failure */
4370 
4371 	txrx_peer->peer_id = HTT_INVALID_PEER;
4372 	/* initialize the peer_id */
4373 	txrx_peer->vdev = peer->vdev;
4374 	pdev = peer->vdev->pdev;
4375 	txrx_peer->stats_arr_size = stats_arr_size;
4376 
4377 	DP_TXRX_PEER_STATS_INIT(txrx_peer,
4378 				(txrx_peer->stats_arr_size *
4379 				sizeof(struct dp_peer_stats)));
4380 
4381 	if (!IS_DP_LEGACY_PEER(peer))
4382 		txrx_peer->is_mld_peer = 1;
4383 
4384 	dp_wds_ext_peer_init(txrx_peer);
4385 	dp_peer_rx_bufq_resources_init(txrx_peer);
4386 	dp_peer_hw_txrx_stats_init(soc, txrx_peer);
4387 	/*
4388 	 * Allocate peer extended stats context. Fall through in
4389 	 * case of failure as its not an implicit requirement to have
4390 	 * this object for regular statistics updates.
4391 	 */
4392 	if (dp_peer_delay_stats_ctx_alloc(soc, txrx_peer) !=
4393 					  QDF_STATUS_SUCCESS)
4394 		dp_warn("peer delay_stats ctx alloc failed");
4395 
4396 	/*
4397 	 * Alloctate memory for jitter stats. Fall through in
4398 	 * case of failure as its not an implicit requirement to have
4399 	 * this object for regular statistics updates.
4400 	 */
4401 	if (dp_peer_jitter_stats_ctx_alloc(pdev, txrx_peer) !=
4402 					   QDF_STATUS_SUCCESS)
4403 		dp_warn("peer jitter_stats ctx alloc failed");
4404 
4405 	dp_set_peer_isolation(txrx_peer, false);
4406 
4407 	dp_peer_defrag_rx_tids_init(txrx_peer);
4408 
4409 	if (dp_peer_sawf_stats_ctx_alloc(soc, txrx_peer) != QDF_STATUS_SUCCESS)
4410 		dp_warn("peer sawf stats alloc failed");
4411 
4412 	dp_txrx_peer_attach_add(soc, peer, txrx_peer);
4413 
4414 	params.peer_mac = peer->mac_addr.raw;
4415 	params.osif_vdev = (void *)peer->vdev->osif_vdev;
4416 	params.chip_id = dp_mlo_get_chip_id(soc);
4417 	params.pdev_id = peer->vdev->pdev->pdev_id;
4418 
4419 	dp_wdi_event_handler(WDI_EVENT_TXRX_PEER_CREATE, soc,
4420 			     (void *)&params, peer->peer_id,
4421 			     WDI_NO_VAL, params.pdev_id);
4422 
4423 	return QDF_STATUS_SUCCESS;
4424 }
4425 
4426 static inline
4427 void dp_txrx_peer_stats_clr(struct dp_txrx_peer *txrx_peer)
4428 {
4429 	if (!txrx_peer)
4430 		return;
4431 
4432 	txrx_peer->tx_failed = 0;
4433 	txrx_peer->comp_pkt.num = 0;
4434 	txrx_peer->comp_pkt.bytes = 0;
4435 	txrx_peer->to_stack.num = 0;
4436 	txrx_peer->to_stack.bytes = 0;
4437 
4438 	DP_TXRX_PEER_STATS_CLR(txrx_peer,
4439 			       (txrx_peer->stats_arr_size *
4440 			       sizeof(struct dp_peer_stats)));
4441 	dp_peer_delay_stats_ctx_clr(txrx_peer);
4442 	dp_peer_jitter_stats_ctx_clr(txrx_peer);
4443 }
4444 
4445 /**
4446  * dp_peer_create_wifi3() - attach txrx peer
4447  * @soc_hdl: Datapath soc handle
4448  * @vdev_id: id of vdev
4449  * @peer_mac_addr: Peer MAC address
4450  * @peer_type: link or MLD peer type
4451  *
4452  * Return: 0 on success, -1 on failure
4453  */
4454 static QDF_STATUS
4455 dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4456 		     uint8_t *peer_mac_addr, enum cdp_peer_type peer_type)
4457 {
4458 	struct dp_peer *peer;
4459 	int i;
4460 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
4461 	struct dp_pdev *pdev;
4462 	enum cdp_txrx_ast_entry_type ast_type = CDP_TXRX_AST_TYPE_STATIC;
4463 	struct dp_vdev *vdev = NULL;
4464 
4465 	if (!peer_mac_addr)
4466 		return QDF_STATUS_E_FAILURE;
4467 
4468 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
4469 
4470 	if (!vdev)
4471 		return QDF_STATUS_E_FAILURE;
4472 
4473 	pdev = vdev->pdev;
4474 	soc = pdev->soc;
4475 
4476 	/*
4477 	 * If a peer entry with given MAC address already exists,
4478 	 * reuse the peer and reset the state of peer.
4479 	 */
4480 	peer = dp_peer_can_reuse(vdev, peer_mac_addr, peer_type);
4481 
4482 	if (peer) {
4483 		qdf_atomic_init(&peer->is_default_route_set);
4484 		dp_peer_cleanup(vdev, peer);
4485 
4486 		dp_peer_vdev_list_add(soc, vdev, peer);
4487 		dp_peer_find_hash_add(soc, peer);
4488 
4489 		if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
4490 			dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
4491 				 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
4492 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4493 			return QDF_STATUS_E_FAILURE;
4494 		}
4495 
4496 		if (IS_MLO_DP_MLD_PEER(peer))
4497 			dp_mld_peer_init_link_peers_info(peer);
4498 
4499 		qdf_spin_lock_bh(&soc->ast_lock);
4500 		dp_peer_delete_ast_entries(soc, peer);
4501 		qdf_spin_unlock_bh(&soc->ast_lock);
4502 
4503 		if ((vdev->opmode == wlan_op_mode_sta) &&
4504 		    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
4505 		     QDF_MAC_ADDR_SIZE)) {
4506 			ast_type = CDP_TXRX_AST_TYPE_SELF;
4507 		}
4508 		dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
4509 
4510 		peer->valid = 1;
4511 		peer->is_tdls_peer = false;
4512 		dp_local_peer_id_alloc(pdev, peer);
4513 
4514 		qdf_spinlock_create(&peer->peer_info_lock);
4515 
4516 		DP_STATS_INIT(peer);
4517 
4518 		/*
4519 		 * In tx_monitor mode, filter may be set for unassociated peer
4520 		 * when unassociated peer get associated peer need to
4521 		 * update tx_cap_enabled flag to support peer filter.
4522 		 */
4523 		if (!IS_MLO_DP_MLD_PEER(peer)) {
4524 			dp_monitor_peer_tx_capture_filter_check(pdev, peer);
4525 			dp_monitor_peer_reset_stats(soc, peer);
4526 		}
4527 
4528 		if (peer->txrx_peer) {
4529 			dp_peer_rx_bufq_resources_init(peer->txrx_peer);
4530 			dp_txrx_peer_stats_clr(peer->txrx_peer);
4531 			dp_set_peer_isolation(peer->txrx_peer, false);
4532 			dp_wds_ext_peer_init(peer->txrx_peer);
4533 			dp_peer_hw_txrx_stats_init(soc, peer->txrx_peer);
4534 		}
4535 
4536 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
4537 					     peer, vdev, 1);
4538 		dp_info("vdev %pK Reused peer %pK ("QDF_MAC_ADDR_FMT
4539 			") vdev_ref_cnt "
4540 			"%d peer_ref_cnt: %d",
4541 			vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
4542 			qdf_atomic_read(&vdev->ref_cnt),
4543 			qdf_atomic_read(&peer->ref_cnt));
4544 			dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
4545 
4546 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4547 		return QDF_STATUS_SUCCESS;
4548 	} else {
4549 		/*
4550 		 * When a STA roams from RPTR AP to ROOT AP and vice versa, we
4551 		 * need to remove the AST entry which was earlier added as a WDS
4552 		 * entry.
4553 		 * If an AST entry exists, but no peer entry exists with a given
4554 		 * MAC addresses, we could deduce it as a WDS entry
4555 		 */
4556 		dp_peer_ast_handle_roam_del(soc, pdev, peer_mac_addr);
4557 	}
4558 
4559 #ifdef notyet
4560 	peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
4561 		soc->mempool_ol_ath_peer);
4562 #else
4563 	peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
4564 #endif
4565 	wlan_minidump_log(peer,
4566 			  sizeof(*peer),
4567 			  soc->ctrl_psoc,
4568 			  WLAN_MD_DP_PEER, "dp_peer");
4569 	if (!peer) {
4570 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4571 		return QDF_STATUS_E_FAILURE; /* failure */
4572 	}
4573 
4574 	qdf_mem_zero(peer, sizeof(struct dp_peer));
4575 
4576 	/* store provided params */
4577 	peer->vdev = vdev;
4578 
4579 	/* initialize the peer_id */
4580 	peer->peer_id = HTT_INVALID_PEER;
4581 
4582 	qdf_mem_copy(
4583 		&peer->mac_addr.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE);
4584 
4585 	DP_PEER_SET_TYPE(peer, peer_type);
4586 	if (IS_MLO_DP_MLD_PEER(peer)) {
4587 		if (dp_txrx_peer_attach(soc, peer) !=
4588 				QDF_STATUS_SUCCESS)
4589 			goto fail; /* failure */
4590 
4591 		dp_mld_peer_init_link_peers_info(peer);
4592 	} else if (dp_monitor_peer_attach(soc, peer) !=
4593 				QDF_STATUS_SUCCESS)
4594 		dp_warn("peer monitor ctx alloc failed");
4595 
4596 	TAILQ_INIT(&peer->ast_entry_list);
4597 
4598 	/* get the vdev reference for new peer */
4599 	dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CHILD);
4600 
4601 	if ((vdev->opmode == wlan_op_mode_sta) &&
4602 	    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
4603 			 QDF_MAC_ADDR_SIZE)) {
4604 		ast_type = CDP_TXRX_AST_TYPE_SELF;
4605 	}
4606 	qdf_spinlock_create(&peer->peer_state_lock);
4607 	dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
4608 	qdf_spinlock_create(&peer->peer_info_lock);
4609 
4610 	/* reset the ast index to flowid table */
4611 	dp_peer_reset_flowq_map(peer);
4612 
4613 	qdf_atomic_init(&peer->ref_cnt);
4614 
4615 	for (i = 0; i < DP_MOD_ID_MAX; i++)
4616 		qdf_atomic_init(&peer->mod_refs[i]);
4617 
4618 	/* keep one reference for attach */
4619 	qdf_atomic_inc(&peer->ref_cnt);
4620 	qdf_atomic_inc(&peer->mod_refs[DP_MOD_ID_CONFIG]);
4621 
4622 	dp_peer_vdev_list_add(soc, vdev, peer);
4623 
4624 	/* TODO: See if hash based search is required */
4625 	dp_peer_find_hash_add(soc, peer);
4626 
4627 	/* Initialize the peer state */
4628 	peer->state = OL_TXRX_PEER_STATE_DISC;
4629 
4630 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
4631 				     peer, vdev, 0);
4632 	dp_info("vdev %pK created peer %pK ("QDF_MAC_ADDR_FMT") vdev_ref_cnt "
4633 		"%d peer_ref_cnt: %d",
4634 		vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
4635 		qdf_atomic_read(&vdev->ref_cnt),
4636 		qdf_atomic_read(&peer->ref_cnt));
4637 	/*
4638 	 * For every peer MAp message search and set if bss_peer
4639 	 */
4640 	if (qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
4641 			QDF_MAC_ADDR_SIZE) == 0 &&
4642 			(wlan_op_mode_sta != vdev->opmode)) {
4643 		dp_info("vdev bss_peer!!");
4644 		peer->bss_peer = 1;
4645 		if (peer->txrx_peer)
4646 			peer->txrx_peer->bss_peer = 1;
4647 	}
4648 
4649 	if (wlan_op_mode_sta == vdev->opmode &&
4650 	    qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
4651 			QDF_MAC_ADDR_SIZE) == 0) {
4652 		peer->sta_self_peer = 1;
4653 	}
4654 
4655 	if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
4656 		dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
4657 			 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
4658 		goto fail;
4659 	}
4660 
4661 	peer->valid = 1;
4662 	dp_local_peer_id_alloc(pdev, peer);
4663 	DP_STATS_INIT(peer);
4664 
4665 	if (dp_peer_sawf_ctx_alloc(soc, peer) != QDF_STATUS_SUCCESS)
4666 		dp_warn("peer sawf context alloc failed");
4667 
4668 	dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
4669 
4670 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4671 
4672 	return QDF_STATUS_SUCCESS;
4673 fail:
4674 	qdf_mem_free(peer);
4675 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4676 
4677 	return QDF_STATUS_E_FAILURE;
4678 }
4679 
4680 QDF_STATUS dp_peer_legacy_setup(struct dp_soc *soc, struct dp_peer *peer)
4681 {
4682 	/* txrx_peer might exist already in peer reuse case */
4683 	if (peer->txrx_peer)
4684 		return QDF_STATUS_SUCCESS;
4685 
4686 	if (dp_txrx_peer_attach(soc, peer) !=
4687 				QDF_STATUS_SUCCESS) {
4688 		dp_err("peer txrx ctx alloc failed");
4689 		return QDF_STATUS_E_FAILURE;
4690 	}
4691 
4692 	return QDF_STATUS_SUCCESS;
4693 }
4694 
4695 #ifdef WLAN_FEATURE_11BE_MLO
4696 QDF_STATUS dp_peer_mlo_setup(
4697 			struct dp_soc *soc,
4698 			struct dp_peer *peer,
4699 			uint8_t vdev_id,
4700 			struct cdp_peer_setup_info *setup_info)
4701 {
4702 	struct dp_peer *mld_peer = NULL;
4703 	struct cdp_txrx_peer_params_update params = {0};
4704 
4705 	/* Non-MLO connection, do nothing */
4706 	if (!setup_info || !setup_info->mld_peer_mac)
4707 		return QDF_STATUS_SUCCESS;
4708 
4709 	dp_cfg_event_record_peer_setup_evt(soc, DP_CFG_EVENT_MLO_SETUP,
4710 					   peer, NULL, vdev_id, setup_info);
4711 	dp_info("link peer: " QDF_MAC_ADDR_FMT "mld peer: " QDF_MAC_ADDR_FMT
4712 		"first_link %d, primary_link %d",
4713 		QDF_MAC_ADDR_REF(peer->mac_addr.raw),
4714 		QDF_MAC_ADDR_REF(setup_info->mld_peer_mac),
4715 		setup_info->is_first_link,
4716 		setup_info->is_primary_link);
4717 
4718 	/* if this is the first link peer */
4719 	if (setup_info->is_first_link)
4720 		/* create MLD peer */
4721 		dp_peer_create_wifi3((struct cdp_soc_t *)soc,
4722 				     vdev_id,
4723 				     setup_info->mld_peer_mac,
4724 				     CDP_MLD_PEER_TYPE);
4725 
4726 	if (peer->vdev->opmode == wlan_op_mode_sta &&
4727 	    setup_info->is_primary_link) {
4728 		struct cdp_txrx_peer_params_update params = {0};
4729 
4730 		params.chip_id = dp_mlo_get_chip_id(soc);
4731 		params.pdev_id = peer->vdev->pdev->pdev_id;
4732 		params.osif_vdev = peer->vdev->osif_vdev;
4733 
4734 		dp_wdi_event_handler(
4735 				WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
4736 				soc,
4737 				(void *)&params, peer->peer_id,
4738 				WDI_NO_VAL, params.pdev_id);
4739 	}
4740 
4741 	peer->first_link = setup_info->is_first_link;
4742 	peer->primary_link = setup_info->is_primary_link;
4743 	mld_peer = dp_mld_peer_find_hash_find(soc,
4744 					      setup_info->mld_peer_mac,
4745 					      0, vdev_id, DP_MOD_ID_CDP);
4746 	if (mld_peer) {
4747 		if (setup_info->is_first_link) {
4748 			/* assign rx_tid to mld peer */
4749 			mld_peer->rx_tid = peer->rx_tid;
4750 			/* no cdp_peer_setup for MLD peer,
4751 			 * set it for addba processing
4752 			 */
4753 			qdf_atomic_set(&mld_peer->is_default_route_set, 1);
4754 		} else {
4755 			/* free link peer original rx_tids mem */
4756 			dp_peer_rx_tids_destroy(peer);
4757 			/* assign mld peer rx_tid to link peer */
4758 			peer->rx_tid = mld_peer->rx_tid;
4759 		}
4760 
4761 		if (setup_info->is_primary_link &&
4762 		    !setup_info->is_first_link) {
4763 			struct dp_vdev *prev_vdev;
4764 			/*
4765 			 * if first link is not the primary link,
4766 			 * then need to change mld_peer->vdev as
4767 			 * primary link dp_vdev is not same one
4768 			 * during mld peer creation.
4769 			 */
4770 			prev_vdev = mld_peer->vdev;
4771 			dp_info("Primary link is not the first link. vdev: %pK,"
4772 				"vdev_id %d vdev_ref_cnt %d",
4773 				mld_peer->vdev, vdev_id,
4774 				qdf_atomic_read(&mld_peer->vdev->ref_cnt));
4775 			/* release the ref to original dp_vdev */
4776 			dp_vdev_unref_delete(soc, mld_peer->vdev,
4777 					     DP_MOD_ID_CHILD);
4778 			/*
4779 			 * get the ref to new dp_vdev,
4780 			 * increase dp_vdev ref_cnt
4781 			 */
4782 			mld_peer->vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
4783 							       DP_MOD_ID_CHILD);
4784 			mld_peer->txrx_peer->vdev = mld_peer->vdev;
4785 
4786 			dp_cfg_event_record_mlo_setup_vdev_update_evt(
4787 					soc, mld_peer, prev_vdev,
4788 					mld_peer->vdev);
4789 
4790 			params.osif_vdev = (void *)peer->vdev->osif_vdev;
4791 			params.peer_mac = mld_peer->mac_addr.raw;
4792 			params.chip_id = dp_mlo_get_chip_id(soc);
4793 			params.pdev_id = peer->vdev->pdev->pdev_id;
4794 
4795 			dp_wdi_event_handler(
4796 					WDI_EVENT_PEER_PRIMARY_UMAC_UPDATE,
4797 					soc, (void *)&params, peer->peer_id,
4798 					WDI_NO_VAL, params.pdev_id);
4799 		}
4800 
4801 		/* associate mld and link peer */
4802 		dp_link_peer_add_mld_peer(peer, mld_peer);
4803 		dp_mld_peer_add_link_peer(mld_peer, peer);
4804 
4805 		mld_peer->txrx_peer->is_mld_peer = 1;
4806 		dp_peer_unref_delete(mld_peer, DP_MOD_ID_CDP);
4807 	} else {
4808 		peer->mld_peer = NULL;
4809 		dp_err("mld peer" QDF_MAC_ADDR_FMT "not found!",
4810 		       QDF_MAC_ADDR_REF(setup_info->mld_peer_mac));
4811 		return QDF_STATUS_E_FAILURE;
4812 	}
4813 
4814 	return QDF_STATUS_SUCCESS;
4815 }
4816 
4817 /**
4818  * dp_mlo_peer_authorize() - authorize MLO peer
4819  * @soc: soc handle
4820  * @peer: pointer to link peer
4821  *
4822  * Return: void
4823  */
4824 static void dp_mlo_peer_authorize(struct dp_soc *soc,
4825 				  struct dp_peer *peer)
4826 {
4827 	int i;
4828 	struct dp_peer *link_peer = NULL;
4829 	struct dp_peer *mld_peer = peer->mld_peer;
4830 	struct dp_mld_link_peers link_peers_info;
4831 
4832 	if (!mld_peer)
4833 		return;
4834 
4835 	/* get link peers with reference */
4836 	dp_get_link_peers_ref_from_mld_peer(soc, mld_peer,
4837 					    &link_peers_info,
4838 					    DP_MOD_ID_CDP);
4839 
4840 	for (i = 0; i < link_peers_info.num_links; i++) {
4841 		link_peer = link_peers_info.link_peers[i];
4842 
4843 		if (!link_peer->authorize) {
4844 			dp_release_link_peers_ref(&link_peers_info,
4845 						  DP_MOD_ID_CDP);
4846 			mld_peer->authorize = false;
4847 			return;
4848 		}
4849 	}
4850 
4851 	/* if we are here all link peers are authorized,
4852 	 * authorize ml_peer also
4853 	 */
4854 	mld_peer->authorize = true;
4855 
4856 	/* release link peers reference */
4857 	dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
4858 }
4859 #endif
4860 
4861 /**
4862  * dp_peer_setup_wifi3_wrapper() - initialize the peer
4863  * @soc_hdl: soc handle object
4864  * @vdev_id : vdev_id of vdev object
4865  * @peer_mac: Peer's mac address
4866  * @setup_info: peer setup info for MLO
4867  *
4868  * Return: QDF_STATUS
4869  */
4870 static QDF_STATUS
4871 dp_peer_setup_wifi3_wrapper(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4872 			    uint8_t *peer_mac,
4873 			    struct cdp_peer_setup_info *setup_info)
4874 {
4875 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
4876 
4877 	return soc->arch_ops.txrx_peer_setup(soc_hdl, vdev_id,
4878 					     peer_mac, setup_info);
4879 }
4880 
4881 /**
4882  * dp_cp_peer_del_resp_handler() - Handle the peer delete response
4883  * @soc_hdl: Datapath SOC handle
4884  * @vdev_id: id of virtual device object
4885  * @mac_addr: Mac address of the peer
4886  *
4887  * Return: QDF_STATUS
4888  */
4889 static QDF_STATUS dp_cp_peer_del_resp_handler(struct cdp_soc_t *soc_hdl,
4890 					      uint8_t vdev_id,
4891 					      uint8_t *mac_addr)
4892 {
4893 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
4894 	struct dp_ast_entry  *ast_entry = NULL;
4895 	txrx_ast_free_cb cb = NULL;
4896 	void *cookie;
4897 
4898 	if (soc->ast_offload_support)
4899 		return QDF_STATUS_E_INVAL;
4900 
4901 	qdf_spin_lock_bh(&soc->ast_lock);
4902 
4903 	ast_entry =
4904 		dp_peer_ast_hash_find_by_vdevid(soc, mac_addr,
4905 						vdev_id);
4906 
4907 	/* in case of qwrap we have multiple BSS peers
4908 	 * with same mac address
4909 	 *
4910 	 * AST entry for this mac address will be created
4911 	 * only for one peer hence it will be NULL here
4912 	 */
4913 	if ((!ast_entry || !ast_entry->delete_in_progress) ||
4914 	    (ast_entry->peer_id != HTT_INVALID_PEER)) {
4915 		qdf_spin_unlock_bh(&soc->ast_lock);
4916 		return QDF_STATUS_E_FAILURE;
4917 	}
4918 
4919 	if (ast_entry->is_mapped)
4920 		soc->ast_table[ast_entry->ast_idx] = NULL;
4921 
4922 	DP_STATS_INC(soc, ast.deleted, 1);
4923 	dp_peer_ast_hash_remove(soc, ast_entry);
4924 
4925 	cb = ast_entry->callback;
4926 	cookie = ast_entry->cookie;
4927 	ast_entry->callback = NULL;
4928 	ast_entry->cookie = NULL;
4929 
4930 	soc->num_ast_entries--;
4931 	qdf_spin_unlock_bh(&soc->ast_lock);
4932 
4933 	if (cb) {
4934 		cb(soc->ctrl_psoc,
4935 		   dp_soc_to_cdp_soc(soc),
4936 		   cookie,
4937 		   CDP_TXRX_AST_DELETED);
4938 	}
4939 	qdf_mem_free(ast_entry);
4940 
4941 	return QDF_STATUS_SUCCESS;
4942 }
4943 
4944 #ifdef WLAN_SUPPORT_MSCS
4945 /**
4946  * dp_record_mscs_params() - Record MSCS parameters sent by the STA in
4947  * the MSCS Request to the AP.
4948  * @soc_hdl: Datapath soc handle
4949  * @peer_mac: STA Mac address
4950  * @vdev_id: ID of the vdev handle
4951  * @mscs_params: Structure having MSCS parameters obtained
4952  * from handshake
4953  * @active: Flag to set MSCS active/inactive
4954  *
4955  * The AP makes a note of these parameters while comparing the MSDUs
4956  * sent by the STA, to send the downlink traffic with correct User
4957  * priority.
4958  *
4959  * Return: QDF_STATUS - Success/Invalid
4960  */
4961 static QDF_STATUS
4962 dp_record_mscs_params(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
4963 		      uint8_t vdev_id, struct cdp_mscs_params *mscs_params,
4964 		      bool active)
4965 {
4966 	struct dp_peer *peer;
4967 	struct dp_peer *tgt_peer;
4968 	QDF_STATUS status = QDF_STATUS_E_INVAL;
4969 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
4970 
4971 	peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
4972 				      DP_MOD_ID_CDP);
4973 
4974 	if (!peer) {
4975 		dp_err("Peer is NULL!");
4976 		goto fail;
4977 	}
4978 
4979 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
4980 	if (!tgt_peer)
4981 		goto fail;
4982 
4983 	if (!active) {
4984 		dp_info("MSCS Procedure is terminated");
4985 		tgt_peer->mscs_active = active;
4986 		goto fail;
4987 	}
4988 
4989 	if (mscs_params->classifier_type == IEEE80211_TCLAS_MASK_CLA_TYPE_4) {
4990 		/* Populate entries inside IPV4 database first */
4991 		tgt_peer->mscs_ipv4_parameter.user_priority_bitmap =
4992 			mscs_params->user_pri_bitmap;
4993 		tgt_peer->mscs_ipv4_parameter.user_priority_limit =
4994 			mscs_params->user_pri_limit;
4995 		tgt_peer->mscs_ipv4_parameter.classifier_mask =
4996 			mscs_params->classifier_mask;
4997 
4998 		/* Populate entries inside IPV6 database */
4999 		tgt_peer->mscs_ipv6_parameter.user_priority_bitmap =
5000 			mscs_params->user_pri_bitmap;
5001 		tgt_peer->mscs_ipv6_parameter.user_priority_limit =
5002 			mscs_params->user_pri_limit;
5003 		tgt_peer->mscs_ipv6_parameter.classifier_mask =
5004 			mscs_params->classifier_mask;
5005 		tgt_peer->mscs_active = 1;
5006 		dp_info("\n\tMSCS Procedure request based parameters for "QDF_MAC_ADDR_FMT"\n"
5007 			"\tClassifier_type = %d\tUser priority bitmap = %x\n"
5008 			"\tUser priority limit = %x\tClassifier mask = %x",
5009 			QDF_MAC_ADDR_REF(peer_mac),
5010 			mscs_params->classifier_type,
5011 			tgt_peer->mscs_ipv4_parameter.user_priority_bitmap,
5012 			tgt_peer->mscs_ipv4_parameter.user_priority_limit,
5013 			tgt_peer->mscs_ipv4_parameter.classifier_mask);
5014 	}
5015 
5016 	status = QDF_STATUS_SUCCESS;
5017 fail:
5018 	if (peer)
5019 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5020 	return status;
5021 }
5022 #endif
5023 
5024 /**
5025  * dp_get_sec_type() - Get the security type
5026  * @soc: soc handle
5027  * @vdev_id: id of dp handle
5028  * @peer_mac: mac of datapath PEER handle
5029  * @sec_idx:    Security id (mcast, ucast)
5030  *
5031  * return sec_type: Security type
5032  */
5033 static int dp_get_sec_type(struct cdp_soc_t *soc, uint8_t vdev_id,
5034 			   uint8_t *peer_mac, uint8_t sec_idx)
5035 {
5036 	int sec_type = 0;
5037 	struct dp_peer *peer =
5038 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)soc,
5039 						       peer_mac, 0, vdev_id,
5040 						       DP_MOD_ID_CDP);
5041 
5042 	if (!peer) {
5043 		dp_cdp_err("%pK: Peer is NULL!\n", (struct dp_soc *)soc);
5044 		return sec_type;
5045 	}
5046 
5047 	if (!peer->txrx_peer) {
5048 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5049 		dp_peer_debug("%pK: txrx peer is NULL!\n", soc);
5050 		return sec_type;
5051 	}
5052 	sec_type = peer->txrx_peer->security[sec_idx].sec_type;
5053 
5054 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5055 	return sec_type;
5056 }
5057 
5058 /**
5059  * dp_peer_authorize() - authorize txrx peer
5060  * @soc_hdl: soc handle
5061  * @vdev_id: id of dp handle
5062  * @peer_mac: mac of datapath PEER handle
5063  * @authorize:
5064  *
5065  * Return: QDF_STATUS
5066  *
5067  */
5068 static QDF_STATUS
5069 dp_peer_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5070 		  uint8_t *peer_mac, uint32_t authorize)
5071 {
5072 	QDF_STATUS status = QDF_STATUS_SUCCESS;
5073 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
5074 	struct dp_peer *peer = dp_peer_get_tgt_peer_hash_find(soc, peer_mac,
5075 							      0, vdev_id,
5076 							      DP_MOD_ID_CDP);
5077 
5078 	if (!peer) {
5079 		dp_cdp_debug("%pK: Peer is NULL!\n", soc);
5080 		status = QDF_STATUS_E_FAILURE;
5081 	} else {
5082 		peer->authorize = authorize ? 1 : 0;
5083 		if (peer->txrx_peer)
5084 			peer->txrx_peer->authorize = peer->authorize;
5085 
5086 		if (!peer->authorize)
5087 			dp_peer_flush_frags(soc_hdl, vdev_id, peer_mac);
5088 
5089 		dp_mlo_peer_authorize(soc, peer);
5090 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5091 	}
5092 
5093 	return status;
5094 }
5095 
5096 /**
5097  * dp_peer_get_authorize() - get peer authorize status
5098  * @soc_hdl: soc handle
5099  * @vdev_id: id of dp handle
5100  * @peer_mac: mac of datapath PEER handle
5101  *
5102  * Return: true is peer is authorized, false otherwise
5103  */
5104 static bool
5105 dp_peer_get_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5106 		      uint8_t *peer_mac)
5107 {
5108 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
5109 	bool authorize = false;
5110 	struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac,
5111 						      0, vdev_id,
5112 						      DP_MOD_ID_CDP);
5113 
5114 	if (!peer) {
5115 		dp_cdp_debug("%pK: Peer is NULL!\n", soc);
5116 		return authorize;
5117 	}
5118 
5119 	authorize = peer->authorize;
5120 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5121 
5122 	return authorize;
5123 }
5124 
5125 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
5126 			  enum dp_mod_id mod_id)
5127 {
5128 	ol_txrx_vdev_delete_cb vdev_delete_cb = NULL;
5129 	void *vdev_delete_context = NULL;
5130 	uint8_t vdev_id = vdev->vdev_id;
5131 	struct dp_pdev *pdev = vdev->pdev;
5132 	struct dp_vdev *tmp_vdev = NULL;
5133 	uint8_t found = 0;
5134 
5135 	QDF_ASSERT(qdf_atomic_dec_return(&vdev->mod_refs[mod_id]) >= 0);
5136 
5137 	/* Return if this is not the last reference*/
5138 	if (!qdf_atomic_dec_and_test(&vdev->ref_cnt))
5139 		return;
5140 
5141 	/*
5142 	 * This should be set as last reference need to released
5143 	 * after cdp_vdev_detach() is called
5144 	 *
5145 	 * if this assert is hit there is a ref count issue
5146 	 */
5147 	QDF_ASSERT(vdev->delete.pending);
5148 
5149 	vdev_delete_cb = vdev->delete.callback;
5150 	vdev_delete_context = vdev->delete.context;
5151 
5152 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")- its last peer is done",
5153 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
5154 
5155 	if (wlan_op_mode_monitor == vdev->opmode) {
5156 		dp_monitor_vdev_delete(soc, vdev);
5157 		goto free_vdev;
5158 	}
5159 
5160 	/* all peers are gone, go ahead and delete it */
5161 	dp_tx_flow_pool_unmap_handler(pdev, vdev_id,
5162 			FLOW_TYPE_VDEV, vdev_id);
5163 	dp_tx_vdev_detach(vdev);
5164 	dp_monitor_vdev_detach(vdev);
5165 
5166 free_vdev:
5167 	qdf_spinlock_destroy(&vdev->peer_list_lock);
5168 
5169 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
5170 	TAILQ_FOREACH(tmp_vdev, &soc->inactive_vdev_list,
5171 		      inactive_list_elem) {
5172 		if (tmp_vdev == vdev) {
5173 			found = 1;
5174 			break;
5175 		}
5176 	}
5177 	if (found)
5178 		TAILQ_REMOVE(&soc->inactive_vdev_list, vdev,
5179 			     inactive_list_elem);
5180 	/* delete this peer from the list */
5181 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
5182 
5183 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_UNREF_DEL,
5184 				     vdev);
5185 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")",
5186 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
5187 	wlan_minidump_remove(vdev, sizeof(*vdev), soc->ctrl_psoc,
5188 			     WLAN_MD_DP_VDEV, "dp_vdev");
5189 	qdf_mem_free(vdev);
5190 	vdev = NULL;
5191 
5192 	if (vdev_delete_cb)
5193 		vdev_delete_cb(vdev_delete_context);
5194 }
5195 
5196 qdf_export_symbol(dp_vdev_unref_delete);
5197 
5198 void dp_peer_unref_delete(struct dp_peer *peer, enum dp_mod_id mod_id)
5199 {
5200 	struct dp_vdev *vdev = peer->vdev;
5201 	struct dp_pdev *pdev = vdev->pdev;
5202 	struct dp_soc *soc = pdev->soc;
5203 	uint16_t peer_id;
5204 	struct dp_peer *tmp_peer;
5205 	bool found = false;
5206 
5207 	if (mod_id > DP_MOD_ID_RX)
5208 		QDF_ASSERT(qdf_atomic_dec_return(&peer->mod_refs[mod_id]) >= 0);
5209 
5210 	/*
5211 	 * Hold the lock all the way from checking if the peer ref count
5212 	 * is zero until the peer references are removed from the hash
5213 	 * table and vdev list (if the peer ref count is zero).
5214 	 * This protects against a new HL tx operation starting to use the
5215 	 * peer object just after this function concludes it's done being used.
5216 	 * Furthermore, the lock needs to be held while checking whether the
5217 	 * vdev's list of peers is empty, to make sure that list is not modified
5218 	 * concurrently with the empty check.
5219 	 */
5220 	if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
5221 		peer_id = peer->peer_id;
5222 
5223 		/*
5224 		 * Make sure that the reference to the peer in
5225 		 * peer object map is removed
5226 		 */
5227 		QDF_ASSERT(peer_id == HTT_INVALID_PEER);
5228 
5229 		dp_peer_info("Deleting peer %pK ("QDF_MAC_ADDR_FMT")", peer,
5230 			     QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5231 
5232 		dp_peer_sawf_ctx_free(soc, peer);
5233 
5234 		wlan_minidump_remove(peer, sizeof(*peer), soc->ctrl_psoc,
5235 				     WLAN_MD_DP_PEER, "dp_peer");
5236 
5237 		qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
5238 		TAILQ_FOREACH(tmp_peer, &soc->inactive_peer_list,
5239 			      inactive_list_elem) {
5240 			if (tmp_peer == peer) {
5241 				found = 1;
5242 				break;
5243 			}
5244 		}
5245 		if (found)
5246 			TAILQ_REMOVE(&soc->inactive_peer_list, peer,
5247 				     inactive_list_elem);
5248 		/* delete this peer from the list */
5249 		qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
5250 		DP_AST_ASSERT(TAILQ_EMPTY(&peer->ast_entry_list));
5251 		dp_peer_update_state(soc, peer, DP_PEER_STATE_FREED);
5252 
5253 		/* cleanup the peer data */
5254 		dp_peer_cleanup(vdev, peer);
5255 
5256 		if (!IS_MLO_DP_MLD_PEER(peer))
5257 			dp_monitor_peer_detach(soc, peer);
5258 
5259 		qdf_spinlock_destroy(&peer->peer_state_lock);
5260 
5261 		dp_txrx_peer_detach(soc, peer);
5262 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_UNREF_DEL,
5263 					     peer, vdev, 0);
5264 		qdf_mem_free(peer);
5265 
5266 		/*
5267 		 * Decrement ref count taken at peer create
5268 		 */
5269 		dp_peer_info("Deleted peer. Unref vdev %pK, vdev_ref_cnt %d",
5270 			     vdev, qdf_atomic_read(&vdev->ref_cnt));
5271 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CHILD);
5272 	}
5273 }
5274 
5275 qdf_export_symbol(dp_peer_unref_delete);
5276 
5277 void dp_txrx_peer_unref_delete(dp_txrx_ref_handle handle,
5278 			       enum dp_mod_id mod_id)
5279 {
5280 	dp_peer_unref_delete((struct dp_peer *)handle, mod_id);
5281 }
5282 
5283 qdf_export_symbol(dp_txrx_peer_unref_delete);
5284 
5285 /**
5286  * dp_peer_delete_wifi3() - Delete txrx peer
5287  * @soc_hdl: soc handle
5288  * @vdev_id: id of dp handle
5289  * @peer_mac: mac of datapath PEER handle
5290  * @bitmap: bitmap indicating special handling of request.
5291  * @peer_type: peer type (link or MLD)
5292  *
5293  */
5294 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
5295 				       uint8_t vdev_id,
5296 				       uint8_t *peer_mac, uint32_t bitmap,
5297 				       enum cdp_peer_type peer_type)
5298 {
5299 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5300 	struct dp_peer *peer;
5301 	struct cdp_peer_info peer_info = { 0 };
5302 	struct dp_vdev *vdev = NULL;
5303 
5304 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac,
5305 				 false, peer_type);
5306 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
5307 
5308 	/* Peer can be null for monitor vap mac address */
5309 	if (!peer) {
5310 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
5311 			  "%s: Invalid peer\n", __func__);
5312 		return QDF_STATUS_E_FAILURE;
5313 	}
5314 
5315 	if (!peer->valid) {
5316 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5317 		dp_err("Invalid peer: "QDF_MAC_ADDR_FMT,
5318 			QDF_MAC_ADDR_REF(peer_mac));
5319 		return QDF_STATUS_E_ALREADY;
5320 	}
5321 
5322 	vdev = peer->vdev;
5323 
5324 	if (!vdev) {
5325 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5326 		return QDF_STATUS_E_FAILURE;
5327 	}
5328 
5329 	peer->valid = 0;
5330 
5331 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_DELETE, peer,
5332 				     vdev, 0);
5333 	dp_init_info("%pK: peer %pK (" QDF_MAC_ADDR_FMT ") pending-refs %d",
5334 		     soc, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5335 		     qdf_atomic_read(&peer->ref_cnt));
5336 
5337 	dp_peer_rx_reo_shared_qaddr_delete(soc, peer);
5338 
5339 	dp_local_peer_id_free(peer->vdev->pdev, peer);
5340 
5341 	/* Drop all rx packets before deleting peer */
5342 	dp_clear_peer_internal(soc, peer);
5343 
5344 	qdf_spinlock_destroy(&peer->peer_info_lock);
5345 	dp_peer_multipass_list_remove(peer);
5346 
5347 	/* remove the reference to the peer from the hash table */
5348 	dp_peer_find_hash_remove(soc, peer);
5349 
5350 	dp_peer_vdev_list_remove(soc, vdev, peer);
5351 
5352 	dp_peer_mlo_delete(peer);
5353 
5354 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
5355 	TAILQ_INSERT_TAIL(&soc->inactive_peer_list, peer,
5356 			  inactive_list_elem);
5357 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
5358 
5359 	/*
5360 	 * Remove the reference added during peer_attach.
5361 	 * The peer will still be left allocated until the
5362 	 * PEER_UNMAP message arrives to remove the other
5363 	 * reference, added by the PEER_MAP message.
