xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_main.c (revision 953b07cf94f030549a95ff8c5c5be0546111224c)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <wlan_ipa_obj_mgmt_api.h>
21 #include <qdf_types.h>
22 #include <qdf_lock.h>
23 #include <qdf_net_types.h>
24 #include <qdf_lro.h>
25 #include <qdf_module.h>
26 #include <hal_hw_headers.h>
27 #include <hal_api.h>
28 #include <hif.h>
29 #include <htt.h>
30 #include <wdi_event.h>
31 #include <queue.h>
32 #include "dp_types.h"
33 #include "dp_rings.h"
34 #include "dp_internal.h"
35 #include "dp_tx.h"
36 #include "dp_tx_desc.h"
37 #include "dp_rx.h"
38 #ifdef DP_RATETABLE_SUPPORT
39 #include "dp_ratetable.h"
40 #endif
41 #include <cdp_txrx_handle.h>
42 #include <wlan_cfg.h>
43 #include <wlan_utility.h>
44 #include "cdp_txrx_cmn_struct.h"
45 #include "cdp_txrx_stats_struct.h"
46 #include "cdp_txrx_cmn_reg.h"
47 #include <qdf_util.h>
48 #include "dp_peer.h"
49 #include "htt_stats.h"
50 #include "dp_htt.h"
51 #ifdef WLAN_SUPPORT_RX_FISA
52 #include <wlan_dp_fisa_rx.h>
53 #endif
54 #include "htt_ppdu_stats.h"
55 #include "qdf_mem.h"   /* qdf_mem_malloc,free */
56 #include "cfg_ucfg_api.h"
57 #include <wlan_module_ids.h>
58 #ifdef QCA_MULTIPASS_SUPPORT
59 #include <enet.h>
60 #endif
61 
62 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
63 #include "cdp_txrx_flow_ctrl_v2.h"
64 #else
65 
66 static inline void
67 cdp_dump_flow_pool_info(struct cdp_soc_t *soc)
68 {
69 	return;
70 }
71 #endif
72 #ifdef WIFI_MONITOR_SUPPORT
73 #include <dp_mon.h>
74 #endif
75 #include "dp_ipa.h"
76 #ifdef FEATURE_WDS
77 #include "dp_txrx_wds.h"
78 #endif
79 #ifdef WLAN_SUPPORT_MSCS
80 #include "dp_mscs.h"
81 #endif
82 #ifdef WLAN_SUPPORT_MESH_LATENCY
83 #include "dp_mesh_latency.h"
84 #endif
85 #ifdef WLAN_SUPPORT_SCS
86 #include "dp_scs.h"
87 #endif
88 #ifdef ATH_SUPPORT_IQUE
89 #include "dp_txrx_me.h"
90 #endif
91 #if defined(DP_CON_MON)
92 #ifndef REMOVE_PKT_LOG
93 #include <pktlog_ac_api.h>
94 #include <pktlog_ac.h>
95 #endif
96 #endif
97 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
98 #include <wlan_dp_swlm.h>
99 #endif
100 #ifdef WLAN_DP_PROFILE_SUPPORT
101 #include <wlan_dp_main.h>
102 #endif
103 #ifdef CONFIG_SAWF_DEF_QUEUES
104 #include "dp_sawf.h"
105 #endif
106 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
107 #include "dp_rx_tag.h"
108 #endif
109 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
110 #include <target_if_dp.h>
111 #endif
112 #include "qdf_ssr_driver_dump.h"
113 
114 #ifdef QCA_DP_ENABLE_TX_COMP_RING4
115 #define TXCOMP_RING4_NUM 3
116 #else
117 #define TXCOMP_RING4_NUM WBM2SW_TXCOMP_RING4_NUM
118 #endif
119 
120 #if defined(DP_PEER_EXTENDED_API) || defined(WLAN_DP_PENDING_MEM_FLUSH)
121 #define SET_PEER_REF_CNT_ONE(_peer) \
122 	qdf_atomic_set(&(_peer)->ref_cnt, 1)
123 #else
124 #define SET_PEER_REF_CNT_ONE(_peer)
125 #endif
126 
127 #ifdef WLAN_SYSFS_DP_STATS
128 /* sysfs event wait time for firmware stat request unit milliseconds */
129 #define WLAN_SYSFS_STAT_REQ_WAIT_MS 3000
130 #endif
131 
132 #ifdef QCA_DP_TX_FW_METADATA_V2
133 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
134 		HTT_TX_TCL_METADATA_V2_PDEV_ID_SET(_var, _val)
135 #else
136 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
137 		HTT_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)
138 #endif
139 #define MLD_MODE_INVALID 0xFF
140 
141 QDF_COMPILE_TIME_ASSERT(max_rx_rings_check,
142 			MAX_REO_DEST_RINGS == CDP_MAX_RX_RINGS);
143 
144 QDF_COMPILE_TIME_ASSERT(max_tx_rings_check,
145 			MAX_TCL_DATA_RINGS == CDP_MAX_TX_COMP_RINGS);
146 
147 void dp_configure_arch_ops(struct dp_soc *soc);
148 qdf_size_t dp_get_soc_context_size(uint16_t device_id);
149 
150 /*
151  * The max size of cdp_peer_stats_param_t is limited to 16 bytes.
152  * If the buffer size is exceeding this size limit,
153  * dp_txrx_get_peer_stats is to be used instead.
154  */
155 QDF_COMPILE_TIME_ASSERT(cdp_peer_stats_param_t_max_size,
156 			(sizeof(cdp_peer_stats_param_t) <= 16));
157 
158 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
159 /*
160  * If WLAN_CFG_INT_NUM_CONTEXTS is changed, HIF_NUM_INT_CONTEXTS
161  * also should be updated accordingly
162  */
163 QDF_COMPILE_TIME_ASSERT(num_intr_grps,
164 			HIF_NUM_INT_CONTEXTS == WLAN_CFG_INT_NUM_CONTEXTS);
165 
166 /*
167  * HIF_EVENT_HIST_MAX should always be power of 2
168  */
169 QDF_COMPILE_TIME_ASSERT(hif_event_history_size,
170 			(HIF_EVENT_HIST_MAX & (HIF_EVENT_HIST_MAX - 1)) == 0);
171 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
172 
173 /*
174  * If WLAN_CFG_INT_NUM_CONTEXTS is changed,
175  * WLAN_CFG_INT_NUM_CONTEXTS_MAX should also be updated
176  */
177 QDF_COMPILE_TIME_ASSERT(wlan_cfg_num_int_ctxs,
178 			WLAN_CFG_INT_NUM_CONTEXTS_MAX >=
179 			WLAN_CFG_INT_NUM_CONTEXTS);
180 
181 static void dp_soc_unset_qref_debug_list(struct dp_soc *soc);
182 static QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl);
183 static QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl);
184 
185 static void dp_pdev_srng_deinit(struct dp_pdev *pdev);
186 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev);
187 static void dp_pdev_srng_free(struct dp_pdev *pdev);
188 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev);
189 
190 static inline
191 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
192 				struct cdp_pdev_attach_params *params);
193 
194 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id);
195 
196 static QDF_STATUS
197 dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
198 		   HTC_HANDLE htc_handle,
199 		   qdf_device_t qdf_osdev,
200 		   uint8_t pdev_id);
201 
202 static QDF_STATUS
203 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id, int force);
204 
205 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc);
206 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc);
207 
208 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force);
209 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc,
210 				       uint8_t pdev_id,
211 				       int force);
212 static struct dp_soc *
213 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
214 	      struct cdp_soc_attach_params *params);
215 static inline QDF_STATUS dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl,
216 					      uint8_t vdev_id,
217 					      uint8_t *peer_mac_addr,
218 					      enum cdp_peer_type peer_type);
219 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
220 				       uint8_t vdev_id,
221 				       uint8_t *peer_mac, uint32_t bitmap,
222 				       enum cdp_peer_type peer_type);
223 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
224 				bool unmap_only,
225 				bool mlo_peers_only);
226 #ifdef ENABLE_VERBOSE_DEBUG
227 bool is_dp_verbose_debug_enabled;
228 #endif
229 
230 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
231 static bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
232 static void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
233 			   bool enable);
234 static inline void
235 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
236 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats);
237 static inline void
238 dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
239 #endif
240 
241 #ifdef DP_UMAC_HW_RESET_SUPPORT
242 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc);
243 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc);
244 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc);
245 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc);
246 #endif
247 
248 #define MON_VDEV_TIMER_INIT 0x1
249 #define MON_VDEV_TIMER_RUNNING 0x2
250 
251 #define DP_MCS_LENGTH (6*MAX_MCS)
252 
253 #define DP_CURR_FW_STATS_AVAIL 19
254 #define DP_HTT_DBG_EXT_STATS_MAX 256
255 #define DP_MAX_SLEEP_TIME 100
256 #ifndef QCA_WIFI_3_0_EMU
257 #define SUSPEND_DRAIN_WAIT 500
258 #else
259 #define SUSPEND_DRAIN_WAIT 3000
260 #endif
261 
262 #ifdef IPA_OFFLOAD
263 /* Exclude IPA rings from the interrupt context */
264 #define TX_RING_MASK_VAL	0xb
265 #define RX_RING_MASK_VAL	0x7
266 #else
267 #define TX_RING_MASK_VAL	0xF
268 #define RX_RING_MASK_VAL	0xF
269 #endif
270 
271 #define STR_MAXLEN	64
272 
273 #define RNG_ERR		"SRNG setup failed for"
274 
275 /**
276  * enum dp_stats_type - Select the type of statistics
277  * @STATS_FW: Firmware-based statistic
278  * @STATS_HOST: Host-based statistic
279  * @STATS_TYPE_MAX: maximum enumeration
280  */
281 enum dp_stats_type {
282 	STATS_FW = 0,
283 	STATS_HOST = 1,
284 	STATS_TYPE_MAX = 2,
285 };
286 
287 /**
288  * enum dp_fw_stats - General Firmware statistics options
289  * @TXRX_FW_STATS_INVALID: statistic is not available
290  */
291 enum dp_fw_stats {
292 	TXRX_FW_STATS_INVALID	= -1,
293 };
294 
295 /*
296  * dp_stats_mapping_table - Firmware and Host statistics
297  * currently supported
298  */
299 #ifndef WLAN_SOFTUMAC_SUPPORT
300 const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
301 	{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
302 	{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
303 	{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
304 	{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
305 	{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
306 	{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
307 	{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
308 	{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
309 	{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
310 	{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
311 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
312 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
313 	{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
314 	{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
315 	{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
316 	{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
317 	{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
318 	{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
319 	{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
320 	/* Last ENUM for HTT FW STATS */
321 	{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
322 	{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
323 	{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
324 	{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
325 	{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
326 	{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
327 	{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
328 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
329 	{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
330 	{TXRX_FW_STATS_INVALID, TXRX_REO_QUEUE_STATS},
331 	{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
332 	{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
333 	{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
334 	{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
335 	{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
336 	{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
337 	{TXRX_FW_STATS_INVALID, TXRX_SOC_REO_HW_DESC_DUMP},
338 	{TXRX_FW_STATS_INVALID, TXRX_SOC_WBM_IDLE_HPTP_DUMP},
339 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_USAGE_WM_STATS},
340 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
341 	{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID},
342 	{TXRX_FW_STATS_INVALID, TXRX_PEER_STATS},
343 };
344 #else
345 const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
346 	{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
347 	{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
348 	{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
349 	{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
350 	{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
351 	{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
352 	{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
353 	{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
354 	{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
355 	{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
356 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
357 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
358 	{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
359 	{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
360 	{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
361 	{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
362 	{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
363 	{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
364 	{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
365 	/* Last ENUM for HTT FW STATS */
366 	{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
367 	{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
368 	{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
369 	{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
370 	{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
371 	{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
372 	{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
373 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
374 	{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
375 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
376 	{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
377 	{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
378 	{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
379 	{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
380 	{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
381 	{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
382 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
383 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
384 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
385 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
386 	{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID}
387 };
388 #endif
389 
390 /* MCL specific functions */
391 #if defined(DP_CON_MON)
392 
393 #ifdef IPA_OFFLOAD
394 /**
395  * dp_get_num_rx_contexts() - get number of RX contexts
396  * @soc_hdl: cdp opaque soc handle
397  *
398  * Return: number of RX contexts
399  */
400 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
401 {
402 	int num_rx_contexts;
403 	uint32_t reo_ring_map;
404 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
405 
406 	reo_ring_map = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
407 
408 	switch (soc->arch_id) {
409 	case CDP_ARCH_TYPE_BE:
410 		/* 2 REO rings are used for IPA */
411 		reo_ring_map &=  ~(BIT(3) | BIT(7));
412 
413 		break;
414 	case CDP_ARCH_TYPE_LI:
415 		/* 1 REO ring is used for IPA */
416 		reo_ring_map &=  ~BIT(3);
417 		break;
418 	default:
419 		dp_err("unknown arch_id 0x%x", soc->arch_id);
420 		QDF_BUG(0);
421 	}
422 	/*
423 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
424 	 * in future
425 	 */
426 	num_rx_contexts = qdf_get_hweight32(reo_ring_map);
427 
428 	return num_rx_contexts;
429 }
430 #else
431 #ifdef WLAN_SOFTUMAC_SUPPORT
432 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
433 {
434 	uint32_t rx_rings_config;
435 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
436 
437 	rx_rings_config = wlan_cfg_get_rx_rings_mapping(soc->wlan_cfg_ctx);
438 	/*
439 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
440 	 * in future
441 	 */
442 	return qdf_get_hweight32(rx_rings_config);
443 }
444 #else
445 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
446 {
447 	int num_rx_contexts;
448 	uint32_t reo_config;
449 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
450 
451 	reo_config = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
452 	/*
453 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
454 	 * in future
455 	 */
456 	num_rx_contexts = qdf_get_hweight32(reo_config);
457 
458 	return num_rx_contexts;
459 }
460 #endif /* WLAN_SOFTUMAC_SUPPORT */
461 #endif
462 
463 #endif
464 
465 #ifdef FEATURE_MEC
466 void dp_peer_mec_flush_entries(struct dp_soc *soc)
467 {
468 	unsigned int index;
469 	struct dp_mec_entry *mecentry, *mecentry_next;
470 
471 	TAILQ_HEAD(, dp_mec_entry) free_list;
472 	TAILQ_INIT(&free_list);
473 
474 	if (!soc->mec_hash.mask)
475 		return;
476 
477 	if (!soc->mec_hash.bins)
478 		return;
479 
480 	if (!qdf_atomic_read(&soc->mec_cnt))
481 		return;
482 
483 	qdf_spin_lock_bh(&soc->mec_lock);
484 	for (index = 0; index <= soc->mec_hash.mask; index++) {
485 		if (!TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
486 			TAILQ_FOREACH_SAFE(mecentry, &soc->mec_hash.bins[index],
487 					   hash_list_elem, mecentry_next) {
488 			    dp_peer_mec_detach_entry(soc, mecentry, &free_list);
489 			}
490 		}
491 	}
492 	qdf_spin_unlock_bh(&soc->mec_lock);
493 
494 	dp_peer_mec_free_list(soc, &free_list);
495 }
496 
497 /**
498  * dp_print_mec_stats() - Dump MEC entries in table
499  * @soc: Datapath soc handle
500  *
501  * Return: none
502  */
503 static void dp_print_mec_stats(struct dp_soc *soc)
504 {
505 	int i;
506 	uint32_t index;
507 	struct dp_mec_entry *mecentry = NULL, *mec_list;
508 	uint32_t num_entries = 0;
509 
510 	DP_PRINT_STATS("MEC Stats:");
511 	DP_PRINT_STATS("   Entries Added   = %d", soc->stats.mec.added);
512 	DP_PRINT_STATS("   Entries Deleted = %d", soc->stats.mec.deleted);
513 
514 	if (!qdf_atomic_read(&soc->mec_cnt))
515 		return;
516 
517 	mec_list = qdf_mem_malloc(sizeof(*mecentry) * DP_PEER_MAX_MEC_ENTRY);
518 	if (!mec_list) {
519 		dp_peer_warn("%pK: failed to allocate mec_list", soc);
520 		return;
521 	}
522 
523 	DP_PRINT_STATS("MEC Table:");
524 	for (index = 0; index <= soc->mec_hash.mask; index++) {
525 		qdf_spin_lock_bh(&soc->mec_lock);
526 		if (TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
527 			qdf_spin_unlock_bh(&soc->mec_lock);
528 			continue;
529 		}
530 
531 		TAILQ_FOREACH(mecentry, &soc->mec_hash.bins[index],
532 			      hash_list_elem) {
533 			qdf_mem_copy(&mec_list[num_entries], mecentry,
534 				     sizeof(*mecentry));
535 			num_entries++;
536 		}
537 		qdf_spin_unlock_bh(&soc->mec_lock);
538 	}
539 
540 	if (!num_entries) {
541 		qdf_mem_free(mec_list);
542 		return;
543 	}
544 
545 	for (i = 0; i < num_entries; i++) {
546 		DP_PRINT_STATS("%6d mac_addr = " QDF_MAC_ADDR_FMT
547 			       " is_active = %d pdev_id = %d vdev_id = %d",
548 			       i,
549 			       QDF_MAC_ADDR_REF(mec_list[i].mac_addr.raw),
550 			       mec_list[i].is_active,
551 			       mec_list[i].pdev_id,
552 			       mec_list[i].vdev_id);
553 	}
554 	qdf_mem_free(mec_list);
555 }
556 #else
557 static void dp_print_mec_stats(struct dp_soc *soc)
558 {
559 }
560 #endif
561 
562 static int dp_peer_add_ast_wifi3(struct cdp_soc_t *soc_hdl,
563 				 uint8_t vdev_id,
564 				 uint8_t *peer_mac,
565 				 uint8_t *mac_addr,
566 				 enum cdp_txrx_ast_entry_type type,
567 				 uint32_t flags)
568 {
569 	int ret = -1;
570 	QDF_STATUS status = QDF_STATUS_SUCCESS;
571 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
572 						       peer_mac, 0, vdev_id,
573 						       DP_MOD_ID_CDP);
574 
575 	if (!peer) {
576 		dp_peer_debug("Peer is NULL!");
577 		return ret;
578 	}
579 
580 	status = dp_peer_add_ast((struct dp_soc *)soc_hdl,
581 				 peer,
582 				 mac_addr,
583 				 type,
584 				 flags);
585 	if ((status == QDF_STATUS_SUCCESS) ||
586 	    (status == QDF_STATUS_E_ALREADY) ||
587 	    (status == QDF_STATUS_E_AGAIN))
588 		ret = 0;
589 
590 	dp_hmwds_ast_add_notify(peer, mac_addr,
591 				type, status, false);
592 
593 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
594 
595 	return ret;
596 }
597 
598 static int dp_peer_update_ast_wifi3(struct cdp_soc_t *soc_hdl,
599 						uint8_t vdev_id,
600 						uint8_t *peer_mac,
601 						uint8_t *wds_macaddr,
602 						uint32_t flags)
603 {
604 	int status = -1;
605 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
606 	struct dp_ast_entry  *ast_entry = NULL;
607 	struct dp_peer *peer;
608 
609 	if (soc->ast_offload_support)
610 		return status;
611 
612 	peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
613 				      peer_mac, 0, vdev_id,
614 				      DP_MOD_ID_CDP);
615 
616 	if (!peer) {
617 		dp_peer_debug("Peer is NULL!");
618 		return status;
619 	}
620 
621 	qdf_spin_lock_bh(&soc->ast_lock);
622 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
623 						    peer->vdev->pdev->pdev_id);
624 
625 	if (ast_entry) {
626 		status = dp_peer_update_ast(soc,
627 					    peer,
628 					    ast_entry, flags);
629 	}
630 	qdf_spin_unlock_bh(&soc->ast_lock);
631 
632 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
633 
634 	return status;
635 }
636 
637 /**
638  * dp_peer_reset_ast_entries() - Deletes all HMWDS entries for a peer
639  * @soc:		Datapath SOC handle
640  * @peer:		DP peer
641  * @arg:		callback argument
642  *
643  * Return: None
644  */
645 static void
646 dp_peer_reset_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
647 {
648 	struct dp_ast_entry *ast_entry = NULL;
649 	struct dp_ast_entry *tmp_ast_entry;
650 
651 	DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, tmp_ast_entry) {
652 		if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
653 		    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
654 			dp_peer_del_ast(soc, ast_entry);
655 	}
656 }
657 
658 /**
659  * dp_wds_reset_ast_wifi3() - Reset the is_active param for ast entry
660  * @soc_hdl:		Datapath SOC handle
661  * @wds_macaddr:	WDS entry MAC Address
662  * @peer_mac_addr:	WDS entry MAC Address
663  * @vdev_id:		id of vdev handle
664  *
665  * Return: QDF_STATUS
666  */
667 static QDF_STATUS dp_wds_reset_ast_wifi3(struct cdp_soc_t *soc_hdl,
668 					 uint8_t *wds_macaddr,
669 					 uint8_t *peer_mac_addr,
670 					 uint8_t vdev_id)
671 {
672 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
673 	struct dp_ast_entry *ast_entry = NULL;
674 	struct dp_peer *peer;
675 	struct dp_pdev *pdev;
676 	struct dp_vdev *vdev;
677 
678 	if (soc->ast_offload_support)
679 		return QDF_STATUS_E_FAILURE;
680 
681 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
682 
683 	if (!vdev)
684 		return QDF_STATUS_E_FAILURE;
685 
686 	pdev = vdev->pdev;
687 
688 	if (peer_mac_addr) {
689 		peer = dp_peer_find_hash_find(soc, peer_mac_addr,
690 					      0, vdev->vdev_id,
691 					      DP_MOD_ID_CDP);
692 		if (!peer) {
693 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
694 			return QDF_STATUS_E_FAILURE;
695 		}
696 
697 		qdf_spin_lock_bh(&soc->ast_lock);
698 		dp_peer_reset_ast_entries(soc, peer, NULL);
699 		qdf_spin_unlock_bh(&soc->ast_lock);
700 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
701 	} else if (wds_macaddr) {
702 		qdf_spin_lock_bh(&soc->ast_lock);
703 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
704 							    pdev->pdev_id);
705 
706 		if (ast_entry) {
707 			if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
708 			    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
709 				dp_peer_del_ast(soc, ast_entry);
710 		}
711 		qdf_spin_unlock_bh(&soc->ast_lock);
712 	}
713 
714 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
715 	return QDF_STATUS_SUCCESS;
716 }
717 
718 /**
719  * dp_wds_reset_ast_table_wifi3() - Reset the is_active param for all ast entry
720  * @soc_hdl:		Datapath SOC handle
721  * @vdev_id:		id of vdev object
722  *
723  * Return: QDF_STATUS
724  */
725 static QDF_STATUS
726 dp_wds_reset_ast_table_wifi3(struct cdp_soc_t  *soc_hdl,
727 			     uint8_t vdev_id)
728 {
729 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
730 
731 	if (soc->ast_offload_support)
732 		return QDF_STATUS_SUCCESS;
733 
734 	qdf_spin_lock_bh(&soc->ast_lock);
735 
736 	dp_soc_iterate_peer(soc, dp_peer_reset_ast_entries, NULL,
737 			    DP_MOD_ID_CDP);
738 	qdf_spin_unlock_bh(&soc->ast_lock);
739 
740 	return QDF_STATUS_SUCCESS;
741 }
742 
743 /**
744  * dp_peer_flush_ast_entries() - Delete all wds and hmwds ast entries of a peer
745  * @soc:		Datapath SOC
746  * @peer:		Datapath peer
747  * @arg:		arg to callback
748  *
749  * Return: None
750  */
751 static void
752 dp_peer_flush_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
753 {
754 	struct dp_ast_entry *ase = NULL;
755 	struct dp_ast_entry *temp_ase;
756 
757 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
758 		if ((ase->type ==
759 			CDP_TXRX_AST_TYPE_STATIC) ||
760 			(ase->type ==
761 			 CDP_TXRX_AST_TYPE_SELF) ||
762 			(ase->type ==
763 			 CDP_TXRX_AST_TYPE_STA_BSS))
764 			continue;
765 		dp_peer_del_ast(soc, ase);
766 	}
767 }
768 
769 /**
770  * dp_wds_flush_ast_table_wifi3() - Delete all wds and hmwds ast entry
771  * @soc_hdl:		Datapath SOC handle
772  *
773  * Return: None
774  */
775 static void dp_wds_flush_ast_table_wifi3(struct cdp_soc_t  *soc_hdl)
776 {
777 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
778 
779 	qdf_spin_lock_bh(&soc->ast_lock);
780 
781 	dp_soc_iterate_peer(soc, dp_peer_flush_ast_entries, NULL,
782 			    DP_MOD_ID_CDP);
783 
784 	qdf_spin_unlock_bh(&soc->ast_lock);
785 	dp_peer_mec_flush_entries(soc);
786 }
787 
788 #if defined(IPA_WDS_EASYMESH_FEATURE) && defined(FEATURE_AST)
789 /**
790  * dp_peer_send_wds_disconnect() - Send Disconnect event to IPA for each peer
791  * @soc: Datapath SOC
792  * @peer: Datapath peer
793  *
794  * Return: None
795  */
796 static void
797 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
798 {
799 	struct dp_ast_entry *ase = NULL;
800 	struct dp_ast_entry *temp_ase;
801 
802 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
803 		if (ase->type == CDP_TXRX_AST_TYPE_WDS) {
804 			soc->cdp_soc.ol_ops->peer_send_wds_disconnect(soc->ctrl_psoc,
805 								      ase->mac_addr.raw,
806 								      ase->vdev_id);
807 		}
808 	}
809 }
810 #elif defined(FEATURE_AST)
811 static void
812 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
813 {
814 }
815 #endif
816 
817 /**
818  * dp_peer_check_ast_offload() - check ast offload support is enable or not
819  * @soc: soc handle
820  *
821  * Return: false in case of IPA and true/false in IPQ case
822  *
823  */
824 #if defined(IPA_OFFLOAD) && defined(QCA_WIFI_QCN9224)
825 static inline bool dp_peer_check_ast_offload(struct dp_soc *soc)
826 {
827 	return false;
828 }
829 #else
830 static inline bool dp_peer_check_ast_offload(struct dp_soc *soc)
831 {
832 	if (soc->ast_offload_support)
833 		return true;
834 
835 	return false;
836 }
837 #endif
838 
839 /**
840  * dp_peer_get_ast_info_by_soc_wifi3() - search the soc AST hash table
841  *                                       and return ast entry information
842  *                                       of first ast entry found in the
843  *                                       table with given mac address
844  * @soc_hdl: data path soc handle
845  * @ast_mac_addr: AST entry mac address
846  * @ast_entry_info: ast entry information
847  *
848  * Return: true if ast entry found with ast_mac_addr
849  *          false if ast entry not found
850  */
851 static bool dp_peer_get_ast_info_by_soc_wifi3
852 	(struct cdp_soc_t *soc_hdl,
853 	 uint8_t *ast_mac_addr,
854 	 struct cdp_ast_entry_info *ast_entry_info)
855 {
856 	struct dp_ast_entry *ast_entry = NULL;
857 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
858 	struct dp_peer *peer = NULL;
859 
860 	if (dp_peer_check_ast_offload(soc))
861 		return false;
862 
863 	qdf_spin_lock_bh(&soc->ast_lock);
864 
865 	ast_entry = dp_peer_ast_hash_find_soc(soc, ast_mac_addr);
866 	if ((!ast_entry) ||
867 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
868 		qdf_spin_unlock_bh(&soc->ast_lock);
869 		return false;
870 	}
871 
872 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
873 				     DP_MOD_ID_AST);
874 	if (!peer) {
875 		qdf_spin_unlock_bh(&soc->ast_lock);
876 		return false;
877 	}
878 
879 	ast_entry_info->type = ast_entry->type;
880 	ast_entry_info->pdev_id = ast_entry->pdev_id;
881 	ast_entry_info->vdev_id = ast_entry->vdev_id;
882 	ast_entry_info->peer_id = ast_entry->peer_id;
883 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
884 		     &peer->mac_addr.raw[0],
885 		     QDF_MAC_ADDR_SIZE);
886 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
887 	qdf_spin_unlock_bh(&soc->ast_lock);
888 	return true;
889 }
890 
891 /**
892  * dp_peer_get_ast_info_by_pdevid_wifi3() - search the soc AST hash table
893  *                                          and return ast entry information
894  *                                          if mac address and pdev_id matches
895  * @soc_hdl: data path soc handle
896  * @ast_mac_addr: AST entry mac address
897  * @pdev_id: pdev_id
898  * @ast_entry_info: ast entry information
899  *
900  * Return: true if ast entry found with ast_mac_addr
901  *          false if ast entry not found
902  */
903 static bool dp_peer_get_ast_info_by_pdevid_wifi3
904 		(struct cdp_soc_t *soc_hdl,
905 		 uint8_t *ast_mac_addr,
906 		 uint8_t pdev_id,
907 		 struct cdp_ast_entry_info *ast_entry_info)
908 {
909 	struct dp_ast_entry *ast_entry;
910 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
911 	struct dp_peer *peer = NULL;
912 
913 	if (soc->ast_offload_support)
914 		return false;
915 
916 	qdf_spin_lock_bh(&soc->ast_lock);
917 
918 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, ast_mac_addr,
919 						    pdev_id);
920 
921 	if ((!ast_entry) ||
922 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
923 		qdf_spin_unlock_bh(&soc->ast_lock);
924 		return false;
925 	}
926 
927 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
928 				     DP_MOD_ID_AST);
929 	if (!peer) {
930 		qdf_spin_unlock_bh(&soc->ast_lock);
931 		return false;
932 	}
933 
934 	ast_entry_info->type = ast_entry->type;
935 	ast_entry_info->pdev_id = ast_entry->pdev_id;
936 	ast_entry_info->vdev_id = ast_entry->vdev_id;
937 	ast_entry_info->peer_id = ast_entry->peer_id;
938 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
939 		     &peer->mac_addr.raw[0],
940 		     QDF_MAC_ADDR_SIZE);
941 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
942 	qdf_spin_unlock_bh(&soc->ast_lock);
943 	return true;
944 }
945 
946 /**
947  * dp_peer_ast_entry_del_by_soc() - delete the ast entry from soc AST hash table
948  *                            with given mac address
949  * @soc_handle: data path soc handle
950  * @mac_addr: AST entry mac address
951  * @callback: callback function to called on ast delete response from FW
952  * @cookie: argument to be passed to callback
953  *
954  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
955  *          is sent
956  *          QDF_STATUS_E_INVAL false if ast entry not found
957  */
958 static QDF_STATUS dp_peer_ast_entry_del_by_soc(struct cdp_soc_t *soc_handle,
959 					       uint8_t *mac_addr,
960 					       txrx_ast_free_cb callback,
961 					       void *cookie)
962 
963 {
964 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
965 	struct dp_ast_entry *ast_entry = NULL;
966 	txrx_ast_free_cb cb = NULL;
967 	void *arg = NULL;
968 
969 	if (soc->ast_offload_support)
970 		return -QDF_STATUS_E_INVAL;
971 
972 	qdf_spin_lock_bh(&soc->ast_lock);
973 	ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
974 	if (!ast_entry) {
975 		qdf_spin_unlock_bh(&soc->ast_lock);
976 		return -QDF_STATUS_E_INVAL;
977 	}
978 
979 	if (ast_entry->callback) {
980 		cb = ast_entry->callback;
981 		arg = ast_entry->cookie;
982 	}
983 
984 	ast_entry->callback = callback;
985 	ast_entry->cookie = cookie;
986 
987 	/*
988 	 * if delete_in_progress is set AST delete is sent to target
989 	 * and host is waiting for response should not send delete
990 	 * again
991 	 */
992 	if (!ast_entry->delete_in_progress)
993 		dp_peer_del_ast(soc, ast_entry);
994 
995 	qdf_spin_unlock_bh(&soc->ast_lock);
996 	if (cb) {
997 		cb(soc->ctrl_psoc,
998 		   dp_soc_to_cdp_soc(soc),
999 		   arg,
1000 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
1001 	}
1002 	return QDF_STATUS_SUCCESS;
1003 }
1004 
1005 /**
1006  * dp_peer_ast_entry_del_by_pdev() - delete the ast entry from soc AST hash
1007  *                                   table if mac address and pdev_id matches
1008  * @soc_handle: data path soc handle
1009  * @mac_addr: AST entry mac address
1010  * @pdev_id: pdev id
1011  * @callback: callback function to called on ast delete response from FW
1012  * @cookie: argument to be passed to callback
1013  *
1014  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
1015  *          is sent
1016  *          QDF_STATUS_E_INVAL false if ast entry not found
1017  */
1018 
1019 static QDF_STATUS dp_peer_ast_entry_del_by_pdev(struct cdp_soc_t *soc_handle,
1020 						uint8_t *mac_addr,
1021 						uint8_t pdev_id,
1022 						txrx_ast_free_cb callback,
1023 						void *cookie)
1024 
1025 {
1026 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1027 	struct dp_ast_entry *ast_entry;
1028 	txrx_ast_free_cb cb = NULL;
1029 	void *arg = NULL;
1030 
1031 	if (soc->ast_offload_support)
1032 		return -QDF_STATUS_E_INVAL;
1033 
1034 	qdf_spin_lock_bh(&soc->ast_lock);
1035 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, pdev_id);
1036 
1037 	if (!ast_entry) {
1038 		qdf_spin_unlock_bh(&soc->ast_lock);
1039 		return -QDF_STATUS_E_INVAL;
1040 	}
1041 
1042 	if (ast_entry->callback) {
1043 		cb = ast_entry->callback;
1044 		arg = ast_entry->cookie;
1045 	}
1046 
1047 	ast_entry->callback = callback;
1048 	ast_entry->cookie = cookie;
1049 
1050 	/*
1051 	 * if delete_in_progress is set AST delete is sent to target
1052 	 * and host is waiting for response should not sent delete
1053 	 * again
1054 	 */
1055 	if (!ast_entry->delete_in_progress)
1056 		dp_peer_del_ast(soc, ast_entry);
1057 
1058 	qdf_spin_unlock_bh(&soc->ast_lock);
1059 
1060 	if (cb) {
1061 		cb(soc->ctrl_psoc,
1062 		   dp_soc_to_cdp_soc(soc),
1063 		   arg,
1064 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
1065 	}
1066 	return QDF_STATUS_SUCCESS;
1067 }
1068 
1069 /**
1070  * dp_peer_HMWDS_ast_entry_del() - delete the ast entry from soc AST hash
1071  *                                 table if HMWDS rem-addr command is issued
1072  *
1073  * @soc_handle: data path soc handle
1074  * @vdev_id: vdev id
1075  * @wds_macaddr: AST entry mac address to delete
1076  * @type: cdp_txrx_ast_entry_type to send to FW
1077  * @delete_in_fw: flag to indicate AST entry deletion in FW
1078  *
1079  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
1080  *         is sent
1081  *         QDF_STATUS_E_INVAL false if ast entry not found
1082  */
1083 static QDF_STATUS dp_peer_HMWDS_ast_entry_del(struct cdp_soc_t *soc_handle,
1084 					      uint8_t vdev_id,
1085 					      uint8_t *wds_macaddr,
1086 					      uint8_t type,
1087 					      uint8_t delete_in_fw)
1088 {
1089 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1090 
1091 	if (soc->ast_offload_support) {
1092 		dp_del_wds_entry_wrapper(soc, vdev_id, wds_macaddr, type,
1093 					 delete_in_fw);
1094 		return QDF_STATUS_SUCCESS;
1095 	}
1096 
1097 	return -QDF_STATUS_E_INVAL;
1098 }
1099 
1100 #ifdef FEATURE_AST
1101 /**
1102  * dp_print_mlo_ast_stats() - Print AST stats for MLO peers
1103  *
1104  * @soc: core DP soc context
1105  *
1106  * Return: void
1107  */
1108 static void dp_print_mlo_ast_stats(struct dp_soc *soc)
1109 {
1110 	if (soc->arch_ops.print_mlo_ast_stats)
1111 		soc->arch_ops.print_mlo_ast_stats(soc);
1112 }
1113 
1114 void
1115 dp_print_peer_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1116 {
1117 	struct dp_ast_entry *ase, *tmp_ase;
1118 	uint32_t num_entries = 0;
1119 	char type[CDP_TXRX_AST_TYPE_MAX][10] = {
1120 			"NONE", "STATIC", "SELF", "WDS", "HMWDS", "BSS",
1121 			"DA", "HMWDS_SEC", "MLD"};
1122 
1123 	DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
1124 	    DP_PRINT_STATS("%6d mac_addr = "QDF_MAC_ADDR_FMT
1125 		    " peer_mac_addr = "QDF_MAC_ADDR_FMT
1126 		    " peer_id = %u"
1127 		    " type = %s"
1128 		    " next_hop = %d"
1129 		    " is_active = %d"
1130 		    " ast_idx = %d"
1131 		    " ast_hash = %d"
1132 		    " delete_in_progress = %d"
1133 		    " pdev_id = %d"
1134 		    " vdev_id = %d",
1135 		    ++num_entries,
1136 		    QDF_MAC_ADDR_REF(ase->mac_addr.raw),
1137 		    QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1138 		    ase->peer_id,
1139 		    type[ase->type],
1140 		    ase->next_hop,
1141 		    ase->is_active,
1142 		    ase->ast_idx,
1143 		    ase->ast_hash_value,
1144 		    ase->delete_in_progress,
1145 		    ase->pdev_id,
1146 		    ase->vdev_id);
1147 	}
1148 }
1149 
1150 void dp_print_ast_stats(struct dp_soc *soc)
1151 {
1152 	DP_PRINT_STATS("AST Stats:");
1153 	DP_PRINT_STATS("	Entries Added   = %d", soc->stats.ast.added);
1154 	DP_PRINT_STATS("	Entries Deleted = %d", soc->stats.ast.deleted);
1155 	DP_PRINT_STATS("	Entries Agedout = %d", soc->stats.ast.aged_out);
1156 	DP_PRINT_STATS("	Entries MAP ERR  = %d", soc->stats.ast.map_err);
1157 	DP_PRINT_STATS("	Entries Mismatch ERR  = %d",
1158 		       soc->stats.ast.ast_mismatch);
1159 
1160 	DP_PRINT_STATS("AST Table:");
1161 
1162 	qdf_spin_lock_bh(&soc->ast_lock);
1163 
1164 	dp_soc_iterate_peer(soc, dp_print_peer_ast_entries, NULL,
1165 			    DP_MOD_ID_GENERIC_STATS);
1166 
1167 	qdf_spin_unlock_bh(&soc->ast_lock);
1168 
1169 	dp_print_mlo_ast_stats(soc);
1170 }
1171 #else
1172 void dp_print_ast_stats(struct dp_soc *soc)
1173 {
1174 	DP_PRINT_STATS("AST Stats not available.Enable FEATURE_AST");
1175 	return;
1176 }
1177 #endif
1178 
1179 /**
1180  * dp_print_peer_info() - Dump peer info
1181  * @soc: Datapath soc handle
1182  * @peer: Datapath peer handle
1183  * @arg: argument to iter function
1184  *
1185  * Return: void
1186  */
1187 static void
1188 dp_print_peer_info(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1189 {
1190 	struct dp_txrx_peer *txrx_peer = NULL;
1191 
1192 	txrx_peer = dp_get_txrx_peer(peer);
1193 	if (!txrx_peer)
1194 		return;
1195 
1196 	DP_PRINT_STATS(" peer id = %d"
1197 		       " peer_mac_addr = "QDF_MAC_ADDR_FMT
1198 		       " nawds_enabled = %d"
1199 		       " bss_peer = %d"
1200 		       " wds_enabled = %d"
1201 		       " tx_cap_enabled = %d"
1202 		       " rx_cap_enabled = %d",
1203 		       peer->peer_id,
1204 		       QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1205 		       txrx_peer->nawds_enabled,
1206 		       txrx_peer->bss_peer,
1207 		       txrx_peer->wds_enabled,
1208 		       dp_monitor_is_tx_cap_enabled(peer),
1209 		       dp_monitor_is_rx_cap_enabled(peer));
1210 }
1211 
1212 /**
1213  * dp_print_peer_table() - Dump all Peer stats
1214  * @vdev: Datapath Vdev handle
1215  *
1216  * Return: void
1217  */
1218 static void dp_print_peer_table(struct dp_vdev *vdev)
1219 {
1220 	DP_PRINT_STATS("Dumping Peer Table  Stats:");
1221 	dp_vdev_iterate_peer(vdev, dp_print_peer_info, NULL,
1222 			     DP_MOD_ID_GENERIC_STATS);
1223 }
1224 
1225 #ifdef DP_MEM_PRE_ALLOC
1226 
1227 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1228 			   size_t ctxt_size)
1229 {
1230 	void *ctxt_mem;
1231 
1232 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_context) {
1233 		dp_warn("dp_prealloc_get_context null!");
1234 		goto dynamic_alloc;
1235 	}
1236 
1237 	ctxt_mem = soc->cdp_soc.ol_ops->dp_prealloc_get_context(ctxt_type,
1238 								ctxt_size);
1239 
1240 	if (ctxt_mem)
1241 		goto end;
1242 
1243 dynamic_alloc:
1244 	dp_info("switch to dynamic-alloc for type %d, size %zu",
1245 		ctxt_type, ctxt_size);
1246 	ctxt_mem = qdf_mem_malloc(ctxt_size);
1247 end:
1248 	return ctxt_mem;
1249 }
1250 
1251 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1252 			 void *vaddr)
1253 {
1254 	QDF_STATUS status;
1255 
1256 	if (soc->cdp_soc.ol_ops->dp_prealloc_put_context) {
1257 		status = soc->cdp_soc.ol_ops->dp_prealloc_put_context(
1258 								ctxt_type,
1259 								vaddr);
1260 	} else {
1261 		dp_warn("dp_prealloc_put_context null!");
1262 		status = QDF_STATUS_E_NOSUPPORT;
1263 	}
1264 
1265 	if (QDF_IS_STATUS_ERROR(status)) {
1266 		dp_info("Context type %d not pre-allocated", ctxt_type);
1267 		qdf_mem_free(vaddr);
1268 	}
1269 }
1270 
1271 static inline
1272 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1273 					   struct dp_srng *srng,
1274 					   uint32_t ring_type)
1275 {
1276 	void *mem;
1277 
1278 	qdf_assert(!srng->is_mem_prealloc);
1279 
1280 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_consistent) {
1281 		dp_warn("dp_prealloc_get_consistent is null!");
1282 		goto qdf;
1283 	}
1284 
1285 	mem =
1286 		soc->cdp_soc.ol_ops->dp_prealloc_get_consistent
1287 						(&srng->alloc_size,
1288 						 &srng->base_vaddr_unaligned,
1289 						 &srng->base_paddr_unaligned,
1290 						 &srng->base_paddr_aligned,
1291 						 DP_RING_BASE_ALIGN, ring_type);
1292 
1293 	if (mem) {
1294 		srng->is_mem_prealloc = true;
1295 		goto end;
1296 	}
1297 qdf:
1298 	mem =  qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1299 						&srng->base_vaddr_unaligned,
1300 						&srng->base_paddr_unaligned,
1301 						&srng->base_paddr_aligned,
1302 						DP_RING_BASE_ALIGN);
1303 end:
1304 	dp_info("%s memory %pK dp_srng %pK ring_type %d alloc_size %d num_entries %d",
1305 		srng->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc", mem,
1306 		srng, ring_type, srng->alloc_size, srng->num_entries);
1307 	return mem;
1308 }
1309 
1310 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1311 					       struct dp_srng *srng)
1312 {
1313 	if (srng->is_mem_prealloc) {
1314 		if (!soc->cdp_soc.ol_ops->dp_prealloc_put_consistent) {
1315 			dp_warn("dp_prealloc_put_consistent is null!");
1316 			QDF_BUG(0);
1317 			return;
1318 		}
1319 		soc->cdp_soc.ol_ops->dp_prealloc_put_consistent
1320 						(srng->alloc_size,
1321 						 srng->base_vaddr_unaligned,
1322 						 srng->base_paddr_unaligned);
1323 
1324 	} else {
1325 		qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1326 					srng->alloc_size,
1327 					srng->base_vaddr_unaligned,
1328 					srng->base_paddr_unaligned, 0);
1329 	}
1330 }
1331 
1332 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
1333 				   enum qdf_dp_desc_type desc_type,
1334 				   struct qdf_mem_multi_page_t *pages,
1335 				   size_t element_size,
1336 				   uint32_t element_num,
1337 				   qdf_dma_context_t memctxt,
1338 				   bool cacheable)
1339 {
1340 	if (!soc->cdp_soc.ol_ops->dp_get_multi_pages) {
1341 		dp_warn("dp_get_multi_pages is null!");
1342 		goto qdf;
1343 	}
1344 
1345 	pages->num_pages = 0;
1346 	pages->is_mem_prealloc = 0;
1347 	soc->cdp_soc.ol_ops->dp_get_multi_pages(desc_type,
1348 						element_size,
1349 						element_num,
1350 						pages,
1351 						cacheable);
1352 	if (pages->num_pages)
1353 		goto end;
1354 
1355 qdf:
1356 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
1357 				  element_num, memctxt, cacheable);
1358 end:
1359 	dp_info("%s desc_type %d element_size %d element_num %d cacheable %d",
1360 		pages->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc",
1361 		desc_type, (int)element_size, element_num, cacheable);
1362 }
1363 
1364 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
1365 				  enum qdf_dp_desc_type desc_type,
1366 				  struct qdf_mem_multi_page_t *pages,
1367 				  qdf_dma_context_t memctxt,
1368 				  bool cacheable)
1369 {
1370 	if (pages->is_mem_prealloc) {
1371 		if (!soc->cdp_soc.ol_ops->dp_put_multi_pages) {
1372 			dp_warn("dp_put_multi_pages is null!");
1373 			QDF_BUG(0);
1374 			return;
1375 		}
1376 
1377 		soc->cdp_soc.ol_ops->dp_put_multi_pages(desc_type, pages);
1378 		qdf_mem_zero(pages, sizeof(*pages));
1379 	} else {
1380 		qdf_mem_multi_pages_free(soc->osdev, pages,
1381 					 memctxt, cacheable);
1382 	}
1383 }
1384 
1385 #else
1386 
1387 static inline
1388 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1389 					   struct dp_srng *srng,
1390 					   uint32_t ring_type)
1391 
1392 {
1393 	void *mem;
1394 
1395 	mem = qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1396 					       &srng->base_vaddr_unaligned,
1397 					       &srng->base_paddr_unaligned,
1398 					       &srng->base_paddr_aligned,
1399 					       DP_RING_BASE_ALIGN);
1400 	if (mem)
1401 		qdf_mem_set(srng->base_vaddr_unaligned, 0, srng->alloc_size);
1402 
1403 	return mem;
1404 }
1405 
1406 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1407 					       struct dp_srng *srng)
1408 {
1409 	qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1410 				srng->alloc_size,
1411 				srng->base_vaddr_unaligned,
1412 				srng->base_paddr_unaligned, 0);
1413 }
1414 
1415 #endif /* DP_MEM_PRE_ALLOC */
1416 
1417 #ifdef QCA_SUPPORT_WDS_EXTENDED
1418 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1419 {
1420 	return vdev->wds_ext_enabled;
1421 }
1422 #else
1423 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1424 {
1425 	return false;
1426 }
1427 #endif
1428 
1429 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev)
1430 {
1431 	struct dp_vdev *vdev = NULL;
1432 	uint8_t rx_fast_flag = true;
1433 
1434 	/* Check if protocol tagging enable */
1435 	if (pdev->is_rx_protocol_tagging_enabled) {
1436 		rx_fast_flag = false;
1437 		goto update_flag;
1438 	}
1439 
1440 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
1441 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1442 		/* Check if any VDEV has NAWDS enabled */
1443 		if (vdev->nawds_enabled) {
1444 			rx_fast_flag = false;
1445 			break;
1446 		}
1447 
1448 		/* Check if any VDEV has multipass enabled */
1449 		if (vdev->multipass_en) {
1450 			rx_fast_flag = false;
1451 			break;
1452 		}
1453 
1454 		/* Check if any VDEV has mesh enabled */
1455 		if (vdev->mesh_vdev) {
1456 			rx_fast_flag = false;
1457 			break;
1458 		}
1459 	}
1460 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1461 
1462 update_flag:
1463 	dp_init_info("Updated Rx fast flag to %u", rx_fast_flag);
1464 	pdev->rx_fast_flag = rx_fast_flag;
1465 }
1466 
1467 void dp_soc_set_interrupt_mode(struct dp_soc *soc)
1468 {
1469 	uint32_t msi_base_data, msi_vector_start;
1470 	int msi_vector_count, ret;
1471 
1472 	soc->intr_mode = DP_INTR_INTEGRATED;
1473 
1474 	if (!(soc->wlan_cfg_ctx->napi_enabled) ||
1475 	    (dp_is_monitor_mode_using_poll(soc) &&
1476 	     soc->cdp_soc.ol_ops->get_con_mode &&
1477 	     soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE)) {
1478 		soc->intr_mode = DP_INTR_POLL;
1479 	} else {
1480 		ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
1481 						  &msi_vector_count,
1482 						  &msi_base_data,
1483 						  &msi_vector_start);
1484 		if (ret)
1485 			return;
1486 
1487 		soc->intr_mode = DP_INTR_MSI;
1488 	}
1489 }
1490 
1491 static int dp_srng_calculate_msi_group(struct dp_soc *soc,
1492 				       enum hal_ring_type ring_type,
1493 				       int ring_num,
1494 				       int *reg_msi_grp_num,
1495 				       bool nf_irq_support,
1496 				       int *nf_msi_grp_num)
1497 {
1498 	struct wlan_cfg_dp_soc_ctxt *cfg_ctx = soc->wlan_cfg_ctx;
1499 	uint8_t *grp_mask, *nf_irq_mask = NULL;
1500 	bool nf_irq_enabled = false;
1501 	uint8_t wbm2_sw_rx_rel_ring_id;
1502 
1503 	switch (ring_type) {
1504 	case WBM2SW_RELEASE:
1505 		wbm2_sw_rx_rel_ring_id =
1506 			wlan_cfg_get_rx_rel_ring_id(cfg_ctx);
1507 		if (ring_num == wbm2_sw_rx_rel_ring_id) {
1508 			/* dp_rx_wbm_err_process - soc->rx_rel_ring */
1509 			grp_mask = &cfg_ctx->int_rx_wbm_rel_ring_mask[0];
1510 			ring_num = 0;
1511 		} else if (ring_num == WBM2_SW_PPE_REL_RING_ID) {
1512 			grp_mask = &cfg_ctx->int_ppeds_wbm_release_ring_mask[0];
1513 			ring_num = 0;
1514 		}  else { /* dp_tx_comp_handler - soc->tx_comp_ring */
1515 			grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
1516 			nf_irq_mask = dp_srng_get_near_full_irq_mask(soc,
1517 								     ring_type,
1518 								     ring_num);
1519 			if (nf_irq_mask)
1520 				nf_irq_enabled = true;
1521 
1522 			/*
1523 			 * Using ring 4 as 4th tx completion ring since ring 3
1524 			 * is Rx error ring
1525 			 */
1526 			if (ring_num == WBM2SW_TXCOMP_RING4_NUM)
1527 				ring_num = TXCOMP_RING4_NUM;
1528 		}
1529 	break;
1530 
1531 	case REO_EXCEPTION:
1532 		/* dp_rx_err_process - &soc->reo_exception_ring */
1533 		grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0];
1534 	break;
1535 
1536 	case REO_DST:
1537 		/* dp_rx_process - soc->reo_dest_ring */
1538 		grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
1539 		nf_irq_mask = dp_srng_get_near_full_irq_mask(soc, ring_type,
1540 							     ring_num);
1541 		if (nf_irq_mask)
1542 			nf_irq_enabled = true;
1543 	break;
1544 
1545 	case REO_STATUS:
1546 		/* dp_reo_status_ring_handler - soc->reo_status_ring */
1547 		grp_mask = &soc->wlan_cfg_ctx->int_reo_status_ring_mask[0];
1548 	break;
1549 
1550 	/* dp_rx_mon_status_srng_process - pdev->rxdma_mon_status_ring*/
1551 	case RXDMA_MONITOR_STATUS:
1552 	/* dp_rx_mon_dest_process - pdev->rxdma_mon_dst_ring */
1553 	case RXDMA_MONITOR_DST:
1554 		/* dp_mon_process */
1555 		grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
1556 	break;
1557 	case TX_MONITOR_DST:
1558 		/* dp_tx_mon_process */
1559 		grp_mask = &soc->wlan_cfg_ctx->int_tx_mon_ring_mask[0];
1560 	break;
1561 	case RXDMA_DST:
1562 		/* dp_rxdma_err_process */
1563 		grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0];
1564 	break;
1565 
1566 	case RXDMA_BUF:
1567 		grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
1568 	break;
1569 
1570 	case RXDMA_MONITOR_BUF:
1571 		grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_mon_ring_mask[0];
1572 	break;
1573 
1574 	case TX_MONITOR_BUF:
1575 		grp_mask = &soc->wlan_cfg_ctx->int_host2txmon_ring_mask[0];
1576 	break;
1577 
1578 	case REO2PPE:
1579 		grp_mask = &soc->wlan_cfg_ctx->int_reo2ppe_ring_mask[0];
1580 	break;
1581 
1582 	case PPE2TCL:
1583 		grp_mask = &soc->wlan_cfg_ctx->int_ppe2tcl_ring_mask[0];
1584 	break;
1585 
1586 	case TCL_DATA:
1587 	/* CMD_CREDIT_RING is used as command in 8074 and credit in 9000 */
1588 	case TCL_CMD_CREDIT:
1589 	case REO_CMD:
1590 	case SW2WBM_RELEASE:
1591 	case WBM_IDLE_LINK:
1592 		/* normally empty SW_TO_HW rings */
1593 		return -QDF_STATUS_E_NOENT;
1594 	break;
1595 
1596 	case TCL_STATUS:
1597 	case REO_REINJECT:
1598 		/* misc unused rings */
1599 		return -QDF_STATUS_E_NOENT;
1600 	break;
1601 
1602 	case CE_SRC:
1603 	case CE_DST:
1604 	case CE_DST_STATUS:
1605 		/* CE_rings - currently handled by hif */
1606 	default:
1607 		return -QDF_STATUS_E_NOENT;
1608 	break;
1609 	}
1610 
1611 	*reg_msi_grp_num = dp_srng_find_ring_in_mask(ring_num, grp_mask);
1612 
1613 	if (nf_irq_support && nf_irq_enabled) {
1614 		*nf_msi_grp_num = dp_srng_find_ring_in_mask(ring_num,
1615 							    nf_irq_mask);
1616 	}
1617 
1618 	return QDF_STATUS_SUCCESS;
1619 }
1620 
1621 #if defined(IPA_OFFLOAD) && defined(IPA_WDI3_VLAN_SUPPORT)
1622 static void
1623 dp_ipa_vlan_srng_msi_setup(struct hal_srng_params *ring_params, int ring_type,
1624 			   int ring_num)
1625 {
1626 	if (wlan_ipa_is_vlan_enabled()) {
1627 		if ((ring_type == REO_DST) &&
1628 		    (ring_num == IPA_ALT_REO_DEST_RING_IDX)) {
1629 			ring_params->msi_addr = 0;
1630 			ring_params->msi_data = 0;
1631 			ring_params->flags &= ~HAL_SRNG_MSI_INTR;
1632 		}
1633 	}
1634 }
1635 #else
1636 static inline void
1637 dp_ipa_vlan_srng_msi_setup(struct hal_srng_params *ring_params, int ring_type,
1638 			   int ring_num)
1639 {
1640 }
1641 #endif
1642 
1643 void dp_srng_msi_setup(struct dp_soc *soc, struct dp_srng *srng,
1644 		       struct hal_srng_params *ring_params,
1645 		       int ring_type, int ring_num)
1646 {
1647 	int reg_msi_grp_num;
1648 	/*
1649 	 * nf_msi_grp_num needs to be initialized with negative value,
1650 	 * to avoid configuring near-full msi for WBM2SW3 ring
1651 	 */
1652 	int nf_msi_grp_num = -1;
1653 	int msi_data_count;
1654 	int ret;
1655 	uint32_t msi_data_start, msi_irq_start, addr_low, addr_high;
1656 	bool nf_irq_support;
1657 	int vector;
1658 
1659 	ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
1660 					  &msi_data_count, &msi_data_start,
1661 					  &msi_irq_start);
1662 
1663 	if (ret)
1664 		return;
1665 
1666 	nf_irq_support = hal_srng_is_near_full_irq_supported(soc->hal_soc,
1667 							     ring_type,
1668 							     ring_num);
1669 	ret = dp_srng_calculate_msi_group(soc, ring_type, ring_num,
1670 					  &reg_msi_grp_num,
1671 					  nf_irq_support,
1672 					  &nf_msi_grp_num);
1673 	if (ret < 0) {
1674 		dp_init_info("%pK: ring not part of an ext_group; ring_type: %d,ring_num %d",
1675 			     soc, ring_type, ring_num);
1676 		ring_params->msi_addr = 0;
1677 		ring_params->msi_data = 0;
1678 		dp_srng_set_msi2_ring_params(soc, ring_params, 0, 0);
1679 		return;
1680 	}
1681 
1682 	if (reg_msi_grp_num < 0) {
1683 		dp_init_info("%pK: ring not part of an ext_group; ring_type: %d,ring_num %d",
1684 			     soc, ring_type, ring_num);
1685 		ring_params->msi_addr = 0;
1686 		ring_params->msi_data = 0;
1687 		goto configure_msi2;
1688 	}
1689 
1690 	if (dp_is_msi_group_number_invalid(soc, reg_msi_grp_num,
1691 					   msi_data_count)) {
1692 		dp_init_warn("%pK: 2 msi_groups will share an msi; msi_group_num %d",
1693 			     soc, reg_msi_grp_num);
1694 		QDF_ASSERT(0);
1695 	}
1696 
1697 	pld_get_msi_address(soc->osdev->dev, &addr_low, &addr_high);
1698 
1699 	ring_params->msi_addr = addr_low;
1700 	ring_params->msi_addr |= (qdf_dma_addr_t)(((uint64_t)addr_high) << 32);
1701 	ring_params->msi_data = (reg_msi_grp_num % msi_data_count)
1702 		+ msi_data_start;
1703 	ring_params->flags |= HAL_SRNG_MSI_INTR;
1704 
1705 	dp_ipa_vlan_srng_msi_setup(ring_params, ring_type, ring_num);
1706 
1707 	dp_debug("ring type %u ring_num %u msi->data %u msi_addr %llx",
1708 		 ring_type, ring_num, ring_params->msi_data,
1709 		 (uint64_t)ring_params->msi_addr);
1710 
1711 	vector = msi_irq_start + (reg_msi_grp_num % msi_data_count);
1712 
1713 	/*
1714 	 * During umac reset ppeds interrupts free is not called.
1715 	 * Avoid registering interrupts again.
1716 	 *
1717 	 */
1718 	if (dp_check_umac_reset_in_progress(soc))
1719 		goto configure_msi2;
1720 
1721 	if (soc->arch_ops.dp_register_ppeds_interrupts)
1722 		if (soc->arch_ops.dp_register_ppeds_interrupts(soc, srng,
1723 							       vector,
1724 							       ring_type,
1725 							       ring_num))
1726 			return;
1727 
1728 configure_msi2:
1729 	if (!nf_irq_support) {
1730 		dp_srng_set_msi2_ring_params(soc, ring_params, 0, 0);
1731 		return;
1732 	}
1733 
1734 	dp_srng_msi2_setup(soc, ring_params, ring_type, ring_num,
1735 			   nf_msi_grp_num);
1736 }
1737 
1738 #ifdef WLAN_DP_PER_RING_TYPE_CONFIG
1739 /**
1740  * dp_srng_configure_interrupt_thresholds() - Retrieve interrupt
1741  * threshold values from the wlan_srng_cfg table for each ring type
1742  * @soc: device handle
1743  * @ring_params: per ring specific parameters
1744  * @ring_type: Ring type
1745  * @ring_num: Ring number for a given ring type
1746  * @num_entries: number of entries to fill
1747  *
1748  * Fill the ring params with the interrupt threshold
1749  * configuration parameters available in the per ring type wlan_srng_cfg
1750  * table.
1751  *
1752  * Return: None
1753  */
1754 void
1755 dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
1756 				       struct hal_srng_params *ring_params,
1757 				       int ring_type, int ring_num,
1758 				       int num_entries)
1759 {
1760 	uint8_t wbm2_sw_rx_rel_ring_id;
1761 
1762 	wbm2_sw_rx_rel_ring_id = wlan_cfg_get_rx_rel_ring_id(soc->wlan_cfg_ctx);
1763 
1764 	if (ring_type == REO_DST) {
1765 		ring_params->intr_timer_thres_us =
1766 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1767 		ring_params->intr_batch_cntr_thres_entries =
1768 			wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
1769 	} else if (ring_type == WBM2SW_RELEASE &&
1770 		   (ring_num == wbm2_sw_rx_rel_ring_id)) {
1771 		ring_params->intr_timer_thres_us =
1772 				wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
1773 		ring_params->intr_batch_cntr_thres_entries =
1774 				wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
1775 	} else {
1776 		ring_params->intr_timer_thres_us =
1777 				soc->wlan_srng_cfg[ring_type].timer_threshold;
1778 		ring_params->intr_batch_cntr_thres_entries =
1779 				soc->wlan_srng_cfg[ring_type].batch_count_threshold;
1780 	}
1781 	ring_params->low_threshold =
1782 			soc->wlan_srng_cfg[ring_type].low_threshold;
1783 	if (ring_params->low_threshold)
1784 		ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1785 
1786 	dp_srng_configure_nf_interrupt_thresholds(soc, ring_params, ring_type);
1787 }
1788 #else
1789 void
1790 dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
1791 				       struct hal_srng_params *ring_params,
1792 				       int ring_type, int ring_num,
1793 				       int num_entries)
1794 {
1795 	uint8_t wbm2_sw_rx_rel_ring_id;
1796 	bool rx_refill_lt_disable;
1797 
1798 	wbm2_sw_rx_rel_ring_id = wlan_cfg_get_rx_rel_ring_id(soc->wlan_cfg_ctx);
1799 
1800 	if (ring_type == REO_DST || ring_type == REO2PPE) {
1801 		ring_params->intr_timer_thres_us =
1802 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1803 		ring_params->intr_batch_cntr_thres_entries =
1804 			wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
1805 	} else if (ring_type == WBM2SW_RELEASE &&
1806 		   (ring_num < wbm2_sw_rx_rel_ring_id ||
1807 		   ring_num == WBM2SW_TXCOMP_RING4_NUM ||
1808 		   ring_num == WBM2_SW_PPE_REL_RING_ID)) {
1809 		ring_params->intr_timer_thres_us =
1810 			wlan_cfg_get_int_timer_threshold_tx(soc->wlan_cfg_ctx);
1811 		ring_params->intr_batch_cntr_thres_entries =
1812 			wlan_cfg_get_int_batch_threshold_tx(soc->wlan_cfg_ctx);
1813 	} else if (ring_type == RXDMA_BUF) {
1814 		rx_refill_lt_disable =
1815 			wlan_cfg_get_dp_soc_rxdma_refill_lt_disable
1816 							(soc->wlan_cfg_ctx);
1817 		ring_params->intr_timer_thres_us =
1818 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1819 
1820 		if (!rx_refill_lt_disable) {
1821 			ring_params->low_threshold = num_entries >> 3;
1822 			ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1823 			ring_params->intr_batch_cntr_thres_entries = 0;
1824 		}
1825 	} else {
1826 		ring_params->intr_timer_thres_us =
1827 			wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
1828 		ring_params->intr_batch_cntr_thres_entries =
1829 			wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
1830 	}
1831 
1832 	/* These rings donot require interrupt to host. Make them zero */
1833 	switch (ring_type) {
1834 	case REO_REINJECT:
1835 	case REO_CMD:
1836 	case TCL_DATA:
1837 	case TCL_CMD_CREDIT:
1838 	case TCL_STATUS:
1839 	case WBM_IDLE_LINK:
1840 	case SW2WBM_RELEASE:
1841 	case SW2RXDMA_NEW:
1842 		ring_params->intr_timer_thres_us = 0;
1843 		ring_params->intr_batch_cntr_thres_entries = 0;
1844 		break;
1845 	case PPE2TCL:
1846 		ring_params->intr_timer_thres_us =
1847 			wlan_cfg_get_int_timer_threshold_ppe2tcl(soc->wlan_cfg_ctx);
1848 		ring_params->intr_batch_cntr_thres_entries =
1849 			wlan_cfg_get_int_batch_threshold_ppe2tcl(soc->wlan_cfg_ctx);
1850 		break;
1851 	case RXDMA_MONITOR_DST:
1852 		ring_params->intr_timer_thres_us =
1853 		  wlan_cfg_get_int_timer_threshold_mon_dest(soc->wlan_cfg_ctx);
1854 		ring_params->intr_batch_cntr_thres_entries =
1855 		  wlan_cfg_get_int_batch_threshold_mon_dest(soc->wlan_cfg_ctx);
1856 		break;
1857 	}
1858 
1859 	/* Enable low threshold interrupts for rx buffer rings (regular and
1860 	 * monitor buffer rings.