5364 	 */
5365 	dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
5366 	/*
5367 	 * Remove the reference taken above
5368 	 */
5369 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5370 
5371 	return QDF_STATUS_SUCCESS;
5372 }
5373 
5374 #ifdef DP_RX_UDP_OVER_PEER_ROAM
5375 static QDF_STATUS dp_update_roaming_peer_wifi3(struct cdp_soc_t *soc_hdl,
5376 					       uint8_t vdev_id,
5377 					       uint8_t *peer_mac,
5378 					       uint32_t auth_status)
5379 {
5380 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5381 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5382 						     DP_MOD_ID_CDP);
5383 	if (!vdev)
5384 		return QDF_STATUS_E_FAILURE;
5385 
5386 	vdev->roaming_peer_status = auth_status;
5387 	qdf_mem_copy(vdev->roaming_peer_mac.raw, peer_mac,
5388 		     QDF_MAC_ADDR_SIZE);
5389 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5390 
5391 	return QDF_STATUS_SUCCESS;
5392 }
5393 #endif
5394 /**
5395  * dp_get_vdev_mac_addr_wifi3() - Detach txrx peer
5396  * @soc_hdl: Datapath soc handle
5397  * @vdev_id: virtual interface id
5398  *
5399  * Return: MAC address on success, NULL on failure.
5400  *
5401  */
5402 static uint8_t *dp_get_vdev_mac_addr_wifi3(struct cdp_soc_t *soc_hdl,
5403 					   uint8_t vdev_id)
5404 {
5405 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5406 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5407 						     DP_MOD_ID_CDP);
5408 	uint8_t *mac = NULL;
5409 
5410 	if (!vdev)
5411 		return NULL;
5412 
5413 	mac = vdev->mac_addr.raw;
5414 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5415 
5416 	return mac;
5417 }
5418 
5419 /**
5420  * dp_vdev_set_wds() - Enable per packet stats
5421  * @soc_hdl: DP soc handle
5422  * @vdev_id: id of DP VDEV handle
5423  * @val: value
5424  *
5425  * Return: none
5426  */
5427 static int dp_vdev_set_wds(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5428 			   uint32_t val)
5429 {
5430 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5431 	struct dp_vdev *vdev =
5432 		dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
5433 				      DP_MOD_ID_CDP);
5434 
5435 	if (!vdev)
5436 		return QDF_STATUS_E_FAILURE;
5437 
5438 	vdev->wds_enabled = val;
5439 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5440 
5441 	return QDF_STATUS_SUCCESS;
5442 }
5443 
5444 static int dp_get_opmode(struct cdp_soc_t *soc_hdl, uint8_t vdev_id)
5445 {
5446 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5447 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5448 						     DP_MOD_ID_CDP);
5449 	int opmode;
5450 
5451 	if (!vdev) {
5452 		dp_err_rl("vdev for id %d is NULL", vdev_id);
5453 		return -EINVAL;
5454 	}
5455 	opmode = vdev->opmode;
5456 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5457 
5458 	return opmode;
5459 }
5460 
5461 /**
5462  * dp_get_os_rx_handles_from_vdev_wifi3() - Get os rx handles for a vdev
5463  * @soc_hdl: ol_txrx_soc_handle handle
5464  * @vdev_id: vdev id for which os rx handles are needed
5465  * @stack_fn_p: pointer to stack function pointer
5466  * @osif_vdev_p: pointer to ol_osif_vdev_handle
5467  *
5468  * Return: void
5469  */
5470 static
5471 void dp_get_os_rx_handles_from_vdev_wifi3(struct cdp_soc_t *soc_hdl,
5472 					  uint8_t vdev_id,
5473 					  ol_txrx_rx_fp *stack_fn_p,
5474 					  ol_osif_vdev_handle *osif_vdev_p)
5475 {
5476 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5477 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5478 						     DP_MOD_ID_CDP);
5479 
5480 	if (qdf_unlikely(!vdev)) {
5481 		*stack_fn_p = NULL;
5482 		*osif_vdev_p = NULL;
5483 		return;
5484 	}
5485 	*stack_fn_p = vdev->osif_rx_stack;
5486 	*osif_vdev_p = vdev->osif_vdev;
5487 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5488 }
5489 
5490 /**
5491  * dp_get_ctrl_pdev_from_vdev_wifi3() - Get control pdev of vdev
5492  * @soc_hdl: datapath soc handle
5493  * @vdev_id: virtual device/interface id
5494  *
5495  * Return: Handle to control pdev
5496  */
5497 static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3(
5498 						struct cdp_soc_t *soc_hdl,
5499 						uint8_t vdev_id)
5500 {
5501 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5502 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5503 						     DP_MOD_ID_CDP);
5504 	struct dp_pdev *pdev;
5505 
5506 	if (!vdev)
5507 		return NULL;
5508 
5509 	pdev = vdev->pdev;
5510 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5511 	return pdev ? (struct cdp_cfg *)pdev->wlan_cfg_ctx : NULL;
5512 }
5513 
5514 int32_t dp_get_tx_pending(struct cdp_pdev *pdev_handle)
5515 {
5516 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
5517 
5518 	return qdf_atomic_read(&pdev->num_tx_outstanding);
5519 }
5520 
5521 /**
5522  * dp_get_peer_mac_from_peer_id() - get peer mac
5523  * @soc: CDP SoC handle
5524  * @peer_id: Peer ID
5525  * @peer_mac: MAC addr of PEER
5526  *
5527  * Return: QDF_STATUS
5528  */
5529 static QDF_STATUS dp_get_peer_mac_from_peer_id(struct cdp_soc_t *soc,
5530 					       uint32_t peer_id,
5531 					       uint8_t *peer_mac)
5532 {
5533 	struct dp_peer *peer;
5534 
5535 	if (soc && peer_mac) {
5536 		peer = dp_peer_get_ref_by_id((struct dp_soc *)soc,
5537 					     (uint16_t)peer_id,
5538 					     DP_MOD_ID_CDP);
5539 		if (peer) {
5540 			qdf_mem_copy(peer_mac, peer->mac_addr.raw,
5541 				     QDF_MAC_ADDR_SIZE);
5542 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5543 			return QDF_STATUS_SUCCESS;
5544 		}
5545 	}
5546 
5547 	return QDF_STATUS_E_FAILURE;
5548 }
5549 
5550 #ifdef MESH_MODE_SUPPORT
5551 static
5552 void dp_vdev_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val)
5553 {
5554 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
5555 
5556 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
5557 	vdev->mesh_vdev = val;
5558 	if (val)
5559 		vdev->skip_sw_tid_classification |=
5560 			DP_TX_MESH_ENABLED;
5561 	else
5562 		vdev->skip_sw_tid_classification &=
5563 			~DP_TX_MESH_ENABLED;
5564 }
5565 
5566 /**
5567  * dp_vdev_set_mesh_rx_filter() - to set the mesh rx filter
5568  * @vdev_hdl: virtual device object
5569  * @val: value to be set
5570  *
5571  * Return: void
5572  */
5573 static
5574 void dp_vdev_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val)
5575 {
5576 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
5577 
5578 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
5579 	vdev->mesh_rx_filter = val;
5580 }
5581 #endif
5582 
5583 /**
5584  * dp_vdev_set_hlos_tid_override() - to set hlos tid override
5585  * @vdev: virtual device object
5586  * @val: value to be set
5587  *
5588  * Return: void
5589  */
5590 static
5591 void dp_vdev_set_hlos_tid_override(struct dp_vdev *vdev, uint32_t val)
5592 {
5593 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
5594 	if (val)
5595 		vdev->skip_sw_tid_classification |=
5596 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
5597 	else
5598 		vdev->skip_sw_tid_classification &=
5599 			~DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
5600 }
5601 
5602 /**
5603  * dp_vdev_get_hlos_tid_override() - to get hlos tid override flag
5604  * @vdev_hdl: virtual device object
5605  *
5606  * Return: 1 if this flag is set
5607  */
5608 static
5609 uint8_t dp_vdev_get_hlos_tid_override(struct cdp_vdev *vdev_hdl)
5610 {
5611 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
5612 
5613 	return !!(vdev->skip_sw_tid_classification &
5614 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED);
5615 }
5616 
5617 #ifdef VDEV_PEER_PROTOCOL_COUNT
5618 static void dp_enable_vdev_peer_protocol_count(struct cdp_soc_t *soc_hdl,
5619 					       int8_t vdev_id,
5620 					       bool enable)
5621 {
5622 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5623 	struct dp_vdev *vdev;
5624 
5625 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5626 	if (!vdev)
5627 		return;
5628 
5629 	dp_info("enable %d vdev_id %d", enable, vdev_id);
5630 	vdev->peer_protocol_count_track = enable;
5631 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5632 }
5633 
5634 static void dp_enable_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
5635 						   int8_t vdev_id,
5636 						   int drop_mask)
5637 {
5638 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5639 	struct dp_vdev *vdev;
5640 
5641 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5642 	if (!vdev)
5643 		return;
5644 
5645 	dp_info("drop_mask %d vdev_id %d", drop_mask, vdev_id);
5646 	vdev->peer_protocol_count_dropmask = drop_mask;
5647 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5648 }
5649 
5650 static int dp_is_vdev_peer_protocol_count_enabled(struct cdp_soc_t *soc_hdl,
5651 						  int8_t vdev_id)
5652 {
5653 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5654 	struct dp_vdev *vdev;
5655 	int peer_protocol_count_track;
5656 
5657 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5658 	if (!vdev)
5659 		return 0;
5660 
5661 	dp_info("enable %d vdev_id %d", vdev->peer_protocol_count_track,
5662 		vdev_id);
5663 	peer_protocol_count_track =
5664 		vdev->peer_protocol_count_track;
5665 
5666 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5667 	return peer_protocol_count_track;
5668 }
5669 
5670 static int dp_get_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
5671 					       int8_t vdev_id)
5672 {
5673 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5674 	struct dp_vdev *vdev;
5675 	int peer_protocol_count_dropmask;
5676 
5677 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5678 	if (!vdev)
5679 		return 0;
5680 
5681 	dp_info("drop_mask %d vdev_id %d", vdev->peer_protocol_count_dropmask,
5682 		vdev_id);
5683 	peer_protocol_count_dropmask =
5684 		vdev->peer_protocol_count_dropmask;
5685 
5686 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5687 	return peer_protocol_count_dropmask;
5688 }
5689 
5690 #endif
5691 
5692 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data)
5693 {
5694 	uint8_t pdev_count;
5695 
5696 	for (pdev_count = 0; pdev_count < MAX_PDEV_CNT; pdev_count++) {
5697 		if (soc->pdev_list[pdev_count] &&
5698 		    soc->pdev_list[pdev_count] == data)
5699 			return true;
5700 	}
5701 	return false;
5702 }
5703 
5704 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
5705 			     struct cdp_vdev_stats *vdev_stats)
5706 {
5707 
5708 	if (!vdev || !vdev->pdev)
5709 		return;
5710 
5711 	dp_update_vdev_ingress_stats(vdev);
5712 
5713 	qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
5714 
5715 	dp_vdev_iterate_peer(vdev, dp_update_vdev_stats, vdev_stats,
5716 			     DP_MOD_ID_GENERIC_STATS);
5717 
5718 	dp_update_vdev_rate_stats(vdev_stats, &vdev->stats);
5719 
5720 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
5721 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
5722 			     vdev_stats, vdev->vdev_id,
5723 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
5724 #endif
5725 }
5726 
5727 void dp_aggregate_pdev_stats(struct dp_pdev *pdev)
5728 {
5729 	struct dp_vdev *vdev = NULL;
5730 	struct dp_soc *soc;
5731 	struct cdp_vdev_stats *vdev_stats =
5732 			qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
5733 
5734 	if (!vdev_stats) {
5735 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
5736 			   pdev->soc);
5737 		return;
5738 	}
5739 
5740 	soc = pdev->soc;
5741 
5742 	qdf_mem_zero(&pdev->stats.tx, sizeof(pdev->stats.tx));
5743 	qdf_mem_zero(&pdev->stats.rx, sizeof(pdev->stats.rx));
5744 	qdf_mem_zero(&pdev->stats.tx_i, sizeof(pdev->stats.tx_i));
5745 	qdf_mem_zero(&pdev->stats.rx_i, sizeof(pdev->stats.rx_i));
5746 
5747 	if (dp_monitor_is_enable_mcopy_mode(pdev))
5748 		dp_monitor_invalid_peer_update_pdev_stats(soc, pdev);
5749 
5750 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
5751 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
5752 
5753 		dp_aggregate_vdev_stats(vdev, vdev_stats);
5754 		dp_update_pdev_stats(pdev, vdev_stats);
5755 		dp_update_pdev_ingress_stats(pdev, vdev);
5756 	}
5757 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
5758 	qdf_mem_free(vdev_stats);
5759 
5760 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
5761 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc, &pdev->stats,
5762 			     pdev->pdev_id, UPDATE_PDEV_STATS, pdev->pdev_id);
5763 #endif
5764 }
5765 
5766 /**
5767  * dp_vdev_getstats() - get vdev packet level stats
5768  * @vdev_handle: Datapath VDEV handle
5769  * @stats: cdp network device stats structure
5770  *
5771  * Return: QDF_STATUS
5772  */
5773 static QDF_STATUS dp_vdev_getstats(struct cdp_vdev *vdev_handle,
5774 				   struct cdp_dev_stats *stats)
5775 {
5776 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
5777 	struct dp_pdev *pdev;
5778 	struct dp_soc *soc;
5779 	struct cdp_vdev_stats *vdev_stats;
5780 
5781 	if (!vdev)
5782 		return QDF_STATUS_E_FAILURE;
5783 
5784 	pdev = vdev->pdev;
5785 	if (!pdev)
5786 		return QDF_STATUS_E_FAILURE;
5787 
5788 	soc = pdev->soc;
5789 
5790 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
5791 
5792 	if (!vdev_stats) {
5793 		dp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
5794 		       soc);
5795 		return QDF_STATUS_E_FAILURE;
5796 	}
5797 
5798 	dp_aggregate_vdev_stats(vdev, vdev_stats);
5799 
5800 	stats->tx_packets = vdev_stats->tx.comp_pkt.num;
5801 	stats->tx_bytes = vdev_stats->tx.comp_pkt.bytes;
5802 
5803 	stats->tx_errors = vdev_stats->tx.tx_failed;
5804 	stats->tx_dropped = vdev_stats->tx_i.dropped.dropped_pkt.num +
5805 			    vdev_stats->tx_i.sg.dropped_host.num +
5806 			    vdev_stats->tx_i.mcast_en.dropped_map_error +
5807 			    vdev_stats->tx_i.mcast_en.dropped_self_mac +
5808 			    vdev_stats->tx_i.mcast_en.dropped_send_fail +
5809 			    vdev_stats->tx.nawds_mcast_drop;
5810 
5811 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
5812 		stats->rx_packets = vdev_stats->rx.to_stack.num;
5813 		stats->rx_bytes = vdev_stats->rx.to_stack.bytes;
5814 	} else {
5815 		stats->rx_packets = vdev_stats->rx_i.reo_rcvd_pkt.num +
5816 				    vdev_stats->rx_i.null_q_desc_pkt.num +
5817 				    vdev_stats->rx_i.routed_eapol_pkt.num;
5818 		stats->rx_bytes = vdev_stats->rx_i.reo_rcvd_pkt.bytes +
5819 				  vdev_stats->rx_i.null_q_desc_pkt.bytes +
5820 				  vdev_stats->rx_i.routed_eapol_pkt.bytes;
5821 	}
5822 
5823 	stats->rx_errors = vdev_stats->rx.err.mic_err +
5824 			   vdev_stats->rx.err.decrypt_err +
5825 			   vdev_stats->rx.err.fcserr +
5826 			   vdev_stats->rx.err.pn_err +
5827 			   vdev_stats->rx.err.oor_err +
5828 			   vdev_stats->rx.err.jump_2k_err +
5829 			   vdev_stats->rx.err.rxdma_wifi_parse_err;
5830 
5831 	stats->rx_dropped = vdev_stats->rx.mec_drop.num +
5832 			    vdev_stats->rx.multipass_rx_pkt_drop +
5833 			    vdev_stats->rx.peer_unauth_rx_pkt_drop +
5834 			    vdev_stats->rx.policy_check_drop +
5835 			    vdev_stats->rx.nawds_mcast_drop +
5836 			    vdev_stats->rx.mcast_3addr_drop +
5837 			    vdev_stats->rx.ppeds_drop.num;
5838 
5839 	qdf_mem_free(vdev_stats);
5840 
5841 	return QDF_STATUS_SUCCESS;
5842 }
5843 
5844 /**
5845  * dp_pdev_getstats() - get pdev packet level stats
5846  * @pdev_handle: Datapath PDEV handle
5847  * @stats: cdp network device stats structure
5848  *
5849  * Return: QDF_STATUS
5850  */
5851 static void dp_pdev_getstats(struct cdp_pdev *pdev_handle,
5852 			     struct cdp_dev_stats *stats)
5853 {
5854 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
5855 
5856 	dp_aggregate_pdev_stats(pdev);
5857 
5858 	stats->tx_packets = pdev->stats.tx.comp_pkt.num;
5859 	stats->tx_bytes = pdev->stats.tx.comp_pkt.bytes;
5860 
5861 	stats->tx_errors = pdev->stats.tx.tx_failed;
5862 	stats->tx_dropped = pdev->stats.tx_i.dropped.dropped_pkt.num +
5863 			    pdev->stats.tx_i.sg.dropped_host.num +
5864 			    pdev->stats.tx_i.mcast_en.dropped_map_error +
5865 			    pdev->stats.tx_i.mcast_en.dropped_self_mac +
5866 			    pdev->stats.tx_i.mcast_en.dropped_send_fail +
5867 			    pdev->stats.tx.nawds_mcast_drop +
5868 			    pdev->stats.tso_stats.dropped_host.num;
5869 
5870 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(pdev->soc->wlan_cfg_ctx)) {
5871 		stats->rx_packets = pdev->stats.rx.to_stack.num;
5872 		stats->rx_bytes = pdev->stats.rx.to_stack.bytes;
5873 	} else {
5874 		stats->rx_packets = pdev->stats.rx_i.reo_rcvd_pkt.num +
5875 				    pdev->stats.rx_i.null_q_desc_pkt.num +
5876 				    pdev->stats.rx_i.routed_eapol_pkt.num;
5877 		stats->rx_bytes = pdev->stats.rx_i.reo_rcvd_pkt.bytes +
5878 				  pdev->stats.rx_i.null_q_desc_pkt.bytes +
5879 				  pdev->stats.rx_i.routed_eapol_pkt.bytes;
5880 	}
5881 
5882 	stats->rx_errors = pdev->stats.err.ip_csum_err +
5883 		pdev->stats.err.tcp_udp_csum_err +
5884 		pdev->stats.rx.err.mic_err +
5885 		pdev->stats.rx.err.decrypt_err +
5886 		pdev->stats.rx.err.fcserr +
5887 		pdev->stats.rx.err.pn_err +
5888 		pdev->stats.rx.err.oor_err +
5889 		pdev->stats.rx.err.jump_2k_err +
5890 		pdev->stats.rx.err.rxdma_wifi_parse_err;
5891 	stats->rx_dropped = pdev->stats.dropped.msdu_not_done +
5892 		pdev->stats.dropped.mec +
5893 		pdev->stats.dropped.mesh_filter +
5894 		pdev->stats.dropped.wifi_parse +
5895 		pdev->stats.dropped.mon_rx_drop +
5896 		pdev->stats.dropped.mon_radiotap_update_err +
5897 		pdev->stats.rx.mec_drop.num +
5898 		pdev->stats.rx.ppeds_drop.num +
5899 		pdev->stats.rx.multipass_rx_pkt_drop +
5900 		pdev->stats.rx.peer_unauth_rx_pkt_drop +
5901 		pdev->stats.rx.policy_check_drop +
5902 		pdev->stats.rx.nawds_mcast_drop +
5903 		pdev->stats.rx.mcast_3addr_drop;
5904 }
5905 
5906 /**
5907  * dp_get_device_stats() - get interface level packet stats
5908  * @soc_hdl: soc handle
5909  * @id: vdev_id or pdev_id based on type
5910  * @stats: cdp network device stats structure
5911  * @type: device type pdev/vdev
5912  *
5913  * Return: QDF_STATUS
5914  */
5915 static QDF_STATUS dp_get_device_stats(struct cdp_soc_t *soc_hdl, uint8_t id,
5916 				      struct cdp_dev_stats *stats,
5917 				      uint8_t type)
5918 {
5919 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5920 	QDF_STATUS status = QDF_STATUS_E_FAILURE;
5921 	struct dp_vdev *vdev;
5922 
5923 	switch (type) {
5924 	case UPDATE_VDEV_STATS:
5925 		vdev = dp_vdev_get_ref_by_id(soc, id, DP_MOD_ID_CDP);
5926 
5927 		if (vdev) {
5928 			status = dp_vdev_getstats((struct cdp_vdev *)vdev,
5929 						  stats);
5930 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5931 		}
5932 		return status;
5933 	case UPDATE_PDEV_STATS:
5934 		{
5935 			struct dp_pdev *pdev =
5936 				dp_get_pdev_from_soc_pdev_id_wifi3(
5937 						(struct dp_soc *)soc,
5938 						 id);
5939 			if (pdev) {
5940 				dp_pdev_getstats((struct cdp_pdev *)pdev,
5941 						 stats);
5942 				return QDF_STATUS_SUCCESS;
5943 			}
5944 		}
5945 		break;
5946 	default:
5947 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
5948 			"apstats cannot be updated for this input "
5949 			"type %d", type);
5950 		break;
5951 	}
5952 
5953 	return QDF_STATUS_E_FAILURE;
5954 }
5955 
5956 const
5957 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type)
5958 {
5959 	switch (ring_type) {
5960 	case REO_DST:
5961 		return "Reo_dst";
5962 	case REO_EXCEPTION:
5963 		return "Reo_exception";
5964 	case REO_CMD:
5965 		return "Reo_cmd";
5966 	case REO_REINJECT:
5967 		return "Reo_reinject";
5968 	case REO_STATUS:
5969 		return "Reo_status";
5970 	case WBM2SW_RELEASE:
5971 		return "wbm2sw_release";
5972 	case TCL_DATA:
5973 		return "tcl_data";
5974 	case TCL_CMD_CREDIT:
5975 		return "tcl_cmd_credit";
5976 	case TCL_STATUS:
5977 		return "tcl_status";
5978 	case SW2WBM_RELEASE:
5979 		return "sw2wbm_release";
5980 	case RXDMA_BUF:
5981 		return "Rxdma_buf";
5982 	case RXDMA_DST:
5983 		return "Rxdma_dst";
5984 	case RXDMA_MONITOR_BUF:
5985 		return "Rxdma_monitor_buf";
5986 	case RXDMA_MONITOR_DESC:
5987 		return "Rxdma_monitor_desc";
5988 	case RXDMA_MONITOR_STATUS:
5989 		return "Rxdma_monitor_status";
5990 	case RXDMA_MONITOR_DST:
5991 		return "Rxdma_monitor_destination";
5992 	case WBM_IDLE_LINK:
5993 		return "WBM_hw_idle_link";
5994 	case PPE2TCL:
5995 		return "PPE2TCL";
5996 	case REO2PPE:
5997 		return "REO2PPE";
5998 	case TX_MONITOR_DST:
5999 		return "tx_monitor_destination";
6000 	case TX_MONITOR_BUF:
6001 		return "tx_monitor_buf";
6002 	default:
6003 		dp_err("Invalid ring type");
6004 		break;
6005 	}
6006 	return "Invalid";
6007 }
6008 
6009 void dp_print_napi_stats(struct dp_soc *soc)
6010 {
6011 	hif_print_napi_stats(soc->hif_handle);
6012 }
6013 
6014 /**
6015  * dp_txrx_host_peer_stats_clr() - Reinitialize the txrx peer stats
6016  * @soc: Datapath soc
6017  * @peer: Datatpath peer
6018  * @arg: argument to iter function
6019  *
6020  * Return: QDF_STATUS
6021  */
6022 static inline void
6023 dp_txrx_host_peer_stats_clr(struct dp_soc *soc,
6024 			    struct dp_peer *peer,
6025 			    void *arg)
6026 {
6027 	struct dp_txrx_peer *txrx_peer = NULL;
6028 	struct dp_peer *tgt_peer = NULL;
6029 	struct cdp_interface_peer_stats peer_stats_intf;
6030 
6031 	qdf_mem_zero(&peer_stats_intf, sizeof(struct cdp_interface_peer_stats));
6032 
6033 	DP_STATS_CLR(peer);
6034 	/* Clear monitor peer stats */
6035 	dp_monitor_peer_reset_stats(soc, peer);
6036 
6037 	/* Clear MLD peer stats only when link peer is primary */
6038 	if (dp_peer_is_primary_link_peer(peer)) {
6039 		tgt_peer = dp_get_tgt_peer_from_peer(peer);
6040 		if (tgt_peer) {
6041 			DP_STATS_CLR(tgt_peer);
6042 			txrx_peer = tgt_peer->txrx_peer;
6043 			dp_txrx_peer_stats_clr(txrx_peer);
6044 		}
6045 	}
6046 
6047 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6048 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, peer->vdev->pdev->soc,
6049 			     &peer_stats_intf,  peer->peer_id,
6050 			     UPDATE_PEER_STATS, peer->vdev->pdev->pdev_id);
6051 #endif
6052 }
6053 
6054 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
6055 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
6056 {
6057 	int ring;
6058 
6059 	for (ring = 0; ring < soc->num_reo_dest_rings; ring++)
6060 		hal_srng_clear_ring_usage_wm_locked(soc->hal_soc,
6061 					    soc->reo_dest_ring[ring].hal_srng);
6062 }
6063 #else
6064 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
6065 {
6066 }
6067 #endif
6068 
6069 /**
6070  * dp_txrx_host_stats_clr() - Reinitialize the txrx stats
6071  * @vdev: DP_VDEV handle
6072  * @soc: DP_SOC handle
6073  *
6074  * Return: QDF_STATUS
6075  */
6076 static inline QDF_STATUS
6077 dp_txrx_host_stats_clr(struct dp_vdev *vdev, struct dp_soc *soc)
6078 {
6079 	if (!vdev || !vdev->pdev)
6080 		return QDF_STATUS_E_FAILURE;
6081 
6082 	/*
6083 	 * if NSS offload is enabled, then send message
6084 	 * to NSS FW to clear the stats. Once NSS FW clears the statistics
6085 	 * then clear host statistics.
6086 	 */
6087 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
6088 		if (soc->cdp_soc.ol_ops->nss_stats_clr)
6089 			soc->cdp_soc.ol_ops->nss_stats_clr(soc->ctrl_psoc,
6090 							   vdev->vdev_id);
6091 	}
6092 
6093 	dp_vdev_stats_hw_offload_target_clear(soc, vdev->pdev->pdev_id,
6094 					      (1 << vdev->vdev_id));
6095 
6096 	DP_STATS_CLR(vdev->pdev);
6097 	DP_STATS_CLR(vdev->pdev->soc);
6098 	DP_STATS_CLR(vdev);
6099 
6100 	hif_clear_napi_stats(vdev->pdev->soc->hif_handle);
6101 
6102 	dp_vdev_iterate_peer(vdev, dp_txrx_host_peer_stats_clr, NULL,
6103 			     DP_MOD_ID_GENERIC_STATS);
6104 
6105 	dp_srng_clear_ring_usage_wm_stats(soc);
6106 
6107 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6108 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
6109 			     &vdev->stats,  vdev->vdev_id,
6110 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
6111 #endif
6112 	return QDF_STATUS_SUCCESS;
6113 }
6114 
6115 /**
6116  * dp_get_peer_calibr_stats()- Get peer calibrated stats
6117  * @peer: Datapath peer
6118  * @peer_stats: buffer for peer stats
6119  *
6120  * Return: none
6121  */
6122 static inline
6123 void dp_get_peer_calibr_stats(struct dp_peer *peer,
6124 			      struct cdp_peer_stats *peer_stats)
6125 {
6126 	struct dp_peer *tgt_peer;
6127 
6128 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
6129 	if (!tgt_peer)
6130 		return;
6131 
6132 	peer_stats->tx.last_per = tgt_peer->stats.tx.last_per;
6133 	peer_stats->tx.tx_bytes_success_last =
6134 				tgt_peer->stats.tx.tx_bytes_success_last;
6135 	peer_stats->tx.tx_data_success_last =
6136 					tgt_peer->stats.tx.tx_data_success_last;
6137 	peer_stats->tx.tx_byte_rate = tgt_peer->stats.tx.tx_byte_rate;
6138 	peer_stats->tx.tx_data_rate = tgt_peer->stats.tx.tx_data_rate;
6139 	peer_stats->tx.tx_data_ucast_last =
6140 					tgt_peer->stats.tx.tx_data_ucast_last;
6141 	peer_stats->tx.tx_data_ucast_rate =
6142 					tgt_peer->stats.tx.tx_data_ucast_rate;
6143 	peer_stats->tx.inactive_time = tgt_peer->stats.tx.inactive_time;
6144 	peer_stats->rx.rx_bytes_success_last =
6145 				tgt_peer->stats.rx.rx_bytes_success_last;
6146 	peer_stats->rx.rx_data_success_last =
6147 				tgt_peer->stats.rx.rx_data_success_last;
6148 	peer_stats->rx.rx_byte_rate = tgt_peer->stats.rx.rx_byte_rate;
6149 	peer_stats->rx.rx_data_rate = tgt_peer->stats.rx.rx_data_rate;
6150 }
6151 
6152 /**
6153  * dp_get_peer_basic_stats()- Get peer basic stats
6154  * @peer: Datapath peer
6155  * @peer_stats: buffer for peer stats
6156  *
6157  * Return: none
6158  */
6159 static inline
6160 void dp_get_peer_basic_stats(struct dp_peer *peer,
6161 			     struct cdp_peer_stats *peer_stats)
6162 {
6163 	struct dp_txrx_peer *txrx_peer;
6164 
6165 	txrx_peer = dp_get_txrx_peer(peer);
6166 	if (!txrx_peer)
6167 		return;
6168 
6169 	peer_stats->tx.comp_pkt.num += txrx_peer->comp_pkt.num;
6170 	peer_stats->tx.comp_pkt.bytes += txrx_peer->comp_pkt.bytes;
6171 	peer_stats->tx.tx_failed += txrx_peer->tx_failed;
6172 	peer_stats->rx.to_stack.num += txrx_peer->to_stack.num;
6173 	peer_stats->rx.to_stack.bytes += txrx_peer->to_stack.bytes;
6174 }
6175 
6176 #ifdef QCA_ENHANCED_STATS_SUPPORT
6177 /**
6178  * dp_get_peer_per_pkt_stats()- Get peer per pkt stats
6179  * @peer: Datapath peer
6180  * @peer_stats: buffer for peer stats
6181  *
6182  * Return: none
6183  */
6184 static inline
6185 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
6186 			       struct cdp_peer_stats *peer_stats)
6187 {
6188 	struct dp_txrx_peer *txrx_peer;
6189 	struct dp_peer_per_pkt_stats *per_pkt_stats;
6190 	uint8_t inx = 0, link_id = 0;
6191 	struct dp_pdev *pdev;
6192 	struct dp_soc *soc;
6193 	uint8_t stats_arr_size;
6194 
6195 	txrx_peer = dp_get_txrx_peer(peer);
6196 	pdev = peer->vdev->pdev;
6197 
6198 	if (!txrx_peer)
6199 		return;
6200 
6201 	if (!IS_MLO_DP_LINK_PEER(peer)) {
6202 		stats_arr_size = txrx_peer->stats_arr_size;
6203 		for (inx = 0; inx < stats_arr_size; inx++) {
6204 			per_pkt_stats = &txrx_peer->stats[inx].per_pkt_stats;
6205 			DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
6206 		}
6207 	} else {
6208 		soc = pdev->soc;
6209 		link_id = dp_get_peer_hw_link_id(soc, pdev);
6210 		per_pkt_stats =
6211 			&txrx_peer->stats[link_id].per_pkt_stats;
6212 		DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
6213 	}
6214 }
6215 
6216 #ifdef WLAN_FEATURE_11BE_MLO
6217 /**
6218  * dp_get_peer_extd_stats()- Get peer extd stats
6219  * @peer: Datapath peer
6220  * @peer_stats: buffer for peer stats
6221  *
6222  * Return: none
6223  */
6224 static inline
6225 void dp_get_peer_extd_stats(struct dp_peer *peer,
6226 			    struct cdp_peer_stats *peer_stats)
6227 {
6228 	struct dp_soc *soc = peer->vdev->pdev->soc;
6229 
6230 	if (IS_MLO_DP_MLD_PEER(peer)) {
6231 		uint8_t i;
6232 		struct dp_peer *link_peer;
6233 		struct dp_soc *link_peer_soc;
6234 		struct dp_mld_link_peers link_peers_info;
6235 
6236 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
6237 						    &link_peers_info,
6238 						    DP_MOD_ID_CDP);
6239 		for (i = 0; i < link_peers_info.num_links; i++) {
6240 			link_peer = link_peers_info.link_peers[i];
6241 			link_peer_soc = link_peer->vdev->pdev->soc;
6242 			dp_monitor_peer_get_stats(link_peer_soc, link_peer,
6243 						  peer_stats,
6244 						  UPDATE_PEER_STATS);
6245 		}
6246 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
6247 	} else {
6248 		dp_monitor_peer_get_stats(soc, peer, peer_stats,
6249 					  UPDATE_PEER_STATS);
6250 	}
6251 }
6252 #else
6253 static inline
6254 void dp_get_peer_extd_stats(struct dp_peer *peer,
6255 			    struct cdp_peer_stats *peer_stats)
6256 {
6257 	struct dp_soc *soc = peer->vdev->pdev->soc;
6258 
6259 	dp_monitor_peer_get_stats(soc, peer, peer_stats, UPDATE_PEER_STATS);
6260 }
6261 #endif
6262 #else
6263 static inline
6264 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
6265 			       struct cdp_peer_stats *peer_stats)
6266 {
6267 	struct dp_txrx_peer *txrx_peer;
6268 	struct dp_peer_per_pkt_stats *per_pkt_stats;
6269 
6270 	txrx_peer = dp_get_txrx_peer(peer);
6271 	if (!txrx_peer)
6272 		return;
6273 
6274 	per_pkt_stats = &txrx_peer->stats[0].per_pkt_stats;
6275 	DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
6276 }
6277 
6278 static inline
6279 void dp_get_peer_extd_stats(struct dp_peer *peer,
6280 			    struct cdp_peer_stats *peer_stats)
6281 {
6282 	struct dp_txrx_peer *txrx_peer;
6283 	struct dp_peer_extd_stats *extd_stats;
6284 
6285 	txrx_peer = dp_get_txrx_peer(peer);
6286 	if (qdf_unlikely(!txrx_peer)) {
6287 		dp_err_rl("txrx_peer NULL");
6288 		return;
6289 	}
6290 
6291 	extd_stats = &txrx_peer->stats[0].extd_stats;
6292 	DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
6293 }
6294 #endif
6295 
6296 /**
6297  * dp_get_peer_tx_per()- Get peer packet error ratio
6298  * @peer_stats: buffer for peer stats
6299  *
6300  * Return: none
6301  */
6302 static inline
6303 void dp_get_peer_tx_per(struct cdp_peer_stats *peer_stats)
6304 {
6305 	if (peer_stats->tx.tx_success.num + peer_stats->tx.retries > 0)
6306 		peer_stats->tx.per = (peer_stats->tx.retries * 100) /
6307 				  (peer_stats->tx.tx_success.num +
6308 				   peer_stats->tx.retries);
6309 	else
6310 		peer_stats->tx.per = 0;
6311 }
6312 
6313 void dp_get_peer_stats(struct dp_peer *peer, struct cdp_peer_stats *peer_stats)
6314 {
6315 	dp_get_peer_calibr_stats(peer, peer_stats);
6316 
6317 	dp_get_peer_basic_stats(peer, peer_stats);
6318 
6319 	dp_get_peer_per_pkt_stats(peer, peer_stats);
6320 
6321 	dp_get_peer_extd_stats(peer, peer_stats);
6322 
6323 	dp_get_peer_tx_per(peer_stats);
6324 }
6325 
6326 /**
6327  * dp_get_host_peer_stats()- function to print peer stats
6328  * @soc: dp_soc handle
6329  * @mac_addr: mac address of the peer
6330  *
6331  * Return: QDF_STATUS
6332  */
6333 static QDF_STATUS
6334 dp_get_host_peer_stats(struct cdp_soc_t *soc, uint8_t *mac_addr)
6335 {
6336 	struct dp_peer *peer = NULL;
6337 	struct cdp_peer_stats *peer_stats = NULL;
6338 	struct cdp_peer_info peer_info = { 0 };
6339 
6340 	if (!mac_addr) {
6341 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
6342 			  "%s: NULL peer mac addr\n", __func__);
6343 		return QDF_STATUS_E_FAILURE;
6344 	}
6345 
6346 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
6347 				 CDP_WILD_PEER_TYPE);
6348 
6349 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
6350 					 DP_MOD_ID_CDP);
6351 	if (!peer) {
6352 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
6353 			  "%s: Invalid peer\n", __func__);
6354 		return QDF_STATUS_E_FAILURE;
6355 	}
6356 
6357 	peer_stats = qdf_mem_malloc(sizeof(struct cdp_peer_stats));
6358 	if (!peer_stats) {
6359 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
6360 			  "%s: Memory allocation failed for cdp_peer_stats\n",
6361 			  __func__);
6362 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6363 		return QDF_STATUS_E_NOMEM;
6364 	}
6365 
6366 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
6367 
6368 	dp_get_peer_stats(peer, peer_stats);
6369 	dp_print_peer_stats(peer, peer_stats);
6370 
6371 	dp_peer_rxtid_stats(dp_get_tgt_peer_from_peer(peer),
6372 			    dp_rx_tid_stats_cb, NULL);
6373 
6374 	qdf_mem_free(peer_stats);
6375 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6376 
6377 	return QDF_STATUS_SUCCESS;
6378 }
6379 
6380 /**
6381  * dp_txrx_stats_help() - Helper function for Txrx_Stats
6382  *
6383  * Return: None
6384  */
6385 static void dp_txrx_stats_help(void)
6386 {
6387 	dp_info("Command: iwpriv wlan0 txrx_stats <stats_option> <mac_id>");
6388 	dp_info("stats_option:");
6389 	dp_info("  1 -- HTT Tx Statistics");
6390 	dp_info("  2 -- HTT Rx Statistics");
6391 	dp_info("  3 -- HTT Tx HW Queue Statistics");
6392 	dp_info("  4 -- HTT Tx HW Sched Statistics");
6393 	dp_info("  5 -- HTT Error Statistics");