1861 	 * TODO: See if this is required for any other ring
1862 	 */
1863 	if ((ring_type == RXDMA_MONITOR_BUF) ||
1864 	    (ring_type == RXDMA_MONITOR_STATUS ||
1865 	    (ring_type == TX_MONITOR_BUF))) {
1866 		/* TODO: Setting low threshold to 1/8th of ring size
1867 		 * see if this needs to be configurable
1868 		 */
1869 		ring_params->low_threshold = num_entries >> 3;
1870 		ring_params->intr_timer_thres_us =
1871 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1872 		ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1873 		ring_params->intr_batch_cntr_thres_entries = 0;
1874 	}
1875 
1876 	/* During initialisation monitor rings are only filled with
1877 	 * MON_BUF_MIN_ENTRIES entries. So low threshold needs to be set to
1878 	 * a value less than that. Low threshold value is reconfigured again
1879 	 * to 1/8th of the ring size when monitor vap is created.
1880 	 */
1881 	if (ring_type == RXDMA_MONITOR_BUF)
1882 		ring_params->low_threshold = MON_BUF_MIN_ENTRIES >> 1;
1883 
1884 	/* In case of PCI chipsets, we dont have PPDU end interrupts,
1885 	 * so MONITOR STATUS ring is reaped by receiving MSI from srng.
1886 	 * Keep batch threshold as 8 so that interrupt is received for
1887 	 * every 4 packets in MONITOR_STATUS ring
1888 	 */
1889 	if ((ring_type == RXDMA_MONITOR_STATUS) &&
1890 	    (soc->intr_mode == DP_INTR_MSI))
1891 		ring_params->intr_batch_cntr_thres_entries = 4;
1892 }
1893 #endif
1894 
1895 static int dp_process_rxdma_dst_ring(struct dp_soc *soc,
1896 				     struct dp_intr *int_ctx,
1897 				     int mac_for_pdev,
1898 				     int total_budget)
1899 {
1900 	uint32_t target_type;
1901 
1902 	target_type = hal_get_target_type(soc->hal_soc);
1903 	if (target_type == TARGET_TYPE_QCN9160)
1904 		return dp_monitor_process(soc, int_ctx,
1905 					  mac_for_pdev, total_budget);
1906 	else
1907 		return dp_rxdma_err_process(int_ctx, soc, mac_for_pdev,
1908 					    total_budget);
1909 }
1910 
1911 /**
1912  * dp_process_lmac_rings() - Process LMAC rings
1913  * @int_ctx: interrupt context
1914  * @total_budget: budget of work which can be done
1915  *
1916  * Return: work done
1917  */
1918 int dp_process_lmac_rings(struct dp_intr *int_ctx, int total_budget)
1919 {
1920 	struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
1921 	struct dp_soc *soc = int_ctx->soc;
1922 	uint32_t remaining_quota = total_budget;
1923 	struct dp_pdev *pdev = NULL;
1924 	uint32_t work_done  = 0;
1925 	int budget = total_budget;
1926 	int ring = 0;
1927 	bool rx_refill_lt_disable;
1928 
1929 	rx_refill_lt_disable =
1930 		wlan_cfg_get_dp_soc_rxdma_refill_lt_disable(soc->wlan_cfg_ctx);
1931 
1932 	/* Process LMAC interrupts */
1933 	for  (ring = 0 ; ring < MAX_NUM_LMAC_HW; ring++) {
1934 		int mac_for_pdev = ring;
1935 
1936 		pdev = dp_get_pdev_for_lmac_id(soc, mac_for_pdev);
1937 		if (!pdev)
1938 			continue;
1939 		if (int_ctx->rx_mon_ring_mask & (1 << mac_for_pdev)) {
1940 			work_done = dp_monitor_process(soc, int_ctx,
1941 						       mac_for_pdev,
1942 						       remaining_quota);
1943 			if (work_done)
1944 				intr_stats->num_rx_mon_ring_masks++;
1945 			budget -= work_done;
1946 			if (budget <= 0)
1947 				goto budget_done;
1948 			remaining_quota = budget;
1949 		}
1950 
1951 		if (int_ctx->tx_mon_ring_mask & (1 << mac_for_pdev)) {
1952 			work_done = dp_tx_mon_process(soc, int_ctx,
1953 						      mac_for_pdev,
1954 						      remaining_quota);
1955 			if (work_done)
1956 				intr_stats->num_tx_mon_ring_masks++;
1957 			budget -= work_done;
1958 			if (budget <= 0)
1959 				goto budget_done;
1960 			remaining_quota = budget;
1961 		}
1962 
1963 		if (int_ctx->rxdma2host_ring_mask &
1964 				(1 << mac_for_pdev)) {
1965 			work_done = dp_process_rxdma_dst_ring(soc, int_ctx,
1966 							      mac_for_pdev,
1967 							      remaining_quota);
1968 			if (work_done)
1969 				intr_stats->num_rxdma2host_ring_masks++;
1970 			budget -=  work_done;
1971 			if (budget <= 0)
1972 				goto budget_done;
1973 			remaining_quota = budget;
1974 		}
1975 
1976 		if (int_ctx->host2rxdma_ring_mask & (1 << mac_for_pdev)) {
1977 			union dp_rx_desc_list_elem_t *desc_list = NULL;
1978 			union dp_rx_desc_list_elem_t *tail = NULL;
1979 			struct dp_srng *rx_refill_buf_ring;
1980 			struct rx_desc_pool *rx_desc_pool;
1981 
1982 			rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
1983 			if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
1984 				rx_refill_buf_ring =
1985 					&soc->rx_refill_buf_ring[mac_for_pdev];
1986 			else
1987 				rx_refill_buf_ring =
1988 					&soc->rx_refill_buf_ring[pdev->lmac_id];
1989 
1990 			intr_stats->num_host2rxdma_ring_masks++;
1991 
1992 			if (!rx_refill_lt_disable)
1993 				dp_rx_buffers_lt_replenish_simple(soc,
1994 							  mac_for_pdev,
1995 							  rx_refill_buf_ring,
1996 							  rx_desc_pool,
1997 							  0,
1998 							  &desc_list,
1999 							  &tail);
2000 		}
2001 	}
2002 
2003 	if (int_ctx->host2rxdma_mon_ring_mask)
2004 		dp_rx_mon_buf_refill(int_ctx);
2005 
2006 	if (int_ctx->host2txmon_ring_mask)
2007 		dp_tx_mon_buf_refill(int_ctx);
2008 
2009 budget_done:
2010 	return total_budget - budget;
2011 }
2012 
2013 uint32_t dp_service_srngs_wrapper(void *dp_ctx, uint32_t dp_budget, int cpu)
2014 {
2015 	struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
2016 	struct dp_soc *soc = int_ctx->soc;
2017 
2018 	return soc->arch_ops.dp_service_srngs(dp_ctx, dp_budget, cpu);
2019 }
2020 
2021 #ifdef QCA_SUPPORT_LEGACY_INTERRUPTS
2022 /**
2023  * dp_soc_interrupt_map_calculate_wifi3_pci_legacy() -
2024  * Calculate interrupt map for legacy interrupts
2025  * @soc: DP soc handle
2026  * @intr_ctx_num: Interrupt context number
2027  * @irq_id_map: IRQ map
2028  * @num_irq_r: Number of interrupts assigned for this context
2029  *
2030  * Return: void
2031  */
2032 static void dp_soc_interrupt_map_calculate_wifi3_pci_legacy(struct dp_soc *soc,
2033 							    int intr_ctx_num,
2034 							    int *irq_id_map,
2035 							    int *num_irq_r)
2036 {
2037 	int j;
2038 	int num_irq = 0;
2039 	int tx_mask = wlan_cfg_get_tx_ring_mask(
2040 					soc->wlan_cfg_ctx, intr_ctx_num);
2041 	int rx_mask = wlan_cfg_get_rx_ring_mask(
2042 					soc->wlan_cfg_ctx, intr_ctx_num);
2043 	int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
2044 					soc->wlan_cfg_ctx, intr_ctx_num);
2045 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2046 					soc->wlan_cfg_ctx, intr_ctx_num);
2047 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2048 					soc->wlan_cfg_ctx, intr_ctx_num);
2049 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2050 					soc->wlan_cfg_ctx, intr_ctx_num);
2051 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2052 					soc->wlan_cfg_ctx, intr_ctx_num);
2053 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2054 					soc->wlan_cfg_ctx, intr_ctx_num);
2055 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2056 					soc->wlan_cfg_ctx, intr_ctx_num);
2057 	int host2txmon_ring_mask = wlan_cfg_get_host2txmon_ring_mask(
2058 					soc->wlan_cfg_ctx, intr_ctx_num);
2059 	int txmon2host_mon_ring_mask = wlan_cfg_get_tx_mon_ring_mask(
2060 					soc->wlan_cfg_ctx, intr_ctx_num);
2061 	soc->intr_mode = DP_INTR_LEGACY_VIRTUAL_IRQ;
2062 	for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
2063 		if (tx_mask & (1 << j))
2064 			irq_id_map[num_irq++] = (wbm2sw0_release - j);
2065 		if (rx_mask & (1 << j))
2066 			irq_id_map[num_irq++] = (reo2sw1_intr - j);
2067 		if (rx_mon_mask & (1 << j))
2068 			irq_id_map[num_irq++] = (rxmon2sw_p0_dest0 - j);
2069 		if (rx_err_ring_mask & (1 << j))
2070 			irq_id_map[num_irq++] = (reo2sw0_intr - j);
2071 		if (rx_wbm_rel_ring_mask & (1 << j))
2072 			irq_id_map[num_irq++] = (wbm2sw5_release - j);
2073 		if (reo_status_ring_mask & (1 << j))
2074 			irq_id_map[num_irq++] = (reo_status - j);
2075 		if (rxdma2host_ring_mask & (1 << j))
2076 			irq_id_map[num_irq++] = (rxdma2sw_dst_ring0 - j);
2077 		if (host2rxdma_ring_mask & (1 << j))
2078 			irq_id_map[num_irq++] = (sw2rxdma_0 - j);
2079 		if (host2rxdma_mon_ring_mask & (1 << j))
2080 			irq_id_map[num_irq++] = (sw2rxmon_src_ring - j);
2081 		if (host2txmon_ring_mask & (1 << j))
2082 			irq_id_map[num_irq++] = sw2txmon_src_ring;
2083 		if (txmon2host_mon_ring_mask & (1 << j))
2084 			irq_id_map[num_irq++] = (txmon2sw_p0_dest0 - j);
2085 	}
2086 	*num_irq_r = num_irq;
2087 }
2088 #else
2089 static void dp_soc_interrupt_map_calculate_wifi3_pci_legacy(struct dp_soc *soc,
2090 							    int intr_ctx_num,
2091 							    int *irq_id_map,
2092 							    int *num_irq_r)
2093 {
2094 }
2095 #endif
2096 
2097 static void
2098 dp_soc_interrupt_map_calculate_integrated(struct dp_soc *soc, int intr_ctx_num,
2099 					  int *irq_id_map, int *num_irq_r)
2100 {
2101 	int j;
2102 	int num_irq = 0;
2103 
2104 	int tx_mask =
2105 		wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2106 	int rx_mask =
2107 		wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2108 	int rx_mon_mask =
2109 		wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2110 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2111 					soc->wlan_cfg_ctx, intr_ctx_num);
2112 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2113 					soc->wlan_cfg_ctx, intr_ctx_num);
2114 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2115 					soc->wlan_cfg_ctx, intr_ctx_num);
2116 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2117 					soc->wlan_cfg_ctx, intr_ctx_num);
2118 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2119 					soc->wlan_cfg_ctx, intr_ctx_num);
2120 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2121 					soc->wlan_cfg_ctx, intr_ctx_num);
2122 	int host2txmon_ring_mask = wlan_cfg_get_host2txmon_ring_mask(
2123 					soc->wlan_cfg_ctx, intr_ctx_num);
2124 	int txmon2host_mon_ring_mask = wlan_cfg_get_tx_mon_ring_mask(
2125 					soc->wlan_cfg_ctx, intr_ctx_num);
2126 
2127 	soc->intr_mode = DP_INTR_INTEGRATED;
2128 
2129 	for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
2130 		if (tx_mask & (1 << j)) {
2131 			irq_id_map[num_irq++] =
2132 				(wbm2host_tx_completions_ring1 - j);
2133 		}
2134 
2135 		if (rx_mask & (1 << j)) {
2136 			irq_id_map[num_irq++] =
2137 				(reo2host_destination_ring1 - j);
2138 		}
2139 
2140 		if (rxdma2host_ring_mask & (1 << j)) {
2141 			irq_id_map[num_irq++] =
2142 				rxdma2host_destination_ring_mac1 - j;
2143 		}
2144 
2145 		if (host2rxdma_ring_mask & (1 << j)) {
2146 			irq_id_map[num_irq++] =
2147 				host2rxdma_host_buf_ring_mac1 -	j;
2148 		}
2149 
2150 		if (host2rxdma_mon_ring_mask & (1 << j)) {
2151 			irq_id_map[num_irq++] =
2152 				host2rxdma_monitor_ring1 - j;
2153 		}
2154 
2155 		if (rx_mon_mask & (1 << j)) {
2156 			irq_id_map[num_irq++] =
2157 				ppdu_end_interrupts_mac1 - j;
2158 			irq_id_map[num_irq++] =
2159 				rxdma2host_monitor_status_ring_mac1 - j;
2160 			irq_id_map[num_irq++] =
2161 				rxdma2host_monitor_destination_mac1 - j;
2162 		}
2163 
2164 		if (rx_wbm_rel_ring_mask & (1 << j))
2165 			irq_id_map[num_irq++] = wbm2host_rx_release;
2166 
2167 		if (rx_err_ring_mask & (1 << j))
2168 			irq_id_map[num_irq++] = reo2host_exception;
2169 
2170 		if (reo_status_ring_mask & (1 << j))
2171 			irq_id_map[num_irq++] = reo2host_status;
2172 
2173 		if (host2txmon_ring_mask & (1 << j))
2174 			irq_id_map[num_irq++] = host2tx_monitor_ring1;
2175 
2176 		if (txmon2host_mon_ring_mask & (1 << j)) {
2177 			irq_id_map[num_irq++] =
2178 				(txmon2host_monitor_destination_mac1 - j);
2179 		}
2180 	}
2181 	*num_irq_r = num_irq;
2182 }
2183 
2184 static void
2185 dp_soc_interrupt_map_calculate_msi(struct dp_soc *soc, int intr_ctx_num,
2186 				   int *irq_id_map, int *num_irq_r,
2187 				   int msi_vector_count, int msi_vector_start)
2188 {
2189 	int tx_mask = wlan_cfg_get_tx_ring_mask(
2190 					soc->wlan_cfg_ctx, intr_ctx_num);
2191 	int rx_mask = wlan_cfg_get_rx_ring_mask(
2192 					soc->wlan_cfg_ctx, intr_ctx_num);
2193 	int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
2194 					soc->wlan_cfg_ctx, intr_ctx_num);
2195 	int tx_mon_mask = wlan_cfg_get_tx_mon_ring_mask(
2196 					soc->wlan_cfg_ctx, intr_ctx_num);
2197 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2198 					soc->wlan_cfg_ctx, intr_ctx_num);
2199 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2200 					soc->wlan_cfg_ctx, intr_ctx_num);
2201 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2202 					soc->wlan_cfg_ctx, intr_ctx_num);
2203 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2204 					soc->wlan_cfg_ctx, intr_ctx_num);
2205 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2206 					soc->wlan_cfg_ctx, intr_ctx_num);
2207 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2208 					soc->wlan_cfg_ctx, intr_ctx_num);
2209 	int rx_near_full_grp_1_mask =
2210 		wlan_cfg_get_rx_near_full_grp_1_mask(soc->wlan_cfg_ctx,
2211 						     intr_ctx_num);
2212 	int rx_near_full_grp_2_mask =
2213 		wlan_cfg_get_rx_near_full_grp_2_mask(soc->wlan_cfg_ctx,
2214 						     intr_ctx_num);
2215 	int tx_ring_near_full_mask =
2216 		wlan_cfg_get_tx_ring_near_full_mask(soc->wlan_cfg_ctx,
2217 						    intr_ctx_num);
2218 
2219 	int host2txmon_ring_mask =
2220 		wlan_cfg_get_host2txmon_ring_mask(soc->wlan_cfg_ctx,
2221 						  intr_ctx_num);
2222 	unsigned int vector =
2223 		(intr_ctx_num % msi_vector_count) + msi_vector_start;
2224 	int num_irq = 0;
2225 
2226 	soc->intr_mode = DP_INTR_MSI;
2227 
2228 	if (tx_mask | rx_mask | rx_mon_mask | tx_mon_mask | rx_err_ring_mask |
2229 	    rx_wbm_rel_ring_mask | reo_status_ring_mask | rxdma2host_ring_mask |
2230 	    host2rxdma_ring_mask | host2rxdma_mon_ring_mask |
2231 	    rx_near_full_grp_1_mask | rx_near_full_grp_2_mask |
2232 	    tx_ring_near_full_mask | host2txmon_ring_mask)
2233 		irq_id_map[num_irq++] =
2234 			pld_get_msi_irq(soc->osdev->dev, vector);
2235 
2236 	*num_irq_r = num_irq;
2237 }
2238 
2239 void dp_soc_interrupt_map_calculate(struct dp_soc *soc, int intr_ctx_num,
2240 				    int *irq_id_map, int *num_irq)
2241 {
2242 	int msi_vector_count, ret;
2243 	uint32_t msi_base_data, msi_vector_start;
2244 
2245 	if (pld_get_enable_intx(soc->osdev->dev)) {
2246 		return dp_soc_interrupt_map_calculate_wifi3_pci_legacy(soc,
2247 				intr_ctx_num, irq_id_map, num_irq);
2248 	}
2249 
2250 	ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
2251 					  &msi_vector_count,
2252 					  &msi_base_data,
2253 					  &msi_vector_start);
2254 	if (ret)
2255 		return dp_soc_interrupt_map_calculate_integrated(soc,
2256 				intr_ctx_num, irq_id_map, num_irq);
2257 
2258 	else
2259 		dp_soc_interrupt_map_calculate_msi(soc,
2260 				intr_ctx_num, irq_id_map, num_irq,
2261 				msi_vector_count, msi_vector_start);
2262 }
2263 
2264 void dp_srng_free(struct dp_soc *soc, struct dp_srng *srng)
2265 {
2266 	if (srng->alloc_size && srng->base_vaddr_unaligned) {
2267 		if (!srng->cached) {
2268 			dp_srng_mem_free_consistent(soc, srng);
2269 		} else {
2270 			qdf_mem_free(srng->base_vaddr_unaligned);
2271 		}
2272 		srng->alloc_size = 0;
2273 		srng->base_vaddr_unaligned = NULL;
2274 	}
2275 	srng->hal_srng = NULL;
2276 }
2277 
2278 qdf_export_symbol(dp_srng_free);
2279 
2280 QDF_STATUS dp_srng_init(struct dp_soc *soc, struct dp_srng *srng, int ring_type,
2281 			int ring_num, int mac_id)
2282 {
2283 	return soc->arch_ops.txrx_srng_init(soc, srng, ring_type,
2284 					    ring_num, mac_id);
2285 }
2286 
2287 qdf_export_symbol(dp_srng_init);
2288 
2289 QDF_STATUS dp_srng_alloc(struct dp_soc *soc, struct dp_srng *srng,
2290 			 int ring_type, uint32_t num_entries,
2291 			 bool cached)
2292 {
2293 	hal_soc_handle_t hal_soc = soc->hal_soc;
2294 	uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
2295 	uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type);
2296 
2297 	if (srng->base_vaddr_unaligned) {
2298 		dp_init_err("%pK: Ring type: %d, is already allocated",
2299 			    soc, ring_type);
2300 		return QDF_STATUS_SUCCESS;
2301 	}
2302 
2303 	num_entries = (num_entries > max_entries) ? max_entries : num_entries;
2304 	srng->hal_srng = NULL;
2305 	srng->alloc_size = num_entries * entry_size;
2306 	srng->num_entries = num_entries;
2307 	srng->cached = cached;
2308 
2309 	if (!cached) {
2310 		srng->base_vaddr_aligned =
2311 		    dp_srng_aligned_mem_alloc_consistent(soc,
2312 							 srng,
2313 							 ring_type);
2314 	} else {
2315 		srng->base_vaddr_aligned = qdf_aligned_malloc(
2316 					&srng->alloc_size,
2317 					&srng->base_vaddr_unaligned,
2318 					&srng->base_paddr_unaligned,
2319 					&srng->base_paddr_aligned,
2320 					DP_RING_BASE_ALIGN);
2321 	}
2322 
2323 	if (!srng->base_vaddr_aligned)
2324 		return QDF_STATUS_E_NOMEM;
2325 
2326 	return QDF_STATUS_SUCCESS;
2327 }
2328 
2329 qdf_export_symbol(dp_srng_alloc);
2330 
2331 void dp_srng_deinit(struct dp_soc *soc, struct dp_srng *srng,
2332 		    int ring_type, int ring_num)
2333 {
2334 	if (!srng->hal_srng) {
2335 		dp_init_err("%pK: Ring type: %d, num:%d not setup",
2336 			    soc, ring_type, ring_num);
2337 		return;
2338 	}
2339 
2340 	if (dp_check_umac_reset_in_progress(soc))
2341 		goto srng_cleanup;
2342 
2343 	if (soc->arch_ops.dp_free_ppeds_interrupts)
2344 		soc->arch_ops.dp_free_ppeds_interrupts(soc, srng, ring_type,
2345 						       ring_num);
2346 
2347 srng_cleanup:
2348 	hal_srng_cleanup(soc->hal_soc, srng->hal_srng,
2349 			 dp_check_umac_reset_in_progress(soc));
2350 	srng->hal_srng = NULL;
2351 }
2352 
2353 qdf_export_symbol(dp_srng_deinit);
2354 
2355 /* TODO: Need this interface from HIF */
2356 void *hif_get_hal_handle(struct hif_opaque_softc *hif_handle);
2357 
2358 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
2359 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2360 			 hal_ring_handle_t hal_ring_hdl)
2361 {
2362 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2363 	uint32_t hp, tp;
2364 	uint8_t ring_id;
2365 
2366 	if (!int_ctx)
2367 		return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2368 
2369 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
2370 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
2371 
2372 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
2373 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_START);
2374 
2375 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2376 }
2377 
2378 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2379 			hal_ring_handle_t hal_ring_hdl)
2380 {
2381 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2382 	uint32_t hp, tp;
2383 	uint8_t ring_id;
2384 
2385 	if (!int_ctx)
2386 		return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2387 
2388 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
2389 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
2390 
2391 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
2392 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_END);
2393 
2394 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2395 }
2396 
2397 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
2398 					      uint8_t hist_group_id)
2399 {
2400 	hif_record_event(dp_soc->hif_handle, hist_group_id,
2401 			 0, 0, 0, HIF_EVENT_TIMER_ENTRY);
2402 }
2403 
2404 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
2405 					     uint8_t hist_group_id)
2406 {
2407 	hif_record_event(dp_soc->hif_handle, hist_group_id,
2408 			 0, 0, 0, HIF_EVENT_TIMER_EXIT);
2409 }
2410 #else
2411 
2412 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
2413 					      uint8_t hist_group_id)
2414 {
2415 }
2416 
2417 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
2418 					     uint8_t hist_group_id)
2419 {
2420 }
2421 
2422 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
2423 
2424 enum timer_yield_status
2425 dp_should_timer_irq_yield(struct dp_soc *soc, uint32_t work_done,
2426 			  uint64_t start_time)
2427 {
2428 	uint64_t cur_time = qdf_get_log_timestamp();
2429 
2430 	if (!work_done)
2431 		return DP_TIMER_WORK_DONE;
2432 
2433 	if (cur_time - start_time > DP_MAX_TIMER_EXEC_TIME_TICKS)
2434 		return DP_TIMER_TIME_EXHAUST;
2435 
2436 	return DP_TIMER_NO_YIELD;
2437 }
2438 
2439 qdf_export_symbol(dp_should_timer_irq_yield);
2440 
2441 void dp_interrupt_timer(void *arg)
2442 {
2443 	struct dp_soc *soc = (struct dp_soc *) arg;
2444 	struct dp_pdev *pdev = soc->pdev_list[0];
2445 	enum timer_yield_status yield = DP_TIMER_NO_YIELD;
2446 	uint32_t work_done  = 0, total_work_done = 0;
2447 	int budget = 0xffff, i;
2448 	uint32_t remaining_quota = budget;
2449 	uint64_t start_time;
2450 	uint32_t lmac_id = DP_MON_INVALID_LMAC_ID;
2451 	uint8_t dp_intr_id = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
2452 	uint32_t lmac_iter;
2453 	int max_mac_rings = wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx);
2454 	enum reg_wifi_band mon_band;
2455 	int cpu = dp_srng_get_cpu();
2456 
2457 	/*
2458 	 * this logic makes all data path interfacing rings (UMAC/LMAC)
2459 	 * and Monitor rings polling mode when NSS offload is disabled
2460 	 */
2461 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx) &&
2462 	    !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
2463 		if (qdf_atomic_read(&soc->cmn_init_done)) {
2464 			for (i = 0; i < wlan_cfg_get_num_contexts(
2465 						soc->wlan_cfg_ctx); i++)
2466 				soc->arch_ops.dp_service_srngs(&soc->intr_ctx[i], 0xffff,
2467 							       cpu);
2468 
2469 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
2470 		}
2471 		return;
2472 	}
2473 
2474 	if (!qdf_atomic_read(&soc->cmn_init_done))
2475 		return;
2476 
2477 	if (dp_monitor_is_chan_band_known(pdev)) {
2478 		mon_band = dp_monitor_get_chan_band(pdev);
2479 		lmac_id = pdev->ch_band_lmac_id_mapping[mon_band];
2480 		if (qdf_likely(lmac_id != DP_MON_INVALID_LMAC_ID)) {
2481 			dp_intr_id = soc->mon_intr_id_lmac_map[lmac_id];
2482 			dp_srng_record_timer_entry(soc, dp_intr_id);
2483 		}
2484 	}
2485 
2486 	start_time = qdf_get_log_timestamp();
2487 	dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
2488 
2489 	while (yield == DP_TIMER_NO_YIELD) {
2490 		for (lmac_iter = 0; lmac_iter < max_mac_rings; lmac_iter++) {
2491 			if (lmac_iter == lmac_id)
2492 				work_done = dp_monitor_process(soc,
2493 						&soc->intr_ctx[dp_intr_id],
2494 						lmac_iter, remaining_quota);
2495 			else
2496 				work_done =
2497 					dp_monitor_drop_packets_for_mac(pdev,
2498 							     lmac_iter,
2499 							     remaining_quota);
2500 			if (work_done) {
2501 				budget -=  work_done;
2502 				if (budget <= 0) {
2503 					yield = DP_TIMER_WORK_EXHAUST;
2504 					goto budget_done;
2505 				}
2506 				remaining_quota = budget;
2507 				total_work_done += work_done;
2508 			}
2509 		}
2510 
2511 		yield = dp_should_timer_irq_yield(soc, total_work_done,
2512 						  start_time);
2513 		total_work_done = 0;
2514 	}
2515 
2516 budget_done:
2517 	if (yield == DP_TIMER_WORK_EXHAUST ||
2518 	    yield == DP_TIMER_TIME_EXHAUST)
2519 		qdf_timer_mod(&soc->int_timer, 1);
2520 	else
2521 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
2522 
2523 	if (lmac_id != DP_MON_INVALID_LMAC_ID)
2524 		dp_srng_record_timer_exit(soc, dp_intr_id);
2525 }
2526 
2527 /**
2528  * dp_soc_interrupt_detach_wrapper() - wrapper function for interrupt detach
2529  * @txrx_soc: DP SOC handle
2530  *
2531  * Return: None
2532  */
2533 static void dp_soc_interrupt_detach_wrapper(struct cdp_soc_t *txrx_soc)
2534 {
2535 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2536 
2537 	return soc->arch_ops.dp_soc_interrupt_detach(txrx_soc);
2538 }
2539 
2540 #if defined(DP_INTR_POLL_BOTH)
2541 /**
2542  * dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts
2543  * @txrx_soc: DP SOC handle
2544  *
2545  * Call the appropriate attach function based on the mode of operation.
2546  * This is a WAR for enabling monitor mode.
2547  *
2548  * Return: 0 for success. nonzero for failure.
2549  */
2550 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2551 {
2552 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2553 
2554 	if (!(soc->wlan_cfg_ctx->napi_enabled) ||
2555 	    (dp_is_monitor_mode_using_poll(soc) &&
2556 	     soc->cdp_soc.ol_ops->get_con_mode &&
2557 	     soc->cdp_soc.ol_ops->get_con_mode() ==
2558 	     QDF_GLOBAL_MONITOR_MODE)) {
2559 		dp_info("Poll mode");
2560 		return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2561 	} else {
2562 		dp_info("Interrupt  mode");
2563 		return soc->arch_ops.dp_soc_interrupt_attach(txrx_soc);
2564 	}
2565 }
2566 #else
2567 #if defined(DP_INTR_POLL_BASED) && DP_INTR_POLL_BASED
2568 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2569 {
2570 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2571 
2572 	return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2573 }
2574 #else
2575 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2576 {
2577 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2578 
2579 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx))
2580 		return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2581 	else
2582 		return soc->arch_ops.dp_soc_interrupt_attach(txrx_soc);
2583 }
2584 #endif
2585 #endif
2586 
2587 void dp_link_desc_ring_replenish(struct dp_soc *soc, uint32_t mac_id)
2588 {
2589 	uint32_t cookie = 0;
2590 	uint32_t page_idx = 0;
2591 	struct qdf_mem_multi_page_t *pages;
2592 	struct qdf_mem_dma_page_t *dma_pages;
2593 	uint32_t offset = 0;
2594 	uint32_t count = 0;
2595 	uint32_t desc_id = 0;
2596 	void *desc_srng;
2597 	int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
2598 	uint32_t *total_link_descs_addr;
2599 	uint32_t total_link_descs;
2600 	uint32_t scatter_buf_num;
2601 	uint32_t num_entries_per_buf = 0;
2602 	uint32_t rem_entries;
2603 	uint32_t num_descs_per_page;
2604 	uint32_t num_scatter_bufs = 0;
2605 	uint8_t *scatter_buf_ptr;
2606 	void *desc;
2607 
2608 	num_scatter_bufs = soc->num_scatter_bufs;
2609 
2610 	if (mac_id == WLAN_INVALID_PDEV_ID) {
2611 		pages = &soc->link_desc_pages;
2612 		total_link_descs = soc->total_link_descs;
2613 		desc_srng = soc->wbm_idle_link_ring.hal_srng;
2614 	} else {
2615 		pages = dp_monitor_get_link_desc_pages(soc, mac_id);
2616 		/* dp_monitor_get_link_desc_pages returns NULL only
2617 		 * if monitor SOC is  NULL
2618 		 */
2619 		if (!pages) {
2620 			dp_err("can not get link desc pages");
2621 			QDF_ASSERT(0);
2622 			return;
2623 		}
2624 		total_link_descs_addr =
2625 				dp_monitor_get_total_link_descs(soc, mac_id);
2626 		total_link_descs = *total_link_descs_addr;
2627 		desc_srng = dp_monitor_get_link_desc_ring(soc, mac_id);
2628 	}
2629 
2630 	dma_pages = pages->dma_pages;
2631 	do {
2632 		qdf_mem_zero(dma_pages[page_idx].page_v_addr_start,
2633 			     pages->page_size);
2634 		page_idx++;
2635 	} while (page_idx < pages->num_pages);
2636 
2637 	if (desc_srng) {
2638 		hal_srng_access_start_unlocked(soc->hal_soc, desc_srng);
2639 		page_idx = 0;
2640 		count = 0;
2641 		offset = 0;
2642 
2643 		qdf_assert(pages->num_element_per_page != 0);
2644 		while ((desc = hal_srng_src_get_next(soc->hal_soc,
2645 						     desc_srng)) &&
2646 			(count < total_link_descs)) {
2647 			page_idx = count / pages->num_element_per_page;
2648 			if (desc_id == pages->num_element_per_page)
2649 				desc_id = 0;
2650 
2651 			offset = count % pages->num_element_per_page;
2652 			cookie = LINK_DESC_COOKIE(desc_id, page_idx,
2653 						  soc->link_desc_id_start);
2654 
2655 			hal_set_link_desc_addr(soc->hal_soc, desc, cookie,
2656 					       dma_pages[page_idx].page_p_addr
2657 					       + (offset * link_desc_size),
2658 					       soc->idle_link_bm_id);
2659 			count++;
2660 			desc_id++;
2661 		}
2662 		hal_srng_access_end_unlocked(soc->hal_soc, desc_srng);
2663 	} else {
2664 		/* Populate idle list scatter buffers with link descriptor
2665 		 * pointers
2666 		 */
2667 		scatter_buf_num = 0;
2668 		num_entries_per_buf = hal_idle_scatter_buf_num_entries(
2669 					soc->hal_soc,
2670 					soc->wbm_idle_scatter_buf_size);
2671 
2672 		scatter_buf_ptr = (uint8_t *)(
2673 			soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]);
2674 		rem_entries = num_entries_per_buf;
2675 		page_idx = 0; count = 0;
2676 		offset = 0;
2677 		num_descs_per_page = pages->num_element_per_page;
2678 
2679 		qdf_assert(num_descs_per_page != 0);
2680 		while (count < total_link_descs) {
2681 			page_idx = count / num_descs_per_page;
2682 			offset = count % num_descs_per_page;
2683 			if (desc_id == pages->num_element_per_page)
2684 				desc_id = 0;
2685 
2686 			cookie = LINK_DESC_COOKIE(desc_id, page_idx,
2687 						  soc->link_desc_id_start);
2688 			hal_set_link_desc_addr(soc->hal_soc,
2689 					       (void *)scatter_buf_ptr,
2690 					       cookie,
2691 					       dma_pages[page_idx].page_p_addr +
2692 					       (offset * link_desc_size),
2693 					       soc->idle_link_bm_id);
2694 			rem_entries--;
2695 			if (rem_entries) {
2696 				scatter_buf_ptr += link_desc_size;
2697 			} else {
2698 				rem_entries = num_entries_per_buf;
2699 				scatter_buf_num++;
2700 				if (scatter_buf_num >= num_scatter_bufs)
2701 					break;
2702 				scatter_buf_ptr = (uint8_t *)
2703 					(soc->wbm_idle_scatter_buf_base_vaddr[
2704 					 scatter_buf_num]);
2705 			}
2706 			count++;
2707 			desc_id++;
2708 		}
2709 		/* Setup link descriptor idle list in HW */
2710 		hal_setup_link_idle_list(soc->hal_soc,
2711 			soc->wbm_idle_scatter_buf_base_paddr,
2712 			soc->wbm_idle_scatter_buf_base_vaddr,
2713 			num_scatter_bufs, soc->wbm_idle_scatter_buf_size,
2714 			(uint32_t)(scatter_buf_ptr -
2715 			(uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[
2716 			scatter_buf_num-1])), total_link_descs);
2717 	}
2718 }
2719 
2720 qdf_export_symbol(dp_link_desc_ring_replenish);
2721 
2722 /**
2723  * dp_soc_ppeds_stop() - Stop PPE DS processing
2724  * @soc_handle: DP SOC handle
2725  *
2726  * Return: none
2727  */
2728 static void dp_soc_ppeds_stop(struct cdp_soc_t *soc_handle)
2729 {
2730 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
2731 
2732 	if (soc->arch_ops.txrx_soc_ppeds_stop)
2733 		soc->arch_ops.txrx_soc_ppeds_stop(soc);
2734 }
2735 
2736 #ifdef ENABLE_VERBOSE_DEBUG
2737 void dp_enable_verbose_debug(struct dp_soc *soc)
2738 {
2739 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
2740 
2741 	soc_cfg_ctx = soc->wlan_cfg_ctx;
2742 
2743 	if (soc_cfg_ctx->per_pkt_trace & dp_verbose_debug_mask)
2744 		is_dp_verbose_debug_enabled = true;
2745 
2746 	if (soc_cfg_ctx->per_pkt_trace & hal_verbose_debug_mask)
2747 		hal_set_verbose_debug(true);
2748 	else
2749 		hal_set_verbose_debug(false);
2750 }
2751 #else
2752 void dp_enable_verbose_debug(struct dp_soc *soc)
2753 {
2754 }
2755 #endif
2756 
2757 static QDF_STATUS dp_lro_hash_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2758 {
2759 	struct cdp_lro_hash_config lro_hash;
2760 	QDF_STATUS status;
2761 
2762 	if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
2763 	    !wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx) &&
2764 	    !wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
2765 		dp_err("LRO, GRO and RX hash disabled");
2766 		return QDF_STATUS_E_FAILURE;
2767 	}
2768 
2769 	qdf_mem_zero(&lro_hash, sizeof(lro_hash));
2770 
2771 	if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) ||
2772 	    wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) {
2773 		lro_hash.lro_enable = 1;
2774 		lro_hash.tcp_flag = QDF_TCPHDR_ACK;
2775 		lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN |
2776 			 QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG |
2777 			 QDF_TCPHDR_ECE | QDF_TCPHDR_CWR;
2778 	}
2779 
2780 	soc->arch_ops.get_rx_hash_key(soc, &lro_hash);
2781 
2782 	qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config);
2783 
2784 	if (!soc->cdp_soc.ol_ops->lro_hash_config) {
2785 		QDF_BUG(0);
2786 		dp_err("lro_hash_config not configured");
2787 		return QDF_STATUS_E_FAILURE;
2788 	}
2789 
2790 	status = soc->cdp_soc.ol_ops->lro_hash_config(soc->ctrl_psoc,
2791 						      pdev->pdev_id,
2792 						      &lro_hash);
2793 	if (!QDF_IS_STATUS_SUCCESS(status)) {
2794 		dp_err("failed to send lro_hash_config to FW %u", status);
2795 		return status;
2796 	}
2797 
2798 	dp_info("LRO CMD config: lro_enable: 0x%x tcp_flag 0x%x tcp_flag_mask 0x%x",
2799 		lro_hash.lro_enable, lro_hash.tcp_flag,
2800 		lro_hash.tcp_flag_mask);
2801 
2802 	dp_info("toeplitz_hash_ipv4:");
2803 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2804 			   lro_hash.toeplitz_hash_ipv4,
2805 			   (sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
2806 			   LRO_IPV4_SEED_ARR_SZ));
2807 
2808 	dp_info("toeplitz_hash_ipv6:");
2809 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2810 			   lro_hash.toeplitz_hash_ipv6,
2811 			   (sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
2812 			   LRO_IPV6_SEED_ARR_SZ));
2813 
2814 	return status;
2815 }
2816 
2817 #if defined(WLAN_MAX_PDEVS) && (WLAN_MAX_PDEVS == 1)
2818 /**
2819  * dp_reap_timer_init() - initialize the reap timer
2820  * @soc: data path SoC handle
2821  *
2822  * Return: void
2823  */
2824 static void dp_reap_timer_init(struct dp_soc *soc)
2825 {
2826 	/*
2827 	 * Timer to reap rxdma status rings.
2828 	 * Needed until we enable ppdu end interrupts
2829 	 */
2830 	dp_monitor_reap_timer_init(soc);
2831 	dp_monitor_vdev_timer_init(soc);
2832 }
2833 
2834 /**
2835  * dp_reap_timer_deinit() - de-initialize the reap timer
2836  * @soc: data path SoC handle
2837  *
2838  * Return: void
2839  */
2840 static void dp_reap_timer_deinit(struct dp_soc *soc)
2841 {
2842 	dp_monitor_reap_timer_deinit(soc);
2843 }
2844 #else
2845 /* WIN use case */
2846 static void dp_reap_timer_init(struct dp_soc *soc)
2847 {
2848 	/* Configure LMAC rings in Polled mode */
2849 	if (soc->lmac_polled_mode) {
2850 		/*
2851 		 * Timer to reap lmac rings.
2852 		 */
2853 		qdf_timer_init(soc->osdev, &soc->lmac_reap_timer,
2854 			       dp_service_lmac_rings, (void *)soc,
2855 			       QDF_TIMER_TYPE_WAKE_APPS);
2856 		soc->lmac_timer_init = 1;
2857 		qdf_timer_mod(&soc->lmac_reap_timer, DP_INTR_POLL_TIMER_MS);
2858 	}
2859 }
2860 
2861 static void dp_reap_timer_deinit(struct dp_soc *soc)
2862 {
2863 	if (soc->lmac_timer_init) {
2864 		qdf_timer_stop(&soc->lmac_reap_timer);
2865 		qdf_timer_free(&soc->lmac_reap_timer);
2866 		soc->lmac_timer_init = 0;
2867 	}
2868 }
2869 #endif
2870 
2871 #ifdef QCA_HOST2FW_RXBUF_RING
2872 /**
2873  * dp_rxdma_ring_alloc() - allocate the RXDMA rings
2874  * @soc: data path SoC handle
2875  * @pdev: Physical device handle
2876  *
2877  * Return: 0 - success, > 0 - failure
2878  */
2879 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
2880 {
2881 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
2882 	int max_mac_rings;
2883 	int i;
2884 	int ring_size;
2885 
2886 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
2887 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
2888 	ring_size =  wlan_cfg_get_rx_dma_buf_ring_size(pdev_cfg_ctx);
2889 
2890 	for (i = 0; i < max_mac_rings; i++) {
2891 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
2892 		if (dp_srng_alloc(soc, &pdev->rx_mac_buf_ring[i],
2893 				  RXDMA_BUF, ring_size, 0)) {
2894 			dp_init_err("%pK: failed rx mac ring setup", soc);
2895 			return QDF_STATUS_E_FAILURE;
2896 		}
2897 	}
2898 	return QDF_STATUS_SUCCESS;
2899 }
2900 
2901 /**
2902  * dp_rxdma_ring_setup() - configure the RXDMA rings
2903  * @soc: data path SoC handle
2904  * @pdev: Physical device handle
2905  *
2906  * Return: 0 - success, > 0 - failure
2907  */
2908 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2909 {
2910 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
2911 	int max_mac_rings;
2912 	int i;
2913 
2914 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
2915 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
2916 
2917 	for (i = 0; i < max_mac_rings; i++) {
2918 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
2919 		if (dp_srng_init(soc, &pdev->rx_mac_buf_ring[i],
2920 				 RXDMA_BUF, 1, i)) {
2921 			dp_init_err("%pK: failed rx mac ring setup", soc);
2922 			return QDF_STATUS_E_FAILURE;
2923 		}
2924 		dp_ssr_dump_srng_register("rx_mac_buf_ring",
2925 					  &pdev->rx_mac_buf_ring[i], i);
2926 	}
2927 	return QDF_STATUS_SUCCESS;
2928 }
2929 
2930 /**
2931  * dp_rxdma_ring_cleanup() - Deinit the RXDMA rings and reap timer
2932  * @soc: data path SoC handle
2933  * @pdev: Physical device handle
2934  *
2935  * Return: void
2936  */
2937 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
2938 {
2939 	int i;
2940 
2941 	for (i = 0; i < MAX_RX_MAC_RINGS; i++) {
2942 		dp_ssr_dump_srng_unregister("rx_mac_buf_ring", i);
2943 		dp_srng_deinit(soc, &pdev->rx_mac_buf_ring[i], RXDMA_BUF, 1);
2944 	}
2945 
2946 	dp_reap_timer_deinit(soc);
2947 }
2948 
2949 /**
2950  * dp_rxdma_ring_free() - Free the RXDMA rings
2951  * @pdev: Physical device handle
2952  *
2953  * Return: void
2954  */
2955 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
2956 {
2957 	int i;
2958 
2959 	for (i = 0; i < MAX_RX_MAC_RINGS; i++)
2960 		dp_srng_free(pdev->soc, &pdev->rx_mac_buf_ring[i]);
2961 }
2962 
2963 #else
2964 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
2965 {
2966 	return QDF_STATUS_SUCCESS;
2967 }
2968 
2969 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2970 {
2971 	return QDF_STATUS_SUCCESS;
2972 }
2973 
2974 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
2975 {
2976 	dp_reap_timer_deinit(soc);
2977 }
2978 
2979 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
2980 {
2981 }
2982 #endif
2983 
2984 #ifdef IPA_OFFLOAD
2985 /**
2986  * dp_setup_ipa_rx_refill_buf_ring - Setup second Rx refill buffer ring
2987  * @soc: data path instance
2988  * @pdev: core txrx pdev context
2989  *
2990  * Return: QDF_STATUS_SUCCESS: success
2991  *         QDF_STATUS_E_RESOURCES: Error return
2992  */
2993 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2994 					   struct dp_pdev *pdev)
2995 {
2996 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
2997 	int entries;
2998 
2999 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
3000 		soc_cfg_ctx = soc->wlan_cfg_ctx;
3001 		entries =
3002 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
3003 
3004 		/* Setup second Rx refill buffer ring */
3005 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
3006 				  entries, 0)) {
3007 			dp_init_err("%pK: dp_srng_alloc failed second"
3008 				    "rx refill ring", soc);
3009 			return QDF_STATUS_E_FAILURE;
3010 		}
3011 	}
3012 
3013 	return QDF_STATUS_SUCCESS;
3014 }
3015 
3016 #ifdef IPA_WDI3_VLAN_SUPPORT
3017 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3018 					       struct dp_pdev *pdev)
3019 {
3020 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
3021 	int entries;
3022 
3023 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3024 	    wlan_ipa_is_vlan_enabled()) {
3025 		soc_cfg_ctx = soc->wlan_cfg_ctx;
3026 		entries =
3027 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
3028 
3029 		/* Setup second Rx refill buffer ring */
3030 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
3031 				  entries, 0)) {
3032 			dp_init_err("%pK: alloc failed for 3rd rx refill ring",
3033 				    soc);
3034 			return QDF_STATUS_E_FAILURE;
3035 		}
3036 	}
3037 
3038 	return QDF_STATUS_SUCCESS;
3039 }
3040 
3041 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3042 					      struct dp_pdev *pdev)
3043 {
3044 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3045 	    wlan_ipa_is_vlan_enabled()) {
3046 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
3047 				 IPA_RX_ALT_REFILL_BUF_RING_IDX,
3048 				 pdev->pdev_id)) {
3049 			dp_init_err("%pK: init failed for 3rd rx refill ring",
3050 				    soc);
3051 			return QDF_STATUS_E_FAILURE;
3052 		}
3053 	}
3054 
3055 	return QDF_STATUS_SUCCESS;
3056 }
3057 
3058 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3059 						 struct dp_pdev *pdev)
3060 {
3061 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3062 	    wlan_ipa_is_vlan_enabled())
3063 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF, 0);
3064 }
3065 
3066 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3067 					       struct dp_pdev *pdev)
3068 {
3069 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3070 	    wlan_ipa_is_vlan_enabled())
3071 		dp_srng_free(soc, &pdev->rx_refill_buf_ring3);
3072 }
3073 #else
3074 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3075 					       struct dp_pdev *pdev)
3076 {
3077 	return QDF_STATUS_SUCCESS;
3078 }
3079 
3080 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3081 					      struct dp_pdev *pdev)
3082 {
3083 	return QDF_STATUS_SUCCESS;
3084 }
3085 
3086 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3087 						 struct dp_pdev *pdev)
3088 {
3089 }
3090 
3091 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3092 					       struct dp_pdev *pdev)
3093 {
3094 }
3095 #endif
3096 
3097 /**
3098  * dp_deinit_ipa_rx_refill_buf_ring - deinit second Rx refill buffer ring
3099  * @soc: data path instance
3100  * @pdev: core txrx pdev context
3101  *
3102  * Return: void
3103  */
3104 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3105 					     struct dp_pdev *pdev)
3106 {
3107 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
3108 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF, 0);
3109 }
3110 
3111 /**
3112  * dp_init_ipa_rx_refill_buf_ring - Init second Rx refill buffer ring
3113  * @soc: data path instance
3114  * @pdev: core txrx pdev context
3115  *
3116  * Return: QDF_STATUS_SUCCESS: success
3117  *         QDF_STATUS_E_RESOURCES: Error return
3118  */
3119 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3120 					  struct dp_pdev *pdev)
3121 {
3122 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
3123 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
3124 				 IPA_RX_REFILL_BUF_RING_IDX, pdev->pdev_id)) {
3125 			dp_init_err("%pK: dp_srng_init failed second"
3126 				    "rx refill ring", soc);
3127 			return QDF_STATUS_E_FAILURE;
3128 		}
3129 	}
3130 
3131 	if (dp_init_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
3132 		dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
3133 		return QDF_STATUS_E_FAILURE;
3134 	}
3135 
3136 	return QDF_STATUS_SUCCESS;
3137 }
3138 
3139 /**
3140  * dp_free_ipa_rx_refill_buf_ring - free second Rx refill buffer ring
3141  * @soc: data path instance
3142  * @pdev: core txrx pdev context
3143  *
3144  * Return: void
3145  */
3146 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3147 					   struct dp_pdev *pdev)
3148 {
3149 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
3150 		dp_srng_free(soc, &pdev->rx_refill_buf_ring2);
3151 }
3152 #else
3153 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3154 					   struct dp_pdev *pdev)
3155 {
3156 	return QDF_STATUS_SUCCESS;
3157 }
3158 
3159 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3160 					  struct dp_pdev *pdev)
3161 {
3162 	return QDF_STATUS_SUCCESS;
3163 }
3164 
3165 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3166 					     struct dp_pdev *pdev)
3167 {
3168 }
3169 
3170 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3171 					   struct dp_pdev *pdev)
3172 {
3173 }
3174 
3175 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3176 					       struct dp_pdev *pdev)
3177 {
3178 	return QDF_STATUS_SUCCESS;
3179 }
3180 
3181 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3182 						 struct dp_pdev *pdev)
3183 {
3184 }
3185 
3186 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3187 					       struct dp_pdev *pdev)
3188 {
3189 }
3190 #endif
3191 
3192 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
3193 
3194 /**
3195  * dp_soc_cfg_history_attach() - Allocate and attach datapath config events
3196  *				 history
3197  * @soc: DP soc handle
3198  *
3199  * Return: None
3200  */
3201 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
3202 {
3203 	dp_soc_frag_history_attach(soc, &soc->cfg_event_history,
3204 				   DP_CFG_EVT_HIST_MAX_SLOTS,
3205 				   DP_CFG_EVT_HIST_PER_SLOT_MAX,
3206 				   sizeof(struct dp_cfg_event),
3207 				   true, DP_CFG_EVENT_HIST_TYPE);
3208 }
3209 
3210 /**
3211  * dp_soc_cfg_history_detach() - Detach and free DP config events history
3212  * @soc: DP soc handle
3213  *
3214  * Return: none
3215  */
3216 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
3217 {
3218 	dp_soc_frag_history_detach(soc, &soc->cfg_event_history,
3219 				   DP_CFG_EVT_HIST_MAX_SLOTS,
3220 				   true, DP_CFG_EVENT_HIST_TYPE);
3221 }
3222 
3223 #else
3224 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
3225 {
3226 }
3227 
3228 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
3229 {
3230 }
3231 #endif
3232 
3233 #ifdef DP_TX_HW_DESC_HISTORY
3234 /**
3235  * dp_soc_tx_hw_desc_history_attach - Attach TX HW descriptor history
3236  *
3237  * @soc: DP soc handle
3238  *
3239  * Return: None
3240  */
3241 static void dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
3242 {
3243 	dp_soc_frag_history_attach(soc, &soc->tx_hw_desc_history,
3244 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
3245 				   DP_TX_HW_DESC_HIST_PER_SLOT_MAX,
3246 				   sizeof(struct dp_tx_hw_desc_evt),
3247 				   true, DP_TX_HW_DESC_HIST_TYPE);
3248 }
3249 
3250 static void dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
3251 {
3252 	dp_soc_frag_history_detach(soc, &soc->tx_hw_desc_history,
3253 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
3254 				   true, DP_TX_HW_DESC_HIST_TYPE);
3255 }
3256 
3257 #else /* DP_TX_HW_DESC_HISTORY */
3258 static inline void
3259 dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
3260 {
3261 }
3262 
3263 static inline void
3264 dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
3265 {
3266 }
3267 #endif /* DP_TX_HW_DESC_HISTORY */
3268 
3269 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
3270 #ifndef RX_DEFRAG_DO_NOT_REINJECT
3271 /**
3272  * dp_soc_rx_reinject_ring_history_attach - Attach the reo reinject ring
3273  *					    history.
3274  * @soc: DP soc handle
3275  *
3276  * Return: None
3277  */
3278 static void dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
3279 {
3280 	soc->rx_reinject_ring_history =
3281 		dp_context_alloc_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
3282 				     sizeof(struct dp_rx_reinject_history));
3283 	if (soc->rx_reinject_ring_history)
3284 		qdf_atomic_init(&soc->rx_reinject_ring_history->index);
3285 }
3286 #else /* RX_DEFRAG_DO_NOT_REINJECT */
3287 static inline void
3288 dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
3289 {
3290 }
3291 #endif /* RX_DEFRAG_DO_NOT_REINJECT */
3292 
3293 /**
3294  * dp_soc_rx_history_attach() - Attach the ring history record buffers
3295  * @soc: DP soc structure
3296  *
3297  * This function allocates the memory for recording the rx ring, rx error
3298  * ring and the reinject ring entries. There is no error returned in case
3299  * of allocation failure since the record function checks if the history is
3300  * initialized or not. We do not want to fail the driver load in case of
3301  * failure to allocate memory for debug history.
3302  *
3303  * Return: None
3304  */
3305 static void dp_soc_rx_history_attach(struct dp_soc *soc)
3306 {
3307 	int i;
3308 	uint32_t rx_ring_hist_size;
3309 	uint32_t rx_refill_ring_hist_size;
3310 
3311 	rx_ring_hist_size = sizeof(*soc->rx_ring_history[0]);
3312 	rx_refill_ring_hist_size = sizeof(*soc->rx_refill_ring_history[0]);
3313 
3314 	for (i = 0; i < MAX_REO_DEST_RINGS; i++) {
3315 		soc->rx_ring_history[i] = dp_context_alloc_mem(
3316 				soc, DP_RX_RING_HIST_TYPE, rx_ring_hist_size);
3317 		if (soc->rx_ring_history[i])
3318 			qdf_atomic_init(&soc->rx_ring_history[i]->index);
3319 	}
3320 
3321 	soc->rx_err_ring_history = dp_context_alloc_mem(
3322 			soc, DP_RX_ERR_RING_HIST_TYPE, rx_ring_hist_size);
3323 	if (soc->rx_err_ring_history)
3324 		qdf_atomic_init(&soc->rx_err_ring_history->index);
3325 
3326 	dp_soc_rx_reinject_ring_history_attach(soc);
3327 
3328 	for (i = 0; i < MAX_PDEV_CNT; i++) {
3329 		soc->rx_refill_ring_history[i] = dp_context_alloc_mem(
3330 						soc,
3331 						DP_RX_REFILL_RING_HIST_TYPE,
3332 						rx_refill_ring_hist_size);
3333 
3334 		if (soc->rx_refill_ring_history[i])
3335 			qdf_atomic_init(&soc->rx_refill_ring_history[i]->index);
3336 	}
3337 }
3338 
3339 static void dp_soc_rx_history_detach(struct dp_soc *soc)
3340 {
3341 	int i;
3342 
3343 	for (i = 0; i < MAX_REO_DEST_RINGS; i++)
3344 		dp_context_free_mem(soc, DP_RX_RING_HIST_TYPE,
3345 				    soc->rx_ring_history[i]);
3346 
3347 	dp_context_free_mem(soc, DP_RX_ERR_RING_HIST_TYPE,
3348 			    soc->rx_err_ring_history);
3349 
3350 	/*
3351 	 * No need for a featurized detach since qdf_mem_free takes
3352 	 * care of NULL pointer.
3353 	 */
3354 	dp_context_free_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
3355 			    soc->rx_reinject_ring_history);
3356 
3357 	for (i = 0; i < MAX_PDEV_CNT; i++)
3358 		dp_context_free_mem(soc, DP_RX_REFILL_RING_HIST_TYPE,
3359 				    soc->rx_refill_ring_history[i]);
3360 }
3361 
3362 #else
3363 static inline void dp_soc_rx_history_attach(struct dp_soc *soc)
3364 {
3365 }
3366 
3367 static inline void dp_soc_rx_history_detach(struct dp_soc *soc)
3368 {
3369 }
3370 #endif
3371 
3372 #ifdef WLAN_FEATURE_DP_MON_STATUS_RING_HISTORY
3373 /**
3374  * dp_soc_mon_status_ring_history_attach() - Attach the monitor status
3375  *					     buffer record history.
3376  * @soc: DP soc handle
3377  *
3378  * This function allocates memory to track the event for a monitor
3379  * status buffer, before its parsed and freed.
3380  *
3381  * Return: None
3382  */
3383 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
3384 {
3385 	soc->mon_status_ring_history = dp_context_alloc_mem(soc,
3386 				DP_MON_STATUS_BUF_HIST_TYPE,
3387 				sizeof(struct dp_mon_status_ring_history));
3388 	if (!soc->mon_status_ring_history) {
3389 		dp_err("Failed to alloc memory for mon status ring history");
3390 		return;
3391 	}
3392 }
3393 
3394 /**
3395  * dp_soc_mon_status_ring_history_detach() - Detach the monitor status buffer
3396  *					     record history.
3397  * @soc: DP soc handle
3398  *
3399  * Return: None
3400  */
3401 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
3402 {
3403 	dp_context_free_mem(soc, DP_MON_STATUS_BUF_HIST_TYPE,
3404 			    soc->mon_status_ring_history);
3405 }
3406 #else
3407 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
3408 {
3409 }
3410 
3411 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
3412 {
3413 }
3414 #endif
3415 
3416 #ifdef WLAN_FEATURE_DP_TX_DESC_HISTORY
3417 /**
3418  * dp_soc_tx_history_attach() - Attach the ring history record buffers
3419  * @soc: DP soc structure
3420  *
3421  * This function allocates the memory for recording the tx tcl ring and
3422  * the tx comp ring entries. There is no error returned in case
3423  * of allocation failure since the record function checks if the history is
3424  * initialized or not. We do not want to fail the driver load in case of
3425  * failure to allocate memory for debug history.
3426  *
3427  * Return: None
3428  */
3429 static void dp_soc_tx_history_attach(struct dp_soc *soc)
3430 {
3431 	dp_soc_frag_history_attach(soc, &soc->tx_tcl_history,
3432 				   DP_TX_TCL_HIST_MAX_SLOTS,
3433 				   DP_TX_TCL_HIST_PER_SLOT_MAX,
3434 				   sizeof(struct dp_tx_desc_event),
3435 				   true, DP_TX_TCL_HIST_TYPE);
3436 	dp_soc_frag_history_attach(soc, &soc->tx_comp_history,
3437 				   DP_TX_COMP_HIST_MAX_SLOTS,
3438 				   DP_TX_COMP_HIST_PER_SLOT_MAX,
3439 				   sizeof(struct dp_tx_desc_event),
3440 				   true, DP_TX_COMP_HIST_TYPE);
3441 }
3442 
3443 /**
3444  * dp_soc_tx_history_detach() - Detach the ring history record buffers
3445  * @soc: DP soc structure
3446  *
3447  * This function frees the memory for recording the tx tcl ring and
3448  * the tx comp ring entries.
3449  *
3450  * Return: None
3451  */
3452 static void dp_soc_tx_history_detach(struct dp_soc *soc)
3453 {
3454 	dp_soc_frag_history_detach(soc, &soc->tx_tcl_history,
3455 				   DP_TX_TCL_HIST_MAX_SLOTS,
3456 				   true, DP_TX_TCL_HIST_TYPE);
3457 	dp_soc_frag_history_detach(soc, &soc->tx_comp_history,
3458 				   DP_TX_COMP_HIST_MAX_SLOTS,
3459 				   true, DP_TX_COMP_HIST_TYPE);
3460 }
3461 
3462 #else
3463 static inline void dp_soc_tx_history_attach(struct dp_soc *soc)
3464 {
3465 }
3466 
3467 static inline void dp_soc_tx_history_detach(struct dp_soc *soc)
3468 {
3469 }
3470 #endif /* WLAN_FEATURE_DP_TX_DESC_HISTORY */
3471 
3472 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
3473 QDF_STATUS
3474 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3475 {
3476 	struct dp_rx_fst *rx_fst = NULL;
3477 	QDF_STATUS ret = QDF_STATUS_SUCCESS;
3478 
3479 	/* for Lithium the below API is not registered
3480 	 * hence fst attach happens for each pdev
3481 	 */
3482 	if (!soc->arch_ops.dp_get_rx_fst)
3483 		return dp_rx_fst_attach(soc, pdev);
3484 
3485 	rx_fst = soc->arch_ops.dp_get_rx_fst();
3486 
3487 	/* for BE the FST attach is called only once per
3488 	 * ML context. if rx_fst is already registered
3489 	 * increase the ref count and return.