6394 	dp_info("  6 -- HTT TQM Statistics");
6395 	dp_info("  7 -- HTT TQM CMDQ Statistics");
6396 	dp_info("  8 -- HTT TX_DE_CMN Statistics");
6397 	dp_info("  9 -- HTT Tx Rate Statistics");
6398 	dp_info(" 10 -- HTT Rx Rate Statistics");
6399 	dp_info(" 11 -- HTT Peer Statistics");
6400 	dp_info(" 12 -- HTT Tx SelfGen Statistics");
6401 	dp_info(" 13 -- HTT Tx MU HWQ Statistics");
6402 	dp_info(" 14 -- HTT RING_IF_INFO Statistics");
6403 	dp_info(" 15 -- HTT SRNG Statistics");
6404 	dp_info(" 16 -- HTT SFM Info Statistics");
6405 	dp_info(" 17 -- HTT PDEV_TX_MU_MIMO_SCHED INFO Statistics");
6406 	dp_info(" 18 -- HTT Peer List Details");
6407 	dp_info(" 20 -- Clear Host Statistics");
6408 	dp_info(" 21 -- Host Rx Rate Statistics");
6409 	dp_info(" 22 -- Host Tx Rate Statistics");
6410 	dp_info(" 23 -- Host Tx Statistics");
6411 	dp_info(" 24 -- Host Rx Statistics");
6412 	dp_info(" 25 -- Host AST Statistics");
6413 	dp_info(" 26 -- Host SRNG PTR Statistics");
6414 	dp_info(" 27 -- Host Mon Statistics");
6415 	dp_info(" 28 -- Host REO Queue Statistics");
6416 	dp_info(" 29 -- Host Soc cfg param Statistics");
6417 	dp_info(" 30 -- Host pdev cfg param Statistics");
6418 	dp_info(" 31 -- Host NAPI stats");
6419 	dp_info(" 32 -- Host Interrupt stats");
6420 	dp_info(" 33 -- Host FISA stats");
6421 	dp_info(" 34 -- Host Register Work stats");
6422 	dp_info(" 35 -- HW REO Queue stats");
6423 	dp_info(" 36 -- Host WBM IDLE link desc ring HP/TP");
6424 	dp_info(" 37 -- Host SRNG usage watermark stats");
6425 }
6426 
6427 #ifdef DP_UMAC_HW_RESET_SUPPORT
6428 /**
6429  * dp_umac_rst_skel_enable_update() - Update skel dbg flag for umac reset
6430  * @soc: dp soc handle
6431  * @en: ebable/disable
6432  *
6433  * Return: void
6434  */
6435 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
6436 {
6437 	soc->umac_reset_ctx.skel_enable = en;
6438 	dp_cdp_debug("UMAC HW reset debug skeleton code enabled :%u",
6439 		     soc->umac_reset_ctx.skel_enable);
6440 }
6441 
6442 /**
6443  * dp_umac_rst_skel_enable_get() - Get skel dbg flag for umac reset
6444  * @soc: dp soc handle
6445  *
6446  * Return: enable/disable flag
6447  */
6448 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
6449 {
6450 	return soc->umac_reset_ctx.skel_enable;
6451 }
6452 #else
6453 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
6454 {
6455 }
6456 
6457 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
6458 {
6459 	return false;
6460 }
6461 #endif
6462 
6463 /**
6464  * dp_print_host_stats()- Function to print the stats aggregated at host
6465  * @vdev: DP_VDEV handle
6466  * @req: host stats type
6467  * @soc: dp soc handler
6468  *
6469  * Return: 0 on success, print error message in case of failure
6470  */
6471 static int
6472 dp_print_host_stats(struct dp_vdev *vdev,
6473 		    struct cdp_txrx_stats_req *req,
6474 		    struct dp_soc *soc)
6475 {
6476 	struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
6477 	enum cdp_host_txrx_stats type =
6478 			dp_stats_mapping_table[req->stats][STATS_HOST];
6479 
6480 	dp_aggregate_pdev_stats(pdev);
6481 
6482 	switch (type) {
6483 	case TXRX_CLEAR_STATS:
6484 		dp_txrx_host_stats_clr(vdev, soc);
6485 		break;
6486 	case TXRX_RX_RATE_STATS:
6487 		dp_print_rx_rates(vdev);
6488 		break;
6489 	case TXRX_TX_RATE_STATS:
6490 		dp_print_tx_rates(vdev);
6491 		break;
6492 	case TXRX_TX_HOST_STATS:
6493 		dp_print_pdev_tx_stats(pdev);
6494 		dp_print_soc_tx_stats(pdev->soc);
6495 		dp_print_global_desc_count();
6496 		break;
6497 	case TXRX_RX_HOST_STATS:
6498 		dp_print_pdev_rx_stats(pdev);
6499 		dp_print_soc_rx_stats(pdev->soc);
6500 		break;
6501 	case TXRX_AST_STATS:
6502 		dp_print_ast_stats(pdev->soc);
6503 		dp_print_mec_stats(pdev->soc);
6504 		dp_print_peer_table(vdev);
6505 		break;
6506 	case TXRX_SRNG_PTR_STATS:
6507 		dp_print_ring_stats(pdev);
6508 		break;
6509 	case TXRX_RX_MON_STATS:
6510 		dp_monitor_print_pdev_rx_mon_stats(pdev);
6511 		break;
6512 	case TXRX_REO_QUEUE_STATS:
6513 		dp_get_host_peer_stats((struct cdp_soc_t *)pdev->soc,
6514 				       req->peer_addr);
6515 		break;
6516 	case TXRX_SOC_CFG_PARAMS:
6517 		dp_print_soc_cfg_params(pdev->soc);
6518 		break;
6519 	case TXRX_PDEV_CFG_PARAMS:
6520 		dp_print_pdev_cfg_params(pdev);
6521 		break;
6522 	case TXRX_NAPI_STATS:
6523 		dp_print_napi_stats(pdev->soc);
6524 		break;
6525 	case TXRX_SOC_INTERRUPT_STATS:
6526 		dp_print_soc_interrupt_stats(pdev->soc);
6527 		break;
6528 	case TXRX_SOC_FSE_STATS:
6529 		dp_rx_dump_fisa_table(pdev->soc);
6530 		break;
6531 	case TXRX_HAL_REG_WRITE_STATS:
6532 		hal_dump_reg_write_stats(pdev->soc->hal_soc);
6533 		hal_dump_reg_write_srng_stats(pdev->soc->hal_soc);
6534 		break;
6535 	case TXRX_SOC_REO_HW_DESC_DUMP:
6536 		dp_get_rx_reo_queue_info((struct cdp_soc_t *)pdev->soc,
6537 					 vdev->vdev_id);
6538 		break;
6539 	case TXRX_SOC_WBM_IDLE_HPTP_DUMP:
6540 		dp_dump_wbm_idle_hptp(pdev->soc, pdev);
6541 		break;
6542 	case TXRX_SRNG_USAGE_WM_STATS:
6543 		/* Dump usage watermark stats for all SRNGs */
6544 		dp_dump_srng_high_wm_stats(soc, 0xFF);
6545 		break;
6546 	default:
6547 		dp_info("Wrong Input For TxRx Host Stats");
6548 		dp_txrx_stats_help();
6549 		break;
6550 	}
6551 	return 0;
6552 }
6553 
6554 /**
6555  * dp_pdev_tid_stats_ingress_inc() - increment ingress_stack counter
6556  * @pdev: pdev handle
6557  * @val: increase in value
6558  *
6559  * Return: void
6560  */
6561 static void
6562 dp_pdev_tid_stats_ingress_inc(struct dp_pdev *pdev, uint32_t val)
6563 {
6564 	pdev->stats.tid_stats.ingress_stack += val;
6565 }
6566 
6567 /**
6568  * dp_pdev_tid_stats_osif_drop() - increment osif_drop counter
6569  * @pdev: pdev handle
6570  * @val: increase in value
6571  *
6572  * Return: void
6573  */
6574 static void
6575 dp_pdev_tid_stats_osif_drop(struct dp_pdev *pdev, uint32_t val)
6576 {
6577 	pdev->stats.tid_stats.osif_drop += val;
6578 }
6579 
6580 /**
6581  * dp_get_fw_peer_stats()- function to print peer stats
6582  * @soc: soc handle
6583  * @pdev_id: id of the pdev handle
6584  * @mac_addr: mac address of the peer
6585  * @cap: Type of htt stats requested
6586  * @is_wait: if set, wait on completion from firmware response
6587  *
6588  * Currently Supporting only MAC ID based requests Only
6589  *	1: HTT_PEER_STATS_REQ_MODE_NO_QUERY
6590  *	2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM
6591  *	3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM
6592  *
6593  * Return: QDF_STATUS
6594  */
6595 static QDF_STATUS
6596 dp_get_fw_peer_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
6597 		     uint8_t *mac_addr,
6598 		     uint32_t cap, uint32_t is_wait)
6599 {
6600 	int i;
6601 	uint32_t config_param0 = 0;
6602 	uint32_t config_param1 = 0;
6603 	uint32_t config_param2 = 0;
6604 	uint32_t config_param3 = 0;
6605 	struct dp_pdev *pdev =
6606 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
6607 						   pdev_id);
6608 
6609 	if (!pdev)
6610 		return QDF_STATUS_E_FAILURE;
6611 
6612 	HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1);
6613 	config_param0 |= (1 << (cap + 1));
6614 
6615 	for (i = 0; i < HTT_PEER_STATS_MAX_TLV; i++) {
6616 		config_param1 |= (1 << i);
6617 	}
6618 
6619 	config_param2 |= (mac_addr[0] & 0x000000ff);
6620 	config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00);
6621 	config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000);
6622 	config_param2 |= ((mac_addr[3] << 24) & 0xff000000);
6623 
6624 	config_param3 |= (mac_addr[4] & 0x000000ff);
6625 	config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00);
6626 
6627 	if (is_wait) {
6628 		qdf_event_reset(&pdev->fw_peer_stats_event);
6629 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
6630 					  config_param0, config_param1,
6631 					  config_param2, config_param3,
6632 					  0, DBG_STATS_COOKIE_DP_STATS, 0);
6633 		qdf_wait_single_event(&pdev->fw_peer_stats_event,
6634 				      DP_FW_PEER_STATS_CMP_TIMEOUT_MSEC);
6635 	} else {
6636 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
6637 					  config_param0, config_param1,
6638 					  config_param2, config_param3,
6639 					  0, DBG_STATS_COOKIE_DEFAULT, 0);
6640 	}
6641 
6642 	return QDF_STATUS_SUCCESS;
6643 
6644 }
6645 
6646 /* This struct definition will be removed from here
6647  * once it get added in FW headers*/
6648 struct httstats_cmd_req {
6649     uint32_t    config_param0;
6650     uint32_t    config_param1;
6651     uint32_t    config_param2;
6652     uint32_t    config_param3;
6653     int cookie;
6654     u_int8_t    stats_id;
6655 };
6656 
6657 /**
6658  * dp_get_htt_stats: function to process the httstas request
6659  * @soc: DP soc handle
6660  * @pdev_id: id of pdev handle
6661  * @data: pointer to request data
6662  * @data_len: length for request data
6663  *
6664  * Return: QDF_STATUS
6665  */
6666 static QDF_STATUS
6667 dp_get_htt_stats(struct cdp_soc_t *soc, uint8_t pdev_id, void *data,
6668 		 uint32_t data_len)
6669 {
6670 	struct httstats_cmd_req *req = (struct httstats_cmd_req *)data;
6671 	struct dp_pdev *pdev =
6672 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
6673 						   pdev_id);
6674 
6675 	if (!pdev)
6676 		return QDF_STATUS_E_FAILURE;
6677 
6678 	QDF_ASSERT(data_len == sizeof(struct httstats_cmd_req));
6679 	dp_h2t_ext_stats_msg_send(pdev, req->stats_id,
6680 				req->config_param0, req->config_param1,
6681 				req->config_param2, req->config_param3,
6682 				req->cookie, DBG_STATS_COOKIE_DEFAULT, 0);
6683 
6684 	return QDF_STATUS_SUCCESS;
6685 }
6686 
6687 /**
6688  * dp_set_pdev_tidmap_prty_wifi3() - update tidmap priority in pdev
6689  * @pdev: DP_PDEV handle
6690  * @prio: tidmap priority value passed by the user
6691  *
6692  * Return: QDF_STATUS_SUCCESS on success
6693  */
6694 static QDF_STATUS dp_set_pdev_tidmap_prty_wifi3(struct dp_pdev *pdev,
6695 						uint8_t prio)
6696 {
6697 	struct dp_soc *soc = pdev->soc;
6698 
6699 	soc->tidmap_prty = prio;
6700 
6701 	hal_tx_set_tidmap_prty(soc->hal_soc, prio);
6702 	return QDF_STATUS_SUCCESS;
6703 }
6704 
6705 /**
6706  * dp_get_peer_param: function to get parameters in peer
6707  * @cdp_soc: DP soc handle
6708  * @vdev_id: id of vdev handle
6709  * @peer_mac: peer mac address
6710  * @param: parameter type to be set
6711  * @val: address of buffer
6712  *
6713  * Return: val
6714  */
6715 static QDF_STATUS dp_get_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
6716 				    uint8_t *peer_mac,
6717 				    enum cdp_peer_param_type param,
6718 				    cdp_config_param_type *val)
6719 {
6720 	return QDF_STATUS_SUCCESS;
6721 }
6722 
6723 /**
6724  * dp_set_peer_param: function to set parameters in peer
6725  * @cdp_soc: DP soc handle
6726  * @vdev_id: id of vdev handle
6727  * @peer_mac: peer mac address
6728  * @param: parameter type to be set
6729  * @val: value of parameter to be set
6730  *
6731  * Return: 0 for success. nonzero for failure.
6732  */
6733 static QDF_STATUS dp_set_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
6734 				    uint8_t *peer_mac,
6735 				    enum cdp_peer_param_type param,
6736 				    cdp_config_param_type val)
6737 {
6738 	struct dp_peer *peer =
6739 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)cdp_soc,
6740 						       peer_mac, 0, vdev_id,
6741 						       DP_MOD_ID_CDP);
6742 	struct dp_txrx_peer *txrx_peer;
6743 
6744 	if (!peer)
6745 		return QDF_STATUS_E_FAILURE;
6746 
6747 	txrx_peer = peer->txrx_peer;
6748 	if (!txrx_peer) {
6749 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6750 		return QDF_STATUS_E_FAILURE;
6751 	}
6752 
6753 	switch (param) {
6754 	case CDP_CONFIG_NAWDS:
6755 		txrx_peer->nawds_enabled = val.cdp_peer_param_nawds;
6756 		break;
6757 	case CDP_CONFIG_ISOLATION:
6758 		dp_set_peer_isolation(txrx_peer, val.cdp_peer_param_isolation);
6759 		break;
6760 	case CDP_CONFIG_IN_TWT:
6761 		txrx_peer->in_twt = !!(val.cdp_peer_param_in_twt);
6762 		break;
6763 	default:
6764 		break;
6765 	}
6766 
6767 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6768 
6769 	return QDF_STATUS_SUCCESS;
6770 }
6771 
6772 /**
6773  * dp_get_pdev_param() - function to get parameters from pdev
6774  * @cdp_soc: DP soc handle
6775  * @pdev_id: id of pdev handle
6776  * @param: parameter type to be get
6777  * @val: buffer for value
6778  *
6779  * Return: status
6780  */
6781 static QDF_STATUS dp_get_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
6782 				    enum cdp_pdev_param_type param,
6783 				    cdp_config_param_type *val)
6784 {
6785 	struct cdp_pdev *pdev = (struct cdp_pdev *)
6786 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
6787 						   pdev_id);
6788 	if (!pdev)
6789 		return QDF_STATUS_E_FAILURE;
6790 
6791 	switch (param) {
6792 	case CDP_CONFIG_VOW:
6793 		val->cdp_pdev_param_cfg_vow =
6794 				((struct dp_pdev *)pdev)->delay_stats_flag;
6795 		break;
6796 	case CDP_TX_PENDING:
6797 		val->cdp_pdev_param_tx_pending = dp_get_tx_pending(pdev);
6798 		break;
6799 	case CDP_FILTER_MCAST_DATA:
6800 		val->cdp_pdev_param_fltr_mcast =
6801 				dp_monitor_pdev_get_filter_mcast_data(pdev);
6802 		break;
6803 	case CDP_FILTER_NO_DATA:
6804 		val->cdp_pdev_param_fltr_none =
6805 				dp_monitor_pdev_get_filter_non_data(pdev);
6806 		break;
6807 	case CDP_FILTER_UCAST_DATA:
6808 		val->cdp_pdev_param_fltr_ucast =
6809 				dp_monitor_pdev_get_filter_ucast_data(pdev);
6810 		break;
6811 	case CDP_MONITOR_CHANNEL:
6812 		val->cdp_pdev_param_monitor_chan =
6813 			dp_monitor_get_chan_num((struct dp_pdev *)pdev);
6814 		break;
6815 	case CDP_MONITOR_FREQUENCY:
6816 		val->cdp_pdev_param_mon_freq =
6817 			dp_monitor_get_chan_freq((struct dp_pdev *)pdev);
6818 		break;
6819 	default:
6820 		return QDF_STATUS_E_FAILURE;
6821 	}
6822 
6823 	return QDF_STATUS_SUCCESS;
6824 }
6825 
6826 /**
6827  * dp_set_pdev_param() - function to set parameters in pdev
6828  * @cdp_soc: DP soc handle
6829  * @pdev_id: id of pdev handle
6830  * @param: parameter type to be set
6831  * @val: value of parameter to be set
6832  *
6833  * Return: 0 for success. nonzero for failure.
6834  */
6835 static QDF_STATUS dp_set_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
6836 				    enum cdp_pdev_param_type param,
6837 				    cdp_config_param_type val)
6838 {
6839 	int target_type;
6840 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
6841 	struct dp_pdev *pdev =
6842 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
6843 						   pdev_id);
6844 	enum reg_wifi_band chan_band;
6845 
6846 	if (!pdev)
6847 		return QDF_STATUS_E_FAILURE;
6848 
6849 	target_type = hal_get_target_type(soc->hal_soc);
6850 	switch (target_type) {
6851 	case TARGET_TYPE_QCA6750:
6852 	case TARGET_TYPE_WCN6450:
6853 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
6854 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
6855 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
6856 		break;
6857 	case TARGET_TYPE_KIWI:
6858 	case TARGET_TYPE_MANGO:
6859 	case TARGET_TYPE_PEACH:
6860 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
6861 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
6862 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
6863 		break;
6864 	default:
6865 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC1_LMAC_ID;
6866 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
6867 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
6868 		break;
6869 	}
6870 
6871 	switch (param) {
6872 	case CDP_CONFIG_TX_CAPTURE:
6873 		return dp_monitor_config_debug_sniffer(pdev,
6874 						val.cdp_pdev_param_tx_capture);
6875 	case CDP_CONFIG_DEBUG_SNIFFER:
6876 		return dp_monitor_config_debug_sniffer(pdev,
6877 						val.cdp_pdev_param_dbg_snf);
6878 	case CDP_CONFIG_BPR_ENABLE:
6879 		return dp_monitor_set_bpr_enable(pdev,
6880 						 val.cdp_pdev_param_bpr_enable);
6881 	case CDP_CONFIG_PRIMARY_RADIO:
6882 		pdev->is_primary = val.cdp_pdev_param_primary_radio;
6883 		break;
6884 	case CDP_CONFIG_CAPTURE_LATENCY:
6885 		pdev->latency_capture_enable = val.cdp_pdev_param_cptr_latcy;
6886 		break;
6887 	case CDP_INGRESS_STATS:
6888 		dp_pdev_tid_stats_ingress_inc(pdev,
6889 					      val.cdp_pdev_param_ingrs_stats);
6890 		break;
6891 	case CDP_OSIF_DROP:
6892 		dp_pdev_tid_stats_osif_drop(pdev,
6893 					    val.cdp_pdev_param_osif_drop);
6894 		break;
6895 	case CDP_CONFIG_ENH_RX_CAPTURE:
6896 		return dp_monitor_config_enh_rx_capture(pdev,
6897 						val.cdp_pdev_param_en_rx_cap);
6898 	case CDP_CONFIG_ENH_TX_CAPTURE:
6899 		return dp_monitor_config_enh_tx_capture(pdev,
6900 						val.cdp_pdev_param_en_tx_cap);
6901 	case CDP_CONFIG_HMMC_TID_OVERRIDE:
6902 		pdev->hmmc_tid_override_en = val.cdp_pdev_param_hmmc_tid_ovrd;
6903 		break;
6904 	case CDP_CONFIG_HMMC_TID_VALUE:
6905 		pdev->hmmc_tid = val.cdp_pdev_param_hmmc_tid;
6906 		break;
6907 	case CDP_CHAN_NOISE_FLOOR:
6908 		pdev->chan_noise_floor = val.cdp_pdev_param_chn_noise_flr;
6909 		break;
6910 	case CDP_TIDMAP_PRTY:
6911 		dp_set_pdev_tidmap_prty_wifi3(pdev,
6912 					      val.cdp_pdev_param_tidmap_prty);
6913 		break;
6914 	case CDP_FILTER_NEIGH_PEERS:
6915 		dp_monitor_set_filter_neigh_peers(pdev,
6916 					val.cdp_pdev_param_fltr_neigh_peers);
6917 		break;
6918 	case CDP_MONITOR_CHANNEL:
6919 		dp_monitor_set_chan_num(pdev, val.cdp_pdev_param_monitor_chan);
6920 		break;
6921 	case CDP_MONITOR_FREQUENCY:
6922 		chan_band = wlan_reg_freq_to_band(val.cdp_pdev_param_mon_freq);
6923 		dp_monitor_set_chan_freq(pdev, val.cdp_pdev_param_mon_freq);
6924 		dp_monitor_set_chan_band(pdev, chan_band);
6925 		break;
6926 	case CDP_CONFIG_BSS_COLOR:
6927 		dp_monitor_set_bsscolor(pdev, val.cdp_pdev_param_bss_color);
6928 		break;
6929 	case CDP_SET_ATF_STATS_ENABLE:
6930 		dp_monitor_set_atf_stats_enable(pdev,
6931 					val.cdp_pdev_param_atf_stats_enable);
6932 		break;
6933 	case CDP_CONFIG_SPECIAL_VAP:
6934 		dp_monitor_pdev_config_scan_spcl_vap(pdev,
6935 					val.cdp_pdev_param_config_special_vap);
6936 		dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
6937 		break;
6938 	case CDP_RESET_SCAN_SPCL_VAP_STATS_ENABLE:
6939 		dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(pdev,
6940 				val.cdp_pdev_param_reset_scan_spcl_vap_stats_enable);
6941 		break;
6942 	case CDP_CONFIG_ENHANCED_STATS_ENABLE:
6943 		pdev->enhanced_stats_en = val.cdp_pdev_param_enhanced_stats_enable;
6944 		break;
6945 	case CDP_ISOLATION:
6946 		pdev->isolation = val.cdp_pdev_param_isolation;
6947 		break;
6948 	case CDP_CONFIG_UNDECODED_METADATA_CAPTURE_ENABLE:
6949 		return dp_monitor_config_undecoded_metadata_capture(pdev,
6950 				val.cdp_pdev_param_undecoded_metadata_enable);
6951 		break;
6952 	default:
6953 		return QDF_STATUS_E_INVAL;
6954 	}
6955 	return QDF_STATUS_SUCCESS;
6956 }
6957 
6958 #ifdef QCA_UNDECODED_METADATA_SUPPORT
6959 static
6960 QDF_STATUS dp_set_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
6961 					uint8_t pdev_id, uint32_t mask,
6962 					uint32_t mask_cont)
6963 {
6964 	struct dp_pdev *pdev =
6965 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
6966 						   pdev_id);
6967 
6968 	if (!pdev)
6969 		return QDF_STATUS_E_FAILURE;
6970 
6971 	return dp_monitor_config_undecoded_metadata_phyrx_error_mask(pdev,
6972 				mask, mask_cont);
6973 }
6974 
6975 static
6976 QDF_STATUS dp_get_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
6977 					uint8_t pdev_id, uint32_t *mask,
6978 					uint32_t *mask_cont)
6979 {
6980 	struct dp_pdev *pdev =
6981 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
6982 						   pdev_id);
6983 
6984 	if (!pdev)
6985 		return QDF_STATUS_E_FAILURE;
6986 
6987 	return dp_monitor_get_undecoded_metadata_phyrx_error_mask(pdev,
6988 				mask, mask_cont);
6989 }
6990 #endif
6991 
6992 #ifdef QCA_PEER_EXT_STATS
6993 static void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
6994 					  qdf_nbuf_t nbuf)
6995 {
6996 	struct dp_peer *peer = NULL;
6997 	uint16_t peer_id, ring_id;
6998 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
6999 	struct dp_peer_delay_stats *delay_stats = NULL;
7000 
7001 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
7002 	if (peer_id > soc->max_peer_id)
7003 		return;
7004 
7005 	peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_CDP);
7006 	if (qdf_unlikely(!peer))
7007 		return;
7008 
7009 	if (qdf_unlikely(!peer->txrx_peer)) {
7010 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7011 		return;
7012 	}
7013 
7014 	if (qdf_likely(peer->txrx_peer->delay_stats)) {
7015 		delay_stats = peer->txrx_peer->delay_stats;
7016 		ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
7017 		dp_rx_compute_tid_delay(&delay_stats->delay_tid_stats[tid][ring_id],
7018 					nbuf);
7019 	}
7020 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7021 }
7022 #else
7023 static inline void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
7024 						 qdf_nbuf_t nbuf)
7025 {
7026 }
7027 #endif
7028 
7029 /**
7030  * dp_calculate_delay_stats() - function to get rx delay stats
7031  * @cdp_soc: DP soc handle
7032  * @vdev_id: id of DP vdev handle
7033  * @nbuf: skb
7034  *
7035  * Return: QDF_STATUS
7036  */
7037 static QDF_STATUS
7038 dp_calculate_delay_stats(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
7039 			 qdf_nbuf_t nbuf)
7040 {
7041 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
7042 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
7043 						     DP_MOD_ID_CDP);
7044 
7045 	if (!vdev)
7046 		return QDF_STATUS_SUCCESS;
7047 
7048 	if (vdev->pdev->delay_stats_flag)
7049 		dp_rx_compute_delay(vdev, nbuf);
7050 	else
7051 		dp_rx_update_peer_delay_stats(soc, nbuf);
7052 
7053 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7054 	return QDF_STATUS_SUCCESS;
7055 }
7056 
7057 /**
7058  * dp_get_vdev_param() - function to get parameters from vdev
7059  * @cdp_soc: DP soc handle
7060  * @vdev_id: id of DP vdev handle
7061  * @param: parameter type to get value
7062  * @val: buffer address
7063  *
7064  * Return: status
7065  */
7066 static QDF_STATUS dp_get_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
7067 				    enum cdp_vdev_param_type param,
7068 				    cdp_config_param_type *val)
7069 {
7070 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
7071 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
7072 						     DP_MOD_ID_CDP);
7073 
7074 	if (!vdev)
7075 		return QDF_STATUS_E_FAILURE;
7076 
7077 	switch (param) {
7078 	case CDP_ENABLE_WDS:
7079 		val->cdp_vdev_param_wds = vdev->wds_enabled;
7080 		break;
7081 	case CDP_ENABLE_MEC:
7082 		val->cdp_vdev_param_mec = vdev->mec_enabled;
7083 		break;
7084 	case CDP_ENABLE_DA_WAR:
7085 		val->cdp_vdev_param_da_war = vdev->pdev->soc->da_war_enabled;
7086 		break;
7087 	case CDP_ENABLE_IGMP_MCAST_EN:
7088 		val->cdp_vdev_param_igmp_mcast_en = vdev->igmp_mcast_enhanc_en;
7089 		break;
7090 	case CDP_ENABLE_MCAST_EN:
7091 		val->cdp_vdev_param_mcast_en = vdev->mcast_enhancement_en;
7092 		break;
7093 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
7094 		val->cdp_vdev_param_hlos_tid_override =
7095 			    dp_vdev_get_hlos_tid_override((struct cdp_vdev *)vdev);
7096 		break;
7097 	case CDP_ENABLE_PEER_AUTHORIZE:
7098 		val->cdp_vdev_param_peer_authorize =
7099 			    vdev->peer_authorize;
7100 		break;
7101 	case CDP_TX_ENCAP_TYPE:
7102 		val->cdp_vdev_param_tx_encap = vdev->tx_encap_type;
7103 		break;
7104 	case CDP_ENABLE_CIPHER:
7105 		val->cdp_vdev_param_cipher_en = vdev->sec_type;
7106 		break;
7107 #ifdef WLAN_SUPPORT_MESH_LATENCY
7108 	case CDP_ENABLE_PEER_TID_LATENCY:
7109 		val->cdp_vdev_param_peer_tid_latency_enable =
7110 			vdev->peer_tid_latency_enabled;
7111 		break;
7112 	case CDP_SET_VAP_MESH_TID:
7113 		val->cdp_vdev_param_mesh_tid =
7114 				vdev->mesh_tid_latency_config.latency_tid;
7115 		break;
7116 #endif
7117 	case CDP_DROP_3ADDR_MCAST:
7118 		val->cdp_drop_3addr_mcast = vdev->drop_3addr_mcast;
7119 		break;
7120 	case CDP_SET_MCAST_VDEV:
7121 		soc->arch_ops.txrx_get_vdev_mcast_param(soc, vdev, val);
7122 		break;
7123 #ifdef QCA_SUPPORT_WDS_EXTENDED
7124 	case CDP_DROP_TX_MCAST:
7125 		val->cdp_drop_tx_mcast = vdev->drop_tx_mcast;
7126 		break;
7127 #endif
7128 
7129 #ifdef MESH_MODE_SUPPORT
7130 	case CDP_MESH_RX_FILTER:
7131 		val->cdp_vdev_param_mesh_rx_filter = vdev->mesh_rx_filter;
7132 		break;
7133 	case CDP_MESH_MODE:
7134 		val->cdp_vdev_param_mesh_mode = vdev->mesh_vdev;
7135 		break;
7136 #endif
7137 	case CDP_ENABLE_NAWDS:
7138 		val->cdp_vdev_param_nawds = vdev->nawds_enabled;
7139 		break;
7140 
7141 	case CDP_ENABLE_WRAP:
7142 		val->cdp_vdev_param_wrap = vdev->wrap_vdev;
7143 		break;
7144 
7145 #ifdef DP_TRAFFIC_END_INDICATION
7146 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
7147 		val->cdp_vdev_param_traffic_end_ind = vdev->traffic_end_ind_en;
7148 		break;
7149 #endif
7150 
7151 	default:
7152 		dp_cdp_err("%pK: param value %d is wrong",
7153 			   soc, param);
7154 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7155 		return QDF_STATUS_E_FAILURE;
7156 	}
7157 
7158 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7159 	return QDF_STATUS_SUCCESS;
7160 }
7161 
7162 /**
7163  * dp_set_vdev_param() - function to set parameters in vdev
7164  * @cdp_soc: DP soc handle
7165  * @vdev_id: id of DP vdev handle
7166  * @param: parameter type to get value
7167  * @val: value
7168  *
7169  * Return: QDF_STATUS
7170  */
7171 static QDF_STATUS
7172 dp_set_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
7173 		  enum cdp_vdev_param_type param, cdp_config_param_type val)
7174 {
7175 	struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
7176 	struct dp_vdev *vdev =
7177 		dp_vdev_get_ref_by_id(dsoc, vdev_id, DP_MOD_ID_CDP);
7178 	uint32_t var = 0;
7179 
7180 	if (!vdev)
7181 		return QDF_STATUS_E_FAILURE;
7182 
7183 	switch (param) {
7184 	case CDP_ENABLE_WDS:
7185 		dp_cdp_err("%pK: wds_enable %d for vdev(%pK) id(%d)\n",
7186 			   dsoc, val.cdp_vdev_param_wds, vdev, vdev->vdev_id);
7187 		vdev->wds_enabled = val.cdp_vdev_param_wds;
7188 		break;
7189 	case CDP_ENABLE_MEC:
7190 		dp_cdp_err("%pK: mec_enable %d for vdev(%pK) id(%d)\n",
7191 			   dsoc, val.cdp_vdev_param_mec, vdev, vdev->vdev_id);
7192 		vdev->mec_enabled = val.cdp_vdev_param_mec;
7193 		break;
7194 	case CDP_ENABLE_DA_WAR:
7195 		dp_cdp_err("%pK: da_war_enable %d for vdev(%pK) id(%d)\n",
7196 			   dsoc, val.cdp_vdev_param_da_war, vdev, vdev->vdev_id);
7197 		vdev->pdev->soc->da_war_enabled = val.cdp_vdev_param_da_war;
7198 		dp_wds_flush_ast_table_wifi3(((struct cdp_soc_t *)
7199 					     vdev->pdev->soc));
7200 		break;
7201 	case CDP_ENABLE_NAWDS:
7202 		vdev->nawds_enabled = val.cdp_vdev_param_nawds;
7203 		break;
7204 	case CDP_ENABLE_MCAST_EN:
7205 		vdev->mcast_enhancement_en = val.cdp_vdev_param_mcast_en;
7206 		break;
7207 	case CDP_ENABLE_IGMP_MCAST_EN:
7208 		vdev->igmp_mcast_enhanc_en = val.cdp_vdev_param_igmp_mcast_en;
7209 		break;
7210 	case CDP_ENABLE_PROXYSTA:
7211 		vdev->proxysta_vdev = val.cdp_vdev_param_proxysta;
7212 		break;
7213 	case CDP_UPDATE_TDLS_FLAGS:
7214 		vdev->tdls_link_connected = val.cdp_vdev_param_tdls_flags;
7215 		break;
7216 	case CDP_CFG_WDS_AGING_TIMER:
7217 		var = val.cdp_vdev_param_aging_tmr;
7218 		if (!var)
7219 			qdf_timer_stop(&vdev->pdev->soc->ast_aging_timer);
7220 		else if (var != vdev->wds_aging_timer_val)
7221 			qdf_timer_mod(&vdev->pdev->soc->ast_aging_timer, var);
7222 
7223 		vdev->wds_aging_timer_val = var;
7224 		break;
7225 	case CDP_ENABLE_AP_BRIDGE:
7226 		if (wlan_op_mode_sta != vdev->opmode)
7227 			vdev->ap_bridge_enabled = val.cdp_vdev_param_ap_brdg_en;
7228 		else
7229 			vdev->ap_bridge_enabled = false;
7230 		break;
7231 	case CDP_ENABLE_CIPHER:
7232 		vdev->sec_type = val.cdp_vdev_param_cipher_en;
7233 		break;
7234 	case CDP_ENABLE_QWRAP_ISOLATION:
7235 		vdev->isolation_vdev = val.cdp_vdev_param_qwrap_isolation;
7236 		break;
7237 	case CDP_UPDATE_MULTIPASS:
7238 		vdev->multipass_en = val.cdp_vdev_param_update_multipass;
7239 		break;
7240 	case CDP_TX_ENCAP_TYPE:
7241 		vdev->tx_encap_type = val.cdp_vdev_param_tx_encap;
7242 		break;
7243 	case CDP_RX_DECAP_TYPE:
7244 		vdev->rx_decap_type = val.cdp_vdev_param_rx_decap;
7245 		break;
7246 	case CDP_TID_VDEV_PRTY:
7247 		vdev->tidmap_prty = val.cdp_vdev_param_tidmap_prty;
7248 		break;
7249 	case CDP_TIDMAP_TBL_ID:
7250 		vdev->tidmap_tbl_id = val.cdp_vdev_param_tidmap_tbl_id;
7251 		break;
7252 #ifdef MESH_MODE_SUPPORT
7253 	case CDP_MESH_RX_FILTER:
7254 		dp_vdev_set_mesh_rx_filter((struct cdp_vdev *)vdev,
7255 					   val.cdp_vdev_param_mesh_rx_filter);
7256 		break;
7257 	case CDP_MESH_MODE:
7258 		dp_vdev_set_mesh_mode((struct cdp_vdev *)vdev,
7259 				      val.cdp_vdev_param_mesh_mode);
7260 		break;
7261 #endif
7262 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
7263 		dp_info("vdev_id %d enable hlod tid override %d", vdev_id,
7264 			val.cdp_vdev_param_hlos_tid_override);
7265 		dp_vdev_set_hlos_tid_override(vdev,
7266 				val.cdp_vdev_param_hlos_tid_override);
7267 		break;
7268 #ifdef QCA_SUPPORT_WDS_EXTENDED
7269 	case CDP_CFG_WDS_EXT:
7270 		if (vdev->opmode == wlan_op_mode_ap)
7271 			vdev->wds_ext_enabled = val.cdp_vdev_param_wds_ext;
7272 		break;
7273 	case CDP_DROP_TX_MCAST:
7274 		dp_info("vdev_id %d drop tx mcast :%d", vdev_id,
7275 			val.cdp_drop_tx_mcast);
7276 		vdev->drop_tx_mcast = val.cdp_drop_tx_mcast;
7277 		break;
7278 #endif
7279 	case CDP_ENABLE_PEER_AUTHORIZE:
7280 		vdev->peer_authorize = val.cdp_vdev_param_peer_authorize;
7281 		break;
7282 #ifdef WLAN_SUPPORT_MESH_LATENCY
7283 	case CDP_ENABLE_PEER_TID_LATENCY:
7284 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
7285 			val.cdp_vdev_param_peer_tid_latency_enable);
7286 		vdev->peer_tid_latency_enabled =
7287 			val.cdp_vdev_param_peer_tid_latency_enable;
7288 		break;
7289 	case CDP_SET_VAP_MESH_TID:
7290 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
7291 			val.cdp_vdev_param_mesh_tid);
7292 		vdev->mesh_tid_latency_config.latency_tid
7293 				= val.cdp_vdev_param_mesh_tid;
7294 		break;
7295 #endif
7296 #ifdef WLAN_VENDOR_SPECIFIC_BAR_UPDATE
7297 	case CDP_SKIP_BAR_UPDATE_AP:
7298 		dp_info("vdev_id %d skip BAR update: %u", vdev_id,
7299 			val.cdp_skip_bar_update);
7300 		vdev->skip_bar_update = val.cdp_skip_bar_update;
7301 		vdev->skip_bar_update_last_ts = 0;
7302 		break;
7303 #endif
7304 	case CDP_DROP_3ADDR_MCAST:
7305 		dp_info("vdev_id %d drop 3 addr mcast :%d", vdev_id,
7306 			val.cdp_drop_3addr_mcast);
7307 		vdev->drop_3addr_mcast = val.cdp_drop_3addr_mcast;
7308 		break;
7309 	case CDP_ENABLE_WRAP:
7310 		vdev->wrap_vdev = val.cdp_vdev_param_wrap;
7311 		break;
7312 #ifdef DP_TRAFFIC_END_INDICATION
7313 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
7314 		vdev->traffic_end_ind_en = val.cdp_vdev_param_traffic_end_ind;
7315 		break;
7316 #endif
7317 #ifdef FEATURE_DIRECT_LINK
7318 	case CDP_VDEV_TX_TO_FW:
7319 		dp_info("vdev_id %d to_fw :%d", vdev_id, val.cdp_vdev_tx_to_fw);
7320 		vdev->to_fw = val.cdp_vdev_tx_to_fw;
7321 		break;
7322 #endif
7323 	default:
7324 		break;
7325 	}
7326 
7327 	dp_tx_vdev_update_search_flags((struct dp_vdev *)vdev);
7328 	dsoc->arch_ops.txrx_set_vdev_param(dsoc, vdev, param, val);
7329 
7330 	/* Update PDEV flags as VDEV flags are updated */
7331 	dp_pdev_update_fast_rx_flag(dsoc, vdev->pdev);
7332 	dp_vdev_unref_delete(dsoc, vdev, DP_MOD_ID_CDP);
7333 
7334 	return QDF_STATUS_SUCCESS;
7335 }
7336 
7337 /**
7338  * dp_set_psoc_param: function to set parameters in psoc
7339  * @cdp_soc: DP soc handle
7340  * @param: parameter type to be set
7341  * @val: value of parameter to be set
7342  *
7343  * Return: QDF_STATUS
7344  */
7345 static QDF_STATUS
7346 dp_set_psoc_param(struct cdp_soc_t *cdp_soc,
7347 		  enum cdp_psoc_param_type param, cdp_config_param_type val)
7348 {
7349 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
7350 	struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx = soc->wlan_cfg_ctx;
7351 
7352 	switch (param) {
7353 	case CDP_ENABLE_RATE_STATS:
7354 		soc->peerstats_enabled = val.cdp_psoc_param_en_rate_stats;
7355 		break;
7356 	case CDP_SET_NSS_CFG:
7357 		wlan_cfg_set_dp_soc_nss_cfg(wlan_cfg_ctx,
7358 					    val.cdp_psoc_param_en_nss_cfg);
7359 		/*
7360 		 * TODO: masked out based on the per offloaded radio
7361 		 */
7362 		switch (val.cdp_psoc_param_en_nss_cfg) {
7363 		case dp_nss_cfg_default:
7364 			break;
7365 		case dp_nss_cfg_first_radio:
7366 		/*
7367 		 * This configuration is valid for single band radio which
7368 		 * is also NSS offload.