3490 	 */
3491 	if (rx_fst) {
3492 		soc->rx_fst = rx_fst;
3493 		pdev->rx_fst = rx_fst;
3494 		soc->arch_ops.dp_rx_fst_ref();
3495 	} else {
3496 		ret = dp_rx_fst_attach(soc, pdev);
3497 		if ((ret != QDF_STATUS_SUCCESS) &&
3498 		    (ret != QDF_STATUS_E_NOSUPPORT))
3499 			return ret;
3500 
3501 		soc->arch_ops.dp_set_rx_fst(soc->rx_fst);
3502 		soc->arch_ops.dp_rx_fst_ref();
3503 	}
3504 	return ret;
3505 }
3506 
3507 void
3508 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3509 {
3510 	struct dp_rx_fst *rx_fst = NULL;
3511 
3512 	/* for Lithium the below API is not registered
3513 	 * hence fst detach happens for each pdev
3514 	 */
3515 	if (!soc->arch_ops.dp_get_rx_fst) {
3516 		dp_rx_fst_detach(soc, pdev);
3517 		return;
3518 	}
3519 
3520 	rx_fst = soc->arch_ops.dp_get_rx_fst();
3521 
3522 	/* for BE the FST detach is called only when last
3523 	 * ref count reaches 1.
3524 	 */
3525 	if (rx_fst) {
3526 		if (soc->arch_ops.dp_rx_fst_deref() == 1)
3527 			dp_rx_fst_detach(soc, pdev);
3528 	}
3529 	pdev->rx_fst = NULL;
3530 }
3531 #else
3532 QDF_STATUS
3533 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3534 {
3535 	return QDF_STATUS_SUCCESS;
3536 }
3537 
3538 void
3539 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3540 {
3541 }
3542 #endif
3543 
3544 /**
3545  * dp_pdev_attach_wifi3() - attach txrx pdev
3546  * @txrx_soc: Datapath SOC handle
3547  * @params: Params for PDEV attach
3548  *
3549  * Return: QDF_STATUS
3550  */
3551 static inline
3552 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
3553 				struct cdp_pdev_attach_params *params)
3554 {
3555 	qdf_size_t pdev_context_size;
3556 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
3557 	struct dp_pdev *pdev = NULL;
3558 	uint8_t pdev_id = params->pdev_id;
3559 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
3560 	int nss_cfg;
3561 	QDF_STATUS ret;
3562 
3563 	pdev_context_size =
3564 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_PDEV);
3565 	if (pdev_context_size)
3566 		pdev = dp_context_alloc_mem(soc, DP_PDEV_TYPE,
3567 					    pdev_context_size);
3568 
3569 	if (!pdev) {
3570 		dp_init_err("%pK: DP PDEV memory allocation failed",
3571 			    soc);
3572 		goto fail0;
3573 	}
3574 	wlan_minidump_log(pdev, sizeof(*pdev), soc->ctrl_psoc,
3575 			  WLAN_MD_DP_PDEV, "dp_pdev");
3576 
3577 	soc_cfg_ctx = soc->wlan_cfg_ctx;
3578 	pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach(soc->ctrl_psoc);
3579 
3580 	if (!pdev->wlan_cfg_ctx) {
3581 		dp_init_err("%pK: pdev cfg_attach failed", soc);
3582 		goto fail1;
3583 	}
3584 
3585 	pdev->soc = soc;
3586 	pdev->pdev_id = pdev_id;
3587 	soc->pdev_list[pdev_id] = pdev;
3588 	pdev->lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, pdev_id);
3589 	soc->pdev_count++;
3590 
3591 	dp_ssr_dump_pdev_register(pdev, pdev_id);
3592 
3593 	/*sync DP pdev cfg items with profile support after cfg_pdev_attach*/
3594 	wlan_dp_pdev_cfg_sync_profile((struct cdp_soc_t *)soc, pdev_id);
3595 
3596 	/*
3597 	 * set nss pdev config based on soc config
3598 	 */
3599 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
3600 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
3601 					 (nss_cfg & (1 << pdev_id)));
3602 
3603 	/* Allocate memory for pdev srng rings */
3604 	if (dp_pdev_srng_alloc(pdev)) {
3605 		dp_init_err("%pK: dp_pdev_srng_alloc failed", soc);
3606 		goto fail2;
3607 	}
3608 
3609 	/* Setup second Rx refill buffer ring */
3610 	if (dp_setup_ipa_rx_refill_buf_ring(soc, pdev)) {
3611 		dp_init_err("%pK: dp_srng_alloc failed rxrefill2 ring",
3612 			    soc);
3613 		goto fail3;
3614 	}
3615 
3616 	/* Allocate memory for pdev rxdma rings */
3617 	if (dp_rxdma_ring_alloc(soc, pdev)) {
3618 		dp_init_err("%pK: dp_rxdma_ring_alloc failed", soc);
3619 		goto fail4;
3620 	}
3621 
3622 	/* Rx specific init */
3623 	if (dp_rx_pdev_desc_pool_alloc(pdev)) {
3624 		dp_init_err("%pK: dp_rx_pdev_attach failed", soc);
3625 		goto fail4;
3626 	}
3627 
3628 	if (dp_monitor_pdev_attach(pdev)) {
3629 		dp_init_err("%pK: dp_monitor_pdev_attach failed", soc);
3630 		goto fail5;
3631 	}
3632 
3633 	soc->arch_ops.txrx_pdev_attach(pdev, params);
3634 
3635 	/* Setup third Rx refill buffer ring */
3636 	if (dp_setup_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
3637 		dp_init_err("%pK: dp_srng_alloc failed rxrefill3 ring",
3638 			    soc);
3639 		goto fail6;
3640 	}
3641 
3642 	ret = dp_rx_fst_attach_wrapper(soc, pdev);
3643 	if ((ret != QDF_STATUS_SUCCESS) && (ret != QDF_STATUS_E_NOSUPPORT)) {
3644 		dp_init_err("%pK: RX FST attach failed: pdev %d err %d",
3645 			    soc, pdev_id, ret);
3646 		goto fail7;
3647 	}
3648 
3649 	return QDF_STATUS_SUCCESS;
3650 
3651 fail7:
3652 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
3653 fail6:
3654 	dp_monitor_pdev_detach(pdev);
3655 fail5:
3656 	dp_rx_pdev_desc_pool_free(pdev);
3657 fail4:
3658 	dp_rxdma_ring_free(pdev);
3659 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
3660 fail3:
3661 	dp_pdev_srng_free(pdev);
3662 fail2:
3663 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
3664 fail1:
3665 	soc->pdev_list[pdev_id] = NULL;
3666 	qdf_mem_free(pdev);
3667 fail0:
3668 	return QDF_STATUS_E_FAILURE;
3669 }
3670 
3671 /**
3672  * dp_pdev_flush_pending_vdevs() - Flush all delete pending vdevs in pdev
3673  * @pdev: Datapath PDEV handle
3674  *
3675  * This is the last chance to flush all pending dp vdevs/peers,
3676  * some peer/vdev leak case like Non-SSR + peer unmap missing
3677  * will be covered here.
3678  *
3679  * Return: None
3680  */
3681 static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
3682 {
3683 	struct dp_soc *soc = pdev->soc;
3684 	struct dp_vdev *vdev_arr[MAX_VDEV_CNT] = {0};
3685 	uint32_t i = 0;
3686 	uint32_t num_vdevs = 0;
3687 	struct dp_vdev *vdev = NULL;
3688 
3689 	if (TAILQ_EMPTY(&soc->inactive_vdev_list))
3690 		return;
3691 
3692 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
3693 	TAILQ_FOREACH(vdev, &soc->inactive_vdev_list,
3694 		      inactive_list_elem) {
3695 		if (vdev->pdev != pdev)
3696 			continue;
3697 
3698 		vdev_arr[num_vdevs] = vdev;
3699 		num_vdevs++;
3700 		/* take reference to free */
3701 		dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CDP);
3702 	}
3703 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
3704 
3705 	for (i = 0; i < num_vdevs; i++) {
3706 		dp_vdev_flush_peers((struct cdp_vdev *)vdev_arr[i], 0, 0);
3707 		dp_vdev_unref_delete(soc, vdev_arr[i], DP_MOD_ID_CDP);
3708 	}
3709 }
3710 
3711 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
3712 /**
3713  * dp_vdev_stats_hw_offload_target_config() - Send HTT command to FW
3714  *                                          for enable/disable of HW vdev stats
3715  * @soc: Datapath soc handle
3716  * @pdev_id: INVALID_PDEV_ID for all pdevs or 0,1,2 for individual pdev
3717  * @enable: flag to represent enable/disable of hw vdev stats
3718  *
3719  * Return: none
3720  */
3721 static void dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc,
3722 						   uint8_t pdev_id,
3723 						   bool enable)
3724 {
3725 	/* Check SOC level config for HW offload vdev stats support */
3726 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
3727 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
3728 		return;
3729 	}
3730 
3731 	/* Send HTT command to FW for enable of stats */
3732 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, enable, false, 0);
3733 }
3734 
3735 /**
3736  * dp_vdev_stats_hw_offload_target_clear() - Clear HW vdev stats on target
3737  * @soc: Datapath soc handle
3738  * @pdev_id: pdev_id (0,1,2)
3739  * @vdev_id_bitmask: bitmask with vdev_id(s) for which stats are to be
3740  *                   cleared on HW
3741  *
3742  * Return: none
3743  */
3744 static
3745 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
3746 					   uint64_t vdev_id_bitmask)
3747 {
3748 	/* Check SOC level config for HW offload vdev stats support */
3749 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
3750 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
3751 		return;
3752 	}
3753 
3754 	/* Send HTT command to FW for reset of stats */
3755 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, true, true,
3756 					 vdev_id_bitmask);
3757 }
3758 #else
3759 static void
3760 dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc, uint8_t pdev_id,
3761 				       bool enable)
3762 {
3763 }
3764 
3765 static
3766 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
3767 					   uint64_t vdev_id_bitmask)
3768 {
3769 }
3770 #endif /*QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT */
3771 
3772 /**
3773  * dp_pdev_deinit() - Deinit txrx pdev
3774  * @txrx_pdev: Datapath PDEV handle
3775  * @force: Force deinit
3776  *
3777  * Return: None
3778  */
3779 static void dp_pdev_deinit(struct cdp_pdev *txrx_pdev, int force)
3780 {
3781 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3782 	qdf_nbuf_t curr_nbuf, next_nbuf;
3783 
3784 	if (pdev->pdev_deinit)
3785 		return;
3786 
3787 	dp_tx_me_exit(pdev);
3788 	dp_rx_pdev_buffers_free(pdev);
3789 	dp_rx_pdev_desc_pool_deinit(pdev);
3790 	dp_pdev_bkp_stats_detach(pdev);
3791 	qdf_event_destroy(&pdev->fw_peer_stats_event);
3792 	qdf_event_destroy(&pdev->fw_stats_event);
3793 	qdf_event_destroy(&pdev->fw_obss_stats_event);
3794 	if (pdev->sojourn_buf)
3795 		qdf_nbuf_free(pdev->sojourn_buf);
3796 
3797 	dp_pdev_flush_pending_vdevs(pdev);
3798 	dp_tx_desc_flush(pdev, NULL, true);
3799 
3800 	qdf_spinlock_destroy(&pdev->tx_mutex);
3801 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
3802 
3803 	dp_monitor_pdev_deinit(pdev);
3804 
3805 	dp_pdev_srng_deinit(pdev);
3806 
3807 	dp_ipa_uc_detach(pdev->soc, pdev);
3808 	dp_deinit_ipa_rx_alt_refill_buf_ring(pdev->soc, pdev);
3809 	dp_deinit_ipa_rx_refill_buf_ring(pdev->soc, pdev);
3810 	dp_rxdma_ring_cleanup(pdev->soc, pdev);
3811 
3812 	curr_nbuf = pdev->invalid_peer_head_msdu;
3813 	while (curr_nbuf) {
3814 		next_nbuf = qdf_nbuf_next(curr_nbuf);
3815 		dp_rx_nbuf_free(curr_nbuf);
3816 		curr_nbuf = next_nbuf;
3817 	}
3818 	pdev->invalid_peer_head_msdu = NULL;
3819 	pdev->invalid_peer_tail_msdu = NULL;
3820 
3821 	dp_wdi_event_detach(pdev);
3822 	pdev->pdev_deinit = 1;
3823 }
3824 
3825 /**
3826  * dp_pdev_deinit_wifi3() - Deinit txrx pdev
3827  * @psoc: Datapath psoc handle
3828  * @pdev_id: Id of datapath PDEV handle
3829  * @force: Force deinit
3830  *
3831  * Return: QDF_STATUS
3832  */
3833 static QDF_STATUS
3834 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
3835 		     int force)
3836 {
3837 	struct dp_pdev *txrx_pdev;
3838 
3839 	txrx_pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
3840 						       pdev_id);
3841 
3842 	if (!txrx_pdev)
3843 		return QDF_STATUS_E_FAILURE;
3844 
3845 	dp_pdev_deinit((struct cdp_pdev *)txrx_pdev, force);
3846 
3847 	return QDF_STATUS_SUCCESS;
3848 }
3849 
3850 /**
3851  * dp_pdev_post_attach() - Do post pdev attach after dev_alloc_name
3852  * @txrx_pdev: Datapath PDEV handle
3853  *
3854  * Return: None
3855  */
3856 static void dp_pdev_post_attach(struct cdp_pdev *txrx_pdev)
3857 {
3858 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3859 
3860 	dp_monitor_tx_capture_debugfs_init(pdev);
3861 
3862 	if (dp_pdev_htt_stats_dbgfs_init(pdev)) {
3863 		dp_init_err("%pK: Failed to initialize pdev HTT stats debugfs", pdev->soc);
3864 	}
3865 }
3866 
3867 /**
3868  * dp_pdev_post_attach_wifi3() - attach txrx pdev post
3869  * @soc: Datapath soc handle
3870  * @pdev_id: pdev id of pdev
3871  *
3872  * Return: QDF_STATUS
3873  */
3874 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *soc,
3875 				     uint8_t pdev_id)
3876 {
3877 	struct dp_pdev *pdev;
3878 
3879 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
3880 						  pdev_id);
3881 
3882 	if (!pdev) {
3883 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3884 			    (struct dp_soc *)soc, pdev_id);
3885 		return QDF_STATUS_E_FAILURE;
3886 	}
3887 
3888 	dp_pdev_post_attach((struct cdp_pdev *)pdev);
3889 	return QDF_STATUS_SUCCESS;
3890 }
3891 
3892 /**
3893  * dp_pdev_detach() - Complete rest of pdev detach
3894  * @txrx_pdev: Datapath PDEV handle
3895  * @force: Force deinit
3896  *
3897  * Return: None
3898  */
3899 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force)
3900 {
3901 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3902 	struct dp_soc *soc = pdev->soc;
3903 
3904 	dp_rx_fst_detach_wrapper(soc, pdev);
3905 	dp_pdev_htt_stats_dbgfs_deinit(pdev);
3906 	dp_rx_pdev_desc_pool_free(pdev);
3907 	dp_monitor_pdev_detach(pdev);
3908 	dp_rxdma_ring_free(pdev);
3909 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
3910 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
3911 	dp_pdev_srng_free(pdev);
3912 
3913 	soc->pdev_count--;
3914 	soc->pdev_list[pdev->pdev_id] = NULL;
3915 
3916 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
3917 	wlan_minidump_remove(pdev, sizeof(*pdev), soc->ctrl_psoc,
3918 			     WLAN_MD_DP_PDEV, "dp_pdev");
3919 	dp_context_free_mem(soc, DP_PDEV_TYPE, pdev);
3920 }
3921 
3922 /**
3923  * dp_pdev_detach_wifi3() - detach txrx pdev
3924  * @psoc: Datapath soc handle
3925  * @pdev_id: pdev id of pdev
3926  * @force: Force detach
3927  *
3928  * Return: QDF_STATUS
3929  */
3930 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
3931 				       int force)
3932 {
3933 	struct dp_pdev *pdev;
3934 	struct dp_soc *soc = (struct dp_soc *)psoc;
3935 
3936 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
3937 						  pdev_id);
3938 
3939 	if (!pdev) {
3940 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3941 			    (struct dp_soc *)psoc, pdev_id);
3942 		return QDF_STATUS_E_FAILURE;
3943 	}
3944 
3945 	dp_ssr_dump_pdev_unregister(pdev_id);
3946 
3947 	soc->arch_ops.txrx_pdev_detach(pdev);
3948 
3949 	dp_pdev_detach((struct cdp_pdev *)pdev, force);
3950 	return QDF_STATUS_SUCCESS;
3951 }
3952 
3953 void dp_soc_print_inactive_objects(struct dp_soc *soc)
3954 {
3955 	struct dp_peer *peer = NULL;
3956 	struct dp_peer *tmp_peer = NULL;
3957 	struct dp_vdev *vdev = NULL;
3958 	struct dp_vdev *tmp_vdev = NULL;
3959 	int i = 0;
3960 	uint32_t count;
3961 
3962 	if (TAILQ_EMPTY(&soc->inactive_peer_list) &&
3963 	    TAILQ_EMPTY(&soc->inactive_vdev_list))
3964 		return;
3965 
3966 	TAILQ_FOREACH_SAFE(peer, &soc->inactive_peer_list,
3967 			   inactive_list_elem, tmp_peer) {
3968 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
3969 			count = qdf_atomic_read(&peer->mod_refs[i]);
3970 			if (count)
3971 				DP_PRINT_STATS("peer %pK Module id %u ==> %u",
3972 					       peer, i, count);
3973 		}
3974 	}
3975 
3976 	TAILQ_FOREACH_SAFE(vdev, &soc->inactive_vdev_list,
3977 			   inactive_list_elem, tmp_vdev) {
3978 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
3979 			count = qdf_atomic_read(&vdev->mod_refs[i]);
3980 			if (count)
3981 				DP_PRINT_STATS("vdev %pK Module id %u ==> %u",
3982 					       vdev, i, count);
3983 		}
3984 	}
3985 	QDF_BUG(0);
3986 }
3987 
3988 /**
3989  * dp_soc_deinit_wifi3() - Deinitialize txrx SOC
3990  * @txrx_soc: Opaque DP SOC handle
3991  *
3992  * Return: None
3993  */
3994 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc)
3995 {
3996 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
3997 
3998 	soc->arch_ops.txrx_soc_deinit(soc);
3999 }
4000 
4001 /**
4002  * dp_soc_detach() - Detach rest of txrx SOC
4003  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
4004  *
4005  * Return: None
4006  */
4007 static void dp_soc_detach(struct cdp_soc_t *txrx_soc)
4008 {
4009 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
4010 
4011 	soc->arch_ops.txrx_soc_detach(soc);
4012 
4013 	qdf_ssr_driver_dump_unregister_region("wlan_cfg_ctx");
4014 	qdf_ssr_driver_dump_unregister_region("dp_soc");
4015 	qdf_ssr_driver_dump_unregister_region("tcl_wbm_map_array");
4016 	qdf_nbuf_ssr_unregister_region();
4017 
4018 	dp_runtime_deinit();
4019 
4020 	dp_soc_unset_qref_debug_list(soc);
4021 	dp_sysfs_deinitialize_stats(soc);
4022 	dp_soc_swlm_detach(soc);
4023 	dp_soc_tx_desc_sw_pools_free(soc);
4024 	dp_soc_srng_free(soc);
4025 	dp_hw_link_desc_ring_free(soc);
4026 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
4027 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
4028 	dp_soc_tx_hw_desc_history_detach(soc);
4029 	dp_soc_tx_history_detach(soc);
4030 	dp_soc_mon_status_ring_history_detach(soc);
4031 	dp_soc_rx_history_detach(soc);
4032 	dp_soc_cfg_history_detach(soc);
4033 
4034 	if (!dp_monitor_modularized_enable()) {
4035 		dp_mon_soc_detach_wrapper(soc);
4036 	}
4037 
4038 	qdf_mem_free(soc->cdp_soc.ops);
4039 	qdf_mem_common_free(soc);
4040 }
4041 
4042 /**
4043  * dp_soc_detach_wifi3() - Detach txrx SOC
4044  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
4045  *
4046  * Return: None
4047  */
4048 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc)
4049 {
4050 	dp_soc_detach(txrx_soc);
4051 }
4052 
4053 #ifdef QCA_HOST2FW_RXBUF_RING
4054 #ifdef IPA_WDI3_VLAN_SUPPORT
4055 static inline
4056 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
4057 				 struct dp_pdev *pdev,
4058 				 uint8_t idx)
4059 {
4060 	if (pdev->rx_refill_buf_ring3.hal_srng)
4061 		htt_srng_setup(soc->htt_handle, idx,
4062 			       pdev->rx_refill_buf_ring3.hal_srng,
4063 			       RXDMA_BUF);
4064 }
4065 #else
4066 static inline
4067 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
4068 				 struct dp_pdev *pdev,
4069 				 uint8_t idx)
4070 { }
4071 #endif
4072 
4073 #ifdef WIFI_MONITOR_SUPPORT
4074 static inline QDF_STATUS dp_lpc_tx_config(struct dp_pdev *pdev)
4075 {
4076 	return dp_local_pkt_capture_tx_config(pdev);
4077 }
4078 #else
4079 static inline QDF_STATUS dp_lpc_tx_config(struct dp_pdev *pdev)
4080 {
4081 	return QDF_STATUS_SUCCESS;
4082 }
4083 #endif
4084 
4085 /**
4086  * dp_rxdma_ring_config() - configure the RX DMA rings
4087  * @soc: data path SoC handle
4088  *
4089  * This function is used to configure the MAC rings.
4090  * On MCL host provides buffers in Host2FW ring
4091  * FW refills (copies) buffers to the ring and updates
4092  * ring_idx in register
4093  *
4094  * Return: zero on success, non-zero on failure
4095  */
4096 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
4097 {
4098 	int i;
4099 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4100 
4101 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4102 		struct dp_pdev *pdev = soc->pdev_list[i];
4103 
4104 		if (pdev) {
4105 			int mac_id;
4106 			int max_mac_rings =
4107 				 wlan_cfg_get_num_mac_rings
4108 				(pdev->wlan_cfg_ctx);
4109 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
4110 
4111 			htt_srng_setup(soc->htt_handle, i,
4112 				       soc->rx_refill_buf_ring[lmac_id]
4113 				       .hal_srng,
4114 				       RXDMA_BUF);
4115 
4116 			if (pdev->rx_refill_buf_ring2.hal_srng)
4117 				htt_srng_setup(soc->htt_handle, i,
4118 					       pdev->rx_refill_buf_ring2
4119 					       .hal_srng,
4120 					       RXDMA_BUF);
4121 
4122 			dp_rxdma_setup_refill_ring3(soc, pdev, i);
4123 
4124 			dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
4125 			dp_lpc_tx_config(pdev);
4126 			dp_info("pdev_id %d max_mac_rings %d",
4127 			       pdev->pdev_id, max_mac_rings);
4128 
4129 			for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
4130 				int mac_for_pdev =
4131 					dp_get_mac_id_for_pdev(mac_id,
4132 							       pdev->pdev_id);
4133 				/*
4134 				 * Obtain lmac id from pdev to access the LMAC
4135 				 * ring in soc context
4136 				 */
4137 				lmac_id =
4138 				dp_get_lmac_id_for_pdev_id(soc,
4139 							   mac_id,
4140 							   pdev->pdev_id);
4141 				dp_info("mac_id %d", mac_for_pdev);
4142 
4143 				htt_srng_setup(soc->htt_handle, mac_for_pdev,
4144 					 pdev->rx_mac_buf_ring[mac_id]
4145 						.hal_srng,
4146 					 RXDMA_BUF);
4147 
4148 				if (!soc->rxdma2sw_rings_not_supported)
4149 					dp_htt_setup_rxdma_err_dst_ring(soc,
4150 						mac_for_pdev, lmac_id);
4151 
4152 				/* Configure monitor mode rings */
4153 				status = dp_monitor_htt_srng_setup(soc, pdev,
4154 								   lmac_id,
4155 								   mac_for_pdev);
4156 				if (status != QDF_STATUS_SUCCESS) {
4157 					dp_err("Failed to send htt monitor messages to target");
4158 					return status;
4159 				}
4160 
4161 			}
4162 		}
4163 	}
4164 
4165 	dp_reap_timer_init(soc);
4166 	return status;
4167 }
4168 #else
4169 /* This is only for WIN */
4170 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
4171 {
4172 	int i;
4173 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4174 	int mac_for_pdev;
4175 	int lmac_id;
4176 
4177 	/* Configure monitor mode rings */
4178 	dp_monitor_soc_htt_srng_setup(soc);
4179 
4180 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4181 		struct dp_pdev *pdev =  soc->pdev_list[i];
4182 
4183 		if (!pdev)
4184 			continue;
4185 
4186 		mac_for_pdev = i;
4187 		lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
4188 
4189 		if (soc->rx_refill_buf_ring[lmac_id].hal_srng)
4190 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
4191 				       soc->rx_refill_buf_ring[lmac_id].
4192 				       hal_srng, RXDMA_BUF);
4193 
4194 		/* Configure monitor mode rings */
4195 		dp_monitor_htt_srng_setup(soc, pdev,
4196 					  lmac_id,
4197 					  mac_for_pdev);
4198 		if (!soc->rxdma2sw_rings_not_supported)
4199 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
4200 				       soc->rxdma_err_dst_ring[lmac_id].hal_srng,
4201 				       RXDMA_DST);
4202 	}
4203 
4204 	dp_reap_timer_init(soc);
4205 	return status;
4206 }
4207 #endif
4208 
4209 /**
4210  * dp_rx_target_fst_config() - configure the RXOLE Flow Search Engine
4211  *
4212  * This function is used to configure the FSE HW block in RX OLE on a
4213  * per pdev basis. Here, we will be programming parameters related to
4214  * the Flow Search Table.
4215  *
4216  * @soc: data path SoC handle
4217  *
4218  * Return: zero on success, non-zero on failure
4219  */
4220 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
4221 static QDF_STATUS
4222 dp_rx_target_fst_config(struct dp_soc *soc)
4223 {
4224 	int i;
4225 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4226 
4227 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4228 		struct dp_pdev *pdev = soc->pdev_list[i];
4229 
4230 		/* Flow search is not enabled if NSS offload is enabled */
4231 		if (pdev &&
4232 		    !wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
4233 			status = dp_rx_flow_send_fst_fw_setup(pdev->soc, pdev);
4234 			if (status != QDF_STATUS_SUCCESS)
4235 				break;
4236 		}
4237 	}
4238 	return status;
4239 }
4240 #else
4241 static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc)
4242 {
4243 	return QDF_STATUS_SUCCESS;
4244 }
4245 #endif
4246 
4247 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
4248 static inline QDF_STATUS dp_print_swlm_stats(struct dp_soc *soc)
4249 {
4250 	return QDF_STATUS_SUCCESS;
4251 }
4252 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
4253 
4254 #ifdef WLAN_SUPPORT_PPEDS
4255 /**
4256  * dp_soc_target_ppe_rxole_rxdma_cfg() - Configure the RxOLe and RxDMA for PPE
4257  * @soc: DP Tx/Rx handle
4258  *
4259  * Return: QDF_STATUS
4260  */
4261 static
4262 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
4263 {
4264 	struct dp_htt_rxdma_rxole_ppe_config htt_cfg = {0};
4265 	QDF_STATUS status;
4266 
4267 	/*
4268 	 * Program RxDMA to override the reo destination indication
4269 	 * with REO2PPE_DST_IND, when use_ppe is set to 1 in RX_MSDU_END,
4270 	 * thereby driving the packet to REO2PPE ring.
4271 	 * If the MSDU is spanning more than 1 buffer, then this
4272 	 * override is not done.
4273 	 */
4274 	htt_cfg.override = 1;
4275 	htt_cfg.reo_destination_indication = REO2PPE_DST_IND;
4276 	htt_cfg.multi_buffer_msdu_override_en = 0;
4277 
4278 	/*
4279 	 * Override use_ppe to 0 in RxOLE for the following
4280 	 * cases.
4281 	 */
4282 	htt_cfg.intra_bss_override = 1;
4283 	htt_cfg.decap_raw_override = 1;
4284 	htt_cfg.decap_nwifi_override = 1;
4285 	htt_cfg.ip_frag_override = 1;
4286 
4287 	status = dp_htt_rxdma_rxole_ppe_cfg_set(soc, &htt_cfg);
4288 	if (status != QDF_STATUS_SUCCESS)
4289 		dp_err("RxOLE and RxDMA PPE config failed %d", status);
4290 
4291 	return status;
4292 }
4293 
4294 #else
4295 static inline
4296 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
4297 {
4298 	return QDF_STATUS_SUCCESS;
4299 }
4300 
4301 #endif /* WLAN_SUPPORT_PPEDS */
4302 
4303 #ifdef DP_UMAC_HW_RESET_SUPPORT
4304 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
4305 {
4306 	dp_umac_reset_register_rx_action_callback(soc,
4307 					dp_umac_reset_action_trigger_recovery,
4308 					UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY);
4309 
4310 	dp_umac_reset_register_rx_action_callback(soc,
4311 		dp_umac_reset_handle_pre_reset, UMAC_RESET_ACTION_DO_PRE_RESET);
4312 
4313 	dp_umac_reset_register_rx_action_callback(soc,
4314 					dp_umac_reset_handle_post_reset,
4315 					UMAC_RESET_ACTION_DO_POST_RESET_START);
4316 
4317 	dp_umac_reset_register_rx_action_callback(soc,
4318 				dp_umac_reset_handle_post_reset_complete,
4319 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
4320 
4321 }
4322 #else
4323 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
4324 {
4325 }
4326 #endif
4327 /**
4328  * dp_soc_attach_target_wifi3() - SOC initialization in the target
4329  * @cdp_soc: Opaque Datapath SOC handle
4330  *
4331  * Return: zero on success, non-zero on failure
4332  */
4333 static QDF_STATUS
4334 dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
4335 {
4336 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
4337 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4338 	struct hal_reo_params reo_params;
4339 
4340 	htt_soc_attach_target(soc->htt_handle);
4341 
4342 	status = dp_soc_target_ppe_rxole_rxdma_cfg(soc);
4343 	if (status != QDF_STATUS_SUCCESS) {
4344 		dp_err("Failed to send htt RxOLE and RxDMA messages to target");
4345 		return status;
4346 	}
4347 
4348 	status = dp_rxdma_ring_config(soc);
4349 	if (status != QDF_STATUS_SUCCESS) {
4350 		dp_err("Failed to send htt srng setup messages to target");
4351 		return status;
4352 	}
4353 
4354 	status = soc->arch_ops.dp_rxdma_ring_sel_cfg(soc);
4355 	if (status != QDF_STATUS_SUCCESS) {
4356 		dp_err("Failed to send htt ring config message to target");
4357 		return status;
4358 	}
4359 
4360 	status = dp_soc_umac_reset_init(cdp_soc);
4361 	if (status != QDF_STATUS_SUCCESS &&
4362 	    status != QDF_STATUS_E_NOSUPPORT) {
4363 		dp_err("Failed to initialize UMAC reset");
4364 		return status;
4365 	}
4366 
4367 	dp_register_umac_reset_handlers(soc);
4368 
4369 	status = dp_rx_target_fst_config(soc);
4370 	if (status != QDF_STATUS_SUCCESS &&
4371 	    status != QDF_STATUS_E_NOSUPPORT) {
4372 		dp_err("Failed to send htt fst setup config message to target");
4373 		return status;
4374 	}
4375 
4376 	DP_STATS_INIT(soc);
4377 
4378 	dp_runtime_init(soc);
4379 
4380 	/* Enable HW vdev offload stats if feature is supported */
4381 	dp_vdev_stats_hw_offload_target_config(soc, INVALID_PDEV_ID, true);
4382 
4383 	/* initialize work queue for stats processing */
4384 	qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
4385 
4386 	wlan_cfg_soc_update_tgt_params(soc->wlan_cfg_ctx,
4387 				       soc->ctrl_psoc);
4388 	/* Setup HW REO */
4389 	qdf_mem_zero(&reo_params, sizeof(reo_params));
4390 
4391 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
4392 		/*
4393 		 * Reo ring remap is not required if both radios
4394 		 * are offloaded to NSS
4395 		 */
4396 
4397 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
4398 						   &reo_params.remap1,
4399 						   &reo_params.remap2))
4400 			reo_params.rx_hash_enabled = true;
4401 		else
4402 			reo_params.rx_hash_enabled = false;
4403 	}
4404 
4405 	/*
4406 	 * set the fragment destination ring
4407 	 */
4408 	dp_reo_frag_dst_set(soc, &reo_params.frag_dst_ring);
4409 
4410 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
4411 		reo_params.alt_dst_ind_0 = REO_REMAP_RELEASE;
4412 
4413 	reo_params.reo_qref = &soc->reo_qref;
4414 	hal_reo_setup(soc->hal_soc, &reo_params, 1);
4415 
4416 	hal_reo_set_err_dst_remap(soc->hal_soc);
4417 
4418 	soc->features.pn_in_reo_dest = hal_reo_enable_pn_in_dest(soc->hal_soc);
4419 
4420 	return QDF_STATUS_SUCCESS;
4421 }
4422 
4423 /**
4424  * dp_vdev_id_map_tbl_add() - Add vdev into vdev_id table
4425  * @soc: SoC handle
4426  * @vdev: vdev handle
4427  * @vdev_id: vdev_id
4428  *
4429  * Return: None
4430  */
4431 static void dp_vdev_id_map_tbl_add(struct dp_soc *soc,
4432 				   struct dp_vdev *vdev,
4433 				   uint8_t vdev_id)
4434 {
4435 	QDF_ASSERT(vdev_id <= MAX_VDEV_CNT);
4436 
4437 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4438 
4439 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
4440 			QDF_STATUS_SUCCESS) {
4441 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK vdev_id %u",
4442 			     soc, vdev, vdev_id);
4443 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
4444 		return;
4445 	}
4446 
4447 	if (!soc->vdev_id_map[vdev_id])
4448 		soc->vdev_id_map[vdev_id] = vdev;
4449 	else
4450 		QDF_ASSERT(0);
4451 
4452 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4453 }
4454 
4455 /**
4456  * dp_vdev_id_map_tbl_remove() - remove vdev from vdev_id table
4457  * @soc: SoC handle
4458  * @vdev: vdev handle
4459  *
4460  * Return: None
4461  */
4462 static void dp_vdev_id_map_tbl_remove(struct dp_soc *soc,
4463 				      struct dp_vdev *vdev)
4464 {
4465 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4466 	QDF_ASSERT(soc->vdev_id_map[vdev->vdev_id] == vdev);
4467 
4468 	soc->vdev_id_map[vdev->vdev_id] = NULL;
4469 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
4470 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4471 }
4472 
4473 /**
4474  * dp_vdev_pdev_list_add() - add vdev into pdev's list
4475  * @soc: soc handle
4476  * @pdev: pdev handle
4477  * @vdev: vdev handle
4478  *
4479  * Return: none
4480  */
4481 static void dp_vdev_pdev_list_add(struct dp_soc *soc,
4482 				  struct dp_pdev *pdev,
4483 				  struct dp_vdev *vdev)
4484 {
4485 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
4486 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
4487 			QDF_STATUS_SUCCESS) {
4488 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK",
4489 			     soc, vdev);
4490 		qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4491 		return;
4492 	}
4493 	/* add this vdev into the pdev's list */
4494 	TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
4495 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4496 }
4497 
4498 /**
4499  * dp_vdev_pdev_list_remove() - remove vdev from pdev's list
4500  * @soc: SoC handle
4501  * @pdev: pdev handle
4502  * @vdev: VDEV handle
4503  *
4504  * Return: none
4505  */
4506 static void dp_vdev_pdev_list_remove(struct dp_soc *soc,
4507 				     struct dp_pdev *pdev,
4508 				     struct dp_vdev *vdev)
4509 {
4510 	uint8_t found = 0;
4511 	struct dp_vdev *tmpvdev = NULL;
4512 
4513 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
4514 	TAILQ_FOREACH(tmpvdev, &pdev->vdev_list, vdev_list_elem) {
4515 		if (tmpvdev == vdev) {
4516 			found = 1;
4517 			break;
4518 		}
4519 	}
4520 
4521 	if (found) {
4522 		TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
4523 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
4524 	} else {
4525 		dp_vdev_debug("%pK: vdev:%pK not found in pdev:%pK vdevlist:%pK",
4526 			      soc, vdev, pdev, &pdev->vdev_list);
4527 		QDF_ASSERT(0);
4528 	}
4529 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4530 }
4531 
4532 #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
4533 /**
4534  * dp_vdev_init_rx_eapol() - initializing osif_rx_eapol
4535  * @vdev: Datapath VDEV handle
4536  *
4537  * Return: None
4538  */
4539 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
4540 {
4541 	vdev->osif_rx_eapol = NULL;
4542 }
4543 
4544 /**
4545  * dp_vdev_register_rx_eapol() - Register VDEV operations for rx_eapol
4546  * @vdev: DP vdev handle
4547  * @txrx_ops: Tx and Rx operations
4548  *
4549  * Return: None
4550  */
4551 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
4552 					     struct ol_txrx_ops *txrx_ops)
4553 {
4554 	vdev->osif_rx_eapol = txrx_ops->rx.rx_eapol;
4555 }
4556 #else
4557 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
4558 {
4559 }
4560 
4561 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
4562 					     struct ol_txrx_ops *txrx_ops)
4563 {
4564 }
4565 #endif
4566 
4567 #ifdef WLAN_FEATURE_11BE_MLO
4568 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
4569 					 struct cdp_vdev_info *vdev_info)
4570 {
4571 	if (vdev_info->mld_mac_addr)
4572 		qdf_mem_copy(&vdev->mld_mac_addr.raw[0],
4573 			     vdev_info->mld_mac_addr, QDF_MAC_ADDR_SIZE);
4574 }
4575 
4576 #ifdef WLAN_MLO_MULTI_CHIP
4577 static inline void
4578 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4579 				 struct cdp_vdev_info *vdev_info)
4580 {
4581 	if (vdev_info->is_bridge_vap)
4582 		vdev->is_bridge_vdev = 1;
4583 
4584 	dp_info("is_bridge_link = %d vdev id = %d chip id = %d",
4585 		vdev->is_bridge_vdev, vdev->vdev_id,
4586 		dp_get_chip_id(vdev->pdev->soc));
4587 }
4588 #else
4589 static inline void
4590 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4591 				 struct cdp_vdev_info *vdev_info)
4592 {
4593 }
4594 #endif /* WLAN_MLO_MULTI_CHIP */
4595 
4596 #else
4597 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
4598 					 struct cdp_vdev_info *vdev_info)
4599 {
4600 
4601 }
4602 
4603 static inline void
4604 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4605 				 struct cdp_vdev_info *vdev_info)
4606 {
4607 }
4608 #endif
4609 
4610 #ifdef DP_TRAFFIC_END_INDICATION
4611 /**
4612  * dp_tx_vdev_traffic_end_indication_attach() - Initialize data end indication
4613  *                                              related members in VDEV
4614  * @vdev: DP vdev handle
4615  *
4616  * Return: None
4617  */
4618 static inline void
4619 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
4620 {
4621 	qdf_nbuf_queue_init(&vdev->end_ind_pkt_q);
4622 }
4623 
4624 /**
4625  * dp_tx_vdev_traffic_end_indication_detach() - De-init data end indication
4626  *                                              related members in VDEV
4627  * @vdev: DP vdev handle
4628  *
4629  * Return: None
4630  */
4631 static inline void
4632 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
4633 {
4634 	qdf_nbuf_t nbuf;
4635 
4636 	while ((nbuf = qdf_nbuf_queue_remove(&vdev->end_ind_pkt_q)) != NULL)
4637 		qdf_nbuf_free(nbuf);
4638 }
4639 #else
4640 static inline void
4641 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
4642 {}
4643 
4644 static inline void
4645 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
4646 {}
4647 #endif
4648 
4649 #ifdef WLAN_DP_VDEV_NO_SELF_PEER
4650 static inline bool dp_vdev_self_peer_required(struct dp_soc *soc,
4651 					      struct dp_vdev *vdev)
4652 {
4653 	return false;
4654 }
4655 #else
4656 static inline bool dp_vdev_self_peer_required(struct dp_soc *soc,
4657 					      struct dp_vdev *vdev)
4658 {
4659 	if (wlan_op_mode_sta == vdev->opmode)
4660 		return true;
4661 
4662 	return false;
4663 }
4664 #endif
4665 
4666 /**
4667  * dp_vdev_attach_wifi3() - attach txrx vdev
4668  * @cdp_soc: CDP SoC context
4669  * @pdev_id: PDEV ID for vdev creation
4670  * @vdev_info: parameters used for vdev creation
4671  *
4672  * Return: status
4673  */
4674 static QDF_STATUS dp_vdev_attach_wifi3(struct cdp_soc_t *cdp_soc,
4675 				       uint8_t pdev_id,
4676 				       struct cdp_vdev_info *vdev_info)
4677 {
4678 	int i = 0;
4679 	qdf_size_t vdev_context_size;
4680 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
4681 	struct dp_pdev *pdev =
4682 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
4683 						   pdev_id);
4684 	struct dp_vdev *vdev;
4685 	uint8_t *vdev_mac_addr = vdev_info->vdev_mac_addr;
4686 	uint8_t vdev_id = vdev_info->vdev_id;
4687 	enum wlan_op_mode op_mode = vdev_info->op_mode;
4688 	enum wlan_op_subtype subtype = vdev_info->subtype;
4689 	enum QDF_OPMODE qdf_opmode = vdev_info->qdf_opmode;
4690 	uint8_t vdev_stats_id = vdev_info->vdev_stats_id;
4691 
4692 	vdev_context_size =
4693 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_VDEV);
4694 	vdev = qdf_mem_malloc(vdev_context_size);
4695 
4696 	if (!pdev) {
4697 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
4698 			    cdp_soc, pdev_id);
4699 		qdf_mem_free(vdev);
4700 		goto fail0;
4701 	}
4702 
4703 	if (!vdev) {
4704 		dp_init_err("%pK: DP VDEV memory allocation failed",
4705 			    cdp_soc);
4706 		goto fail0;
4707 	}
4708 
4709 	wlan_minidump_log(vdev, sizeof(*vdev), soc->ctrl_psoc,
4710 			  WLAN_MD_DP_VDEV, "dp_vdev");
4711 
4712 	vdev->pdev = pdev;
4713 	vdev->vdev_id = vdev_id;
4714 	vdev->vdev_stats_id = vdev_stats_id;
4715 	vdev->opmode = op_mode;
4716 	vdev->subtype = subtype;
4717 	vdev->qdf_opmode = qdf_opmode;
4718 	vdev->osdev = soc->osdev;
4719 
4720 	vdev->osif_rx = NULL;
4721 	vdev->osif_rsim_rx_decap = NULL;
4722 	vdev->osif_get_key = NULL;
4723 	vdev->osif_tx_free_ext = NULL;
4724 	vdev->osif_vdev = NULL;
4725 
4726 	vdev->delete.pending = 0;
4727 	vdev->safemode = 0;
4728 	vdev->drop_unenc = 1;
4729 	vdev->sec_type = cdp_sec_type_none;
4730 	vdev->multipass_en = false;
4731 	vdev->wrap_vdev = false;
4732 	dp_vdev_init_rx_eapol(vdev);
4733 	qdf_atomic_init(&vdev->ref_cnt);
4734 	for (i = 0; i < DP_MOD_ID_MAX; i++)
4735 		qdf_atomic_init(&vdev->mod_refs[i]);
4736 
4737 	/* Take one reference for create*/
4738 	qdf_atomic_inc(&vdev->ref_cnt);
4739 	qdf_atomic_inc(&vdev->mod_refs[DP_MOD_ID_CONFIG]);
4740 	vdev->num_peers = 0;
4741 #ifdef notyet
4742 	vdev->filters_num = 0;
4743 #endif
4744 	vdev->lmac_id = pdev->lmac_id;
4745 
4746 	qdf_mem_copy(&vdev->mac_addr.raw[0], vdev_mac_addr, QDF_MAC_ADDR_SIZE);
4747 
4748 	dp_vdev_update_bridge_vdev_param(vdev, vdev_info);
4749 	dp_vdev_save_mld_addr(vdev, vdev_info);
4750 
4751 	/* TODO: Initialize default HTT meta data that will be used in
4752 	 * TCL descriptors for packets transmitted from this VDEV
4753 	 */
4754 
4755 	qdf_spinlock_create(&vdev->peer_list_lock);
4756 	TAILQ_INIT(&vdev->peer_list);
4757 	dp_peer_multipass_list_init(vdev);
4758 	if ((soc->intr_mode == DP_INTR_POLL) &&
4759 	    wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) {
4760 		if ((pdev->vdev_count == 0) ||
4761 		    (wlan_op_mode_monitor == vdev->opmode))
4762 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
4763 	} else if (dp_soc_get_con_mode(soc) == QDF_GLOBAL_MISSION_MODE &&
4764 		   soc->intr_mode == DP_INTR_MSI &&
4765 		   wlan_op_mode_monitor == vdev->opmode &&
4766 		   !wlan_cfg_get_local_pkt_capture(soc->wlan_cfg_ctx)) {
4767 		/* Timer to reap status ring in mission mode */
4768 		dp_monitor_vdev_timer_start(soc);
4769 	}
4770 
4771 	dp_vdev_id_map_tbl_add(soc, vdev, vdev_id);
4772 
4773 	if (wlan_op_mode_monitor == vdev->opmode) {
4774 		if (dp_monitor_vdev_attach(vdev) == QDF_STATUS_SUCCESS) {
4775 			dp_monitor_pdev_set_mon_vdev(vdev);
4776 			return dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
4777 		}
4778 		return QDF_STATUS_E_FAILURE;
4779 	}
4780 
4781 	vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
4782 	vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
4783 	vdev->dscp_tid_map_id = 0;
4784 	vdev->mcast_enhancement_en = 0;
4785 	vdev->igmp_mcast_enhanc_en = 0;
4786 	vdev->raw_mode_war = wlan_cfg_get_raw_mode_war(soc->wlan_cfg_ctx);
4787 	vdev->prev_tx_enq_tstamp = 0;
4788 	vdev->prev_rx_deliver_tstamp = 0;
4789 	vdev->skip_sw_tid_classification = DP_TX_HW_DSCP_TID_MAP_VALID;
4790 	dp_tx_vdev_traffic_end_indication_attach(vdev);
4791 
4792 	dp_vdev_pdev_list_add(soc, pdev, vdev);
4793 	pdev->vdev_count++;
4794 
4795 	if (wlan_op_mode_sta != vdev->opmode &&
4796 	    wlan_op_mode_ndi != vdev->opmode)
4797 		vdev->ap_bridge_enabled = true;
4798 	else
4799 		vdev->ap_bridge_enabled = false;
4800 	dp_init_info("%pK: wlan_cfg_ap_bridge_enabled %d",
4801 		     cdp_soc, vdev->ap_bridge_enabled);
4802 
4803 	dp_tx_vdev_attach(vdev);
4804 
4805 	dp_monitor_vdev_attach(vdev);
4806 	if (!pdev->is_lro_hash_configured) {
4807 		if (QDF_IS_STATUS_SUCCESS(dp_lro_hash_setup(soc, pdev)))
4808 			pdev->is_lro_hash_configured = true;
4809 		else
4810 			dp_err("LRO hash setup failure!");
4811 	}
4812 
4813 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_ATTACH, vdev);
4814 	dp_info("Created vdev %pK ("QDF_MAC_ADDR_FMT") vdev_id %d", vdev,
4815 		QDF_MAC_ADDR_REF(vdev->mac_addr.raw), vdev->vdev_id);
4816 	DP_STATS_INIT(vdev);
4817 
4818 	if (QDF_IS_STATUS_ERROR(soc->arch_ops.txrx_vdev_attach(soc, vdev)))
4819 		goto fail0;
4820 
4821 	if (dp_vdev_self_peer_required(soc, vdev))
4822 		dp_peer_create_wifi3((struct cdp_soc_t *)soc, vdev_id,
4823 				     vdev->mac_addr.raw, CDP_LINK_PEER_TYPE);
4824 
4825 	dp_pdev_update_fast_rx_flag(soc, pdev);
4826 
4827 	return QDF_STATUS_SUCCESS;
4828 
4829 fail0:
4830 	return QDF_STATUS_E_FAILURE;
4831 }
4832 
4833 #ifndef QCA_HOST_MODE_WIFI_DISABLED
4834 /**
4835  * dp_vdev_fetch_tx_handler() - Fetch Tx handlers
4836  * @vdev: struct dp_vdev *
4837  * @soc: struct dp_soc *
4838  * @ctx: struct ol_txrx_hardtart_ctxt *
4839  */
4840 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
4841 					    struct dp_soc *soc,
4842 					    struct ol_txrx_hardtart_ctxt *ctx)
4843 {
4844 	/* Enable vdev_id check only for ap, if flag is enabled */
4845 	if (vdev->mesh_vdev)
4846 		ctx->tx = dp_tx_send_mesh;
4847 	else if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
4848 		 (vdev->opmode == wlan_op_mode_ap)) {
4849 		ctx->tx = dp_tx_send_vdev_id_check;
4850 		ctx->tx_fast = dp_tx_send_vdev_id_check;
4851 	} else {
4852 		ctx->tx = dp_tx_send;
4853 		ctx->tx_fast = soc->arch_ops.dp_tx_send_fast;
4854 	}
4855 
4856 	/* Avoid check in regular exception Path */
4857 	if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
4858 	    (vdev->opmode == wlan_op_mode_ap))
4859 		ctx->tx_exception = dp_tx_send_exception_vdev_id_check;
4860 	else
4861 		ctx->tx_exception = dp_tx_send_exception;
4862 }
4863 
4864 /**
4865  * dp_vdev_register_tx_handler() - Register Tx handler
4866  * @vdev: struct dp_vdev *
4867  * @soc: struct dp_soc *
4868  * @txrx_ops: struct ol_txrx_ops *
4869  */
4870 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
4871 					       struct dp_soc *soc,
4872 					       struct ol_txrx_ops *txrx_ops)
4873 {
4874 	struct ol_txrx_hardtart_ctxt ctx = {0};
4875 
4876 	dp_vdev_fetch_tx_handler(vdev, soc, &ctx);
4877 
4878 	txrx_ops->tx.tx = ctx.tx;
4879 	txrx_ops->tx.tx_fast = ctx.tx_fast;
4880 	txrx_ops->tx.tx_exception = ctx.tx_exception;
4881 
4882 	dp_info("Configure tx_vdev_id_chk_handler Feature Flag: %d and mode:%d for vdev_id:%d",
4883 		wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx),
4884 		vdev->opmode, vdev->vdev_id);
4885 }
4886 #else /* QCA_HOST_MODE_WIFI_DISABLED */
4887 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
4888 					       struct dp_soc *soc,
4889 					       struct ol_txrx_ops *txrx_ops)
4890 {
4891 }
4892 
4893 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
4894 					    struct dp_soc *soc,
4895 					    struct ol_txrx_hardtart_ctxt *ctx)
4896 {
4897 }
4898 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
4899 
4900 /**
4901  * dp_vdev_register_wifi3() - Register VDEV operations from osif layer
4902  * @soc_hdl: Datapath soc handle
4903  * @vdev_id: id of Datapath VDEV handle
4904  * @osif_vdev: OSIF vdev handle
4905  * @txrx_ops: Tx and Rx operations
4906  *
4907  * Return: DP VDEV handle on success, NULL on failure
4908  */
4909 static QDF_STATUS dp_vdev_register_wifi3(struct cdp_soc_t *soc_hdl,
4910 					 uint8_t vdev_id,
4911 					 ol_osif_vdev_handle osif_vdev,
4912 					 struct ol_txrx_ops *txrx_ops)
4913 {
4914 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
4915 	struct dp_vdev *vdev =	dp_vdev_get_ref_by_id(soc, vdev_id,
4916 						      DP_MOD_ID_CDP);
4917 
4918 	if (!vdev)
4919 		return QDF_STATUS_E_FAILURE;
4920 
4921 	vdev->osif_vdev = osif_vdev;
4922 	vdev->osif_rx = txrx_ops->rx.rx;
4923 	vdev->osif_rx_stack = txrx_ops->rx.rx_stack;
4924 	vdev->osif_rx_flush = txrx_ops->rx.rx_flush;
4925 	vdev->osif_gro_flush = txrx_ops->rx.rx_gro_flush;
4926 	vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap;
4927 	vdev->osif_fisa_rx = txrx_ops->rx.osif_fisa_rx;
4928 	vdev->osif_fisa_flush = txrx_ops->rx.osif_fisa_flush;
4929 	vdev->osif_get_key = txrx_ops->get_key;
4930 	dp_monitor_vdev_register_osif(vdev, txrx_ops);
4931 	vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext;
4932 	vdev->tx_comp = txrx_ops->tx.tx_comp;
4933 	vdev->stats_cb = txrx_ops->rx.stats_rx;
4934 	vdev->tx_classify_critical_pkt_cb =
4935 		txrx_ops->tx.tx_classify_critical_pkt_cb;
4936 #ifdef notyet
4937 #if ATH_SUPPORT_WAPI
4938 	vdev->osif_check_wai = txrx_ops->rx.wai_check;
4939 #endif
4940 #endif
4941 #ifdef UMAC_SUPPORT_PROXY_ARP
4942 	vdev->osif_proxy_arp = txrx_ops->proxy_arp;
4943 #endif
4944 	vdev->me_convert = txrx_ops->me_convert;
4945 	vdev->get_tsf_time = txrx_ops->get_tsf_time;
4946 
4947 	dp_vdev_register_rx_eapol(vdev, txrx_ops);
4948 
4949 	dp_vdev_register_tx_handler(vdev, soc, txrx_ops);
4950 
4951 	dp_init_info("%pK: DP Vdev Register success", soc);
4952 
4953 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4954 	return QDF_STATUS_SUCCESS;
4955 }
4956 
4957 #ifdef WLAN_FEATURE_11BE_MLO
4958 void dp_peer_delete(struct dp_soc *soc,
4959 		    struct dp_peer *peer,
4960 		    void *arg)
4961 {
4962 	if (!peer->valid)
4963 		return;
4964 
4965 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
4966 			     peer->vdev->vdev_id,
4967 			     peer->mac_addr.raw, 0,
4968 			     peer->peer_type);
4969 }
4970 #else
4971 void dp_peer_delete(struct dp_soc *soc,
4972 		    struct dp_peer *peer,
4973 		    void *arg)
4974 {
4975 	if (!peer->valid)
4976 		return;
4977 
4978 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
4979 			     peer->vdev->vdev_id,
4980 			     peer->mac_addr.raw, 0,
4981 			     CDP_LINK_PEER_TYPE);
4982 }
4983 #endif
4984 
4985 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
4986 static uint8_t
4987 dp_mlo_get_num_link_peer(struct dp_soc *soc, struct dp_peer *peer)
4988 {
4989 	if (soc->cdp_soc.ol_ops->peer_get_num_mlo_links)
4990 		return soc->cdp_soc.ol_ops->peer_get_num_mlo_links(
4991 				soc->ctrl_psoc,
4992 				peer->vdev->vdev_id,
4993 				peer->mac_addr.raw,
4994 				IS_MLO_DP_MLD_PEER(peer));
4995 
4996 	return 0;
4997 }
4998 
4999 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
5000 {
5001 	if (!peer->valid)
5002 		return;
5003 
5004 	/* skip deleting the SLO peers */
5005 	if (dp_mlo_get_num_link_peer(soc, peer) == 1)
5006 		return;
5007 
5008 	if (IS_MLO_DP_LINK_PEER(peer))
5009 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
5010 				     peer->vdev->vdev_id,
5011 				     peer->mac_addr.raw, 0,
5012 				     CDP_LINK_PEER_TYPE);
5013 }
5014 
5015 /**
5016  * dp_mlo_link_peer_flush() - flush all the link peers
5017  * @soc: Datapath soc handle
5018  * @peer: DP peer handle to be checked
5019  *
5020  * Return: None
5021  */
5022 static void dp_mlo_link_peer_flush(struct dp_soc *soc, struct dp_peer *peer)
5023 {
5024 	int cnt = 0;
5025 	struct dp_peer *link_peer = NULL;
5026 	struct dp_mld_link_peers link_peers_info = {NULL};
5027 
5028 	if (!IS_MLO_DP_MLD_PEER(peer))
5029 		return;
5030 
5031 	/* get link peers with reference */
5032 	dp_get_link_peers_ref_from_mld_peer(soc, peer, &link_peers_info,
5033 					    DP_MOD_ID_CDP);
5034 	for (cnt = 0; cnt < link_peers_info.num_links; cnt++) {
5035 		link_peer = link_peers_info.link_peers[cnt];
5036 		if (!link_peer)
5037 			continue;
5038 
5039 		/* delete all the link peers */
5040 		dp_mlo_peer_delete(link_peer->vdev->pdev->soc, link_peer, NULL);
5041 		/* unmap all the link peers */
5042 		dp_rx_peer_unmap_handler(link_peer->vdev->pdev->soc,
5043 					 link_peer->peer_id,
5044 					 link_peer->vdev->vdev_id,
5045 					 link_peer->mac_addr.raw, 0,
5046 					 DP_PEER_WDS_COUNT_INVALID);
5047 	}
5048 	dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
5049 }
5050 #else
5051 static uint8_t
5052 dp_mlo_get_num_link_peer(struct dp_soc *soc, struct dp_peer *peer)
5053 {
5054 	return 0;
5055 }
5056 
5057 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
5058 {
5059 }
5060 
5061 static void dp_mlo_link_peer_flush(struct dp_soc *soc, struct dp_peer *peer)
5062 {
5063 }
5064 #endif
5065 /**
5066  * dp_vdev_flush_peers() - Forcibily Flush peers of vdev
5067  * @vdev_handle: Datapath VDEV handle
5068  * @unmap_only: Flag to indicate "only unmap"
5069  * @mlo_peers_only: true if only MLO peers should be flushed
5070  *
5071  * Return: void
5072  */
5073 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
5074 				bool unmap_only,
5075 				bool mlo_peers_only)
5076 {
5077 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
5078 	struct dp_pdev *pdev = vdev->pdev;
5079 	struct dp_soc *soc = pdev->soc;
5080 	struct dp_peer *peer;
5081 	uint32_t i = 0;
5082 
5083 
5084 	if (!unmap_only) {
5085 		if (!mlo_peers_only)
5086 			dp_vdev_iterate_peer_lock_safe(vdev,
5087 						       dp_peer_delete,
5088 						       NULL,
5089 						       DP_MOD_ID_CDP);
5090 		else
5091 			dp_vdev_iterate_peer_lock_safe(vdev,
5092 						       dp_mlo_peer_delete,
5093 						       NULL,
5094 						       DP_MOD_ID_CDP);
5095 	}
5096 
5097 	for (i = 0; i < soc->max_peer_id ; i++) {
5098 		peer = __dp_peer_get_ref_by_id(soc, i, DP_MOD_ID_CDP);
5099 
5100 		if (!peer)
5101 			continue;
5102 
5103 		if (peer->vdev != vdev) {
5104 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5105 			continue;
5106 		}
5107 
5108 		if (!mlo_peers_only) {
5109 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
5110 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5111 			dp_mlo_link_peer_flush(soc, peer);
5112 			dp_rx_peer_unmap_handler(soc, i,
5113 						 vdev->vdev_id,
5114 						 peer->mac_addr.raw, 0,
5115 						 DP_PEER_WDS_COUNT_INVALID);
5116 			if (!IS_MLO_DP_MLD_PEER(peer))
5117 				SET_PEER_REF_CNT_ONE(peer);
5118 		} else if (IS_MLO_DP_LINK_PEER(peer) ||
5119 			   IS_MLO_DP_MLD_PEER(peer)) {
5120 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
5121 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5122 
5123 			/* skip deleting the SLO peers */
5124 			if (dp_mlo_get_num_link_peer(soc, peer) ==  1) {
5125 				dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5126 				continue;
5127 			}
5128 
5129 			dp_mlo_link_peer_flush(soc, peer);
5130 			dp_rx_peer_unmap_handler(soc, i,
5131 						 vdev->vdev_id,
5132 						 peer->mac_addr.raw, 0,
5133 						 DP_PEER_WDS_COUNT_INVALID);
5134 			SET_PEER_REF_CNT_ONE(peer);
5135 		}
5136 
5137 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5138 	}
5139 }
5140 
5141 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
5142 /**
5143  * dp_txrx_alloc_vdev_stats_id()- Allocate vdev_stats_id
5144  * @soc_hdl: Datapath soc handle
5145  * @vdev_stats_id: Address of vdev_stats_id
5146  *
5147  * Return: QDF_STATUS
5148  */
5149 static QDF_STATUS dp_txrx_alloc_vdev_stats_id(struct cdp_soc_t *soc_hdl,
5150 					      uint8_t *vdev_stats_id)
5151 {
5152 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5153 	uint8_t id = 0;
5154 
5155 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
5156 		*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
5157 		return QDF_STATUS_E_FAILURE;
5158 	}
5159 
5160 	while (id < CDP_MAX_VDEV_STATS_ID) {
5161 		if (!qdf_atomic_test_and_set_bit(id, &soc->vdev_stats_id_map)) {
5162 			*vdev_stats_id = id;
5163 			return QDF_STATUS_SUCCESS;
5164 		}
5165 		id++;
5166 	}
5167 
5168 	*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
5169 	return QDF_STATUS_E_FAILURE;
5170 }
5171 
5172 /**
5173  * dp_txrx_reset_vdev_stats_id() - Reset vdev_stats_id in dp_soc
5174  * @soc_hdl: Datapath soc handle
5175  * @vdev_stats_id: vdev_stats_id to reset in dp_soc
5176  *
5177  * Return: none
5178  */
5179 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc_hdl,
5180 					uint8_t vdev_stats_id)
5181 {
5182 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5183 
5184 	if ((!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) ||
5185 	    (vdev_stats_id >= CDP_MAX_VDEV_STATS_ID))
5186 		return;
5187 
5188 	qdf_atomic_clear_bit(vdev_stats_id, &soc->vdev_stats_id_map);
5189 }
5190 #else
5191 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc,
5192 					uint8_t vdev_stats_id)
5193 {}
5194 #endif
5195 /**
5196  * dp_vdev_detach_wifi3() - Detach txrx vdev
5197  * @cdp_soc: Datapath soc handle
5198  * @vdev_id: VDEV Id
5199  * @callback: Callback OL_IF on completion of detach
5200  * @cb_context:	Callback context
5201  *
5202  */
5203 static QDF_STATUS dp_vdev_detach_wifi3(struct cdp_soc_t *cdp_soc,
5204 				       uint8_t vdev_id,
5205 				       ol_txrx_vdev_delete_cb callback,
5206 				       void *cb_context)
5207 {
5208 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
5209 	struct dp_pdev *pdev;
5210 	struct dp_neighbour_peer *peer = NULL;
5211 	struct dp_peer *vap_self_peer = NULL;
5212 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5213 						     DP_MOD_ID_CDP);
5214 
5215 	if (!vdev)
5216 		return QDF_STATUS_E_FAILURE;
5217 
5218 	soc->arch_ops.txrx_vdev_detach(soc, vdev);
5219 
5220 	pdev = vdev->pdev;
5221 
5222 	vap_self_peer = dp_sta_vdev_self_peer_ref_n_get(soc, vdev,
5223 							DP_MOD_ID_CONFIG);
5224 	if (vap_self_peer) {
5225 		qdf_spin_lock_bh(&soc->ast_lock);
5226 		if (vap_self_peer->self_ast_entry) {
5227 			dp_peer_del_ast(soc, vap_self_peer->self_ast_entry);
5228 			vap_self_peer->self_ast_entry = NULL;
5229 		}
5230 		qdf_spin_unlock_bh(&soc->ast_lock);
5231 
5232 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc, vdev->vdev_id,
5233 				     vap_self_peer->mac_addr.raw, 0,
5234 				     CDP_LINK_PEER_TYPE);
5235 		dp_peer_unref_delete(vap_self_peer, DP_MOD_ID_CONFIG);
5236 	}
5237 
5238 	/*
5239 	 * If Target is hung, flush all peers before detaching vdev
5240 	 * this will free all references held due to missing
5241 	 * unmap commands from Target
5242 	 */
5243 	if (!hif_is_target_ready(HIF_GET_SOFTC(soc->hif_handle)))
5244 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, false);
5245 	else if (hif_get_target_status(soc->hif_handle) == TARGET_STATUS_RESET)
5246 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, true, false);
5247 
5248 	/* indicate that the vdev needs to be deleted */
5249 	vdev->delete.pending = 1;
5250 	dp_rx_vdev_detach(vdev);
5251 	/*
5252 	 * move it after dp_rx_vdev_detach(),
5253 	 * as the call back done in dp_rx_vdev_detach()
5254 	 * still need to get vdev pointer by vdev_id.
5255 	 */
5256 	dp_vdev_id_map_tbl_remove(soc, vdev);
5257 
5258 	dp_monitor_neighbour_peer_list_remove(pdev, vdev, peer);
5259 
5260 	dp_txrx_reset_vdev_stats_id(cdp_soc, vdev->vdev_stats_id);
5261 
5262 	dp_tx_vdev_multipass_deinit(vdev);
5263 	dp_tx_vdev_traffic_end_indication_detach(vdev);
5264 
5265 	if (vdev->vdev_dp_ext_handle) {
5266 		qdf_mem_free(vdev->vdev_dp_ext_handle);
5267 		vdev->vdev_dp_ext_handle = NULL;
5268 	}
5269 	vdev->delete.callback = callback;
5270 	vdev->delete.context = cb_context;
5271 
5272 	if (vdev->opmode != wlan_op_mode_monitor)
5273 		dp_vdev_pdev_list_remove(soc, pdev, vdev);
5274 
5275 	pdev->vdev_count--;
5276 	/* release reference taken above for find */
5277 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5278 
5279 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
5280 	TAILQ_INSERT_TAIL(&soc->inactive_vdev_list, vdev, inactive_list_elem);
5281 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
5282 
5283 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_DETACH, vdev);
5284 	dp_info("detach vdev %pK id %d pending refs %d",
5285 		vdev, vdev->vdev_id, qdf_atomic_read(&vdev->ref_cnt));
5286 
5287 	/* release reference taken at dp_vdev_create */
5288 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
5289 
5290 	return QDF_STATUS_SUCCESS;
5291 }
5292 
5293 #ifdef WLAN_FEATURE_11BE_MLO
5294 /**
5295  * is_dp_peer_can_reuse() - check if the dp_peer match condition to be reused
5296  * @vdev: Target DP vdev handle
5297  * @peer: DP peer handle to be checked
5298  * @peer_mac_addr: Target peer mac address
5299  * @peer_type: Target peer type
5300  *
5301  * Return: true - if match, false - not match
5302  */
5303 static inline
5304 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
5305 			  struct dp_peer *peer,
5306 			  uint8_t *peer_mac_addr,
5307 			  enum cdp_peer_type peer_type)
5308 {
5309 	if (peer->bss_peer && (peer->vdev == vdev) &&
5310 	    (peer->peer_type == peer_type) &&
5311 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
5312 			 QDF_MAC_ADDR_SIZE) == 0))
5313 		return true;
5314 
5315 	return false;
5316 }
5317 #else
5318 static inline
5319 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
5320 			  struct dp_peer *peer,
5321 			  uint8_t *peer_mac_addr,
5322 			  enum cdp_peer_type peer_type)
5323 {
5324 	if (peer->bss_peer && (peer->vdev == vdev) &&
5325 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
5326 			 QDF_MAC_ADDR_SIZE) == 0))
5327 		return true;
5328 
5329 	return false;
5330 }
5331 #endif
5332 
5333 static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev,
5334 						uint8_t *peer_mac_addr,
5335 						enum cdp_peer_type peer_type)
5336 {
5337 	struct dp_peer *peer;
5338 	struct dp_soc *soc = vdev->pdev->soc;
5339 
5340 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
5341 	TAILQ_FOREACH(peer, &soc->inactive_peer_list,
5342 		      inactive_list_elem) {
5343 
5344 		/* reuse bss peer only when vdev matches*/
5345 		if (is_dp_peer_can_reuse(vdev, peer,
5346 					 peer_mac_addr, peer_type)) {
5347 			/* increment ref count for cdp_peer_create*/
5348 			if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
5349 						QDF_STATUS_SUCCESS) {
5350 				TAILQ_REMOVE(&soc->inactive_peer_list, peer,
5351 					     inactive_list_elem);
5352 				qdf_spin_unlock_bh
5353 					(&soc->inactive_peer_list_lock);
5354 				return peer;
5355 			}
5356 		}
5357 	}
5358 
5359 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
5360 	return NULL;
5361 }
5362 
5363 #ifdef FEATURE_AST
5364 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
5365 					       struct dp_pdev *pdev,
5366 					       uint8_t *peer_mac_addr)
5367 {
5368 	struct dp_ast_entry *ast_entry;
5369 
5370 	if (soc->ast_offload_support)
5371 		return;
5372 
5373 	qdf_spin_lock_bh(&soc->ast_lock);
5374 	if (soc->ast_override_support)
5375 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, peer_mac_addr,
5376 							    pdev->pdev_id);
5377 	else
5378 		ast_entry = dp_peer_ast_hash_find_soc(soc, peer_mac_addr);
5379 
5380 	if (ast_entry && ast_entry->next_hop && !ast_entry->delete_in_progress)
5381 		dp_peer_del_ast(soc, ast_entry);
5382 
5383 	qdf_spin_unlock_bh(&soc->ast_lock);
5384 }
5385 #else
5386 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
5387 					       struct dp_pdev *pdev,
5388 					       uint8_t *peer_mac_addr)
5389 {
5390 }
5391 #endif
5392 
5393 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
5394 /**
5395  * dp_peer_hw_txrx_stats_init() - Initialize hw_txrx_stats_en in dp_peer
5396  * @soc: Datapath soc handle
5397  * @txrx_peer: Datapath peer handle
5398  *
5399  * Return: none
5400  */
5401 static inline
5402 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
5403 				struct dp_txrx_peer *txrx_peer)
5404 {
5405 	txrx_peer->hw_txrx_stats_en =
5406 		wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx);
5407 }
5408 #else
5409 static inline
5410 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
5411 				struct dp_txrx_peer *txrx_peer)
5412 {
5413 	txrx_peer->hw_txrx_stats_en = 0;
5414 }
5415 #endif
5416 
5417 static QDF_STATUS dp_txrx_peer_detach(struct dp_soc *soc, struct dp_peer *peer)
5418 {
5419 	struct dp_txrx_peer *txrx_peer;
5420 	struct dp_pdev *pdev;
5421 	struct cdp_txrx_peer_params_update params = {0};
5422 
5423 	/* dp_txrx_peer exists for mld peer and legacy peer */
5424 	if (peer->txrx_peer) {
5425 		txrx_peer = peer->txrx_peer;
5426 		peer->txrx_peer = NULL;
5427 		pdev = txrx_peer->vdev->pdev;
5428 
5429 		if ((peer->vdev->opmode != wlan_op_mode_sta) &&
5430 		    !peer->bss_peer) {
5431 			params.vdev_id = peer->vdev->vdev_id;
5432 			params.peer_mac = peer->mac_addr.raw;
5433 
5434 			dp_wdi_event_handler(WDI_EVENT_PEER_DELETE, soc,
5435 					     (void *)&params, peer->peer_id,
5436 					     WDI_NO_VAL, pdev->pdev_id);
5437 		}
5438 
5439 		dp_peer_defrag_rx_tids_deinit(txrx_peer);
5440 		/*
5441 		 * Deallocate the extended stats contenxt
5442 		 */
5443 		dp_peer_delay_stats_ctx_dealloc(soc, txrx_peer);
5444 		dp_peer_rx_bufq_resources_deinit(txrx_peer);
5445 		dp_peer_jitter_stats_ctx_dealloc(pdev, txrx_peer);
5446 		dp_peer_sawf_stats_ctx_free(soc, txrx_peer);
5447 
5448 		qdf_mem_free(txrx_peer);
5449 	}
5450 
5451 	return QDF_STATUS_SUCCESS;
5452 }
5453 
5454 static inline
5455 uint8_t dp_txrx_peer_calculate_stats_size(struct dp_soc *soc,
5456 					  struct dp_peer *peer)
5457 {
5458 	if ((wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx)) &&
5459 	    IS_MLO_DP_MLD_PEER(peer)) {
5460 		return (DP_MAX_MLO_LINKS + 1);
5461 	}
5462 	return 1;
5463 }
5464 
5465 static QDF_STATUS dp_txrx_peer_attach(struct dp_soc *soc, struct dp_peer *peer)
5466 {
5467 	struct dp_txrx_peer *txrx_peer;
5468 	struct dp_pdev *pdev;
5469 	struct cdp_txrx_peer_params_update params = {0};
5470 	uint8_t stats_arr_size = 0;
5471 
5472 	stats_arr_size = dp_txrx_peer_calculate_stats_size(soc, peer);
5473 
5474 	txrx_peer = (struct dp_txrx_peer *)qdf_mem_malloc(sizeof(*txrx_peer) +
5475 							  (stats_arr_size *
5476 							   sizeof(struct dp_peer_stats)));
5477 
5478 	if (!txrx_peer)
5479 		return QDF_STATUS_E_NOMEM; /* failure */
5480 
5481 	txrx_peer->peer_id = HTT_INVALID_PEER;
5482 	/* initialize the peer_id */
5483 	txrx_peer->vdev = peer->vdev;
5484 	pdev = peer->vdev->pdev;
5485 	txrx_peer->stats_arr_size = stats_arr_size;
5486 
5487 	DP_TXRX_PEER_STATS_INIT(txrx_peer,
5488 				(txrx_peer->stats_arr_size *
5489 				sizeof(struct dp_peer_stats)));
5490 
5491 	if (!IS_DP_LEGACY_PEER(peer))
5492 		txrx_peer->is_mld_peer = 1;
5493 
5494 	dp_wds_ext_peer_init(txrx_peer);
5495 	dp_peer_rx_bufq_resources_init(txrx_peer);
5496 	dp_peer_hw_txrx_stats_init(soc, txrx_peer);
5497 	/*
5498 	 * Allocate peer extended stats context. Fall through in
5499 	 * case of failure as its not an implicit requirement to have
5500 	 * this object for regular statistics updates.
5501 	 */
5502 	if (dp_peer_delay_stats_ctx_alloc(soc, txrx_peer) !=
5503 					  QDF_STATUS_SUCCESS)
5504 		dp_warn("peer delay_stats ctx alloc failed");
5505 
5506 	/*
5507 	 * Alloctate memory for jitter stats. Fall through in
5508 	 * case of failure as its not an implicit requirement to have
5509 	 * this object for regular statistics updates.
5510 	 */
5511 	if (dp_peer_jitter_stats_ctx_alloc(pdev, txrx_peer) !=
5512 					   QDF_STATUS_SUCCESS)
5513 		dp_warn("peer jitter_stats ctx alloc failed");
5514 
5515 	dp_set_peer_isolation(txrx_peer, false);
5516 
5517 	dp_peer_defrag_rx_tids_init(txrx_peer);
5518 
5519 	if (dp_peer_sawf_stats_ctx_alloc(soc, txrx_peer) != QDF_STATUS_SUCCESS)
5520 		dp_warn("peer sawf stats alloc failed");
5521 
5522 	dp_txrx_peer_attach_add(soc, peer, txrx_peer);
5523 
5524 	if ((peer->vdev->opmode == wlan_op_mode_sta) || peer->bss_peer)
5525 		return QDF_STATUS_SUCCESS;
5526 
5527 	params.peer_mac = peer->mac_addr.raw;
5528 	params.vdev_id = peer->vdev->vdev_id;
5529 	params.chip_id = dp_get_chip_id(soc);
5530 	params.pdev_id = peer->vdev->pdev->pdev_id;
5531 
5532 	dp_wdi_event_handler(WDI_EVENT_TXRX_PEER_CREATE, soc,
5533 			     (void *)&params, peer->peer_id,
5534 			     WDI_NO_VAL, params.pdev_id);
5535 
5536 	return QDF_STATUS_SUCCESS;
5537 }
5538 
5539 static inline
5540 void dp_txrx_peer_stats_clr(struct dp_txrx_peer *txrx_peer)
5541 {
5542 	if (!txrx_peer)
5543 		return;
5544 
5545 	txrx_peer->tx_failed = 0;
5546 	txrx_peer->comp_pkt.num = 0;
5547 	txrx_peer->comp_pkt.bytes = 0;
5548 	txrx_peer->to_stack.num = 0;
5549 	txrx_peer->to_stack.bytes = 0;
5550 
5551 	DP_TXRX_PEER_STATS_CLR(txrx_peer,
5552 			       (txrx_peer->stats_arr_size *
5553 			       sizeof(struct dp_peer_stats)));
5554 	dp_peer_delay_stats_ctx_clr(txrx_peer);
5555 	dp_peer_jitter_stats_ctx_clr(txrx_peer);
5556 }
5557 
5558 /**
5559  * dp_peer_create_wifi3() - attach txrx peer
5560  * @soc_hdl: Datapath soc handle
5561  * @vdev_id: id of vdev
5562  * @peer_mac_addr: Peer MAC address
5563  * @peer_type: link or MLD peer type
5564  *
5565  * Return: 0 on success, -1 on failure
5566  */
5567 static QDF_STATUS
5568 dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5569 		     uint8_t *peer_mac_addr, enum cdp_peer_type peer_type)
5570 {
5571 	struct dp_peer *peer;
5572 	int i;
5573 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
5574 	struct dp_pdev *pdev;
5575 	enum cdp_txrx_ast_entry_type ast_type = CDP_TXRX_AST_TYPE_STATIC;
5576 	struct dp_vdev *vdev = NULL;
5577 
5578 	if (!peer_mac_addr)
5579 		return QDF_STATUS_E_FAILURE;
5580 
5581 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5582 
5583 	if (!vdev)
5584 		return QDF_STATUS_E_FAILURE;
5585 
5586 	pdev = vdev->pdev;
5587 	soc = pdev->soc;
5588 
5589 	/*
5590 	 * If a peer entry with given MAC address already exists,
5591 	 * reuse the peer and reset the state of peer.
5592 	 */
5593 	peer = dp_peer_can_reuse(vdev, peer_mac_addr, peer_type);
5594 
5595 	if (peer) {
5596 		qdf_atomic_init(&peer->is_default_route_set);
5597 		dp_peer_cleanup(vdev, peer);
5598 
5599 		dp_peer_vdev_list_add(soc, vdev, peer);
5600 		dp_peer_find_hash_add(soc, peer);
5601 
5602 		if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
5603 			dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
5604 				 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5605 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5606 			return QDF_STATUS_E_FAILURE;
5607 		}
5608 
5609 		if (IS_MLO_DP_MLD_PEER(peer))
5610 			dp_mld_peer_init_link_peers_info(peer);
5611 
5612 		qdf_spin_lock_bh(&soc->ast_lock);
5613 		dp_peer_delete_ast_entries(soc, peer);
5614 		qdf_spin_unlock_bh(&soc->ast_lock);
5615 
5616 		if ((vdev->opmode == wlan_op_mode_sta) &&
5617 		    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
5618 		     QDF_MAC_ADDR_SIZE)) {
5619 			ast_type = CDP_TXRX_AST_TYPE_SELF;
5620 		}
5621 		dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
5622 
5623 		peer->valid = 1;
5624 		peer->is_tdls_peer = false;
5625 		dp_local_peer_id_alloc(pdev, peer);
5626 
5627 		qdf_spinlock_create(&peer->peer_info_lock);
5628 
5629 		DP_STATS_INIT(peer);
5630 
5631 		/*
5632 		 * In tx_monitor mode, filter may be set for unassociated peer
5633 		 * when unassociated peer get associated peer need to
5634 		 * update tx_cap_enabled flag to support peer filter.
5635 		 */
5636 		if (!IS_MLO_DP_MLD_PEER(peer)) {
5637 			dp_monitor_peer_tx_capture_filter_check(pdev, peer);
5638 			dp_monitor_peer_reset_stats(soc, peer);
5639 		}
5640 
5641 		if (peer->txrx_peer) {
5642 			dp_peer_rx_bufq_resources_init(peer->txrx_peer);
5643 			dp_txrx_peer_stats_clr(peer->txrx_peer);
5644 			dp_set_peer_isolation(peer->txrx_peer, false);
5645 			dp_wds_ext_peer_init(peer->txrx_peer);
5646 			dp_peer_hw_txrx_stats_init(soc, peer->txrx_peer);
5647 		}
5648 
5649 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
5650 					     peer, vdev, 1);
5651 		dp_info("vdev %pK Reused peer %pK ("QDF_MAC_ADDR_FMT
5652 			") vdev_ref_cnt "
5653 			"%d peer_ref_cnt: %d",
5654 			vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5655 			qdf_atomic_read(&vdev->ref_cnt),
5656 			qdf_atomic_read(&peer->ref_cnt));
5657 			dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
5658 
5659 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5660 		return QDF_STATUS_SUCCESS;
5661 	} else {
5662 		/*
5663 		 * When a STA roams from RPTR AP to ROOT AP and vice versa, we
5664 		 * need to remove the AST entry which was earlier added as a WDS
5665 		 * entry.
5666 		 * If an AST entry exists, but no peer entry exists with a given
5667 		 * MAC addresses, we could deduce it as a WDS entry
5668 		 */
5669 		dp_peer_ast_handle_roam_del(soc, pdev, peer_mac_addr);
5670 	}
5671 
5672 #ifdef notyet
5673 	peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
5674 		soc->mempool_ol_ath_peer);
5675 #else
5676 	peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
5677 #endif
5678 	wlan_minidump_log(peer,
5679 			  sizeof(*peer),
5680 			  soc->ctrl_psoc,
5681 			  WLAN_MD_DP_PEER, "dp_peer");
5682 	if (!peer) {
5683 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5684 		return QDF_STATUS_E_FAILURE; /* failure */
5685 	}
5686 
5687 	qdf_mem_zero(peer, sizeof(struct dp_peer));
5688 
5689 	/* store provided params */
5690 	peer->vdev = vdev;
5691 
5692 	/* initialize the peer_id */
5693 	peer->peer_id = HTT_INVALID_PEER;
5694 
5695 	qdf_mem_copy(
5696 		&peer->mac_addr.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE);
5697 
5698 	DP_PEER_SET_TYPE(peer, peer_type);
5699 	if (IS_MLO_DP_MLD_PEER(peer)) {
5700 		if (dp_txrx_peer_attach(soc, peer) !=
5701 				QDF_STATUS_SUCCESS)
5702 			goto fail; /* failure */
5703 
5704 		dp_mld_peer_init_link_peers_info(peer);
5705 	}
5706 
5707 	if (dp_monitor_peer_attach(soc, peer) != QDF_STATUS_SUCCESS)
5708 		dp_warn("peer monitor ctx alloc failed");
5709 
5710 	TAILQ_INIT(&peer->ast_entry_list);
5711 
5712 	/* get the vdev reference for new peer */
5713 	dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CHILD);
5714 
5715 	if ((vdev->opmode == wlan_op_mode_sta) &&
5716 	    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
5717 			 QDF_MAC_ADDR_SIZE)) {
5718 		ast_type = CDP_TXRX_AST_TYPE_SELF;
5719 	}
5720 	qdf_spinlock_create(&peer->peer_state_lock);
5721 	dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
5722 	qdf_spinlock_create(&peer->peer_info_lock);
5723 
5724 	/* reset the ast index to flowid table */
5725 	dp_peer_reset_flowq_map(peer);
5726 
5727 	qdf_atomic_init(&peer->ref_cnt);
5728 
5729 	for (i = 0; i < DP_MOD_ID_MAX; i++)
5730 		qdf_atomic_init(&peer->mod_refs[i]);
5731 
5732 	/* keep one reference for attach */
5733 	qdf_atomic_inc(&peer->ref_cnt);
5734 	qdf_atomic_inc(&peer->mod_refs[DP_MOD_ID_CONFIG]);
5735 
5736 	dp_peer_vdev_list_add(soc, vdev, peer);
5737 
5738 	/* TODO: See if hash based search is required */
5739 	dp_peer_find_hash_add(soc, peer);
5740 
5741 	/* Initialize the peer state */
5742 	peer->state = OL_TXRX_PEER_STATE_DISC;
5743 
5744 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
5745 				     peer, vdev, 0);
5746 	dp_info("vdev %pK created peer %pK ("QDF_MAC_ADDR_FMT") vdev_ref_cnt "
5747 		"%d peer_ref_cnt: %d",
5748 		vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5749 		qdf_atomic_read(&vdev->ref_cnt),
5750 		qdf_atomic_read(&peer->ref_cnt));
5751 	/*
5752 	 * For every peer MAp message search and set if bss_peer
5753 	 */
5754 	if (qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
5755 			QDF_MAC_ADDR_SIZE) == 0 &&
5756 			(wlan_op_mode_sta != vdev->opmode)) {
5757 		dp_info("vdev bss_peer!!");
5758 		peer->bss_peer = 1;
5759 		if (peer->txrx_peer)
5760 			peer->txrx_peer->bss_peer = 1;
5761 	}
5762 
5763 	if (wlan_op_mode_sta == vdev->opmode &&
5764 	    qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
5765 			QDF_MAC_ADDR_SIZE) == 0) {
5766 		peer->sta_self_peer = 1;
5767 	}
5768 
5769 	if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
5770 		dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
5771 			 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5772 		goto fail;
5773 	}
5774 
5775 	peer->valid = 1;
5776 	dp_local_peer_id_alloc(pdev, peer);
5777 	DP_STATS_INIT(peer);
5778 
5779 	if (dp_peer_sawf_ctx_alloc(soc, peer) != QDF_STATUS_SUCCESS)
5780 		dp_warn("peer sawf context alloc failed");
5781 
5782 	dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
5783 
5784 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5785 
5786 	return QDF_STATUS_SUCCESS;
5787 fail:
5788 	qdf_mem_free(peer);
5789 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5790 
5791 	return QDF_STATUS_E_FAILURE;
5792 }
5793 
5794 QDF_STATUS dp_peer_legacy_setup(struct dp_soc *soc, struct dp_peer *peer)
5795 {
5796 	/* txrx_peer might exist already in peer reuse case */
5797 	if (peer->txrx_peer)
5798 		return QDF_STATUS_SUCCESS;
5799 
5800 	if (dp_txrx_peer_attach(soc, peer) !=
5801 				QDF_STATUS_SUCCESS) {
5802 		dp_err("peer txrx ctx alloc failed");
5803 		return QDF_STATUS_E_FAILURE;
5804 	}
5805 
5806 	return QDF_STATUS_SUCCESS;
5807 }
5808 
5809 #ifdef WLAN_FEATURE_11BE_MLO
5810 static QDF_STATUS dp_mld_peer_change_vdev(struct dp_soc *soc,
5811 					  struct dp_peer *mld_peer,
5812 					  uint8_t new_vdev_id)
5813 {
5814 	struct dp_vdev *prev_vdev;
5815 
5816 	prev_vdev = mld_peer->vdev;
5817 	/* release the ref to original dp_vdev */
5818 	dp_vdev_unref_delete(soc, mld_peer->vdev,
5819 			     DP_MOD_ID_CHILD);
5820 	/*
5821 	 * get the ref to new dp_vdev,
5822 	 * increase dp_vdev ref_cnt
5823 	 */
5824 	mld_peer->vdev = dp_vdev_get_ref_by_id(soc, new_vdev_id,
5825 					       DP_MOD_ID_CHILD);
5826 	mld_peer->txrx_peer->vdev = mld_peer->vdev;
5827 
5828 	dp_info("Change vdev for ML peer " QDF_MAC_ADDR_FMT
5829 		" old vdev %pK id %d new vdev %pK id %d",
5830 		QDF_MAC_ADDR_REF(mld_peer->mac_addr.raw),
5831 		prev_vdev, prev_vdev->vdev_id, mld_peer->vdev, new_vdev_id);
5832 
5833 	dp_cfg_event_record_mlo_setup_vdev_update_evt(
5834 			soc, mld_peer, prev_vdev,
5835 			mld_peer->vdev);
5836 
5837 	return QDF_STATUS_SUCCESS;
5838 }
5839 
5840 QDF_STATUS dp_peer_mlo_setup(
5841 			struct dp_soc *soc,
5842 			struct dp_peer *peer,
5843 			uint8_t vdev_id,
5844 			struct cdp_peer_setup_info *setup_info)
5845 {
5846 	struct dp_peer *mld_peer = NULL;
5847 	struct cdp_txrx_peer_params_update params = {0};
5848 
5849 	/* Non-MLO connection */
5850 	if (!setup_info || !setup_info->mld_peer_mac) {
5851 		/* To handle downgrade scenarios */
5852 		if (peer->vdev->opmode == wlan_op_mode_sta) {
5853 			struct cdp_txrx_peer_params_update params = {0};
5854 
5855 			params.chip_id = dp_get_chip_id(soc);
5856 			params.pdev_id = peer->vdev->pdev->pdev_id;
5857 			params.vdev_id = peer->vdev->vdev_id;
5858 
5859 			dp_wdi_event_handler(
5860 					WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
5861 					soc,
5862 					(void *)&params, peer->peer_id,
5863 					WDI_NO_VAL, params.pdev_id);
5864 		}
5865 		return QDF_STATUS_SUCCESS;
5866 	}
5867 
5868 	dp_cfg_event_record_peer_setup_evt(soc, DP_CFG_EVENT_MLO_SETUP,
5869 					   peer, NULL, vdev_id, setup_info);
5870 	dp_info("link peer: " QDF_MAC_ADDR_FMT "mld peer: " QDF_MAC_ADDR_FMT
5871 		"first_link %d, primary_link %d",
5872 		QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5873 		QDF_MAC_ADDR_REF(setup_info->mld_peer_mac),
5874 		setup_info->is_first_link,
5875 		setup_info->is_primary_link);
5876 
5877 	/* if this is the first link peer */
5878 	if (setup_info->is_first_link)
5879 		/* create MLD peer */
5880 		dp_peer_create_wifi3((struct cdp_soc_t *)soc,
5881 				     vdev_id,
5882 				     setup_info->mld_peer_mac,
5883 				     CDP_MLD_PEER_TYPE);
5884 
5885 	if (peer->vdev->opmode == wlan_op_mode_sta &&
5886 	    setup_info->is_primary_link) {
5887 		struct cdp_txrx_peer_params_update params = {0};
5888 
5889 		params.chip_id = dp_get_chip_id(soc);
5890 		params.pdev_id = peer->vdev->pdev->pdev_id;
5891 		params.vdev_id = peer->vdev->vdev_id;
5892 
5893 		dp_wdi_event_handler(
5894 				WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
5895 				soc,
5896 				(void *)&params, peer->peer_id,
5897 				WDI_NO_VAL, params.pdev_id);
5898 	}
5899 
5900 	peer->first_link = setup_info->is_first_link;
5901 	peer->primary_link = setup_info->is_primary_link;
5902 	mld_peer = dp_mld_peer_find_hash_find(soc,
5903 					      setup_info->mld_peer_mac,
5904 					      0, vdev_id, DP_MOD_ID_CDP);
5905 	if (mld_peer) {
5906 		if (setup_info->is_first_link) {
5907 			/* assign rx_tid to mld peer */
5908 			mld_peer->rx_tid = peer->rx_tid;
5909 			/* no cdp_peer_setup for MLD peer,
5910 			 * set it for addba processing
5911 			 */
5912 			qdf_atomic_set(&mld_peer->is_default_route_set, 1);
5913 		} else {
5914 			/* free link peer original rx_tids mem */
5915 			dp_peer_rx_tids_destroy(peer);
5916 			/* assign mld peer rx_tid to link peer */
5917 			peer->rx_tid = mld_peer->rx_tid;
5918 		}
5919 
5920 		if (setup_info->is_primary_link &&
5921 		    !setup_info->is_first_link) {
5922 			/*
5923 			 * if first link is not the primary link,
5924 			 * then need to change mld_peer->vdev as
5925 			 * primary link dp_vdev is not same one
5926 			 * during mld peer creation.
5927 			 */
5928 			dp_info("Primary link is not the first link. vdev: %pK "
5929 				"vdev_id %d vdev_ref_cnt %d",
5930 				mld_peer->vdev, vdev_id,
5931 				qdf_atomic_read(&mld_peer->vdev->ref_cnt));
5932 
5933 			dp_mld_peer_change_vdev(soc, mld_peer, vdev_id);
5934 
5935 			params.vdev_id = peer->vdev->vdev_id;
5936 			params.peer_mac = mld_peer->mac_addr.raw;
5937 			params.chip_id = dp_get_chip_id(soc);
5938 			params.pdev_id = peer->vdev->pdev->pdev_id;
5939 
5940 			dp_wdi_event_handler(
5941 					WDI_EVENT_PEER_PRIMARY_UMAC_UPDATE,
5942 					soc, (void *)&params, peer->peer_id,
5943 					WDI_NO_VAL, params.pdev_id);
5944 		}
5945 
5946 		/* associate mld and link peer */
5947 		dp_link_peer_add_mld_peer(peer, mld_peer);
5948 		dp_mld_peer_add_link_peer(mld_peer, peer);
5949 
5950 		mld_peer->txrx_peer->is_mld_peer = 1;
5951 		dp_peer_unref_delete(mld_peer, DP_MOD_ID_CDP);
5952 	} else {
5953 		peer->mld_peer = NULL;
5954 		dp_err("mld peer" QDF_MAC_ADDR_FMT "not found!",
5955 		       QDF_MAC_ADDR_REF(setup_info->mld_peer_mac));
5956 		return QDF_STATUS_E_FAILURE;
5957 	}
5958 
5959 	return QDF_STATUS_SUCCESS;
5960 }
5961 
5962 /**
5963  * dp_mlo_peer_authorize() - authorize MLO peer
5964  * @soc: soc handle
5965  * @peer: pointer to link peer
5966  *
5967  * Return: void
5968  */
5969 static void dp_mlo_peer_authorize(struct dp_soc *soc,
5970 				  struct dp_peer *peer)
5971 {
5972 	int i;
5973 	struct dp_peer *link_peer = NULL;
5974 	struct dp_peer *mld_peer = peer->mld_peer;
5975 	struct dp_mld_link_peers link_peers_info;
5976 
5977 	if (!mld_peer)
5978 		return;
5979 
5980 	/* get link peers with reference */
5981 	dp_get_link_peers_ref_from_mld_peer(soc, mld_peer,
5982 					    &link_peers_info,
5983 					    DP_MOD_ID_CDP);
5984 
5985 	for (i = 0; i < link_peers_info.num_links; i++) {
5986 		link_peer = link_peers_info.link_peers[i];
5987 
5988 		if (!link_peer->authorize) {
5989 			dp_release_link_peers_ref(&link_peers_info,
5990 						  DP_MOD_ID_CDP);
5991 			mld_peer->authorize = false;
5992 			return;
5993 		}
5994 	}
5995 
5996 	/* if we are here all link peers are authorized,
5997 	 * authorize ml_peer also
5998 	 */
5999 	mld_peer->authorize = true;
6000 
6001 	/* release link peers reference */
6002 	dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
6003 }
6004 #endif
6005 
6006 /**
6007  * dp_peer_setup_wifi3_wrapper() - initialize the peer
6008  * @soc_hdl: soc handle object
6009  * @vdev_id : vdev_id of vdev object
6010  * @peer_mac: Peer's mac address
6011  * @setup_info: peer setup info for MLO
6012  *
6013  * Return: QDF_STATUS
6014  */
6015 static QDF_STATUS
6016 dp_peer_setup_wifi3_wrapper(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6017 			    uint8_t *peer_mac,
6018 			    struct cdp_peer_setup_info *setup_info)
6019 {
6020 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6021 
6022 	return soc->arch_ops.txrx_peer_setup(soc_hdl, vdev_id,
6023 					     peer_mac, setup_info);
6024 }
6025 
6026 /**
6027  * dp_cp_peer_del_resp_handler() - Handle the peer delete response
6028  * @soc_hdl: Datapath SOC handle
6029  * @vdev_id: id of virtual device object
6030  * @mac_addr: Mac address of the peer
6031  *
6032  * Return: QDF_STATUS
6033  */
6034 static QDF_STATUS dp_cp_peer_del_resp_handler(struct cdp_soc_t *soc_hdl,
6035 					      uint8_t vdev_id,
6036 					      uint8_t *mac_addr)
6037 {
6038 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6039 	struct dp_ast_entry  *ast_entry = NULL;
6040 	txrx_ast_free_cb cb = NULL;
6041 	void *cookie;
6042 
6043 	if (soc->ast_offload_support)
6044 		return QDF_STATUS_E_INVAL;
6045 
6046 	qdf_spin_lock_bh(&soc->ast_lock);
6047 
6048 	ast_entry =
6049 		dp_peer_ast_hash_find_by_vdevid(soc, mac_addr,
6050 						vdev_id);
6051 
6052 	/* in case of qwrap we have multiple BSS peers
6053 	 * with same mac address
6054 	 *
6055 	 * AST entry for this mac address will be created
6056 	 * only for one peer hence it will be NULL here
6057 	 */
6058 	if ((!ast_entry || !ast_entry->delete_in_progress) ||
6059 	    (ast_entry->peer_id != HTT_INVALID_PEER)) {
6060 		qdf_spin_unlock_bh(&soc->ast_lock);
6061 		return QDF_STATUS_E_FAILURE;
6062 	}
6063 
6064 	if (ast_entry->is_mapped)
6065 		soc->ast_table[ast_entry->ast_idx] = NULL;
6066 
6067 	DP_STATS_INC(soc, ast.deleted, 1);
6068 	dp_peer_ast_hash_remove(soc, ast_entry);
6069 
6070 	cb = ast_entry->callback;
6071 	cookie = ast_entry->cookie;
6072 	ast_entry->callback = NULL;
6073 	ast_entry->cookie = NULL;
6074 
6075 	soc->num_ast_entries--;
6076 	qdf_spin_unlock_bh(&soc->ast_lock);
6077 
6078 	if (cb) {
6079 		cb(soc->ctrl_psoc,
6080 		   dp_soc_to_cdp_soc(soc),
6081 		   cookie,
6082 		   CDP_TXRX_AST_DELETED);
6083 	}
6084 	qdf_mem_free(ast_entry);
6085 
6086 	return QDF_STATUS_SUCCESS;
6087 }
6088 
6089 #ifdef WLAN_SUPPORT_MSCS
6090 /**
6091  * dp_record_mscs_params() - Record MSCS parameters sent by the STA in
6092  * the MSCS Request to the AP.
6093  * @soc_hdl: Datapath soc handle
6094  * @peer_mac: STA Mac address
6095  * @vdev_id: ID of the vdev handle
6096  * @mscs_params: Structure having MSCS parameters obtained
6097  * from handshake
6098  * @active: Flag to set MSCS active/inactive
6099  *
6100  * The AP makes a note of these parameters while comparing the MSDUs
6101  * sent by the STA, to send the downlink traffic with correct User
6102  * priority.
6103  *
6104  * Return: QDF_STATUS - Success/Invalid
6105  */
6106 static QDF_STATUS
6107 dp_record_mscs_params(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
6108 		      uint8_t vdev_id, struct cdp_mscs_params *mscs_params,
6109 		      bool active)
6110 {
6111 	struct dp_peer *peer;
6112 	struct dp_peer *tgt_peer;
6113 	QDF_STATUS status = QDF_STATUS_E_INVAL;
6114 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6115 
6116 	peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
6117 				      DP_MOD_ID_CDP);
6118 
6119 	if (!peer) {
6120 		dp_err("Peer is NULL!");
6121 		goto fail;
6122 	}
6123 
6124 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
6125 	if (!tgt_peer)
6126 		goto fail;
6127 
6128 	if (!active) {
6129 		dp_info("MSCS Procedure is terminated");
6130 		tgt_peer->mscs_active = active;
6131 		goto fail;
6132 	}
6133 
6134 	if (mscs_params->classifier_type == IEEE80211_TCLAS_MASK_CLA_TYPE_4) {
6135 		/* Populate entries inside IPV4 database first */
6136 		tgt_peer->mscs_ipv4_parameter.user_priority_bitmap =
6137 			mscs_params->user_pri_bitmap;
6138 		tgt_peer->mscs_ipv4_parameter.user_priority_limit =
6139 			mscs_params->user_pri_limit;
6140 		tgt_peer->mscs_ipv4_parameter.classifier_mask =
6141 			mscs_params->classifier_mask;
6142 
6143 		/* Populate entries inside IPV6 database */
6144 		tgt_peer->mscs_ipv6_parameter.user_priority_bitmap =
6145 			mscs_params->user_pri_bitmap;
6146 		tgt_peer->mscs_ipv6_parameter.user_priority_limit =
6147 			mscs_params->user_pri_limit;
6148 		tgt_peer->mscs_ipv6_parameter.classifier_mask =
6149 			mscs_params->classifier_mask;
6150 		tgt_peer->mscs_active = 1;
6151 		dp_info("\n\tMSCS Procedure request based parameters for "QDF_MAC_ADDR_FMT"\n"
6152 			"\tClassifier_type = %d\tUser priority bitmap = %x\n"
6153 			"\tUser priority limit = %x\tClassifier mask = %x",
6154 			QDF_MAC_ADDR_REF(peer_mac),
6155 			mscs_params->classifier_type,
6156 			tgt_peer->mscs_ipv4_parameter.user_priority_bitmap,
6157 			tgt_peer->mscs_ipv4_parameter.user_priority_limit,
6158 			tgt_peer->mscs_ipv4_parameter.classifier_mask);
6159 	}
6160 
6161 	status = QDF_STATUS_SUCCESS;
6162 fail:
6163 	if (peer)
6164 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6165 	return status;
6166 }
6167 #endif
6168 
6169 /**
6170  * dp_get_sec_type() - Get the security type
6171  * @soc: soc handle
6172  * @vdev_id: id of dp handle
6173  * @peer_mac: mac of datapath PEER handle
6174  * @sec_idx:    Security id (mcast, ucast)
6175  *
6176  * return sec_type: Security type
6177  */
6178 static int dp_get_sec_type(struct cdp_soc_t *soc, uint8_t vdev_id,
6179 			   uint8_t *peer_mac, uint8_t sec_idx)
6180 {
6181 	int sec_type = 0;
6182 	struct dp_peer *peer =
6183 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)soc,
6184 						       peer_mac, 0, vdev_id,
6185 						       DP_MOD_ID_CDP);
6186 
6187 	if (!peer) {
6188 		dp_cdp_err("%pK: Peer is NULL!", (struct dp_soc *)soc);
6189 		return sec_type;
6190 	}
6191 
6192 	if (!peer->txrx_peer) {
6193 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6194 		dp_peer_debug("%pK: txrx peer is NULL!", soc);
6195 		return sec_type;
6196 	}
6197 	sec_type = peer->txrx_peer->security[sec_idx].sec_type;
6198 
6199 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6200 	return sec_type;
6201 }
6202 
6203 /**
6204  * dp_peer_authorize() - authorize txrx peer
6205  * @soc_hdl: soc handle
6206  * @vdev_id: id of dp handle
6207  * @peer_mac: mac of datapath PEER handle
6208  * @authorize:
6209  *
6210  * Return: QDF_STATUS
6211  *
6212  */
6213 static QDF_STATUS
6214 dp_peer_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6215 		  uint8_t *peer_mac, uint32_t authorize)
6216 {
6217 	QDF_STATUS status = QDF_STATUS_SUCCESS;
6218 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6219 	struct dp_peer *peer = dp_peer_get_tgt_peer_hash_find(soc, peer_mac,
6220 							      0, vdev_id,
6221 							      DP_MOD_ID_CDP);
6222 
6223 	if (!peer) {
6224 		dp_cdp_debug("%pK: Peer is NULL!", soc);
6225 		status = QDF_STATUS_E_FAILURE;
6226 	} else {
6227 		peer->authorize = authorize ? 1 : 0;
6228 		if (peer->txrx_peer)
6229 			peer->txrx_peer->authorize = peer->authorize;
6230 
6231 		if (!peer->authorize)
6232 			dp_peer_flush_frags(soc_hdl, vdev_id, peer_mac);
6233 
6234 		dp_mlo_peer_authorize(soc, peer);
6235 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6236 	}
6237 
6238 	return status;
6239 }
6240 
6241 /**
6242  * dp_peer_get_authorize() - get peer authorize status
6243  * @soc_hdl: soc handle
6244  * @vdev_id: id of dp handle
6245  * @peer_mac: mac of datapath PEER handle
6246  *
6247  * Return: true is peer is authorized, false otherwise
6248  */
6249 static bool
6250 dp_peer_get_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6251 		      uint8_t *peer_mac)
6252 {
6253 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6254 	bool authorize = false;
6255 	struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac,
6256 						      0, vdev_id,
6257 						      DP_MOD_ID_CDP);
6258 
6259 	if (!peer) {
6260 		dp_cdp_debug("%pK: Peer is NULL!", soc);
6261 		return authorize;
6262 	}
6263 
6264 	authorize = peer->authorize;
6265 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6266 
6267 	return authorize;
6268 }
6269 
6270 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
6271 			  enum dp_mod_id mod_id)
6272 {
6273 	ol_txrx_vdev_delete_cb vdev_delete_cb = NULL;
6274 	void *vdev_delete_context = NULL;
6275 	uint8_t vdev_id = vdev->vdev_id;
6276 	struct dp_pdev *pdev = vdev->pdev;
6277 	struct dp_vdev *tmp_vdev = NULL;
6278 	uint8_t found = 0;
6279 
6280 	QDF_ASSERT(qdf_atomic_dec_return(&vdev->mod_refs[mod_id]) >= 0);
6281 
6282 	/* Return if this is not the last reference*/
6283 	if (!qdf_atomic_dec_and_test(&vdev->ref_cnt))
6284 		return;
6285 
6286 	/*
6287 	 * This should be set as last reference need to released
6288 	 * after cdp_vdev_detach() is called
6289 	 *
6290 	 * if this assert is hit there is a ref count issue
6291 	 */
6292 	QDF_ASSERT(vdev->delete.pending);
6293 
6294 	vdev_delete_cb = vdev->delete.callback;
6295 	vdev_delete_context = vdev->delete.context;
6296 
6297 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")- its last peer is done",
6298 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
6299 
6300 	if (wlan_op_mode_monitor == vdev->opmode) {
6301 		dp_monitor_vdev_delete(soc, vdev);
6302 		goto free_vdev;
6303 	}
6304 
6305 	/* all peers are gone, go ahead and delete it */
6306 	dp_tx_flow_pool_unmap_handler(pdev, vdev_id,
6307 			FLOW_TYPE_VDEV, vdev_id);
6308 	dp_tx_vdev_detach(vdev);
6309 	dp_monitor_vdev_detach(vdev);
6310 
6311 free_vdev:
6312 	qdf_spinlock_destroy(&vdev->peer_list_lock);
6313 
6314 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
6315 	TAILQ_FOREACH(tmp_vdev, &soc->inactive_vdev_list,
6316 		      inactive_list_elem) {
6317 		if (tmp_vdev == vdev) {
6318 			found = 1;
6319 			break;
6320 		}
6321 	}
6322 	if (found)
6323 		TAILQ_REMOVE(&soc->inactive_vdev_list, vdev,
6324 			     inactive_list_elem);
6325 	/* delete this peer from the list */
6326 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
6327 
6328 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_UNREF_DEL,
6329 				     vdev);
6330 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")",
6331 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
6332 	wlan_minidump_remove(vdev, sizeof(*vdev), soc->ctrl_psoc,
6333 			     WLAN_MD_DP_VDEV, "dp_vdev");
6334 	qdf_mem_free(vdev);
6335 	vdev = NULL;
6336 
6337 	if (vdev_delete_cb)
6338 		vdev_delete_cb(vdev_delete_context);
6339 }
6340 
6341 qdf_export_symbol(dp_vdev_unref_delete);
6342 
6343 void dp_peer_unref_delete(struct dp_peer *peer, enum dp_mod_id mod_id)
6344 {
6345 	struct dp_vdev *vdev = peer->vdev;
6346 	struct dp_pdev *pdev = vdev->pdev;
6347 	struct dp_soc *soc = pdev->soc;
6348 	uint16_t peer_id;
6349 	struct dp_peer *tmp_peer;
6350 	bool found = false;
6351 
6352 	if (mod_id > DP_MOD_ID_RX)
6353 		QDF_ASSERT(qdf_atomic_dec_return(&peer->mod_refs[mod_id]) >= 0);
6354 
6355 	/*
6356 	 * Hold the lock all the way from checking if the peer ref count
6357 	 * is zero until the peer references are removed from the hash
6358 	 * table and vdev list (if the peer ref count is zero).
6359 	 * This protects against a new HL tx operation starting to use the
6360 	 * peer object just after this function concludes it's done being used.
6361 	 * Furthermore, the lock needs to be held while checking whether the
6362 	 * vdev's list of peers is empty, to make sure that list is not modified
6363 	 * concurrently with the empty check.
6364 	 */
6365 	if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
6366 		peer_id = peer->peer_id;
6367 
6368 		/*
6369 		 * Make sure that the reference to the peer in
6370 		 * peer object map is removed
6371 		 */
6372 		QDF_ASSERT(peer_id == HTT_INVALID_PEER);
6373 
6374 		dp_peer_info("Deleting peer %pK ("QDF_MAC_ADDR_FMT")", peer,
6375 			     QDF_MAC_ADDR_REF(peer->mac_addr.raw));
6376 
6377 		dp_peer_sawf_ctx_free(soc, peer);
6378 
6379 		wlan_minidump_remove(peer, sizeof(*peer), soc->ctrl_psoc,
6380 				     WLAN_MD_DP_PEER, "dp_peer");
6381 
6382 		qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
6383 		TAILQ_FOREACH(tmp_peer, &soc->inactive_peer_list,
6384 			      inactive_list_elem) {
6385 			if (tmp_peer == peer) {
6386 				found = 1;
6387 				break;
6388 			}
6389 		}
6390 		if (found)
6391 			TAILQ_REMOVE(&soc->inactive_peer_list, peer,
6392 				     inactive_list_elem);
6393 		/* delete this peer from the list */
6394 		qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
6395 		DP_AST_ASSERT(TAILQ_EMPTY(&peer->ast_entry_list));
6396 		dp_peer_update_state(soc, peer, DP_PEER_STATE_FREED);
6397 
6398 		/* cleanup the peer data */
6399 		dp_peer_cleanup(vdev, peer);
6400 
6401 		dp_monitor_peer_detach(soc, peer);
6402 
6403 		qdf_spinlock_destroy(&peer->peer_state_lock);
6404 
6405 		dp_txrx_peer_detach(soc, peer);
6406 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_UNREF_DEL,
6407 					     peer, vdev, 0);
6408 		qdf_mem_free(peer);
6409 
6410 		/*
6411 		 * Decrement ref count taken at peer create
6412 		 */
6413 		dp_peer_info("Deleted peer. Unref vdev %pK, vdev_ref_cnt %d",
6414 			     vdev, qdf_atomic_read(&vdev->ref_cnt));
6415 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CHILD);
6416 	}
6417 }
6418 
6419 qdf_export_symbol(dp_peer_unref_delete);
6420 
6421 void dp_txrx_peer_unref_delete(dp_txrx_ref_handle handle,
6422 			       enum dp_mod_id mod_id)
6423 {
6424 	dp_peer_unref_delete((struct dp_peer *)handle, mod_id);
6425 }
6426 
6427 qdf_export_symbol(dp_txrx_peer_unref_delete);
6428 
6429 /**
6430  * dp_peer_delete_wifi3() - Delete txrx peer
6431  * @soc_hdl: soc handle
6432  * @vdev_id: id of dp handle
6433  * @peer_mac: mac of datapath PEER handle
6434  * @bitmap: bitmap indicating special handling of request.
6435  * @peer_type: peer type (link or MLD)
6436  *
6437  */
6438 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
6439 				       uint8_t vdev_id,
6440 				       uint8_t *peer_mac, uint32_t bitmap,
6441 				       enum cdp_peer_type peer_type)
6442 {
6443 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6444 	struct dp_peer *peer;
6445 	struct cdp_peer_info peer_info = { 0 };
6446 	struct dp_vdev *vdev = NULL;
6447 
6448 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac,
6449 				 false, peer_type);
6450 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
6451 
6452 	/* Peer can be null for monitor vap mac address */
6453 	if (!peer) {
6454 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
6455 			  "%s: Invalid peer\n", __func__);
6456 		return QDF_STATUS_E_FAILURE;
6457 	}
6458 
6459 	if (!peer->valid) {
6460 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6461 		dp_err("Invalid peer: "QDF_MAC_ADDR_FMT,
6462 			QDF_MAC_ADDR_REF(peer_mac));
6463 		return QDF_STATUS_E_ALREADY;
6464 	}
6465 
6466 	vdev = peer->vdev;
6467 
6468 	if (!vdev) {
6469 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6470 		return QDF_STATUS_E_FAILURE;
6471 	}
6472 
6473 	peer->valid = 0;
6474 
6475 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_DELETE, peer,
6476 				     vdev, 0);
6477 	dp_init_info("%pK: peer %pK (" QDF_MAC_ADDR_FMT ") pending-refs %d",
6478 		     soc, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
6479 		     qdf_atomic_read(&peer->ref_cnt));
6480 
6481 	dp_peer_rx_reo_shared_qaddr_delete(soc, peer);
6482 
6483 	dp_local_peer_id_free(peer->vdev->pdev, peer);
6484 
6485 	/* Drop all rx packets before deleting peer */
6486 	dp_clear_peer_internal(soc, peer);
6487 
6488 	qdf_spinlock_destroy(&peer->peer_info_lock);
6489 	dp_peer_multipass_list_remove(peer);
6490 
6491 	/* remove the reference to the peer from the hash table */
6492 	dp_peer_find_hash_remove(soc, peer);
6493 
6494 	dp_peer_vdev_list_remove(soc, vdev, peer);
6495 
6496 	dp_peer_mlo_delete(peer);
6497 
6498 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
6499 	TAILQ_INSERT_TAIL(&soc->inactive_peer_list, peer,
6500 			  inactive_list_elem);
6501 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
6502 
6503 	/*
6504 	 * Remove the reference added during peer_attach.
6505 	 * The peer will still be left allocated until the
6506 	 * PEER_UNMAP message arrives to remove the other
6507 	 * reference, added by the PEER_MAP message.
6508 	 */
6509 	dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
6510 	/*
6511 	 * Remove the reference taken above
6512 	 */
6513 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6514 
6515 	return QDF_STATUS_SUCCESS;
6516 }
6517 
6518 #ifdef DP_RX_UDP_OVER_PEER_ROAM
6519 static QDF_STATUS dp_update_roaming_peer_wifi3(struct cdp_soc_t *soc_hdl,
6520 					       uint8_t vdev_id,
6521 					       uint8_t *peer_mac,
6522 					       uint32_t auth_status)
6523 {
6524 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6525 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6526 						     DP_MOD_ID_CDP);
6527 	if (!vdev)
6528 		return QDF_STATUS_E_FAILURE;
6529 
6530 	vdev->roaming_peer_status = auth_status;
6531 	qdf_mem_copy(vdev->roaming_peer_mac.raw, peer_mac,
6532 		     QDF_MAC_ADDR_SIZE);
6533 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6534 
6535 	return QDF_STATUS_SUCCESS;
6536 }
6537 #endif
6538 /**
6539  * dp_get_vdev_mac_addr_wifi3() - Detach txrx peer
6540  * @soc_hdl: Datapath soc handle
6541  * @vdev_id: virtual interface id
6542  *
6543  * Return: MAC address on success, NULL on failure.