7369 		 */
7370 		case dp_nss_cfg_dbdc:
7371 		case dp_nss_cfg_dbtc:
7372 			wlan_cfg_set_num_tx_desc_pool(wlan_cfg_ctx, 0);
7373 			wlan_cfg_set_num_tx_ext_desc_pool(wlan_cfg_ctx, 0);
7374 			wlan_cfg_set_num_tx_desc(wlan_cfg_ctx, 0);
7375 			wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx, 0);
7376 			break;
7377 		default:
7378 			dp_cdp_err("%pK: Invalid offload config %d",
7379 				   soc, val.cdp_psoc_param_en_nss_cfg);
7380 		}
7381 
7382 			dp_cdp_err("%pK: nss-wifi<0> nss config is enabled"
7383 				   , soc);
7384 		break;
7385 	case CDP_SET_PREFERRED_HW_MODE:
7386 		soc->preferred_hw_mode = val.cdp_psoc_param_preferred_hw_mode;
7387 		break;
7388 	case CDP_IPA_ENABLE:
7389 		soc->wlan_cfg_ctx->ipa_enabled = val.cdp_ipa_enabled;
7390 		break;
7391 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
7392 		wlan_cfg_set_vdev_stats_hw_offload_config(wlan_cfg_ctx,
7393 				val.cdp_psoc_param_vdev_stats_hw_offload);
7394 		break;
7395 	case CDP_SAWF_ENABLE:
7396 		wlan_cfg_set_sawf_config(wlan_cfg_ctx, val.cdp_sawf_enabled);
7397 		break;
7398 	case CDP_UMAC_RST_SKEL_ENABLE:
7399 		dp_umac_rst_skel_enable_update(soc, val.cdp_umac_rst_skel);
7400 		break;
7401 	case CDP_UMAC_RESET_STATS:
7402 		dp_umac_reset_stats_print(soc);
7403 		break;
7404 	case CDP_SAWF_STATS:
7405 		wlan_cfg_set_sawf_stats_config(wlan_cfg_ctx,
7406 					       val.cdp_sawf_stats);
7407 		break;
7408 	default:
7409 		break;
7410 	}
7411 
7412 	return QDF_STATUS_SUCCESS;
7413 }
7414 
7415 /**
7416  * dp_get_psoc_param: function to get parameters in soc
7417  * @cdp_soc: DP soc handle
7418  * @param: parameter type to be set
7419  * @val: address of buffer
7420  *
7421  * Return: status
7422  */
7423 static QDF_STATUS dp_get_psoc_param(struct cdp_soc_t *cdp_soc,
7424 				    enum cdp_psoc_param_type param,
7425 				    cdp_config_param_type *val)
7426 {
7427 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
7428 
7429 	if (!soc)
7430 		return QDF_STATUS_E_FAILURE;
7431 
7432 	switch (param) {
7433 	case CDP_CFG_PEER_EXT_STATS:
7434 		val->cdp_psoc_param_pext_stats =
7435 			wlan_cfg_is_peer_ext_stats_enabled(soc->wlan_cfg_ctx);
7436 		break;
7437 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
7438 		val->cdp_psoc_param_vdev_stats_hw_offload =
7439 			wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx);
7440 		break;
7441 	case CDP_UMAC_RST_SKEL_ENABLE:
7442 		val->cdp_umac_rst_skel = dp_umac_rst_skel_enable_get(soc);
7443 		break;
7444 	default:
7445 		dp_warn("Invalid param");
7446 		break;
7447 	}
7448 
7449 	return QDF_STATUS_SUCCESS;
7450 }
7451 
7452 /**
7453  * dp_set_vdev_dscp_tid_map_wifi3() - Update Map ID selected for particular vdev
7454  * @cdp_soc: CDP SOC handle
7455  * @vdev_id: id of DP_VDEV handle
7456  * @map_id:ID of map that needs to be updated
7457  *
7458  * Return: QDF_STATUS
7459  */
7460 static QDF_STATUS dp_set_vdev_dscp_tid_map_wifi3(ol_txrx_soc_handle cdp_soc,
7461 						 uint8_t vdev_id,
7462 						 uint8_t map_id)
7463 {
7464 	cdp_config_param_type val;
7465 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
7466 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
7467 						     DP_MOD_ID_CDP);
7468 	if (vdev) {
7469 		vdev->dscp_tid_map_id = map_id;
7470 		val.cdp_vdev_param_dscp_tid_map_id = map_id;
7471 		soc->arch_ops.txrx_set_vdev_param(soc,
7472 						  vdev,
7473 						  CDP_UPDATE_DSCP_TO_TID_MAP,
7474 						  val);
7475 		/* Update flag for transmit tid classification */
7476 		if (vdev->dscp_tid_map_id < soc->num_hw_dscp_tid_map)
7477 			vdev->skip_sw_tid_classification |=
7478 				DP_TX_HW_DSCP_TID_MAP_VALID;
7479 		else
7480 			vdev->skip_sw_tid_classification &=
7481 				~DP_TX_HW_DSCP_TID_MAP_VALID;
7482 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7483 		return QDF_STATUS_SUCCESS;
7484 	}
7485 
7486 	return QDF_STATUS_E_FAILURE;
7487 }
7488 
7489 #ifdef DP_RATETABLE_SUPPORT
7490 static int dp_txrx_get_ratekbps(int preamb, int mcs,
7491 				int htflag, int gintval)
7492 {
7493 	uint32_t rix;
7494 	uint16_t ratecode;
7495 	enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
7496 
7497 	return dp_getrateindex((uint32_t)gintval, (uint16_t)mcs, 1,
7498 			       (uint8_t)preamb, 1, punc_mode,
7499 			       &rix, &ratecode);
7500 }
7501 #else
7502 static int dp_txrx_get_ratekbps(int preamb, int mcs,
7503 				int htflag, int gintval)
7504 {
7505 	return 0;
7506 }
7507 #endif
7508 
7509 /**
7510  * dp_txrx_get_pdev_stats() - Returns cdp_pdev_stats
7511  * @soc: DP soc handle
7512  * @pdev_id: id of DP pdev handle
7513  * @pdev_stats: buffer to copy to
7514  *
7515  * Return: status success/failure
7516  */
7517 static QDF_STATUS
7518 dp_txrx_get_pdev_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
7519 		       struct cdp_pdev_stats *pdev_stats)
7520 {
7521 	struct dp_pdev *pdev =
7522 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7523 						   pdev_id);
7524 	if (!pdev)
7525 		return QDF_STATUS_E_FAILURE;
7526 
7527 	dp_aggregate_pdev_stats(pdev);
7528 
7529 	qdf_mem_copy(pdev_stats, &pdev->stats, sizeof(struct cdp_pdev_stats));
7530 	return QDF_STATUS_SUCCESS;
7531 }
7532 
7533 /**
7534  * dp_txrx_update_vdev_me_stats() - Update vdev ME stats sent from CDP
7535  * @vdev: DP vdev handle
7536  * @buf: buffer containing specific stats structure
7537  *
7538  * Return: void
7539  */
7540 static void dp_txrx_update_vdev_me_stats(struct dp_vdev *vdev,
7541 					 void *buf)
7542 {
7543 	struct cdp_tx_ingress_stats *host_stats = NULL;
7544 
7545 	if (!buf) {
7546 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
7547 		return;
7548 	}
7549 	host_stats = (struct cdp_tx_ingress_stats *)buf;
7550 
7551 	DP_STATS_INC_PKT(vdev, tx_i.mcast_en.mcast_pkt,
7552 			 host_stats->mcast_en.mcast_pkt.num,
7553 			 host_stats->mcast_en.mcast_pkt.bytes);
7554 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error,
7555 		     host_stats->mcast_en.dropped_map_error);
7556 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_self_mac,
7557 		     host_stats->mcast_en.dropped_self_mac);
7558 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_send_fail,
7559 		     host_stats->mcast_en.dropped_send_fail);
7560 	DP_STATS_INC(vdev, tx_i.mcast_en.ucast,
7561 		     host_stats->mcast_en.ucast);
7562 	DP_STATS_INC(vdev, tx_i.mcast_en.fail_seg_alloc,
7563 		     host_stats->mcast_en.fail_seg_alloc);
7564 	DP_STATS_INC(vdev, tx_i.mcast_en.clone_fail,
7565 		     host_stats->mcast_en.clone_fail);
7566 }
7567 
7568 /**
7569  * dp_txrx_update_vdev_igmp_me_stats() - Update vdev IGMP ME stats sent from CDP
7570  * @vdev: DP vdev handle
7571  * @buf: buffer containing specific stats structure
7572  *
7573  * Return: void
7574  */
7575 static void dp_txrx_update_vdev_igmp_me_stats(struct dp_vdev *vdev,
7576 					      void *buf)
7577 {
7578 	struct cdp_tx_ingress_stats *host_stats = NULL;
7579 
7580 	if (!buf) {
7581 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
7582 		return;
7583 	}
7584 	host_stats = (struct cdp_tx_ingress_stats *)buf;
7585 
7586 	DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_rcvd,
7587 		     host_stats->igmp_mcast_en.igmp_rcvd);
7588 	DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_ucast_converted,
7589 		     host_stats->igmp_mcast_en.igmp_ucast_converted);
7590 }
7591 
7592 /**
7593  * dp_txrx_update_vdev_host_stats() - Update stats sent through CDP
7594  * @soc_hdl: DP soc handle
7595  * @vdev_id: id of DP vdev handle
7596  * @buf: buffer containing specific stats structure
7597  * @stats_id: stats type
7598  *
7599  * Return: QDF_STATUS
7600  */
7601 static QDF_STATUS dp_txrx_update_vdev_host_stats(struct cdp_soc_t *soc_hdl,
7602 						 uint8_t vdev_id,
7603 						 void *buf,
7604 						 uint16_t stats_id)
7605 {
7606 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
7607 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
7608 						     DP_MOD_ID_CDP);
7609 
7610 	if (!vdev) {
7611 		dp_cdp_err("%pK: Invalid vdev handle", soc);
7612 		return QDF_STATUS_E_FAILURE;
7613 	}
7614 
7615 	switch (stats_id) {
7616 	case DP_VDEV_STATS_PKT_CNT_ONLY:
7617 		break;
7618 	case DP_VDEV_STATS_TX_ME:
7619 		dp_txrx_update_vdev_me_stats(vdev, buf);
7620 		dp_txrx_update_vdev_igmp_me_stats(vdev, buf);
7621 		break;
7622 	default:
7623 		qdf_info("Invalid stats_id %d", stats_id);
7624 		break;
7625 	}
7626 
7627 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7628 	return QDF_STATUS_SUCCESS;
7629 }
7630 
7631 /**
7632  * dp_txrx_get_peer_stats() - will return cdp_peer_stats
7633  * @soc: soc handle
7634  * @vdev_id: id of vdev handle
7635  * @peer_mac: mac of DP_PEER handle
7636  * @peer_stats: buffer to copy to
7637  *
7638  * Return: status success/failure
7639  */
7640 static QDF_STATUS
7641 dp_txrx_get_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
7642 		       uint8_t *peer_mac, struct cdp_peer_stats *peer_stats)
7643 {
7644 	struct dp_peer *peer = NULL;
7645 	struct cdp_peer_info peer_info = { 0 };
7646 
7647 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
7648 				 CDP_WILD_PEER_TYPE);
7649 
7650 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
7651 					 DP_MOD_ID_CDP);
7652 
7653 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
7654 
7655 	if (!peer)
7656 		return QDF_STATUS_E_FAILURE;
7657 
7658 	dp_get_peer_stats(peer, peer_stats);
7659 
7660 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7661 
7662 	return QDF_STATUS_SUCCESS;
7663 }
7664 
7665 /**
7666  * dp_txrx_get_peer_stats_param() - will return specified cdp_peer_stats
7667  * @soc: soc handle
7668  * @vdev_id: vdev_id of vdev object
7669  * @peer_mac: mac address of the peer
7670  * @type: enum of required stats
7671  * @buf: buffer to hold the value
7672  *
7673  * Return: status success/failure
7674  */
7675 static QDF_STATUS
7676 dp_txrx_get_peer_stats_param(struct cdp_soc_t *soc, uint8_t vdev_id,
7677 			     uint8_t *peer_mac, enum cdp_peer_stats_type type,
7678 			     cdp_peer_stats_param_t *buf)
7679 {
7680 	QDF_STATUS ret;
7681 	struct dp_peer *peer = NULL;
7682 	struct cdp_peer_info peer_info = { 0 };
7683 
7684 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
7685 				 CDP_WILD_PEER_TYPE);
7686 
7687 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
7688 				         DP_MOD_ID_CDP);
7689 
7690 	if (!peer) {
7691 		dp_peer_err("%pK: Invalid Peer for Mac " QDF_MAC_ADDR_FMT,
7692 			    soc, QDF_MAC_ADDR_REF(peer_mac));
7693 		return QDF_STATUS_E_FAILURE;
7694 	}
7695 
7696 	if (type >= cdp_peer_per_pkt_stats_min &&
7697 	    type < cdp_peer_per_pkt_stats_max) {
7698 		ret = dp_txrx_get_peer_per_pkt_stats_param(peer, type, buf);
7699 	} else if (type >= cdp_peer_extd_stats_min &&
7700 		   type < cdp_peer_extd_stats_max) {
7701 		ret = dp_txrx_get_peer_extd_stats_param(peer, type, buf);
7702 	} else {
7703 		dp_err("%pK: Invalid stat type requested", soc);
7704 		ret = QDF_STATUS_E_FAILURE;
7705 	}
7706 
7707 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7708 
7709 	return ret;
7710 }
7711 
7712 /**
7713  * dp_txrx_reset_peer_stats() - reset cdp_peer_stats for particular peer
7714  * @soc_hdl: soc handle
7715  * @vdev_id: id of vdev handle
7716  * @peer_mac: mac of DP_PEER handle
7717  *
7718  * Return: QDF_STATUS
7719  */
7720 #ifdef WLAN_FEATURE_11BE_MLO
7721 static QDF_STATUS
7722 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
7723 			 uint8_t *peer_mac)
7724 {
7725 	QDF_STATUS status = QDF_STATUS_SUCCESS;
7726 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
7727 	struct dp_peer *peer =
7728 			dp_peer_get_tgt_peer_hash_find(soc, peer_mac, 0,
7729 						       vdev_id, DP_MOD_ID_CDP);
7730 
7731 	if (!peer)
7732 		return QDF_STATUS_E_FAILURE;
7733 
7734 	DP_STATS_CLR(peer);
7735 	dp_txrx_peer_stats_clr(peer->txrx_peer);
7736 
7737 	if (IS_MLO_DP_MLD_PEER(peer)) {
7738 		uint8_t i;
7739 		struct dp_peer *link_peer;
7740 		struct dp_soc *link_peer_soc;
7741 		struct dp_mld_link_peers link_peers_info;
7742 
7743 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7744 						    &link_peers_info,
7745 						    DP_MOD_ID_CDP);
7746 		for (i = 0; i < link_peers_info.num_links; i++) {
7747 			link_peer = link_peers_info.link_peers[i];
7748 			link_peer_soc = link_peer->vdev->pdev->soc;
7749 
7750 			DP_STATS_CLR(link_peer);
7751 			dp_monitor_peer_reset_stats(link_peer_soc, link_peer);
7752 		}
7753 
7754 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
7755 	} else {
7756 		dp_monitor_peer_reset_stats(soc, peer);
7757 	}
7758 
7759 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7760 
7761 	return status;
7762 }
7763 #else
7764 static QDF_STATUS
7765 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
7766 			 uint8_t *peer_mac)
7767 {
7768 	QDF_STATUS status = QDF_STATUS_SUCCESS;
7769 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
7770 						      peer_mac, 0, vdev_id,
7771 						      DP_MOD_ID_CDP);
7772 
7773 	if (!peer)
7774 		return QDF_STATUS_E_FAILURE;
7775 
7776 	DP_STATS_CLR(peer);
7777 	dp_txrx_peer_stats_clr(peer->txrx_peer);
7778 	dp_monitor_peer_reset_stats((struct dp_soc *)soc, peer);
7779 
7780 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7781 
7782 	return status;
7783 }
7784 #endif
7785 
7786 /**
7787  * dp_txrx_get_vdev_stats() - Update buffer with cdp_vdev_stats
7788  * @soc_hdl: CDP SoC handle
7789  * @vdev_id: vdev Id
7790  * @buf: buffer for vdev stats
7791  * @is_aggregate: are aggregate stats being collected
7792  *
7793  * Return: int
7794  */
7795 static int dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
7796 				  void *buf, bool is_aggregate)
7797 {
7798 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
7799 	struct cdp_vdev_stats *vdev_stats;
7800 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
7801 						     DP_MOD_ID_CDP);
7802 
7803 	if (!vdev)
7804 		return 1;
7805 
7806 	vdev_stats = (struct cdp_vdev_stats *)buf;
7807 
7808 	if (is_aggregate) {
7809 		dp_aggregate_vdev_stats(vdev, buf);
7810 	} else {
7811 		qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
7812 	}
7813 
7814 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7815 	return 0;
7816 }
7817 
7818 /**
7819  * dp_get_total_per() - get total per
7820  * @soc: DP soc handle
7821  * @pdev_id: id of DP_PDEV handle
7822  *
7823  * Return: % error rate using retries per packet and success packets
7824  */
7825 static int dp_get_total_per(struct cdp_soc_t *soc, uint8_t pdev_id)
7826 {
7827 	struct dp_pdev *pdev =
7828 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7829 						   pdev_id);
7830 
7831 	if (!pdev)
7832 		return 0;
7833 
7834 	dp_aggregate_pdev_stats(pdev);
7835 	if ((pdev->stats.tx.tx_success.num + pdev->stats.tx.retries) == 0)
7836 		return 0;
7837 	return ((pdev->stats.tx.retries * 100) /
7838 		((pdev->stats.tx.tx_success.num) + (pdev->stats.tx.retries)));
7839 }
7840 
7841 /**
7842  * dp_txrx_stats_publish() - publish pdev stats into a buffer
7843  * @soc: DP soc handle
7844  * @pdev_id: id of DP_PDEV handle
7845  * @buf: to hold pdev_stats
7846  *
7847  * Return: int
7848  */
7849 static int
7850 dp_txrx_stats_publish(struct cdp_soc_t *soc, uint8_t pdev_id,
7851 		      struct cdp_stats_extd *buf)
7852 {
7853 	struct cdp_txrx_stats_req req = {0,};
7854 	QDF_STATUS status;
7855 	struct dp_pdev *pdev =
7856 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7857 						   pdev_id);
7858 
7859 	if (!pdev)
7860 		return TXRX_STATS_LEVEL_OFF;
7861 
7862 	if (pdev->pending_fw_stats_response)
7863 		return TXRX_STATS_LEVEL_OFF;
7864 
7865 	dp_aggregate_pdev_stats(pdev);
7866 
7867 	pdev->pending_fw_stats_response = true;
7868 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_TX;
7869 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
7870 	pdev->fw_stats_tlv_bitmap_rcvd = 0;
7871 	qdf_event_reset(&pdev->fw_stats_event);
7872 	dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
7873 				req.param1, req.param2, req.param3, 0,
7874 				req.cookie_val, 0);
7875 
7876 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_RX;
7877 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
7878 	dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
7879 				req.param1, req.param2, req.param3, 0,
7880 				req.cookie_val, 0);
7881 
7882 	status =
7883 		qdf_wait_single_event(&pdev->fw_stats_event, DP_MAX_SLEEP_TIME);
7884 
7885 	if (status != QDF_STATUS_SUCCESS) {
7886 		if (status == QDF_STATUS_E_TIMEOUT)
7887 			qdf_debug("TIMEOUT_OCCURS");
7888 		pdev->pending_fw_stats_response = false;
7889 		return TXRX_STATS_LEVEL_OFF;
7890 	}
7891 	qdf_mem_copy(buf, &pdev->stats, sizeof(struct cdp_pdev_stats));
7892 	pdev->pending_fw_stats_response = false;
7893 
7894 	return TXRX_STATS_LEVEL;
7895 }
7896 
7897 /**
7898  * dp_get_obss_stats() - Get Pdev OBSS stats from Fw
7899  * @soc: DP soc handle
7900  * @pdev_id: id of DP_PDEV handle
7901  * @buf: to hold pdev obss stats
7902  * @req: Pointer to CDP TxRx stats
7903  *
7904  * Return: status
7905  */
7906 static QDF_STATUS
7907 dp_get_obss_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
7908 		  struct cdp_pdev_obss_pd_stats_tlv *buf,
7909 		  struct cdp_txrx_stats_req *req)
7910 {
7911 	QDF_STATUS status;
7912 	struct dp_pdev *pdev =
7913 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7914 						   pdev_id);
7915 
7916 	if (!pdev)
7917 		return QDF_STATUS_E_INVAL;
7918 
7919 	if (pdev->pending_fw_obss_stats_response)
7920 		return QDF_STATUS_E_AGAIN;
7921 
7922 	pdev->pending_fw_obss_stats_response = true;
7923 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
7924 	req->cookie_val = DBG_STATS_COOKIE_HTT_OBSS;
7925 	qdf_event_reset(&pdev->fw_obss_stats_event);
7926 	status = dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
7927 					   req->param1, req->param2,
7928 					   req->param3, 0, req->cookie_val,
7929 					   req->mac_id);
7930 	if (QDF_IS_STATUS_ERROR(status)) {
7931 		pdev->pending_fw_obss_stats_response = false;
7932 		return status;
7933 	}
7934 	status =
7935 		qdf_wait_single_event(&pdev->fw_obss_stats_event,
7936 				      DP_MAX_SLEEP_TIME);
7937 
7938 	if (status != QDF_STATUS_SUCCESS) {
7939 		if (status == QDF_STATUS_E_TIMEOUT)
7940 			qdf_debug("TIMEOUT_OCCURS");
7941 		pdev->pending_fw_obss_stats_response = false;
7942 		return QDF_STATUS_E_TIMEOUT;
7943 	}
7944 	qdf_mem_copy(buf, &pdev->stats.htt_tx_pdev_stats.obss_pd_stats_tlv,
7945 		     sizeof(struct cdp_pdev_obss_pd_stats_tlv));
7946 	pdev->pending_fw_obss_stats_response = false;
7947 	return status;
7948 }
7949 
7950 /**
7951  * dp_clear_pdev_obss_pd_stats() - Clear pdev obss stats
7952  * @soc: DP soc handle
7953  * @pdev_id: id of DP_PDEV handle
7954  * @req: Pointer to CDP TxRx stats request mac_id will be
7955  *	 pre-filled and should not be overwritten
7956  *
7957  * Return: status
7958  */
7959 static QDF_STATUS
7960 dp_clear_pdev_obss_pd_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
7961 			    struct cdp_txrx_stats_req *req)
7962 {
7963 	struct dp_pdev *pdev =
7964 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7965 						   pdev_id);
7966 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
7967 
7968 	if (!pdev)
7969 		return QDF_STATUS_E_INVAL;
7970 
7971 	/*
7972 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
7973 	 * from param0 to param3 according to below rule:
7974 	 *
7975 	 * PARAM:
7976 	 *   - config_param0 : start_offset (stats type)
7977 	 *   - config_param1 : stats bmask from start offset
7978 	 *   - config_param2 : stats bmask from start offset + 32
7979 	 *   - config_param3 : stats bmask from start offset + 64
7980 	 */
7981 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_RESET;
7982 	req->param0 = HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
7983 	req->param1 = 0x00000001;
7984 
7985 	return dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
7986 				  req->param1, req->param2, req->param3, 0,
7987 				cookie_val, req->mac_id);
7988 }
7989 
7990 /**
7991  * dp_set_pdev_dscp_tid_map_wifi3() - update dscp tid map in pdev
7992  * @soc_handle: soc handle
7993  * @pdev_id: id of DP_PDEV handle
7994  * @map_id: ID of map that needs to be updated
7995  * @tos: index value in map
7996  * @tid: tid value passed by the user
7997  *
7998  * Return: QDF_STATUS
7999  */
8000 static QDF_STATUS
8001 dp_set_pdev_dscp_tid_map_wifi3(struct cdp_soc_t *soc_handle,
8002 			       uint8_t pdev_id,
8003 			       uint8_t map_id,
8004 			       uint8_t tos, uint8_t tid)
8005 {
8006 	uint8_t dscp;
8007 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
8008 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
8009 
8010 	if (!pdev)
8011 		return QDF_STATUS_E_FAILURE;
8012 
8013 	dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
8014 	pdev->dscp_tid_map[map_id][dscp] = tid;
8015 
8016 	if (map_id < soc->num_hw_dscp_tid_map)
8017 		hal_tx_update_dscp_tid(soc->hal_soc, tid,
8018 				       map_id, dscp);
8019 	else
8020 		return QDF_STATUS_E_FAILURE;
8021 
8022 	return QDF_STATUS_SUCCESS;
8023 }
8024 
8025 #ifdef WLAN_SYSFS_DP_STATS
8026 /**
8027  * dp_sysfs_event_trigger() - Trigger event to wait for firmware
8028  * stats request response.
8029  * @soc: soc handle
8030  * @cookie_val: cookie value
8031  *
8032  * Return: QDF_STATUS
8033  */
8034 static QDF_STATUS
8035 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
8036 {
8037 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8038 	/* wait for firmware response for sysfs stats request */
8039 	if (cookie_val == DBG_SYSFS_STATS_COOKIE) {
8040 		if (!soc) {
8041 			dp_cdp_err("soc is NULL");
8042 			return QDF_STATUS_E_FAILURE;
8043 		}
8044 		/* wait for event completion */
8045 		status = qdf_wait_single_event(&soc->sysfs_config->sysfs_txrx_fw_request_done,
8046 					       WLAN_SYSFS_STAT_REQ_WAIT_MS);
8047 		if (status == QDF_STATUS_SUCCESS)
8048 			dp_cdp_info("sysfs_txrx_fw_request_done event completed");
8049 		else if (status == QDF_STATUS_E_TIMEOUT)
8050 			dp_cdp_warn("sysfs_txrx_fw_request_done event expired");
8051 		else
8052 			dp_cdp_warn("sysfs_txrx_fw_request_done event error code %d", status);
8053 	}
8054 
8055 	return status;
8056 }
8057 #else /* WLAN_SYSFS_DP_STATS */
8058 static QDF_STATUS
8059 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
8060 {
8061 	return QDF_STATUS_SUCCESS;
8062 }
8063 #endif /* WLAN_SYSFS_DP_STATS */
8064 
8065 /**
8066  * dp_fw_stats_process() - Process TXRX FW stats request.
8067  * @vdev: DP VDEV handle
8068  * @req: stats request
8069  *
8070  * Return: QDF_STATUS
8071  */
8072 static QDF_STATUS
8073 dp_fw_stats_process(struct dp_vdev *vdev,
8074 		    struct cdp_txrx_stats_req *req)
8075 {
8076 	struct dp_pdev *pdev = NULL;
8077 	struct dp_soc *soc = NULL;
8078 	uint32_t stats = req->stats;
8079 	uint8_t mac_id = req->mac_id;
8080 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
8081 
8082 	if (!vdev) {
8083 		DP_TRACE(NONE, "VDEV not found");
8084 		return QDF_STATUS_E_FAILURE;
8085 	}
8086 
8087 	pdev = vdev->pdev;
8088 	if (!pdev) {
8089 		DP_TRACE(NONE, "PDEV not found");
8090 		return QDF_STATUS_E_FAILURE;
8091 	}
8092 
8093 	soc = pdev->soc;
8094 	if (!soc) {
8095 		DP_TRACE(NONE, "soc not found");
8096 		return QDF_STATUS_E_FAILURE;
8097 	}
8098 
8099 	/* In case request is from host sysfs for displaying stats on console */
8100 	if (req->cookie_val == DBG_SYSFS_STATS_COOKIE)
8101 		cookie_val = DBG_SYSFS_STATS_COOKIE;
8102 
8103 	/*
8104 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
8105 	 * from param0 to param3 according to below rule:
8106 	 *
8107 	 * PARAM:
8108 	 *   - config_param0 : start_offset (stats type)
8109 	 *   - config_param1 : stats bmask from start offset
8110 	 *   - config_param2 : stats bmask from start offset + 32
8111 	 *   - config_param3 : stats bmask from start offset + 64
8112 	 */
8113 	if (req->stats == CDP_TXRX_STATS_0) {
8114 		req->param0 = HTT_DBG_EXT_STATS_PDEV_TX;
8115 		req->param1 = 0xFFFFFFFF;
8116 		req->param2 = 0xFFFFFFFF;
8117 		req->param3 = 0xFFFFFFFF;
8118 	} else if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_TX_MU) {
8119 		req->param0 = HTT_DBG_EXT_STATS_SET_VDEV_MASK(vdev->vdev_id);
8120 	}
8121 
8122 	if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT) {
8123 		dp_h2t_ext_stats_msg_send(pdev,
8124 					  HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT,
8125 					  req->param0, req->param1, req->param2,
8126 					  req->param3, 0, cookie_val,
8127 					  mac_id);
8128 	} else {
8129 		dp_h2t_ext_stats_msg_send(pdev, stats, req->param0,
8130 					  req->param1, req->param2, req->param3,
8131 					  0, cookie_val, mac_id);
8132 	}
8133 
8134 	dp_sysfs_event_trigger(soc, cookie_val);
8135 
8136 	return QDF_STATUS_SUCCESS;
8137 }
8138 
8139 /**
8140  * dp_txrx_stats_request - function to map to firmware and host stats
8141  * @soc_handle: soc handle
8142  * @vdev_id: virtual device ID
8143  * @req: stats request
8144  *
8145  * Return: QDF_STATUS
8146  */
8147 static
8148 QDF_STATUS dp_txrx_stats_request(struct cdp_soc_t *soc_handle,
8149 				 uint8_t vdev_id,
8150 				 struct cdp_txrx_stats_req *req)
8151 {
8152 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_handle);
8153 	int host_stats;
8154 	int fw_stats;
8155 	enum cdp_stats stats;
8156 	int num_stats;
8157 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8158 						     DP_MOD_ID_CDP);
8159 	QDF_STATUS status = QDF_STATUS_E_INVAL;
8160 
8161 	if (!vdev || !req) {
8162 		dp_cdp_err("%pK: Invalid vdev/req instance", soc);
8163 		status = QDF_STATUS_E_INVAL;
8164 		goto fail0;
8165 	}
8166 
8167 	if (req->mac_id >= WLAN_CFG_MAC_PER_TARGET) {
8168 		dp_err("Invalid mac id request");
8169 		status = QDF_STATUS_E_INVAL;
8170 		goto fail0;
8171 	}
8172 
8173 	stats = req->stats;
8174 	if (stats >= CDP_TXRX_MAX_STATS) {
8175 		status = QDF_STATUS_E_INVAL;
8176 		goto fail0;
8177 	}
8178 
8179 	/*
8180 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
8181 	 *			has to be updated if new FW HTT stats added
8182 	 */
8183 	if (stats > CDP_TXRX_STATS_HTT_MAX)
8184 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
8185 
8186 	num_stats  = QDF_ARRAY_SIZE(dp_stats_mapping_table);
8187 
8188 	if (stats >= num_stats) {
8189 		dp_cdp_err("%pK : Invalid stats option: %d", soc, stats);
8190 		status = QDF_STATUS_E_INVAL;
8191 		goto fail0;
8192 	}
8193 
8194 	req->stats = stats;
8195 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
8196 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
8197 
8198 	dp_info("stats: %u fw_stats_type: %d host_stats: %d",
8199 		stats, fw_stats, host_stats);
8200 
8201 	if (fw_stats != TXRX_FW_STATS_INVALID) {
8202 		/* update request with FW stats type */
8203 		req->stats = fw_stats;
8204 		status = dp_fw_stats_process(vdev, req);
8205 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
8206 			(host_stats <= TXRX_HOST_STATS_MAX))
8207 		status = dp_print_host_stats(vdev, req, soc);
8208 	else
8209 		dp_cdp_info("%pK: Wrong Input for TxRx Stats", soc);
8210 fail0:
8211 	if (vdev)
8212 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8213 	return status;
8214 }
8215 
8216 /**
8217  * dp_soc_notify_asserted_soc() - API to notify asserted soc info
8218  * @psoc: CDP soc handle
8219  *
8220  * Return: QDF_STATUS
8221  */
8222 static QDF_STATUS dp_soc_notify_asserted_soc(struct cdp_soc_t *psoc)
8223 {
8224 	struct dp_soc *soc = (struct dp_soc *)psoc;
8225 
8226 	if (!soc) {
8227 		dp_cdp_err("%pK: soc is NULL", soc);
8228 		return QDF_STATUS_E_INVAL;
8229 	}
8230 
8231 	return dp_umac_reset_notify_asserted_soc(soc);
8232 }
8233 
8234 /**
8235  * dp_txrx_dump_stats() -  Dump statistics
8236  * @psoc: CDP soc handle
8237  * @value: Statistics option
8238  * @level: verbosity level
8239  */
8240 static QDF_STATUS dp_txrx_dump_stats(struct cdp_soc_t *psoc, uint16_t value,
8241 				     enum qdf_stats_verbosity_level level)
8242 {
8243 	struct dp_soc *soc =
8244 		(struct dp_soc *)psoc;
8245 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8246 
8247 	if (!soc) {
8248 		dp_cdp_err("%pK: soc is NULL", soc);
8249 		return QDF_STATUS_E_INVAL;
8250 	}
8251 
8252 	switch (value) {
8253 	case CDP_TXRX_PATH_STATS:
8254 		dp_txrx_path_stats(soc);
8255 		dp_print_soc_interrupt_stats(soc);
8256 		hal_dump_reg_write_stats(soc->hal_soc);
8257 		dp_pdev_print_tx_delay_stats(soc);
8258 		/* Dump usage watermark stats for core TX/RX SRNGs */
8259 		dp_dump_srng_high_wm_stats(soc, (1 << REO_DST));
8260 		dp_print_fisa_stats(soc);
8261 		break;
8262 
8263 	case CDP_RX_RING_STATS:
8264 		dp_print_per_ring_stats(soc);
8265 		break;
8266 
8267 	case CDP_TXRX_TSO_STATS:
8268 		dp_print_tso_stats(soc, level);
8269 		break;
8270 
8271 	case CDP_DUMP_TX_FLOW_POOL_INFO:
8272 		if (level == QDF_STATS_VERBOSITY_LEVEL_HIGH)
8273 			cdp_dump_flow_pool_info((struct cdp_soc_t *)soc);
8274 		else
8275 			dp_tx_dump_flow_pool_info_compact(soc);
8276 		break;
8277 
8278 	case CDP_DP_NAPI_STATS:
8279 		dp_print_napi_stats(soc);
8280 		break;
8281 
8282 	case CDP_TXRX_DESC_STATS:
8283 		/* TODO: NOT IMPLEMENTED */
8284 		break;
8285 
8286 	case CDP_DP_RX_FISA_STATS:
8287 		dp_rx_dump_fisa_stats(soc);
8288 		break;
8289 
8290 	case CDP_DP_SWLM_STATS:
8291 		dp_print_swlm_stats(soc);
8292 		break;
8293 
8294 	case CDP_DP_TX_HW_LATENCY_STATS:
8295 		dp_pdev_print_tx_delay_stats(soc);
8296 		break;
8297 
8298 	default:
8299 		status = QDF_STATUS_E_INVAL;
8300 		break;
8301 	}
8302 
8303 	return status;
8304 
8305 }
8306 
8307 #ifdef WLAN_SYSFS_DP_STATS
8308 static
8309 void dp_sysfs_get_stat_type(struct dp_soc *soc, uint32_t *mac_id,
8310 			    uint32_t *stat_type)
8311 {
8312 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
8313 	*stat_type = soc->sysfs_config->stat_type_requested;
8314 	*mac_id   = soc->sysfs_config->mac_id;
8315 
8316 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
8317 }
8318 
8319 static
8320 void dp_sysfs_update_config_buf_params(struct dp_soc *soc,
8321 				       uint32_t curr_len,
8322 				       uint32_t max_buf_len,
8323 				       char *buf)
8324 {
8325 	qdf_spinlock_acquire(&soc->sysfs_config->sysfs_write_user_buffer);
8326 	/* set sysfs_config parameters */
8327 	soc->sysfs_config->buf = buf;
8328 	soc->sysfs_config->curr_buffer_length = curr_len;
8329 	soc->sysfs_config->max_buffer_length = max_buf_len;
8330 	qdf_spinlock_release(&soc->sysfs_config->sysfs_write_user_buffer);
8331 }
8332 
8333 static
8334 QDF_STATUS dp_sysfs_fill_stats(ol_txrx_soc_handle soc_hdl,
8335 			       char *buf, uint32_t buf_size)
8336 {
8337 	uint32_t mac_id = 0;
8338 	uint32_t stat_type = 0;
8339 	uint32_t fw_stats = 0;
8340 	uint32_t host_stats = 0;
8341 	enum cdp_stats stats;
8342 	struct cdp_txrx_stats_req req;
8343 	uint32_t num_stats;
8344 	struct dp_soc *soc = NULL;
8345 
8346 	if (!soc_hdl) {
8347 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
8348 		return QDF_STATUS_E_INVAL;
8349 	}
8350 
8351 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
8352 
8353 	if (!soc) {
8354 		dp_cdp_err("%pK: soc is NULL", soc);
8355 		return QDF_STATUS_E_INVAL;
8356 	}
8357 
8358 	dp_sysfs_get_stat_type(soc, &mac_id, &stat_type);
8359 
8360 	stats = stat_type;
8361 	if (stats >= CDP_TXRX_MAX_STATS) {
8362 		dp_cdp_info("sysfs stat type requested is invalid");
8363 		return QDF_STATUS_E_INVAL;
8364 	}
8365 	/*
8366 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
8367 	 *			has to be updated if new FW HTT stats added
8368 	 */
8369 	if (stats > CDP_TXRX_MAX_STATS)
8370 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
8371 
8372 	num_stats = QDF_ARRAY_SIZE(dp_stats_mapping_table);
8373 
8374 	if (stats >= num_stats) {
8375 		dp_cdp_err("%pK : Invalid stats option: %d, max num stats: %d",
8376 				soc, stats, num_stats);
8377 		return QDF_STATUS_E_INVAL;
8378 	}
8379 
8380 	/* build request */
8381 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
8382 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
8383 
8384 	req.stats = stat_type;
8385 	req.mac_id = mac_id;
8386 	/* request stats to be printed */
8387 	qdf_mutex_acquire(&soc->sysfs_config->sysfs_read_lock);
8388 
8389 	if (fw_stats != TXRX_FW_STATS_INVALID) {
8390 		/* update request with FW stats type */
8391 		req.cookie_val = DBG_SYSFS_STATS_COOKIE;
8392 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
8393 			(host_stats <= TXRX_HOST_STATS_MAX)) {
8394 		req.cookie_val = DBG_STATS_COOKIE_DEFAULT;
8395 		soc->sysfs_config->process_id = qdf_get_current_pid();
8396 		soc->sysfs_config->printing_mode = PRINTING_MODE_ENABLED;
8397 	}
8398 
8399 	dp_sysfs_update_config_buf_params(soc, 0, buf_size, buf);
8400 
8401 	dp_txrx_stats_request(soc_hdl, mac_id, &req);
8402 	soc->sysfs_config->process_id = 0;
8403 	soc->sysfs_config->printing_mode = PRINTING_MODE_DISABLED;
8404 
8405 	dp_sysfs_update_config_buf_params(soc, 0, 0, NULL);
8406 
8407 	qdf_mutex_release(&soc->sysfs_config->sysfs_read_lock);
8408 	return QDF_STATUS_SUCCESS;
8409 }
8410 
8411 static
8412 QDF_STATUS dp_sysfs_set_stat_type(ol_txrx_soc_handle soc_hdl,
8413 				  uint32_t stat_type, uint32_t mac_id)
8414 {
8415 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
8416 
8417 	if (!soc_hdl) {
8418 		dp_cdp_err("%pK: soc is NULL", soc);
8419 		return QDF_STATUS_E_INVAL;
8420 	}
8421 
8422 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
8423 
8424 	soc->sysfs_config->stat_type_requested = stat_type;
8425 	soc->sysfs_config->mac_id = mac_id;
8426 
8427 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
8428 
8429 	return QDF_STATUS_SUCCESS;
8430 }
8431 
8432 static
8433 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
8434 {
8435 	struct dp_soc *soc;
8436 	QDF_STATUS status;
8437 