6544  *
6545  */
6546 static uint8_t *dp_get_vdev_mac_addr_wifi3(struct cdp_soc_t *soc_hdl,
6547 					   uint8_t vdev_id)
6548 {
6549 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6550 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6551 						     DP_MOD_ID_CDP);
6552 	uint8_t *mac = NULL;
6553 
6554 	if (!vdev)
6555 		return NULL;
6556 
6557 	mac = vdev->mac_addr.raw;
6558 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6559 
6560 	return mac;
6561 }
6562 
6563 /**
6564  * dp_vdev_set_wds() - Enable per packet stats
6565  * @soc_hdl: DP soc handle
6566  * @vdev_id: id of DP VDEV handle
6567  * @val: value
6568  *
6569  * Return: none
6570  */
6571 static int dp_vdev_set_wds(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6572 			   uint32_t val)
6573 {
6574 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6575 	struct dp_vdev *vdev =
6576 		dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
6577 				      DP_MOD_ID_CDP);
6578 
6579 	if (!vdev)
6580 		return QDF_STATUS_E_FAILURE;
6581 
6582 	vdev->wds_enabled = val;
6583 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6584 
6585 	return QDF_STATUS_SUCCESS;
6586 }
6587 
6588 static int dp_get_opmode(struct cdp_soc_t *soc_hdl, uint8_t vdev_id)
6589 {
6590 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6591 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6592 						     DP_MOD_ID_CDP);
6593 	int opmode;
6594 
6595 	if (!vdev) {
6596 		dp_err_rl("vdev for id %d is NULL", vdev_id);
6597 		return -EINVAL;
6598 	}
6599 	opmode = vdev->opmode;
6600 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6601 
6602 	return opmode;
6603 }
6604 
6605 /**
6606  * dp_get_os_rx_handles_from_vdev_wifi3() - Get os rx handles for a vdev
6607  * @soc_hdl: ol_txrx_soc_handle handle
6608  * @vdev_id: vdev id for which os rx handles are needed
6609  * @stack_fn_p: pointer to stack function pointer
6610  * @osif_vdev_p: pointer to ol_osif_vdev_handle
6611  *
6612  * Return: void
6613  */
6614 static
6615 void dp_get_os_rx_handles_from_vdev_wifi3(struct cdp_soc_t *soc_hdl,
6616 					  uint8_t vdev_id,
6617 					  ol_txrx_rx_fp *stack_fn_p,
6618 					  ol_osif_vdev_handle *osif_vdev_p)
6619 {
6620 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6621 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6622 						     DP_MOD_ID_CDP);
6623 
6624 	if (qdf_unlikely(!vdev)) {
6625 		*stack_fn_p = NULL;
6626 		*osif_vdev_p = NULL;
6627 		return;
6628 	}
6629 	*stack_fn_p = vdev->osif_rx_stack;
6630 	*osif_vdev_p = vdev->osif_vdev;
6631 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6632 }
6633 
6634 /**
6635  * dp_get_ctrl_pdev_from_vdev_wifi3() - Get control pdev of vdev
6636  * @soc_hdl: datapath soc handle
6637  * @vdev_id: virtual device/interface id
6638  *
6639  * Return: Handle to control pdev
6640  */
6641 static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3(
6642 						struct cdp_soc_t *soc_hdl,
6643 						uint8_t vdev_id)
6644 {
6645 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6646 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6647 						     DP_MOD_ID_CDP);
6648 	struct dp_pdev *pdev;
6649 
6650 	if (!vdev)
6651 		return NULL;
6652 
6653 	pdev = vdev->pdev;
6654 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6655 	return pdev ? (struct cdp_cfg *)pdev->wlan_cfg_ctx : NULL;
6656 }
6657 
6658 int32_t dp_get_tx_pending(struct cdp_pdev *pdev_handle)
6659 {
6660 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
6661 
6662 	return qdf_atomic_read(&pdev->num_tx_outstanding);
6663 }
6664 
6665 /**
6666  * dp_get_peer_mac_from_peer_id() - get peer mac
6667  * @soc: CDP SoC handle
6668  * @peer_id: Peer ID
6669  * @peer_mac: MAC addr of PEER
6670  *
6671  * Return: QDF_STATUS
6672  */
6673 static QDF_STATUS dp_get_peer_mac_from_peer_id(struct cdp_soc_t *soc,
6674 					       uint32_t peer_id,
6675 					       uint8_t *peer_mac)
6676 {
6677 	struct dp_peer *peer;
6678 
6679 	if (soc && peer_mac) {
6680 		peer = dp_peer_get_ref_by_id((struct dp_soc *)soc,
6681 					     (uint16_t)peer_id,
6682 					     DP_MOD_ID_CDP);
6683 		if (peer) {
6684 			qdf_mem_copy(peer_mac, peer->mac_addr.raw,
6685 				     QDF_MAC_ADDR_SIZE);
6686 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6687 			return QDF_STATUS_SUCCESS;
6688 		}
6689 	}
6690 
6691 	return QDF_STATUS_E_FAILURE;
6692 }
6693 
6694 #ifdef MESH_MODE_SUPPORT
6695 static
6696 void dp_vdev_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val)
6697 {
6698 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6699 
6700 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6701 	vdev->mesh_vdev = val;
6702 	if (val)
6703 		vdev->skip_sw_tid_classification |=
6704 			DP_TX_MESH_ENABLED;
6705 	else
6706 		vdev->skip_sw_tid_classification &=
6707 			~DP_TX_MESH_ENABLED;
6708 }
6709 
6710 /**
6711  * dp_vdev_set_mesh_rx_filter() - to set the mesh rx filter
6712  * @vdev_hdl: virtual device object
6713  * @val: value to be set
6714  *
6715  * Return: void
6716  */
6717 static
6718 void dp_vdev_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val)
6719 {
6720 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6721 
6722 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6723 	vdev->mesh_rx_filter = val;
6724 }
6725 #endif
6726 
6727 /**
6728  * dp_vdev_set_hlos_tid_override() - to set hlos tid override
6729  * @vdev: virtual device object
6730  * @val: value to be set
6731  *
6732  * Return: void
6733  */
6734 static
6735 void dp_vdev_set_hlos_tid_override(struct dp_vdev *vdev, uint32_t val)
6736 {
6737 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6738 	if (val)
6739 		vdev->skip_sw_tid_classification |=
6740 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
6741 	else
6742 		vdev->skip_sw_tid_classification &=
6743 			~DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
6744 }
6745 
6746 /**
6747  * dp_vdev_get_hlos_tid_override() - to get hlos tid override flag
6748  * @vdev_hdl: virtual device object
6749  *
6750  * Return: 1 if this flag is set
6751  */
6752 static
6753 uint8_t dp_vdev_get_hlos_tid_override(struct cdp_vdev *vdev_hdl)
6754 {
6755 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6756 
6757 	return !!(vdev->skip_sw_tid_classification &
6758 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED);
6759 }
6760 
6761 #ifdef VDEV_PEER_PROTOCOL_COUNT
6762 static void dp_enable_vdev_peer_protocol_count(struct cdp_soc_t *soc_hdl,
6763 					       int8_t vdev_id,
6764 					       bool enable)
6765 {
6766 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6767 	struct dp_vdev *vdev;
6768 
6769 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6770 	if (!vdev)
6771 		return;
6772 
6773 	dp_info("enable %d vdev_id %d", enable, vdev_id);
6774 	vdev->peer_protocol_count_track = enable;
6775 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6776 }
6777 
6778 static void dp_enable_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
6779 						   int8_t vdev_id,
6780 						   int drop_mask)
6781 {
6782 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6783 	struct dp_vdev *vdev;
6784 
6785 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6786 	if (!vdev)
6787 		return;
6788 
6789 	dp_info("drop_mask %d vdev_id %d", drop_mask, vdev_id);
6790 	vdev->peer_protocol_count_dropmask = drop_mask;
6791 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6792 }
6793 
6794 static int dp_is_vdev_peer_protocol_count_enabled(struct cdp_soc_t *soc_hdl,
6795 						  int8_t vdev_id)
6796 {
6797 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6798 	struct dp_vdev *vdev;
6799 	int peer_protocol_count_track;
6800 
6801 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6802 	if (!vdev)
6803 		return 0;
6804 
6805 	dp_info("enable %d vdev_id %d", vdev->peer_protocol_count_track,
6806 		vdev_id);
6807 	peer_protocol_count_track =
6808 		vdev->peer_protocol_count_track;
6809 
6810 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6811 	return peer_protocol_count_track;
6812 }
6813 
6814 static int dp_get_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
6815 					       int8_t vdev_id)
6816 {
6817 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6818 	struct dp_vdev *vdev;
6819 	int peer_protocol_count_dropmask;
6820 
6821 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6822 	if (!vdev)
6823 		return 0;
6824 
6825 	dp_info("drop_mask %d vdev_id %d", vdev->peer_protocol_count_dropmask,
6826 		vdev_id);
6827 	peer_protocol_count_dropmask =
6828 		vdev->peer_protocol_count_dropmask;
6829 
6830 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6831 	return peer_protocol_count_dropmask;
6832 }
6833 
6834 #endif
6835 
6836 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data)
6837 {
6838 	uint8_t pdev_count;
6839 
6840 	for (pdev_count = 0; pdev_count < MAX_PDEV_CNT; pdev_count++) {
6841 		if (soc->pdev_list[pdev_count] &&
6842 		    soc->pdev_list[pdev_count] == data)
6843 			return true;
6844 	}
6845 	return false;
6846 }
6847 
6848 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
6849 			     struct cdp_vdev_stats *vdev_stats)
6850 {
6851 	if (!vdev || !vdev->pdev)
6852 		return;
6853 
6854 	dp_update_vdev_ingress_stats(vdev);
6855 
6856 	qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
6857 
6858 	dp_vdev_iterate_peer(vdev, dp_update_vdev_stats, vdev_stats,
6859 			     DP_MOD_ID_GENERIC_STATS);
6860 
6861 	dp_update_vdev_rate_stats(vdev_stats, &vdev->stats);
6862 
6863 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6864 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
6865 			     vdev_stats, vdev->vdev_id,
6866 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
6867 #endif
6868 }
6869 
6870 void dp_aggregate_pdev_stats(struct dp_pdev *pdev)
6871 {
6872 	struct dp_vdev *vdev = NULL;
6873 	struct dp_soc *soc;
6874 	struct cdp_vdev_stats *vdev_stats =
6875 			qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
6876 
6877 	if (!vdev_stats) {
6878 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
6879 			   pdev->soc);
6880 		return;
6881 	}
6882 
6883 	soc = pdev->soc;
6884 
6885 	qdf_mem_zero(&pdev->stats.tx, sizeof(pdev->stats.tx));
6886 	qdf_mem_zero(&pdev->stats.rx, sizeof(pdev->stats.rx));
6887 	qdf_mem_zero(&pdev->stats.tx_i, sizeof(pdev->stats.tx_i));
6888 	qdf_mem_zero(&pdev->stats.rx_i, sizeof(pdev->stats.rx_i));
6889 
6890 	if (dp_monitor_is_enable_mcopy_mode(pdev))
6891 		dp_monitor_invalid_peer_update_pdev_stats(soc, pdev);
6892 
6893 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
6894 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
6895 
6896 		dp_aggregate_vdev_stats(vdev, vdev_stats);
6897 		dp_update_pdev_stats(pdev, vdev_stats);
6898 		dp_update_pdev_ingress_stats(pdev, vdev);
6899 	}
6900 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
6901 	qdf_mem_free(vdev_stats);
6902 
6903 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6904 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc, &pdev->stats,
6905 			     pdev->pdev_id, UPDATE_PDEV_STATS, pdev->pdev_id);
6906 #endif
6907 }
6908 
6909 /**
6910  * dp_vdev_getstats() - get vdev packet level stats
6911  * @vdev_handle: Datapath VDEV handle
6912  * @stats: cdp network device stats structure
6913  *
6914  * Return: QDF_STATUS
6915  */
6916 static QDF_STATUS dp_vdev_getstats(struct cdp_vdev *vdev_handle,
6917 				   struct cdp_dev_stats *stats)
6918 {
6919 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
6920 	struct dp_pdev *pdev;
6921 	struct dp_soc *soc;
6922 	struct cdp_vdev_stats *vdev_stats;
6923 
6924 	if (!vdev)
6925 		return QDF_STATUS_E_FAILURE;
6926 
6927 	pdev = vdev->pdev;
6928 	if (!pdev)
6929 		return QDF_STATUS_E_FAILURE;
6930 
6931 	soc = pdev->soc;
6932 
6933 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
6934 
6935 	if (!vdev_stats) {
6936 		dp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
6937 		       soc);
6938 		return QDF_STATUS_E_FAILURE;
6939 	}
6940 
6941 	dp_aggregate_vdev_stats(vdev, vdev_stats);
6942 
6943 	stats->tx_packets = vdev_stats->tx.comp_pkt.num;
6944 	stats->tx_bytes = vdev_stats->tx.comp_pkt.bytes;
6945 
6946 	stats->tx_errors = vdev_stats->tx.tx_failed;
6947 	stats->tx_dropped = vdev_stats->tx_i.dropped.dropped_pkt.num +
6948 			    vdev_stats->tx_i.sg.dropped_host.num +
6949 			    vdev_stats->tx_i.mcast_en.dropped_map_error +
6950 			    vdev_stats->tx_i.mcast_en.dropped_self_mac +
6951 			    vdev_stats->tx_i.mcast_en.dropped_send_fail +
6952 			    vdev_stats->tx.nawds_mcast_drop;
6953 
6954 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
6955 		stats->rx_packets = vdev_stats->rx.to_stack.num;
6956 		stats->rx_bytes = vdev_stats->rx.to_stack.bytes;
6957 	} else {
6958 		stats->rx_packets = vdev_stats->rx_i.reo_rcvd_pkt.num +
6959 				    vdev_stats->rx_i.null_q_desc_pkt.num +
6960 				    vdev_stats->rx_i.routed_eapol_pkt.num;
6961 		stats->rx_bytes = vdev_stats->rx_i.reo_rcvd_pkt.bytes +
6962 				  vdev_stats->rx_i.null_q_desc_pkt.bytes +
6963 				  vdev_stats->rx_i.routed_eapol_pkt.bytes;
6964 	}
6965 
6966 	stats->rx_errors = vdev_stats->rx.err.mic_err +
6967 			   vdev_stats->rx.err.decrypt_err +
6968 			   vdev_stats->rx.err.fcserr +
6969 			   vdev_stats->rx.err.pn_err +
6970 			   vdev_stats->rx.err.oor_err +
6971 			   vdev_stats->rx.err.jump_2k_err +
6972 			   vdev_stats->rx.err.rxdma_wifi_parse_err;
6973 
6974 	stats->rx_dropped = vdev_stats->rx.mec_drop.num +
6975 			    vdev_stats->rx.multipass_rx_pkt_drop +
6976 			    vdev_stats->rx.peer_unauth_rx_pkt_drop +
6977 			    vdev_stats->rx.policy_check_drop +
6978 			    vdev_stats->rx.nawds_mcast_drop +
6979 			    vdev_stats->rx.mcast_3addr_drop +
6980 			    vdev_stats->rx.ppeds_drop.num;
6981 
6982 	qdf_mem_free(vdev_stats);
6983 
6984 	return QDF_STATUS_SUCCESS;
6985 }
6986 
6987 /**
6988  * dp_pdev_getstats() - get pdev packet level stats
6989  * @pdev_handle: Datapath PDEV handle
6990  * @stats: cdp network device stats structure
6991  *
6992  * Return: QDF_STATUS
6993  */
6994 static void dp_pdev_getstats(struct cdp_pdev *pdev_handle,
6995 			     struct cdp_dev_stats *stats)
6996 {
6997 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
6998 
6999 	dp_aggregate_pdev_stats(pdev);
7000 
7001 	stats->tx_packets = pdev->stats.tx.comp_pkt.num;
7002 	stats->tx_bytes = pdev->stats.tx.comp_pkt.bytes;
7003 
7004 	stats->tx_errors = pdev->stats.tx.tx_failed;
7005 	stats->tx_dropped = pdev->stats.tx_i.dropped.dropped_pkt.num +
7006 			    pdev->stats.tx_i.sg.dropped_host.num +
7007 			    pdev->stats.tx_i.mcast_en.dropped_map_error +
7008 			    pdev->stats.tx_i.mcast_en.dropped_self_mac +
7009 			    pdev->stats.tx_i.mcast_en.dropped_send_fail +
7010 			    pdev->stats.tx.nawds_mcast_drop +
7011 			    pdev->stats.tso_stats.dropped_host.num;
7012 
7013 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(pdev->soc->wlan_cfg_ctx)) {
7014 		stats->rx_packets = pdev->stats.rx.to_stack.num;
7015 		stats->rx_bytes = pdev->stats.rx.to_stack.bytes;
7016 	} else {
7017 		stats->rx_packets = pdev->stats.rx_i.reo_rcvd_pkt.num +
7018 				    pdev->stats.rx_i.null_q_desc_pkt.num +
7019 				    pdev->stats.rx_i.routed_eapol_pkt.num;
7020 		stats->rx_bytes = pdev->stats.rx_i.reo_rcvd_pkt.bytes +
7021 				  pdev->stats.rx_i.null_q_desc_pkt.bytes +
7022 				  pdev->stats.rx_i.routed_eapol_pkt.bytes;
7023 	}
7024 
7025 	stats->rx_errors = pdev->stats.err.ip_csum_err +
7026 		pdev->stats.err.tcp_udp_csum_err +
7027 		pdev->stats.rx.err.mic_err +
7028 		pdev->stats.rx.err.decrypt_err +
7029 		pdev->stats.rx.err.fcserr +
7030 		pdev->stats.rx.err.pn_err +
7031 		pdev->stats.rx.err.oor_err +
7032 		pdev->stats.rx.err.jump_2k_err +
7033 		pdev->stats.rx.err.rxdma_wifi_parse_err;
7034 	stats->rx_dropped = pdev->stats.dropped.msdu_not_done +
7035 		pdev->stats.dropped.mec +
7036 		pdev->stats.dropped.mesh_filter +
7037 		pdev->stats.dropped.wifi_parse +
7038 		pdev->stats.dropped.mon_rx_drop +
7039 		pdev->stats.dropped.mon_radiotap_update_err +
7040 		pdev->stats.rx.mec_drop.num +
7041 		pdev->stats.rx.ppeds_drop.num +
7042 		pdev->stats.rx.multipass_rx_pkt_drop +
7043 		pdev->stats.rx.peer_unauth_rx_pkt_drop +
7044 		pdev->stats.rx.policy_check_drop +
7045 		pdev->stats.rx.nawds_mcast_drop +
7046 		pdev->stats.rx.mcast_3addr_drop;
7047 }
7048 
7049 /**
7050  * dp_get_device_stats() - get interface level packet stats
7051  * @soc_hdl: soc handle
7052  * @id: vdev_id or pdev_id based on type
7053  * @stats: cdp network device stats structure
7054  * @type: device type pdev/vdev
7055  *
7056  * Return: QDF_STATUS
7057  */
7058 static QDF_STATUS dp_get_device_stats(struct cdp_soc_t *soc_hdl, uint8_t id,
7059 				      struct cdp_dev_stats *stats,
7060 				      uint8_t type)
7061 {
7062 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
7063 	QDF_STATUS status = QDF_STATUS_E_FAILURE;
7064 	struct dp_vdev *vdev;
7065 
7066 	switch (type) {
7067 	case UPDATE_VDEV_STATS:
7068 		vdev = dp_vdev_get_ref_by_id(soc, id, DP_MOD_ID_CDP);
7069 
7070 		if (vdev) {
7071 			status = dp_vdev_getstats((struct cdp_vdev *)vdev,
7072 						  stats);
7073 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7074 		}
7075 		return status;
7076 	case UPDATE_PDEV_STATS:
7077 		{
7078 			struct dp_pdev *pdev =
7079 				dp_get_pdev_from_soc_pdev_id_wifi3(
7080 						(struct dp_soc *)soc,
7081 						 id);
7082 			if (pdev) {
7083 				dp_pdev_getstats((struct cdp_pdev *)pdev,
7084 						 stats);
7085 				return QDF_STATUS_SUCCESS;
7086 			}
7087 		}
7088 		break;
7089 	default:
7090 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7091 			"apstats cannot be updated for this input "
7092 			"type %d", type);
7093 		break;
7094 	}
7095 
7096 	return QDF_STATUS_E_FAILURE;
7097 }
7098 
7099 const
7100 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type)
7101 {
7102 	switch (ring_type) {
7103 	case REO_DST:
7104 		return "Reo_dst";
7105 	case REO_EXCEPTION:
7106 		return "Reo_exception";
7107 	case REO_CMD:
7108 		return "Reo_cmd";
7109 	case REO_REINJECT:
7110 		return "Reo_reinject";
7111 	case REO_STATUS:
7112 		return "Reo_status";
7113 	case WBM2SW_RELEASE:
7114 		return "wbm2sw_release";
7115 	case TCL_DATA:
7116 		return "tcl_data";
7117 	case TCL_CMD_CREDIT:
7118 		return "tcl_cmd_credit";
7119 	case TCL_STATUS:
7120 		return "tcl_status";
7121 	case SW2WBM_RELEASE:
7122 		return "sw2wbm_release";
7123 	case RXDMA_BUF:
7124 		return "Rxdma_buf";
7125 	case RXDMA_DST:
7126 		return "Rxdma_dst";
7127 	case RXDMA_MONITOR_BUF:
7128 		return "Rxdma_monitor_buf";
7129 	case RXDMA_MONITOR_DESC:
7130 		return "Rxdma_monitor_desc";
7131 	case RXDMA_MONITOR_STATUS:
7132 		return "Rxdma_monitor_status";
7133 	case RXDMA_MONITOR_DST:
7134 		return "Rxdma_monitor_destination";
7135 	case WBM_IDLE_LINK:
7136 		return "WBM_hw_idle_link";
7137 	case PPE2TCL:
7138 		return "PPE2TCL";
7139 	case REO2PPE:
7140 		return "REO2PPE";
7141 	case TX_MONITOR_DST:
7142 		return "tx_monitor_destination";
7143 	case TX_MONITOR_BUF:
7144 		return "tx_monitor_buf";
7145 	default:
7146 		dp_err("Invalid ring type: %u", ring_type);
7147 		break;
7148 	}
7149 	return "Invalid";
7150 }
7151 
7152 void dp_print_napi_stats(struct dp_soc *soc)
7153 {
7154 	hif_print_napi_stats(soc->hif_handle);
7155 }
7156 
7157 /**
7158  * dp_txrx_host_peer_stats_clr() - Reinitialize the txrx peer stats
7159  * @soc: Datapath soc
7160  * @peer: Datatpath peer
7161  * @arg: argument to iter function
7162  *
7163  * Return: QDF_STATUS
7164  */
7165 static inline void
7166 dp_txrx_host_peer_stats_clr(struct dp_soc *soc,
7167 			    struct dp_peer *peer,
7168 			    void *arg)
7169 {
7170 	struct dp_txrx_peer *txrx_peer = NULL;
7171 	struct dp_peer *tgt_peer = NULL;
7172 	struct cdp_interface_peer_stats peer_stats_intf = {0};
7173 
7174 	peer_stats_intf.rx_avg_snr = CDP_INVALID_SNR;
7175 
7176 	DP_STATS_CLR(peer);
7177 	/* Clear monitor peer stats */
7178 	dp_monitor_peer_reset_stats(soc, peer);
7179 
7180 	/* Clear MLD peer stats only when link peer is primary */
7181 	if (dp_peer_is_primary_link_peer(peer)) {
7182 		tgt_peer = dp_get_tgt_peer_from_peer(peer);
7183 		if (tgt_peer) {
7184 			DP_STATS_CLR(tgt_peer);
7185 			txrx_peer = tgt_peer->txrx_peer;
7186 			dp_txrx_peer_stats_clr(txrx_peer);
7187 		}
7188 	}
7189 
7190 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
7191 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, peer->vdev->pdev->soc,
7192 			     &peer_stats_intf,  peer->peer_id,
7193 			     UPDATE_PEER_STATS, peer->vdev->pdev->pdev_id);
7194 #endif
7195 }
7196 
7197 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
7198 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
7199 {
7200 	int ring;
7201 
7202 	for (ring = 0; ring < soc->num_reo_dest_rings; ring++)
7203 		hal_srng_clear_ring_usage_wm_locked(soc->hal_soc,
7204 					    soc->reo_dest_ring[ring].hal_srng);
7205 }
7206 #else
7207 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
7208 {
7209 }
7210 #endif
7211 
7212 #ifdef WLAN_SUPPORT_PPEDS
7213 static void dp_clear_tx_ppeds_stats(struct dp_soc *soc)
7214 {
7215 	if (soc->arch_ops.dp_ppeds_clear_stats)
7216 		soc->arch_ops.dp_ppeds_clear_stats(soc);
7217 }
7218 
7219 static void dp_ppeds_clear_ring_util_stats(struct dp_soc *soc)
7220 {
7221 	if (soc->arch_ops.dp_txrx_ppeds_clear_rings_stats)
7222 		soc->arch_ops.dp_txrx_ppeds_clear_rings_stats(soc);
7223 }
7224 #else
7225 static void dp_clear_tx_ppeds_stats(struct dp_soc *soc)
7226 {
7227 }
7228 
7229 static void dp_ppeds_clear_ring_util_stats(struct dp_soc *soc)
7230 {
7231 }
7232 #endif
7233 
7234 /**
7235  * dp_txrx_host_stats_clr() - Reinitialize the txrx stats
7236  * @vdev: DP_VDEV handle
7237  * @soc: DP_SOC handle
7238  *
7239  * Return: QDF_STATUS
7240  */
7241 static inline QDF_STATUS
7242 dp_txrx_host_stats_clr(struct dp_vdev *vdev, struct dp_soc *soc)
7243 {
7244 	struct dp_vdev *var_vdev = NULL;
7245 
7246 	if (!vdev || !vdev->pdev)
7247 		return QDF_STATUS_E_FAILURE;
7248 
7249 	/*
7250 	 * if NSS offload is enabled, then send message
7251 	 * to NSS FW to clear the stats. Once NSS FW clears the statistics
7252 	 * then clear host statistics.
7253 	 */
7254 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
7255 		if (soc->cdp_soc.ol_ops->nss_stats_clr)
7256 			soc->cdp_soc.ol_ops->nss_stats_clr(soc->ctrl_psoc,
7257 							   vdev->vdev_id);
7258 	}
7259 
7260 	dp_vdev_stats_hw_offload_target_clear(soc, vdev->pdev->pdev_id,
7261 					      (1 << vdev->vdev_id));
7262 
7263 	DP_STATS_CLR(vdev->pdev);
7264 	DP_STATS_CLR(vdev->pdev->soc);
7265 
7266 	dp_clear_tx_ppeds_stats(soc);
7267 	dp_ppeds_clear_ring_util_stats(soc);
7268 
7269 	hif_clear_napi_stats(vdev->pdev->soc->hif_handle);
7270 
7271 	TAILQ_FOREACH(var_vdev, &vdev->pdev->vdev_list, vdev_list_elem) {
7272 		DP_STATS_CLR(var_vdev);
7273 		dp_vdev_iterate_peer(var_vdev, dp_txrx_host_peer_stats_clr,
7274 				     NULL, DP_MOD_ID_GENERIC_STATS);
7275 	}
7276 
7277 	dp_srng_clear_ring_usage_wm_stats(soc);
7278 
7279 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
7280 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
7281 			     &vdev->stats,  vdev->vdev_id,
7282 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
7283 #endif
7284 	return QDF_STATUS_SUCCESS;
7285 }
7286 
7287 /**
7288  * dp_get_peer_calibr_stats()- Get peer calibrated stats
7289  * @peer: Datapath peer
7290  * @peer_stats: buffer for peer stats
7291  *
7292  * Return: none
7293  */
7294 static inline
7295 void dp_get_peer_calibr_stats(struct dp_peer *peer,
7296 			      struct cdp_peer_stats *peer_stats)
7297 {
7298 	struct dp_peer *tgt_peer;
7299 
7300 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
7301 	if (!tgt_peer)
7302 		return;
7303 
7304 	peer_stats->tx.last_per = tgt_peer->stats.tx.last_per;
7305 	peer_stats->tx.tx_bytes_success_last =
7306 				tgt_peer->stats.tx.tx_bytes_success_last;
7307 	peer_stats->tx.tx_data_success_last =
7308 					tgt_peer->stats.tx.tx_data_success_last;
7309 	peer_stats->tx.tx_byte_rate = tgt_peer->stats.tx.tx_byte_rate;
7310 	peer_stats->tx.tx_data_rate = tgt_peer->stats.tx.tx_data_rate;
7311 	peer_stats->tx.tx_data_ucast_last =
7312 					tgt_peer->stats.tx.tx_data_ucast_last;
7313 	peer_stats->tx.tx_data_ucast_rate =
7314 					tgt_peer->stats.tx.tx_data_ucast_rate;
7315 	peer_stats->tx.inactive_time = tgt_peer->stats.tx.inactive_time;
7316 	peer_stats->rx.rx_bytes_success_last =
7317 				tgt_peer->stats.rx.rx_bytes_success_last;
7318 	peer_stats->rx.rx_data_success_last =
7319 				tgt_peer->stats.rx.rx_data_success_last;
7320 	peer_stats->rx.rx_byte_rate = tgt_peer->stats.rx.rx_byte_rate;
7321 	peer_stats->rx.rx_data_rate = tgt_peer->stats.rx.rx_data_rate;
7322 }
7323 
7324 /**
7325  * dp_get_peer_basic_stats()- Get peer basic stats
7326  * @peer: Datapath peer
7327  * @peer_stats: buffer for peer stats
7328  *
7329  * Return: none
7330  */
7331 static inline
7332 void dp_get_peer_basic_stats(struct dp_peer *peer,
7333 			     struct cdp_peer_stats *peer_stats)
7334 {
7335 	struct dp_txrx_peer *txrx_peer;
7336 
7337 	txrx_peer = dp_get_txrx_peer(peer);
7338 	if (!txrx_peer)
7339 		return;
7340 
7341 	peer_stats->tx.comp_pkt.num += txrx_peer->comp_pkt.num;
7342 	peer_stats->tx.comp_pkt.bytes += txrx_peer->comp_pkt.bytes;
7343 	peer_stats->tx.tx_failed += txrx_peer->tx_failed;
7344 	peer_stats->rx.to_stack.num += txrx_peer->to_stack.num;
7345 	peer_stats->rx.to_stack.bytes += txrx_peer->to_stack.bytes;
7346 }
7347 
7348 #ifdef QCA_ENHANCED_STATS_SUPPORT
7349 /**
7350  * dp_get_peer_per_pkt_stats()- Get peer per pkt stats
7351  * @peer: Datapath peer
7352  * @peer_stats: buffer for peer stats
7353  *
7354  * Return: none
7355  */
7356 static inline
7357 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7358 			       struct cdp_peer_stats *peer_stats)
7359 {
7360 	struct dp_txrx_peer *txrx_peer;
7361 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7362 	uint8_t inx = 0, link_id = 0;
7363 	struct dp_pdev *pdev;
7364 	struct dp_soc *soc;
7365 	uint8_t stats_arr_size;
7366 
7367 	txrx_peer = dp_get_txrx_peer(peer);
7368 	pdev = peer->vdev->pdev;
7369 
7370 	if (!txrx_peer)
7371 		return;
7372 
7373 	if (!IS_MLO_DP_LINK_PEER(peer)) {
7374 		stats_arr_size = txrx_peer->stats_arr_size;
7375 		for (inx = 0; inx < stats_arr_size; inx++) {
7376 			per_pkt_stats = &txrx_peer->stats[inx].per_pkt_stats;
7377 			DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7378 		}
7379 	} else {
7380 		soc = pdev->soc;
7381 		link_id = dp_get_peer_hw_link_id(soc, pdev);
7382 		per_pkt_stats =
7383 			&txrx_peer->stats[link_id].per_pkt_stats;
7384 		DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7385 	}
7386 }
7387 
7388 #ifdef WLAN_FEATURE_11BE_MLO
7389 /**
7390  * dp_get_peer_extd_stats()- Get peer extd stats
7391  * @peer: Datapath peer
7392  * @peer_stats: buffer for peer stats
7393  *
7394  * Return: none
7395  */
7396 static inline
7397 void dp_get_peer_extd_stats(struct dp_peer *peer,
7398 			    struct cdp_peer_stats *peer_stats)
7399 {
7400 	struct dp_soc *soc = peer->vdev->pdev->soc;
7401 
7402 	if (IS_MLO_DP_MLD_PEER(peer)) {
7403 		uint8_t i;
7404 		struct dp_peer *link_peer;
7405 		struct dp_soc *link_peer_soc;
7406 		struct dp_mld_link_peers link_peers_info;
7407 
7408 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7409 						    &link_peers_info,
7410 						    DP_MOD_ID_CDP);
7411 		for (i = 0; i < link_peers_info.num_links; i++) {
7412 			link_peer = link_peers_info.link_peers[i];
7413 			link_peer_soc = link_peer->vdev->pdev->soc;
7414 			dp_monitor_peer_get_stats(link_peer_soc, link_peer,
7415 						  peer_stats,
7416 						  UPDATE_PEER_STATS);
7417 		}
7418 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
7419 	} else {
7420 		dp_monitor_peer_get_stats(soc, peer, peer_stats,
7421 					  UPDATE_PEER_STATS);
7422 	}
7423 }
7424 #else
7425 static inline
7426 void dp_get_peer_extd_stats(struct dp_peer *peer,
7427 			    struct cdp_peer_stats *peer_stats)
7428 {
7429 	struct dp_soc *soc = peer->vdev->pdev->soc;
7430 
7431 	dp_monitor_peer_get_stats(soc, peer, peer_stats, UPDATE_PEER_STATS);
7432 }
7433 #endif
7434 #else
7435 #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT
7436 static inline
7437 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7438 			       struct cdp_peer_stats *peer_stats)
7439 {
7440 	uint8_t i, index;
7441 	struct dp_mld_link_peers link_peers_info;
7442 	struct dp_txrx_peer *txrx_peer;
7443 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7444 	struct dp_soc *soc = peer->vdev->pdev->soc;
7445 
7446 	txrx_peer = dp_get_txrx_peer(peer);
7447 	if (!txrx_peer)
7448 		return;
7449 
7450 	if (IS_MLO_DP_MLD_PEER(peer)) {
7451 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7452 						    &link_peers_info,
7453 						    DP_MOD_ID_GENERIC_STATS);
7454 		for (i = 0; i < link_peers_info.num_links; i++) {
7455 			if (i > txrx_peer->stats_arr_size)
7456 				break;
7457 			per_pkt_stats = &txrx_peer->stats[i].per_pkt_stats;
7458 			DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7459 		}
7460 		dp_release_link_peers_ref(&link_peers_info,
7461 					  DP_MOD_ID_GENERIC_STATS);
7462 	} else {
7463 		index = dp_get_peer_link_id(peer);
7464 		per_pkt_stats = &txrx_peer->stats[index].per_pkt_stats;
7465 		DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7466 		qdf_mem_copy(&peer_stats->mac_addr,
7467 			     &peer->mac_addr.raw[0],
7468 			     QDF_MAC_ADDR_SIZE);
7469 	}
7470 }
7471 
7472 static inline
7473 void dp_get_peer_extd_stats(struct dp_peer *peer,
7474 			    struct cdp_peer_stats *peer_stats)
7475 {
7476 	uint8_t i, index;
7477 	struct dp_mld_link_peers link_peers_info;
7478 	struct dp_txrx_peer *txrx_peer;
7479 	struct dp_peer_extd_stats *extd_stats;
7480 	struct dp_soc *soc = peer->vdev->pdev->soc;
7481 
7482 	txrx_peer = dp_get_txrx_peer(peer);
7483 	if (qdf_unlikely(!txrx_peer)) {
7484 		dp_err_rl("txrx_peer NULL for peer MAC: " QDF_MAC_ADDR_FMT,
7485 			  QDF_MAC_ADDR_REF(peer->mac_addr.raw));
7486 		return;
7487 	}
7488 
7489 	if (IS_MLO_DP_MLD_PEER(peer)) {
7490 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7491 						    &link_peers_info,
7492 						    DP_MOD_ID_GENERIC_STATS);
7493 		for (i = 0; i < link_peers_info.num_links; i++) {
7494 			if (i > txrx_peer->stats_arr_size)
7495 				break;
7496 			extd_stats = &txrx_peer->stats[i].extd_stats;
7497 			/* Return aggregated stats for MLD peer */
7498 			DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7499 		}
7500 		dp_release_link_peers_ref(&link_peers_info,
7501 					  DP_MOD_ID_GENERIC_STATS);
7502 	} else {
7503 		index = dp_get_peer_link_id(peer);
7504 		extd_stats = &txrx_peer->stats[index].extd_stats;
7505 		DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7506 		qdf_mem_copy(&peer_stats->mac_addr,
7507 			     &peer->mac_addr.raw[0],
7508 			     QDF_MAC_ADDR_SIZE);
7509 	}
7510 }
7511 #else
7512 static inline
7513 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7514 			       struct cdp_peer_stats *peer_stats)
7515 {
7516 	struct dp_txrx_peer *txrx_peer;
7517 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7518 
7519 	txrx_peer = dp_get_txrx_peer(peer);
7520 	if (!txrx_peer)
7521 		return;
7522 
7523 	per_pkt_stats = &txrx_peer->stats[0].per_pkt_stats;
7524 	DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7525 }
7526 
7527 static inline
7528 void dp_get_peer_extd_stats(struct dp_peer *peer,
7529 			    struct cdp_peer_stats *peer_stats)
7530 {
7531 	struct dp_txrx_peer *txrx_peer;
7532 	struct dp_peer_extd_stats *extd_stats;
7533 
7534 	txrx_peer = dp_get_txrx_peer(peer);
7535 	if (qdf_unlikely(!txrx_peer)) {
7536 		dp_err_rl("txrx_peer NULL");
7537 		return;
7538 	}
7539 
7540 	extd_stats = &txrx_peer->stats[0].extd_stats;
7541 	DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7542 }
7543 #endif
7544 #endif
7545 
7546 /**
7547  * dp_get_peer_tx_per()- Get peer packet error ratio
7548  * @peer_stats: buffer for peer stats
7549  *
7550  * Return: none
7551  */
7552 static inline
7553 void dp_get_peer_tx_per(struct cdp_peer_stats *peer_stats)
7554 {
7555 	if (peer_stats->tx.tx_success.num + peer_stats->tx.retries > 0)
7556 		peer_stats->tx.per = qdf_do_div((peer_stats->tx.retries * 100),
7557 				  (peer_stats->tx.tx_success.num +
7558 				   peer_stats->tx.retries));
7559 	else
7560 		peer_stats->tx.per = 0;
7561 }
7562 
7563 void dp_get_peer_stats(struct dp_peer *peer, struct cdp_peer_stats *peer_stats)
7564 {
7565 	dp_get_peer_calibr_stats(peer, peer_stats);
7566 
7567 	dp_get_peer_basic_stats(peer, peer_stats);
7568 
7569 	dp_get_peer_per_pkt_stats(peer, peer_stats);
7570 
7571 	dp_get_peer_extd_stats(peer, peer_stats);
7572 
7573 	dp_get_peer_tx_per(peer_stats);
7574 }
7575 
7576 /**
7577  * dp_get_host_peer_stats()- function to print peer stats
7578  * @soc: dp_soc handle
7579  * @mac_addr: mac address of the peer
7580  *
7581  * Return: QDF_STATUS
7582  */
7583 static QDF_STATUS
7584 dp_get_host_peer_stats(struct cdp_soc_t *soc, uint8_t *mac_addr)
7585 {
7586 	struct dp_peer *peer = NULL;
7587 	struct cdp_peer_stats *peer_stats = NULL;
7588 	struct cdp_peer_info peer_info = { 0 };
7589 
7590 	if (!mac_addr) {
7591 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7592 			  "%s: NULL peer mac addr\n", __func__);
7593 		return QDF_STATUS_E_FAILURE;
7594 	}
7595 
7596 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
7597 				 CDP_WILD_PEER_TYPE);
7598 
7599 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
7600 					 DP_MOD_ID_CDP);
7601 	if (!peer) {
7602 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7603 			  "%s: Invalid peer\n", __func__);
7604 		return QDF_STATUS_E_FAILURE;
7605 	}
7606 
7607 	peer_stats = qdf_mem_malloc(sizeof(struct cdp_peer_stats));
7608 	if (!peer_stats) {
7609 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7610 			  "%s: Memory allocation failed for cdp_peer_stats\n",
7611 			  __func__);
7612 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7613 		return QDF_STATUS_E_NOMEM;
7614 	}
7615 
7616 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
7617 
7618 	dp_get_peer_stats(peer, peer_stats);
7619 	dp_print_peer_stats(peer, peer_stats);
7620 
7621 	dp_peer_rxtid_stats(dp_get_tgt_peer_from_peer(peer),
7622 			    dp_rx_tid_stats_cb, NULL);
7623 
7624 	qdf_mem_free(peer_stats);
7625 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7626 
7627 	return QDF_STATUS_SUCCESS;
7628 }
7629 
7630 /**
7631  * dp_txrx_stats_help() - Helper function for Txrx_Stats
7632  *
7633  * Return: None
7634  */
7635 static void dp_txrx_stats_help(void)
7636 {
7637 	dp_info("Command: iwpriv wlan0 txrx_stats <stats_option> <mac_id>");
7638 	dp_info("stats_option:");
7639 	dp_info("  1 -- HTT Tx Statistics");
7640 	dp_info("  2 -- HTT Rx Statistics");
7641 	dp_info("  3 -- HTT Tx HW Queue Statistics");
7642 	dp_info("  4 -- HTT Tx HW Sched Statistics");
7643 	dp_info("  5 -- HTT Error Statistics");
7644 	dp_info("  6 -- HTT TQM Statistics");
7645 	dp_info("  7 -- HTT TQM CMDQ Statistics");
7646 	dp_info("  8 -- HTT TX_DE_CMN Statistics");
7647 	dp_info("  9 -- HTT Tx Rate Statistics");
7648 	dp_info(" 10 -- HTT Rx Rate Statistics");
7649 	dp_info(" 11 -- HTT Peer Statistics");
7650 	dp_info(" 12 -- HTT Tx SelfGen Statistics");
7651 	dp_info(" 13 -- HTT Tx MU HWQ Statistics");
7652 	dp_info(" 14 -- HTT RING_IF_INFO Statistics");
7653 	dp_info(" 15 -- HTT SRNG Statistics");
7654 	dp_info(" 16 -- HTT SFM Info Statistics");
7655 	dp_info(" 17 -- HTT PDEV_TX_MU_MIMO_SCHED INFO Statistics");
7656 	dp_info(" 18 -- HTT Peer List Details");
7657 	dp_info(" 20 -- Clear Host Statistics");
7658 	dp_info(" 21 -- Host Rx Rate Statistics");
7659 	dp_info(" 22 -- Host Tx Rate Statistics");
7660 	dp_info(" 23 -- Host Tx Statistics");
7661 	dp_info(" 24 -- Host Rx Statistics");
7662 	dp_info(" 25 -- Host AST Statistics");
7663 	dp_info(" 26 -- Host SRNG PTR Statistics");
7664 	dp_info(" 27 -- Host Mon Statistics");
7665 	dp_info(" 28 -- Host REO Queue Statistics");
7666 	dp_info(" 29 -- Host Soc cfg param Statistics");
7667 	dp_info(" 30 -- Host pdev cfg param Statistics");
7668 	dp_info(" 31 -- Host NAPI stats");
7669 	dp_info(" 32 -- Host Interrupt stats");
7670 	dp_info(" 33 -- Host FISA stats");
7671 	dp_info(" 34 -- Host Register Work stats");
7672 	dp_info(" 35 -- HW REO Queue stats");
7673 	dp_info(" 36 -- Host WBM IDLE link desc ring HP/TP");
7674 	dp_info(" 37 -- Host SRNG usage watermark stats");
7675 }
7676 
7677 #ifdef DP_UMAC_HW_RESET_SUPPORT
7678 /**
7679  * dp_umac_rst_skel_enable_update() - Update skel dbg flag for umac reset
7680  * @soc: dp soc handle
7681  * @en: ebable/disable
7682  *
7683  * Return: void
7684  */
7685 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
7686 {
7687 	soc->umac_reset_ctx.skel_enable = en;
7688 	dp_cdp_debug("UMAC HW reset debug skeleton code enabled :%u",
7689 		     soc->umac_reset_ctx.skel_enable);
7690 }
7691 
7692 /**
7693  * dp_umac_rst_skel_enable_get() - Get skel dbg flag for umac reset
7694  * @soc: dp soc handle
7695  *
7696  * Return: enable/disable flag
7697  */
7698 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
7699 {
7700 	return soc->umac_reset_ctx.skel_enable;
7701 }
7702 #else
7703 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
7704 {
7705 }
7706 
7707 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
7708 {
7709 	return false;
7710 }
7711 #endif
7712 
7713 #ifndef WLAN_SOFTUMAC_SUPPORT
7714 static void dp_print_reg_write_stats(struct dp_soc *soc)
7715 {
7716 	hal_dump_reg_write_stats(soc->hal_soc);
7717 	hal_dump_reg_write_srng_stats(soc->hal_soc);
7718 }
7719 #else
7720 static void dp_print_reg_write_stats(struct dp_soc *soc)
7721 {
7722 	hif_print_reg_write_stats(soc->hif_handle);
7723 }
7724 #endif
7725 
7726 /**
7727  * dp_print_host_stats()- Function to print the stats aggregated at host
7728  * @vdev: DP_VDEV handle
7729  * @req: host stats type
7730  * @soc: dp soc handler
7731  *
7732  * Return: 0 on success, print error message in case of failure
7733  */
7734 static int
7735 dp_print_host_stats(struct dp_vdev *vdev,
7736 		    struct cdp_txrx_stats_req *req,
7737 		    struct dp_soc *soc)
7738 {
7739 	struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
7740 	enum cdp_host_txrx_stats type =
7741 			dp_stats_mapping_table[req->stats][STATS_HOST];
7742 
7743 	dp_aggregate_pdev_stats(pdev);
7744 
7745 	switch (type) {
7746 	case TXRX_CLEAR_STATS:
7747 		dp_txrx_host_stats_clr(vdev, soc);
7748 		break;
7749 	case TXRX_RX_RATE_STATS:
7750 		dp_print_rx_rates(vdev);
7751 		break;
7752 	case TXRX_TX_RATE_STATS:
7753 		dp_print_tx_rates(vdev);
7754 		break;
7755 	case TXRX_TX_HOST_STATS:
7756 		dp_print_pdev_tx_stats(pdev);
7757 		dp_print_soc_tx_stats(pdev->soc);
7758 		dp_print_global_desc_count();
7759 		dp_print_vdev_mlo_mcast_tx_stats(vdev);
7760 		break;
7761 	case TXRX_RX_HOST_STATS:
7762 		dp_print_pdev_rx_stats(pdev);
7763 		dp_print_soc_rx_stats(pdev->soc);
7764 		break;
7765 	case TXRX_AST_STATS:
7766 		dp_print_ast_stats(pdev->soc);
7767 		dp_print_mec_stats(pdev->soc);
7768 		dp_print_peer_table(vdev);
7769 		if (soc->arch_ops.dp_mlo_print_ptnr_info)
7770 			soc->arch_ops.dp_mlo_print_ptnr_info(vdev);
7771 		break;
7772 	case TXRX_SRNG_PTR_STATS:
7773 		dp_print_ring_stats(pdev);
7774 		break;
7775 	case TXRX_RX_MON_STATS:
7776 		dp_monitor_print_pdev_rx_mon_stats(pdev);
7777 		break;
7778 	case TXRX_REO_QUEUE_STATS:
7779 		dp_get_host_peer_stats((struct cdp_soc_t *)pdev->soc,
7780 				       req->peer_addr);
7781 		break;
7782 	case TXRX_SOC_CFG_PARAMS:
7783 		dp_print_soc_cfg_params(pdev->soc);
7784 		break;
7785 	case TXRX_PDEV_CFG_PARAMS:
7786 		dp_print_pdev_cfg_params(pdev);
7787 		break;
7788 	case TXRX_NAPI_STATS:
7789 		dp_print_napi_stats(pdev->soc);
7790 		break;
7791 	case TXRX_SOC_INTERRUPT_STATS:
7792 		dp_print_soc_interrupt_stats(pdev->soc);
7793 		break;
7794 	case TXRX_SOC_FSE_STATS:
7795 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
7796 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
7797 						CDP_FISA_STATS_ID_DUMP_HW_FST);
7798 		break;
7799 	case TXRX_HAL_REG_WRITE_STATS:
7800 		dp_print_reg_write_stats(pdev->soc);
7801 		break;
7802 	case TXRX_SOC_REO_HW_DESC_DUMP:
7803 		dp_get_rx_reo_queue_info((struct cdp_soc_t *)pdev->soc,
7804 					 vdev->vdev_id);
7805 		break;
7806 	case TXRX_SOC_WBM_IDLE_HPTP_DUMP:
7807 		dp_dump_wbm_idle_hptp(pdev->soc, pdev);
7808 		break;
7809 	case TXRX_SRNG_USAGE_WM_STATS:
7810 		/* Dump usage watermark stats for all SRNGs */
7811 		dp_dump_srng_high_wm_stats(soc, 0xFF);
7812 		break;
7813 	case TXRX_PEER_STATS:
7814 		dp_print_per_link_stats((struct cdp_soc_t *)pdev->soc,
7815 					vdev->vdev_id);
7816 		break;
7817 	default:
7818 		dp_info("Wrong Input For TxRx Host Stats");
7819 		dp_txrx_stats_help();
7820 		break;
7821 	}
7822 	return 0;
7823 }
7824 
7825 /**
7826  * dp_pdev_tid_stats_ingress_inc() - increment ingress_stack counter
7827  * @pdev: pdev handle
7828  * @val: increase in value
7829  *
7830  * Return: void
7831  */
7832 static void
7833 dp_pdev_tid_stats_ingress_inc(struct dp_pdev *pdev, uint32_t val)
7834 {
7835 	pdev->stats.tid_stats.ingress_stack += val;
7836 }
7837 
7838 /**
7839  * dp_pdev_tid_stats_osif_drop() - increment osif_drop counter
7840  * @pdev: pdev handle
7841  * @val: increase in value
7842  *
7843  * Return: void
7844  */
7845 static void
7846 dp_pdev_tid_stats_osif_drop(struct dp_pdev *pdev, uint32_t val)
7847 {
7848 	pdev->stats.tid_stats.osif_drop += val;
7849 }
7850 
7851 /**
7852  * dp_get_fw_peer_stats()- function to print peer stats
7853  * @soc: soc handle
7854  * @pdev_id: id of the pdev handle
7855  * @mac_addr: mac address of the peer
7856  * @cap: Type of htt stats requested
7857  * @is_wait: if set, wait on completion from firmware response
7858  *
7859  * Currently Supporting only MAC ID based requests Only
7860  *	1: HTT_PEER_STATS_REQ_MODE_NO_QUERY
7861  *	2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM
7862  *	3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM
7863  *
7864  * Return: QDF_STATUS
7865  */
7866 static QDF_STATUS
7867 dp_get_fw_peer_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
7868 		     uint8_t *mac_addr,
7869 		     uint32_t cap, uint32_t is_wait)
7870 {
7871 	int i;
7872 	uint32_t config_param0 = 0;
7873 	uint32_t config_param1 = 0;
7874 	uint32_t config_param2 = 0;
7875 	uint32_t config_param3 = 0;
7876 	struct dp_pdev *pdev =
7877 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7878 						   pdev_id);
7879 
7880 	if (!pdev)
7881 		return QDF_STATUS_E_FAILURE;
7882 
7883 	HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1);
7884 	config_param0 |= (1 << (cap + 1));
7885 
7886 	for (i = 0; i < HTT_PEER_STATS_MAX_TLV; i++) {
7887 		config_param1 |= (1 << i);
7888 	}
7889 
7890 	config_param2 |= (mac_addr[0] & 0x000000ff);
7891 	config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00);
7892 	config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000);
7893 	config_param2 |= ((mac_addr[3] << 24) & 0xff000000);
7894 
7895 	config_param3 |= (mac_addr[4] & 0x000000ff);
7896 	config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00);
7897 
7898 	if (is_wait) {
7899 		qdf_event_reset(&pdev->fw_peer_stats_event);
7900 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
7901 					  config_param0, config_param1,
7902 					  config_param2, config_param3,
7903 					  0, DBG_STATS_COOKIE_DP_STATS, 0);
7904 		qdf_wait_single_event(&pdev->fw_peer_stats_event,
7905 				      DP_FW_PEER_STATS_CMP_TIMEOUT_MSEC);
7906 	} else {
7907 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
7908 					  config_param0, config_param1,
7909 					  config_param2, config_param3,
7910 					  0, DBG_STATS_COOKIE_DEFAULT, 0);
7911 	}
7912 
7913 	return QDF_STATUS_SUCCESS;
7914 
7915 }
7916 
7917 /* This struct definition will be removed from here
7918  * once it get added in FW headers*/
7919 struct httstats_cmd_req {
7920     uint32_t    config_param0;
7921     uint32_t    config_param1;
7922     uint32_t    config_param2;
7923     uint32_t    config_param3;
7924     int cookie;
7925     u_int8_t    stats_id;
7926 };
7927 
7928 /**
7929  * dp_get_htt_stats: function to process the httstas request
7930  * @soc: DP soc handle
7931  * @pdev_id: id of pdev handle
7932  * @data: pointer to request data
7933  * @data_len: length for request data
7934  *
7935  * Return: QDF_STATUS
7936  */
7937 static QDF_STATUS
7938 dp_get_htt_stats(struct cdp_soc_t *soc, uint8_t pdev_id, void *data,
7939 		 uint32_t data_len)
7940 {
7941 	struct httstats_cmd_req *req = (struct httstats_cmd_req *)data;
7942 	struct dp_pdev *pdev =
7943 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7944 						   pdev_id);
7945 
7946 	if (!pdev)
7947 		return QDF_STATUS_E_FAILURE;
7948 
7949 	QDF_ASSERT(data_len == sizeof(struct httstats_cmd_req));
7950 	dp_h2t_ext_stats_msg_send(pdev, req->stats_id,
7951 				req->config_param0, req->config_param1,
7952 				req->config_param2, req->config_param3,
7953 				req->cookie, DBG_STATS_COOKIE_DEFAULT, 0);
7954 
7955 	return QDF_STATUS_SUCCESS;
7956 }
7957 
7958 /**
7959  * dp_set_pdev_tidmap_prty_wifi3() - update tidmap priority in pdev
7960  * @pdev: DP_PDEV handle
7961  * @prio: tidmap priority value passed by the user
7962  *
7963  * Return: QDF_STATUS_SUCCESS on success
7964  */
7965 static QDF_STATUS dp_set_pdev_tidmap_prty_wifi3(struct dp_pdev *pdev,
7966 						uint8_t prio)
7967 {
7968 	struct dp_soc *soc = pdev->soc;
7969 
7970 	soc->tidmap_prty = prio;
7971 
7972 	hal_tx_set_tidmap_prty(soc->hal_soc, prio);
7973 	return QDF_STATUS_SUCCESS;
7974 }
7975 
7976 /**
7977  * dp_get_peer_param: function to get parameters in peer
7978  * @cdp_soc: DP soc handle
7979  * @vdev_id: id of vdev handle
7980  * @peer_mac: peer mac address
7981  * @param: parameter type to be set
7982  * @val: address of buffer
7983  *
7984  * Return: val
7985  */
7986 static QDF_STATUS dp_get_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
7987 				    uint8_t *peer_mac,
7988 				    enum cdp_peer_param_type param,
7989 				    cdp_config_param_type *val)
7990 {
7991 	return QDF_STATUS_SUCCESS;
7992 }
7993 
7994 #if defined(WLAN_FEATURE_11BE_MLO) && defined(DP_MLO_LINK_STATS_SUPPORT)
7995 static inline void
7996 dp_check_map_link_id_band(struct dp_peer *peer)
7997 {
7998 	if (peer->link_id_valid)
7999 		dp_map_link_id_band(peer);
8000 }
8001 #else
8002 static inline void
8003 dp_check_map_link_id_band(struct dp_peer *peer)
8004 {
8005 }
8006 #endif
8007 
8008 /**
8009  * dp_set_peer_freq() - Set peer frequency
8010  * @cdp_soc: DP soc handle
8011  * @vdev_id: id of vdev handle
8012  * @peer_mac: peer mac address
8013  * @param: parameter type to be set
8014  * @val: value of parameter to be set
8015  *
8016  * Return: QDF_STATUS_SUCCESS for success. error code for failure.
8017  */
8018 static inline QDF_STATUS
8019 dp_set_peer_freq(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8020 		 uint8_t *peer_mac, enum cdp_peer_param_type param,
8021 		 cdp_config_param_type val)
8022 {
8023 	struct dp_peer *peer = NULL;
8024 	struct cdp_peer_info peer_info = { 0 };
8025 
8026 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac,
8027 				 false, CDP_LINK_PEER_TYPE);
8028 
8029 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)cdp_soc,
8030 					 &peer_info, DP_MOD_ID_CDP);
8031 	if (!peer) {
8032 		dp_err("peer NULL,MAC " QDF_MAC_ADDR_FMT ", vdev_id %u",
8033 		       QDF_MAC_ADDR_REF(peer_mac), vdev_id);
8034 
8035 		return QDF_STATUS_E_FAILURE;
8036 	}
8037 
8038 	peer->freq = val.cdp_peer_param_freq;
8039 	dp_check_map_link_id_band(peer);
8040 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8041 
8042 	dp_info("Peer " QDF_MAC_ADDR_FMT " vdev_id %u, frequency %u",
8043 		QDF_MAC_ADDR_REF(peer_mac), vdev_id,
8044 		peer->freq);
8045 
8046 	return QDF_STATUS_SUCCESS;
8047 }
8048 
8049 /**
8050  * dp_set_peer_param: function to set parameters in peer
8051  * @cdp_soc: DP soc handle
8052  * @vdev_id: id of vdev handle
8053  * @peer_mac: peer mac address
8054  * @param: parameter type to be set
8055  * @val: value of parameter to be set
8056  *
8057  * Return: 0 for success. nonzero for failure.
8058  */
8059 static QDF_STATUS dp_set_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8060 				    uint8_t *peer_mac,
8061 				    enum cdp_peer_param_type param,
8062 				    cdp_config_param_type val)
8063 {
8064 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8065 	struct dp_peer *peer =
8066 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)cdp_soc,
8067 						       peer_mac, 0, vdev_id,
8068 						       DP_MOD_ID_CDP);
8069 	struct dp_txrx_peer *txrx_peer;
8070 
8071 	if (!peer)
8072 		return QDF_STATUS_E_FAILURE;
8073 
8074 	txrx_peer = peer->txrx_peer;
8075 	if (!txrx_peer) {
8076 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8077 		return QDF_STATUS_E_FAILURE;
8078 	}
8079 
8080 	switch (param) {
8081 	case CDP_CONFIG_NAWDS:
8082 		txrx_peer->nawds_enabled = val.cdp_peer_param_nawds;
8083 		break;
8084 	case CDP_CONFIG_ISOLATION:
8085 		dp_info("Peer " QDF_MAC_ADDR_FMT " vdev_id %d, isolation %d",
8086 			QDF_MAC_ADDR_REF(peer_mac), vdev_id,
8087 			val.cdp_peer_param_isolation);
8088 		dp_set_peer_isolation(txrx_peer, val.cdp_peer_param_isolation);
8089 		break;
8090 	case CDP_CONFIG_IN_TWT:
8091 		txrx_peer->in_twt = !!(val.cdp_peer_param_in_twt);
8092 		break;
8093 	case CDP_CONFIG_PEER_FREQ:
8094 		status =  dp_set_peer_freq(cdp_soc, vdev_id,
8095 					   peer_mac, param, val);
8096 		break;
8097 	default:
8098 		break;
8099 	}
8100 
8101 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8102 
8103 	return status;
8104 }
8105 
8106 #ifdef WLAN_FEATURE_11BE_MLO
8107 /**
8108  * dp_set_mld_peer_param: function to set parameters in MLD peer
8109  * @cdp_soc: DP soc handle
8110  * @vdev_id: id of vdev handle
8111  * @peer_mac: peer mac address
8112  * @param: parameter type to be set
8113  * @val: value of parameter to be set
8114  *
8115  * Return: 0 for success. nonzero for failure.
8116  */
8117 static QDF_STATUS dp_set_mld_peer_param(struct cdp_soc_t *cdp_soc,
8118 					uint8_t vdev_id,
8119 					uint8_t *peer_mac,
8120 					enum cdp_peer_param_type param,
8121 					cdp_config_param_type val)
8122 {
8123 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8124 	struct dp_peer *peer;
8125 	struct dp_txrx_peer *txrx_peer;
8126 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8127 
8128 	peer = dp_mld_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
8129 					  DP_MOD_ID_CDP);
8130 	if (!peer)
8131 		return QDF_STATUS_E_FAILURE;
8132 
8133 	txrx_peer = peer->txrx_peer;
8134 	if (!txrx_peer) {
8135 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8136 		return QDF_STATUS_E_FAILURE;
8137 	}
8138 
8139 	switch (param) {
8140 	case CDP_CONFIG_MLD_PEER_VDEV:
8141 		status = dp_mld_peer_change_vdev(soc, peer, val.new_vdev_id);
8142 		break;
8143 	default:
8144 		break;
8145 	}
8146 
8147 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8148 
8149 	return status;
8150 }
8151 
8152 /**
8153  * dp_set_peer_param_wrapper: wrapper function to set parameters in
8154  *			      legacy/link/MLD peer
8155  * @cdp_soc: DP soc handle
8156  * @vdev_id: id of vdev handle
8157  * @peer_mac: peer mac address
8158  * @param: parameter type to be set
8159  * @val: value of parameter to be set
8160  *
8161  * Return: 0 for success. nonzero for failure.
8162  */
8163 static QDF_STATUS
8164 dp_set_peer_param_wrapper(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8165 			  uint8_t *peer_mac, enum cdp_peer_param_type param,
8166 			  cdp_config_param_type val)
8167 {
8168 	QDF_STATUS status;
8169 
8170 	switch (param) {
8171 	case CDP_CONFIG_MLD_PEER_VDEV:
8172 		status = dp_set_mld_peer_param(cdp_soc, vdev_id, peer_mac,
8173 					       param, val);
8174 		break;
8175 	default:
8176 		status = dp_set_peer_param(cdp_soc, vdev_id, peer_mac,
8177 					   param, val);
8178 		break;
8179 	}
8180 
8181 	return status;
8182 }
8183 #endif
8184 
8185 /**
8186  * dp_get_pdev_param() - function to get parameters from pdev
8187  * @cdp_soc: DP soc handle
8188  * @pdev_id: id of pdev handle
8189  * @param: parameter type to be get
8190  * @val: buffer for value
8191  *
8192  * Return: status
8193  */
8194 static QDF_STATUS dp_get_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
8195 				    enum cdp_pdev_param_type param,
8196 				    cdp_config_param_type *val)
8197 {
8198 	struct cdp_pdev *pdev = (struct cdp_pdev *)
8199 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8200 						   pdev_id);
8201 	if (!pdev)
8202 		return QDF_STATUS_E_FAILURE;
8203 
8204 	switch (param) {
8205 	case CDP_CONFIG_VOW:
8206 		val->cdp_pdev_param_cfg_vow =
8207 				((struct dp_pdev *)pdev)->vow_stats;
8208 		break;
8209 	case CDP_TX_PENDING:
8210 		val->cdp_pdev_param_tx_pending = dp_get_tx_pending(pdev);
8211 		break;
8212 	case CDP_FILTER_MCAST_DATA:
8213 		val->cdp_pdev_param_fltr_mcast =
8214 				dp_monitor_pdev_get_filter_mcast_data(pdev);
8215 		break;
8216 	case CDP_FILTER_NO_DATA:
8217 		val->cdp_pdev_param_fltr_none =
8218 				dp_monitor_pdev_get_filter_non_data(pdev);
8219 		break;
8220 	case CDP_FILTER_UCAST_DATA:
8221 		val->cdp_pdev_param_fltr_ucast =
8222 				dp_monitor_pdev_get_filter_ucast_data(pdev);
8223 		break;
8224 	case CDP_MONITOR_CHANNEL:
8225 		val->cdp_pdev_param_monitor_chan =
8226 			dp_monitor_get_chan_num((struct dp_pdev *)pdev);
8227 		break;
8228 	case CDP_MONITOR_FREQUENCY:
8229 		val->cdp_pdev_param_mon_freq =
8230 			dp_monitor_get_chan_freq((struct dp_pdev *)pdev);
8231 		break;
8232 	case CDP_CONFIG_RXDMA_BUF_RING_SIZE:
8233 		val->cdp_rxdma_buf_ring_size =
8234 			wlan_cfg_get_rx_dma_buf_ring_size(((struct dp_pdev *)pdev)->wlan_cfg_ctx);
8235 		break;
8236 	case CDP_CONFIG_DELAY_STATS:
8237 		val->cdp_pdev_param_cfg_delay_stats =
8238 				((struct dp_pdev *)pdev)->delay_stats_flag;
8239 		break;
8240 	default:
8241 		return QDF_STATUS_E_FAILURE;
8242 	}
8243 
8244 	return QDF_STATUS_SUCCESS;
8245 }
8246 
8247 /**
8248  * dp_set_pdev_param() - function to set parameters in pdev
8249  * @cdp_soc: DP soc handle
8250  * @pdev_id: id of pdev handle
8251  * @param: parameter type to be set
8252  * @val: value of parameter to be set
8253  *
8254  * Return: 0 for success. nonzero for failure.
8255  */
8256 static QDF_STATUS dp_set_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
8257 				    enum cdp_pdev_param_type param,
8258 				    cdp_config_param_type val)
8259 {
8260 	int target_type;
8261 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8262 	struct dp_pdev *pdev =
8263 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8264 						   pdev_id);
8265 	enum reg_wifi_band chan_band;
8266 
8267 	if (!pdev)
8268 		return QDF_STATUS_E_FAILURE;
8269 
8270 	target_type = hal_get_target_type(soc->hal_soc);
8271 	switch (target_type) {
8272 	case TARGET_TYPE_QCA6750:
8273 	case TARGET_TYPE_WCN6450:
8274 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
8275 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8276 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8277 		break;
8278 	case TARGET_TYPE_KIWI:
8279 	case TARGET_TYPE_MANGO:
8280 	case TARGET_TYPE_PEACH:
8281 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
8282 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8283 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8284 		break;
8285 	default:
8286 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC1_LMAC_ID;
8287 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8288 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8289 		break;
8290 	}
8291 
8292 	switch (param) {
8293 	case CDP_CONFIG_TX_CAPTURE:
8294 		return dp_monitor_config_debug_sniffer(pdev,
8295 						val.cdp_pdev_param_tx_capture);
8296 	case CDP_CONFIG_DEBUG_SNIFFER:
8297 		return dp_monitor_config_debug_sniffer(pdev,
8298 						val.cdp_pdev_param_dbg_snf);
8299 	case CDP_CONFIG_BPR_ENABLE:
8300 		return dp_monitor_set_bpr_enable(pdev,
8301 						 val.cdp_pdev_param_bpr_enable);
8302 	case CDP_CONFIG_PRIMARY_RADIO:
8303 		pdev->is_primary = val.cdp_pdev_param_primary_radio;
8304 		break;
8305 	case CDP_CONFIG_CAPTURE_LATENCY:
8306 		pdev->latency_capture_enable = val.cdp_pdev_param_cptr_latcy;
8307 		break;
8308 	case CDP_INGRESS_STATS:
8309 		dp_pdev_tid_stats_ingress_inc(pdev,
8310 					      val.cdp_pdev_param_ingrs_stats);
8311 		break;
8312 	case CDP_OSIF_DROP:
8313 		dp_pdev_tid_stats_osif_drop(pdev,
8314 					    val.cdp_pdev_param_osif_drop);
8315 		break;
8316 	case CDP_CONFIG_ENH_RX_CAPTURE:
8317 		return dp_monitor_config_enh_rx_capture(pdev,
8318 						val.cdp_pdev_param_en_rx_cap);
8319 	case CDP_CONFIG_ENH_TX_CAPTURE:
8320 		return dp_monitor_config_enh_tx_capture(pdev,
8321 						val.cdp_pdev_param_en_tx_cap);
8322 	case CDP_CONFIG_HMMC_TID_OVERRIDE:
8323 		pdev->hmmc_tid_override_en = val.cdp_pdev_param_hmmc_tid_ovrd;
8324 		break;
8325 	case CDP_CONFIG_HMMC_TID_VALUE:
8326 		pdev->hmmc_tid = val.cdp_pdev_param_hmmc_tid;
8327 		break;
8328 	case CDP_CHAN_NOISE_FLOOR:
8329 		pdev->chan_noise_floor = val.cdp_pdev_param_chn_noise_flr;
8330 		break;
8331 	case CDP_TIDMAP_PRTY:
8332 		dp_set_pdev_tidmap_prty_wifi3(pdev,
8333 					      val.cdp_pdev_param_tidmap_prty);
8334 		break;
8335 	case CDP_FILTER_NEIGH_PEERS:
8336 		dp_monitor_set_filter_neigh_peers(pdev,
8337 					val.cdp_pdev_param_fltr_neigh_peers);
8338 		break;
8339 	case CDP_MONITOR_CHANNEL:
8340 		dp_monitor_set_chan_num(pdev, val.cdp_pdev_param_monitor_chan);
8341 		break;
8342 	case CDP_MONITOR_FREQUENCY:
8343 		chan_band = wlan_reg_freq_to_band(val.cdp_pdev_param_mon_freq);
8344 		dp_monitor_set_chan_freq(pdev, val.cdp_pdev_param_mon_freq);
8345 		dp_monitor_set_chan_band(pdev, chan_band);
8346 		break;
8347 	case CDP_CONFIG_BSS_COLOR:
8348 		dp_monitor_set_bsscolor(pdev, val.cdp_pdev_param_bss_color);
8349 		break;
8350 	case CDP_SET_ATF_STATS_ENABLE:
8351 		dp_monitor_set_atf_stats_enable(pdev,
8352 					val.cdp_pdev_param_atf_stats_enable);
8353 		break;
8354 	case CDP_CONFIG_SPECIAL_VAP:
8355 		dp_monitor_pdev_config_scan_spcl_vap(pdev,
8356 					val.cdp_pdev_param_config_special_vap);
8357 		dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
8358 		break;
8359 	case CDP_RESET_SCAN_SPCL_VAP_STATS_ENABLE:
8360 		dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(pdev,
8361 				val.cdp_pdev_param_reset_scan_spcl_vap_stats_enable);
8362 		break;
8363 	case CDP_CONFIG_ENHANCED_STATS_ENABLE:
8364 		pdev->enhanced_stats_en = val.cdp_pdev_param_enhanced_stats_enable;
8365 		break;
8366 	case CDP_ISOLATION:
8367 		pdev->isolation = val.cdp_pdev_param_isolation;
8368 		break;
8369 	case CDP_CONFIG_UNDECODED_METADATA_CAPTURE_ENABLE:
8370 		return dp_monitor_config_undecoded_metadata_capture(pdev,
8371 				val.cdp_pdev_param_undecoded_metadata_enable);
8372 		break;
8373 	case CDP_CONFIG_RXDMA_BUF_RING_SIZE:
8374 		wlan_cfg_set_rx_dma_buf_ring_size(pdev->wlan_cfg_ctx,
8375 						  val.cdp_rxdma_buf_ring_size);
8376 		break;
8377 	case CDP_CONFIG_VOW:
8378 		pdev->vow_stats = val.cdp_pdev_param_cfg_vow;
8379 		break;
8380 	default:
8381 		return QDF_STATUS_E_INVAL;
8382 	}
8383 	return QDF_STATUS_SUCCESS;
8384 }
8385 
8386 #ifdef QCA_UNDECODED_METADATA_SUPPORT
8387 static
8388 QDF_STATUS dp_set_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
8389 					uint8_t pdev_id, uint32_t mask,
8390 					uint32_t mask_cont)
8391 {
8392 	struct dp_pdev *pdev =
8393 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8394 						   pdev_id);
8395 
8396 	if (!pdev)
8397 		return QDF_STATUS_E_FAILURE;
8398 
8399 	return dp_monitor_config_undecoded_metadata_phyrx_error_mask(pdev,
8400 				mask, mask_cont);
8401 }
8402 
8403 static
8404 QDF_STATUS dp_get_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
8405 					uint8_t pdev_id, uint32_t *mask,
8406 					uint32_t *mask_cont)
8407 {
8408 	struct dp_pdev *pdev =
8409 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8410 						   pdev_id);
8411 
8412 	if (!pdev)
8413 		return QDF_STATUS_E_FAILURE;
8414 
8415 	return dp_monitor_get_undecoded_metadata_phyrx_error_mask(pdev,
8416 				mask, mask_cont);
8417 }
8418 #endif
8419 
8420 #ifdef QCA_PEER_EXT_STATS
8421 static void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
8422 					  qdf_nbuf_t nbuf)
8423 {
8424 	struct dp_peer *peer = NULL;
8425 	uint16_t peer_id, ring_id;
8426 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
8427 	struct dp_peer_delay_stats *delay_stats = NULL;
8428 
8429 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
8430 	if (peer_id > soc->max_peer_id)
8431 		return;
8432 
8433 	peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_CDP);
8434 	if (qdf_unlikely(!peer))
8435 		return;
8436 
8437 	if (qdf_unlikely(!peer->txrx_peer)) {
8438 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8439 		return;
8440 	}
8441 
8442 	if (qdf_likely(peer->txrx_peer->delay_stats)) {
8443 		delay_stats = peer->txrx_peer->delay_stats;
8444 		ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
8445 		dp_rx_compute_tid_delay(&delay_stats->delay_tid_stats[tid][ring_id],
8446 					nbuf);
8447 	}
8448 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8449 }
8450 #else
8451 static inline void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
8452 						 qdf_nbuf_t nbuf)
8453 {
8454 }
8455 #endif
8456 
8457 /**
8458  * dp_calculate_delay_stats() - function to get rx delay stats
8459  * @cdp_soc: DP soc handle
8460  * @vdev_id: id of DP vdev handle
8461  * @nbuf: skb
8462  *
8463  * Return: QDF_STATUS
8464  */
8465 static QDF_STATUS
8466 dp_calculate_delay_stats(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8467 			 qdf_nbuf_t nbuf)
8468 {
8469 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8470 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8471 						     DP_MOD_ID_CDP);
8472 
8473 	if (!vdev)
8474 		return QDF_STATUS_SUCCESS;
8475 
8476 	if (vdev->pdev->delay_stats_flag)
8477 		dp_rx_compute_delay(vdev, nbuf);
8478 	else
8479 		dp_rx_update_peer_delay_stats(soc, nbuf);
8480 
8481 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8482 	return QDF_STATUS_SUCCESS;
8483 }
8484 
8485 /**
8486  * dp_get_vdev_param() - function to get parameters from vdev
8487  * @cdp_soc: DP soc handle
8488  * @vdev_id: id of DP vdev handle
8489  * @param: parameter type to get value
8490  * @val: buffer address
8491  *
8492  * Return: status
8493  */
8494 static QDF_STATUS dp_get_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8495 				    enum cdp_vdev_param_type param,
8496 				    cdp_config_param_type *val)
8497 {
8498 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8499 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8500 						     DP_MOD_ID_CDP);
8501 
8502 	if (!vdev)
8503 		return QDF_STATUS_E_FAILURE;
8504 
8505 	switch (param) {
8506 	case CDP_ENABLE_WDS:
8507 		val->cdp_vdev_param_wds = vdev->wds_enabled;
8508 		break;
8509 	case CDP_ENABLE_MEC:
8510 		val->cdp_vdev_param_mec = vdev->mec_enabled;
8511 		break;
8512 	case CDP_ENABLE_DA_WAR:
8513 		val->cdp_vdev_param_da_war = vdev->pdev->soc->da_war_enabled;
8514 		break;
8515 	case CDP_ENABLE_IGMP_MCAST_EN:
8516 		val->cdp_vdev_param_igmp_mcast_en = vdev->igmp_mcast_enhanc_en;
8517 		break;
8518 	case CDP_ENABLE_MCAST_EN:
8519 		val->cdp_vdev_param_mcast_en = vdev->mcast_enhancement_en;
8520 		break;
8521 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
8522 		val->cdp_vdev_param_hlos_tid_override =
8523 			    dp_vdev_get_hlos_tid_override((struct cdp_vdev *)vdev);
8524 		break;
8525 	case CDP_ENABLE_PEER_AUTHORIZE:
8526 		val->cdp_vdev_param_peer_authorize =
8527 			    vdev->peer_authorize;
8528 		break;
8529 	case CDP_TX_ENCAP_TYPE:
8530 		val->cdp_vdev_param_tx_encap = vdev->tx_encap_type;
8531 		break;
8532 	case CDP_ENABLE_CIPHER:
8533 		val->cdp_vdev_param_cipher_en = vdev->sec_type;
8534 		break;
8535 #ifdef WLAN_SUPPORT_MESH_LATENCY
8536 	case CDP_ENABLE_PEER_TID_LATENCY:
8537 		val->cdp_vdev_param_peer_tid_latency_enable =
8538 			vdev->peer_tid_latency_enabled;
8539 		break;
8540 	case CDP_SET_VAP_MESH_TID:
8541 		val->cdp_vdev_param_mesh_tid =
8542 				vdev->mesh_tid_latency_config.latency_tid;
8543 		break;
8544 #endif
8545 	case CDP_DROP_3ADDR_MCAST:
8546 		val->cdp_drop_3addr_mcast = vdev->drop_3addr_mcast;
8547 		break;
8548 	case CDP_SET_MCAST_VDEV:
8549 		soc->arch_ops.txrx_get_vdev_mcast_param(soc, vdev, val);
8550 		break;
8551 #ifdef QCA_SUPPORT_WDS_EXTENDED
8552 	case CDP_DROP_TX_MCAST:
8553 		val->cdp_drop_tx_mcast = vdev->drop_tx_mcast;
8554 		break;
8555 #endif
8556 
8557 #ifdef MESH_MODE_SUPPORT
8558 	case CDP_MESH_RX_FILTER:
8559 		val->cdp_vdev_param_mesh_rx_filter = vdev->mesh_rx_filter;
8560 		break;
8561 	case CDP_MESH_MODE:
8562 		val->cdp_vdev_param_mesh_mode = vdev->mesh_vdev;
8563 		break;
8564 #endif
8565 	case CDP_ENABLE_NAWDS:
8566 		val->cdp_vdev_param_nawds = vdev->nawds_enabled;
8567 		break;
8568 
8569 	case CDP_ENABLE_WRAP:
8570 		val->cdp_vdev_param_wrap = vdev->wrap_vdev;
8571 		break;
8572 
8573 #ifdef DP_TRAFFIC_END_INDICATION
8574 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
8575 		val->cdp_vdev_param_traffic_end_ind = vdev->traffic_end_ind_en;
8576 		break;
8577 #endif
8578 
8579 	default:
8580 		dp_cdp_err("%pK: param value %d is wrong",
8581 			   soc, param);
8582 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8583 		return QDF_STATUS_E_FAILURE;
8584 	}
8585 
8586 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8587 	return QDF_STATUS_SUCCESS;
8588 }
8589 
8590 /**
8591  * dp_set_vdev_param() - function to set parameters in vdev
8592  * @cdp_soc: DP soc handle
8593  * @vdev_id: id of DP vdev handle
8594  * @param: parameter type to get value
8595  * @val: value
8596  *
8597  * Return: QDF_STATUS
8598  */
8599 static QDF_STATUS
8600 dp_set_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8601 		  enum cdp_vdev_param_type param, cdp_config_param_type val)
8602 {
8603 	struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
8604 	struct dp_vdev *vdev =
8605 		dp_vdev_get_ref_by_id(dsoc, vdev_id, DP_MOD_ID_CDP);
8606 	uint32_t var = 0;
8607 
8608 	if (!vdev)
8609 		return QDF_STATUS_E_FAILURE;
8610 
8611 	switch (param) {
8612 	case CDP_ENABLE_WDS:
8613 		dp_cdp_err("%pK: wds_enable %d for vdev(%pK) id(%d)",
8614 			   dsoc, val.cdp_vdev_param_wds, vdev, vdev->vdev_id);
8615 		vdev->wds_enabled = val.cdp_vdev_param_wds;
8616 		break;
8617 	case CDP_ENABLE_MEC:
8618 		dp_cdp_err("%pK: mec_enable %d for vdev(%pK) id(%d)",
8619 			   dsoc, val.cdp_vdev_param_mec, vdev, vdev->vdev_id);
8620 		vdev->mec_enabled = val.cdp_vdev_param_mec;
8621 		break;
8622 	case CDP_ENABLE_DA_WAR:
8623 		dp_cdp_err("%pK: da_war_enable %d for vdev(%pK) id(%d)",
8624 			   dsoc, val.cdp_vdev_param_da_war, vdev, vdev->vdev_id);
8625 		vdev->pdev->soc->da_war_enabled = val.cdp_vdev_param_da_war;
8626 		dp_wds_flush_ast_table_wifi3(((struct cdp_soc_t *)
8627 					     vdev->pdev->soc));
8628 		break;
8629 	case CDP_ENABLE_NAWDS:
8630 		vdev->nawds_enabled = val.cdp_vdev_param_nawds;
8631 		break;
8632 	case CDP_ENABLE_MCAST_EN:
8633 		vdev->mcast_enhancement_en = val.cdp_vdev_param_mcast_en;
8634 		break;
8635 	case CDP_ENABLE_IGMP_MCAST_EN:
8636 		vdev->igmp_mcast_enhanc_en = val.cdp_vdev_param_igmp_mcast_en;
8637 		break;
8638 	case CDP_ENABLE_PROXYSTA:
8639 		vdev->proxysta_vdev = val.cdp_vdev_param_proxysta;
8640 		break;
8641 	case CDP_UPDATE_TDLS_FLAGS:
8642 		vdev->tdls_link_connected = val.cdp_vdev_param_tdls_flags;
8643 		break;
8644 	case CDP_CFG_WDS_AGING_TIMER:
8645 		var = val.cdp_vdev_param_aging_tmr;
8646 		if (!var)
8647 			qdf_timer_stop(&vdev->pdev->soc->ast_aging_timer);
8648 		else if (var != vdev->wds_aging_timer_val)
8649 			qdf_timer_mod(&vdev->pdev->soc->ast_aging_timer, var);
8650 
8651 		vdev->wds_aging_timer_val = var;
8652 		break;
8653 	case CDP_ENABLE_AP_BRIDGE:
8654 		if (wlan_op_mode_sta != vdev->opmode)
8655 			vdev->ap_bridge_enabled = val.cdp_vdev_param_ap_brdg_en;
8656 		else
8657 			vdev->ap_bridge_enabled = false;
8658 		break;
8659 	case CDP_ENABLE_CIPHER:
8660 		vdev->sec_type = val.cdp_vdev_param_cipher_en;
8661 		break;
8662 	case CDP_ENABLE_QWRAP_ISOLATION:
8663 		vdev->isolation_vdev = val.cdp_vdev_param_qwrap_isolation;
8664 		break;
8665 	case CDP_UPDATE_MULTIPASS:
8666 		vdev->multipass_en = val.cdp_vdev_param_update_multipass;
8667 		dp_info("vdev %d Multipass enable %d", vdev_id,
8668 			vdev->multipass_en);
8669 		break;
8670 	case CDP_TX_ENCAP_TYPE:
8671 		vdev->tx_encap_type = val.cdp_vdev_param_tx_encap;
8672 		break;
8673 	case CDP_RX_DECAP_TYPE:
8674 		vdev->rx_decap_type = val.cdp_vdev_param_rx_decap;
8675 		break;
8676 	case CDP_TID_VDEV_PRTY:
8677 		vdev->tidmap_prty = val.cdp_vdev_param_tidmap_prty;
8678 		break;
8679 	case CDP_TIDMAP_TBL_ID:
8680 		vdev->tidmap_tbl_id = val.cdp_vdev_param_tidmap_tbl_id;
8681 		break;
8682 #ifdef MESH_MODE_SUPPORT
8683 	case CDP_MESH_RX_FILTER:
8684 		dp_vdev_set_mesh_rx_filter((struct cdp_vdev *)vdev,
8685 					   val.cdp_vdev_param_mesh_rx_filter);
8686 		break;
8687 	case CDP_MESH_MODE:
8688 		dp_vdev_set_mesh_mode((struct cdp_vdev *)vdev,
8689 				      val.cdp_vdev_param_mesh_mode);
8690 		break;
8691 #endif
8692 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
8693 		dp_info("vdev_id %d enable hlod tid override %d", vdev_id,
8694 			val.cdp_vdev_param_hlos_tid_override);
8695 		dp_vdev_set_hlos_tid_override(vdev,
8696 				val.cdp_vdev_param_hlos_tid_override);
8697 		break;
8698 #ifdef QCA_SUPPORT_WDS_EXTENDED
8699 	case CDP_CFG_WDS_EXT:
8700 		if (vdev->opmode == wlan_op_mode_ap)
8701 			vdev->wds_ext_enabled = val.cdp_vdev_param_wds_ext;
8702 		break;
8703 	case CDP_DROP_TX_MCAST:
8704 		dp_info("vdev_id %d drop tx mcast :%d", vdev_id,
8705 			val.cdp_drop_tx_mcast);
8706 		vdev->drop_tx_mcast = val.cdp_drop_tx_mcast;
8707 		break;
8708 #endif
8709 	case CDP_ENABLE_PEER_AUTHORIZE:
8710 		vdev->peer_authorize = val.cdp_vdev_param_peer_authorize;
8711 		break;
8712 #ifdef WLAN_SUPPORT_MESH_LATENCY
8713 	case CDP_ENABLE_PEER_TID_LATENCY:
8714 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
8715 			val.cdp_vdev_param_peer_tid_latency_enable);
8716 		vdev->peer_tid_latency_enabled =
8717 			val.cdp_vdev_param_peer_tid_latency_enable;
8718 		break;
8719 	case CDP_SET_VAP_MESH_TID:
8720 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
8721 			val.cdp_vdev_param_mesh_tid);
8722 		vdev->mesh_tid_latency_config.latency_tid
8723 				= val.cdp_vdev_param_mesh_tid;
8724 		break;
8725 #endif
8726 #ifdef WLAN_VENDOR_SPECIFIC_BAR_UPDATE
8727 	case CDP_SKIP_BAR_UPDATE_AP:
8728 		dp_info("vdev_id %d skip BAR update: %u", vdev_id,
8729 			val.cdp_skip_bar_update);
8730 		vdev->skip_bar_update = val.cdp_skip_bar_update;
8731 		vdev->skip_bar_update_last_ts = 0;
8732 		break;
8733 #endif
8734 	case CDP_DROP_3ADDR_MCAST:
8735 		dp_info("vdev_id %d drop 3 addr mcast :%d", vdev_id,
8736 			val.cdp_drop_3addr_mcast);
8737 		vdev->drop_3addr_mcast = val.cdp_drop_3addr_mcast;
8738 		break;
8739 	case CDP_ENABLE_WRAP:
8740 		vdev->wrap_vdev = val.cdp_vdev_param_wrap;
8741 		break;
8742 #ifdef DP_TRAFFIC_END_INDICATION
8743 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
8744 		vdev->traffic_end_ind_en = val.cdp_vdev_param_traffic_end_ind;
8745 		break;
8746 #endif
8747 #ifdef FEATURE_DIRECT_LINK
8748 	case CDP_VDEV_TX_TO_FW:
8749 		dp_info("vdev_id %d to_fw :%d", vdev_id, val.cdp_vdev_tx_to_fw);
8750 		vdev->to_fw = val.cdp_vdev_tx_to_fw;
8751 		break;
8752 #endif
8753 	case CDP_VDEV_SET_MAC_ADDR:
8754 		dp_info("set mac addr, old mac addr" QDF_MAC_ADDR_FMT
8755 			" new mac addr: " QDF_MAC_ADDR_FMT " for vdev %d",
8756 			QDF_MAC_ADDR_REF(vdev->mac_addr.raw),
8757 			QDF_MAC_ADDR_REF(val.mac_addr), vdev->vdev_id);
8758 		qdf_mem_copy(&vdev->mac_addr.raw[0], val.mac_addr,
8759 			     QDF_MAC_ADDR_SIZE);
8760 		break;
8761 	default:
8762 		break;
8763 	}
8764 
8765 	dp_tx_vdev_update_search_flags((struct dp_vdev *)vdev);
8766 	dsoc->arch_ops.txrx_set_vdev_param(dsoc, vdev, param, val);
8767 
8768 	/* Update PDEV flags as VDEV flags are updated */
8769 	dp_pdev_update_fast_rx_flag(dsoc, vdev->pdev);
8770 	dp_vdev_unref_delete(dsoc, vdev, DP_MOD_ID_CDP);
8771 
8772 	return QDF_STATUS_SUCCESS;
8773 }
8774 
8775 #if defined(FEATURE_WLAN_TDLS) && defined(WLAN_FEATURE_11BE_MLO)
8776 /**
8777  * dp_update_mlo_vdev_for_tdls() - update mlo vdev configuration
8778  *                                 for TDLS
8779  * @cdp_soc: DP soc handle
8780  * @vdev_id: id of DP vdev handle
8781  * @param: parameter type for vdev
8782  * @val: value
8783  *
8784  * If TDLS connection is from secondary vdev, then copy osif_vdev from
8785  * primary vdev to support RX, update TX bank register info for primary
8786  * vdev as well.
8787  * If TDLS connection is from primary vdev, same as before.
8788  *
8789  * Return: None
8790  */
8791 static void
8792 dp_update_mlo_vdev_for_tdls(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8793 			    enum cdp_vdev_param_type param,
8794 			    cdp_config_param_type val)
8795 {
8796 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8797 	struct dp_peer *peer;
8798 	struct dp_peer *tmp_peer;
8799 	struct dp_peer *mld_peer;
8800 	struct dp_vdev *vdev = NULL;
8801 	struct dp_vdev *pri_vdev = NULL;
8802 	uint8_t pri_vdev_id = CDP_INVALID_VDEV_ID;
8803 
8804 	if (param != CDP_UPDATE_TDLS_FLAGS)
8805 		return;
8806 
8807 	dp_info("update TDLS flag for vdev_id %d, val %d",
8808 		vdev_id, val.cdp_vdev_param_tdls_flags);
8809 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_MISC);
8810 	/* only check for STA mode vdev */
8811 	if (!vdev || vdev->opmode != wlan_op_mode_sta) {
8812 		dp_info("vdev is not as expected for TDLS");
8813 		goto comp_ret;
8814 	}
8815 
8816 	/* Find primary vdev_id */
8817 	qdf_spin_lock_bh(&vdev->peer_list_lock);
8818 	TAILQ_FOREACH_SAFE(peer, &vdev->peer_list,
8819 			   peer_list_elem,
8820 			   tmp_peer) {
8821 		if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
8822 					QDF_STATUS_SUCCESS) {
8823 			/* do check only if MLO link peer exist */
8824 			if (IS_MLO_DP_LINK_PEER(peer)) {
8825 				mld_peer = DP_GET_MLD_PEER_FROM_PEER(peer);
8826 				pri_vdev_id = mld_peer->vdev->vdev_id;
8827 				dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
8828 				break;
8829 			}
8830 			dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
8831 		}
8832 	}
8833 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
8834 
8835 	if (pri_vdev_id != CDP_INVALID_VDEV_ID)
8836 		pri_vdev = dp_vdev_get_ref_by_id(soc, pri_vdev_id,
8837 						 DP_MOD_ID_MISC);
8838 
8839 	/* If current vdev is not same as primary vdev */
8840 	if (pri_vdev && pri_vdev != vdev) {
8841 		dp_info("primary vdev [%d] %pK different with vdev [%d] %pK",
8842 			pri_vdev->vdev_id, pri_vdev,
8843 			vdev->vdev_id, vdev);
8844 		/* update osif_vdev to support RX for vdev */
8845 		vdev->osif_vdev = pri_vdev->osif_vdev;
8846 		dp_set_vdev_param(cdp_soc, pri_vdev->vdev_id,
8847 				  CDP_UPDATE_TDLS_FLAGS, val);
8848 	}
8849 
8850 comp_ret:
8851 	if (pri_vdev)
8852 		dp_vdev_unref_delete(soc, pri_vdev, DP_MOD_ID_MISC);
8853 	if (vdev)
8854 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MISC);
8855 }
8856 
8857 static QDF_STATUS
8858 dp_set_vdev_param_wrapper(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8859 			  enum cdp_vdev_param_type param,
8860 			  cdp_config_param_type val)
8861 {
8862 	dp_update_mlo_vdev_for_tdls(cdp_soc, vdev_id, param, val);
8863 
8864 	return dp_set_vdev_param(cdp_soc, vdev_id, param, val);
8865 }
8866 #else
8867 static QDF_STATUS
8868 dp_set_vdev_param_wrapper(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8869 			  enum cdp_vdev_param_type param,
8870 			  cdp_config_param_type val)
8871 {
8872 	return dp_set_vdev_param(cdp_soc, vdev_id, param, val);
8873 }
8874 #endif
8875 
8876 /**
8877  * dp_rx_peer_metadata_ver_update() - update rx peer metadata version and
8878  *                                    corresponding filed shift and mask
8879  * @soc: Handle to DP Soc structure
8880  * @peer_md_ver: RX peer metadata version value
8881  *
8882  * Return: None
8883  */
8884 static void
8885 dp_rx_peer_metadata_ver_update(struct dp_soc *soc, uint8_t peer_md_ver)
8886 {
8887 	dp_info("rx_peer_metadata version %d", peer_md_ver);
8888 
8889 	switch (peer_md_ver) {
8890 	case 0: /* htt_rx_peer_metadata_v0 */
8891 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V0_PEER_ID_S;
8892 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V0_PEER_ID_M;
8893 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V0_VDEV_ID_S;
8894 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V0_VDEV_ID_M;
8895 		break;
8896 	case 1: /* htt_rx_peer_metadata_v1 */
8897 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1_PEER_ID_S;
8898 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1_PEER_ID_M;
8899 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1_VDEV_ID_S;
8900 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1_VDEV_ID_M;
8901 		soc->htt_mld_peer_valid_s =
8902 				HTT_RX_PEER_META_DATA_V1_ML_PEER_VALID_S;
8903 		soc->htt_mld_peer_valid_m =
8904 				HTT_RX_PEER_META_DATA_V1_ML_PEER_VALID_M;
8905 		break;
8906 	case 2: /* htt_rx_peer_metadata_v1a */
8907 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1A_PEER_ID_S;
8908 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1A_PEER_ID_M;
8909 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1A_VDEV_ID_S;
8910 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1A_VDEV_ID_M;
8911 		soc->htt_mld_peer_valid_s =
8912 				HTT_RX_PEER_META_DATA_V1A_ML_PEER_VALID_S;
8913 		soc->htt_mld_peer_valid_m =
8914 				HTT_RX_PEER_META_DATA_V1A_ML_PEER_VALID_M;
8915 		break;
8916 	case 3: /* htt_rx_peer_metadata_v1b */
8917 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1B_PEER_ID_S;
8918 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1B_PEER_ID_M;
8919 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1B_VDEV_ID_S;
8920 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1B_VDEV_ID_M;
8921 		soc->htt_mld_peer_valid_s =
8922 				HTT_RX_PEER_META_DATA_V1B_ML_PEER_VALID_S;
8923 		soc->htt_mld_peer_valid_m =
8924 				HTT_RX_PEER_META_DATA_V1B_ML_PEER_VALID_M;
8925 		break;
8926 	default:
8927 		dp_err("invliad rx_peer_metadata version %d", peer_md_ver);
8928 		break;
8929 	}
8930 
8931 	soc->rx_peer_metadata_ver = peer_md_ver;
8932 }
8933 
8934 /**
8935  * dp_set_psoc_param: function to set parameters in psoc
8936  * @cdp_soc: DP soc handle
8937  * @param: parameter type to be set
8938  * @val: value of parameter to be set
8939  *
8940  * Return: QDF_STATUS
8941  */
8942 static QDF_STATUS
8943 dp_set_psoc_param(struct cdp_soc_t *cdp_soc,
8944 		  enum cdp_psoc_param_type param, cdp_config_param_type val)
8945 {
8946 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8947 	struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx = soc->wlan_cfg_ctx;
8948 
8949 	switch (param) {
8950 	case CDP_ENABLE_RATE_STATS:
8951 		soc->peerstats_enabled = val.cdp_psoc_param_en_rate_stats;
8952 		break;
8953 	case CDP_SET_NSS_CFG:
8954 		wlan_cfg_set_dp_soc_nss_cfg(wlan_cfg_ctx,
8955 					    val.cdp_psoc_param_en_nss_cfg);
8956 		/*
8957 		 * TODO: masked out based on the per offloaded radio
8958 		 */
8959 		switch (val.cdp_psoc_param_en_nss_cfg) {
8960 		case dp_nss_cfg_default:
8961 			break;
8962 		case dp_nss_cfg_first_radio:
8963 		/*
8964 		 * This configuration is valid for single band radio which
8965 		 * is also NSS offload.
8966 		 */
8967 		case dp_nss_cfg_dbdc:
8968 		case dp_nss_cfg_dbtc:
8969 			wlan_cfg_set_num_tx_desc_pool(wlan_cfg_ctx, 0);
8970 			wlan_cfg_set_num_tx_ext_desc_pool(wlan_cfg_ctx, 0);
8971 			wlan_cfg_set_num_tx_desc(wlan_cfg_ctx, 0);
8972 			wlan_cfg_set_num_tx_spl_desc(soc->wlan_cfg_ctx, 0);
8973 			wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx, 0);
8974 			break;
8975 		default:
8976 			dp_cdp_err("%pK: Invalid offload config %d",
8977 				   soc, val.cdp_psoc_param_en_nss_cfg);
8978 		}
8979 
8980 			dp_cdp_err("%pK: nss-wifi<0> nss config is enabled"
8981 				   , soc);
8982 		break;
8983 	case CDP_SET_PREFERRED_HW_MODE:
8984 		soc->preferred_hw_mode = val.cdp_psoc_param_preferred_hw_mode;
8985 		break;
8986 	case CDP_IPA_ENABLE:
8987 		soc->wlan_cfg_ctx->ipa_enabled = val.cdp_ipa_enabled;
8988 		break;
8989 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
8990 		wlan_cfg_set_vdev_stats_hw_offload_config(wlan_cfg_ctx,
8991 				val.cdp_psoc_param_vdev_stats_hw_offload);
8992 		break;
8993 	case CDP_SAWF_ENABLE:
8994 		wlan_cfg_set_sawf_config(wlan_cfg_ctx, val.cdp_sawf_enabled);
8995 		break;
8996 	case CDP_UMAC_RST_SKEL_ENABLE:
8997 		dp_umac_rst_skel_enable_update(soc, val.cdp_umac_rst_skel);
8998 		break;
8999 	case CDP_UMAC_RESET_STATS:
9000 		dp_umac_reset_stats_print(soc);
9001 		break;
9002 	case CDP_SAWF_STATS:
9003 		wlan_cfg_set_sawf_stats_config(wlan_cfg_ctx,
9004 					       val.cdp_sawf_stats);
9005 		break;
9006 	case CDP_CFG_RX_PEER_METADATA_VER:
9007 		dp_rx_peer_metadata_ver_update(
9008 				soc, val.cdp_peer_metadata_ver);
9009 		break;
9010 	case CDP_CFG_TX_DESC_NUM:
9011 		wlan_cfg_set_num_tx_desc(wlan_cfg_ctx,
9012 					 val.cdp_tx_desc_num);
9013 		break;
9014 	case CDP_CFG_TX_EXT_DESC_NUM:
9015 		wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx,
9016 					     val.cdp_tx_ext_desc_num);
9017 		break;
9018 	case CDP_CFG_TX_RING_SIZE:
9019 		wlan_cfg_set_tx_ring_size(wlan_cfg_ctx,
9020 					  val.cdp_tx_ring_size);
9021 		break;
9022 	case CDP_CFG_TX_COMPL_RING_SIZE:
9023 		wlan_cfg_set_tx_comp_ring_size(wlan_cfg_ctx,
9024 					       val.cdp_tx_comp_ring_size);
9025 		break;
9026 	case CDP_CFG_RX_SW_DESC_NUM:
9027 		wlan_cfg_set_dp_soc_rx_sw_desc_num(wlan_cfg_ctx,
9028 						   val.cdp_rx_sw_desc_num);
9029 		break;
9030 	case CDP_CFG_REO_DST_RING_SIZE:
9031 		wlan_cfg_set_reo_dst_ring_size(wlan_cfg_ctx,
9032 					       val.cdp_reo_dst_ring_size);
9033 		break;
9034 	case CDP_CFG_RXDMA_REFILL_RING_SIZE:
9035 		wlan_cfg_set_dp_soc_rxdma_refill_ring_size(wlan_cfg_ctx,
9036 					val.cdp_rxdma_refill_ring_size);
9037 		break;
9038 #ifdef WLAN_FEATURE_RX_PREALLOC_BUFFER_POOL
9039 	case CDP_CFG_RX_REFILL_POOL_NUM:
9040 		wlan_cfg_set_rx_refill_buf_pool_size(wlan_cfg_ctx,
9041 						val.cdp_rx_refill_buf_pool_size);
9042 		break;
9043 #endif
9044 	case CDP_CFG_AST_INDICATION_DISABLE:
9045 		wlan_cfg_set_ast_indication_disable
9046 			(wlan_cfg_ctx, val.cdp_ast_indication_disable);
9047 		break;
9048 	default:
9049 		break;
9050 	}
9051 
9052 	return QDF_STATUS_SUCCESS;
9053 }
9054 
9055 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
9056 /**
9057  * dp_get_mldev_mode: function to get mlo operation mode
9058  * @soc: soc structure for data path
9059  *
9060  * Return: uint8_t
9061  */
9062 static uint8_t dp_get_mldev_mode(struct dp_soc *soc)
9063 {
9064 	return soc->mld_mode_ap;
9065 }
9066 #else
9067 static uint8_t dp_get_mldev_mode(struct dp_soc *cdp_soc)
9068 {
9069 	return MLD_MODE_INVALID;
9070 }
9071 #endif
9072 
9073 /**
9074  * dp_get_psoc_param: function to get parameters in soc
9075  * @cdp_soc: DP soc handle
9076  * @param: parameter type to be get
9077  * @val: address of buffer
9078  *
9079  * Return: status
9080  */
9081 static QDF_STATUS dp_get_psoc_param(struct cdp_soc_t *cdp_soc,
9082 				    enum cdp_psoc_param_type param,
9083 				    cdp_config_param_type *val)
9084 {
9085 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
9086 	struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx;
9087 
9088 	if (!soc)
9089 		return QDF_STATUS_E_FAILURE;
9090 
9091 	wlan_cfg_ctx = soc->wlan_cfg_ctx;
9092 
9093 	switch (param) {
9094 	case CDP_ENABLE_RATE_STATS:
9095 		val->cdp_psoc_param_en_rate_stats = soc->peerstats_enabled;
9096 		break;
9097 	case CDP_CFG_PEER_EXT_STATS:
9098 		val->cdp_psoc_param_pext_stats =
9099 			wlan_cfg_is_peer_ext_stats_enabled(wlan_cfg_ctx);
9100 		break;
9101 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
9102 		val->cdp_psoc_param_vdev_stats_hw_offload =
9103 			wlan_cfg_get_vdev_stats_hw_offload_config(wlan_cfg_ctx);
9104 		break;
9105 	case CDP_UMAC_RST_SKEL_ENABLE:
9106 		val->cdp_umac_rst_skel = dp_umac_rst_skel_enable_get(soc);
9107 		break;
9108 	case CDP_TXRX_HAL_SOC_HDL:
9109 		val->hal_soc_hdl = soc->hal_soc;
9110 		break;
9111 	case CDP_CFG_TX_DESC_NUM:
9112 		val->cdp_tx_desc_num = wlan_cfg_get_num_tx_desc(wlan_cfg_ctx);
9113 		break;
9114 	case CDP_CFG_TX_EXT_DESC_NUM:
9115 		val->cdp_tx_ext_desc_num =
9116 			wlan_cfg_get_num_tx_ext_desc(wlan_cfg_ctx);
9117 		break;
9118 	case CDP_CFG_TX_RING_SIZE:
9119 		val->cdp_tx_ring_size = wlan_cfg_tx_ring_size(wlan_cfg_ctx);
9120 		break;
9121 	case CDP_CFG_TX_COMPL_RING_SIZE:
9122 		val->cdp_tx_comp_ring_size =
9123 			wlan_cfg_tx_comp_ring_size(wlan_cfg_ctx);
9124 		break;
9125 	case CDP_CFG_RX_SW_DESC_NUM:
9126 		val->cdp_rx_sw_desc_num =
9127 			wlan_cfg_get_dp_soc_rx_sw_desc_num(wlan_cfg_ctx);
9128 		break;
9129 	case CDP_CFG_REO_DST_RING_SIZE:
9130 		val->cdp_reo_dst_ring_size =
9131 			wlan_cfg_get_reo_dst_ring_size(wlan_cfg_ctx);
9132 		break;
9133 	case CDP_CFG_RXDMA_REFILL_RING_SIZE:
9134 		val->cdp_rxdma_refill_ring_size =
9135 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(wlan_cfg_ctx);
9136 		break;
9137 #ifdef WLAN_FEATURE_RX_PREALLOC_BUFFER_POOL
9138 	case CDP_CFG_RX_REFILL_POOL_NUM:
9139 		val->cdp_rx_refill_buf_pool_size =
9140 			wlan_cfg_get_rx_refill_buf_pool_size(wlan_cfg_ctx);
9141 		break;
9142 #endif
9143 	case CDP_CFG_FISA_PARAMS:
9144 		val->fisa_params.fisa_fst_size = wlan_cfg_get_rx_flow_search_table_size(soc->wlan_cfg_ctx);
9145 		val->fisa_params.rx_flow_max_search =
9146 			wlan_cfg_rx_fst_get_max_search(soc->wlan_cfg_ctx);
9147 		val->fisa_params.rx_toeplitz_hash_key =
9148 			wlan_cfg_rx_fst_get_hash_key(soc->wlan_cfg_ctx);
9149 		break;
9150 	case CDP_RX_PKT_TLV_SIZE:
9151 		val->rx_pkt_tlv_size = soc->rx_pkt_tlv_size;
9152 		break;
9153 	case CDP_CFG_GET_MLO_OPER_MODE:
9154 		val->cdp_psoc_param_mlo_oper_mode = dp_get_mldev_mode(soc);
9155 		break;
9156 	case CDP_CFG_PEER_JITTER_STATS:
9157 		val->cdp_psoc_param_jitter_stats =
9158 			wlan_cfg_is_peer_jitter_stats_enabled(soc->wlan_cfg_ctx);
9159 		break;
9160 	default:
9161 		dp_warn("Invalid param: %u", param);
9162 		break;
9163 	}
9164 
9165 	return QDF_STATUS_SUCCESS;
9166 }
9167 
9168 /**
9169  * dp_set_vdev_dscp_tid_map_wifi3() - Update Map ID selected for particular vdev
9170  * @cdp_soc: CDP SOC handle
9171  * @vdev_id: id of DP_VDEV handle
9172  * @map_id:ID of map that needs to be updated
9173  *
9174  * Return: QDF_STATUS
9175  */
9176 static QDF_STATUS dp_set_vdev_dscp_tid_map_wifi3(ol_txrx_soc_handle cdp_soc,
9177 						 uint8_t vdev_id,
9178 						 uint8_t map_id)
9179 {
9180 	cdp_config_param_type val;
9181 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
9182 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9183 						     DP_MOD_ID_CDP);
9184 	if (vdev) {
9185 		vdev->dscp_tid_map_id = map_id;
9186 		val.cdp_vdev_param_dscp_tid_map_id = map_id;
9187 		soc->arch_ops.txrx_set_vdev_param(soc,
9188 						  vdev,
9189 						  CDP_UPDATE_DSCP_TO_TID_MAP,
9190 						  val);
9191 		/* Update flag for transmit tid classification */
9192 		if (vdev->dscp_tid_map_id < soc->num_hw_dscp_tid_map)
9193 			vdev->skip_sw_tid_classification |=
9194 				DP_TX_HW_DSCP_TID_MAP_VALID;
9195 		else
9196 			vdev->skip_sw_tid_classification &=
9197 				~DP_TX_HW_DSCP_TID_MAP_VALID;
9198 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9199 		return QDF_STATUS_SUCCESS;
9200 	}
9201 
9202 	return QDF_STATUS_E_FAILURE;
9203 }
9204 
9205 #ifdef DP_RATETABLE_SUPPORT
9206 static int dp_txrx_get_ratekbps(int preamb, int mcs,
9207 				int htflag, int gintval)
9208 {
9209 	uint32_t rix;
9210 	uint16_t ratecode;
9211 	enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
9212 
9213 	return dp_getrateindex((uint32_t)gintval, (uint16_t)mcs, 1,
9214 			       (uint8_t)preamb, 1, punc_mode,
9215 			       &rix, &ratecode);
9216 }
9217 #else
9218 static int dp_txrx_get_ratekbps(int preamb, int mcs,
9219 				int htflag, int gintval)
9220 {
9221 	return 0;
9222 }
9223 #endif
9224 
9225 /**
9226  * dp_txrx_get_pdev_stats() - Returns cdp_pdev_stats
9227  * @soc: DP soc handle
9228  * @pdev_id: id of DP pdev handle
9229  * @pdev_stats: buffer to copy to
9230  *
9231  * Return: status success/failure
9232  */
9233 static QDF_STATUS
9234 dp_txrx_get_pdev_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9235 		       struct cdp_pdev_stats *pdev_stats)
9236 {
9237 	struct dp_pdev *pdev =
9238 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9239 						   pdev_id);
9240 	if (!pdev)
9241 		return QDF_STATUS_E_FAILURE;
9242 
9243 	dp_aggregate_pdev_stats(pdev);
9244 
9245 	qdf_mem_copy(pdev_stats, &pdev->stats, sizeof(struct cdp_pdev_stats));
9246 	return QDF_STATUS_SUCCESS;
9247 }
9248 
9249 /**
9250  * dp_txrx_update_vdev_me_stats() - Update vdev ME stats sent from CDP
9251  * @vdev: DP vdev handle
9252  * @buf: buffer containing specific stats structure
9253  *
9254  * Return: void
9255  */
9256 static void dp_txrx_update_vdev_me_stats(struct dp_vdev *vdev,
9257 					 void *buf)
9258 {
9259 	struct cdp_tx_ingress_stats *host_stats = NULL;
9260 
9261 	if (!buf) {
9262 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
9263 		return;
9264 	}
9265 	host_stats = (struct cdp_tx_ingress_stats *)buf;
9266 
9267 	DP_STATS_INC_PKT(vdev, tx_i.mcast_en.mcast_pkt,
9268 			 host_stats->mcast_en.mcast_pkt.num,
9269 			 host_stats->mcast_en.mcast_pkt.bytes);
9270 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error,
9271 		     host_stats->mcast_en.dropped_map_error);
9272 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_self_mac,
9273 		     host_stats->mcast_en.dropped_self_mac);
9274 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_send_fail,
9275 		     host_stats->mcast_en.dropped_send_fail);
9276 	DP_STATS_INC(vdev, tx_i.mcast_en.ucast,
9277 		     host_stats->mcast_en.ucast);
9278 	DP_STATS_INC(vdev, tx_i.mcast_en.fail_seg_alloc,
9279 		     host_stats->mcast_en.fail_seg_alloc);
9280 	DP_STATS_INC(vdev, tx_i.mcast_en.clone_fail,
9281 		     host_stats->mcast_en.clone_fail);
9282 }
9283 
9284 /**
9285  * dp_txrx_update_vdev_igmp_me_stats() - Update vdev IGMP ME stats sent from CDP
9286  * @vdev: DP vdev handle
9287  * @buf: buffer containing specific stats structure
9288  *
9289  * Return: void
9290  */
9291 static void dp_txrx_update_vdev_igmp_me_stats(struct dp_vdev *vdev,
9292 					      void *buf)
9293 {
9294 	struct cdp_tx_ingress_stats *host_stats = NULL;
9295 
9296 	if (!buf) {
9297 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
9298 		return;
9299 	}
9300 	host_stats = (struct cdp_tx_ingress_stats *)buf;
9301 
9302 	DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_rcvd,
9303 		     host_stats->igmp_mcast_en.igmp_rcvd);
9304 	DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_ucast_converted,
9305 		     host_stats->igmp_mcast_en.igmp_ucast_converted);
9306 }
9307 
9308 /**
9309  * dp_txrx_update_vdev_host_stats() - Update stats sent through CDP
9310  * @soc_hdl: DP soc handle
9311  * @vdev_id: id of DP vdev handle
9312  * @buf: buffer containing specific stats structure
9313  * @stats_id: stats type
9314  *
9315  * Return: QDF_STATUS
9316  */
9317 static QDF_STATUS dp_txrx_update_vdev_host_stats(struct cdp_soc_t *soc_hdl,
9318 						 uint8_t vdev_id,
9319 						 void *buf,
9320 						 uint16_t stats_id)
9321 {
9322 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9323 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9324 						     DP_MOD_ID_CDP);
9325 
9326 	if (!vdev) {
9327 		dp_cdp_err("%pK: Invalid vdev handle", soc);
9328 		return QDF_STATUS_E_FAILURE;
9329 	}
9330 
9331 	switch (stats_id) {
9332 	case DP_VDEV_STATS_PKT_CNT_ONLY:
9333 		break;
9334 	case DP_VDEV_STATS_TX_ME:
9335 		dp_txrx_update_vdev_me_stats(vdev, buf);
9336 		dp_txrx_update_vdev_igmp_me_stats(vdev, buf);
9337 		break;
9338 	default:
9339 		qdf_info("Invalid stats_id %d", stats_id);
9340 		break;
9341 	}
9342 
9343 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9344 	return QDF_STATUS_SUCCESS;
9345 }
9346 
9347 /**
9348  * dp_txrx_get_peer_stats_wrapper() - will get cdp_peer_stats
9349  * @soc: soc handle
9350  * @peer_stats: destination buffer to copy to
9351  * @peer_info: peer info
9352  *
9353  * Return: status success/failure
9354  */
9355 static QDF_STATUS
9356 dp_txrx_get_peer_stats_wrapper(struct cdp_soc_t *soc,
9357 			       struct cdp_peer_stats *peer_stats,
9358 			       struct cdp_peer_info peer_info)
9359 {
9360 	struct dp_peer *peer = NULL;
9361 
9362 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9363 					 DP_MOD_ID_CDP);
9364 
9365 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
9366 
9367 	if (!peer)
9368 		return QDF_STATUS_E_FAILURE;
9369 
9370 	dp_get_peer_stats(peer, peer_stats);
9371 
9372 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9373 
9374 	return QDF_STATUS_SUCCESS;
9375 }
9376 
9377 /**
9378  * dp_txrx_get_peer_stats() - will get cdp_peer_stats
9379  * @soc: soc handle
9380  * @vdev_id: id of vdev handle
9381  * @peer_mac: peer mac address of DP_PEER handle
9382  * @peer_stats: destination buffer to copy to
9383  *
9384  * Return: status success/failure
9385  */
9386 static QDF_STATUS
9387 dp_txrx_get_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9388 		       uint8_t *peer_mac, struct cdp_peer_stats *peer_stats)
9389 {
9390 	struct cdp_peer_info peer_info = { 0 };
9391 
9392 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9393 				 CDP_WILD_PEER_TYPE);
9394 
9395 	return dp_txrx_get_peer_stats_wrapper(soc, peer_stats, peer_info);
9396 }
9397 
9398 /**
9399  * dp_txrx_get_peer_stats_based_on_peer_type() - get peer stats based on the
9400  * peer type
9401  * @soc: soc handle
9402  * @vdev_id: id of vdev handle
9403  * @peer_mac: mac of DP_PEER handle
9404  * @peer_stats: buffer to copy to
9405  * @peer_type: type of peer
9406  *
9407  * Return: status success/failure
9408  */
9409 static QDF_STATUS
9410 dp_txrx_get_peer_stats_based_on_peer_type(struct cdp_soc_t *soc, uint8_t vdev_id,
9411 					  uint8_t *peer_mac,
9412 					  struct cdp_peer_stats *peer_stats,
9413 					  enum cdp_peer_type peer_type)
9414 {
9415 	struct cdp_peer_info peer_info = { 0 };
9416 
9417 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9418 				 peer_type);
9419 
9420 	return dp_txrx_get_peer_stats_wrapper(soc, peer_stats, peer_info);
9421 }
9422 
9423 #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT
9424 /**
9425  * dp_get_per_link_peer_stats() - Get per link stats
9426  * @peer: DP peer
9427  * @peer_stats: buffer to copy to
9428  * @peer_type: Peer type
9429  * @num_link: Number of ML links
9430  *
9431  * Return: status success/failure
9432  */
9433 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
9434 				      struct cdp_peer_stats *peer_stats,
9435 				      enum cdp_peer_type peer_type,
9436 				      uint8_t num_link)
9437 {
9438 	uint8_t i, index = 0;
9439 	struct dp_peer *link_peer;
9440 	struct dp_mld_link_peers link_peers_info;
9441 	struct cdp_peer_stats *stats;
9442 	struct dp_soc *soc = peer->vdev->pdev->soc;
9443 
9444 	dp_get_peer_calibr_stats(peer, peer_stats);
9445 	dp_get_peer_basic_stats(peer, peer_stats);
9446 	dp_get_peer_tx_per(peer_stats);
9447 
9448 	if (IS_MLO_DP_MLD_PEER(peer)) {
9449 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
9450 						    &link_peers_info,
9451 						    DP_MOD_ID_GENERIC_STATS);
9452 		for (i = 0; i < link_peers_info.num_links; i++) {
9453 			link_peer = link_peers_info.link_peers[i];
9454 			if (qdf_unlikely(!link_peer))
9455 				continue;
9456 			if (index > num_link) {
9457 				dp_err("Request stats for %d link(s) is less than total link(s) %d",
9458 				       num_link, link_peers_info.num_links);
9459 				break;
9460 			}
9461 			stats = &peer_stats[index];
9462 			dp_get_peer_per_pkt_stats(link_peer, stats);
9463 			dp_get_peer_extd_stats(link_peer, stats);
9464 			index++;
9465 		}
9466 		dp_release_link_peers_ref(&link_peers_info,
9467 					  DP_MOD_ID_GENERIC_STATS);
9468 	} else {
9469 		dp_get_peer_per_pkt_stats(peer, peer_stats);
9470 		dp_get_peer_extd_stats(peer, peer_stats);
9471 	}
9472 	return QDF_STATUS_SUCCESS;
9473 }
9474 #else
9475 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
9476 				      struct cdp_peer_stats *peer_stats,
9477 				      enum cdp_peer_type peer_type,
9478 				      uint8_t num_link)
9479 {
9480 	dp_err("Per link stats not supported");
9481 	return QDF_STATUS_E_INVAL;
9482 }
9483 #endif
9484 
9485 /**
9486  * dp_txrx_get_per_link_peer_stats() - Get per link peer stats
9487  * @soc: soc handle
9488  * @vdev_id: id of vdev handle
9489  * @peer_mac: peer mac address
9490  * @peer_stats: buffer to copy to
9491  * @peer_type: Peer type
9492  * @num_link: Number of ML links
9493  *
9494  * NOTE: For peer_type = CDP_MLD_PEER_TYPE peer_stats should point to
9495  *       buffer of size = (sizeof(*peer_stats) * num_link)
9496  *
9497  * Return: status success/failure
9498  */
9499 static QDF_STATUS
9500 dp_txrx_get_per_link_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9501 				uint8_t *peer_mac,
9502 				struct cdp_peer_stats *peer_stats,
9503 				enum cdp_peer_type peer_type, uint8_t num_link)
9504 {
9505 	QDF_STATUS status;
9506 	struct dp_peer *peer = NULL;
9507 	struct cdp_peer_info peer_info = { 0 };
9508 
9509 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9510 				 peer_type);
9511 
9512 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9513 					 DP_MOD_ID_GENERIC_STATS);
9514 	if (!peer)
9515 		return QDF_STATUS_E_FAILURE;
9516 
9517 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
9518 
9519 	status = dp_get_per_link_peer_stats(peer, peer_stats, peer_type,
9520 					    num_link);
9521 
9522 	dp_peer_unref_delete(peer, DP_MOD_ID_GENERIC_STATS);
9523 
9524 	return status;
9525 }
9526 
9527 /**
9528  * dp_txrx_get_peer_stats_param() - will return specified cdp_peer_stats
9529  * @soc: soc handle
9530  * @vdev_id: vdev_id of vdev object
9531  * @peer_mac: mac address of the peer
9532  * @type: enum of required stats
9533  * @buf: buffer to hold the value
9534  *
9535  * Return: status success/failure
9536  */
9537 static QDF_STATUS
9538 dp_txrx_get_peer_stats_param(struct cdp_soc_t *soc, uint8_t vdev_id,
9539 			     uint8_t *peer_mac, enum cdp_peer_stats_type type,
9540 			     cdp_peer_stats_param_t *buf)
9541 {
9542 	QDF_STATUS ret;
9543 	struct dp_peer *peer = NULL;
9544 	struct cdp_peer_info peer_info = { 0 };
9545 
9546 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9547 				 CDP_WILD_PEER_TYPE);
9548 
9549 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9550 				         DP_MOD_ID_CDP);
9551 
9552 	if (!peer) {
9553 		dp_peer_err("%pK: Invalid Peer for Mac " QDF_MAC_ADDR_FMT,
9554 			    soc, QDF_MAC_ADDR_REF(peer_mac));
9555 		return QDF_STATUS_E_FAILURE;
9556 	}
9557 
9558 	if (type >= cdp_peer_per_pkt_stats_min &&
9559 	    type < cdp_peer_per_pkt_stats_max) {
9560 		ret = dp_txrx_get_peer_per_pkt_stats_param(peer, type, buf);
9561 	} else if (type >= cdp_peer_extd_stats_min &&
9562 		   type < cdp_peer_extd_stats_max) {
9563 		ret = dp_txrx_get_peer_extd_stats_param(peer, type, buf);
9564 	} else {
9565 		dp_err("%pK: Invalid stat type requested", soc);
9566 		ret = QDF_STATUS_E_FAILURE;
9567 	}
9568 
9569 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9570 
9571 	return ret;
9572 }
9573 
9574 /**
9575  * dp_txrx_reset_peer_stats() - reset cdp_peer_stats for particular peer
9576  * @soc_hdl: soc handle
9577  * @vdev_id: id of vdev handle
9578  * @peer_mac: mac of DP_PEER handle
9579  *
9580  * Return: QDF_STATUS
9581  */
9582 #ifdef WLAN_FEATURE_11BE_MLO
9583 static QDF_STATUS
9584 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9585 			 uint8_t *peer_mac)
9586 {
9587 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9588 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9589 	struct dp_peer *peer =
9590 			dp_peer_get_tgt_peer_hash_find(soc, peer_mac, 0,
9591 						       vdev_id, DP_MOD_ID_CDP);
9592 
9593 	if (!peer)
9594 		return QDF_STATUS_E_FAILURE;
9595 
9596 	DP_STATS_CLR(peer);
9597 	dp_txrx_peer_stats_clr(peer->txrx_peer);
9598 
9599 	if (IS_MLO_DP_MLD_PEER(peer)) {
9600 		uint8_t i;
9601 		struct dp_peer *link_peer;
9602 		struct dp_soc *link_peer_soc;
9603 		struct dp_mld_link_peers link_peers_info;
9604 
9605 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
9606 						    &link_peers_info,
9607 						    DP_MOD_ID_CDP);
9608 		for (i = 0; i < link_peers_info.num_links; i++) {
9609 			link_peer = link_peers_info.link_peers[i];
9610 			link_peer_soc = link_peer->vdev->pdev->soc;
9611 
9612 			DP_STATS_CLR(link_peer);
9613 			dp_monitor_peer_reset_stats(link_peer_soc, link_peer);
9614 		}
9615 
9616 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
9617 	} else {
9618 		dp_monitor_peer_reset_stats(soc, peer);
9619 	}
9620 
9621 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9622 
9623 	return status;
9624 }
9625 #else
9626 static QDF_STATUS
9627 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9628 			 uint8_t *peer_mac)
9629 {
9630 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9631 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
9632 						      peer_mac, 0, vdev_id,
9633 						      DP_MOD_ID_CDP);
9634 
9635 	if (!peer)
9636 		return QDF_STATUS_E_FAILURE;
9637 
9638 	DP_STATS_CLR(peer);
9639 	dp_txrx_peer_stats_clr(peer->txrx_peer);
9640 	dp_monitor_peer_reset_stats((struct dp_soc *)soc, peer);
9641 
9642 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9643 
9644 	return status;
9645 }
9646 #endif
9647 
9648 /**
9649  * dp_txrx_get_vdev_stats() - Update buffer with cdp_vdev_stats
9650  * @soc_hdl: CDP SoC handle
9651  * @vdev_id: vdev Id
9652  * @buf: buffer for vdev stats
9653  * @is_aggregate: are aggregate stats being collected
9654  *
9655  * Return: QDF_STATUS
9656  */
9657 QDF_STATUS
9658 dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9659 		       void *buf, bool is_aggregate)
9660 {
9661 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9662 	struct cdp_vdev_stats *vdev_stats;
9663 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9664 						     DP_MOD_ID_CDP);
9665 
9666 	if (!vdev)
9667 		return QDF_STATUS_E_RESOURCES;
9668 
9669 	vdev_stats = (struct cdp_vdev_stats *)buf;
9670 
9671 	if (is_aggregate) {
9672 		dp_aggregate_vdev_stats(vdev, buf);
9673 	} else {
9674 		qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
9675 	}
9676 
9677 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9678 	return QDF_STATUS_SUCCESS;
9679 }
9680 
9681 /**
9682  * dp_get_total_per() - get total per
9683  * @soc: DP soc handle
9684  * @pdev_id: id of DP_PDEV handle
9685  *
9686  * Return: % error rate using retries per packet and success packets
9687  */
9688 static int dp_get_total_per(struct cdp_soc_t *soc, uint8_t pdev_id)
9689 {
9690 	struct dp_pdev *pdev =
9691 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9692 						   pdev_id);
9693 
9694 	if (!pdev)
9695 		return 0;
9696 
9697 	dp_aggregate_pdev_stats(pdev);
9698 	if ((pdev->stats.tx.tx_success.num + pdev->stats.tx.retries) == 0)
9699 		return 0;
9700 	return qdf_do_div((pdev->stats.tx.retries * 100),
9701 		((pdev->stats.tx.tx_success.num) + (pdev->stats.tx.retries)));
9702 }
9703 
9704 /**
9705  * dp_txrx_stats_publish() - publish pdev stats into a buffer
9706  * @soc: DP soc handle
9707  * @pdev_id: id of DP_PDEV handle
9708  * @buf: to hold pdev_stats
9709  *
9710  * Return: int
9711  */
9712 static int
9713 dp_txrx_stats_publish(struct cdp_soc_t *soc, uint8_t pdev_id,
9714 		      struct cdp_stats_extd *buf)
9715 {
9716 	struct cdp_txrx_stats_req req = {0,};
9717 	QDF_STATUS status;
9718 	struct dp_pdev *pdev =
9719 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9720 						   pdev_id);
9721 
9722 	if (!pdev)
9723 		return TXRX_STATS_LEVEL_OFF;
9724 
9725 	if (pdev->pending_fw_stats_response) {
9726 		dp_warn("pdev%d: prev req pending\n", pdev->pdev_id);
9727 		return TXRX_STATS_LEVEL_OFF;
9728 	}
9729 
9730 	dp_aggregate_pdev_stats(pdev);
9731 
9732 	pdev->pending_fw_stats_response = true;
9733 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_TX;
9734 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
9735 	pdev->fw_stats_tlv_bitmap_rcvd = 0;
9736 	qdf_event_reset(&pdev->fw_stats_event);
9737 	status = dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
9738 					   req.param1, req.param2, req.param3, 0,
9739 					   req.cookie_val, 0);
9740 
9741 	if (status != QDF_STATUS_SUCCESS) {
9742 		dp_warn("pdev%d: tx stats req failed\n", pdev->pdev_id);
9743 		pdev->pending_fw_stats_response = false;
9744 		return TXRX_STATS_LEVEL_OFF;
9745 	}
9746 
9747 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_RX;
9748 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
9749 	status = dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
9750 					   req.param1, req.param2, req.param3, 0,
9751 					   req.cookie_val, 0);
9752 	if (status != QDF_STATUS_SUCCESS) {
9753 		dp_warn("pdev%d: rx stats req failed\n", pdev->pdev_id);
9754 		pdev->pending_fw_stats_response = false;
9755 		return TXRX_STATS_LEVEL_OFF;
9756 	}
9757 
9758 	/* The event may have already been signaled. Wait only if it's pending */
9759 	if (!pdev->fw_stats_event.done) {
9760 		status =
9761 			qdf_wait_single_event(&pdev->fw_stats_event,
9762 					      DP_MAX_SLEEP_TIME);
9763 
9764 		if (status != QDF_STATUS_SUCCESS) {
9765 			if (status == QDF_STATUS_E_TIMEOUT)
9766 				dp_warn("pdev%d: fw stats timeout. TLVs rcvd 0x%llx\n",
9767 					     pdev->pdev_id,
9768 					     pdev->fw_stats_tlv_bitmap_rcvd);
9769 			pdev->pending_fw_stats_response = false;
9770 			return TXRX_STATS_LEVEL_OFF;
9771 		}
9772 	}
9773 
9774 	qdf_mem_copy(buf, &pdev->stats, sizeof(struct cdp_pdev_stats));
9775 	pdev->pending_fw_stats_response = false;
9776 
9777 	return TXRX_STATS_LEVEL;
9778 }
9779 
9780 /**
9781  * dp_get_obss_stats() - Get Pdev OBSS stats from Fw
9782  * @soc: DP soc handle
9783  * @pdev_id: id of DP_PDEV handle
9784  * @buf: to hold pdev obss stats
9785  * @req: Pointer to CDP TxRx stats
9786  *
9787  * Return: status
9788  */
9789 static QDF_STATUS
9790 dp_get_obss_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9791 		  struct cdp_pdev_obss_pd_stats_tlv *buf,
9792 		  struct cdp_txrx_stats_req *req)
9793 {
9794 	QDF_STATUS status;
9795 	struct dp_pdev *pdev =
9796 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9797 						   pdev_id);
9798 
9799 	if (!pdev)
9800 		return QDF_STATUS_E_INVAL;
9801 
9802 	if (pdev->pending_fw_obss_stats_response)
9803 		return QDF_STATUS_E_AGAIN;
9804 
9805 	pdev->pending_fw_obss_stats_response = true;
9806 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
9807 	req->cookie_val = DBG_STATS_COOKIE_HTT_OBSS;
9808 	qdf_event_reset(&pdev->fw_obss_stats_event);
9809 	status = dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
9810 					   req->param1, req->param2,
9811 					   req->param3, 0, req->cookie_val,
9812 					   req->mac_id);
9813 	if (QDF_IS_STATUS_ERROR(status)) {
9814 		pdev->pending_fw_obss_stats_response = false;
9815 		return status;
9816 	}
9817 	status =
9818 		qdf_wait_single_event(&pdev->fw_obss_stats_event,
9819 				      DP_MAX_SLEEP_TIME);
9820 
9821 	if (status != QDF_STATUS_SUCCESS) {
9822 		if (status == QDF_STATUS_E_TIMEOUT)
9823 			qdf_debug("TIMEOUT_OCCURS");
9824 		pdev->pending_fw_obss_stats_response = false;
9825 		return QDF_STATUS_E_TIMEOUT;
9826 	}
9827 	qdf_mem_copy(buf, &pdev->stats.htt_tx_pdev_stats.obss_pd_stats_tlv,
9828 		     sizeof(struct cdp_pdev_obss_pd_stats_tlv));
9829 	pdev->pending_fw_obss_stats_response = false;
9830 	return status;
9831 }
9832 
9833 /**
9834  * dp_clear_pdev_obss_pd_stats() - Clear pdev obss stats
9835  * @soc: DP soc handle
9836  * @pdev_id: id of DP_PDEV handle
9837  * @req: Pointer to CDP TxRx stats request mac_id will be
9838  *	 pre-filled and should not be overwritten
9839  *
9840  * Return: status
9841  */
9842 static QDF_STATUS
9843 dp_clear_pdev_obss_pd_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9844 			    struct cdp_txrx_stats_req *req)
9845 {
9846 	struct dp_pdev *pdev =
9847 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9848 						   pdev_id);
9849 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
9850 
9851 	if (!pdev)
9852 		return QDF_STATUS_E_INVAL;
9853 
9854 	/*
9855 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
9856 	 * from param0 to param3 according to below rule:
9857 	 *
9858 	 * PARAM:
9859 	 *   - config_param0 : start_offset (stats type)
9860 	 *   - config_param1 : stats bmask from start offset
9861 	 *   - config_param2 : stats bmask from start offset + 32
9862 	 *   - config_param3 : stats bmask from start offset + 64
9863 	 */
9864 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_RESET;
9865 	req->param0 = HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
9866 	req->param1 = 0x00000001;
9867 
9868 	return dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
9869 				  req->param1, req->param2, req->param3, 0,
9870 				cookie_val, req->mac_id);
9871 }
9872 
9873 /**
9874  * dp_set_pdev_dscp_tid_map_wifi3() - update dscp tid map in pdev
9875  * @soc_handle: soc handle
9876  * @pdev_id: id of DP_PDEV handle
9877  * @map_id: ID of map that needs to be updated
9878  * @tos: index value in map
9879  * @tid: tid value passed by the user
9880  *
9881  * Return: QDF_STATUS
9882  */
9883 static QDF_STATUS
9884 dp_set_pdev_dscp_tid_map_wifi3(struct cdp_soc_t *soc_handle,
9885 			       uint8_t pdev_id,
9886 			       uint8_t map_id,
9887 			       uint8_t tos, uint8_t tid)
9888 {
9889 	uint8_t dscp;
9890 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
9891 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
9892 
9893 	if (!pdev)
9894 		return QDF_STATUS_E_FAILURE;
9895 
9896 	dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
9897 	pdev->dscp_tid_map[map_id][dscp] = tid;
9898 
9899 	if (map_id < soc->num_hw_dscp_tid_map)
9900 		hal_tx_update_dscp_tid(soc->hal_soc, tid,
9901 				       map_id, dscp);
9902 	else
9903 		return QDF_STATUS_E_FAILURE;
9904 
9905 	return QDF_STATUS_SUCCESS;
9906 }
9907 
9908 #ifdef WLAN_SYSFS_DP_STATS
9909 /**
9910  * dp_sysfs_event_trigger() - Trigger event to wait for firmware
9911  * stats request response.
9912  * @soc: soc handle
9913  * @cookie_val: cookie value
9914  *
9915  * Return: QDF_STATUS
9916  */
9917 static QDF_STATUS
9918 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
9919 {
9920 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9921 	/* wait for firmware response for sysfs stats request */
9922 	if (cookie_val == DBG_SYSFS_STATS_COOKIE) {
9923 		if (!soc) {
9924 			dp_cdp_err("soc is NULL");
9925 			return QDF_STATUS_E_FAILURE;
9926 		}
9927 		/* wait for event completion */
9928 		status = qdf_wait_single_event(&soc->sysfs_config->sysfs_txrx_fw_request_done,
9929 					       WLAN_SYSFS_STAT_REQ_WAIT_MS);
9930 		if (status == QDF_STATUS_SUCCESS)
9931 			dp_cdp_info("sysfs_txrx_fw_request_done event completed");
9932 		else if (status == QDF_STATUS_E_TIMEOUT)
9933 			dp_cdp_warn("sysfs_txrx_fw_request_done event expired");
9934 		else
9935 			dp_cdp_warn("sysfs_txrx_fw_request_done event error code %d", status);
9936 	}
9937 
9938 	return status;
9939 }
9940 #else /* WLAN_SYSFS_DP_STATS */
9941 static QDF_STATUS
9942 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
9943 {
9944 	return QDF_STATUS_SUCCESS;
9945 }
9946 #endif /* WLAN_SYSFS_DP_STATS */
9947 
9948 /**
9949  * dp_fw_stats_process() - Process TXRX FW stats request.