8438 	if (!soc_hdl) {
8439 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
8440 		return QDF_STATUS_E_INVAL;
8441 	}
8442 
8443 	soc = soc_hdl;
8444 
8445 	soc->sysfs_config = qdf_mem_malloc(sizeof(struct sysfs_stats_config));
8446 	if (!soc->sysfs_config) {
8447 		dp_cdp_err("failed to allocate memory for sysfs_config no memory");
8448 		return QDF_STATUS_E_NOMEM;
8449 	}
8450 
8451 	status = qdf_event_create(&soc->sysfs_config->sysfs_txrx_fw_request_done);
8452 	/* create event for fw stats request from sysfs */
8453 	if (status != QDF_STATUS_SUCCESS) {
8454 		dp_cdp_err("failed to create event sysfs_txrx_fw_request_done");
8455 		qdf_mem_free(soc->sysfs_config);
8456 		soc->sysfs_config = NULL;
8457 		return QDF_STATUS_E_FAILURE;
8458 	}
8459 
8460 	qdf_spinlock_create(&soc->sysfs_config->rw_stats_lock);
8461 	qdf_mutex_create(&soc->sysfs_config->sysfs_read_lock);
8462 	qdf_spinlock_create(&soc->sysfs_config->sysfs_write_user_buffer);
8463 
8464 	return QDF_STATUS_SUCCESS;
8465 }
8466 
8467 static
8468 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
8469 {
8470 	struct dp_soc *soc;
8471 	QDF_STATUS status;
8472 
8473 	if (!soc_hdl) {
8474 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
8475 		return QDF_STATUS_E_INVAL;
8476 	}
8477 
8478 	soc = soc_hdl;
8479 	if (!soc->sysfs_config) {
8480 		dp_cdp_err("soc->sysfs_config is NULL");
8481 		return QDF_STATUS_E_FAILURE;
8482 	}
8483 
8484 	status = qdf_event_destroy(&soc->sysfs_config->sysfs_txrx_fw_request_done);
8485 	if (status != QDF_STATUS_SUCCESS)
8486 		dp_cdp_err("Failed to destroy event sysfs_txrx_fw_request_done");
8487 
8488 	qdf_mutex_destroy(&soc->sysfs_config->sysfs_read_lock);
8489 	qdf_spinlock_destroy(&soc->sysfs_config->rw_stats_lock);
8490 	qdf_spinlock_destroy(&soc->sysfs_config->sysfs_write_user_buffer);
8491 
8492 	qdf_mem_free(soc->sysfs_config);
8493 
8494 	return QDF_STATUS_SUCCESS;
8495 }
8496 
8497 #else /* WLAN_SYSFS_DP_STATS */
8498 
8499 static
8500 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
8501 {
8502 	return QDF_STATUS_SUCCESS;
8503 }
8504 
8505 static
8506 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
8507 {
8508 	return QDF_STATUS_SUCCESS;
8509 }
8510 #endif /* WLAN_SYSFS_DP_STATS */
8511 
8512 /**
8513  * dp_txrx_clear_dump_stats() - clear dumpStats
8514  * @soc_hdl: soc handle
8515  * @pdev_id: pdev ID
8516  * @value: stats option
8517  *
8518  * Return: 0 - Success, non-zero - failure
8519  */
8520 static
8521 QDF_STATUS dp_txrx_clear_dump_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
8522 				    uint8_t value)
8523 {
8524 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
8525 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8526 
8527 	if (!soc) {
8528 		dp_err("soc is NULL");
8529 		return QDF_STATUS_E_INVAL;
8530 	}
8531 
8532 	switch (value) {
8533 	case CDP_TXRX_TSO_STATS:
8534 		dp_txrx_clear_tso_stats(soc);
8535 		break;
8536 
8537 	case CDP_DP_TX_HW_LATENCY_STATS:
8538 		dp_pdev_clear_tx_delay_stats(soc);
8539 		break;
8540 
8541 	default:
8542 		status = QDF_STATUS_E_INVAL;
8543 		break;
8544 	}
8545 
8546 	return status;
8547 }
8548 
8549 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
8550 /**
8551  * dp_update_flow_control_parameters() - API to store datapath
8552  *                            config parameters
8553  * @soc: soc handle
8554  * @params: ini parameter handle
8555  *
8556  * Return: void
8557  */
8558 static inline
8559 void dp_update_flow_control_parameters(struct dp_soc *soc,
8560 				struct cdp_config_params *params)
8561 {
8562 	soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold =
8563 					params->tx_flow_stop_queue_threshold;
8564 	soc->wlan_cfg_ctx->tx_flow_start_queue_offset =
8565 					params->tx_flow_start_queue_offset;
8566 }
8567 #else
8568 static inline
8569 void dp_update_flow_control_parameters(struct dp_soc *soc,
8570 				struct cdp_config_params *params)
8571 {
8572 }
8573 #endif
8574 
8575 #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
8576 /* Max packet limit for TX Comp packet loop (dp_tx_comp_handler) */
8577 #define DP_TX_COMP_LOOP_PKT_LIMIT_MAX 1024
8578 
8579 /* Max packet limit for RX REAP Loop (dp_rx_process) */
8580 #define DP_RX_REAP_LOOP_PKT_LIMIT_MAX 1024
8581 
8582 static
8583 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
8584 					struct cdp_config_params *params)
8585 {
8586 	soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit =
8587 				params->tx_comp_loop_pkt_limit;
8588 
8589 	if (params->tx_comp_loop_pkt_limit < DP_TX_COMP_LOOP_PKT_LIMIT_MAX)
8590 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = true;
8591 	else
8592 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = false;
8593 
8594 	soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit =
8595 				params->rx_reap_loop_pkt_limit;
8596 
8597 	if (params->rx_reap_loop_pkt_limit < DP_RX_REAP_LOOP_PKT_LIMIT_MAX)
8598 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = true;
8599 	else
8600 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = false;
8601 
8602 	soc->wlan_cfg_ctx->rx_hp_oos_update_limit =
8603 				params->rx_hp_oos_update_limit;
8604 
8605 	dp_info("tx_comp_loop_pkt_limit %u tx_comp_enable_eol_data_check %u rx_reap_loop_pkt_limit %u rx_enable_eol_data_check %u rx_hp_oos_update_limit %u",
8606 		soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit,
8607 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check,
8608 		soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit,
8609 		soc->wlan_cfg_ctx->rx_enable_eol_data_check,
8610 		soc->wlan_cfg_ctx->rx_hp_oos_update_limit);
8611 }
8612 
8613 #else
8614 static inline
8615 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
8616 					struct cdp_config_params *params)
8617 { }
8618 
8619 #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
8620 
8621 /**
8622  * dp_update_config_parameters() - API to store datapath
8623  *                            config parameters
8624  * @psoc: soc handle
8625  * @params: ini parameter handle
8626  *
8627  * Return: status
8628  */
8629 static
8630 QDF_STATUS dp_update_config_parameters(struct cdp_soc *psoc,
8631 				struct cdp_config_params *params)
8632 {
8633 	struct dp_soc *soc = (struct dp_soc *)psoc;
8634 
8635 	if (!(soc)) {
8636 		dp_cdp_err("%pK: Invalid handle", soc);
8637 		return QDF_STATUS_E_INVAL;
8638 	}
8639 
8640 	soc->wlan_cfg_ctx->tso_enabled = params->tso_enable;
8641 	soc->wlan_cfg_ctx->lro_enabled = params->lro_enable;
8642 	soc->wlan_cfg_ctx->rx_hash = params->flow_steering_enable;
8643 	soc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload =
8644 				params->p2p_tcp_udp_checksumoffload;
8645 	soc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload =
8646 				params->nan_tcp_udp_checksumoffload;
8647 	soc->wlan_cfg_ctx->tcp_udp_checksumoffload =
8648 				params->tcp_udp_checksumoffload;
8649 	soc->wlan_cfg_ctx->napi_enabled = params->napi_enable;
8650 	soc->wlan_cfg_ctx->ipa_enabled = params->ipa_enable;
8651 	soc->wlan_cfg_ctx->gro_enabled = params->gro_enable;
8652 
8653 	dp_update_rx_soft_irq_limit_params(soc, params);
8654 	dp_update_flow_control_parameters(soc, params);
8655 
8656 	return QDF_STATUS_SUCCESS;
8657 }
8658 
8659 static struct cdp_wds_ops dp_ops_wds = {
8660 	.vdev_set_wds = dp_vdev_set_wds,
8661 #ifdef WDS_VENDOR_EXTENSION
8662 	.txrx_set_wds_rx_policy = dp_txrx_set_wds_rx_policy,
8663 	.txrx_wds_peer_tx_policy_update = dp_txrx_peer_wds_tx_policy_update,
8664 #endif
8665 };
8666 
8667 /**
8668  * dp_txrx_data_tx_cb_set() - set the callback for non standard tx
8669  * @soc_hdl: datapath soc handle
8670  * @vdev_id: virtual interface id
8671  * @callback: callback function
8672  * @ctxt: callback context
8673  *
8674  */
8675 static void
8676 dp_txrx_data_tx_cb_set(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
8677 		       ol_txrx_data_tx_cb callback, void *ctxt)
8678 {
8679 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
8680 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8681 						     DP_MOD_ID_CDP);
8682 
8683 	if (!vdev)
8684 		return;
8685 
8686 	vdev->tx_non_std_data_callback.func = callback;
8687 	vdev->tx_non_std_data_callback.ctxt = ctxt;
8688 
8689 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8690 }
8691 
8692 /**
8693  * dp_pdev_get_dp_txrx_handle() - get dp handle from pdev
8694  * @soc: datapath soc handle
8695  * @pdev_id: id of datapath pdev handle
8696  *
8697  * Return: opaque pointer to dp txrx handle
8698  */
8699 static void *dp_pdev_get_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id)
8700 {
8701 	struct dp_pdev *pdev =
8702 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
8703 						   pdev_id);
8704 	if (qdf_unlikely(!pdev))
8705 		return NULL;
8706 
8707 	return pdev->dp_txrx_handle;
8708 }
8709 
8710 /**
8711  * dp_pdev_set_dp_txrx_handle() - set dp handle in pdev
8712  * @soc: datapath soc handle
8713  * @pdev_id: id of datapath pdev handle
8714  * @dp_txrx_hdl: opaque pointer for dp_txrx_handle
8715  *
8716  * Return: void
8717  */
8718 static void
8719 dp_pdev_set_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id,
8720 			   void *dp_txrx_hdl)
8721 {
8722 	struct dp_pdev *pdev =
8723 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
8724 						   pdev_id);
8725 
8726 	if (!pdev)
8727 		return;
8728 
8729 	pdev->dp_txrx_handle = dp_txrx_hdl;
8730 }
8731 
8732 /**
8733  * dp_vdev_get_dp_ext_handle() - get dp handle from vdev
8734  * @soc_hdl: datapath soc handle
8735  * @vdev_id: vdev id
8736  *
8737  * Return: opaque pointer to dp txrx handle
8738  */
8739 static void *dp_vdev_get_dp_ext_handle(ol_txrx_soc_handle soc_hdl,
8740 				       uint8_t vdev_id)
8741 {
8742 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
8743 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8744 						     DP_MOD_ID_CDP);
8745 	void *dp_ext_handle;
8746 
8747 	if (!vdev)
8748 		return NULL;
8749 	dp_ext_handle = vdev->vdev_dp_ext_handle;
8750 
8751 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8752 	return dp_ext_handle;
8753 }
8754 
8755 /**
8756  * dp_vdev_set_dp_ext_handle() - set dp handle in vdev
8757  * @soc_hdl: datapath soc handle
8758  * @vdev_id: vdev id
8759  * @size: size of advance dp handle
8760  *
8761  * Return: QDF_STATUS
8762  */
8763 static QDF_STATUS
8764 dp_vdev_set_dp_ext_handle(ol_txrx_soc_handle soc_hdl, uint8_t vdev_id,
8765 			  uint16_t size)
8766 {
8767 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
8768 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8769 						     DP_MOD_ID_CDP);
8770 	void *dp_ext_handle;
8771 
8772 	if (!vdev)
8773 		return QDF_STATUS_E_FAILURE;
8774 
8775 	dp_ext_handle = qdf_mem_malloc(size);
8776 
8777 	if (!dp_ext_handle) {
8778 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8779 		return QDF_STATUS_E_FAILURE;
8780 	}
8781 
8782 	vdev->vdev_dp_ext_handle = dp_ext_handle;
8783 
8784 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8785 	return QDF_STATUS_SUCCESS;
8786 }
8787 
8788 /**
8789  * dp_vdev_inform_ll_conn() - Inform vdev to add/delete a latency critical
8790  *			      connection for this vdev
8791  * @soc_hdl: CDP soc handle
8792  * @vdev_id: vdev ID
8793  * @action: Add/Delete action
8794  *
8795  * Return: QDF_STATUS.
8796  */
8797 static QDF_STATUS
8798 dp_vdev_inform_ll_conn(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
8799 		       enum vdev_ll_conn_actions action)
8800 {
8801 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
8802 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8803 						     DP_MOD_ID_CDP);
8804 
8805 	if (!vdev) {
8806 		dp_err("LL connection action for invalid vdev %d", vdev_id);
8807 		return QDF_STATUS_E_FAILURE;
8808 	}
8809 
8810 	switch (action) {
8811 	case CDP_VDEV_LL_CONN_ADD:
8812 		vdev->num_latency_critical_conn++;
8813 		break;
8814 
8815 	case CDP_VDEV_LL_CONN_DEL:
8816 		vdev->num_latency_critical_conn--;
8817 		break;
8818 
8819 	default:
8820 		dp_err("LL connection action invalid %d", action);
8821 		break;
8822 	}
8823 
8824 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8825 	return QDF_STATUS_SUCCESS;
8826 }
8827 
8828 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
8829 /**
8830  * dp_soc_set_swlm_enable() - Enable/Disable SWLM if initialized.
8831  * @soc_hdl: CDP Soc handle
8832  * @value: Enable/Disable value
8833  *
8834  * Return: QDF_STATUS
8835  */
8836 static QDF_STATUS dp_soc_set_swlm_enable(struct cdp_soc_t *soc_hdl,
8837 					 uint8_t value)
8838 {
8839 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
8840 
8841 	if (!soc->swlm.is_init) {
8842 		dp_err("SWLM is not initialized");
8843 		return QDF_STATUS_E_FAILURE;
8844 	}
8845 
8846 	soc->swlm.is_enabled = !!value;
8847 
8848 	return QDF_STATUS_SUCCESS;
8849 }
8850 
8851 /**
8852  * dp_soc_is_swlm_enabled() - Check if SWLM is enabled.
8853  * @soc_hdl: CDP Soc handle
8854  *
8855  * Return: QDF_STATUS
8856  */
8857 static uint8_t dp_soc_is_swlm_enabled(struct cdp_soc_t *soc_hdl)
8858 {
8859 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
8860 
8861 	return soc->swlm.is_enabled;
8862 }
8863 #endif
8864 
8865 /**
8866  * dp_soc_get_dp_txrx_handle() - get context for external-dp from dp soc
8867  * @soc_handle: datapath soc handle
8868  *
8869  * Return: opaque pointer to external dp (non-core DP)
8870  */
8871 static void *dp_soc_get_dp_txrx_handle(struct cdp_soc *soc_handle)
8872 {
8873 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
8874 
8875 	return soc->external_txrx_handle;
8876 }
8877 
8878 /**
8879  * dp_soc_set_dp_txrx_handle() - set external dp handle in soc
8880  * @soc_handle: datapath soc handle
8881  * @txrx_handle: opaque pointer to external dp (non-core DP)
8882  *
8883  * Return: void
8884  */
8885 static void
8886 dp_soc_set_dp_txrx_handle(struct cdp_soc *soc_handle, void *txrx_handle)
8887 {
8888 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
8889 
8890 	soc->external_txrx_handle = txrx_handle;
8891 }
8892 
8893 /**
8894  * dp_soc_map_pdev_to_lmac() - Save pdev_id to lmac_id mapping
8895  * @soc_hdl: datapath soc handle
8896  * @pdev_id: id of the datapath pdev handle
8897  * @lmac_id: lmac id
8898  *
8899  * Return: QDF_STATUS
8900  */
8901 static QDF_STATUS
8902 dp_soc_map_pdev_to_lmac
8903 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
8904 	 uint32_t lmac_id)
8905 {
8906 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
8907 
8908 	wlan_cfg_set_hw_mac_idx(soc->wlan_cfg_ctx,
8909 				pdev_id,
8910 				lmac_id);
8911 
8912 	/*Set host PDEV ID for lmac_id*/
8913 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
8914 			      pdev_id,
8915 			      lmac_id);
8916 
8917 	return QDF_STATUS_SUCCESS;
8918 }
8919 
8920 /**
8921  * dp_soc_handle_pdev_mode_change() - Update pdev to lmac mapping
8922  * @soc_hdl: datapath soc handle
8923  * @pdev_id: id of the datapath pdev handle
8924  * @lmac_id: lmac id
8925  *
8926  * In the event of a dynamic mode change, update the pdev to lmac mapping
8927  *
8928  * Return: QDF_STATUS
8929  */
8930 static QDF_STATUS
8931 dp_soc_handle_pdev_mode_change
8932 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
8933 	 uint32_t lmac_id)
8934 {
8935 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
8936 	struct dp_vdev *vdev = NULL;
8937 	uint8_t hw_pdev_id, mac_id;
8938 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc,
8939 								  pdev_id);
8940 	int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
8941 
8942 	if (qdf_unlikely(!pdev))
8943 		return QDF_STATUS_E_FAILURE;
8944 
8945 	pdev->lmac_id = lmac_id;
8946 	pdev->target_pdev_id =
8947 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
8948 	dp_info(" mode change %d %d\n", pdev->pdev_id, pdev->lmac_id);
8949 
8950 	/*Set host PDEV ID for lmac_id*/
8951 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
8952 			      pdev->pdev_id,
8953 			      lmac_id);
8954 
8955 	hw_pdev_id =
8956 		dp_get_target_pdev_id_for_host_pdev_id(soc,
8957 						       pdev->pdev_id);
8958 
8959 	/*
8960 	 * When NSS offload is enabled, send pdev_id->lmac_id
8961 	 * and pdev_id to hw_pdev_id to NSS FW
8962 	 */
8963 	if (nss_config) {
8964 		mac_id = pdev->lmac_id;
8965 		if (soc->cdp_soc.ol_ops->pdev_update_lmac_n_target_pdev_id)
8966 			soc->cdp_soc.ol_ops->
8967 				pdev_update_lmac_n_target_pdev_id(
8968 				soc->ctrl_psoc,
8969 				&pdev_id, &mac_id, &hw_pdev_id);
8970 	}
8971 
8972 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
8973 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
8974 		DP_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata,
8975 					       hw_pdev_id);
8976 		vdev->lmac_id = pdev->lmac_id;
8977 	}
8978 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
8979 
8980 	return QDF_STATUS_SUCCESS;
8981 }
8982 
8983 /**
8984  * dp_soc_set_pdev_status_down() - set pdev down/up status
8985  * @soc: datapath soc handle
8986  * @pdev_id: id of datapath pdev handle
8987  * @is_pdev_down: pdev down/up status
8988  *
8989  * Return: QDF_STATUS
8990  */
8991 static QDF_STATUS
8992 dp_soc_set_pdev_status_down(struct cdp_soc_t *soc, uint8_t pdev_id,
8993 			    bool is_pdev_down)
8994 {
8995 	struct dp_pdev *pdev =
8996 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
8997 						   pdev_id);
8998 	if (!pdev)
8999 		return QDF_STATUS_E_FAILURE;
9000 
9001 	pdev->is_pdev_down = is_pdev_down;
9002 	return QDF_STATUS_SUCCESS;
9003 }
9004 
9005 /**
9006  * dp_get_cfg_capabilities() - get dp capabilities
9007  * @soc_handle: datapath soc handle
9008  * @dp_caps: enum for dp capabilities
9009  *
9010  * Return: bool to determine if dp caps is enabled
9011  */
9012 static bool
9013 dp_get_cfg_capabilities(struct cdp_soc_t *soc_handle,
9014 			enum cdp_capabilities dp_caps)
9015 {
9016 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
9017 
9018 	return wlan_cfg_get_dp_caps(soc->wlan_cfg_ctx, dp_caps);
9019 }
9020 
9021 #ifdef FEATURE_AST
9022 static QDF_STATUS
9023 dp_peer_teardown_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9024 		       uint8_t *peer_mac)
9025 {
9026 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9027 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9028 	struct dp_peer *peer =
9029 			dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
9030 					       DP_MOD_ID_CDP);
9031 
9032 	/* Peer can be null for monitor vap mac address */
9033 	if (!peer) {
9034 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
9035 			  "%s: Invalid peer\n", __func__);
9036 		return QDF_STATUS_E_FAILURE;
9037 	}
9038 
9039 	dp_peer_update_state(soc, peer, DP_PEER_STATE_LOGICAL_DELETE);
9040 
9041 	qdf_spin_lock_bh(&soc->ast_lock);
9042 	dp_peer_send_wds_disconnect(soc, peer);
9043 	dp_peer_delete_ast_entries(soc, peer);
9044 	qdf_spin_unlock_bh(&soc->ast_lock);
9045 
9046 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9047 	return status;
9048 }
9049 #endif
9050 
9051 #ifndef WLAN_SUPPORT_RX_TAG_STATISTICS
9052 /**
9053  * dp_dump_pdev_rx_protocol_tag_stats - dump the number of packets tagged for
9054  * given protocol type (RX_PROTOCOL_TAG_ALL indicates for all protocol)
9055  * @soc: cdp_soc handle
9056  * @pdev_id: id of cdp_pdev handle
9057  * @protocol_type: protocol type for which stats should be displayed
9058  *
9059  * Return: none
9060  */
9061 static inline void
9062 dp_dump_pdev_rx_protocol_tag_stats(struct cdp_soc_t  *soc, uint8_t pdev_id,
9063 				   uint16_t protocol_type)
9064 {
9065 }
9066 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
9067 
9068 #ifndef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
9069 /**
9070  * dp_update_pdev_rx_protocol_tag() - Add/remove a protocol tag that should be
9071  * applied to the desired protocol type packets
9072  * @soc: soc handle
9073  * @pdev_id: id of cdp_pdev handle
9074  * @enable_rx_protocol_tag: bitmask that indicates what protocol types
9075  * are enabled for tagging. zero indicates disable feature, non-zero indicates
9076  * enable feature
9077  * @protocol_type: new protocol type for which the tag is being added
9078  * @tag: user configured tag for the new protocol
9079  *
9080  * Return: Success
9081  */
9082 static inline QDF_STATUS
9083 dp_update_pdev_rx_protocol_tag(struct cdp_soc_t  *soc, uint8_t pdev_id,
9084 			       uint32_t enable_rx_protocol_tag,
9085 			       uint16_t protocol_type,
9086 			       uint16_t tag)
9087 {
9088 	return QDF_STATUS_SUCCESS;
9089 }
9090 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
9091 
9092 #ifndef WLAN_SUPPORT_RX_FLOW_TAG
9093 /**
9094  * dp_set_rx_flow_tag() - add/delete a flow
9095  * @cdp_soc: CDP soc handle
9096  * @pdev_id: id of cdp_pdev handle
9097  * @flow_info: flow tuple that is to be added to/deleted from flow search table
9098  *
9099  * Return: Success
9100  */
9101 static inline QDF_STATUS
9102 dp_set_rx_flow_tag(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
9103 		   struct cdp_rx_flow_info *flow_info)
9104 {
9105 	return QDF_STATUS_SUCCESS;
9106 }
9107 /**
9108  * dp_dump_rx_flow_tag_stats() - dump the number of packets tagged for
9109  * given flow 5-tuple
9110  * @cdp_soc: soc handle
9111  * @pdev_id: id of cdp_pdev handle
9112  * @flow_info: flow 5-tuple for which stats should be displayed
9113  *
9114  * Return: Success
9115  */
9116 static inline QDF_STATUS
9117 dp_dump_rx_flow_tag_stats(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
9118 			  struct cdp_rx_flow_info *flow_info)
9119 {
9120 	return QDF_STATUS_SUCCESS;
9121 }
9122 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
9123 
9124 static QDF_STATUS dp_peer_map_attach_wifi3(struct cdp_soc_t  *soc_hdl,
9125 					   uint32_t max_peers,
9126 					   uint32_t max_ast_index,
9127 					   uint8_t peer_map_unmap_versions)
9128 {
9129 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9130 	QDF_STATUS status;
9131 
9132 	soc->max_peers = max_peers;
9133 
9134 	wlan_cfg_set_max_ast_idx(soc->wlan_cfg_ctx, max_ast_index);
9135 
9136 	status = soc->arch_ops.txrx_peer_map_attach(soc);
9137 	if (!QDF_IS_STATUS_SUCCESS(status)) {
9138 		dp_err("failure in allocating peer tables");
9139 		return QDF_STATUS_E_FAILURE;
9140 	}
9141 
9142 	dp_info("max_peers %u, calculated max_peers %u max_ast_index: %u\n",
9143 		max_peers, soc->max_peer_id, max_ast_index);
9144 
9145 	status = dp_peer_find_attach(soc);
9146 	if (!QDF_IS_STATUS_SUCCESS(status)) {
9147 		dp_err("Peer find attach failure");
9148 		goto fail;
9149 	}
9150 
9151 	soc->peer_map_unmap_versions = peer_map_unmap_versions;
9152 	soc->peer_map_attach_success = TRUE;
9153 
9154 	return QDF_STATUS_SUCCESS;
9155 fail:
9156 	soc->arch_ops.txrx_peer_map_detach(soc);
9157 
9158 	return status;
9159 }
9160 
9161 static QDF_STATUS dp_soc_set_param(struct cdp_soc_t  *soc_hdl,
9162 				   enum cdp_soc_param_t param,
9163 				   uint32_t value)
9164 {
9165 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9166 
9167 	switch (param) {
9168 	case DP_SOC_PARAM_MSDU_EXCEPTION_DESC:
9169 		soc->num_msdu_exception_desc = value;
9170 		dp_info("num_msdu exception_desc %u",
9171 			value);
9172 		break;
9173 	case DP_SOC_PARAM_CMEM_FSE_SUPPORT:
9174 		if (wlan_cfg_is_fst_in_cmem_enabled(soc->wlan_cfg_ctx))
9175 			soc->fst_in_cmem = !!value;
9176 		dp_info("FW supports CMEM FSE %u", value);
9177 		break;
9178 	case DP_SOC_PARAM_MAX_AST_AGEOUT:
9179 		soc->max_ast_ageout_count = value;
9180 		dp_info("Max ast ageout count %u", soc->max_ast_ageout_count);
9181 		break;
9182 	case DP_SOC_PARAM_EAPOL_OVER_CONTROL_PORT:
9183 		soc->eapol_over_control_port = value;
9184 		dp_info("Eapol over control_port:%d",
9185 			soc->eapol_over_control_port);
9186 		break;
9187 	case DP_SOC_PARAM_MULTI_PEER_GRP_CMD_SUPPORT:
9188 		soc->multi_peer_grp_cmd_supported = value;
9189 		dp_info("Multi Peer group command support:%d",
9190 			soc->multi_peer_grp_cmd_supported);
9191 		break;
9192 	case DP_SOC_PARAM_RSSI_DBM_CONV_SUPPORT:
9193 		soc->features.rssi_dbm_conv_support = value;
9194 		dp_info("Rssi dbm conversion support:%u",
9195 			soc->features.rssi_dbm_conv_support);
9196 		break;
9197 	case DP_SOC_PARAM_UMAC_HW_RESET_SUPPORT:
9198 		soc->features.umac_hw_reset_support = value;
9199 		dp_info("UMAC HW reset support :%u",
9200 			soc->features.umac_hw_reset_support);
9201 		break;
9202 	default:
9203 		dp_info("not handled param %d ", param);
9204 		break;
9205 	}
9206 
9207 	return QDF_STATUS_SUCCESS;
9208 }
9209 
9210 static void dp_soc_set_rate_stats_ctx(struct cdp_soc_t *soc_handle,
9211 				      void *stats_ctx)
9212 {
9213 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
9214 
9215 	soc->rate_stats_ctx = (struct cdp_soc_rate_stats_ctx *)stats_ctx;
9216 }
9217 
9218 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
9219 /**
9220  * dp_peer_flush_rate_stats_req() - Flush peer rate stats
9221  * @soc: Datapath SOC handle
9222  * @peer: Datapath peer
9223  * @arg: argument to iter function
9224  *
9225  * Return: QDF_STATUS
9226  */
9227 static void
9228 dp_peer_flush_rate_stats_req(struct dp_soc *soc, struct dp_peer *peer,
9229 			     void *arg)
9230 {
9231 	/* Skip self peer */
9232 	if (!qdf_mem_cmp(peer->mac_addr.raw, peer->vdev->mac_addr.raw,
9233 			 QDF_MAC_ADDR_SIZE))
9234 		return;
9235 
9236 	dp_wdi_event_handler(
9237 		WDI_EVENT_FLUSH_RATE_STATS_REQ,
9238 		soc, dp_monitor_peer_get_peerstats_ctx(soc, peer),
9239 		peer->peer_id,
9240 		WDI_NO_VAL, peer->vdev->pdev->pdev_id);
9241 }
9242 
9243 /**
9244  * dp_flush_rate_stats_req() - Flush peer rate stats in pdev
9245  * @soc_hdl: Datapath SOC handle
9246  * @pdev_id: pdev_id
9247  *
9248  * Return: QDF_STATUS
9249  */
9250 static QDF_STATUS dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
9251 					  uint8_t pdev_id)
9252 {
9253 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9254 	struct dp_pdev *pdev =
9255 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9256 						   pdev_id);
9257 	if (!pdev)
9258 		return QDF_STATUS_E_FAILURE;
9259 
9260 	dp_pdev_iterate_peer(pdev, dp_peer_flush_rate_stats_req, NULL,
9261 			     DP_MOD_ID_CDP);
9262 
9263 	return QDF_STATUS_SUCCESS;
9264 }
9265 #else
9266 static inline QDF_STATUS
9267 dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
9268 			uint8_t pdev_id)
9269 {
9270 	return QDF_STATUS_SUCCESS;
9271 }
9272 #endif
9273 
9274 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
9275 #ifdef WLAN_FEATURE_11BE_MLO
9276 /**
9277  * dp_get_peer_extd_rate_link_stats() - function to get peer
9278  *				extended rate and link stats
9279  * @soc_hdl: dp soc handler
9280  * @mac_addr: mac address of peer
9281  *
9282  * Return: QDF_STATUS
9283  */
9284 static QDF_STATUS
9285 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
9286 {
9287 	uint8_t i;
9288 	struct dp_peer *link_peer;
9289 	struct dp_soc *link_peer_soc;
9290 	struct dp_mld_link_peers link_peers_info;
9291 	struct dp_peer *peer = NULL;
9292 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9293 	struct cdp_peer_info peer_info = { 0 };
9294 
9295 	if (!mac_addr) {
9296 		dp_err("NULL peer mac addr\n");
9297 		return QDF_STATUS_E_FAILURE;
9298 	}
9299 
9300 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
9301 				 CDP_WILD_PEER_TYPE);
9302 
9303 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
9304 	if (!peer) {
9305 		dp_err("Invalid peer\n");
9306 		return QDF_STATUS_E_FAILURE;
9307 	}
9308 
9309 	if (IS_MLO_DP_MLD_PEER(peer)) {
9310 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
9311 						    &link_peers_info,
9312 						    DP_MOD_ID_CDP);
9313 		for (i = 0; i < link_peers_info.num_links; i++) {
9314 			link_peer = link_peers_info.link_peers[i];
9315 			link_peer_soc = link_peer->vdev->pdev->soc;
9316 			dp_wdi_event_handler(WDI_EVENT_FLUSH_RATE_STATS_REQ,
9317 					     link_peer_soc,
9318 					     dp_monitor_peer_get_peerstats_ctx
9319 					     (link_peer_soc, link_peer),
9320 					     link_peer->peer_id,
9321 					     WDI_NO_VAL,
9322 					     link_peer->vdev->pdev->pdev_id);
9323 		}
9324 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
9325 	} else {
9326 		dp_wdi_event_handler(
9327 				WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
9328 				dp_monitor_peer_get_peerstats_ctx(soc, peer),
9329 				peer->peer_id,
9330 				WDI_NO_VAL, peer->vdev->pdev->pdev_id);
9331 	}
9332 
9333 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9334 	return QDF_STATUS_SUCCESS;
9335 }
9336 #else
9337 static QDF_STATUS
9338 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
9339 {
9340 	struct dp_peer *peer = NULL;
9341 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9342 
9343 	if (!mac_addr) {
9344 		dp_err("NULL peer mac addr\n");
9345 		return QDF_STATUS_E_FAILURE;
9346 	}
9347 
9348 	peer = dp_peer_find_hash_find(soc, mac_addr, 0,
9349 				      DP_VDEV_ALL, DP_MOD_ID_CDP);
9350 	if (!peer) {
9351 		dp_err("Invalid peer\n");
9352 		return QDF_STATUS_E_FAILURE;
9353 	}
9354 
9355 	dp_wdi_event_handler(
9356 			WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
9357 			dp_monitor_peer_get_peerstats_ctx(soc, peer),
9358 			peer->peer_id,
9359 			WDI_NO_VAL, peer->vdev->pdev->pdev_id);
9360 
9361 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9362 	return QDF_STATUS_SUCCESS;
9363 }
9364 #endif
9365 #else
9366 static inline QDF_STATUS
9367 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
9368 {
9369 	return QDF_STATUS_SUCCESS;
9370 }
9371 #endif
9372 
9373 static void *dp_peer_get_peerstats_ctx(struct cdp_soc_t *soc_hdl,
9374 				       uint8_t vdev_id,
9375 				       uint8_t *mac_addr)
9376 {
9377 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9378 	struct dp_peer *peer;
9379 	void *peerstats_ctx = NULL;
9380 
9381 	if (mac_addr) {
9382 		peer = dp_peer_find_hash_find(soc, mac_addr,
9383 					      0, vdev_id,
9384 					      DP_MOD_ID_CDP);
9385 		if (!peer)
9386 			return NULL;
9387 
9388 		if (!IS_MLO_DP_MLD_PEER(peer))
9389 			peerstats_ctx = dp_monitor_peer_get_peerstats_ctx(soc,
9390 									  peer);
9391 
9392 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9393 	}
9394 
9395 	return peerstats_ctx;
9396 }
9397 
9398 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
9399 static QDF_STATUS dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
9400 					   uint8_t pdev_id,
9401 					   void *buf)
9402 {
9403 	 dp_wdi_event_handler(WDI_EVENT_PEER_FLUSH_RATE_STATS,
9404 			      (struct dp_soc *)soc, buf, HTT_INVALID_PEER,
9405 			      WDI_NO_VAL, pdev_id);
9406 	return QDF_STATUS_SUCCESS;
9407 }
9408 #else
9409 static inline QDF_STATUS
9410 dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
9411 			 uint8_t pdev_id,
9412 			 void *buf)
9413 {
9414 	return QDF_STATUS_SUCCESS;
9415 }
9416 #endif
9417 
9418 static void *dp_soc_get_rate_stats_ctx(struct cdp_soc_t *soc_handle)
9419 {
9420 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
9421 
9422 	return soc->rate_stats_ctx;
9423 }
9424 
9425 /**
9426  * dp_get_cfg() - get dp cfg
9427  * @soc: cdp soc handle
9428  * @cfg: cfg enum
9429  *
9430  * Return: cfg value
9431  */
9432 static uint32_t dp_get_cfg(struct cdp_soc_t *soc, enum cdp_dp_cfg cfg)
9433 {
9434 	struct dp_soc *dpsoc = (struct dp_soc *)soc;
9435 	uint32_t value = 0;
9436 
9437 	switch (cfg) {
9438 	case cfg_dp_enable_data_stall:
9439 		value = dpsoc->wlan_cfg_ctx->enable_data_stall_detection;
9440 		break;
9441 	case cfg_dp_enable_p2p_ip_tcp_udp_checksum_offload:
9442 		value = dpsoc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload;
9443 		break;
9444 	case cfg_dp_enable_nan_ip_tcp_udp_checksum_offload:
9445 		value = dpsoc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload;
9446 		break;
9447 	case cfg_dp_enable_ip_tcp_udp_checksum_offload:
9448 		value = dpsoc->wlan_cfg_ctx->tcp_udp_checksumoffload;
9449 		break;
9450 	case cfg_dp_disable_legacy_mode_csum_offload:
9451 		value = dpsoc->wlan_cfg_ctx->
9452 					legacy_mode_checksumoffload_disable;
9453 		break;
9454 	case cfg_dp_tso_enable:
9455 		value = dpsoc->wlan_cfg_ctx->tso_enabled;
9456 		break;
9457 	case cfg_dp_lro_enable:
9458 		value = dpsoc->wlan_cfg_ctx->lro_enabled;
9459 		break;
9460 	case cfg_dp_gro_enable:
9461 		value = dpsoc->wlan_cfg_ctx->gro_enabled;
9462 		break;
9463 	case cfg_dp_tc_based_dyn_gro_enable:
9464 		value = dpsoc->wlan_cfg_ctx->tc_based_dynamic_gro;
9465 		break;
9466 	case cfg_dp_tc_ingress_prio:
9467 		value = dpsoc->wlan_cfg_ctx->tc_ingress_prio;
9468 		break;
9469 	case cfg_dp_sg_enable:
9470 		value = dpsoc->wlan_cfg_ctx->sg_enabled;
9471 		break;
9472 	case cfg_dp_tx_flow_start_queue_offset:
9473 		value = dpsoc->wlan_cfg_ctx->tx_flow_start_queue_offset;
9474 		break;
9475 	case cfg_dp_tx_flow_stop_queue_threshold:
9476 		value = dpsoc->wlan_cfg_ctx->tx_flow_stop_queue_threshold;
9477 		break;
9478 	case cfg_dp_disable_intra_bss_fwd:
9479 		value = dpsoc->wlan_cfg_ctx->disable_intra_bss_fwd;
9480 		break;
9481 	case cfg_dp_pktlog_buffer_size:
9482 		value = dpsoc->wlan_cfg_ctx->pktlog_buffer_size;
9483 		break;
9484 	case cfg_dp_wow_check_rx_pending:
9485 		value = dpsoc->wlan_cfg_ctx->wow_check_rx_pending_enable;
9486 		break;
9487 	default:
9488 		value =  0;
9489 	}
9490 
9491 	return value;
9492 }
9493 
9494 #ifdef PEER_FLOW_CONTROL
9495 /**
9496  * dp_tx_flow_ctrl_configure_pdev() - Configure flow control params
9497  * @soc_handle: datapath soc handle
9498  * @pdev_id: id of datapath pdev handle
9499  * @param: ol ath params
9500  * @value: value of the flag
9501  * @buff: Buffer to be passed
9502  *
9503  * Implemented this function same as legacy function. In legacy code, single
9504  * function is used to display stats and update pdev params.
9505  *
9506  * Return: 0 for success. nonzero for failure.