9950  * @vdev: DP VDEV handle
9951  * @req: stats request
9952  *
9953  * Return: QDF_STATUS
9954  */
9955 static QDF_STATUS
9956 dp_fw_stats_process(struct dp_vdev *vdev,
9957 		    struct cdp_txrx_stats_req *req)
9958 {
9959 	struct dp_pdev *pdev = NULL;
9960 	struct dp_soc *soc = NULL;
9961 	uint32_t stats = req->stats;
9962 	uint8_t mac_id = req->mac_id;
9963 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
9964 
9965 	if (!vdev) {
9966 		DP_TRACE(NONE, "VDEV not found");
9967 		return QDF_STATUS_E_FAILURE;
9968 	}
9969 
9970 	pdev = vdev->pdev;
9971 	if (!pdev) {
9972 		DP_TRACE(NONE, "PDEV not found");
9973 		return QDF_STATUS_E_FAILURE;
9974 	}
9975 
9976 	soc = pdev->soc;
9977 	if (!soc) {
9978 		DP_TRACE(NONE, "soc not found");
9979 		return QDF_STATUS_E_FAILURE;
9980 	}
9981 
9982 	/* In case request is from host sysfs for displaying stats on console */
9983 	if (req->cookie_val == DBG_SYSFS_STATS_COOKIE)
9984 		cookie_val = DBG_SYSFS_STATS_COOKIE;
9985 
9986 	/*
9987 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
9988 	 * from param0 to param3 according to below rule:
9989 	 *
9990 	 * PARAM:
9991 	 *   - config_param0 : start_offset (stats type)
9992 	 *   - config_param1 : stats bmask from start offset
9993 	 *   - config_param2 : stats bmask from start offset + 32
9994 	 *   - config_param3 : stats bmask from start offset + 64
9995 	 */
9996 	if (req->stats == CDP_TXRX_STATS_0) {
9997 		req->param0 = HTT_DBG_EXT_STATS_PDEV_TX;
9998 		req->param1 = 0xFFFFFFFF;
9999 		req->param2 = 0xFFFFFFFF;
10000 		req->param3 = 0xFFFFFFFF;
10001 	} else if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_TX_MU) {
10002 		req->param0 = HTT_DBG_EXT_STATS_SET_VDEV_MASK(vdev->vdev_id);
10003 	}
10004 
10005 	if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT) {
10006 		dp_h2t_ext_stats_msg_send(pdev,
10007 					  HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT,
10008 					  req->param0, req->param1, req->param2,
10009 					  req->param3, 0, cookie_val,
10010 					  mac_id);
10011 	} else {
10012 		dp_h2t_ext_stats_msg_send(pdev, stats, req->param0,
10013 					  req->param1, req->param2, req->param3,
10014 					  0, cookie_val, mac_id);
10015 	}
10016 
10017 	dp_sysfs_event_trigger(soc, cookie_val);
10018 
10019 	return QDF_STATUS_SUCCESS;
10020 }
10021 
10022 /**
10023  * dp_txrx_stats_request - function to map to firmware and host stats
10024  * @soc_handle: soc handle
10025  * @vdev_id: virtual device ID
10026  * @req: stats request
10027  *
10028  * Return: QDF_STATUS
10029  */
10030 static
10031 QDF_STATUS dp_txrx_stats_request(struct cdp_soc_t *soc_handle,
10032 				 uint8_t vdev_id,
10033 				 struct cdp_txrx_stats_req *req)
10034 {
10035 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_handle);
10036 	int host_stats;
10037 	int fw_stats;
10038 	enum cdp_stats stats;
10039 	int num_stats;
10040 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10041 						     DP_MOD_ID_CDP);
10042 	QDF_STATUS status = QDF_STATUS_E_INVAL;
10043 
10044 	if (!vdev || !req) {
10045 		dp_cdp_err("%pK: Invalid vdev/req instance", soc);
10046 		status = QDF_STATUS_E_INVAL;
10047 		goto fail0;
10048 	}
10049 
10050 	if (req->mac_id >= WLAN_CFG_MAC_PER_TARGET) {
10051 		dp_err("Invalid mac_id: %u request", req->mac_id);
10052 		status = QDF_STATUS_E_INVAL;
10053 		goto fail0;
10054 	}
10055 
10056 	stats = req->stats;
10057 	if (stats >= CDP_TXRX_MAX_STATS) {
10058 		status = QDF_STATUS_E_INVAL;
10059 		goto fail0;
10060 	}
10061 
10062 	/*
10063 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
10064 	 *			has to be updated if new FW HTT stats added
10065 	 */
10066 	if (stats > CDP_TXRX_STATS_HTT_MAX)
10067 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
10068 
10069 	num_stats  = QDF_ARRAY_SIZE(dp_stats_mapping_table);
10070 
10071 	if (stats >= num_stats) {
10072 		dp_cdp_err("%pK : Invalid stats option: %d", soc, stats);
10073 		status = QDF_STATUS_E_INVAL;
10074 		goto fail0;
10075 	}
10076 
10077 	req->stats = stats;
10078 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
10079 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
10080 
10081 	dp_info("stats: %u fw_stats_type: %d host_stats: %d",
10082 		stats, fw_stats, host_stats);
10083 
10084 	if (fw_stats != TXRX_FW_STATS_INVALID) {
10085 		/* update request with FW stats type */
10086 		req->stats = fw_stats;
10087 		status = dp_fw_stats_process(vdev, req);
10088 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
10089 			(host_stats <= TXRX_HOST_STATS_MAX))
10090 		status = dp_print_host_stats(vdev, req, soc);
10091 	else
10092 		dp_cdp_info("%pK: Wrong Input for TxRx Stats", soc);
10093 fail0:
10094 	if (vdev)
10095 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10096 	return status;
10097 }
10098 
10099 /**
10100  * dp_soc_notify_asserted_soc() - API to notify asserted soc info
10101  * @psoc: CDP soc handle
10102  *
10103  * Return: QDF_STATUS
10104  */
10105 static QDF_STATUS dp_soc_notify_asserted_soc(struct cdp_soc_t *psoc)
10106 {
10107 	struct dp_soc *soc = (struct dp_soc *)psoc;
10108 
10109 	if (!soc) {
10110 		dp_cdp_err("%pK: soc is NULL", soc);
10111 		return QDF_STATUS_E_INVAL;
10112 	}
10113 
10114 	return dp_umac_reset_notify_asserted_soc(soc);
10115 }
10116 
10117 /**
10118  * dp_txrx_dump_stats() -  Dump statistics
10119  * @psoc: CDP soc handle
10120  * @value: Statistics option
10121  * @level: verbosity level
10122  */
10123 static QDF_STATUS dp_txrx_dump_stats(struct cdp_soc_t *psoc, uint16_t value,
10124 				     enum qdf_stats_verbosity_level level)
10125 {
10126 	struct dp_soc *soc =
10127 		(struct dp_soc *)psoc;
10128 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10129 
10130 	if (!soc) {
10131 		dp_cdp_err("%pK: soc is NULL", soc);
10132 		return QDF_STATUS_E_INVAL;
10133 	}
10134 
10135 	switch (value) {
10136 	case CDP_TXRX_PATH_STATS:
10137 		dp_txrx_path_stats(soc);
10138 		dp_print_soc_interrupt_stats(soc);
10139 		dp_print_reg_write_stats(soc);
10140 		dp_pdev_print_tx_delay_stats(soc);
10141 		/* Dump usage watermark stats for core TX/RX SRNGs */
10142 		dp_dump_srng_high_wm_stats(soc, (1 << REO_DST));
10143 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
10144 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
10145 						CDP_FISA_STATS_ID_ERR_STATS);
10146 		break;
10147 
10148 	case CDP_RX_RING_STATS:
10149 		dp_print_per_ring_stats(soc);
10150 		break;
10151 
10152 	case CDP_TXRX_TSO_STATS:
10153 		dp_print_tso_stats(soc, level);
10154 		break;
10155 
10156 	case CDP_DUMP_TX_FLOW_POOL_INFO:
10157 		if (level == QDF_STATS_VERBOSITY_LEVEL_HIGH)
10158 			cdp_dump_flow_pool_info((struct cdp_soc_t *)soc);
10159 		else
10160 			dp_tx_dump_flow_pool_info_compact(soc);
10161 		break;
10162 
10163 	case CDP_DP_NAPI_STATS:
10164 		dp_print_napi_stats(soc);
10165 		break;
10166 
10167 	case CDP_TXRX_DESC_STATS:
10168 		/* TODO: NOT IMPLEMENTED */
10169 		break;
10170 
10171 	case CDP_DP_RX_FISA_STATS:
10172 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
10173 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
10174 						CDP_FISA_STATS_ID_DUMP_SW_FST);
10175 		break;
10176 
10177 	case CDP_DP_SWLM_STATS:
10178 		dp_print_swlm_stats(soc);
10179 		break;
10180 
10181 	case CDP_DP_TX_HW_LATENCY_STATS:
10182 		dp_pdev_print_tx_delay_stats(soc);
10183 		break;
10184 
10185 	default:
10186 		status = QDF_STATUS_E_INVAL;
10187 		break;
10188 	}
10189 
10190 	return status;
10191 
10192 }
10193 
10194 #ifdef WLAN_SYSFS_DP_STATS
10195 static
10196 void dp_sysfs_get_stat_type(struct dp_soc *soc, uint32_t *mac_id,
10197 			    uint32_t *stat_type)
10198 {
10199 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
10200 	*stat_type = soc->sysfs_config->stat_type_requested;
10201 	*mac_id   = soc->sysfs_config->mac_id;
10202 
10203 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
10204 }
10205 
10206 static
10207 void dp_sysfs_update_config_buf_params(struct dp_soc *soc,
10208 				       uint32_t curr_len,
10209 				       uint32_t max_buf_len,
10210 				       char *buf)
10211 {
10212 	qdf_spinlock_acquire(&soc->sysfs_config->sysfs_write_user_buffer);
10213 	/* set sysfs_config parameters */
10214 	soc->sysfs_config->buf = buf;
10215 	soc->sysfs_config->curr_buffer_length = curr_len;
10216 	soc->sysfs_config->max_buffer_length = max_buf_len;
10217 	qdf_spinlock_release(&soc->sysfs_config->sysfs_write_user_buffer);
10218 }
10219 
10220 static
10221 QDF_STATUS dp_sysfs_fill_stats(ol_txrx_soc_handle soc_hdl,
10222 			       char *buf, uint32_t buf_size)
10223 {
10224 	uint32_t mac_id = 0;
10225 	uint32_t stat_type = 0;
10226 	uint32_t fw_stats = 0;
10227 	uint32_t host_stats = 0;
10228 	enum cdp_stats stats;
10229 	struct cdp_txrx_stats_req req;
10230 	uint32_t num_stats;
10231 	struct dp_soc *soc = NULL;
10232 
10233 	if (!soc_hdl) {
10234 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10235 		return QDF_STATUS_E_INVAL;
10236 	}
10237 
10238 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
10239 
10240 	if (!soc) {
10241 		dp_cdp_err("%pK: soc is NULL", soc);
10242 		return QDF_STATUS_E_INVAL;
10243 	}
10244 
10245 	dp_sysfs_get_stat_type(soc, &mac_id, &stat_type);
10246 
10247 	stats = stat_type;
10248 	if (stats >= CDP_TXRX_MAX_STATS) {
10249 		dp_cdp_info("sysfs stat type requested is invalid");
10250 		return QDF_STATUS_E_INVAL;
10251 	}
10252 	/*
10253 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
10254 	 *			has to be updated if new FW HTT stats added
10255 	 */
10256 	if (stats > CDP_TXRX_MAX_STATS)
10257 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
10258 
10259 	num_stats = QDF_ARRAY_SIZE(dp_stats_mapping_table);
10260 
10261 	if (stats >= num_stats) {
10262 		dp_cdp_err("%pK : Invalid stats option: %d, max num stats: %d",
10263 				soc, stats, num_stats);
10264 		return QDF_STATUS_E_INVAL;
10265 	}
10266 
10267 	/* build request */
10268 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
10269 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
10270 
10271 	req.stats = stat_type;
10272 	req.mac_id = mac_id;
10273 	/* request stats to be printed */
10274 	qdf_mutex_acquire(&soc->sysfs_config->sysfs_read_lock);
10275 
10276 	if (fw_stats != TXRX_FW_STATS_INVALID) {
10277 		/* update request with FW stats type */
10278 		req.cookie_val = DBG_SYSFS_STATS_COOKIE;
10279 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
10280 			(host_stats <= TXRX_HOST_STATS_MAX)) {
10281 		req.cookie_val = DBG_STATS_COOKIE_DEFAULT;
10282 		soc->sysfs_config->process_id = qdf_get_current_pid();
10283 		soc->sysfs_config->printing_mode = PRINTING_MODE_ENABLED;
10284 	}
10285 
10286 	dp_sysfs_update_config_buf_params(soc, 0, buf_size, buf);
10287 
10288 	dp_txrx_stats_request(soc_hdl, mac_id, &req);
10289 	soc->sysfs_config->process_id = 0;
10290 	soc->sysfs_config->printing_mode = PRINTING_MODE_DISABLED;
10291 
10292 	dp_sysfs_update_config_buf_params(soc, 0, 0, NULL);
10293 
10294 	qdf_mutex_release(&soc->sysfs_config->sysfs_read_lock);
10295 	return QDF_STATUS_SUCCESS;
10296 }
10297 
10298 static
10299 QDF_STATUS dp_sysfs_set_stat_type(ol_txrx_soc_handle soc_hdl,
10300 				  uint32_t stat_type, uint32_t mac_id)
10301 {
10302 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10303 
10304 	if (!soc_hdl) {
10305 		dp_cdp_err("%pK: soc is NULL", soc);
10306 		return QDF_STATUS_E_INVAL;
10307 	}
10308 
10309 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
10310 
10311 	soc->sysfs_config->stat_type_requested = stat_type;
10312 	soc->sysfs_config->mac_id = mac_id;
10313 
10314 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
10315 
10316 	return QDF_STATUS_SUCCESS;
10317 }
10318 
10319 static
10320 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
10321 {
10322 	struct dp_soc *soc;
10323 	QDF_STATUS status;
10324 
10325 	if (!soc_hdl) {
10326 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10327 		return QDF_STATUS_E_INVAL;
10328 	}
10329 
10330 	soc = soc_hdl;
10331 
10332 	soc->sysfs_config = qdf_mem_malloc(sizeof(struct sysfs_stats_config));
10333 	if (!soc->sysfs_config) {
10334 		dp_cdp_err("failed to allocate memory for sysfs_config no memory");
10335 		return QDF_STATUS_E_NOMEM;
10336 	}
10337 
10338 	status = qdf_event_create(&soc->sysfs_config->sysfs_txrx_fw_request_done);
10339 	/* create event for fw stats request from sysfs */
10340 	if (status != QDF_STATUS_SUCCESS) {
10341 		dp_cdp_err("failed to create event sysfs_txrx_fw_request_done");
10342 		qdf_mem_free(soc->sysfs_config);
10343 		soc->sysfs_config = NULL;
10344 		return QDF_STATUS_E_FAILURE;
10345 	}
10346 
10347 	qdf_spinlock_create(&soc->sysfs_config->rw_stats_lock);
10348 	qdf_mutex_create(&soc->sysfs_config->sysfs_read_lock);
10349 	qdf_spinlock_create(&soc->sysfs_config->sysfs_write_user_buffer);
10350 
10351 	return QDF_STATUS_SUCCESS;
10352 }
10353 
10354 static
10355 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
10356 {
10357 	struct dp_soc *soc;
10358 	QDF_STATUS status;
10359 
10360 	if (!soc_hdl) {
10361 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10362 		return QDF_STATUS_E_INVAL;
10363 	}
10364 
10365 	soc = soc_hdl;
10366 	if (!soc->sysfs_config) {
10367 		dp_cdp_err("soc->sysfs_config is NULL");
10368 		return QDF_STATUS_E_FAILURE;
10369 	}
10370 
10371 	status = qdf_event_destroy(&soc->sysfs_config->sysfs_txrx_fw_request_done);
10372 	if (status != QDF_STATUS_SUCCESS)
10373 		dp_cdp_err("Failed to destroy event sysfs_txrx_fw_request_done");
10374 
10375 	qdf_mutex_destroy(&soc->sysfs_config->sysfs_read_lock);
10376 	qdf_spinlock_destroy(&soc->sysfs_config->rw_stats_lock);
10377 	qdf_spinlock_destroy(&soc->sysfs_config->sysfs_write_user_buffer);
10378 
10379 	qdf_mem_free(soc->sysfs_config);
10380 
10381 	return QDF_STATUS_SUCCESS;
10382 }
10383 
10384 #else /* WLAN_SYSFS_DP_STATS */
10385 
10386 static
10387 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
10388 {
10389 	return QDF_STATUS_SUCCESS;
10390 }
10391 
10392 static
10393 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
10394 {
10395 	return QDF_STATUS_SUCCESS;
10396 }
10397 #endif /* WLAN_SYSFS_DP_STATS */
10398 
10399 /**
10400  * dp_txrx_clear_dump_stats() - clear dumpStats
10401  * @soc_hdl: soc handle
10402  * @pdev_id: pdev ID
10403  * @value: stats option
10404  *
10405  * Return: 0 - Success, non-zero - failure
10406  */
10407 static
10408 QDF_STATUS dp_txrx_clear_dump_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10409 				    uint8_t value)
10410 {
10411 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10412 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10413 
10414 	if (!soc) {
10415 		dp_err("soc is NULL");
10416 		return QDF_STATUS_E_INVAL;
10417 	}
10418 
10419 	switch (value) {
10420 	case CDP_TXRX_TSO_STATS:
10421 		dp_txrx_clear_tso_stats(soc);
10422 		break;
10423 
10424 	case CDP_DP_TX_HW_LATENCY_STATS:
10425 		dp_pdev_clear_tx_delay_stats(soc);
10426 		break;
10427 
10428 	default:
10429 		status = QDF_STATUS_E_INVAL;
10430 		break;
10431 	}
10432 
10433 	return status;
10434 }
10435 
10436 static QDF_STATUS
10437 dp_txrx_get_interface_stats(struct cdp_soc_t *soc_hdl,
10438 			    uint8_t vdev_id,
10439 			    void *buf,
10440 			    bool is_aggregate)
10441 {
10442 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10443 
10444 	if (soc && soc->arch_ops.dp_get_interface_stats)
10445 		return soc->arch_ops.dp_get_interface_stats(soc_hdl,
10446 							    vdev_id,
10447 							    buf,
10448 							    is_aggregate);
10449 	return QDF_STATUS_E_FAILURE;
10450 }
10451 
10452 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
10453 /**
10454  * dp_update_flow_control_parameters() - API to store datapath
10455  *                            config parameters
10456  * @soc: soc handle
10457  * @params: ini parameter handle
10458  *
10459  * Return: void
10460  */
10461 static inline
10462 void dp_update_flow_control_parameters(struct dp_soc *soc,
10463 				struct cdp_config_params *params)
10464 {
10465 	soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold =
10466 					params->tx_flow_stop_queue_threshold;
10467 	soc->wlan_cfg_ctx->tx_flow_start_queue_offset =
10468 					params->tx_flow_start_queue_offset;
10469 }
10470 #else
10471 static inline
10472 void dp_update_flow_control_parameters(struct dp_soc *soc,
10473 				struct cdp_config_params *params)
10474 {
10475 }
10476 #endif
10477 
10478 #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
10479 /* Max packet limit for TX Comp packet loop (dp_tx_comp_handler) */
10480 #define DP_TX_COMP_LOOP_PKT_LIMIT_MAX 1024
10481 
10482 /* Max packet limit for RX REAP Loop (dp_rx_process) */
10483 #define DP_RX_REAP_LOOP_PKT_LIMIT_MAX 1024
10484 
10485 static
10486 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
10487 					struct cdp_config_params *params)
10488 {
10489 	soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit =
10490 				params->tx_comp_loop_pkt_limit;
10491 
10492 	if (params->tx_comp_loop_pkt_limit < DP_TX_COMP_LOOP_PKT_LIMIT_MAX)
10493 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = true;
10494 	else
10495 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = false;
10496 
10497 	soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit =
10498 				params->rx_reap_loop_pkt_limit;
10499 
10500 	if (params->rx_reap_loop_pkt_limit < DP_RX_REAP_LOOP_PKT_LIMIT_MAX)
10501 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = true;
10502 	else
10503 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = false;
10504 
10505 	soc->wlan_cfg_ctx->rx_hp_oos_update_limit =
10506 				params->rx_hp_oos_update_limit;
10507 
10508 	dp_info("tx_comp_loop_pkt_limit %u tx_comp_enable_eol_data_check %u rx_reap_loop_pkt_limit %u rx_enable_eol_data_check %u rx_hp_oos_update_limit %u",
10509 		soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit,
10510 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check,
10511 		soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit,
10512 		soc->wlan_cfg_ctx->rx_enable_eol_data_check,
10513 		soc->wlan_cfg_ctx->rx_hp_oos_update_limit);
10514 }
10515 
10516 #else
10517 static inline
10518 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
10519 					struct cdp_config_params *params)
10520 { }
10521 
10522 #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
10523 
10524 /**
10525  * dp_update_config_parameters() - API to store datapath
10526  *                            config parameters
10527  * @psoc: soc handle
10528  * @params: ini parameter handle
10529  *
10530  * Return: status
10531  */
10532 static
10533 QDF_STATUS dp_update_config_parameters(struct cdp_soc *psoc,
10534 				struct cdp_config_params *params)
10535 {
10536 	struct dp_soc *soc = (struct dp_soc *)psoc;
10537 
10538 	if (!(soc)) {
10539 		dp_cdp_err("%pK: Invalid handle", soc);
10540 		return QDF_STATUS_E_INVAL;
10541 	}
10542 
10543 	soc->wlan_cfg_ctx->tso_enabled = params->tso_enable;
10544 	soc->wlan_cfg_ctx->lro_enabled = params->lro_enable;
10545 	soc->wlan_cfg_ctx->rx_hash = params->flow_steering_enable;
10546 	soc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload =
10547 				params->p2p_tcp_udp_checksumoffload;
10548 	soc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload =
10549 				params->nan_tcp_udp_checksumoffload;
10550 	soc->wlan_cfg_ctx->tcp_udp_checksumoffload =
10551 				params->tcp_udp_checksumoffload;
10552 	soc->wlan_cfg_ctx->napi_enabled = params->napi_enable;
10553 	soc->wlan_cfg_ctx->ipa_enabled = params->ipa_enable;
10554 	soc->wlan_cfg_ctx->gro_enabled = params->gro_enable;
10555 
10556 	dp_update_rx_soft_irq_limit_params(soc, params);
10557 	dp_update_flow_control_parameters(soc, params);
10558 
10559 	return QDF_STATUS_SUCCESS;
10560 }
10561 
10562 static struct cdp_wds_ops dp_ops_wds = {
10563 	.vdev_set_wds = dp_vdev_set_wds,
10564 #ifdef WDS_VENDOR_EXTENSION
10565 	.txrx_set_wds_rx_policy = dp_txrx_set_wds_rx_policy,
10566 	.txrx_wds_peer_tx_policy_update = dp_txrx_peer_wds_tx_policy_update,
10567 #endif
10568 };
10569 
10570 /**
10571  * dp_txrx_data_tx_cb_set() - set the callback for non standard tx
10572  * @soc_hdl: datapath soc handle
10573  * @vdev_id: virtual interface id
10574  * @callback: callback function
10575  * @ctxt: callback context
10576  *
10577  */
10578 static void
10579 dp_txrx_data_tx_cb_set(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10580 		       ol_txrx_data_tx_cb callback, void *ctxt)
10581 {
10582 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10583 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10584 						     DP_MOD_ID_CDP);
10585 
10586 	if (!vdev)
10587 		return;
10588 
10589 	vdev->tx_non_std_data_callback.func = callback;
10590 	vdev->tx_non_std_data_callback.ctxt = ctxt;
10591 
10592 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10593 }
10594 
10595 /**
10596  * dp_pdev_get_dp_txrx_handle() - get dp handle from pdev
10597  * @soc: datapath soc handle
10598  * @pdev_id: id of datapath pdev handle
10599  *
10600  * Return: opaque pointer to dp txrx handle
10601  */
10602 static void *dp_pdev_get_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id)
10603 {
10604 	struct dp_pdev *pdev =
10605 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10606 						   pdev_id);
10607 	if (qdf_unlikely(!pdev))
10608 		return NULL;
10609 
10610 	return pdev->dp_txrx_handle;
10611 }
10612 
10613 /**
10614  * dp_pdev_set_dp_txrx_handle() - set dp handle in pdev
10615  * @soc: datapath soc handle
10616  * @pdev_id: id of datapath pdev handle
10617  * @dp_txrx_hdl: opaque pointer for dp_txrx_handle
10618  *
10619  * Return: void
10620  */
10621 static void
10622 dp_pdev_set_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id,
10623 			   void *dp_txrx_hdl)
10624 {
10625 	struct dp_pdev *pdev =
10626 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10627 						   pdev_id);
10628 
10629 	if (!pdev)
10630 		return;
10631 
10632 	pdev->dp_txrx_handle = dp_txrx_hdl;
10633 }
10634 
10635 /**
10636  * dp_vdev_get_dp_ext_handle() - get dp handle from vdev
10637  * @soc_hdl: datapath soc handle
10638  * @vdev_id: vdev id
10639  *
10640  * Return: opaque pointer to dp txrx handle
10641  */
10642 static void *dp_vdev_get_dp_ext_handle(ol_txrx_soc_handle soc_hdl,
10643 				       uint8_t vdev_id)
10644 {
10645 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10646 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10647 						     DP_MOD_ID_CDP);
10648 	void *dp_ext_handle;
10649 
10650 	if (!vdev)
10651 		return NULL;
10652 	dp_ext_handle = vdev->vdev_dp_ext_handle;
10653 
10654 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10655 	return dp_ext_handle;
10656 }
10657 
10658 /**
10659  * dp_vdev_set_dp_ext_handle() - set dp handle in vdev
10660  * @soc_hdl: datapath soc handle
10661  * @vdev_id: vdev id
10662  * @size: size of advance dp handle
10663  *
10664  * Return: QDF_STATUS
10665  */
10666 static QDF_STATUS
10667 dp_vdev_set_dp_ext_handle(ol_txrx_soc_handle soc_hdl, uint8_t vdev_id,
10668 			  uint16_t size)
10669 {
10670 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10671 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10672 						     DP_MOD_ID_CDP);
10673 	void *dp_ext_handle;
10674 
10675 	if (!vdev)
10676 		return QDF_STATUS_E_FAILURE;
10677 
10678 	dp_ext_handle = qdf_mem_malloc(size);
10679 
10680 	if (!dp_ext_handle) {
10681 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10682 		return QDF_STATUS_E_FAILURE;
10683 	}
10684 
10685 	vdev->vdev_dp_ext_handle = dp_ext_handle;
10686 
10687 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10688 	return QDF_STATUS_SUCCESS;
10689 }
10690 
10691 /**
10692  * dp_vdev_inform_ll_conn() - Inform vdev to add/delete a latency critical
10693  *			      connection for this vdev
10694  * @soc_hdl: CDP soc handle
10695  * @vdev_id: vdev ID
10696  * @action: Add/Delete action
10697  *
10698  * Return: QDF_STATUS.
10699  */
10700 static QDF_STATUS
10701 dp_vdev_inform_ll_conn(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10702 		       enum vdev_ll_conn_actions action)
10703 {
10704 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10705 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10706 						     DP_MOD_ID_CDP);
10707 
10708 	if (!vdev) {
10709 		dp_err("LL connection action for invalid vdev %d", vdev_id);
10710 		return QDF_STATUS_E_FAILURE;
10711 	}
10712 
10713 	switch (action) {
10714 	case CDP_VDEV_LL_CONN_ADD:
10715 		vdev->num_latency_critical_conn++;
10716 		break;
10717 
10718 	case CDP_VDEV_LL_CONN_DEL:
10719 		vdev->num_latency_critical_conn--;
10720 		break;
10721 
10722 	default:
10723 		dp_err("LL connection action invalid %d", action);
10724 		break;
10725 	}
10726 
10727 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10728 	return QDF_STATUS_SUCCESS;
10729 }
10730 
10731 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
10732 /**
10733  * dp_soc_set_swlm_enable() - Enable/Disable SWLM if initialized.
10734  * @soc_hdl: CDP Soc handle
10735  * @value: Enable/Disable value
10736  *
10737  * Return: QDF_STATUS
10738  */
10739 static QDF_STATUS dp_soc_set_swlm_enable(struct cdp_soc_t *soc_hdl,
10740 					 uint8_t value)
10741 {
10742 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10743 
10744 	if (!soc->swlm.is_init) {
10745 		dp_err("SWLM is not initialized");
10746 		return QDF_STATUS_E_FAILURE;
10747 	}
10748 
10749 	soc->swlm.is_enabled = !!value;
10750 
10751 	return QDF_STATUS_SUCCESS;
10752 }
10753 
10754 /**
10755  * dp_soc_is_swlm_enabled() - Check if SWLM is enabled.
10756  * @soc_hdl: CDP Soc handle
10757  *
10758  * Return: QDF_STATUS
10759  */
10760 static uint8_t dp_soc_is_swlm_enabled(struct cdp_soc_t *soc_hdl)
10761 {
10762 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10763 
10764 	return soc->swlm.is_enabled;
10765 }
10766 #endif
10767 
10768 /**
10769  * dp_soc_get_dp_txrx_handle() - get context for external-dp from dp soc
10770  * @soc_handle: datapath soc handle
10771  *
10772  * Return: opaque pointer to external dp (non-core DP)
10773  */
10774 static void *dp_soc_get_dp_txrx_handle(struct cdp_soc *soc_handle)
10775 {
10776 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10777 
10778 	return soc->external_txrx_handle;
10779 }
10780 
10781 /**
10782  * dp_soc_set_dp_txrx_handle() - set external dp handle in soc
10783  * @soc_handle: datapath soc handle
10784  * @txrx_handle: opaque pointer to external dp (non-core DP)
10785  *
10786  * Return: void
10787  */
10788 static void
10789 dp_soc_set_dp_txrx_handle(struct cdp_soc *soc_handle, void *txrx_handle)
10790 {
10791 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10792 
10793 	soc->external_txrx_handle = txrx_handle;
10794 }
10795 
10796 /**
10797  * dp_soc_map_pdev_to_lmac() - Save pdev_id to lmac_id mapping
10798  * @soc_hdl: datapath soc handle
10799  * @pdev_id: id of the datapath pdev handle
10800  * @lmac_id: lmac id
10801  *
10802  * Return: QDF_STATUS
10803  */
10804 static QDF_STATUS
10805 dp_soc_map_pdev_to_lmac
10806 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10807 	 uint32_t lmac_id)
10808 {
10809 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10810 
10811 	wlan_cfg_set_hw_mac_idx(soc->wlan_cfg_ctx,
10812 				pdev_id,
10813 				lmac_id);
10814 
10815 	/*Set host PDEV ID for lmac_id*/
10816 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
10817 			      pdev_id,
10818 			      lmac_id);
10819 
10820 	return QDF_STATUS_SUCCESS;
10821 }
10822 
10823 /**
10824  * dp_soc_handle_pdev_mode_change() - Update pdev to lmac mapping
10825  * @soc_hdl: datapath soc handle
10826  * @pdev_id: id of the datapath pdev handle
10827  * @lmac_id: lmac id
10828  *
10829  * In the event of a dynamic mode change, update the pdev to lmac mapping
10830  *
10831  * Return: QDF_STATUS
10832  */
10833 static QDF_STATUS
10834 dp_soc_handle_pdev_mode_change
10835 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10836 	 uint32_t lmac_id)
10837 {
10838 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10839 	struct dp_vdev *vdev = NULL;
10840 	uint8_t hw_pdev_id, mac_id;
10841 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc,
10842 								  pdev_id);
10843 	int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
10844 
10845 	if (qdf_unlikely(!pdev))
10846 		return QDF_STATUS_E_FAILURE;
10847 
10848 	pdev->lmac_id = lmac_id;
10849 	pdev->target_pdev_id =
10850 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
10851 	dp_info("mode change %d %d", pdev->pdev_id, pdev->lmac_id);
10852 
10853 	/*Set host PDEV ID for lmac_id*/
10854 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
10855 			      pdev->pdev_id,
10856 			      lmac_id);
10857 
10858 	hw_pdev_id =
10859 		dp_get_target_pdev_id_for_host_pdev_id(soc,
10860 						       pdev->pdev_id);
10861 
10862 	/*
10863 	 * When NSS offload is enabled, send pdev_id->lmac_id
10864 	 * and pdev_id to hw_pdev_id to NSS FW
10865 	 */
10866 	if (nss_config) {
10867 		mac_id = pdev->lmac_id;
10868 		if (soc->cdp_soc.ol_ops->pdev_update_lmac_n_target_pdev_id)
10869 			soc->cdp_soc.ol_ops->
10870 				pdev_update_lmac_n_target_pdev_id(
10871 				soc->ctrl_psoc,
10872 				&pdev_id, &mac_id, &hw_pdev_id);
10873 	}
10874 
10875 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
10876 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
10877 		DP_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata,
10878 					       hw_pdev_id);
10879 		vdev->lmac_id = pdev->lmac_id;
10880 	}
10881 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
10882 
10883 	return QDF_STATUS_SUCCESS;
10884 }
10885 
10886 /**
10887  * dp_soc_set_pdev_status_down() - set pdev down/up status
10888  * @soc: datapath soc handle
10889  * @pdev_id: id of datapath pdev handle
10890  * @is_pdev_down: pdev down/up status
10891  *
10892  * Return: QDF_STATUS
10893  */
10894 static QDF_STATUS
10895 dp_soc_set_pdev_status_down(struct cdp_soc_t *soc, uint8_t pdev_id,
10896 			    bool is_pdev_down)
10897 {
10898 	struct dp_pdev *pdev =
10899 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10900 						   pdev_id);
10901 	if (!pdev)
10902 		return QDF_STATUS_E_FAILURE;
10903 
10904 	pdev->is_pdev_down = is_pdev_down;
10905 	return QDF_STATUS_SUCCESS;
10906 }
10907 
10908 /**
10909  * dp_get_cfg_capabilities() - get dp capabilities
10910  * @soc_handle: datapath soc handle
10911  * @dp_caps: enum for dp capabilities
10912  *
10913  * Return: bool to determine if dp caps is enabled
10914  */
10915 static bool
10916 dp_get_cfg_capabilities(struct cdp_soc_t *soc_handle,
10917 			enum cdp_capabilities dp_caps)
10918 {
10919 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10920 
10921 	return wlan_cfg_get_dp_caps(soc->wlan_cfg_ctx, dp_caps);
10922 }
10923 
10924 #ifdef FEATURE_AST
10925 static QDF_STATUS
10926 dp_peer_teardown_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10927 		       uint8_t *peer_mac)
10928 {
10929 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10930 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10931 	struct dp_peer *peer =
10932 			dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
10933 					       DP_MOD_ID_CDP);
10934 
10935 	/* Peer can be null for monitor vap mac address */
10936 	if (!peer) {
10937 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
10938 			  "%s: Invalid peer\n", __func__);
10939 		return QDF_STATUS_E_FAILURE;
10940 	}
10941 
10942 	dp_peer_update_state(soc, peer, DP_PEER_STATE_LOGICAL_DELETE);
10943 
10944 	qdf_spin_lock_bh(&soc->ast_lock);
10945 	dp_peer_send_wds_disconnect(soc, peer);
10946 	dp_peer_delete_ast_entries(soc, peer);
10947 	qdf_spin_unlock_bh(&soc->ast_lock);
10948 
10949 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
10950 	return status;
10951 }
10952 #endif
10953 
10954 #ifndef WLAN_SUPPORT_RX_TAG_STATISTICS
10955 /**
10956  * dp_dump_pdev_rx_protocol_tag_stats - dump the number of packets tagged for
10957  * given protocol type (RX_PROTOCOL_TAG_ALL indicates for all protocol)
10958  * @soc: cdp_soc handle
10959  * @pdev_id: id of cdp_pdev handle
10960  * @protocol_type: protocol type for which stats should be displayed
10961  *
10962  * Return: none
10963  */
10964 static inline void
10965 dp_dump_pdev_rx_protocol_tag_stats(struct cdp_soc_t  *soc, uint8_t pdev_id,
10966 				   uint16_t protocol_type)
10967 {
10968 }
10969 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
10970 
10971 #ifndef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
10972 /**
10973  * dp_update_pdev_rx_protocol_tag() - Add/remove a protocol tag that should be
10974  * applied to the desired protocol type packets
10975  * @soc: soc handle
10976  * @pdev_id: id of cdp_pdev handle
10977  * @enable_rx_protocol_tag: bitmask that indicates what protocol types
10978  * are enabled for tagging. zero indicates disable feature, non-zero indicates
10979  * enable feature
10980  * @protocol_type: new protocol type for which the tag is being added
10981  * @tag: user configured tag for the new protocol
10982  *
10983  * Return: Success
10984  */
10985 static inline QDF_STATUS
10986 dp_update_pdev_rx_protocol_tag(struct cdp_soc_t  *soc, uint8_t pdev_id,
10987 			       uint32_t enable_rx_protocol_tag,
10988 			       uint16_t protocol_type,
10989 			       uint16_t tag)
10990 {
10991 	return QDF_STATUS_SUCCESS;
10992 }
10993 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
10994 
10995 #ifndef WLAN_SUPPORT_RX_FLOW_TAG
10996 /**
10997  * dp_set_rx_flow_tag() - add/delete a flow
10998  * @cdp_soc: CDP soc handle
10999  * @pdev_id: id of cdp_pdev handle
11000  * @flow_info: flow tuple that is to be added to/deleted from flow search table
11001  *
11002  * Return: Success
11003  */
11004 static inline QDF_STATUS
11005 dp_set_rx_flow_tag(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
11006 		   struct cdp_rx_flow_info *flow_info)
11007 {
11008 	return QDF_STATUS_SUCCESS;
11009 }
11010 /**
11011  * dp_dump_rx_flow_tag_stats() - dump the number of packets tagged for
11012  * given flow 5-tuple
11013  * @cdp_soc: soc handle
11014  * @pdev_id: id of cdp_pdev handle
11015  * @flow_info: flow 5-tuple for which stats should be displayed
11016  *
11017  * Return: Success
11018  */
11019 static inline QDF_STATUS
11020 dp_dump_rx_flow_tag_stats(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
11021 			  struct cdp_rx_flow_info *flow_info)
11022 {
11023 	return QDF_STATUS_SUCCESS;
11024 }
11025 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
11026 
11027 static QDF_STATUS dp_peer_map_attach_wifi3(struct cdp_soc_t  *soc_hdl,
11028 					   uint32_t max_peers,
11029 					   uint32_t max_ast_index,
11030 					   uint8_t peer_map_unmap_versions)
11031 {
11032 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11033 	QDF_STATUS status;
11034 
11035 	soc->max_peers = max_peers;
11036 
11037 	wlan_cfg_set_max_ast_idx(soc->wlan_cfg_ctx, max_ast_index);
11038 
11039 	status = soc->arch_ops.txrx_peer_map_attach(soc);
11040 	if (!QDF_IS_STATUS_SUCCESS(status)) {
11041 		dp_err("failure in allocating peer tables");
11042 		return QDF_STATUS_E_FAILURE;
11043 	}
11044 
11045 	dp_info("max_peers %u, calculated max_peers %u max_ast_index: %u",
11046 		max_peers, soc->max_peer_id, max_ast_index);
11047 
11048 	status = dp_peer_find_attach(soc);
11049 	if (!QDF_IS_STATUS_SUCCESS(status)) {
11050 		dp_err("Peer find attach failure");
11051 		goto fail;
11052 	}
11053 
11054 	soc->peer_map_unmap_versions = peer_map_unmap_versions;
11055 	soc->peer_map_attach_success = TRUE;
11056 
11057 	return QDF_STATUS_SUCCESS;
11058 fail:
11059 	soc->arch_ops.txrx_peer_map_detach(soc);
11060 
11061 	return status;
11062 }
11063 
11064 static QDF_STATUS dp_soc_set_param(struct cdp_soc_t  *soc_hdl,
11065 				   enum cdp_soc_param_t param,
11066 				   uint32_t value)
11067 {
11068 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11069 
11070 	switch (param) {
11071 	case DP_SOC_PARAM_MSDU_EXCEPTION_DESC:
11072 		soc->num_msdu_exception_desc = value;
11073 		dp_info("num_msdu exception_desc %u",
11074 			value);
11075 		break;
11076 	case DP_SOC_PARAM_CMEM_FSE_SUPPORT:
11077 		if (wlan_cfg_is_fst_in_cmem_enabled(soc->wlan_cfg_ctx))
11078 			soc->fst_in_cmem = !!value;
11079 		dp_info("FW supports CMEM FSE %u", value);
11080 		break;
11081 	case DP_SOC_PARAM_MAX_AST_AGEOUT:
11082 		soc->max_ast_ageout_count = value;
11083 		dp_info("Max ast ageout count %u", soc->max_ast_ageout_count);
11084 		break;
11085 	case DP_SOC_PARAM_EAPOL_OVER_CONTROL_PORT:
11086 		soc->eapol_over_control_port = value;
11087 		dp_info("Eapol over control_port:%d",
11088 			soc->eapol_over_control_port);
11089 		break;
11090 	case DP_SOC_PARAM_MULTI_PEER_GRP_CMD_SUPPORT:
11091 		soc->multi_peer_grp_cmd_supported = value;
11092 		dp_info("Multi Peer group command support:%d",
11093 			soc->multi_peer_grp_cmd_supported);
11094 		break;
11095 	case DP_SOC_PARAM_RSSI_DBM_CONV_SUPPORT:
11096 		soc->features.rssi_dbm_conv_support = value;
11097 		dp_info("Rssi dbm conversion support:%u",
11098 			soc->features.rssi_dbm_conv_support);
11099 		break;
11100 	case DP_SOC_PARAM_UMAC_HW_RESET_SUPPORT:
11101 		soc->features.umac_hw_reset_support = value;
11102 		dp_info("UMAC HW reset support :%u",
11103 			soc->features.umac_hw_reset_support);
11104 		break;
11105 	default:
11106 		dp_info("not handled param %d ", param);
11107 		break;
11108 	}
11109 
11110 	return QDF_STATUS_SUCCESS;
11111 }
11112 
11113 static void dp_soc_set_rate_stats_ctx(struct cdp_soc_t *soc_handle,
11114 				      void *stats_ctx)
11115 {
11116 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11117 
11118 	soc->rate_stats_ctx = (struct cdp_soc_rate_stats_ctx *)stats_ctx;
11119 }
11120 
11121 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11122 /**
11123  * dp_peer_flush_rate_stats_req() - Flush peer rate stats
11124  * @soc: Datapath SOC handle
11125  * @peer: Datapath peer
11126  * @arg: argument to iter function
11127  *
11128  * Return: QDF_STATUS
11129  */
11130 static void
11131 dp_peer_flush_rate_stats_req(struct dp_soc *soc, struct dp_peer *peer,
11132 			     void *arg)
11133 {
11134 	/* Skip self peer */
11135 	if (!qdf_mem_cmp(peer->mac_addr.raw, peer->vdev->mac_addr.raw,
11136 			 QDF_MAC_ADDR_SIZE))
11137 		return;
11138 
11139 	dp_wdi_event_handler(
11140 		WDI_EVENT_FLUSH_RATE_STATS_REQ,
11141 		soc, dp_monitor_peer_get_peerstats_ctx(soc, peer),
11142 		peer->peer_id,
11143 		WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11144 }
11145 
11146 /**
11147  * dp_flush_rate_stats_req() - Flush peer rate stats in pdev
11148  * @soc_hdl: Datapath SOC handle
11149  * @pdev_id: pdev_id
11150  *
11151  * Return: QDF_STATUS
11152  */
11153 static QDF_STATUS dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
11154 					  uint8_t pdev_id)
11155 {
11156 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11157 	struct dp_pdev *pdev =
11158 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
11159 						   pdev_id);
11160 	if (!pdev)
11161 		return QDF_STATUS_E_FAILURE;
11162 
11163 	dp_pdev_iterate_peer(pdev, dp_peer_flush_rate_stats_req, NULL,
11164 			     DP_MOD_ID_CDP);
11165 
11166 	return QDF_STATUS_SUCCESS;
11167 }
11168 #else
11169 static inline QDF_STATUS
11170 dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
11171 			uint8_t pdev_id)
11172 {
11173 	return QDF_STATUS_SUCCESS;
11174 }
11175 #endif
11176 
11177 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11178 #ifdef WLAN_FEATURE_11BE_MLO
11179 /**
11180  * dp_get_peer_extd_rate_link_stats() - function to get peer
11181  *				extended rate and link stats
11182  * @soc_hdl: dp soc handler
11183  * @mac_addr: mac address of peer
11184  *
11185  * Return: QDF_STATUS
11186  */
11187 static QDF_STATUS
11188 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11189 {
11190 	uint8_t i;
11191 	struct dp_peer *link_peer;
11192 	struct dp_soc *link_peer_soc;
11193 	struct dp_mld_link_peers link_peers_info;
11194 	struct dp_peer *peer = NULL;
11195 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11196 	struct cdp_peer_info peer_info = { 0 };
11197 
11198 	if (!mac_addr) {
11199 		dp_err("NULL peer mac addr");
11200 		return QDF_STATUS_E_FAILURE;
11201 	}
11202 
11203 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
11204 				 CDP_WILD_PEER_TYPE);
11205 
11206 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
11207 	if (!peer) {
11208 		dp_err("Peer is NULL");
11209 		return QDF_STATUS_E_FAILURE;
11210 	}
11211 
11212 	if (IS_MLO_DP_MLD_PEER(peer)) {
11213 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
11214 						    &link_peers_info,
11215 						    DP_MOD_ID_CDP);
11216 		for (i = 0; i < link_peers_info.num_links; i++) {
11217 			link_peer = link_peers_info.link_peers[i];
11218 			link_peer_soc = link_peer->vdev->pdev->soc;
11219 			dp_wdi_event_handler(WDI_EVENT_FLUSH_RATE_STATS_REQ,
11220 					     link_peer_soc,
11221 					     dp_monitor_peer_get_peerstats_ctx
11222 					     (link_peer_soc, link_peer),
11223 					     link_peer->peer_id,
11224 					     WDI_NO_VAL,
11225 					     link_peer->vdev->pdev->pdev_id);
11226 		}
11227 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
11228 	} else {
11229 		dp_wdi_event_handler(
11230 				WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
11231 				dp_monitor_peer_get_peerstats_ctx(soc, peer),
11232 				peer->peer_id,
11233 				WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11234 	}
11235 
11236 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11237 	return QDF_STATUS_SUCCESS;
11238 }
11239 #else
11240 static QDF_STATUS
11241 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11242 {
11243 	struct dp_peer *peer = NULL;
11244 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11245 
11246 	if (!mac_addr) {
11247 		dp_err("NULL peer mac addr");
11248 		return QDF_STATUS_E_FAILURE;
11249 	}
11250 
11251 	peer = dp_peer_find_hash_find(soc, mac_addr, 0,
11252 				      DP_VDEV_ALL, DP_MOD_ID_CDP);
11253 	if (!peer) {
11254 		dp_err("Peer is NULL");
11255 		return QDF_STATUS_E_FAILURE;
11256 	}
11257 
11258 	dp_wdi_event_handler(
11259 			WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
11260 			dp_monitor_peer_get_peerstats_ctx(soc, peer),
11261 			peer->peer_id,
11262 			WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11263 
11264 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11265 	return QDF_STATUS_SUCCESS;
11266 }
11267 #endif
11268 #else
11269 static inline QDF_STATUS
11270 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11271 {
11272 	return QDF_STATUS_SUCCESS;
11273 }
11274 #endif
11275 
11276 static void *dp_peer_get_peerstats_ctx(struct cdp_soc_t *soc_hdl,
11277 				       uint8_t vdev_id,
11278 				       uint8_t *mac_addr)
11279 {
11280 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11281 	struct dp_peer *peer;
11282 	void *peerstats_ctx = NULL;
11283 
11284 	if (mac_addr) {
11285 		peer = dp_peer_find_hash_find(soc, mac_addr,
11286 					      0, vdev_id,
11287 					      DP_MOD_ID_CDP);
11288 		if (!peer)
11289 			return NULL;
11290 
11291 		if (!IS_MLO_DP_MLD_PEER(peer))
11292 			peerstats_ctx = dp_monitor_peer_get_peerstats_ctx(soc,
11293 									  peer);
11294 
11295 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11296 	}
11297 
11298 	return peerstats_ctx;
11299 }
11300 
11301 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11302 static QDF_STATUS dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
11303 					   uint8_t pdev_id,
11304 					   void *buf)
11305 {
11306 	 dp_wdi_event_handler(WDI_EVENT_PEER_FLUSH_RATE_STATS,
11307 			      (struct dp_soc *)soc, buf, HTT_INVALID_PEER,
11308 			      WDI_NO_VAL, pdev_id);
11309 	return QDF_STATUS_SUCCESS;
11310 }
11311 #else
11312 static inline QDF_STATUS
11313 dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
11314 			 uint8_t pdev_id,
11315 			 void *buf)
11316 {
11317 	return QDF_STATUS_SUCCESS;
11318 }
11319 #endif
11320 
11321 static void *dp_soc_get_rate_stats_ctx(struct cdp_soc_t *soc_handle)
11322 {
11323 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11324 
11325 	return soc->rate_stats_ctx;
11326 }
11327 
11328 /**
11329  * dp_get_cfg() - get dp cfg
11330  * @soc: cdp soc handle
11331  * @cfg: cfg enum
11332  *
11333  * Return: cfg value
11334  */
11335 static uint32_t dp_get_cfg(struct cdp_soc_t *soc, enum cdp_dp_cfg cfg)
11336 {
11337 	struct dp_soc *dpsoc = (struct dp_soc *)soc;
11338 	uint32_t value = 0;
11339 
11340 	switch (cfg) {
11341 	case cfg_dp_enable_data_stall:
11342 		value = dpsoc->wlan_cfg_ctx->enable_data_stall_detection;
11343 		break;
11344 	case cfg_dp_enable_p2p_ip_tcp_udp_checksum_offload:
11345 		value = dpsoc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload;
11346 		break;
11347 	case cfg_dp_enable_nan_ip_tcp_udp_checksum_offload:
11348 		value = dpsoc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload;
11349 		break;
11350 	case cfg_dp_enable_ip_tcp_udp_checksum_offload:
11351 		value = dpsoc->wlan_cfg_ctx->tcp_udp_checksumoffload;
11352 		break;
11353 	case cfg_dp_disable_legacy_mode_csum_offload:
11354 		value = dpsoc->wlan_cfg_ctx->
11355 					legacy_mode_checksumoffload_disable;
11356 		break;
11357 	case cfg_dp_tso_enable:
11358 		value = dpsoc->wlan_cfg_ctx->tso_enabled;
11359 		break;
11360 	case cfg_dp_lro_enable:
11361 		value = dpsoc->wlan_cfg_ctx->lro_enabled;
11362 		break;
11363 	case cfg_dp_gro_enable:
11364 		value = dpsoc->wlan_cfg_ctx->gro_enabled;
11365 		break;
11366 	case cfg_dp_tc_based_dyn_gro_enable:
11367 		value = dpsoc->wlan_cfg_ctx->tc_based_dynamic_gro;
11368 		break;
11369 	case cfg_dp_tc_ingress_prio:
11370 		value = dpsoc->wlan_cfg_ctx->tc_ingress_prio;
11371 		break;
11372 	case cfg_dp_sg_enable:
11373 		value = dpsoc->wlan_cfg_ctx->sg_enabled;
11374 		break;
11375 	case cfg_dp_tx_flow_start_queue_offset:
11376 		value = dpsoc->wlan_cfg_ctx->tx_flow_start_queue_offset;
11377 		break;
11378 	case cfg_dp_tx_flow_stop_queue_threshold:
11379 		value = dpsoc->wlan_cfg_ctx->tx_flow_stop_queue_threshold;
11380 		break;
11381 	case cfg_dp_disable_intra_bss_fwd:
11382 		value = dpsoc->wlan_cfg_ctx->disable_intra_bss_fwd;
11383 		break;
11384 	case cfg_dp_pktlog_buffer_size:
11385 		value = dpsoc->wlan_cfg_ctx->pktlog_buffer_size;
11386 		break;
11387 	case cfg_dp_wow_check_rx_pending:
11388 		value = dpsoc->wlan_cfg_ctx->wow_check_rx_pending_enable;
11389 		break;
11390 	case cfg_dp_local_pkt_capture:
11391 		value = wlan_cfg_get_local_pkt_capture(dpsoc->wlan_cfg_ctx);
11392 		break;
11393 	default:
11394 		value =  0;
11395 	}
11396 
11397 	return value;
11398 }
11399 
11400 #ifdef PEER_FLOW_CONTROL
11401 /**
11402  * dp_tx_flow_ctrl_configure_pdev() - Configure flow control params
11403  * @soc_handle: datapath soc handle
11404  * @pdev_id: id of datapath pdev handle
11405  * @param: ol ath params
11406  * @value: value of the flag
11407  * @buff: Buffer to be passed
11408  *
11409  * Implemented this function same as legacy function. In legacy code, single
11410  * function is used to display stats and update pdev params.
11411  *
11412  * Return: 0 for success. nonzero for failure.
11413  */
11414 static uint32_t dp_tx_flow_ctrl_configure_pdev(struct cdp_soc_t *soc_handle,
11415 					       uint8_t pdev_id,
11416 					       enum _dp_param_t param,
11417 					       uint32_t value, void *buff)
11418 {
11419 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11420 	struct dp_pdev *pdev =
11421 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
11422 						   pdev_id);
11423 
11424 	if (qdf_unlikely(!pdev))
11425 		return 1;
11426 
11427 	soc = pdev->soc;
11428 	if (!soc)
11429 		return 1;
11430 
11431 	switch (param) {
11432 #ifdef QCA_ENH_V3_STATS_SUPPORT
11433 	case DP_PARAM_VIDEO_DELAY_STATS_FC:
11434 		if (value)
11435 			pdev->delay_stats_flag = true;
11436 		else
11437 			pdev->delay_stats_flag = false;
11438 		break;
11439 	case DP_PARAM_VIDEO_STATS_FC:
11440 		qdf_print("------- TID Stats ------\n");
11441 		dp_pdev_print_tid_stats(pdev);
11442 		qdf_print("------ Delay Stats ------\n");
11443 		dp_pdev_print_delay_stats(pdev);
11444 		qdf_print("------ Rx Error Stats ------\n");
11445 		dp_pdev_print_rx_error_stats(pdev);
11446 		break;
11447 #endif
11448 	case DP_PARAM_TOTAL_Q_SIZE:
11449 		{
11450 			uint32_t tx_min, tx_max;
11451 
11452 			tx_min = wlan_cfg_get_min_tx_desc(soc->wlan_cfg_ctx);
11453 			tx_max = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
11454 
11455 			if (!buff) {
11456 				if ((value >= tx_min) && (value <= tx_max)) {
11457 					pdev->num_tx_allowed = value;
11458 				} else {
11459 					dp_tx_info("%pK: Failed to update num_tx_allowed, Q_min = %d Q_max = %d",
11460 						   soc, tx_min, tx_max);
11461 					break;
11462 				}
11463 			} else {
11464 				*(int *)buff = pdev->num_tx_allowed;
11465 			}
11466 		}
11467 		break;
11468 	default:
11469 		dp_tx_info("%pK: not handled param %d ", soc, param);
11470 		break;
11471 	}
11472 
11473 	return 0;
11474 }
11475 #endif
11476 
11477 #ifdef DP_UMAC_HW_RESET_SUPPORT
11478 /**
11479  * dp_reset_interrupt_ring_masks() - Reset rx interrupt masks
11480  * @soc: dp soc handle
11481  *
11482  * Return: void
11483  */
11484 static void dp_reset_interrupt_ring_masks(struct dp_soc *soc)
11485 {
11486 	struct dp_intr_bkp *intr_bkp;
11487 	struct dp_intr *intr_ctx;
11488 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
11489 	int i;
11490 
11491 	intr_bkp =
11492 	(struct dp_intr_bkp *)qdf_mem_malloc_atomic(sizeof(struct dp_intr_bkp) *
11493 			num_ctxt);
11494 
11495 	qdf_assert_always(intr_bkp);
11496 
11497 	soc->umac_reset_ctx.intr_ctx_bkp = intr_bkp;
11498 	for (i = 0; i < num_ctxt; i++) {
11499 		intr_ctx = &soc->intr_ctx[i];
11500 
11501 		intr_bkp->tx_ring_mask = intr_ctx->tx_ring_mask;
11502 		intr_bkp->rx_ring_mask = intr_ctx->rx_ring_mask;
11503 		intr_bkp->rx_mon_ring_mask = intr_ctx->rx_mon_ring_mask;
11504 		intr_bkp->rx_err_ring_mask = intr_ctx->rx_err_ring_mask;
11505 		intr_bkp->rx_wbm_rel_ring_mask = intr_ctx->rx_wbm_rel_ring_mask;
11506 		intr_bkp->reo_status_ring_mask = intr_ctx->reo_status_ring_mask;
11507 		intr_bkp->rxdma2host_ring_mask = intr_ctx->rxdma2host_ring_mask;
11508 		intr_bkp->host2rxdma_ring_mask = intr_ctx->host2rxdma_ring_mask;
11509 		intr_bkp->host2rxdma_mon_ring_mask =
11510 					intr_ctx->host2rxdma_mon_ring_mask;
11511 		intr_bkp->tx_mon_ring_mask = intr_ctx->tx_mon_ring_mask;
11512 
11513 		intr_ctx->tx_ring_mask = 0;
11514 		intr_ctx->rx_ring_mask = 0;
11515 		intr_ctx->rx_mon_ring_mask = 0;
11516 		intr_ctx->rx_err_ring_mask = 0;
11517 		intr_ctx->rx_wbm_rel_ring_mask = 0;
11518 		intr_ctx->reo_status_ring_mask = 0;
11519 		intr_ctx->rxdma2host_ring_mask = 0;
11520 		intr_ctx->host2rxdma_ring_mask = 0;
11521 		intr_ctx->host2rxdma_mon_ring_mask = 0;
11522 		intr_ctx->tx_mon_ring_mask = 0;
11523 
11524 		intr_bkp++;
11525 	}
11526 }
11527 
11528 /**
11529  * dp_restore_interrupt_ring_masks() - Restore rx interrupt masks
11530  * @soc: dp soc handle
11531  *
11532  * Return: void
11533  */
11534 static void dp_restore_interrupt_ring_masks(struct dp_soc *soc)
11535 {
11536 	struct dp_intr_bkp *intr_bkp = soc->umac_reset_ctx.intr_ctx_bkp;
11537 	struct dp_intr_bkp *intr_bkp_base = intr_bkp;
11538 	struct dp_intr *intr_ctx;
11539 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
11540 	int i;
11541 
11542 	if (!intr_bkp)
11543 		return;
11544 
11545 	for (i = 0; i < num_ctxt; i++) {
11546 		intr_ctx = &soc->intr_ctx[i];
11547 
11548 		intr_ctx->tx_ring_mask = intr_bkp->tx_ring_mask;
11549 		intr_ctx->rx_ring_mask = intr_bkp->rx_ring_mask;
11550 		intr_ctx->rx_mon_ring_mask = intr_bkp->rx_mon_ring_mask;
11551 		intr_ctx->rx_err_ring_mask = intr_bkp->rx_err_ring_mask;
11552 		intr_ctx->rx_wbm_rel_ring_mask = intr_bkp->rx_wbm_rel_ring_mask;
11553 		intr_ctx->reo_status_ring_mask = intr_bkp->reo_status_ring_mask;
11554 		intr_ctx->rxdma2host_ring_mask = intr_bkp->rxdma2host_ring_mask;
11555 		intr_ctx->host2rxdma_ring_mask = intr_bkp->host2rxdma_ring_mask;
11556 		intr_ctx->host2rxdma_mon_ring_mask =
11557 			intr_bkp->host2rxdma_mon_ring_mask;
11558 		intr_ctx->tx_mon_ring_mask = intr_bkp->tx_mon_ring_mask;
11559 
11560 		intr_bkp++;
11561 	}
11562 
11563 	qdf_mem_free(intr_bkp_base);
11564 	soc->umac_reset_ctx.intr_ctx_bkp = NULL;
11565 }
11566 
11567 /**
11568  * dp_resume_tx_hardstart() - Restore the old Tx hardstart functions
11569  * @soc: dp soc handle
11570  *
11571  * Return: void
11572  */
11573 static void dp_resume_tx_hardstart(struct dp_soc *soc)
11574 {
11575 	struct dp_vdev *vdev;
11576 	struct ol_txrx_hardtart_ctxt ctxt = {0};
11577 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
11578 	int i;
11579 
11580 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11581 		struct dp_pdev *pdev = soc->pdev_list[i];
11582 
11583 		if (!pdev)
11584 			continue;
11585 
11586 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11587 			uint8_t vdev_id = vdev->vdev_id;
11588 
11589 			dp_vdev_fetch_tx_handler(vdev, soc, &ctxt);
11590 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
11591 								    vdev_id,
11592 								    &ctxt);
11593 		}
11594 	}
11595 }
11596 
11597 /**
11598  * dp_pause_tx_hardstart() - Register Tx hardstart functions to drop packets
11599  * @soc: dp soc handle
11600  *
11601  * Return: void
11602  */
11603 static void dp_pause_tx_hardstart(struct dp_soc *soc)
11604 {
11605 	struct dp_vdev *vdev;
11606 	struct ol_txrx_hardtart_ctxt ctxt;
11607 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
11608 	int i;
11609 
11610 	ctxt.tx = &dp_tx_drop;
11611 	ctxt.tx_fast = &dp_tx_drop;
11612 	ctxt.tx_exception = &dp_tx_exc_drop;
11613 
11614 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11615 		struct dp_pdev *pdev = soc->pdev_list[i];
11616 
11617 		if (!pdev)
11618 			continue;
11619 
11620 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11621 			uint8_t vdev_id = vdev->vdev_id;
11622 
11623 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
11624 								    vdev_id,
11625 								    &ctxt);
11626 		}
11627 	}
11628 }
11629 
11630 /**
11631  * dp_unregister_notify_umac_pre_reset_fw_callback() - unregister notify_fw_cb
11632  * @soc: dp soc handle
11633  *
11634  * Return: void
11635  */
11636 static inline
11637 void dp_unregister_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
11638 {
11639 	soc->notify_fw_callback = NULL;
11640 }
11641 
11642 /**
11643  * dp_check_n_notify_umac_prereset_done() - Send pre reset done to firmware
11644  * @soc: dp soc handle
11645  *
11646  * Return: void
11647  */
11648 static inline
11649 void dp_check_n_notify_umac_prereset_done(struct dp_soc *soc)
11650 {
11651 	/* Some Cpu(s) is processing the umac rings*/
11652 	if (soc->service_rings_running)
11653 		return;
11654 
11655 	/* Unregister the callback */
11656 	dp_unregister_notify_umac_pre_reset_fw_callback(soc);
11657 
11658 	/* Check if notify was already sent by any other thread */
11659 	if (qdf_atomic_test_and_set_bit(DP_UMAC_RESET_NOTIFY_DONE,
11660 					&soc->service_rings_running))
11661 		return;
11662 
11663 	/* Notify the firmware that Umac pre reset is complete */
11664 	dp_umac_reset_notify_action_completion(soc,
11665 					       UMAC_RESET_ACTION_DO_PRE_RESET);
11666 }
11667 
11668 /**
11669  * dp_register_notify_umac_pre_reset_fw_callback() - register notify_fw_cb
11670  * @soc: dp soc handle
11671  *
11672  * Return: void
11673  */
11674 static inline
11675 void dp_register_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
11676 {
11677 	soc->notify_fw_callback = dp_check_n_notify_umac_prereset_done;
11678 }
11679 
11680 #ifdef DP_UMAC_HW_HARD_RESET
11681 /**
11682  * dp_set_umac_regs() - Reinitialize host umac registers
11683  * @soc: dp soc handle
11684  *
11685  * Return: void
11686  */
11687 static void dp_set_umac_regs(struct dp_soc *soc)
11688 {
11689 	int i;
11690 	struct hal_reo_params reo_params;
11691 
11692 	qdf_mem_zero(&reo_params, sizeof(reo_params));
11693 
11694 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
11695 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
11696 						   &reo_params.remap1,
11697 						   &reo_params.remap2))
11698 			reo_params.rx_hash_enabled = true;
11699 		else
11700 			reo_params.rx_hash_enabled = false;
11701 	}
11702 
11703 	reo_params.reo_qref = &soc->reo_qref;
11704 	hal_reo_setup(soc->hal_soc, &reo_params, 0);
11705 
11706 	soc->arch_ops.dp_cc_reg_cfg_init(soc, true);
11707 
11708 	for (i = 0; i < PCP_TID_MAP_MAX; i++)
11709 		hal_tx_update_pcp_tid_map(soc->hal_soc, soc->pcp_tid_map[i], i);
11710 
11711 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11712 		struct dp_vdev *vdev = NULL;
11713 		struct dp_pdev *pdev = soc->pdev_list[i];
11714 
11715 		if (!pdev)
11716 			continue;
11717 
11718 		for (i = 0; i < soc->num_hw_dscp_tid_map; i++)
11719 			hal_tx_set_dscp_tid_map(soc->hal_soc,
11720 						pdev->dscp_tid_map[i], i);
11721 
11722 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11723 			soc->arch_ops.dp_bank_reconfig(soc, vdev);
11724 			soc->arch_ops.dp_reconfig_tx_vdev_mcast_ctrl(soc,
11725 								      vdev);
11726 		}
11727 	}
11728 }
11729 #else
11730 static void dp_set_umac_regs(struct dp_soc *soc)
11731 {
11732 }
11733 #endif
11734 
11735 /**
11736  * dp_reinit_rings() - Reinitialize host managed rings
11737  * @soc: dp soc handle
11738  *
11739  * Return: QDF_STATUS
11740  */
11741 static void dp_reinit_rings(struct dp_soc *soc)
11742 {
11743 	unsigned long end;
11744 
11745 	dp_soc_srng_deinit(soc);
11746 	dp_hw_link_desc_ring_deinit(soc);
11747 
11748 	/* Busy wait for 2 ms to make sure the rings are in idle state
11749 	 * before we enable them again
11750 	 */
11751 	end = jiffies + msecs_to_jiffies(2);
11752 	while (time_before(jiffies, end))
11753 		;
11754 
11755 	dp_hw_link_desc_ring_init(soc);
11756 	dp_link_desc_ring_replenish(soc, WLAN_INVALID_PDEV_ID);
11757 	dp_soc_srng_init(soc);
11758 }
11759 
11760 /**
11761  * dp_umac_reset_action_trigger_recovery() - Handle FW Umac recovery trigger
11762  * @soc: dp soc handle
11763  *
11764  * Return: QDF_STATUS
11765  */
11766 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc)
11767 {
11768 	enum umac_reset_action action = UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY;
11769 
11770 	return dp_umac_reset_notify_action_completion(soc, action);
11771 }
11772 
11773 #ifdef WLAN_SUPPORT_PPEDS
11774 /**
11775  * dp_umac_reset_service_handle_n_notify_done()
11776  *	Handle Umac pre reset for direct switch
11777  * @soc: dp soc handle
11778  *
11779  * Return: QDF_STATUS
11780  */
11781 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
11782 {
11783 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11784 	    !soc->arch_ops.txrx_soc_ppeds_service_status_update ||
11785 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_stop)
11786 		goto non_ppeds;
11787 
11788 	/*
11789 	 * Check if ppeds is enabled on SoC.