9507  */
9508 static uint32_t dp_tx_flow_ctrl_configure_pdev(struct cdp_soc_t *soc_handle,
9509 					       uint8_t pdev_id,
9510 					       enum _dp_param_t param,
9511 					       uint32_t value, void *buff)
9512 {
9513 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
9514 	struct dp_pdev *pdev =
9515 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9516 						   pdev_id);
9517 
9518 	if (qdf_unlikely(!pdev))
9519 		return 1;
9520 
9521 	soc = pdev->soc;
9522 	if (!soc)
9523 		return 1;
9524 
9525 	switch (param) {
9526 #ifdef QCA_ENH_V3_STATS_SUPPORT
9527 	case DP_PARAM_VIDEO_DELAY_STATS_FC:
9528 		if (value)
9529 			pdev->delay_stats_flag = true;
9530 		else
9531 			pdev->delay_stats_flag = false;
9532 		break;
9533 	case DP_PARAM_VIDEO_STATS_FC:
9534 		qdf_print("------- TID Stats ------\n");
9535 		dp_pdev_print_tid_stats(pdev);
9536 		qdf_print("------ Delay Stats ------\n");
9537 		dp_pdev_print_delay_stats(pdev);
9538 		qdf_print("------ Rx Error Stats ------\n");
9539 		dp_pdev_print_rx_error_stats(pdev);
9540 		break;
9541 #endif
9542 	case DP_PARAM_TOTAL_Q_SIZE:
9543 		{
9544 			uint32_t tx_min, tx_max;
9545 
9546 			tx_min = wlan_cfg_get_min_tx_desc(soc->wlan_cfg_ctx);
9547 			tx_max = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
9548 
9549 			if (!buff) {
9550 				if ((value >= tx_min) && (value <= tx_max)) {
9551 					pdev->num_tx_allowed = value;
9552 				} else {
9553 					dp_tx_info("%pK: Failed to update num_tx_allowed, Q_min = %d Q_max = %d",
9554 						   soc, tx_min, tx_max);
9555 					break;
9556 				}
9557 			} else {
9558 				*(int *)buff = pdev->num_tx_allowed;
9559 			}
9560 		}
9561 		break;
9562 	default:
9563 		dp_tx_info("%pK: not handled param %d ", soc, param);
9564 		break;
9565 	}
9566 
9567 	return 0;
9568 }
9569 #endif
9570 
9571 #ifdef DP_UMAC_HW_RESET_SUPPORT
9572 /**
9573  * dp_reset_interrupt_ring_masks() - Reset rx interrupt masks
9574  * @soc: dp soc handle
9575  *
9576  * Return: void
9577  */
9578 static void dp_reset_interrupt_ring_masks(struct dp_soc *soc)
9579 {
9580 	struct dp_intr_bkp *intr_bkp;
9581 	struct dp_intr *intr_ctx;
9582 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
9583 	int i;
9584 
9585 	intr_bkp =
9586 	(struct dp_intr_bkp *)qdf_mem_malloc_atomic(sizeof(struct dp_intr_bkp) *
9587 			num_ctxt);
9588 
9589 	qdf_assert_always(intr_bkp);
9590 
9591 	soc->umac_reset_ctx.intr_ctx_bkp = intr_bkp;
9592 	for (i = 0; i < num_ctxt; i++) {
9593 		intr_ctx = &soc->intr_ctx[i];
9594 
9595 		intr_bkp->tx_ring_mask = intr_ctx->tx_ring_mask;
9596 		intr_bkp->rx_ring_mask = intr_ctx->rx_ring_mask;
9597 		intr_bkp->rx_mon_ring_mask = intr_ctx->rx_mon_ring_mask;
9598 		intr_bkp->rx_err_ring_mask = intr_ctx->rx_err_ring_mask;
9599 		intr_bkp->rx_wbm_rel_ring_mask = intr_ctx->rx_wbm_rel_ring_mask;
9600 		intr_bkp->reo_status_ring_mask = intr_ctx->reo_status_ring_mask;
9601 		intr_bkp->rxdma2host_ring_mask = intr_ctx->rxdma2host_ring_mask;
9602 		intr_bkp->host2rxdma_ring_mask = intr_ctx->host2rxdma_ring_mask;
9603 		intr_bkp->host2rxdma_mon_ring_mask =
9604 					intr_ctx->host2rxdma_mon_ring_mask;
9605 		intr_bkp->tx_mon_ring_mask = intr_ctx->tx_mon_ring_mask;
9606 
9607 		intr_ctx->tx_ring_mask = 0;
9608 		intr_ctx->rx_ring_mask = 0;
9609 		intr_ctx->rx_mon_ring_mask = 0;
9610 		intr_ctx->rx_err_ring_mask = 0;
9611 		intr_ctx->rx_wbm_rel_ring_mask = 0;
9612 		intr_ctx->reo_status_ring_mask = 0;
9613 		intr_ctx->rxdma2host_ring_mask = 0;
9614 		intr_ctx->host2rxdma_ring_mask = 0;
9615 		intr_ctx->host2rxdma_mon_ring_mask = 0;
9616 		intr_ctx->tx_mon_ring_mask = 0;
9617 
9618 		intr_bkp++;
9619 	}
9620 }
9621 
9622 /**
9623  * dp_restore_interrupt_ring_masks() - Restore rx interrupt masks
9624  * @soc: dp soc handle
9625  *
9626  * Return: void
9627  */
9628 static void dp_restore_interrupt_ring_masks(struct dp_soc *soc)
9629 {
9630 	struct dp_intr_bkp *intr_bkp = soc->umac_reset_ctx.intr_ctx_bkp;
9631 	struct dp_intr_bkp *intr_bkp_base = intr_bkp;
9632 	struct dp_intr *intr_ctx;
9633 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
9634 	int i;
9635 
9636 	if (!intr_bkp)
9637 		return;
9638 
9639 	for (i = 0; i < num_ctxt; i++) {
9640 		intr_ctx = &soc->intr_ctx[i];
9641 
9642 		intr_ctx->tx_ring_mask = intr_bkp->tx_ring_mask;
9643 		intr_ctx->rx_ring_mask = intr_bkp->rx_ring_mask;
9644 		intr_ctx->rx_mon_ring_mask = intr_bkp->rx_mon_ring_mask;
9645 		intr_ctx->rx_err_ring_mask = intr_bkp->rx_err_ring_mask;
9646 		intr_ctx->rx_wbm_rel_ring_mask = intr_bkp->rx_wbm_rel_ring_mask;
9647 		intr_ctx->reo_status_ring_mask = intr_bkp->reo_status_ring_mask;
9648 		intr_ctx->rxdma2host_ring_mask = intr_bkp->rxdma2host_ring_mask;
9649 		intr_ctx->host2rxdma_ring_mask = intr_bkp->host2rxdma_ring_mask;
9650 		intr_ctx->host2rxdma_mon_ring_mask =
9651 			intr_bkp->host2rxdma_mon_ring_mask;
9652 		intr_ctx->tx_mon_ring_mask = intr_bkp->tx_mon_ring_mask;
9653 
9654 		intr_bkp++;
9655 	}
9656 
9657 	qdf_mem_free(intr_bkp_base);
9658 	soc->umac_reset_ctx.intr_ctx_bkp = NULL;
9659 }
9660 
9661 /**
9662  * dp_resume_tx_hardstart() - Restore the old Tx hardstart functions
9663  * @soc: dp soc handle
9664  *
9665  * Return: void
9666  */
9667 static void dp_resume_tx_hardstart(struct dp_soc *soc)
9668 {
9669 	struct dp_vdev *vdev;
9670 	struct ol_txrx_hardtart_ctxt ctxt = {0};
9671 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
9672 	int i;
9673 
9674 	for (i = 0; i < MAX_PDEV_CNT; i++) {
9675 		struct dp_pdev *pdev = soc->pdev_list[i];
9676 
9677 		if (!pdev)
9678 			continue;
9679 
9680 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
9681 			uint8_t vdev_id = vdev->vdev_id;
9682 
9683 			dp_vdev_fetch_tx_handler(vdev, soc, &ctxt);
9684 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
9685 								    vdev_id,
9686 								    &ctxt);
9687 		}
9688 	}
9689 }
9690 
9691 /**
9692  * dp_pause_tx_hardstart() - Register Tx hardstart functions to drop packets
9693  * @soc: dp soc handle
9694  *
9695  * Return: void
9696  */
9697 static void dp_pause_tx_hardstart(struct dp_soc *soc)
9698 {
9699 	struct dp_vdev *vdev;
9700 	struct ol_txrx_hardtart_ctxt ctxt;
9701 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
9702 	int i;
9703 
9704 	ctxt.tx = &dp_tx_drop;
9705 	ctxt.tx_fast = &dp_tx_drop;
9706 	ctxt.tx_exception = &dp_tx_exc_drop;
9707 
9708 	for (i = 0; i < MAX_PDEV_CNT; i++) {
9709 		struct dp_pdev *pdev = soc->pdev_list[i];
9710 
9711 		if (!pdev)
9712 			continue;
9713 
9714 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
9715 			uint8_t vdev_id = vdev->vdev_id;
9716 
9717 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
9718 								    vdev_id,
9719 								    &ctxt);
9720 		}
9721 	}
9722 }
9723 
9724 /**
9725  * dp_unregister_notify_umac_pre_reset_fw_callback() - unregister notify_fw_cb
9726  * @soc: dp soc handle
9727  *
9728  * Return: void
9729  */
9730 static inline
9731 void dp_unregister_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
9732 {
9733 	soc->notify_fw_callback = NULL;
9734 }
9735 
9736 /**
9737  * dp_check_n_notify_umac_prereset_done() - Send pre reset done to firmware
9738  * @soc: dp soc handle
9739  *
9740  * Return: void
9741  */
9742 static inline
9743 void dp_check_n_notify_umac_prereset_done(struct dp_soc *soc)
9744 {
9745 	/* Some Cpu(s) is processing the umac rings*/
9746 	if (soc->service_rings_running)
9747 		return;
9748 
9749 	/* Notify the firmware that Umac pre reset is complete */
9750 	dp_umac_reset_notify_action_completion(soc,
9751 					       UMAC_RESET_ACTION_DO_PRE_RESET);
9752 
9753 	/* Unregister the callback */
9754 	dp_unregister_notify_umac_pre_reset_fw_callback(soc);
9755 }
9756 
9757 /**
9758  * dp_register_notify_umac_pre_reset_fw_callback() - register notify_fw_cb
9759  * @soc: dp soc handle
9760  *
9761  * Return: void
9762  */
9763 static inline
9764 void dp_register_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
9765 {
9766 	soc->notify_fw_callback = dp_check_n_notify_umac_prereset_done;
9767 }
9768 
9769 #ifdef DP_UMAC_HW_HARD_RESET
9770 /**
9771  * dp_set_umac_regs() - Reinitialize host umac registers
9772  * @soc: dp soc handle
9773  *
9774  * Return: void
9775  */
9776 static void dp_set_umac_regs(struct dp_soc *soc)
9777 {
9778 	int i;
9779 	struct hal_reo_params reo_params;
9780 
9781 	qdf_mem_zero(&reo_params, sizeof(reo_params));
9782 
9783 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
9784 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
9785 						   &reo_params.remap1,
9786 						   &reo_params.remap2))
9787 			reo_params.rx_hash_enabled = true;
9788 		else
9789 			reo_params.rx_hash_enabled = false;
9790 	}
9791 
9792 	reo_params.reo_qref = &soc->reo_qref;
9793 	hal_reo_setup(soc->hal_soc, &reo_params, 0);
9794 
9795 	soc->arch_ops.dp_cc_reg_cfg_init(soc, true);
9796 
9797 	for (i = 0; i < PCP_TID_MAP_MAX; i++)
9798 		hal_tx_update_pcp_tid_map(soc->hal_soc, soc->pcp_tid_map[i], i);
9799 
9800 	for (i = 0; i < MAX_PDEV_CNT; i++) {
9801 		struct dp_vdev *vdev = NULL;
9802 		struct dp_pdev *pdev = soc->pdev_list[i];
9803 
9804 		if (!pdev)
9805 			continue;
9806 
9807 		for (i = 0; i < soc->num_hw_dscp_tid_map; i++)
9808 			hal_tx_set_dscp_tid_map(soc->hal_soc,
9809 						pdev->dscp_tid_map[i], i);
9810 
9811 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
9812 			soc->arch_ops.dp_bank_reconfig(soc, vdev);
9813 			soc->arch_ops.dp_reconfig_tx_vdev_mcast_ctrl(soc,
9814 								      vdev);
9815 		}
9816 	}
9817 }
9818 #else
9819 static void dp_set_umac_regs(struct dp_soc *soc)
9820 {
9821 }
9822 #endif
9823 
9824 /**
9825  * dp_reinit_rings() - Reinitialize host managed rings
9826  * @soc: dp soc handle
9827  *
9828  * Return: QDF_STATUS
9829  */
9830 static void dp_reinit_rings(struct dp_soc *soc)
9831 {
9832 	unsigned long end;
9833 
9834 	dp_soc_srng_deinit(soc);
9835 	dp_hw_link_desc_ring_deinit(soc);
9836 
9837 	/* Busy wait for 2 ms to make sure the rings are in idle state
9838 	 * before we enable them again
9839 	 */
9840 	end = jiffies + msecs_to_jiffies(2);
9841 	while (time_before(jiffies, end))
9842 		;
9843 
9844 	dp_hw_link_desc_ring_init(soc);
9845 	dp_link_desc_ring_replenish(soc, WLAN_INVALID_PDEV_ID);
9846 	dp_soc_srng_init(soc);
9847 }
9848 
9849 /**
9850  * dp_umac_reset_action_trigger_recovery() - Handle FW Umac recovery trigger
9851  * @soc: dp soc handle
9852  *
9853  * Return: QDF_STATUS
9854  */
9855 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc)
9856 {
9857 	enum umac_reset_action action = UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY;
9858 
9859 	return dp_umac_reset_notify_action_completion(soc, action);
9860 }
9861 
9862 #ifdef WLAN_SUPPORT_PPEDS
9863 /**
9864  * dp_umac_reset_service_handle_n_notify_done()
9865  *	Handle Umac pre reset for direct switch
9866  * @soc: dp soc handle
9867  *
9868  * Return: QDF_STATUS
9869  */
9870 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
9871 {
9872 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
9873 	    !soc->arch_ops.txrx_soc_ppeds_service_status_update ||
9874 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_stop)
9875 		goto non_ppeds;
9876 
9877 	/*
9878 	 * Check if ppeds is enabled on SoC.
9879 	 */
9880 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
9881 		goto non_ppeds;
9882 
9883 	/*
9884 	 * Start the UMAC pre reset done service.
9885 	 */
9886 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, true);
9887 
9888 	dp_register_notify_umac_pre_reset_fw_callback(soc);
9889 
9890 	soc->arch_ops.txrx_soc_ppeds_interrupt_stop(soc);
9891 
9892 	dp_soc_ppeds_stop((struct cdp_soc_t *)soc);
9893 
9894 	/*
9895 	 * UMAC pre reset service complete
9896 	 */
9897 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, false);
9898 
9899 	soc->umac_reset_ctx.nbuf_list = NULL;
9900 	return QDF_STATUS_SUCCESS;
9901 
9902 non_ppeds:
9903 	dp_register_notify_umac_pre_reset_fw_callback(soc);
9904 	dp_check_n_notify_umac_prereset_done(soc);
9905 	soc->umac_reset_ctx.nbuf_list = NULL;
9906 	return QDF_STATUS_SUCCESS;
9907 }
9908 
9909 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
9910 							 qdf_nbuf_t *nbuf_list)
9911 {
9912 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
9913 	    !soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset)
9914 		return;
9915 
9916 	/*
9917 	 * Deinit of PPEDS Tx desc rings.
9918 	 */
9919 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
9920 		soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset(soc, nbuf_list);
9921 }
9922 
9923 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
9924 {
9925 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
9926 	    !soc->arch_ops.txrx_soc_ppeds_start ||
9927 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_start)
9928 		return;
9929 
9930 	/*
9931 	 * Start PPEDS node and enable interrupt.
9932 	 */
9933 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc)) {
9934 		soc->arch_ops.txrx_soc_ppeds_start(soc);
9935 		soc->arch_ops.txrx_soc_ppeds_interrupt_start(soc);
9936 	}
9937 }
9938 #else
9939 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
9940 {
9941 	dp_register_notify_umac_pre_reset_fw_callback(soc);
9942 	dp_check_n_notify_umac_prereset_done(soc);
9943 	soc->umac_reset_ctx.nbuf_list = NULL;
9944 	return QDF_STATUS_SUCCESS;
9945 }
9946 
9947 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
9948 							 qdf_nbuf_t *nbuf_list)
9949 {
9950 }
9951 
9952 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
9953 {
9954 }
9955 #endif
9956 
9957 /**
9958  * dp_umac_reset_handle_pre_reset() - Handle Umac prereset interrupt from FW
9959  * @soc: dp soc handle
9960  *
9961  * Return: QDF_STATUS
9962  */
9963 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc)
9964 {
9965 	dp_reset_interrupt_ring_masks(soc);
9966 
9967 	dp_pause_tx_hardstart(soc);
9968 	dp_pause_reo_send_cmd(soc);
9969 	dp_umac_reset_service_handle_n_notify_done(soc);
9970 	return QDF_STATUS_SUCCESS;
9971 }
9972 
9973 /**
9974  * dp_umac_reset_handle_post_reset() - Handle Umac postreset interrupt from FW
9975  * @soc: dp soc handle
9976  *
9977  * Return: QDF_STATUS
9978  */
9979 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc)
9980 {
9981 	if (!soc->umac_reset_ctx.skel_enable) {
9982 		qdf_nbuf_t *nbuf_list = &soc->umac_reset_ctx.nbuf_list;
9983 
9984 		dp_set_umac_regs(soc);
9985 
9986 		dp_reinit_rings(soc);
9987 
9988 		dp_rx_desc_reuse(soc, nbuf_list);
9989 
9990 		dp_cleanup_reo_cmd_module(soc);
9991 
9992 		dp_umac_reset_ppeds_txdesc_pool_reset(soc, nbuf_list);
9993 
9994 		dp_tx_desc_pool_cleanup(soc, nbuf_list);
9995 
9996 		dp_reset_tid_q_setup(soc);
9997 	}
9998 
9999 	return dp_umac_reset_notify_action_completion(soc,
10000 					UMAC_RESET_ACTION_DO_POST_RESET_START);
10001 }
10002 
10003 /**
10004  * dp_umac_reset_handle_post_reset_complete() - Handle Umac postreset_complete
10005  *						interrupt from FW
10006  * @soc: dp soc handle
10007  *
10008  * Return: QDF_STATUS
10009  */
10010 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc)
10011 {
10012 	QDF_STATUS status;
10013 	qdf_nbuf_t nbuf_list = soc->umac_reset_ctx.nbuf_list;
10014 
10015 	soc->umac_reset_ctx.nbuf_list = NULL;
10016 
10017 	dp_resume_reo_send_cmd(soc);
10018 
10019 	dp_umac_reset_ppeds_start(soc);
10020 
10021 	dp_restore_interrupt_ring_masks(soc);
10022 
10023 	dp_resume_tx_hardstart(soc);
10024 
10025 	status = dp_umac_reset_notify_action_completion(soc,
10026 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
10027 
10028 	while (nbuf_list) {
10029 		qdf_nbuf_t nbuf = nbuf_list->next;
10030 
10031 		qdf_nbuf_free(nbuf_list);
10032 		nbuf_list = nbuf;
10033 	}
10034 
10035 	dp_umac_reset_info("Umac reset done on soc %pK\n trigger start : %u us "
10036 			   "trigger done : %u us prereset : %u us\n"
10037 			   "postreset : %u us \n postreset complete: %u us \n",
10038 			   soc,
10039 			   soc->umac_reset_ctx.ts.trigger_done -
10040 			   soc->umac_reset_ctx.ts.trigger_start,
10041 			   soc->umac_reset_ctx.ts.pre_reset_done -
10042 			   soc->umac_reset_ctx.ts.pre_reset_start,
10043 			   soc->umac_reset_ctx.ts.post_reset_done -
10044 			   soc->umac_reset_ctx.ts.post_reset_start,
10045 			   soc->umac_reset_ctx.ts.post_reset_complete_done -
10046 			   soc->umac_reset_ctx.ts.post_reset_complete_start);
10047 
10048 	return status;
10049 }
10050 #endif
10051 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
10052 static void
10053 dp_set_pkt_capture_mode(struct cdp_soc_t *soc_handle, bool val)
10054 {
10055 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10056 
10057 	soc->wlan_cfg_ctx->pkt_capture_mode = val;
10058 }
10059 #endif
10060 
10061 #ifdef HW_TX_DELAY_STATS_ENABLE
10062 /**
10063  * dp_enable_disable_vdev_tx_delay_stats() - Start/Stop tx delay stats capture
10064  * @soc_hdl: DP soc handle
10065  * @vdev_id: vdev id
10066  * @value: value
10067  *
10068  * Return: None
10069  */
10070 static void
10071 dp_enable_disable_vdev_tx_delay_stats(struct cdp_soc_t *soc_hdl,
10072 				      uint8_t vdev_id,
10073 				      uint8_t value)
10074 {
10075 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10076 	struct dp_vdev *vdev = NULL;
10077 
10078 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
10079 	if (!vdev)
10080 		return;
10081 
10082 	vdev->hw_tx_delay_stats_enabled = value;
10083 
10084 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10085 }
10086 
10087 /**
10088  * dp_check_vdev_tx_delay_stats_enabled() - check the feature is enabled or not
10089  * @soc_hdl: DP soc handle
10090  * @vdev_id: vdev id
10091  *
10092  * Return: 1 if enabled, 0 if disabled
10093  */
10094 static uint8_t
10095 dp_check_vdev_tx_delay_stats_enabled(struct cdp_soc_t *soc_hdl,
10096 				     uint8_t vdev_id)
10097 {
10098 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10099 	struct dp_vdev *vdev;
10100 	uint8_t ret_val = 0;
10101 
10102 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
10103 	if (!vdev)
10104 		return ret_val;
10105 
10106 	ret_val = vdev->hw_tx_delay_stats_enabled;
10107 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10108 
10109 	return ret_val;
10110 }
10111 #endif
10112 
10113 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
10114 static void
10115 dp_recovery_vdev_flush_peers(struct cdp_soc_t *cdp_soc,
10116 			     uint8_t vdev_id,
10117 			     bool mlo_peers_only)
10118 {
10119 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
10120 	struct dp_vdev *vdev;
10121 
10122 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
10123 
10124 	if (!vdev)
10125 		return;
10126 
10127 	dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, mlo_peers_only);
10128 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10129 }
10130 #endif
10131 #ifdef QCA_GET_TSF_VIA_REG
10132 /**
10133  * dp_get_tsf_time() - get tsf time
10134  * @soc_hdl: Datapath soc handle
10135  * @tsf_id: TSF identifier
10136  * @mac_id: mac_id
10137  * @tsf: pointer to update tsf value
10138  * @tsf_sync_soc_time: pointer to update tsf sync time
10139  *
10140  * Return: None.
10141  */
10142 static inline void
10143 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
10144 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
10145 {
10146 	hal_get_tsf_time(((struct dp_soc *)soc_hdl)->hal_soc, tsf_id, mac_id,
10147 			 tsf, tsf_sync_soc_time);
10148 }
10149 #else
10150 static inline void
10151 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
10152 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
10153 {
10154 }
10155 #endif
10156 
10157 /**
10158  * dp_get_tsf2_scratch_reg() - get tsf2 offset from the scratch register
10159  * @soc_hdl: Datapath soc handle
10160  * @mac_id: mac_id
10161  * @value: pointer to update tsf2 offset value
10162  *
10163  * Return: None.
10164  */
10165 static inline void
10166 dp_get_tsf2_scratch_reg(struct cdp_soc_t *soc_hdl, uint8_t mac_id,
10167 			uint64_t *value)
10168 {
10169 	hal_get_tsf2_offset(((struct dp_soc *)soc_hdl)->hal_soc, mac_id, value);
10170 }
10171 
10172 /**
10173  * dp_get_tqm_scratch_reg() - get tqm offset from the scratch register
10174  * @soc_hdl: Datapath soc handle
10175  * @value: pointer to update tqm offset value
10176  *
10177  * Return: None.
10178  */
10179 static inline void
10180 dp_get_tqm_scratch_reg(struct cdp_soc_t *soc_hdl, uint64_t *value)
10181 {
10182 	hal_get_tqm_offset(((struct dp_soc *)soc_hdl)->hal_soc, value);
10183 }
10184 
10185 /**
10186  * dp_set_tx_pause() - Pause or resume tx path
10187  * @soc_hdl: Datapath soc handle
10188  * @flag: set or clear is_tx_pause
10189  *
10190  * Return: None.
10191  */
10192 static inline
10193 void dp_set_tx_pause(struct cdp_soc_t *soc_hdl, bool flag)
10194 {
10195 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10196 
10197 	soc->is_tx_pause = flag;
10198 }
10199 
10200 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
10201 /**
10202  * dp_evaluate_update_tx_ilp_config() - Evaluate and update DP TX
10203  *                                      ILP configuration
10204  * @soc_hdl: CDP SOC handle
10205  * @num_msdu_idx_map: Number of HTT msdu index to qtype map in array
10206  * @msdu_idx_map_arr: Pointer to HTT msdu index to qtype map array
10207  *
10208  * This function will check: (a) TX ILP INI configuration,
10209  * (b) index 3 value in array same as HTT_MSDU_QTYPE_LATENCY_TOLERANT,
10210  * only if both (a) and (b) condition is met, then TX ILP feature is
10211  * considered to be enabled.
10212  *
10213  * Return: Final updated TX ILP enable result in dp_soc,
10214  *         true is enabled, false is not
10215  */
10216 static
10217 bool dp_evaluate_update_tx_ilp_config(struct cdp_soc_t *soc_hdl,
10218 				      uint8_t num_msdu_idx_map,
10219 				      uint8_t *msdu_idx_map_arr)
10220 {
10221 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10222 	bool enable_tx_ilp = false;
10223 
10224 	/**
10225 	 * Check INI configuration firstly, if it's disabled,
10226 	 * then keep feature disabled.
10227 	 */
10228 	if (!wlan_cfg_get_tx_ilp_inspect_config(soc->wlan_cfg_ctx)) {
10229 		dp_info("TX ILP INI is disabled already");
10230 		goto update_tx_ilp;
10231 	}
10232 
10233 	/* Check if the msdu index to qtype map table is valid */
10234 	if (num_msdu_idx_map != HTT_MSDUQ_MAX_INDEX || !msdu_idx_map_arr) {
10235 		dp_info("Invalid msdu_idx qtype map num: 0x%x, arr_addr %pK",
10236 			num_msdu_idx_map, msdu_idx_map_arr);
10237 		goto update_tx_ilp;
10238 	}
10239 
10240 	dp_info("msdu_idx_map_arr idx 0x%x value 0x%x",
10241 		HTT_MSDUQ_INDEX_CUSTOM_PRIO_1,
10242 		msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1]);
10243 
10244 	if (HTT_MSDU_QTYPE_USER_SPECIFIED ==
10245 	    msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1])
10246 		enable_tx_ilp = true;
10247 
10248 update_tx_ilp:
10249 	soc->tx_ilp_enable = enable_tx_ilp;
10250 	dp_info("configure tx ilp enable %d", soc->tx_ilp_enable);
10251 
10252 	return soc->tx_ilp_enable;
10253 }
10254 #endif
10255 
10256 static struct cdp_cmn_ops dp_ops_cmn = {
10257 	.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
10258 	.txrx_vdev_attach = dp_vdev_attach_wifi3,
10259 	.txrx_vdev_detach = dp_vdev_detach_wifi3,
10260 	.txrx_pdev_attach = dp_pdev_attach_wifi3,
10261 	.txrx_pdev_post_attach = dp_pdev_post_attach_wifi3,
10262 	.txrx_pdev_detach = dp_pdev_detach_wifi3,
10263 	.txrx_pdev_deinit = dp_pdev_deinit_wifi3,
10264 	.txrx_peer_create = dp_peer_create_wifi3,
10265 	.txrx_peer_setup = dp_peer_setup_wifi3_wrapper,
10266 #ifdef FEATURE_AST
10267 	.txrx_peer_teardown = dp_peer_teardown_wifi3,
10268 #else
10269 	.txrx_peer_teardown = NULL,
10270 #endif
10271 	.txrx_peer_add_ast = dp_peer_add_ast_wifi3,
10272 	.txrx_peer_update_ast = dp_peer_update_ast_wifi3,
10273 	.txrx_peer_get_ast_info_by_soc = dp_peer_get_ast_info_by_soc_wifi3,
10274 	.txrx_peer_get_ast_info_by_pdev =
10275 		dp_peer_get_ast_info_by_pdevid_wifi3,
10276 	.txrx_peer_ast_delete_by_soc =
10277 		dp_peer_ast_entry_del_by_soc,
10278 	.txrx_peer_ast_delete_by_pdev =
10279 		dp_peer_ast_entry_del_by_pdev,
10280 	.txrx_peer_HMWDS_ast_delete = dp_peer_HMWDS_ast_entry_del,
10281 	.txrx_peer_delete = dp_peer_delete_wifi3,
10282 #ifdef DP_RX_UDP_OVER_PEER_ROAM
10283 	.txrx_update_roaming_peer = dp_update_roaming_peer_wifi3,
10284 #endif
10285 	.txrx_vdev_register = dp_vdev_register_wifi3,
10286 	.txrx_soc_detach = dp_soc_detach_wifi3,
10287 	.txrx_soc_deinit = dp_soc_deinit_wifi3,
10288 	.txrx_soc_init = dp_soc_init_wifi3,
10289 #ifndef QCA_HOST_MODE_WIFI_DISABLED
10290 	.txrx_tso_soc_attach = dp_tso_soc_attach,
10291 	.txrx_tso_soc_detach = dp_tso_soc_detach,
10292 	.tx_send = dp_tx_send,
10293 	.tx_send_exc = dp_tx_send_exception,
10294 #endif
10295 	.set_tx_pause = dp_set_tx_pause,
10296 	.txrx_pdev_init = dp_pdev_init_wifi3,
10297 	.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
10298 	.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
10299 	.txrx_ath_getstats = dp_get_device_stats,
10300 #ifndef WLAN_SOFTUMAC_SUPPORT
10301 	.addba_requestprocess = dp_addba_requestprocess_wifi3,
10302 	.addba_responsesetup = dp_addba_responsesetup_wifi3,
10303 	.addba_resp_tx_completion = dp_addba_resp_tx_completion_wifi3,
10304 	.delba_process = dp_delba_process_wifi3,
10305 	.set_addba_response = dp_set_addba_response,
10306 	.flush_cache_rx_queue = NULL,
10307 	.tid_update_ba_win_size = dp_rx_tid_update_ba_win_size,
10308 #endif
10309 	/* TODO: get API's for dscp-tid need to be added*/
10310 	.set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3,
10311 	.set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3,
10312 	.txrx_get_total_per = dp_get_total_per,
10313 	.txrx_stats_request = dp_txrx_stats_request,
10314 	.txrx_get_peer_mac_from_peer_id = dp_get_peer_mac_from_peer_id,
10315 	.display_stats = dp_txrx_dump_stats,
10316 	.notify_asserted_soc = dp_soc_notify_asserted_soc,
10317 	.txrx_intr_attach = dp_soc_interrupt_attach_wrapper,
10318 	.txrx_intr_detach = dp_soc_interrupt_detach,
10319 	.txrx_ppeds_stop = dp_soc_ppeds_stop,
10320 	.set_key_sec_type = dp_set_key_sec_type_wifi3,
10321 	.update_config_parameters = dp_update_config_parameters,
10322 	/* TODO: Add other functions */
10323 	.txrx_data_tx_cb_set = dp_txrx_data_tx_cb_set,
10324 	.get_dp_txrx_handle = dp_pdev_get_dp_txrx_handle,
10325 	.set_dp_txrx_handle = dp_pdev_set_dp_txrx_handle,
10326 	.get_vdev_dp_ext_txrx_handle = dp_vdev_get_dp_ext_handle,
10327 	.set_vdev_dp_ext_txrx_handle = dp_vdev_set_dp_ext_handle,
10328 	.get_soc_dp_txrx_handle = dp_soc_get_dp_txrx_handle,
10329 	.set_soc_dp_txrx_handle = dp_soc_set_dp_txrx_handle,
10330 	.map_pdev_to_lmac = dp_soc_map_pdev_to_lmac,
10331 	.handle_mode_change = dp_soc_handle_pdev_mode_change,
10332 	.set_pdev_status_down = dp_soc_set_pdev_status_down,
10333 	.txrx_peer_reset_ast = dp_wds_reset_ast_wifi3,
10334 	.txrx_peer_reset_ast_table = dp_wds_reset_ast_table_wifi3,
10335 	.txrx_peer_flush_ast_table = dp_wds_flush_ast_table_wifi3,
10336 	.txrx_peer_map_attach = dp_peer_map_attach_wifi3,
10337 	.set_soc_param = dp_soc_set_param,
10338 	.txrx_get_os_rx_handles_from_vdev =
10339 					dp_get_os_rx_handles_from_vdev_wifi3,
10340 #ifndef WLAN_SOFTUMAC_SUPPORT
10341 	.set_pn_check = dp_set_pn_check_wifi3,
10342 	.txrx_set_ba_aging_timeout = dp_set_ba_aging_timeout,
10343 	.txrx_get_ba_aging_timeout = dp_get_ba_aging_timeout,
10344 	.delba_tx_completion = dp_delba_tx_completion_wifi3,
10345 	.set_pdev_pcp_tid_map = dp_set_pdev_pcp_tid_map_wifi3,
10346 	.set_vdev_pcp_tid_map = dp_set_vdev_pcp_tid_map_wifi3,
10347 #endif
10348 	.get_dp_capabilities = dp_get_cfg_capabilities,
10349 	.txrx_get_cfg = dp_get_cfg,
10350 	.set_rate_stats_ctx = dp_soc_set_rate_stats_ctx,
10351 	.get_rate_stats_ctx = dp_soc_get_rate_stats_ctx,
10352 	.txrx_peer_flush_rate_stats = dp_peer_flush_rate_stats,
10353 	.txrx_flush_rate_stats_request = dp_flush_rate_stats_req,
10354 	.txrx_peer_get_peerstats_ctx = dp_peer_get_peerstats_ctx,
10355 
10356 	.txrx_cp_peer_del_response = dp_cp_peer_del_resp_handler,
10357 #ifdef QCA_MULTIPASS_SUPPORT
10358 	.set_vlan_groupkey = dp_set_vlan_groupkey,
10359 #endif
10360 	.get_peer_mac_list = dp_get_peer_mac_list,
10361 	.get_peer_id = dp_get_peer_id,
10362 #ifdef QCA_SUPPORT_WDS_EXTENDED
10363 	.set_wds_ext_peer_rx = dp_wds_ext_set_peer_rx,
10364 	.get_wds_ext_peer_osif_handle = dp_wds_ext_get_peer_osif_handle,
10365 #endif /* QCA_SUPPORT_WDS_EXTENDED */
10366 
10367 #if defined(FEATURE_RUNTIME_PM) || defined(DP_POWER_SAVE)
10368 	.txrx_drain = dp_drain_txrx,
10369 #endif
10370 #if defined(FEATURE_RUNTIME_PM)
10371 	.set_rtpm_tput_policy = dp_set_rtpm_tput_policy_requirement,
10372 #endif
10373 #ifdef WLAN_SYSFS_DP_STATS
10374 	.txrx_sysfs_fill_stats = dp_sysfs_fill_stats,
10375 	.txrx_sysfs_set_stat_type = dp_sysfs_set_stat_type,
10376 #endif /* WLAN_SYSFS_DP_STATS */
10377 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
10378 	.set_pkt_capture_mode = dp_set_pkt_capture_mode,
10379 #endif
10380 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
10381 	.txrx_recovery_vdev_flush_peers = dp_recovery_vdev_flush_peers,
10382 #endif
10383 	.txrx_umac_reset_deinit = dp_soc_umac_reset_deinit,
10384 	.txrx_umac_reset_init = dp_soc_umac_reset_init,
10385 	.txrx_get_tsf_time = dp_get_tsf_time,
10386 	.txrx_get_tsf2_offset = dp_get_tsf2_scratch_reg,
10387 	.txrx_get_tqm_offset = dp_get_tqm_scratch_reg,
10388 };
10389 
10390 static struct cdp_ctrl_ops dp_ops_ctrl = {
10391 	.txrx_peer_authorize = dp_peer_authorize,
10392 	.txrx_peer_get_authorize = dp_peer_get_authorize,
10393 #ifdef VDEV_PEER_PROTOCOL_COUNT
10394 	.txrx_enable_peer_protocol_count = dp_enable_vdev_peer_protocol_count,
10395 	.txrx_set_peer_protocol_drop_mask =
10396 		dp_enable_vdev_peer_protocol_drop_mask,
10397 	.txrx_is_peer_protocol_count_enabled =
10398 		dp_is_vdev_peer_protocol_count_enabled,
10399 	.txrx_get_peer_protocol_drop_mask = dp_get_vdev_peer_protocol_drop_mask,
10400 #endif
10401 	.txrx_set_vdev_param = dp_set_vdev_param,
10402 	.txrx_set_psoc_param = dp_set_psoc_param,
10403 	.txrx_get_psoc_param = dp_get_psoc_param,
10404 #ifndef WLAN_SOFTUMAC_SUPPORT
10405 	.txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest,
10406 	.txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest,
10407 #endif
10408 	.txrx_get_sec_type = dp_get_sec_type,
10409 	.txrx_wdi_event_sub = dp_wdi_event_sub,
10410 	.txrx_wdi_event_unsub = dp_wdi_event_unsub,
10411 	.txrx_set_pdev_param = dp_set_pdev_param,
10412 	.txrx_get_pdev_param = dp_get_pdev_param,
10413 	.txrx_set_peer_param = dp_set_peer_param,
10414 	.txrx_get_peer_param = dp_get_peer_param,
10415 #ifdef VDEV_PEER_PROTOCOL_COUNT
10416 	.txrx_peer_protocol_cnt = dp_peer_stats_update_protocol_cnt,
10417 #endif
10418 #ifdef WLAN_SUPPORT_MSCS
10419 	.txrx_record_mscs_params = dp_record_mscs_params,
10420 #endif
10421 	.set_key = dp_set_michael_key,
10422 	.txrx_get_vdev_param = dp_get_vdev_param,
10423 	.calculate_delay_stats = dp_calculate_delay_stats,
10424 #ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
10425 	.txrx_update_pdev_rx_protocol_tag = dp_update_pdev_rx_protocol_tag,
10426 #ifdef WLAN_SUPPORT_RX_TAG_STATISTICS
10427 	.txrx_dump_pdev_rx_protocol_tag_stats =
10428 				dp_dump_pdev_rx_protocol_tag_stats,
10429 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
10430 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
10431 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
10432 	.txrx_set_rx_flow_tag = dp_set_rx_flow_tag,
10433 	.txrx_dump_rx_flow_tag_stats = dp_dump_rx_flow_tag_stats,
10434 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
10435 #ifdef QCA_MULTIPASS_SUPPORT
10436 	.txrx_peer_set_vlan_id = dp_peer_set_vlan_id,
10437 #endif /*QCA_MULTIPASS_SUPPORT*/
10438 #if defined(WLAN_FEATURE_TSF_UPLINK_DELAY) || defined(WLAN_CONFIG_TX_DELAY)
10439 	.txrx_set_delta_tsf = dp_set_delta_tsf,
10440 #endif
10441 #ifdef WLAN_FEATURE_TSF_UPLINK_DELAY
10442 	.txrx_set_tsf_ul_delay_report = dp_set_tsf_ul_delay_report,
10443 	.txrx_get_uplink_delay = dp_get_uplink_delay,
10444 #endif
10445 #ifdef QCA_UNDECODED_METADATA_SUPPORT
10446 	.txrx_set_pdev_phyrx_error_mask = dp_set_pdev_phyrx_error_mask,
10447 	.txrx_get_pdev_phyrx_error_mask = dp_get_pdev_phyrx_error_mask,
10448 #endif
10449 	.txrx_peer_flush_frags = dp_peer_flush_frags,
10450 };
10451 
10452 static struct cdp_me_ops dp_ops_me = {
10453 #ifndef QCA_HOST_MODE_WIFI_DISABLED
10454 #ifdef ATH_SUPPORT_IQUE
10455 	.tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor,
10456 	.tx_me_free_descriptor = dp_tx_me_free_descriptor,
10457 	.tx_me_convert_ucast = dp_tx_me_send_convert_ucast,
10458 #endif
10459 #endif
10460 };
10461 
10462 static struct cdp_host_stats_ops dp_ops_host_stats = {
10463 	.txrx_per_peer_stats = dp_get_host_peer_stats,
10464 	.get_fw_peer_stats = dp_get_fw_peer_stats,
10465 	.get_htt_stats = dp_get_htt_stats,
10466 	.txrx_stats_publish = dp_txrx_stats_publish,
10467 	.txrx_get_vdev_stats  = dp_txrx_get_vdev_stats,
10468 	.txrx_get_peer_stats = dp_txrx_get_peer_stats,
10469 	.txrx_get_soc_stats = dp_txrx_get_soc_stats,
10470 	.txrx_get_peer_stats_param = dp_txrx_get_peer_stats_param,
10471 	.txrx_reset_peer_stats = dp_txrx_reset_peer_stats,
10472 	.txrx_get_pdev_stats = dp_txrx_get_pdev_stats,
10473 #if defined(IPA_OFFLOAD) && defined(QCA_ENHANCED_STATS_SUPPORT)
10474 	.txrx_get_peer_stats = dp_ipa_txrx_get_peer_stats,
10475 	.txrx_get_vdev_stats  = dp_ipa_txrx_get_vdev_stats,
10476 	.txrx_get_pdev_stats = dp_ipa_txrx_get_pdev_stats,
10477 #endif
10478 	.txrx_get_ratekbps = dp_txrx_get_ratekbps,
10479 	.txrx_update_vdev_stats = dp_txrx_update_vdev_host_stats,
10480 	.txrx_get_peer_delay_stats = dp_txrx_get_peer_delay_stats,
10481 	.txrx_get_peer_jitter_stats = dp_txrx_get_peer_jitter_stats,
10482 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
10483 	.txrx_alloc_vdev_stats_id = dp_txrx_alloc_vdev_stats_id,
10484 	.txrx_reset_vdev_stats_id = dp_txrx_reset_vdev_stats_id,
10485 #endif
10486 #ifdef WLAN_TX_PKT_CAPTURE_ENH
10487 	.get_peer_tx_capture_stats = dp_peer_get_tx_capture_stats,
10488 	.get_pdev_tx_capture_stats = dp_pdev_get_tx_capture_stats,
10489 #endif /* WLAN_TX_PKT_CAPTURE_ENH */
10490 #ifdef HW_TX_DELAY_STATS_ENABLE
10491 	.enable_disable_vdev_tx_delay_stats =
10492 				dp_enable_disable_vdev_tx_delay_stats,
10493 	.is_tx_delay_stats_enabled = dp_check_vdev_tx_delay_stats_enabled,
10494 #endif
10495 	.txrx_get_pdev_tid_stats = dp_pdev_get_tid_stats,
10496 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
10497 	.txrx_pdev_telemetry_stats = dp_get_pdev_telemetry_stats,
10498 	.txrx_peer_telemetry_stats = dp_get_peer_telemetry_stats,
10499 	.txrx_pdev_deter_stats = dp_get_pdev_deter_stats,
10500 	.txrx_peer_deter_stats = dp_get_peer_deter_stats,
10501 	.txrx_update_pdev_chan_util_stats = dp_update_pdev_chan_util_stats,
10502 #endif
10503 	.txrx_get_peer_extd_rate_link_stats =
10504 					dp_get_peer_extd_rate_link_stats,
10505 	.get_pdev_obss_stats = dp_get_obss_stats,
10506 	.clear_pdev_obss_pd_stats = dp_clear_pdev_obss_pd_stats,
10507 	/* TODO */
10508 };
10509 
10510 static struct cdp_raw_ops dp_ops_raw = {
10511 	/* TODO */
10512 };
10513 
10514 #ifdef PEER_FLOW_CONTROL
10515 static struct cdp_pflow_ops dp_ops_pflow = {
10516 	dp_tx_flow_ctrl_configure_pdev,
10517 };
10518 #endif
10519 
10520 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
10521 static struct cdp_cfr_ops dp_ops_cfr = {
10522 	.txrx_get_cfr_rcc = dp_get_cfr_rcc,
10523 	.txrx_set_cfr_rcc = dp_set_cfr_rcc,
10524 	.txrx_get_cfr_dbg_stats = dp_get_cfr_dbg_stats,
10525 	.txrx_clear_cfr_dbg_stats = dp_clear_cfr_dbg_stats,
10526 };
10527 #endif
10528 
10529 #ifdef WLAN_SUPPORT_MSCS
10530 static struct cdp_mscs_ops dp_ops_mscs = {
10531 	.mscs_peer_lookup_n_get_priority = dp_mscs_peer_lookup_n_get_priority,
10532 };
10533 #endif
10534 
10535 #ifdef WLAN_SUPPORT_MESH_LATENCY
10536 static struct cdp_mesh_latency_ops dp_ops_mesh_latency = {
10537 	.mesh_latency_update_peer_parameter =
10538 		dp_mesh_latency_update_peer_parameter,
10539 };
10540 #endif
10541 
10542 #ifdef WLAN_SUPPORT_SCS
10543 static struct cdp_scs_ops dp_ops_scs = {
10544 	.scs_peer_lookup_n_rule_match = dp_scs_peer_lookup_n_rule_match,
10545 };
10546 #endif
10547 
10548 #ifdef CONFIG_SAWF_DEF_QUEUES
10549 static struct cdp_sawf_ops dp_ops_sawf = {
10550 	.sawf_def_queues_map_req = dp_sawf_def_queues_map_req,
10551 	.sawf_def_queues_unmap_req = dp_sawf_def_queues_unmap_req,
10552 	.sawf_def_queues_get_map_report =
10553 		dp_sawf_def_queues_get_map_report,
10554 #ifdef CONFIG_SAWF_STATS
10555 	.sawf_get_peer_msduq_info = dp_sawf_get_peer_msduq_info,
10556 	.txrx_get_peer_sawf_delay_stats = dp_sawf_get_peer_delay_stats,
10557 	.txrx_get_peer_sawf_tx_stats = dp_sawf_get_peer_tx_stats,
10558 	.sawf_mpdu_stats_req = dp_sawf_mpdu_stats_req,
10559 	.sawf_mpdu_details_stats_req = dp_sawf_mpdu_details_stats_req,
10560 	.txrx_sawf_set_mov_avg_params = dp_sawf_set_mov_avg_params,
10561 	.txrx_sawf_set_sla_params = dp_sawf_set_sla_params,
10562 	.txrx_sawf_init_telemtery_params = dp_sawf_init_telemetry_params,
10563 	.telemetry_get_throughput_stats = dp_sawf_get_tx_stats,
10564 	.telemetry_get_mpdu_stats = dp_sawf_get_mpdu_sched_stats,
10565 	.telemetry_get_drop_stats = dp_sawf_get_drop_stats,
10566 	.peer_config_ul = dp_sawf_peer_config_ul,
10567 	.swaf_peer_is_sla_configured = dp_swaf_peer_is_sla_configured,
10568 #endif
10569 };
10570 #endif
10571 
10572 #ifdef DP_TX_TRACKING
10573 
10574 #define DP_TX_COMP_MAX_LATENCY_MS 60000
10575 /**
10576  * dp_tx_comp_delay_check() - calculate time latency for tx completion per pkt
10577  * @tx_desc: tx descriptor
10578  *
10579  * Calculate time latency for tx completion per pkt and trigger self recovery
10580  * when the delay is more than threshold value.
10581  *
10582  * Return: True if delay is more than threshold
10583  */
10584 static bool dp_tx_comp_delay_check(struct dp_tx_desc_s *tx_desc)
10585 {
10586 	uint64_t time_latency, timestamp_tick = tx_desc->timestamp_tick;
10587 	qdf_ktime_t current_time = qdf_ktime_real_get();
10588 	qdf_ktime_t timestamp = tx_desc->timestamp;
10589 
10590 	if (dp_tx_pkt_tracepoints_enabled()) {
10591 		if (!timestamp)
10592 			return false;
10593 
10594 		time_latency = qdf_ktime_to_ms(current_time) -
10595 				qdf_ktime_to_ms(timestamp);
10596 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
10597 			dp_err_rl("enqueued: %llu ms, current : %llu ms",
10598 				  timestamp, current_time);
10599 			return true;
10600 		}
10601 	} else {
10602 		if (!timestamp_tick)
10603 			return false;
10604 
10605 		current_time = qdf_system_ticks();
10606 		time_latency = qdf_system_ticks_to_msecs(current_time -
10607 							 timestamp_tick);
10608 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
10609 			dp_err_rl("enqueued: %u ms, current : %u ms",
10610 				  qdf_system_ticks_to_msecs(timestamp_tick),
10611 				  qdf_system_ticks_to_msecs(current_time));
10612 			return true;
10613 		}
10614 	}
10615 
10616 	return false;
10617 }
10618 
10619 void dp_find_missing_tx_comp(struct dp_soc *soc)
10620 {
10621 	uint8_t i;
10622 	uint32_t j;
10623 	uint32_t num_desc, page_id, offset;
10624 	uint16_t num_desc_per_page;
10625 	struct dp_tx_desc_s *tx_desc = NULL;
10626 	struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
10627 
10628 	for (i = 0; i < MAX_TXDESC_POOLS; i++) {
10629 		tx_desc_pool = &soc->tx_desc[i];
10630 		if (!(tx_desc_pool->pool_size) ||
10631 		    IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
10632 		    !(tx_desc_pool->desc_pages.cacheable_pages))
10633 			continue;
10634 
10635 		num_desc = tx_desc_pool->pool_size;
10636 		num_desc_per_page =
10637 			tx_desc_pool->desc_pages.num_element_per_page;
10638 		for (j = 0; j < num_desc; j++) {
10639 			page_id = j / num_desc_per_page;
10640 			offset = j % num_desc_per_page;
10641 
10642 			if (qdf_unlikely(!(tx_desc_pool->
10643 					 desc_pages.cacheable_pages)))
10644 				break;
10645 
10646 			tx_desc = dp_tx_desc_find(soc, i, page_id, offset);
10647 			if (tx_desc->magic == DP_TX_MAGIC_PATTERN_FREE) {
10648 				continue;
10649 			} else if (tx_desc->magic ==
10650 				   DP_TX_MAGIC_PATTERN_INUSE) {
10651 				if (dp_tx_comp_delay_check(tx_desc)) {
10652 					dp_err_rl("Tx completion not rcvd for id: %u",
10653 						  tx_desc->id);
10654 					if (tx_desc->vdev_id == DP_INVALID_VDEV_ID) {
10655 						tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
10656 						dp_err_rl("Freed tx_desc %u",
10657 							  tx_desc->id);
10658 						dp_tx_comp_free_buf(soc,
10659 								    tx_desc,
10660 								    false);
10661 						dp_tx_desc_release(tx_desc, i);
10662 						DP_STATS_INC(soc,
10663 							     tx.tx_comp_force_freed, 1);
10664 					}
10665 				}
10666 			} else {
10667 				dp_err_rl("tx desc %u corrupted, flags: 0x%x",
10668 					  tx_desc->id, tx_desc->flags);
10669 			}
10670 		}
10671 	}
10672 }
10673 #else
10674 inline void dp_find_missing_tx_comp(struct dp_soc *soc)
10675 {
10676 }
10677 #endif
10678 
10679 #ifdef FEATURE_RUNTIME_PM
10680 /**
10681  * dp_runtime_suspend() - ensure DP is ready to runtime suspend
10682  * @soc_hdl: Datapath soc handle
10683  * @pdev_id: id of data path pdev handle
10684  *
10685  * DP is ready to runtime suspend if there are no pending TX packets.
10686  *
10687  * Return: QDF_STATUS
10688  */
10689 static QDF_STATUS dp_runtime_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
10690 {
10691 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10692 	struct dp_pdev *pdev;
10693 	int32_t tx_pending;
10694 
10695 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
10696 	if (!pdev) {
10697 		dp_err("pdev is NULL");
10698 		return QDF_STATUS_E_INVAL;
10699 	}
10700 
10701 	/* Abort if there are any pending TX packets */
10702 	tx_pending = dp_get_tx_pending(dp_pdev_to_cdp_pdev(pdev));
10703 	if (tx_pending) {
10704 		dp_info_rl("%pK: Abort suspend due to pending TX packets %d",
10705 			   soc, tx_pending);
10706 		dp_find_missing_tx_comp(soc);
10707 		/* perform a force flush if tx is pending */
10708 		soc->arch_ops.dp_update_ring_hptp(soc, true);
10709 		qdf_atomic_set(&soc->tx_pending_rtpm, 0);
10710 
10711 		return QDF_STATUS_E_AGAIN;
10712 	}
10713 
10714 	if (dp_runtime_get_refcount(soc)) {
10715 		dp_init_info("refcount: %d", dp_runtime_get_refcount(soc));
10716 
10717 		return QDF_STATUS_E_AGAIN;
10718 	}
10719 
10720 	if (soc->intr_mode == DP_INTR_POLL)
10721 		qdf_timer_stop(&soc->int_timer);
10722 
10723 	dp_rx_fst_update_pm_suspend_status(soc, true);
10724 
10725 	return QDF_STATUS_SUCCESS;
10726 }
10727 
10728 #define DP_FLUSH_WAIT_CNT 10
10729 #define DP_RUNTIME_SUSPEND_WAIT_MS 10
10730 /**
10731  * dp_runtime_resume() - ensure DP is ready to runtime resume
10732  * @soc_hdl: Datapath soc handle
10733  * @pdev_id: id of data path pdev handle
10734  *
10735  * Resume DP for runtime PM.
10736  *
10737  * Return: QDF_STATUS
10738  */
10739 static QDF_STATUS dp_runtime_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
10740 {
10741 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10742 	int suspend_wait = 0;
10743 
10744 	if (soc->intr_mode == DP_INTR_POLL)
10745 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
10746 
10747 	/*
10748 	 * Wait until dp runtime refcount becomes zero or time out, then flush
10749 	 * pending tx for runtime suspend.
10750 	 */
10751 	while (dp_runtime_get_refcount(soc) &&
10752 	       suspend_wait < DP_FLUSH_WAIT_CNT) {
10753 		qdf_sleep(DP_RUNTIME_SUSPEND_WAIT_MS);
10754 		suspend_wait++;
10755 	}
10756 
10757 	soc->arch_ops.dp_update_ring_hptp(soc, false);
10758 	qdf_atomic_set(&soc->tx_pending_rtpm, 0);
10759 
10760 	dp_rx_fst_update_pm_suspend_status(soc, false);
10761 
10762 	return QDF_STATUS_SUCCESS;
10763 }
10764 #endif /* FEATURE_RUNTIME_PM */
10765 
10766 /**
10767  * dp_tx_get_success_ack_stats() - get tx success completion count
10768  * @soc_hdl: Datapath soc handle
10769  * @vdev_id: vdev identifier
10770  *
10771  * Return: tx success ack count
10772  */
10773 static uint32_t dp_tx_get_success_ack_stats(struct cdp_soc_t *soc_hdl,
10774 					    uint8_t vdev_id)
10775 {
10776 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10777 	struct cdp_vdev_stats *vdev_stats = NULL;
10778 	uint32_t tx_success;
10779 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10780 						     DP_MOD_ID_CDP);
10781 
10782 	if (!vdev) {
10783 		dp_cdp_err("%pK: Invalid vdev id %d", soc, vdev_id);
10784 		return 0;
10785 	}
10786 
10787 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
10788 	if (!vdev_stats) {
10789 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats", soc);
10790 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10791 		return 0;
10792 	}
10793 
10794 	dp_aggregate_vdev_stats(vdev, vdev_stats);
10795 
10796 	tx_success = vdev_stats->tx.tx_success.num;
10797 	qdf_mem_free(vdev_stats);
10798 
10799 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10800 	return tx_success;
10801 }
10802 
10803 #ifdef WLAN_SUPPORT_DATA_STALL
10804 /**
10805  * dp_register_data_stall_detect_cb() - register data stall callback
10806  * @soc_hdl: Datapath soc handle
10807  * @pdev_id: id of data path pdev handle
10808  * @data_stall_detect_callback: data stall callback function
10809  *
10810  * Return: QDF_STATUS Enumeration
10811  */
10812 static
10813 QDF_STATUS dp_register_data_stall_detect_cb(
10814 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10815 			data_stall_detect_cb data_stall_detect_callback)
10816 {
10817 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10818 	struct dp_pdev *pdev;
10819 
10820 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
10821 	if (!pdev) {
10822 		dp_err("pdev NULL!");
10823 		return QDF_STATUS_E_INVAL;
10824 	}
10825 
10826 	pdev->data_stall_detect_callback = data_stall_detect_callback;
10827 	return QDF_STATUS_SUCCESS;
10828 }
10829 
10830 /**
10831  * dp_deregister_data_stall_detect_cb() - de-register data stall callback
10832  * @soc_hdl: Datapath soc handle
10833  * @pdev_id: id of data path pdev handle
10834  * @data_stall_detect_callback: data stall callback function
10835  *
10836  * Return: QDF_STATUS Enumeration
10837  */
10838 static
10839 QDF_STATUS dp_deregister_data_stall_detect_cb(
10840 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10841 			data_stall_detect_cb data_stall_detect_callback)
10842 {
10843 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10844 	struct dp_pdev *pdev;
10845 
10846 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
10847 	if (!pdev) {
10848 		dp_err("pdev NULL!");
10849 		return QDF_STATUS_E_INVAL;
10850 	}
10851 
10852 	pdev->data_stall_detect_callback = NULL;
10853 	return QDF_STATUS_SUCCESS;
10854 }
10855 
10856 /**
10857  * dp_txrx_post_data_stall_event() - post data stall event
10858  * @soc_hdl: Datapath soc handle
10859  * @indicator: Module triggering data stall
10860  * @data_stall_type: data stall event type
10861  * @pdev_id: pdev id
10862  * @vdev_id_bitmap: vdev id bitmap
10863  * @recovery_type: data stall recovery type
10864  *
10865  * Return: None
10866  */
10867 static void
10868 dp_txrx_post_data_stall_event(struct cdp_soc_t *soc_hdl,
10869 			      enum data_stall_log_event_indicator indicator,
10870 			      enum data_stall_log_event_type data_stall_type,
10871 			      uint32_t pdev_id, uint32_t vdev_id_bitmap,
10872 			      enum data_stall_log_recovery_type recovery_type)
10873 {
10874 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10875 	struct data_stall_event_info data_stall_info;
10876 	struct dp_pdev *pdev;
10877 
10878 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
10879 	if (!pdev) {
10880 		dp_err("pdev NULL!");
10881 		return;
10882 	}
10883 
10884 	if (!pdev->data_stall_detect_callback) {
10885 		dp_err("data stall cb not registered!");
10886 		return;
10887 	}
10888 
10889 	dp_info("data_stall_type: %x pdev_id: %d",
10890 		data_stall_type, pdev_id);
10891 
10892 	data_stall_info.indicator = indicator;
10893 	data_stall_info.data_stall_type = data_stall_type;
10894 	data_stall_info.vdev_id_bitmap = vdev_id_bitmap;
10895 	data_stall_info.pdev_id = pdev_id;
10896 	data_stall_info.recovery_type = recovery_type;
10897 
10898 	pdev->data_stall_detect_callback(&data_stall_info);
10899 }
10900 #endif /* WLAN_SUPPORT_DATA_STALL */
10901 
10902 #ifdef WLAN_FEATURE_STATS_EXT
10903 /**
10904  * dp_txrx_ext_stats_request() - request dp txrx extended stats request
10905  * @soc_hdl: soc handle
10906  * @pdev_id: pdev id
10907  * @req: stats request
10908  *
10909  * Return: QDF_STATUS
10910  */
10911 static QDF_STATUS
10912 dp_txrx_ext_stats_request(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10913 			  struct cdp_txrx_ext_stats *req)
10914 {
10915 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10916 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
10917 	int i = 0;
10918 	int tcl_ring_full = 0;
10919 
10920 	if (!pdev) {
10921 		dp_err("pdev is null");
10922 		return QDF_STATUS_E_INVAL;
10923 	}
10924 
10925 	dp_aggregate_pdev_stats(pdev);
10926 
10927 	for(i = 0 ; i < MAX_TCL_DATA_RINGS; i++)
10928 		tcl_ring_full += soc->stats.tx.tcl_ring_full[i];
10929 
10930 	req->tx_msdu_enqueue = pdev->stats.tx_i.processed.num;
10931 	req->tx_msdu_overflow = tcl_ring_full;
10932 	/* Error rate at LMAC */
10933 	req->rx_mpdu_received = soc->ext_stats.rx_mpdu_received +
10934 				pdev->stats.err.fw_reported_rxdma_error;
10935 	/* only count error source from RXDMA */
10936 	req->rx_mpdu_error = pdev->stats.err.fw_reported_rxdma_error;
10937 
10938 	/* Error rate at above the MAC */
10939 	req->rx_mpdu_delivered = soc->ext_stats.rx_mpdu_received;
10940 	req->rx_mpdu_missed = pdev->stats.err.reo_error;
10941 
10942 	dp_info("ext stats: tx_msdu_enq = %u, tx_msdu_overflow = %u, "
10943 		"rx_mpdu_receive = %u, rx_mpdu_delivered = %u, "
10944 		"rx_mpdu_missed = %u, rx_mpdu_error = %u",
10945 		req->tx_msdu_enqueue,
10946 		req->tx_msdu_overflow,
10947 		req->rx_mpdu_received,
10948 		req->rx_mpdu_delivered,
10949 		req->rx_mpdu_missed,
10950 		req->rx_mpdu_error);
10951 
10952 	return QDF_STATUS_SUCCESS;
10953 }
10954 
10955 #endif /* WLAN_FEATURE_STATS_EXT */
10956 
10957 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
10958 /**
10959  * dp_mark_first_wakeup_packet() - set flag to indicate that
10960  *    fw is compatible for marking first packet after wow wakeup
10961  * @soc_hdl: Datapath soc handle
10962  * @pdev_id: id of data path pdev handle
10963  * @value: 1 for enabled/ 0 for disabled
10964  *
10965  * Return: None
10966  */
10967 static void dp_mark_first_wakeup_packet(struct cdp_soc_t *soc_hdl,
10968 					uint8_t pdev_id, uint8_t value)
10969 {
10970 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10971 	struct dp_pdev *pdev;
10972 
10973 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
10974 	if (!pdev) {
10975 		dp_err("pdev is NULL");
10976 		return;
10977 	}
10978 
10979 	pdev->is_first_wakeup_packet = value;
10980 }
10981 #endif
10982 
10983 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
10984 /**
10985  * dp_set_peer_txq_flush_config() - Set the peer txq flush configuration
10986  * @soc_hdl: Opaque handle to the DP soc object
10987  * @vdev_id: VDEV identifier
10988  * @mac: MAC address of the peer
10989  * @ac: access category mask
10990  * @tid: TID mask
10991  * @policy: Flush policy
10992  *
10993  * Return: 0 on success, errno on failure
10994  */
10995 static int dp_set_peer_txq_flush_config(struct cdp_soc_t *soc_hdl,
10996 					uint8_t vdev_id, uint8_t *mac,
10997 					uint8_t ac, uint32_t tid,
10998 					enum cdp_peer_txq_flush_policy policy)
10999 {
11000 	struct dp_soc *soc;
11001 
11002 	if (!soc_hdl) {
11003 		dp_err("soc is null");
11004 		return -EINVAL;
11005 	}
11006 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
11007 	return target_if_peer_txq_flush_config(soc->ctrl_psoc, vdev_id,
11008 					       mac, ac, tid, policy);
11009 }
11010 #endif
11011 
11012 #ifdef CONNECTIVITY_PKTLOG
11013 /**
11014  * dp_register_packetdump_callback() - registers
11015  *  tx data packet, tx mgmt. packet and rx data packet
11016  *  dump callback handler.
11017  *
11018  * @soc_hdl: Datapath soc handle
11019  * @pdev_id: id of data path pdev handle
11020  * @dp_tx_packetdump_cb: tx packetdump cb
11021  * @dp_rx_packetdump_cb: rx packetdump cb
11022  *
11023  * This function is used to register tx data pkt, tx mgmt.
11024  * pkt and rx data pkt dump callback
11025  *
11026  * Return: None
11027  *
11028  */
11029 static inline
11030 void dp_register_packetdump_callback(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
11031 				     ol_txrx_pktdump_cb dp_tx_packetdump_cb,
11032 				     ol_txrx_pktdump_cb dp_rx_packetdump_cb)
11033 {
11034 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11035 	struct dp_pdev *pdev;
11036 
11037 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11038 	if (!pdev) {
11039 		dp_err("pdev is NULL!");
11040 		return;
11041 	}
11042 
11043 	pdev->dp_tx_packetdump_cb = dp_tx_packetdump_cb;
11044 	pdev->dp_rx_packetdump_cb = dp_rx_packetdump_cb;
11045 }
11046 
11047 /**
11048  * dp_deregister_packetdump_callback() - deregidters
11049  *  tx data packet, tx mgmt. packet and rx data packet
11050  *  dump callback handler
11051  * @soc_hdl: Datapath soc handle
11052  * @pdev_id: id of data path pdev handle
11053  *
11054  * This function is used to deregidter tx data pkt.,
11055  * tx mgmt. pkt and rx data pkt. dump callback
11056  *
11057  * Return: None
11058  *
11059  */
11060 static inline
11061 void dp_deregister_packetdump_callback(struct cdp_soc_t *soc_hdl,
11062 				       uint8_t pdev_id)
11063 {
11064 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11065 	struct dp_pdev *pdev;
11066 
11067 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11068 	if (!pdev) {
11069 		dp_err("pdev is NULL!");
11070 		return;
11071 	}
11072 
11073 	pdev->dp_tx_packetdump_cb = NULL;
11074 	pdev->dp_rx_packetdump_cb = NULL;
11075 }
11076 #endif
11077 
11078 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
11079 /**
11080  * dp_set_bus_vote_lvl_high() - Take a vote on bus bandwidth from dp
11081  * @soc_hdl: Datapath soc handle
11082  * @high: whether the bus bw is high or not
11083  *
11084  * Return: void
11085  */
11086 static void
11087 dp_set_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl, bool high)
11088 {
11089 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11090 
11091 	soc->high_throughput = high;
11092 }
11093 
11094 /**
11095  * dp_get_bus_vote_lvl_high() - get bus bandwidth vote to dp
11096  * @soc_hdl: Datapath soc handle
11097  *
11098  * Return: bool
11099  */
11100 static bool
11101 dp_get_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl)
11102 {
11103 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11104 
11105 	return soc->high_throughput;
11106 }
11107 #endif
11108 
11109 #ifdef DP_PEER_EXTENDED_API
11110 static struct cdp_misc_ops dp_ops_misc = {
11111 #ifdef FEATURE_WLAN_TDLS
11112 	.tx_non_std = dp_tx_non_std,
11113 #endif /* FEATURE_WLAN_TDLS */
11114 	.get_opmode = dp_get_opmode,
11115 #ifdef FEATURE_RUNTIME_PM
11116 	.runtime_suspend = dp_runtime_suspend,
11117 	.runtime_resume = dp_runtime_resume,
11118 #endif /* FEATURE_RUNTIME_PM */
11119 	.get_num_rx_contexts = dp_get_num_rx_contexts,
11120 	.get_tx_ack_stats = dp_tx_get_success_ack_stats,
11121 #ifdef WLAN_SUPPORT_DATA_STALL
11122 	.txrx_data_stall_cb_register = dp_register_data_stall_detect_cb,
11123 	.txrx_data_stall_cb_deregister = dp_deregister_data_stall_detect_cb,
11124 	.txrx_post_data_stall_event = dp_txrx_post_data_stall_event,
11125 #endif
11126 
11127 #ifdef WLAN_FEATURE_STATS_EXT
11128 	.txrx_ext_stats_request = dp_txrx_ext_stats_request,
11129 #ifndef WLAN_SOFTUMAC_SUPPORT
11130 	.request_rx_hw_stats = dp_request_rx_hw_stats,
11131 	.reset_rx_hw_ext_stats = dp_reset_rx_hw_ext_stats,
11132 #endif
11133 #endif /* WLAN_FEATURE_STATS_EXT */
11134 	.vdev_inform_ll_conn = dp_vdev_inform_ll_conn,
11135 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
11136 	.set_swlm_enable = dp_soc_set_swlm_enable,
11137 	.is_swlm_enabled = dp_soc_is_swlm_enabled,
11138 #endif
11139 	.display_txrx_hw_info = dp_display_srng_info,
11140 #ifndef WLAN_SOFTUMAC_SUPPORT
11141 	.get_tx_rings_grp_bitmap = dp_get_tx_rings_grp_bitmap,
11142 #endif
11143 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
11144 	.mark_first_wakeup_packet = dp_mark_first_wakeup_packet,
11145 #endif
11146 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
11147 	.set_peer_txq_flush_config = dp_set_peer_txq_flush_config,
11148 #endif
11149 #ifdef CONNECTIVITY_PKTLOG
11150 	.register_pktdump_cb = dp_register_packetdump_callback,
11151 	.unregister_pktdump_cb = dp_deregister_packetdump_callback,
11152 #endif
11153 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
11154 	.set_bus_vote_lvl_high = dp_set_bus_vote_lvl_high,
11155 	.get_bus_vote_lvl_high = dp_get_bus_vote_lvl_high,
11156 #endif
11157 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
11158 	.evaluate_update_tx_ilp_cfg = dp_evaluate_update_tx_ilp_config,
11159 #endif
11160 };
11161 #endif
11162 
11163 #ifdef DP_FLOW_CTL
11164 static struct cdp_flowctl_ops dp_ops_flowctl = {
11165 	/* WIFI 3.0 DP implement as required. */
11166 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
11167 #ifndef WLAN_SOFTUMAC_SUPPORT
11168 	.flow_pool_map_handler = dp_tx_flow_pool_map,
11169 	.flow_pool_unmap_handler = dp_tx_flow_pool_unmap,
11170 #endif /*WLAN_SOFTUMAC_SUPPORT */
11171 	.register_pause_cb = dp_txrx_register_pause_cb,
11172 	.dump_flow_pool_info = dp_tx_dump_flow_pool_info,
11173 	.tx_desc_thresh_reached = dp_tx_desc_thresh_reached,
11174 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
11175 };
11176 
11177 static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
11178 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
11179 };
11180 #endif
11181 
11182 #ifdef IPA_OFFLOAD
11183 static struct cdp_ipa_ops dp_ops_ipa = {
11184 	.ipa_get_resource = dp_ipa_get_resource,
11185 	.ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr,
11186 	.ipa_iounmap_doorbell_vaddr = dp_ipa_iounmap_doorbell_vaddr,
11187 	.ipa_op_response = dp_ipa_op_response,
11188 	.ipa_register_op_cb = dp_ipa_register_op_cb,
11189 	.ipa_deregister_op_cb = dp_ipa_deregister_op_cb,
11190 	.ipa_get_stat = dp_ipa_get_stat,
11191 	.ipa_tx_data_frame = dp_tx_send_ipa_data_frame,
11192 	.ipa_enable_autonomy = dp_ipa_enable_autonomy,
11193 	.ipa_disable_autonomy = dp_ipa_disable_autonomy,
11194 	.ipa_setup = dp_ipa_setup,
11195 	.ipa_cleanup = dp_ipa_cleanup,
11196 	.ipa_setup_iface = dp_ipa_setup_iface,
11197 	.ipa_cleanup_iface = dp_ipa_cleanup_iface,
11198 	.ipa_enable_pipes = dp_ipa_enable_pipes,
11199 	.ipa_disable_pipes = dp_ipa_disable_pipes,
11200 	.ipa_set_perf_level = dp_ipa_set_perf_level,
11201 	.ipa_rx_intrabss_fwd = dp_ipa_rx_intrabss_fwd,
11202 	.ipa_tx_buf_smmu_mapping = dp_ipa_tx_buf_smmu_mapping,
11203 	.ipa_tx_buf_smmu_unmapping = dp_ipa_tx_buf_smmu_unmapping,
11204 #ifdef QCA_ENHANCED_STATS_SUPPORT
11205 	.ipa_update_peer_rx_stats = dp_ipa_update_peer_rx_stats,
11206 #endif
11207 #ifdef IPA_OPT_WIFI_DP
11208 	.ipa_rx_super_rule_setup = dp_ipa_rx_super_rule_setup,
11209 	.ipa_pcie_link_up = dp_ipa_pcie_link_up,
11210 	.ipa_pcie_link_down = dp_ipa_pcie_link_down,
11211 #endif
11212 #ifdef IPA_WDS_EASYMESH_FEATURE
11213 	.ipa_ast_create = dp_ipa_ast_create,
11214 #endif
11215 	.ipa_get_wdi_version = dp_ipa_get_wdi_version,
11216 };
11217 #endif
11218 
11219 #ifdef DP_POWER_SAVE
11220 static QDF_STATUS dp_bus_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
11221 {
11222 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11223 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11224 	int timeout = SUSPEND_DRAIN_WAIT;
11225 	int drain_wait_delay = 50; /* 50 ms */
11226 	int32_t tx_pending;
11227 
11228 	if (qdf_unlikely(!pdev)) {
11229 		dp_err("pdev is NULL");
11230 		return QDF_STATUS_E_INVAL;
11231 	}
11232 
11233 	/* Abort if there are any pending TX packets */
11234 	while ((tx_pending = dp_get_tx_pending((struct cdp_pdev *)pdev))) {
11235 		qdf_sleep(drain_wait_delay);
11236 		if (timeout <= 0) {
11237 			dp_info("TX frames are pending %d, abort suspend",
11238 				tx_pending);
11239 			dp_find_missing_tx_comp(soc);
11240 			return QDF_STATUS_E_TIMEOUT;
11241 		}
11242 		timeout = timeout - drain_wait_delay;
11243 	}
11244 
11245 	if (soc->intr_mode == DP_INTR_POLL)
11246 		qdf_timer_stop(&soc->int_timer);
11247 
11248 	/* Stop monitor reap timer and reap any pending frames in ring */
11249 	dp_monitor_reap_timer_suspend(soc);
11250 
11251 	dp_suspend_fse_cache_flush(soc);
11252 	dp_rx_fst_update_pm_suspend_status(soc, true);
11253 
11254 	return QDF_STATUS_SUCCESS;
11255 }
11256 
11257 static QDF_STATUS dp_bus_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
11258 {
11259 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11260 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11261 
11262 	if (qdf_unlikely(!pdev)) {
11263 		dp_err("pdev is NULL");
11264 		return QDF_STATUS_E_INVAL;
11265 	}
11266 
11267 	if (soc->intr_mode == DP_INTR_POLL)
11268 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
11269 
11270 	/* Start monitor reap timer */
11271 	dp_monitor_reap_timer_start(soc, CDP_MON_REAP_SOURCE_ANY);
11272 
11273 	dp_resume_fse_cache_flush(soc);
11274 
11275 	soc->arch_ops.dp_update_ring_hptp(soc, false);
11276 
11277 	dp_rx_fst_update_pm_suspend_status(soc, false);
11278 
11279 	dp_rx_fst_requeue_wq(soc);
11280 
11281 	return QDF_STATUS_SUCCESS;
11282 }
11283 
11284 /**
11285  * dp_process_wow_ack_rsp() - process wow ack response
11286  * @soc_hdl: datapath soc handle
11287  * @pdev_id: data path pdev handle id
11288  *
11289  * Return: none
11290  */
11291 static void dp_process_wow_ack_rsp(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
11292 {
11293 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11294 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11295 
11296 	if (qdf_unlikely(!pdev)) {
11297 		dp_err("pdev is NULL");
11298 		return;
11299 	}
11300 
11301 	/*
11302 	 * As part of wow enable FW disables the mon status ring and in wow ack
11303 	 * response from FW reap mon status ring to make sure no packets pending
11304 	 * in the ring.
11305 	 */
11306 	dp_monitor_reap_timer_suspend(soc);
11307 }
11308 
11309 /**
11310  * dp_process_target_suspend_req() - process target suspend request
11311  * @soc_hdl: datapath soc handle
11312  * @pdev_id: data path pdev handle id
11313  *
11314  * Return: none
11315  */
11316 static void dp_process_target_suspend_req(struct cdp_soc_t *soc_hdl,
11317 					  uint8_t pdev_id)
11318 {
11319 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11320 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11321 
11322 	if (qdf_unlikely(!pdev)) {
11323 		dp_err("pdev is NULL");
11324 		return;
11325 	}
11326 
11327 	/* Stop monitor reap timer and reap any pending frames in ring */
11328 	dp_monitor_reap_timer_suspend(soc);
11329 }
11330 
11331 static struct cdp_bus_ops dp_ops_bus = {
11332 	.bus_suspend = dp_bus_suspend,
11333 	.bus_resume = dp_bus_resume,
11334 	.process_wow_ack_rsp = dp_process_wow_ack_rsp,
11335 	.process_target_suspend_req = dp_process_target_suspend_req
11336 };
11337 #endif
11338 
11339 #ifdef DP_FLOW_CTL
11340 static struct cdp_throttle_ops dp_ops_throttle = {
11341 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
11342 };
11343 
11344 static struct cdp_cfg_ops dp_ops_cfg = {
11345 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
11346 };
11347 #endif
11348 
11349 #ifdef DP_PEER_EXTENDED_API
11350 static struct cdp_ocb_ops dp_ops_ocb = {
11351 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
11352 };
11353 
11354 static struct cdp_mob_stats_ops dp_ops_mob_stats = {
11355 	.clear_stats = dp_txrx_clear_dump_stats,
11356 };
11357 
11358 static struct cdp_peer_ops dp_ops_peer = {
11359 	.register_peer = dp_register_peer,
11360 	.clear_peer = dp_clear_peer,
11361 	.find_peer_exist = dp_find_peer_exist,
11362 	.find_peer_exist_on_vdev = dp_find_peer_exist_on_vdev,
11363 	.find_peer_exist_on_other_vdev = dp_find_peer_exist_on_other_vdev,
11364 	.peer_state_update = dp_peer_state_update,
11365 	.get_vdevid = dp_get_vdevid,
11366 	.get_vdev_by_peer_addr = dp_get_vdev_by_peer_addr,
11367 	.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
11368 	.get_peer_state = dp_get_peer_state,
11369 	.peer_flush_frags = dp_peer_flush_frags,
11370 	.set_peer_as_tdls_peer = dp_set_peer_as_tdls_peer,
11371 };
11372 #endif
11373 
11374 static void dp_soc_txrx_ops_attach(struct dp_soc *soc)
11375 {
11376 	soc->cdp_soc.ops->cmn_drv_ops = &dp_ops_cmn;
11377 	soc->cdp_soc.ops->ctrl_ops = &dp_ops_ctrl;
11378 	soc->cdp_soc.ops->me_ops = &dp_ops_me;
11379 	soc->cdp_soc.ops->host_stats_ops = &dp_ops_host_stats;
11380 	soc->cdp_soc.ops->wds_ops = &dp_ops_wds;
11381 	soc->cdp_soc.ops->raw_ops = &dp_ops_raw;
11382 #ifdef PEER_FLOW_CONTROL
11383 	soc->cdp_soc.ops->pflow_ops = &dp_ops_pflow;
11384 #endif /* PEER_FLOW_CONTROL */
11385 #ifdef DP_PEER_EXTENDED_API
11386 	soc->cdp_soc.ops->misc_ops = &dp_ops_misc;
11387 	soc->cdp_soc.ops->ocb_ops = &dp_ops_ocb;
11388 	soc->cdp_soc.ops->peer_ops = &dp_ops_peer;
11389 	soc->cdp_soc.ops->mob_stats_ops = &dp_ops_mob_stats;
11390 #endif
11391 #ifdef DP_FLOW_CTL
11392 	soc->cdp_soc.ops->cfg_ops = &dp_ops_cfg;
11393 	soc->cdp_soc.ops->flowctl_ops = &dp_ops_flowctl;
11394 	soc->cdp_soc.ops->l_flowctl_ops = &dp_ops_l_flowctl;
11395 	soc->cdp_soc.ops->throttle_ops = &dp_ops_throttle;
11396 #endif
11397 #ifdef IPA_OFFLOAD
11398 	soc->cdp_soc.ops->ipa_ops = &dp_ops_ipa;
11399 #endif
11400 #ifdef DP_POWER_SAVE
11401 	soc->cdp_soc.ops->bus_ops = &dp_ops_bus;
11402 #endif
11403 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
11404 	soc->cdp_soc.ops->cfr_ops = &dp_ops_cfr;
11405 #endif
11406 #ifdef WLAN_SUPPORT_MSCS
11407 	soc->cdp_soc.ops->mscs_ops = &dp_ops_mscs;
11408 #endif
11409 #ifdef WLAN_SUPPORT_MESH_LATENCY
11410 	soc->cdp_soc.ops->mesh_latency_ops = &dp_ops_mesh_latency;
11411 #endif
11412 #ifdef CONFIG_SAWF_DEF_QUEUES
11413 	soc->cdp_soc.ops->sawf_ops = &dp_ops_sawf;
11414 #endif
11415 #ifdef WLAN_SUPPORT_SCS
11416 	soc->cdp_soc.ops->scs_ops = &dp_ops_scs;
11417 #endif
11418 };
11419 
11420 #if defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018) || \
11421 	defined(QCA_WIFI_QCA5018) || defined(QCA_WIFI_QCA9574) || \
11422 	defined(QCA_WIFI_QCA5332)
11423 /**
11424  * dp_soc_attach_wifi3() - Attach txrx SOC
11425  * @ctrl_psoc: Opaque SOC handle from control plane
11426  * @params: SOC attach params
11427  *
11428  * Return: DP SOC handle on success, NULL on failure
11429  */
11430 struct cdp_soc_t *
11431 dp_soc_attach_wifi3(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
11432 		    struct cdp_soc_attach_params *params)
11433 {
11434 	struct dp_soc *dp_soc = NULL;
11435 
11436 	dp_soc = dp_soc_attach(ctrl_psoc, params);
11437 
11438 	return dp_soc_to_cdp_soc_t(dp_soc);
11439 }
11440 
11441 static inline void dp_soc_set_def_pdev(struct dp_soc *soc)
11442 {
11443 	int lmac_id;
11444 
11445 	for (lmac_id = 0; lmac_id < MAX_NUM_LMAC_HW; lmac_id++) {
11446 		/*Set default host PDEV ID for lmac_id*/
11447 		wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
11448 				      INVALID_PDEV_ID, lmac_id);
11449 	}
11450 }
11451 
11452 static uint32_t
11453 dp_get_link_desc_id_start(uint16_t arch_id)
11454 {
11455 	switch (arch_id) {
11456 	case CDP_ARCH_TYPE_LI:
11457 	case CDP_ARCH_TYPE_RH:
11458 		return LINK_DESC_ID_START_21_BITS_COOKIE;
11459 	case CDP_ARCH_TYPE_BE:
11460 		return LINK_DESC_ID_START_20_BITS_COOKIE;
11461 	default:
11462 		dp_err("unknown arch_id 0x%x", arch_id);
11463 		QDF_BUG(0);
11464 		return LINK_DESC_ID_START_21_BITS_COOKIE;
11465 	}
11466 }
11467 
11468 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
11469 static inline
11470 void dp_soc_init_tx_ilp(struct dp_soc *soc)
11471 {
11472 	soc->tx_ilp_enable = false;
11473 }
11474 #else
11475 static inline
11476 void dp_soc_init_tx_ilp(struct dp_soc *soc)
11477 {
11478 }
11479 #endif
11480 
11481 /**
11482  * dp_soc_attach() - Attach txrx SOC
11483  * @ctrl_psoc: Opaque SOC handle from control plane
11484  * @params: SOC attach params
11485  *
11486  * Return: DP SOC handle on success, NULL on failure
11487  */
11488 static struct dp_soc *
11489 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
11490 	      struct cdp_soc_attach_params *params)
11491 {
11492 	struct dp_soc *soc =  NULL;
11493 	uint16_t arch_id;
11494 	struct hif_opaque_softc *hif_handle = params->hif_handle;
11495 	qdf_device_t qdf_osdev = params->qdf_osdev;
11496 	struct ol_if_ops *ol_ops = params->ol_ops;
11497 	uint16_t device_id = params->device_id;
11498 
11499 	if (!hif_handle) {
11500 		dp_err("HIF handle is NULL");
11501 		goto fail0;
11502 	}
11503 	arch_id = cdp_get_arch_type_from_devid(device_id);
11504 	soc = qdf_mem_common_alloc(dp_get_soc_context_size(device_id));
11505 	if (!soc) {
11506 		dp_err("DP SOC memory allocation failed");
11507 		goto fail0;
11508 	}
11509 
11510 	dp_info("soc memory allocated %pK", soc);
11511 	soc->hif_handle = hif_handle;
11512 	soc->hal_soc = hif_get_hal_handle(soc->hif_handle);
11513 	if (!soc->hal_soc)
11514 		goto fail1;
11515 
11516 	hif_get_cmem_info(soc->hif_handle,
11517 			  &soc->cmem_base,
11518 			  &soc->cmem_total_size);
11519 	soc->cmem_avail_size = soc->cmem_total_size;
11520 	soc->device_id = device_id;
11521 	soc->cdp_soc.ops =
11522 		(struct cdp_ops *)qdf_mem_malloc(sizeof(struct cdp_ops));
11523 	if (!soc->cdp_soc.ops)
11524 		goto fail1;
11525 
11526 	dp_soc_txrx_ops_attach(soc);
11527 	soc->cdp_soc.ol_ops = ol_ops;
11528 	soc->ctrl_psoc = ctrl_psoc;
11529 	soc->osdev = qdf_osdev;
11530 	soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS;
11531 	dp_soc_init_tx_ilp(soc);
11532 	hal_rx_get_tlv_size(soc->hal_soc, &soc->rx_pkt_tlv_size,
11533 			    &soc->rx_mon_pkt_tlv_size);
11534 	soc->idle_link_bm_id = hal_get_idle_link_bm_id(soc->hal_soc,
11535 						       params->mlo_chip_id);
11536 	soc->features.dmac_cmn_src_rxbuf_ring_enabled =
11537 		hal_dmac_cmn_src_rxbuf_ring_get(soc->hal_soc);
11538 	soc->arch_id = arch_id;
11539 	soc->link_desc_id_start =
11540 			dp_get_link_desc_id_start(soc->arch_id);
11541 	dp_configure_arch_ops(soc);
11542 
11543 	/* Reset wbm sg list and flags */
11544 	dp_rx_wbm_sg_list_reset(soc);
11545 
11546 	dp_soc_cfg_history_attach(soc);
11547 	dp_soc_tx_hw_desc_history_attach(soc);
11548 	dp_soc_rx_history_attach(soc);
11549 	dp_soc_mon_status_ring_history_attach(soc);
11550 	dp_soc_tx_history_attach(soc);
11551 	wlan_set_srng_cfg(&soc->wlan_srng_cfg);
11552 	soc->wlan_cfg_ctx = wlan_cfg_soc_attach(soc->ctrl_psoc);
11553 	if (!soc->wlan_cfg_ctx) {
11554 		dp_err("wlan_cfg_ctx failed\n");
11555 		goto fail2;
11556 	}
11557 
11558 	soc->arch_ops.soc_cfg_attach(soc);
11559 
11560 	if (dp_hw_link_desc_pool_banks_alloc(soc, WLAN_INVALID_PDEV_ID)) {
11561 		dp_err("failed to allocate link desc pool banks");
11562 		goto fail3;
11563 	}
11564 
11565 	if (dp_hw_link_desc_ring_alloc(soc)) {
11566 		dp_err("failed to allocate link_desc_ring");
11567 		goto fail4;
11568 	}
11569 
11570 	if (!QDF_IS_STATUS_SUCCESS(soc->arch_ops.txrx_soc_attach(soc,
11571 								 params))) {
11572 		dp_err("unable to do target specific attach");
11573 		goto fail5;
11574 	}
11575 
11576 	if (dp_soc_srng_alloc(soc)) {
11577 		dp_err("failed to allocate soc srng rings");
11578 		goto fail6;
11579 	}
11580 
11581 	if (dp_soc_tx_desc_sw_pools_alloc(soc)) {
11582 		dp_err("dp_soc_tx_desc_sw_pools_alloc failed");
11583 		goto fail7;
11584 	}
11585 
11586 	if (!dp_monitor_modularized_enable()) {
11587 		if (dp_mon_soc_attach_wrapper(soc)) {
11588 			dp_err("failed to attach monitor");
11589 			goto fail8;
11590 		}
11591 	}
11592 
11593 	if (hal_reo_shared_qaddr_setup((hal_soc_handle_t)soc->hal_soc,
11594 				       &soc->reo_qref)
11595 	    != QDF_STATUS_SUCCESS) {
11596 		dp_err("unable to setup reo shared qaddr");
11597 		goto fail9;
11598 	}
11599 
11600 	if (dp_sysfs_initialize_stats(soc) != QDF_STATUS_SUCCESS) {
11601 		dp_err("failed to initialize dp stats sysfs file");
11602 		dp_sysfs_deinitialize_stats(soc);
11603 	}
11604 
11605 	dp_soc_swlm_attach(soc);
11606 	dp_soc_set_interrupt_mode(soc);
11607 	dp_soc_set_def_pdev(soc);
11608 
11609 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
11610 		qdf_dma_mem_stats_read(),
11611 		qdf_heap_mem_stats_read(),
11612 		qdf_skb_total_mem_stats_read());
11613 
11614 	return soc;
11615 fail9:
11616 	if (!dp_monitor_modularized_enable())
11617 		dp_mon_soc_detach_wrapper(soc);
11618 fail8:
11619 	dp_soc_tx_desc_sw_pools_free(soc);
11620 fail7:
11621 	dp_soc_srng_free(soc);
11622 fail6:
11623 	soc->arch_ops.txrx_soc_detach(soc);
11624 fail5:
11625 	dp_hw_link_desc_ring_free(soc);
11626 fail4:
11627 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
11628 fail3:
11629 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
11630 fail2:
11631 	qdf_mem_free(soc->cdp_soc.ops);
11632 fail1:
11633 	qdf_mem_common_free(soc);
11634 fail0:
11635 	return NULL;
11636 }
11637 
11638 void *dp_soc_init_wifi3(struct cdp_soc_t *cdp_soc,
11639 			struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
11640 			struct hif_opaque_softc *hif_handle,
11641 			HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
11642 			struct ol_if_ops *ol_ops, uint16_t device_id)
11643 {
11644 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
11645 
11646 	return soc->arch_ops.txrx_soc_init(soc, htc_handle, hif_handle);
11647 }
11648 
11649 #endif
11650 
11651 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id)
11652 {
11653 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
11654 		return (mac_id < MAX_PDEV_CNT) ? soc->pdev_list[mac_id] : NULL;
11655 
11656 	/* Typically for MCL as there only 1 PDEV*/
11657 	return soc->pdev_list[0];
11658 }
11659 
11660 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
11661 				     int *max_mac_rings)
11662 {
11663 	bool dbs_enable = false;
11664 
11665 	if (soc->cdp_soc.ol_ops->is_hw_dbs_capable)
11666 		dbs_enable = soc->cdp_soc.ol_ops->
11667 				is_hw_dbs_capable((void *)soc->ctrl_psoc);
11668 
11669 	*max_mac_rings = dbs_enable ? (*max_mac_rings) : 1;
11670 	dp_info("dbs_enable %d, max_mac_rings %d",
11671 		dbs_enable, *max_mac_rings);
11672 }
11673 
11674 qdf_export_symbol(dp_update_num_mac_rings_for_dbs);
11675 
11676 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
11677 /**
11678  * dp_get_cfr_rcc() - get cfr rcc config
11679  * @soc_hdl: Datapath soc handle
11680  * @pdev_id: id of objmgr pdev
11681  *
11682  * Return: true/false based on cfr mode setting
11683  */
11684 static
11685 bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
11686 {
11687 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11688 	struct dp_pdev *pdev = NULL;
11689 
11690 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11691 	if (!pdev) {
11692 		dp_err("pdev is NULL");
11693 		return false;
11694 	}
11695 
11696 	return pdev->cfr_rcc_mode;
11697 }
11698 
11699 /**
11700  * dp_set_cfr_rcc() - enable/disable cfr rcc config
11701  * @soc_hdl: Datapath soc handle
11702  * @pdev_id: id of objmgr pdev
11703  * @enable: Enable/Disable cfr rcc mode
11704  *
11705  * Return: none
11706  */
11707 static
11708 void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable)
11709 {
11710 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11711 	struct dp_pdev *pdev = NULL;
11712 
11713 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11714 	if (!pdev) {
11715 		dp_err("pdev is NULL");
11716 		return;
11717 	}
11718 
11719 	pdev->cfr_rcc_mode = enable;
11720 }
11721 
11722 /**
11723  * dp_get_cfr_dbg_stats - Get the debug statistics for CFR
11724  * @soc_hdl: Datapath soc handle
11725  * @pdev_id: id of data path pdev handle
11726  * @cfr_rcc_stats: CFR RCC debug statistics buffer
11727  *
11728  * Return: none
11729  */
11730 static inline void
11731 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
11732 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats)
11733 {
11734 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11735 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11736 
11737 	if (!pdev) {
11738 		dp_err("Invalid pdev");
11739 		return;
11740 	}
11741 
11742 	qdf_mem_copy(cfr_rcc_stats, &pdev->stats.rcc,
11743 		     sizeof(struct cdp_cfr_rcc_stats));
11744 }
11745 
11746 /**
11747  * dp_clear_cfr_dbg_stats - Clear debug statistics for CFR
11748  * @soc_hdl: Datapath soc handle
11749  * @pdev_id: id of data path pdev handle
11750  *
11751  * Return: none
11752  */
11753 static void dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl,
11754 				   uint8_t pdev_id)
11755 {
11756 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11757 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11758 
11759 	if (!pdev) {
11760 		dp_err("dp pdev is NULL");
11761 		return;
11762 	}
11763 
11764 	qdf_mem_zero(&pdev->stats.rcc, sizeof(pdev->stats.rcc));
11765 }
11766 #endif
11767 
11768 /**
11769  * dp_bucket_index() - Return index from array
11770  *
11771  * @delay: delay measured
11772  * @array: array used to index corresponding delay
11773  * @delay_in_us: flag to indicate whether the delay in ms or us
11774  *
11775  * Return: index
11776  */
11777 static uint8_t
11778 dp_bucket_index(uint32_t delay, uint16_t *array, bool delay_in_us)
11779 {
11780 	uint8_t i = CDP_DELAY_BUCKET_0;
11781 	uint32_t thr_low, thr_high;
11782 
11783 	for (; i < CDP_DELAY_BUCKET_MAX - 1; i++) {
11784 		thr_low = array[i];
11785 		thr_high = array[i + 1];
11786 
11787 		if (delay_in_us) {
11788 			thr_low = thr_low * USEC_PER_MSEC;
11789 			thr_high = thr_high * USEC_PER_MSEC;
11790 		}
11791 		if (delay >= thr_low && delay <= thr_high)
11792 			return i;
11793 	}
11794 	return (CDP_DELAY_BUCKET_MAX - 1);
11795 }
11796 
11797 #ifdef HW_TX_DELAY_STATS_ENABLE
11798 /*
11799  * cdp_fw_to_hw_delay_range
11800  * Fw to hw delay ranges in milliseconds
11801  */
11802 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
11803 	0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, 500};
11804 #else
11805 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
11806 	0, 2, 4, 6, 8, 10, 20, 30, 40, 50, 100, 250, 500};
11807 #endif
11808 
11809 /*
11810  * cdp_sw_enq_delay_range
11811  * Software enqueue delay ranges in milliseconds
11812  */
11813 static uint16_t cdp_sw_enq_delay[CDP_DELAY_BUCKET_MAX] = {
11814 	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
11815 
11816 /*
11817  * cdp_intfrm_delay_range
11818  * Interframe delay ranges in milliseconds
11819  */
11820 static uint16_t cdp_intfrm_delay[CDP_DELAY_BUCKET_MAX] = {
11821 	0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60};
11822 
11823 /**
11824  * dp_fill_delay_buckets() - Fill delay statistics bucket for each
11825  *				type of delay
11826  * @tstats: tid tx stats
11827  * @rstats: tid rx stats
11828  * @delay: delay in ms
11829  * @tid: tid value
11830  * @mode: type of tx delay mode
11831  * @ring_id: ring number
11832  * @delay_in_us: flag to indicate whether the delay in ms or us
11833  *
11834  * Return: pointer to cdp_delay_stats structure
11835  */
11836 static struct cdp_delay_stats *
11837 dp_fill_delay_buckets(struct cdp_tid_tx_stats *tstats,
11838 		      struct cdp_tid_rx_stats *rstats, uint32_t delay,
11839 		      uint8_t tid, uint8_t mode, uint8_t ring_id,
11840 		      bool delay_in_us)
11841 {
11842 	uint8_t delay_index = 0;
11843 	struct cdp_delay_stats *stats = NULL;
11844 
11845 	/*
11846 	 * Update delay stats in proper bucket
11847 	 */
11848 	switch (mode) {
11849 	/* Software Enqueue delay ranges */
11850 	case CDP_DELAY_STATS_SW_ENQ:
11851 		if (!tstats)
11852 			break;
11853 
11854 		delay_index = dp_bucket_index(delay, cdp_sw_enq_delay,
11855 					      delay_in_us);
11856 		tstats->swq_delay.delay_bucket[delay_index]++;
11857 		stats = &tstats->swq_delay;
11858 		break;
11859 
11860 	/* Tx Completion delay ranges */
11861 	case CDP_DELAY_STATS_FW_HW_TRANSMIT:
11862 		if (!tstats)
11863 			break;
11864 
11865 		delay_index = dp_bucket_index(delay, cdp_fw_to_hw_delay,
11866 					      delay_in_us);
11867 		tstats->hwtx_delay.delay_bucket[delay_index]++;
11868 		stats = &tstats->hwtx_delay;
11869 		break;
11870 
11871 	/* Interframe tx delay ranges */
11872 	case CDP_DELAY_STATS_TX_INTERFRAME:
11873 		if (!tstats)
11874 			break;
11875 
11876 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
11877 					      delay_in_us);
11878 		tstats->intfrm_delay.delay_bucket[delay_index]++;
11879 		stats = &tstats->intfrm_delay;
11880 		break;
11881 
11882 	/* Interframe rx delay ranges */
11883 	case CDP_DELAY_STATS_RX_INTERFRAME:
11884 		if (!rstats)
11885 			break;
11886 
11887 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
11888 					      delay_in_us);
11889 		rstats->intfrm_delay.delay_bucket[delay_index]++;
11890 		stats = &rstats->intfrm_delay;
11891 		break;
11892 
11893 	/* Ring reap to indication to network stack */
11894 	case CDP_DELAY_STATS_REAP_STACK:
11895 		if (!rstats)
11896 			break;
11897 
11898 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
11899 					      delay_in_us);
11900 		rstats->to_stack_delay.delay_bucket[delay_index]++;
11901 		stats = &rstats->to_stack_delay;
11902 		break;
11903 	default:
11904 		dp_debug("Incorrect delay mode: %d", mode);
11905 	}
11906 
11907 	return stats;
11908 }
11909 
11910 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
11911 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
11912 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
11913 			   bool delay_in_us)
11914 {
11915 	struct cdp_delay_stats *dstats = NULL;
11916 
11917 	/*
11918 	 * Delay ranges are different for different delay modes
11919 	 * Get the correct index to update delay bucket
11920 	 */
11921 	dstats = dp_fill_delay_buckets(tstats, rstats, delay, tid, mode,
11922 				       ring_id, delay_in_us);
11923 	if (qdf_unlikely(!dstats))
11924 		return;
11925 
11926 	if (delay != 0) {
11927 		/*
11928 		 * Compute minimum,average and maximum
11929 		 * delay
11930 		 */
11931 		if (delay < dstats->min_delay)
11932 			dstats->min_delay = delay;
11933 
11934 		if (delay > dstats->max_delay)
11935 			dstats->max_delay = delay;
11936 
11937 		/*
11938 		 * Average over delay measured till now
11939 		 */
11940 		if (!dstats->avg_delay)
11941 			dstats->avg_delay = delay;
11942 		else
11943 			dstats->avg_delay = ((delay + dstats->avg_delay) >> 1);
11944 	}
11945 }
11946 
11947 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
11948 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
11949 			      u_int16_t mac_cnt, bool limit)
11950 {
11951 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
11952 	struct dp_vdev *vdev =
11953 		dp_vdev_get_ref_by_id(dp_soc, vdev_id, DP_MOD_ID_CDP);
11954 	struct dp_peer *peer;
11955 	uint16_t new_mac_cnt = 0;
11956 
11957 	if (!vdev)
11958 		return new_mac_cnt;
11959 
11960 	if (limit && (vdev->num_peers > mac_cnt))
11961 		return 0;
11962 
11963 	qdf_spin_lock_bh(&vdev->peer_list_lock);
11964 	TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
11965 		if (peer->bss_peer)
11966 			continue;
11967 		if (new_mac_cnt < mac_cnt) {
11968 			WLAN_ADDR_COPY(newmac[new_mac_cnt], peer->mac_addr.raw);
11969 			new_mac_cnt++;
11970 		}
11971 	}
11972 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
11973 	dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
11974 	return new_mac_cnt;
11975 }
11976 
11977 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac)
11978 {
11979 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
11980 						       mac, 0, vdev_id,
11981 						       DP_MOD_ID_CDP);
11982 	uint16_t peer_id = HTT_INVALID_PEER;
11983 
11984 	if (!peer) {
11985 		dp_cdp_debug("%pK: Peer is NULL!\n", (struct dp_soc *)soc);
11986 		return peer_id;
11987 	}
11988 
11989 	peer_id = peer->peer_id;
11990 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11991 	return peer_id;
11992 }
11993 
11994 #ifdef QCA_SUPPORT_WDS_EXTENDED
11995 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
11996 				  uint8_t vdev_id,
11997 				  uint8_t *mac,
11998 				  ol_txrx_rx_fp rx,
11999 				  ol_osif_peer_handle osif_peer)
12000 {
12001 	struct dp_txrx_peer *txrx_peer = NULL;
12002 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
12003 						       mac, 0, vdev_id,
12004 						       DP_MOD_ID_CDP);
12005 	QDF_STATUS status = QDF_STATUS_E_INVAL;
12006 
12007 	if (!peer) {
12008 		dp_cdp_debug("%pK: Peer is NULL!\n", (struct dp_soc *)soc);
12009 		return status;
12010 	}
12011 
12012 	txrx_peer = dp_get_txrx_peer(peer);
12013 	if (!txrx_peer) {
12014 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
12015 		return status;
12016 	}
12017 
12018 	if (rx) {
12019 		if (txrx_peer->osif_rx) {
12020 			status = QDF_STATUS_E_ALREADY;
12021 		} else {
12022 			txrx_peer->osif_rx = rx;
12023 			status = QDF_STATUS_SUCCESS;
12024 		}
12025 	} else {
12026 		if (txrx_peer->osif_rx) {
12027 			txrx_peer->osif_rx = NULL;
12028 			status = QDF_STATUS_SUCCESS;
12029 		} else {
12030 			status = QDF_STATUS_E_ALREADY;
12031 		}
12032 	}
12033 
12034 	txrx_peer->wds_ext.osif_peer = osif_peer;
12035 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
12036 
12037 	return status;
12038 }
12039 
12040 QDF_STATUS dp_wds_ext_get_peer_osif_handle(
12041 				ol_txrx_soc_handle soc,
12042 				uint8_t vdev_id,
12043 				uint8_t *mac,
12044 				ol_osif_peer_handle *osif_peer)
12045 {
12046 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
12047 	struct dp_txrx_peer *txrx_peer = NULL;
12048 	struct dp_peer *peer = dp_peer_find_hash_find(dp_soc,
12049 						      mac, 0, vdev_id,
12050 						      DP_MOD_ID_CDP);
12051 
12052 	if (!peer) {
12053 		dp_cdp_debug("%pK: Peer is NULL!\n", dp_soc);
12054 		return QDF_STATUS_E_INVAL;
12055 	}
12056 
12057 	txrx_peer = dp_get_txrx_peer(peer);
12058 	if (!txrx_peer) {
12059 		dp_cdp_debug("%pK: TXRX Peer is NULL!\n", dp_soc);
12060 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
12061 		return QDF_STATUS_E_INVAL;
12062 	}
12063 
12064 	*osif_peer = txrx_peer->wds_ext.osif_peer;
12065 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
12066 
12067 	return QDF_STATUS_SUCCESS;
12068 }
12069 #endif /* QCA_SUPPORT_WDS_EXTENDED */
12070 
12071 /**
12072  * dp_pdev_srng_deinit() - de-initialize all pdev srng ring including
12073  *			   monitor rings
12074  * @pdev: Datapath pdev handle
12075  *
12076  */
12077 static void dp_pdev_srng_deinit(struct dp_pdev *pdev)
12078 {
12079 	struct dp_soc *soc = pdev->soc;
12080 	uint8_t i;
12081 
12082 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
12083 		dp_srng_deinit(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
12084 			       RXDMA_BUF,
12085 			       pdev->lmac_id);
12086 
12087 	if (!soc->rxdma2sw_rings_not_supported) {
12088 		for (i = 0;
12089 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
12090 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
12091 								 pdev->pdev_id);
12092 
12093 			wlan_minidump_remove(soc->rxdma_err_dst_ring[lmac_id].
12094 							base_vaddr_unaligned,
12095 					     soc->rxdma_err_dst_ring[lmac_id].
12096 								alloc_size,
12097 					     soc->ctrl_psoc,
12098 					     WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
12099 					     "rxdma_err_dst");
12100 			dp_srng_deinit(soc, &soc->rxdma_err_dst_ring[lmac_id],
12101 				       RXDMA_DST, lmac_id);
12102 		}
12103 	}
12104 
12105 
12106 }
12107 
12108 /**
12109  * dp_pdev_srng_init() - initialize all pdev srng rings including
12110  *			   monitor rings
12111  * @pdev: Datapath pdev handle
12112  *
12113  * Return: QDF_STATUS_SUCCESS on success
12114  *	   QDF_STATUS_E_NOMEM on failure
12115  */
12116 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev)
12117 {
12118 	struct dp_soc *soc = pdev->soc;
12119 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
12120 	uint32_t i;
12121 
12122 	soc_cfg_ctx = soc->wlan_cfg_ctx;
12123 
12124 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
12125 		if (dp_srng_init(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
12126 				 RXDMA_BUF, 0, pdev->lmac_id)) {
12127 			dp_init_err("%pK: dp_srng_init failed rx refill ring",
12128 				    soc);
12129 			goto fail1;
12130 		}
12131 	}
12132 
12133 	/* LMAC RxDMA to SW Rings configuration */
12134 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
12135 		/* Only valid for MCL */
12136 		pdev = soc->pdev_list[0];
12137 
12138 	if (!soc->rxdma2sw_rings_not_supported) {
12139 		for (i = 0;
12140 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
12141 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
12142 								 pdev->pdev_id);
12143 			struct dp_srng *srng =
12144 				&soc->rxdma_err_dst_ring[lmac_id];
12145 
12146 			if (srng->hal_srng)
12147 				continue;
12148 
12149 			if (dp_srng_init(soc, srng, RXDMA_DST, 0, lmac_id)) {
12150 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
12151 					    soc);
12152 				goto fail1;
12153 			}
12154 			wlan_minidump_log(soc->rxdma_err_dst_ring[lmac_id].
12155 						base_vaddr_unaligned,
12156 					  soc->rxdma_err_dst_ring[lmac_id].
12157 						alloc_size,
12158 					  soc->ctrl_psoc,
12159 					  WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
12160 					  "rxdma_err_dst");
12161 		}
12162 	}
12163 	return QDF_STATUS_SUCCESS;
12164 
12165 fail1:
12166 	dp_pdev_srng_deinit(pdev);
12167 	return QDF_STATUS_E_NOMEM;
12168 }
12169 
12170 /**
12171  * dp_pdev_srng_free() - free all pdev srng rings including monitor rings
12172  * @pdev: Datapath pdev handle
12173  *
12174  */
12175 static void dp_pdev_srng_free(struct dp_pdev *pdev)
12176 {
12177 	struct dp_soc *soc = pdev->soc;
12178 	uint8_t i;
12179 
12180 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
12181 		dp_srng_free(soc, &soc->rx_refill_buf_ring[pdev->lmac_id]);
12182 
12183 	if (!soc->rxdma2sw_rings_not_supported) {
12184 		for (i = 0;
12185 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
12186 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
12187 								 pdev->pdev_id);
12188 
12189 			dp_srng_free(soc, &soc->rxdma_err_dst_ring[lmac_id]);
12190 		}
12191 	}
12192 }
12193 
12194 /**
12195  * dp_pdev_srng_alloc() - allocate memory for all pdev srng rings including
12196  *			  monitor rings
12197  * @pdev: Datapath pdev handle
12198  *
12199  * Return: QDF_STATUS_SUCCESS on success
12200  *	   QDF_STATUS_E_NOMEM on failure
12201  */
12202 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev)
12203 {
12204 	struct dp_soc *soc = pdev->soc;
12205 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
12206 	uint32_t ring_size;
12207 	uint32_t i;
12208 
12209 	soc_cfg_ctx = soc->wlan_cfg_ctx;
12210 
12211 	ring_size = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
12212 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
12213 		if (dp_srng_alloc(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
12214 				  RXDMA_BUF, ring_size, 0)) {
12215 			dp_init_err("%pK: dp_srng_alloc failed rx refill ring",
12216 				    soc);
12217 			goto fail1;
12218 		}
12219 	}
12220 
12221 	ring_size = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx);
12222 	/* LMAC RxDMA to SW Rings configuration */
12223 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
12224 		/* Only valid for MCL */
12225 		pdev = soc->pdev_list[0];
12226 
12227 	if (!soc->rxdma2sw_rings_not_supported) {
12228 		for (i = 0;
12229 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
12230 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
12231 								 pdev->pdev_id);
12232 			struct dp_srng *srng =
12233 				&soc->rxdma_err_dst_ring[lmac_id];
12234 
12235 			if (srng->base_vaddr_unaligned)
12236 				continue;
12237 
12238 			if (dp_srng_alloc(soc, srng, RXDMA_DST, ring_size, 0)) {
12239 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
12240 					    soc);
12241 				goto fail1;
12242 			}
12243 		}
12244 	}
12245 
12246 	return QDF_STATUS_SUCCESS;
12247 fail1:
12248 	dp_pdev_srng_free(pdev);
12249 	return QDF_STATUS_E_NOMEM;
12250 }
12251 
12252 static QDF_STATUS dp_pdev_init(struct cdp_soc_t *txrx_soc,
12253 				      HTC_HANDLE htc_handle,
12254 				      qdf_device_t qdf_osdev,
12255 				      uint8_t pdev_id)
12256 {
12257 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
12258 	int nss_cfg;
12259 	void *sojourn_buf;
12260 
12261 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
12262 	struct dp_pdev *pdev = soc->pdev_list[pdev_id];
12263 
12264 	soc_cfg_ctx = soc->wlan_cfg_ctx;
12265 	pdev->soc = soc;
12266 	pdev->pdev_id = pdev_id;
12267 
12268 	/*
12269 	 * Variable to prevent double pdev deinitialization during
12270 	 * radio detach execution .i.e. in the absence of any vdev.
12271 	 */
12272 	pdev->pdev_deinit = 0;
12273 
12274 	if (dp_wdi_event_attach(pdev)) {
12275 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
12276 			  "dp_wdi_evet_attach failed");
12277 		goto fail0;
12278 	}
12279 
12280 	if (dp_pdev_srng_init(pdev)) {
12281 		dp_init_err("%pK: Failed to initialize pdev srng rings", soc);
12282 		goto fail1;
12283 	}
12284 
12285 	/* Initialize descriptors in TCL Rings used by IPA */
12286 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
12287 		hal_tx_init_data_ring(soc->hal_soc,
12288 				      soc->tcl_data_ring[IPA_TCL_DATA_RING_IDX].hal_srng);
12289 		dp_ipa_hal_tx_init_alt_data_ring(soc);
12290 	}
12291 
12292 	/*
12293 	 * Initialize command/credit ring descriptor
12294 	 * Command/CREDIT ring also used for sending DATA cmds
12295 	 */
12296 	dp_tx_init_cmd_credit_ring(soc);
12297 
12298 	dp_tx_pdev_init(pdev);
12299 
12300 	/*
12301 	 * set nss pdev config based on soc config
12302 	 */
12303 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
12304 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
12305 					 (nss_cfg & (1 << pdev_id)));
12306 	pdev->target_pdev_id =
12307 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
12308 
12309 	if (soc->preferred_hw_mode == WMI_HOST_HW_MODE_2G_PHYB &&
12310 	    pdev->lmac_id == PHYB_2G_LMAC_ID) {
12311 		pdev->target_pdev_id = PHYB_2G_TARGET_PDEV_ID;
12312 	}
12313 
12314 	/* Reset the cpu ring map if radio is NSS offloaded */
12315 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
12316 		dp_soc_reset_cpu_ring_map(soc);
12317 		dp_soc_reset_intr_mask(soc);
12318 	}
12319 
12320 	/* Reset the cpu ring map if radio is NSS offloaded */
12321 	dp_soc_reset_ipa_vlan_intr_mask(soc);
12322 
12323 	TAILQ_INIT(&pdev->vdev_list);
12324 	qdf_spinlock_create(&pdev->vdev_list_lock);
12325 	pdev->vdev_count = 0;
12326 	pdev->is_lro_hash_configured = 0;
12327 
12328 	qdf_spinlock_create(&pdev->tx_mutex);
12329 	pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MON_INVALID_LMAC_ID;
12330 	pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MON_INVALID_LMAC_ID;
12331 	pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MON_INVALID_LMAC_ID;
12332 
12333 	DP_STATS_INIT(pdev);
12334 
12335 	dp_local_peer_id_pool_init(pdev);
12336 
12337 	dp_dscp_tid_map_setup(pdev);
12338 	dp_pcp_tid_map_setup(pdev);
12339 
12340 	/* set the reo destination during initialization */
12341 	dp_pdev_set_default_reo(pdev);
12342 
12343 	qdf_mem_zero(&pdev->sojourn_stats, sizeof(struct cdp_tx_sojourn_stats));
12344 
12345 	pdev->sojourn_buf = qdf_nbuf_alloc(pdev->soc->osdev,
12346 			      sizeof(struct cdp_tx_sojourn_stats), 0, 4,
12347 			      TRUE);
12348 
12349 	if (!pdev->sojourn_buf) {
12350 		dp_init_err("%pK: Failed to allocate sojourn buf", soc);
12351 		goto fail2;
12352 	}
12353 	sojourn_buf = qdf_nbuf_data(pdev->sojourn_buf);
12354 	qdf_mem_zero(sojourn_buf, sizeof(struct cdp_tx_sojourn_stats));
12355 
12356 	qdf_event_create(&pdev->fw_peer_stats_event);
12357 	qdf_event_create(&pdev->fw_stats_event);
12358 	qdf_event_create(&pdev->fw_obss_stats_event);
12359 
12360 	pdev->num_tx_allowed = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
12361 	pdev->num_tx_spl_allowed =
12362 		wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
12363 	pdev->num_reg_tx_allowed =
12364 		pdev->num_tx_allowed - pdev->num_tx_spl_allowed;
12365 	if (dp_rxdma_ring_setup(soc, pdev)) {
12366 		dp_init_err("%pK: RXDMA ring config failed", soc);
12367 		goto fail3;
12368 	}
12369 
12370 	if (dp_init_ipa_rx_refill_buf_ring(soc, pdev))
12371 		goto fail3;
12372 
12373 	if (dp_ipa_ring_resource_setup(soc, pdev))
12374 		goto fail4;
12375 
12376 	if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) {
12377 		dp_init_err("%pK: dp_ipa_uc_attach failed", soc);
12378 		goto fail4;
12379 	}
12380 
12381 	if (dp_pdev_bkp_stats_attach(pdev) != QDF_STATUS_SUCCESS) {
12382 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
12383 			  FL("dp_pdev_bkp_stats_attach failed"));
12384 		goto fail5;
12385 	}
12386 
12387 	if (dp_monitor_pdev_init(pdev)) {
12388 		dp_init_err("%pK: dp_monitor_pdev_init failed\n", soc);
12389 		goto fail6;
12390 	}
12391 
12392 	/* initialize sw rx descriptors */
12393 	dp_rx_pdev_desc_pool_init(pdev);
12394 	/* allocate buffers and replenish the RxDMA ring */
12395 	dp_rx_pdev_buffers_alloc(pdev);
12396 
12397 	dp_init_tso_stats(pdev);
12398 
12399 	pdev->rx_fast_flag = false;
12400 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
12401 		qdf_dma_mem_stats_read(),
12402 		qdf_heap_mem_stats_read(),
12403 		qdf_skb_total_mem_stats_read());
12404 
12405 	return QDF_STATUS_SUCCESS;
12406 fail6:
12407 	dp_pdev_bkp_stats_detach(pdev);
12408 fail5:
12409 	dp_ipa_uc_detach(soc, pdev);
12410 fail4:
12411 	dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
12412 fail3:
12413 	dp_rxdma_ring_cleanup(soc, pdev);
12414 	qdf_nbuf_free(pdev->sojourn_buf);
12415 fail2:
12416 	qdf_spinlock_destroy(&pdev->tx_mutex);
12417 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
12418 	dp_pdev_srng_deinit(pdev);
12419 fail1:
12420 	dp_wdi_event_detach(pdev);
12421 fail0:
12422 	return QDF_STATUS_E_FAILURE;
12423 }
12424 
12425 /**
12426  * dp_pdev_init_wifi3() - Init txrx pdev
12427  * @txrx_soc:
12428  * @htc_handle: HTC handle for host-target interface
12429  * @qdf_osdev: QDF OS device
12430  * @pdev_id: pdev Id
12431  *
12432  * Return: QDF_STATUS
12433  */
12434 static QDF_STATUS dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
12435 				     HTC_HANDLE htc_handle,
12436 				     qdf_device_t qdf_osdev,
12437 				     uint8_t pdev_id)
12438 {
12439 	return dp_pdev_init(txrx_soc, htc_handle, qdf_osdev, pdev_id);
12440 }
12441 
12442 #ifdef FEATURE_DIRECT_LINK
12443 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
12444 						 uint8_t pdev_id)
12445 {
12446 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12447 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12448 
12449 	if (!pdev) {
12450 		dp_err("DP pdev is NULL");
12451 		return NULL;
12452 	}
12453 
12454 	if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring4,
12455 			  RXDMA_BUF, DIRECT_LINK_REFILL_RING_ENTRIES, false)) {
12456 		dp_err("SRNG alloc failed for rx_refill_buf_ring4");
12457 		return NULL;
12458 	}
12459 
12460 	if (dp_srng_init(soc, &pdev->rx_refill_buf_ring4,
12461 			 RXDMA_BUF, DIRECT_LINK_REFILL_RING_IDX, 0)) {
12462 		dp_err("SRNG init failed for rx_refill_buf_ring4");
12463 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
12464 		return NULL;
12465 	}
12466 
12467 	if (htt_srng_setup(soc->htt_handle, pdev_id,
12468 			   pdev->rx_refill_buf_ring4.hal_srng, RXDMA_BUF)) {
12469 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF,
12470 			       DIRECT_LINK_REFILL_RING_IDX);
12471 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
12472 		return NULL;
12473 	}
12474 
12475 	return &pdev->rx_refill_buf_ring4;
12476 }
12477 
12478 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
12479 					uint8_t pdev_id)
12480 {
12481 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12482 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12483 
12484 	if (!pdev) {
12485 		dp_err("DP pdev is NULL");
12486 		return;
12487 	}
12488 
12489 	dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF, 0);
12490 	dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
12491 }
12492 #endif
12493