11790 	 */
11791 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
11792 		goto non_ppeds;
11793 
11794 	/*
11795 	 * Start the UMAC pre reset done service.
11796 	 */
11797 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, true);
11798 
11799 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11800 
11801 	soc->arch_ops.txrx_soc_ppeds_interrupt_stop(soc);
11802 
11803 	dp_soc_ppeds_stop((struct cdp_soc_t *)soc);
11804 
11805 	/*
11806 	 * UMAC pre reset service complete
11807 	 */
11808 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, false);
11809 
11810 	soc->umac_reset_ctx.nbuf_list = NULL;
11811 	return QDF_STATUS_SUCCESS;
11812 
11813 non_ppeds:
11814 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11815 	dp_umac_reset_trigger_pre_reset_notify_cb(soc);
11816 	soc->umac_reset_ctx.nbuf_list = NULL;
11817 	return QDF_STATUS_SUCCESS;
11818 }
11819 
11820 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
11821 							 qdf_nbuf_t *nbuf_list)
11822 {
11823 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11824 	    !soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset)
11825 		return;
11826 
11827 	/*
11828 	 * Deinit of PPEDS Tx desc rings.
11829 	 */
11830 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
11831 		soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset(soc, nbuf_list);
11832 }
11833 
11834 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
11835 {
11836 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11837 	    !soc->arch_ops.txrx_soc_ppeds_start ||
11838 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_start)
11839 		return;
11840 
11841 	/*
11842 	 * Start PPEDS node and enable interrupt.
11843 	 */
11844 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc)) {
11845 		soc->arch_ops.txrx_soc_ppeds_start(soc);
11846 		soc->arch_ops.txrx_soc_ppeds_interrupt_start(soc);
11847 	}
11848 }
11849 #else
11850 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
11851 {
11852 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11853 	dp_umac_reset_trigger_pre_reset_notify_cb(soc);
11854 	soc->umac_reset_ctx.nbuf_list = NULL;
11855 	return QDF_STATUS_SUCCESS;
11856 }
11857 
11858 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
11859 							 qdf_nbuf_t *nbuf_list)
11860 {
11861 }
11862 
11863 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
11864 {
11865 }
11866 #endif
11867 
11868 /**
11869  * dp_umac_reset_handle_pre_reset() - Handle Umac prereset interrupt from FW
11870  * @soc: dp soc handle
11871  *
11872  * Return: QDF_STATUS
11873  */
11874 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc)
11875 {
11876 	dp_reset_interrupt_ring_masks(soc);
11877 
11878 	dp_pause_tx_hardstart(soc);
11879 	dp_pause_reo_send_cmd(soc);
11880 	dp_umac_reset_service_handle_n_notify_done(soc);
11881 	return QDF_STATUS_SUCCESS;
11882 }
11883 
11884 /**
11885  * dp_umac_reset_handle_post_reset() - Handle Umac postreset interrupt from FW
11886  * @soc: dp soc handle
11887  *
11888  * Return: QDF_STATUS
11889  */
11890 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc)
11891 {
11892 	if (!soc->umac_reset_ctx.skel_enable) {
11893 		qdf_nbuf_t *nbuf_list = &soc->umac_reset_ctx.nbuf_list;
11894 
11895 		dp_set_umac_regs(soc);
11896 
11897 		dp_reinit_rings(soc);
11898 
11899 		dp_rx_desc_reuse(soc, nbuf_list);
11900 
11901 		dp_cleanup_reo_cmd_module(soc);
11902 
11903 		dp_umac_reset_ppeds_txdesc_pool_reset(soc, nbuf_list);
11904 
11905 		dp_tx_desc_pool_cleanup(soc, nbuf_list);
11906 
11907 		dp_reset_tid_q_setup(soc);
11908 	}
11909 
11910 	return dp_umac_reset_notify_action_completion(soc,
11911 					UMAC_RESET_ACTION_DO_POST_RESET_START);
11912 }
11913 
11914 /**
11915  * dp_umac_reset_handle_post_reset_complete() - Handle Umac postreset_complete
11916  *						interrupt from FW
11917  * @soc: dp soc handle
11918  *
11919  * Return: QDF_STATUS
11920  */
11921 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc)
11922 {
11923 	QDF_STATUS status;
11924 	qdf_nbuf_t nbuf_list = soc->umac_reset_ctx.nbuf_list;
11925 
11926 	soc->umac_reset_ctx.nbuf_list = NULL;
11927 
11928 	soc->service_rings_running = 0;
11929 
11930 	dp_resume_reo_send_cmd(soc);
11931 
11932 	dp_umac_reset_ppeds_start(soc);
11933 
11934 	dp_restore_interrupt_ring_masks(soc);
11935 
11936 	dp_resume_tx_hardstart(soc);
11937 
11938 	status = dp_umac_reset_notify_action_completion(soc,
11939 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
11940 
11941 	while (nbuf_list) {
11942 		qdf_nbuf_t nbuf = nbuf_list->next;
11943 
11944 		qdf_nbuf_free(nbuf_list);
11945 		nbuf_list = nbuf;
11946 	}
11947 
11948 	dp_umac_reset_info("Umac reset done on soc %pK\n trigger start : %u us "
11949 			   "trigger done : %u us prereset : %u us\n"
11950 			   "postreset : %u us \n postreset complete: %u us \n",
11951 			   soc,
11952 			   soc->umac_reset_ctx.ts.trigger_done -
11953 			   soc->umac_reset_ctx.ts.trigger_start,
11954 			   soc->umac_reset_ctx.ts.pre_reset_done -
11955 			   soc->umac_reset_ctx.ts.pre_reset_start,
11956 			   soc->umac_reset_ctx.ts.post_reset_done -
11957 			   soc->umac_reset_ctx.ts.post_reset_start,
11958 			   soc->umac_reset_ctx.ts.post_reset_complete_done -
11959 			   soc->umac_reset_ctx.ts.post_reset_complete_start);
11960 
11961 	return status;
11962 }
11963 #endif
11964 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
11965 static void
11966 dp_set_pkt_capture_mode(struct cdp_soc_t *soc_handle, bool val)
11967 {
11968 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11969 
11970 	soc->wlan_cfg_ctx->pkt_capture_mode = val;
11971 }
11972 #endif
11973 
11974 #ifdef HW_TX_DELAY_STATS_ENABLE
11975 /**
11976  * dp_enable_disable_vdev_tx_delay_stats() - Start/Stop tx delay stats capture
11977  * @soc_hdl: DP soc handle
11978  * @vdev_id: vdev id
11979  * @value: value
11980  *
11981  * Return: None
11982  */
11983 static void
11984 dp_enable_disable_vdev_tx_delay_stats(struct cdp_soc_t *soc_hdl,
11985 				      uint8_t vdev_id,
11986 				      uint8_t value)
11987 {
11988 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11989 	struct dp_vdev *vdev = NULL;
11990 
11991 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
11992 	if (!vdev)
11993 		return;
11994 
11995 	vdev->hw_tx_delay_stats_enabled = value;
11996 
11997 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
11998 }
11999 
12000 /**
12001  * dp_check_vdev_tx_delay_stats_enabled() - check the feature is enabled or not
12002  * @soc_hdl: DP soc handle
12003  * @vdev_id: vdev id
12004  *
12005  * Return: 1 if enabled, 0 if disabled
12006  */
12007 static uint8_t
12008 dp_check_vdev_tx_delay_stats_enabled(struct cdp_soc_t *soc_hdl,
12009 				     uint8_t vdev_id)
12010 {
12011 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12012 	struct dp_vdev *vdev;
12013 	uint8_t ret_val = 0;
12014 
12015 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
12016 	if (!vdev)
12017 		return ret_val;
12018 
12019 	ret_val = vdev->hw_tx_delay_stats_enabled;
12020 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12021 
12022 	return ret_val;
12023 }
12024 #endif
12025 
12026 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
12027 static void
12028 dp_recovery_vdev_flush_peers(struct cdp_soc_t *cdp_soc,
12029 			     uint8_t vdev_id,
12030 			     bool mlo_peers_only)
12031 {
12032 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
12033 	struct dp_vdev *vdev;
12034 
12035 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
12036 
12037 	if (!vdev)
12038 		return;
12039 
12040 	dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, mlo_peers_only);
12041 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12042 }
12043 #endif
12044 #ifdef QCA_GET_TSF_VIA_REG
12045 /**
12046  * dp_get_tsf_time() - get tsf time
12047  * @soc_hdl: Datapath soc handle
12048  * @tsf_id: TSF identifier
12049  * @mac_id: mac_id
12050  * @tsf: pointer to update tsf value
12051  * @tsf_sync_soc_time: pointer to update tsf sync time
12052  *
12053  * Return: None.
12054  */
12055 static inline void
12056 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
12057 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
12058 {
12059 	hal_get_tsf_time(((struct dp_soc *)soc_hdl)->hal_soc, tsf_id, mac_id,
12060 			 tsf, tsf_sync_soc_time);
12061 }
12062 #else
12063 static inline void
12064 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
12065 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
12066 {
12067 }
12068 #endif
12069 
12070 /**
12071  * dp_get_tsf2_scratch_reg() - get tsf2 offset from the scratch register
12072  * @soc_hdl: Datapath soc handle
12073  * @mac_id: mac_id
12074  * @value: pointer to update tsf2 offset value
12075  *
12076  * Return: None.
12077  */
12078 static inline void
12079 dp_get_tsf2_scratch_reg(struct cdp_soc_t *soc_hdl, uint8_t mac_id,
12080 			uint64_t *value)
12081 {
12082 	hal_get_tsf2_offset(((struct dp_soc *)soc_hdl)->hal_soc, mac_id, value);
12083 }
12084 
12085 /**
12086  * dp_get_tqm_scratch_reg() - get tqm offset from the scratch register
12087  * @soc_hdl: Datapath soc handle
12088  * @value: pointer to update tqm offset value
12089  *
12090  * Return: None.
12091  */
12092 static inline void
12093 dp_get_tqm_scratch_reg(struct cdp_soc_t *soc_hdl, uint64_t *value)
12094 {
12095 	hal_get_tqm_offset(((struct dp_soc *)soc_hdl)->hal_soc, value);
12096 }
12097 
12098 /**
12099  * dp_set_tx_pause() - Pause or resume tx path
12100  * @soc_hdl: Datapath soc handle
12101  * @flag: set or clear is_tx_pause
12102  *
12103  * Return: None.
12104  */
12105 static inline
12106 void dp_set_tx_pause(struct cdp_soc_t *soc_hdl, bool flag)
12107 {
12108 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12109 
12110 	soc->is_tx_pause = flag;
12111 }
12112 
12113 static inline uint64_t dp_rx_fisa_get_cmem_base(struct cdp_soc_t *soc_hdl,
12114 						uint64_t size)
12115 {
12116 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12117 
12118 	if (soc->arch_ops.dp_get_fst_cmem_base)
12119 		return soc->arch_ops.dp_get_fst_cmem_base(soc, size);
12120 
12121 	return 0;
12122 }
12123 
12124 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
12125 /**
12126  * dp_evaluate_update_tx_ilp_config() - Evaluate and update DP TX
12127  *                                      ILP configuration
12128  * @soc_hdl: CDP SOC handle
12129  * @num_msdu_idx_map: Number of HTT msdu index to qtype map in array
12130  * @msdu_idx_map_arr: Pointer to HTT msdu index to qtype map array
12131  *
12132  * This function will check: (a) TX ILP INI configuration,
12133  * (b) index 3 value in array same as HTT_MSDU_QTYPE_LATENCY_TOLERANT,
12134  * only if both (a) and (b) condition is met, then TX ILP feature is
12135  * considered to be enabled.
12136  *
12137  * Return: Final updated TX ILP enable result in dp_soc,
12138  *         true is enabled, false is not
12139  */
12140 static
12141 bool dp_evaluate_update_tx_ilp_config(struct cdp_soc_t *soc_hdl,
12142 				      uint8_t num_msdu_idx_map,
12143 				      uint8_t *msdu_idx_map_arr)
12144 {
12145 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12146 	bool enable_tx_ilp = false;
12147 
12148 	/**
12149 	 * Check INI configuration firstly, if it's disabled,
12150 	 * then keep feature disabled.
12151 	 */
12152 	if (!wlan_cfg_get_tx_ilp_inspect_config(soc->wlan_cfg_ctx)) {
12153 		dp_info("TX ILP INI is disabled already");
12154 		goto update_tx_ilp;
12155 	}
12156 
12157 	/* Check if the msdu index to qtype map table is valid */
12158 	if (num_msdu_idx_map != HTT_MSDUQ_MAX_INDEX || !msdu_idx_map_arr) {
12159 		dp_info("Invalid msdu_idx qtype map num: 0x%x, arr_addr %pK",
12160 			num_msdu_idx_map, msdu_idx_map_arr);
12161 		goto update_tx_ilp;
12162 	}
12163 
12164 	dp_info("msdu_idx_map_arr idx 0x%x value 0x%x",
12165 		HTT_MSDUQ_INDEX_CUSTOM_PRIO_1,
12166 		msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1]);
12167 
12168 	if (HTT_MSDU_QTYPE_USER_SPECIFIED ==
12169 	    msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1])
12170 		enable_tx_ilp = true;
12171 
12172 update_tx_ilp:
12173 	soc->tx_ilp_enable = enable_tx_ilp;
12174 	dp_info("configure tx ilp enable %d", soc->tx_ilp_enable);
12175 
12176 	return soc->tx_ilp_enable;
12177 }
12178 #endif
12179 
12180 static struct cdp_cmn_ops dp_ops_cmn = {
12181 	.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
12182 	.txrx_vdev_attach = dp_vdev_attach_wifi3,
12183 	.txrx_vdev_detach = dp_vdev_detach_wifi3,
12184 	.txrx_pdev_attach = dp_pdev_attach_wifi3,
12185 	.txrx_pdev_post_attach = dp_pdev_post_attach_wifi3,
12186 	.txrx_pdev_detach = dp_pdev_detach_wifi3,
12187 	.txrx_pdev_deinit = dp_pdev_deinit_wifi3,
12188 	.txrx_peer_create = dp_peer_create_wifi3,
12189 	.txrx_peer_setup = dp_peer_setup_wifi3_wrapper,
12190 #ifdef FEATURE_AST
12191 	.txrx_peer_teardown = dp_peer_teardown_wifi3,
12192 #else
12193 	.txrx_peer_teardown = NULL,
12194 #endif
12195 	.txrx_peer_add_ast = dp_peer_add_ast_wifi3,
12196 	.txrx_peer_update_ast = dp_peer_update_ast_wifi3,
12197 	.txrx_peer_get_ast_info_by_soc = dp_peer_get_ast_info_by_soc_wifi3,
12198 	.txrx_peer_get_ast_info_by_pdev =
12199 		dp_peer_get_ast_info_by_pdevid_wifi3,
12200 	.txrx_peer_ast_delete_by_soc =
12201 		dp_peer_ast_entry_del_by_soc,
12202 	.txrx_peer_ast_delete_by_pdev =
12203 		dp_peer_ast_entry_del_by_pdev,
12204 	.txrx_peer_HMWDS_ast_delete = dp_peer_HMWDS_ast_entry_del,
12205 	.txrx_peer_delete = dp_peer_delete_wifi3,
12206 #ifdef DP_RX_UDP_OVER_PEER_ROAM
12207 	.txrx_update_roaming_peer = dp_update_roaming_peer_wifi3,
12208 #endif
12209 	.txrx_vdev_register = dp_vdev_register_wifi3,
12210 	.txrx_soc_detach = dp_soc_detach_wifi3,
12211 	.txrx_soc_deinit = dp_soc_deinit_wifi3,
12212 	.txrx_soc_init = dp_soc_init_wifi3,
12213 #ifndef QCA_HOST_MODE_WIFI_DISABLED
12214 	.txrx_tso_soc_attach = dp_tso_soc_attach,
12215 	.txrx_tso_soc_detach = dp_tso_soc_detach,
12216 	.tx_send = dp_tx_send,
12217 	.tx_send_exc = dp_tx_send_exception,
12218 #endif
12219 	.set_tx_pause = dp_set_tx_pause,
12220 	.txrx_pdev_init = dp_pdev_init_wifi3,
12221 	.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
12222 	.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
12223 	.txrx_ath_getstats = dp_get_device_stats,
12224 #ifndef WLAN_SOFTUMAC_SUPPORT
12225 	.addba_requestprocess = dp_addba_requestprocess_wifi3,
12226 	.addba_responsesetup = dp_addba_responsesetup_wifi3,
12227 	.addba_resp_tx_completion = dp_addba_resp_tx_completion_wifi3,
12228 	.delba_process = dp_delba_process_wifi3,
12229 	.set_addba_response = dp_set_addba_response,
12230 	.flush_cache_rx_queue = NULL,
12231 	.tid_update_ba_win_size = dp_rx_tid_update_ba_win_size,
12232 #endif
12233 	/* TODO: get API's for dscp-tid need to be added*/
12234 	.set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3,
12235 	.set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3,
12236 	.txrx_get_total_per = dp_get_total_per,
12237 	.txrx_stats_request = dp_txrx_stats_request,
12238 	.txrx_get_peer_mac_from_peer_id = dp_get_peer_mac_from_peer_id,
12239 	.display_stats = dp_txrx_dump_stats,
12240 	.notify_asserted_soc = dp_soc_notify_asserted_soc,
12241 	.txrx_intr_attach = dp_soc_interrupt_attach_wrapper,
12242 	.txrx_intr_detach = dp_soc_interrupt_detach_wrapper,
12243 	.txrx_ppeds_stop = dp_soc_ppeds_stop,
12244 	.set_key_sec_type = dp_set_key_sec_type_wifi3,
12245 	.update_config_parameters = dp_update_config_parameters,
12246 	/* TODO: Add other functions */
12247 	.txrx_data_tx_cb_set = dp_txrx_data_tx_cb_set,
12248 	.get_dp_txrx_handle = dp_pdev_get_dp_txrx_handle,
12249 	.set_dp_txrx_handle = dp_pdev_set_dp_txrx_handle,
12250 	.get_vdev_dp_ext_txrx_handle = dp_vdev_get_dp_ext_handle,
12251 	.set_vdev_dp_ext_txrx_handle = dp_vdev_set_dp_ext_handle,
12252 	.get_soc_dp_txrx_handle = dp_soc_get_dp_txrx_handle,
12253 	.set_soc_dp_txrx_handle = dp_soc_set_dp_txrx_handle,
12254 	.map_pdev_to_lmac = dp_soc_map_pdev_to_lmac,
12255 	.handle_mode_change = dp_soc_handle_pdev_mode_change,
12256 	.set_pdev_status_down = dp_soc_set_pdev_status_down,
12257 	.txrx_peer_reset_ast = dp_wds_reset_ast_wifi3,
12258 	.txrx_peer_reset_ast_table = dp_wds_reset_ast_table_wifi3,
12259 	.txrx_peer_flush_ast_table = dp_wds_flush_ast_table_wifi3,
12260 	.txrx_peer_map_attach = dp_peer_map_attach_wifi3,
12261 	.set_soc_param = dp_soc_set_param,
12262 	.txrx_get_os_rx_handles_from_vdev =
12263 					dp_get_os_rx_handles_from_vdev_wifi3,
12264 #ifndef WLAN_SOFTUMAC_SUPPORT
12265 	.set_pn_check = dp_set_pn_check_wifi3,
12266 	.txrx_set_ba_aging_timeout = dp_set_ba_aging_timeout,
12267 	.txrx_get_ba_aging_timeout = dp_get_ba_aging_timeout,
12268 	.delba_tx_completion = dp_delba_tx_completion_wifi3,
12269 	.set_pdev_pcp_tid_map = dp_set_pdev_pcp_tid_map_wifi3,
12270 	.set_vdev_pcp_tid_map = dp_set_vdev_pcp_tid_map_wifi3,
12271 #endif
12272 	.get_dp_capabilities = dp_get_cfg_capabilities,
12273 	.txrx_get_cfg = dp_get_cfg,
12274 	.set_rate_stats_ctx = dp_soc_set_rate_stats_ctx,
12275 	.get_rate_stats_ctx = dp_soc_get_rate_stats_ctx,
12276 	.txrx_peer_flush_rate_stats = dp_peer_flush_rate_stats,
12277 	.txrx_flush_rate_stats_request = dp_flush_rate_stats_req,
12278 	.txrx_peer_get_peerstats_ctx = dp_peer_get_peerstats_ctx,
12279 
12280 	.txrx_cp_peer_del_response = dp_cp_peer_del_resp_handler,
12281 #ifdef QCA_MULTIPASS_SUPPORT
12282 	.set_vlan_groupkey = dp_set_vlan_groupkey,
12283 #endif
12284 	.get_peer_mac_list = dp_get_peer_mac_list,
12285 	.get_peer_id = dp_get_peer_id,
12286 #ifdef QCA_SUPPORT_WDS_EXTENDED
12287 	.set_wds_ext_peer_rx = dp_wds_ext_set_peer_rx,
12288 	.get_wds_ext_peer_osif_handle = dp_wds_ext_get_peer_osif_handle,
12289 	.set_wds_ext_peer_bit = dp_wds_ext_set_peer_bit,
12290 #endif /* QCA_SUPPORT_WDS_EXTENDED */
12291 
12292 #if defined(FEATURE_RUNTIME_PM) || defined(DP_POWER_SAVE)
12293 	.txrx_drain = dp_drain_txrx,
12294 #endif
12295 #if defined(FEATURE_RUNTIME_PM)
12296 	.set_rtpm_tput_policy = dp_set_rtpm_tput_policy_requirement,
12297 #endif
12298 #ifdef WLAN_SYSFS_DP_STATS
12299 	.txrx_sysfs_fill_stats = dp_sysfs_fill_stats,
12300 	.txrx_sysfs_set_stat_type = dp_sysfs_set_stat_type,
12301 #endif /* WLAN_SYSFS_DP_STATS */
12302 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
12303 	.set_pkt_capture_mode = dp_set_pkt_capture_mode,
12304 #endif
12305 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
12306 	.txrx_recovery_vdev_flush_peers = dp_recovery_vdev_flush_peers,
12307 #endif
12308 	.txrx_umac_reset_deinit = dp_soc_umac_reset_deinit,
12309 	.txrx_umac_reset_init = dp_soc_umac_reset_init,
12310 	.txrx_get_tsf_time = dp_get_tsf_time,
12311 	.txrx_get_tsf2_offset = dp_get_tsf2_scratch_reg,
12312 	.txrx_get_tqm_offset = dp_get_tqm_scratch_reg,
12313 #ifdef WLAN_SUPPORT_RX_FISA
12314 	.get_fst_cmem_base = dp_rx_fisa_get_cmem_base,
12315 #endif
12316 };
12317 
12318 static struct cdp_ctrl_ops dp_ops_ctrl = {
12319 	.txrx_peer_authorize = dp_peer_authorize,
12320 	.txrx_peer_get_authorize = dp_peer_get_authorize,
12321 #ifdef VDEV_PEER_PROTOCOL_COUNT
12322 	.txrx_enable_peer_protocol_count = dp_enable_vdev_peer_protocol_count,
12323 	.txrx_set_peer_protocol_drop_mask =
12324 		dp_enable_vdev_peer_protocol_drop_mask,
12325 	.txrx_is_peer_protocol_count_enabled =
12326 		dp_is_vdev_peer_protocol_count_enabled,
12327 	.txrx_get_peer_protocol_drop_mask = dp_get_vdev_peer_protocol_drop_mask,
12328 #endif
12329 	.txrx_set_vdev_param = dp_set_vdev_param_wrapper,
12330 	.txrx_set_psoc_param = dp_set_psoc_param,
12331 	.txrx_get_psoc_param = dp_get_psoc_param,
12332 #ifndef WLAN_SOFTUMAC_SUPPORT
12333 	.txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest,
12334 	.txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest,
12335 #endif
12336 	.txrx_get_sec_type = dp_get_sec_type,
12337 	.txrx_wdi_event_sub = dp_wdi_event_sub,
12338 	.txrx_wdi_event_unsub = dp_wdi_event_unsub,
12339 	.txrx_set_pdev_param = dp_set_pdev_param,
12340 	.txrx_get_pdev_param = dp_get_pdev_param,
12341 #ifdef WLAN_FEATURE_11BE_MLO
12342 	.txrx_set_peer_param = dp_set_peer_param_wrapper,
12343 #else
12344 	.txrx_set_peer_param = dp_set_peer_param,
12345 #endif
12346 	.txrx_get_peer_param = dp_get_peer_param,
12347 #ifdef VDEV_PEER_PROTOCOL_COUNT
12348 	.txrx_peer_protocol_cnt = dp_peer_stats_update_protocol_cnt,
12349 #endif
12350 #ifdef WLAN_SUPPORT_MSCS
12351 	.txrx_record_mscs_params = dp_record_mscs_params,
12352 #endif
12353 	.set_key = dp_set_michael_key,
12354 	.txrx_get_vdev_param = dp_get_vdev_param,
12355 	.calculate_delay_stats = dp_calculate_delay_stats,
12356 #ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
12357 	.txrx_update_pdev_rx_protocol_tag = dp_update_pdev_rx_protocol_tag,
12358 #ifdef WLAN_SUPPORT_RX_TAG_STATISTICS
12359 	.txrx_dump_pdev_rx_protocol_tag_stats =
12360 				dp_dump_pdev_rx_protocol_tag_stats,
12361 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
12362 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
12363 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
12364 	.txrx_set_rx_flow_tag = dp_set_rx_flow_tag,
12365 	.txrx_dump_rx_flow_tag_stats = dp_dump_rx_flow_tag_stats,
12366 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
12367 #ifdef QCA_MULTIPASS_SUPPORT
12368 	.txrx_peer_set_vlan_id = dp_peer_set_vlan_id,
12369 #endif /*QCA_MULTIPASS_SUPPORT*/
12370 #if defined(WLAN_FEATURE_TSF_AUTO_REPORT) || defined(WLAN_CONFIG_TX_DELAY)
12371 	.txrx_set_delta_tsf = dp_set_delta_tsf,
12372 #endif
12373 #ifdef WLAN_FEATURE_TSF_UPLINK_DELAY
12374 	.txrx_set_tsf_ul_delay_report = dp_set_tsf_ul_delay_report,
12375 	.txrx_get_uplink_delay = dp_get_uplink_delay,
12376 #endif
12377 #ifdef QCA_UNDECODED_METADATA_SUPPORT
12378 	.txrx_set_pdev_phyrx_error_mask = dp_set_pdev_phyrx_error_mask,
12379 	.txrx_get_pdev_phyrx_error_mask = dp_get_pdev_phyrx_error_mask,
12380 #endif
12381 	.txrx_peer_flush_frags = dp_peer_flush_frags,
12382 #ifdef DP_UMAC_HW_RESET_SUPPORT
12383 	.get_umac_reset_in_progress_state = dp_get_umac_reset_in_progress_state,
12384 #endif
12385 #ifdef WLAN_SUPPORT_RX_FISA
12386 	.txrx_fisa_config = dp_fisa_config,
12387 #endif
12388 };
12389 
12390 static struct cdp_me_ops dp_ops_me = {
12391 #ifndef QCA_HOST_MODE_WIFI_DISABLED
12392 #ifdef ATH_SUPPORT_IQUE
12393 	.tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor,
12394 	.tx_me_free_descriptor = dp_tx_me_free_descriptor,
12395 	.tx_me_convert_ucast = dp_tx_me_send_convert_ucast,
12396 #endif
12397 #endif
12398 };
12399 
12400 static struct cdp_host_stats_ops dp_ops_host_stats = {
12401 	.txrx_per_peer_stats = dp_get_host_peer_stats,
12402 	.get_fw_peer_stats = dp_get_fw_peer_stats,
12403 	.get_htt_stats = dp_get_htt_stats,
12404 	.txrx_stats_publish = dp_txrx_stats_publish,
12405 	.txrx_get_vdev_stats  = dp_txrx_get_vdev_stats,
12406 	.txrx_get_peer_stats = dp_txrx_get_peer_stats,
12407 	.txrx_get_peer_stats_based_on_peer_type =
12408 			dp_txrx_get_peer_stats_based_on_peer_type,
12409 	.txrx_get_soc_stats = dp_txrx_get_soc_stats,
12410 	.txrx_get_peer_stats_param = dp_txrx_get_peer_stats_param,
12411 	.txrx_get_per_link_stats = dp_txrx_get_per_link_peer_stats,
12412 	.txrx_reset_peer_stats = dp_txrx_reset_peer_stats,
12413 	.txrx_get_pdev_stats = dp_txrx_get_pdev_stats,
12414 #if defined(IPA_OFFLOAD) && defined(QCA_ENHANCED_STATS_SUPPORT)
12415 	.txrx_get_peer_stats = dp_ipa_txrx_get_peer_stats,
12416 	.txrx_get_vdev_stats  = dp_ipa_txrx_get_vdev_stats,
12417 	.txrx_get_pdev_stats = dp_ipa_txrx_get_pdev_stats,
12418 #endif
12419 	.txrx_get_ratekbps = dp_txrx_get_ratekbps,
12420 	.txrx_update_vdev_stats = dp_txrx_update_vdev_host_stats,
12421 	.txrx_get_peer_delay_stats = dp_txrx_get_peer_delay_stats,
12422 	.txrx_get_peer_jitter_stats = dp_txrx_get_peer_jitter_stats,
12423 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
12424 	.txrx_alloc_vdev_stats_id = dp_txrx_alloc_vdev_stats_id,
12425 	.txrx_reset_vdev_stats_id = dp_txrx_reset_vdev_stats_id,
12426 #endif
12427 #ifdef WLAN_TX_PKT_CAPTURE_ENH
12428 	.get_peer_tx_capture_stats = dp_peer_get_tx_capture_stats,
12429 	.get_pdev_tx_capture_stats = dp_pdev_get_tx_capture_stats,
12430 #endif /* WLAN_TX_PKT_CAPTURE_ENH */
12431 #ifdef HW_TX_DELAY_STATS_ENABLE
12432 	.enable_disable_vdev_tx_delay_stats =
12433 				dp_enable_disable_vdev_tx_delay_stats,
12434 	.is_tx_delay_stats_enabled = dp_check_vdev_tx_delay_stats_enabled,
12435 #endif
12436 	.txrx_get_pdev_tid_stats = dp_pdev_get_tid_stats,
12437 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
12438 	.txrx_pdev_telemetry_stats = dp_get_pdev_telemetry_stats,
12439 	.txrx_peer_telemetry_stats = dp_get_peer_telemetry_stats,
12440 	.txrx_pdev_deter_stats = dp_get_pdev_deter_stats,
12441 	.txrx_peer_deter_stats = dp_get_peer_deter_stats,
12442 	.txrx_update_pdev_chan_util_stats = dp_update_pdev_chan_util_stats,
12443 #endif
12444 	.txrx_get_peer_extd_rate_link_stats =
12445 					dp_get_peer_extd_rate_link_stats,
12446 	.get_pdev_obss_stats = dp_get_obss_stats,
12447 	.clear_pdev_obss_pd_stats = dp_clear_pdev_obss_pd_stats,
12448 	.txrx_get_interface_stats  = dp_txrx_get_interface_stats,
12449 #ifdef WLAN_FEATURE_TX_LATENCY_STATS
12450 	.tx_latency_stats_fetch = dp_tx_latency_stats_fetch,
12451 	.tx_latency_stats_config = dp_tx_latency_stats_config,
12452 	.tx_latency_stats_register_cb = dp_tx_latency_stats_register_cb,
12453 #endif
12454 	/* TODO */
12455 };
12456 
12457 static struct cdp_raw_ops dp_ops_raw = {
12458 	/* TODO */
12459 };
12460 
12461 #ifdef PEER_FLOW_CONTROL
12462 static struct cdp_pflow_ops dp_ops_pflow = {
12463 	dp_tx_flow_ctrl_configure_pdev,
12464 };
12465 #endif
12466 
12467 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
12468 static struct cdp_cfr_ops dp_ops_cfr = {
12469 	.txrx_get_cfr_rcc = dp_get_cfr_rcc,
12470 	.txrx_set_cfr_rcc = dp_set_cfr_rcc,
12471 	.txrx_get_cfr_dbg_stats = dp_get_cfr_dbg_stats,
12472 	.txrx_clear_cfr_dbg_stats = dp_clear_cfr_dbg_stats,
12473 };
12474 #endif
12475 
12476 #ifdef WLAN_SUPPORT_MSCS
12477 static struct cdp_mscs_ops dp_ops_mscs = {
12478 	.mscs_peer_lookup_n_get_priority = dp_mscs_peer_lookup_n_get_priority,
12479 };
12480 #endif
12481 
12482 #ifdef WLAN_SUPPORT_MESH_LATENCY
12483 static struct cdp_mesh_latency_ops dp_ops_mesh_latency = {
12484 	.mesh_latency_update_peer_parameter =
12485 		dp_mesh_latency_update_peer_parameter,
12486 };
12487 #endif
12488 
12489 #ifdef WLAN_SUPPORT_SCS
12490 static struct cdp_scs_ops dp_ops_scs = {
12491 	.scs_peer_lookup_n_rule_match = dp_scs_peer_lookup_n_rule_match,
12492 };
12493 #endif
12494 
12495 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
12496 static struct cdp_fse_ops dp_ops_fse = {
12497 	.fse_rule_add = dp_rx_sfe_add_flow_entry,
12498 	.fse_rule_delete = dp_rx_sfe_delete_flow_entry,
12499 };
12500 #endif
12501 
12502 #ifdef CONFIG_SAWF_DEF_QUEUES
12503 static struct cdp_sawf_ops dp_ops_sawf = {
12504 	.sawf_def_queues_map_req = dp_sawf_def_queues_map_req,
12505 	.sawf_def_queues_unmap_req = dp_sawf_def_queues_unmap_req,
12506 	.sawf_def_queues_get_map_report =
12507 		dp_sawf_def_queues_get_map_report,
12508 #ifdef CONFIG_SAWF_STATS
12509 	.sawf_get_peer_msduq_info = dp_sawf_get_peer_msduq_info,
12510 	.txrx_get_peer_sawf_delay_stats = dp_sawf_get_peer_delay_stats,
12511 	.txrx_get_peer_sawf_tx_stats = dp_sawf_get_peer_tx_stats,
12512 	.sawf_mpdu_stats_req = dp_sawf_mpdu_stats_req,
12513 	.sawf_mpdu_details_stats_req = dp_sawf_mpdu_details_stats_req,
12514 	.txrx_sawf_set_mov_avg_params = dp_sawf_set_mov_avg_params,
12515 	.txrx_sawf_set_sla_params = dp_sawf_set_sla_params,
12516 	.txrx_sawf_init_telemtery_params = dp_sawf_init_telemetry_params,
12517 	.telemetry_get_throughput_stats = dp_sawf_get_tx_stats,
12518 	.telemetry_get_mpdu_stats = dp_sawf_get_mpdu_sched_stats,
12519 	.telemetry_get_drop_stats = dp_sawf_get_drop_stats,
12520 	.peer_config_ul = dp_sawf_peer_config_ul,
12521 	.swaf_peer_sla_configuration = dp_swaf_peer_sla_configuration,
12522 	.sawf_peer_flow_count = dp_sawf_peer_flow_count,
12523 #endif
12524 };
12525 #endif
12526 
12527 #ifdef DP_TX_TRACKING
12528 
12529 #define DP_TX_COMP_MAX_LATENCY_MS 60000
12530 /**
12531  * dp_tx_comp_delay_check() - calculate time latency for tx completion per pkt
12532  * @tx_desc: tx descriptor
12533  *
12534  * Calculate time latency for tx completion per pkt and trigger self recovery
12535  * when the delay is more than threshold value.
12536  *
12537  * Return: True if delay is more than threshold
12538  */
12539 static bool dp_tx_comp_delay_check(struct dp_tx_desc_s *tx_desc)
12540 {
12541 	uint64_t time_latency, timestamp_tick = tx_desc->timestamp_tick;
12542 	qdf_ktime_t current_time = qdf_ktime_real_get();
12543 	qdf_ktime_t timestamp = tx_desc->timestamp;
12544 
12545 	if (dp_tx_pkt_tracepoints_enabled()) {
12546 		if (!timestamp)
12547 			return false;
12548 
12549 		time_latency = qdf_ktime_to_ms(current_time) -
12550 				qdf_ktime_to_ms(timestamp);
12551 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
12552 			dp_err_rl("enqueued: %llu ms, current : %llu ms",
12553 				  timestamp, current_time);
12554 			return true;
12555 		}
12556 	} else {
12557 		if (!timestamp_tick)
12558 			return false;
12559 
12560 		current_time = qdf_system_ticks();
12561 		time_latency = qdf_system_ticks_to_msecs(current_time -
12562 							 timestamp_tick);
12563 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
12564 			dp_err_rl("enqueued: %u ms, current : %u ms",
12565 				  qdf_system_ticks_to_msecs(timestamp_tick),
12566 				  qdf_system_ticks_to_msecs(current_time));
12567 			return true;
12568 		}
12569 	}
12570 
12571 	return false;
12572 }
12573 
12574 void dp_find_missing_tx_comp(struct dp_soc *soc)
12575 {
12576 	uint8_t i;
12577 	uint32_t j;
12578 	uint32_t num_desc, page_id, offset;
12579 	uint16_t num_desc_per_page;
12580 	struct dp_tx_desc_s *tx_desc = NULL;
12581 	struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
12582 
12583 	for (i = 0; i < MAX_TXDESC_POOLS; i++) {
12584 		tx_desc_pool = &soc->tx_desc[i];
12585 		if (!(tx_desc_pool->pool_size) ||
12586 		    IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
12587 		    !(tx_desc_pool->desc_pages.cacheable_pages))
12588 			continue;
12589 
12590 		num_desc = tx_desc_pool->pool_size;
12591 		num_desc_per_page =
12592 			tx_desc_pool->desc_pages.num_element_per_page;
12593 		for (j = 0; j < num_desc; j++) {
12594 			page_id = j / num_desc_per_page;
12595 			offset = j % num_desc_per_page;
12596 
12597 			if (qdf_unlikely(!(tx_desc_pool->
12598 					 desc_pages.cacheable_pages)))
12599 				break;
12600 
12601 			tx_desc = dp_tx_desc_find(soc, i, page_id, offset,
12602 						  false);
12603 			if (tx_desc->magic == DP_TX_MAGIC_PATTERN_FREE) {
12604 				continue;
12605 			} else if (tx_desc->magic ==
12606 				   DP_TX_MAGIC_PATTERN_INUSE) {
12607 				if (dp_tx_comp_delay_check(tx_desc)) {
12608 					dp_err_rl("Tx completion not rcvd for id: %u",
12609 						  tx_desc->id);
12610 					if (tx_desc->vdev_id == DP_INVALID_VDEV_ID) {
12611 						tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
12612 						dp_err_rl("Freed tx_desc %u",
12613 							  tx_desc->id);
12614 						dp_tx_comp_free_buf(soc,
12615 								    tx_desc,
12616 								    false);
12617 						dp_tx_desc_release(soc, tx_desc,
12618 								   i);
12619 						DP_STATS_INC(soc,
12620 							     tx.tx_comp_force_freed, 1);
12621 					}
12622 				}
12623 			} else {
12624 				dp_err_rl("tx desc %u corrupted, flags: 0x%x",
12625 					  tx_desc->id, tx_desc->flags);
12626 			}
12627 		}
12628 	}
12629 }
12630 #else
12631 inline void dp_find_missing_tx_comp(struct dp_soc *soc)
12632 {
12633 }
12634 #endif
12635 
12636 #ifdef FEATURE_RUNTIME_PM
12637 /**
12638  * dp_runtime_suspend() - ensure DP is ready to runtime suspend
12639  * @soc_hdl: Datapath soc handle
12640  * @pdev_id: id of data path pdev handle
12641  *
12642  * DP is ready to runtime suspend if there are no pending TX packets.
12643  *
12644  * Return: QDF_STATUS
12645  */
12646 static QDF_STATUS dp_runtime_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12647 {
12648 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12649 	struct dp_pdev *pdev;
12650 	int32_t tx_pending;
12651 
12652 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12653 	if (!pdev) {
12654 		dp_err("pdev is NULL");
12655 		return QDF_STATUS_E_INVAL;
12656 	}
12657 
12658 	/* Abort if there are any pending TX packets */
12659 	tx_pending = dp_get_tx_pending(dp_pdev_to_cdp_pdev(pdev));
12660 	if (tx_pending) {
12661 		dp_info_rl("%pK: Abort suspend due to pending TX packets %d",
12662 			   soc, tx_pending);
12663 		dp_find_missing_tx_comp(soc);
12664 		/* perform a force flush if tx is pending */
12665 		soc->arch_ops.dp_update_ring_hptp(soc, true);
12666 		qdf_atomic_set(&soc->tx_pending_rtpm, 0);
12667 
12668 		return QDF_STATUS_E_AGAIN;
12669 	}
12670 
12671 	if (dp_runtime_get_refcount(soc)) {
12672 		dp_init_info("refcount: %d", dp_runtime_get_refcount(soc));
12673 
12674 		return QDF_STATUS_E_AGAIN;
12675 	}
12676 
12677 	if (soc->intr_mode == DP_INTR_POLL)
12678 		qdf_timer_stop(&soc->int_timer);
12679 
12680 	return QDF_STATUS_SUCCESS;
12681 }
12682 
12683 #define DP_FLUSH_WAIT_CNT 10
12684 #define DP_RUNTIME_SUSPEND_WAIT_MS 10
12685 /**
12686  * dp_runtime_resume() - ensure DP is ready to runtime resume
12687  * @soc_hdl: Datapath soc handle
12688  * @pdev_id: id of data path pdev handle
12689  *
12690  * Resume DP for runtime PM.
12691  *
12692  * Return: QDF_STATUS
12693  */
12694 static QDF_STATUS dp_runtime_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12695 {
12696 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12697 	int suspend_wait = 0;
12698 
12699 	if (soc->intr_mode == DP_INTR_POLL)
12700 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
12701 
12702 	/*
12703 	 * Wait until dp runtime refcount becomes zero or time out, then flush
12704 	 * pending tx for runtime suspend.
12705 	 */
12706 	while (dp_runtime_get_refcount(soc) &&
12707 	       suspend_wait < DP_FLUSH_WAIT_CNT) {
12708 		qdf_sleep(DP_RUNTIME_SUSPEND_WAIT_MS);
12709 		suspend_wait++;
12710 	}
12711 
12712 	soc->arch_ops.dp_update_ring_hptp(soc, false);
12713 	qdf_atomic_set(&soc->tx_pending_rtpm, 0);
12714 
12715 	return QDF_STATUS_SUCCESS;
12716 }
12717 #endif /* FEATURE_RUNTIME_PM */
12718 
12719 /**
12720  * dp_tx_get_success_ack_stats() - get tx success completion count
12721  * @soc_hdl: Datapath soc handle
12722  * @vdev_id: vdev identifier
12723  *
12724  * Return: tx success ack count
12725  */
12726 static uint32_t dp_tx_get_success_ack_stats(struct cdp_soc_t *soc_hdl,
12727 					    uint8_t vdev_id)
12728 {
12729 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12730 	struct cdp_vdev_stats *vdev_stats = NULL;
12731 	uint32_t tx_success;
12732 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
12733 						     DP_MOD_ID_CDP);
12734 
12735 	if (!vdev) {
12736 		dp_cdp_err("%pK: Invalid vdev id %d", soc, vdev_id);
12737 		return 0;
12738 	}
12739 
12740 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
12741 	if (!vdev_stats) {
12742 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats", soc);
12743 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12744 		return 0;
12745 	}
12746 
12747 	dp_aggregate_vdev_stats(vdev, vdev_stats);
12748 
12749 	tx_success = vdev_stats->tx.tx_success.num;
12750 	qdf_mem_free(vdev_stats);
12751 
12752 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12753 	return tx_success;
12754 }
12755 
12756 #ifdef WLAN_SUPPORT_DATA_STALL
12757 /**
12758  * dp_register_data_stall_detect_cb() - register data stall callback
12759  * @soc_hdl: Datapath soc handle
12760  * @pdev_id: id of data path pdev handle
12761  * @data_stall_detect_callback: data stall callback function
12762  *
12763  * Return: QDF_STATUS Enumeration
12764  */
12765 static
12766 QDF_STATUS dp_register_data_stall_detect_cb(
12767 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12768 			data_stall_detect_cb data_stall_detect_callback)
12769 {
12770 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12771 	struct dp_pdev *pdev;
12772 
12773 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12774 	if (!pdev) {
12775 		dp_err("pdev NULL!");
12776 		return QDF_STATUS_E_INVAL;
12777 	}
12778 
12779 	pdev->data_stall_detect_callback = data_stall_detect_callback;
12780 	return QDF_STATUS_SUCCESS;
12781 }
12782 
12783 /**
12784  * dp_deregister_data_stall_detect_cb() - de-register data stall callback
12785  * @soc_hdl: Datapath soc handle
12786  * @pdev_id: id of data path pdev handle
12787  * @data_stall_detect_callback: data stall callback function
12788  *
12789  * Return: QDF_STATUS Enumeration
12790  */
12791 static
12792 QDF_STATUS dp_deregister_data_stall_detect_cb(
12793 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12794 			data_stall_detect_cb data_stall_detect_callback)
12795 {
12796 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12797 	struct dp_pdev *pdev;
12798 
12799 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12800 	if (!pdev) {
12801 		dp_err("pdev NULL!");
12802 		return QDF_STATUS_E_INVAL;
12803 	}
12804 
12805 	pdev->data_stall_detect_callback = NULL;
12806 	return QDF_STATUS_SUCCESS;
12807 }
12808 
12809 /**
12810  * dp_txrx_post_data_stall_event() - post data stall event
12811  * @soc_hdl: Datapath soc handle
12812  * @indicator: Module triggering data stall
12813  * @data_stall_type: data stall event type
12814  * @pdev_id: pdev id
12815  * @vdev_id_bitmap: vdev id bitmap
12816  * @recovery_type: data stall recovery type
12817  *
12818  * Return: None
12819  */
12820 static void
12821 dp_txrx_post_data_stall_event(struct cdp_soc_t *soc_hdl,
12822 			      enum data_stall_log_event_indicator indicator,
12823 			      enum data_stall_log_event_type data_stall_type,
12824 			      uint32_t pdev_id, uint32_t vdev_id_bitmap,
12825 			      enum data_stall_log_recovery_type recovery_type)
12826 {
12827 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12828 	struct data_stall_event_info data_stall_info;
12829 	struct dp_pdev *pdev;
12830 
12831 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12832 	if (!pdev) {
12833 		dp_err("pdev NULL!");
12834 		return;
12835 	}
12836 
12837 	if (!pdev->data_stall_detect_callback) {
12838 		dp_err("data stall cb not registered!");
12839 		return;
12840 	}
12841 
12842 	dp_info("data_stall_type: %x pdev_id: %d",
12843 		data_stall_type, pdev_id);
12844 
12845 	data_stall_info.indicator = indicator;
12846 	data_stall_info.data_stall_type = data_stall_type;
12847 	data_stall_info.vdev_id_bitmap = vdev_id_bitmap;
12848 	data_stall_info.pdev_id = pdev_id;
12849 	data_stall_info.recovery_type = recovery_type;
12850 
12851 	pdev->data_stall_detect_callback(&data_stall_info);
12852 }
12853 #endif /* WLAN_SUPPORT_DATA_STALL */
12854 
12855 #ifdef WLAN_FEATURE_STATS_EXT
12856 /**
12857  * dp_txrx_ext_stats_request() - request dp txrx extended stats request
12858  * @soc_hdl: soc handle
12859  * @pdev_id: pdev id
12860  * @req: stats request
12861  *
12862  * Return: QDF_STATUS
12863  */
12864 static QDF_STATUS
12865 dp_txrx_ext_stats_request(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12866 			  struct cdp_txrx_ext_stats *req)
12867 {
12868 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
12869 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12870 	int i = 0;
12871 	int tcl_ring_full = 0;
12872 
12873 	if (!pdev) {
12874 		dp_err("pdev is null");
12875 		return QDF_STATUS_E_INVAL;
12876 	}
12877 
12878 	dp_aggregate_pdev_stats(pdev);
12879 
12880 	for(i = 0 ; i < MAX_TCL_DATA_RINGS; i++)
12881 		tcl_ring_full += soc->stats.tx.tcl_ring_full[i];
12882 
12883 	req->tx_msdu_enqueue = pdev->stats.tx_i.processed.num;
12884 	req->tx_msdu_overflow = tcl_ring_full;
12885 	/* Error rate at LMAC */
12886 	req->rx_mpdu_received = soc->ext_stats.rx_mpdu_received +
12887 				pdev->stats.err.fw_reported_rxdma_error;
12888 	/* only count error source from RXDMA */
12889 	req->rx_mpdu_error = pdev->stats.err.fw_reported_rxdma_error;
12890 
12891 	/* Error rate at above the MAC */
12892 	req->rx_mpdu_delivered = soc->ext_stats.rx_mpdu_received;
12893 	req->rx_mpdu_missed = pdev->stats.err.reo_error;
12894 
12895 	dp_info("ext stats: tx_msdu_enq = %u, tx_msdu_overflow = %u, "
12896 		"rx_mpdu_receive = %u, rx_mpdu_delivered = %u, "
12897 		"rx_mpdu_missed = %u, rx_mpdu_error = %u",
12898 		req->tx_msdu_enqueue,
12899 		req->tx_msdu_overflow,
12900 		req->rx_mpdu_received,
12901 		req->rx_mpdu_delivered,
12902 		req->rx_mpdu_missed,
12903 		req->rx_mpdu_error);
12904 
12905 	return QDF_STATUS_SUCCESS;
12906 }
12907 
12908 #endif /* WLAN_FEATURE_STATS_EXT */
12909 
12910 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
12911 /**
12912  * dp_mark_first_wakeup_packet() - set flag to indicate that
12913  *    fw is compatible for marking first packet after wow wakeup
12914  * @soc_hdl: Datapath soc handle
12915  * @pdev_id: id of data path pdev handle
12916  * @value: 1 for enabled/ 0 for disabled
12917  *
12918  * Return: None
12919  */
12920 static void dp_mark_first_wakeup_packet(struct cdp_soc_t *soc_hdl,
12921 					uint8_t pdev_id, uint8_t value)
12922 {
12923 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12924 	struct dp_pdev *pdev;
12925 
12926 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12927 	if (!pdev) {
12928 		dp_err("pdev is NULL");
12929 		return;
12930 	}
12931 
12932 	pdev->is_first_wakeup_packet = value;
12933 }
12934 #endif
12935 
12936 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
12937 /**
12938  * dp_set_peer_txq_flush_config() - Set the peer txq flush configuration
12939  * @soc_hdl: Opaque handle to the DP soc object
12940  * @vdev_id: VDEV identifier
12941  * @mac: MAC address of the peer
12942  * @ac: access category mask
12943  * @tid: TID mask
12944  * @policy: Flush policy
12945  *
12946  * Return: 0 on success, errno on failure
12947  */
12948 static int dp_set_peer_txq_flush_config(struct cdp_soc_t *soc_hdl,
12949 					uint8_t vdev_id, uint8_t *mac,
12950 					uint8_t ac, uint32_t tid,
12951 					enum cdp_peer_txq_flush_policy policy)
12952 {
12953 	struct dp_soc *soc;
12954 
12955 	if (!soc_hdl) {
12956 		dp_err("soc is null");
12957 		return -EINVAL;
12958 	}
12959 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
12960 	return target_if_peer_txq_flush_config(soc->ctrl_psoc, vdev_id,
12961 					       mac, ac, tid, policy);
12962 }
12963 #endif
12964 
12965 #ifdef CONNECTIVITY_PKTLOG
12966 /**
12967  * dp_register_packetdump_callback() - registers
12968  *  tx data packet, tx mgmt. packet and rx data packet
12969  *  dump callback handler.
12970  *
12971  * @soc_hdl: Datapath soc handle
12972  * @pdev_id: id of data path pdev handle
12973  * @dp_tx_packetdump_cb: tx packetdump cb
12974  * @dp_rx_packetdump_cb: rx packetdump cb
12975  *
12976  * This function is used to register tx data pkt, tx mgmt.
12977  * pkt and rx data pkt dump callback
12978  *
12979  * Return: None
12980  *
12981  */
12982 static inline
12983 void dp_register_packetdump_callback(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12984 				     ol_txrx_pktdump_cb dp_tx_packetdump_cb,
12985 				     ol_txrx_pktdump_cb dp_rx_packetdump_cb)
12986 {
12987 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12988 	struct dp_pdev *pdev;
12989 
12990 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12991 	if (!pdev) {
12992 		dp_err("pdev is NULL!");
12993 		return;
12994 	}
12995 
12996 	pdev->dp_tx_packetdump_cb = dp_tx_packetdump_cb;
12997 	pdev->dp_rx_packetdump_cb = dp_rx_packetdump_cb;
12998 }
12999 
13000 /**
13001  * dp_deregister_packetdump_callback() - deregidters
13002  *  tx data packet, tx mgmt. packet and rx data packet
13003  *  dump callback handler
13004  * @soc_hdl: Datapath soc handle
13005  * @pdev_id: id of data path pdev handle
13006  *
13007  * This function is used to deregidter tx data pkt.,
13008  * tx mgmt. pkt and rx data pkt. dump callback
13009  *
13010  * Return: None
13011  *
13012  */
13013 static inline
13014 void dp_deregister_packetdump_callback(struct cdp_soc_t *soc_hdl,
13015 				       uint8_t pdev_id)
13016 {
13017 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13018 	struct dp_pdev *pdev;
13019 
13020 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13021 	if (!pdev) {
13022 		dp_err("pdev is NULL!");
13023 		return;
13024 	}
13025 
13026 	pdev->dp_tx_packetdump_cb = NULL;
13027 	pdev->dp_rx_packetdump_cb = NULL;
13028 }
13029 #endif
13030 
13031 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
13032 /**
13033  * dp_set_bus_vote_lvl_high() - Take a vote on bus bandwidth from dp
13034  * @soc_hdl: Datapath soc handle
13035  * @high: whether the bus bw is high or not
13036  *
13037  * Return: void
13038  */
13039 static void
13040 dp_set_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl, bool high)
13041 {
13042 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13043 
13044 	soc->high_throughput = high;
13045 }
13046 
13047 /**
13048  * dp_get_bus_vote_lvl_high() - get bus bandwidth vote to dp
13049  * @soc_hdl: Datapath soc handle
13050  *
13051  * Return: bool
13052  */
13053 static bool
13054 dp_get_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl)
13055 {
13056 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13057 
13058 	return soc->high_throughput;
13059 }
13060 #endif
13061 
13062 #ifdef DP_PEER_EXTENDED_API
13063 static struct cdp_misc_ops dp_ops_misc = {
13064 #ifdef FEATURE_WLAN_TDLS
13065 	.tx_non_std = dp_tx_non_std,
13066 #endif /* FEATURE_WLAN_TDLS */
13067 	.get_opmode = dp_get_opmode,
13068 #ifdef FEATURE_RUNTIME_PM
13069 	.runtime_suspend = dp_runtime_suspend,
13070 	.runtime_resume = dp_runtime_resume,
13071 #endif /* FEATURE_RUNTIME_PM */
13072 	.get_num_rx_contexts = dp_get_num_rx_contexts,
13073 	.get_tx_ack_stats = dp_tx_get_success_ack_stats,
13074 #ifdef WLAN_SUPPORT_DATA_STALL
13075 	.txrx_data_stall_cb_register = dp_register_data_stall_detect_cb,
13076 	.txrx_data_stall_cb_deregister = dp_deregister_data_stall_detect_cb,
13077 	.txrx_post_data_stall_event = dp_txrx_post_data_stall_event,
13078 #endif
13079 
13080 #ifdef WLAN_FEATURE_STATS_EXT
13081 	.txrx_ext_stats_request = dp_txrx_ext_stats_request,
13082 #ifndef WLAN_SOFTUMAC_SUPPORT
13083 	.request_rx_hw_stats = dp_request_rx_hw_stats,
13084 	.reset_rx_hw_ext_stats = dp_reset_rx_hw_ext_stats,
13085 #endif
13086 #endif /* WLAN_FEATURE_STATS_EXT */
13087 	.vdev_inform_ll_conn = dp_vdev_inform_ll_conn,
13088 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
13089 	.set_swlm_enable = dp_soc_set_swlm_enable,
13090 	.is_swlm_enabled = dp_soc_is_swlm_enabled,
13091 #endif
13092 	.display_txrx_hw_info = dp_display_srng_info,
13093 #ifndef WLAN_SOFTUMAC_SUPPORT
13094 	.get_tx_rings_grp_bitmap = dp_get_tx_rings_grp_bitmap,
13095 #endif
13096 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
13097 	.mark_first_wakeup_packet = dp_mark_first_wakeup_packet,
13098 #endif
13099 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
13100 	.set_peer_txq_flush_config = dp_set_peer_txq_flush_config,
13101 #endif
13102 #ifdef CONNECTIVITY_PKTLOG
13103 	.register_pktdump_cb = dp_register_packetdump_callback,
13104 	.unregister_pktdump_cb = dp_deregister_packetdump_callback,
13105 #endif
13106 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
13107 	.set_bus_vote_lvl_high = dp_set_bus_vote_lvl_high,
13108 	.get_bus_vote_lvl_high = dp_get_bus_vote_lvl_high,
13109 #endif
13110 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
13111 	.evaluate_update_tx_ilp_cfg = dp_evaluate_update_tx_ilp_config,
13112 #endif
13113 };
13114 #endif
13115 
13116 #ifdef DP_FLOW_CTL
13117 static struct cdp_flowctl_ops dp_ops_flowctl = {
13118 	/* WIFI 3.0 DP implement as required. */
13119 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
13120 #ifndef WLAN_SOFTUMAC_SUPPORT
13121 	.flow_pool_map_handler = dp_tx_flow_pool_map,
13122 	.flow_pool_unmap_handler = dp_tx_flow_pool_unmap,
13123 #endif /*WLAN_SOFTUMAC_SUPPORT */
13124 	.register_pause_cb = dp_txrx_register_pause_cb,
13125 	.dump_flow_pool_info = dp_tx_dump_flow_pool_info,
13126 	.tx_desc_thresh_reached = dp_tx_desc_thresh_reached,
13127 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
13128 };
13129 
13130 static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
13131 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13132 };
13133 #endif
13134 
13135 #ifdef IPA_OFFLOAD
13136 static struct cdp_ipa_ops dp_ops_ipa = {
13137 	.ipa_get_resource = dp_ipa_get_resource,
13138 	.ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr,
13139 	.ipa_iounmap_doorbell_vaddr = dp_ipa_iounmap_doorbell_vaddr,
13140 	.ipa_op_response = dp_ipa_op_response,
13141 	.ipa_register_op_cb = dp_ipa_register_op_cb,
13142 	.ipa_deregister_op_cb = dp_ipa_deregister_op_cb,
13143 	.ipa_get_stat = dp_ipa_get_stat,
13144 	.ipa_tx_data_frame = dp_tx_send_ipa_data_frame,
13145 	.ipa_enable_autonomy = dp_ipa_enable_autonomy,
13146 	.ipa_disable_autonomy = dp_ipa_disable_autonomy,
13147 	.ipa_setup = dp_ipa_setup,
13148 	.ipa_cleanup = dp_ipa_cleanup,
13149 	.ipa_setup_iface = dp_ipa_setup_iface,
13150 	.ipa_cleanup_iface = dp_ipa_cleanup_iface,
13151 	.ipa_enable_pipes = dp_ipa_enable_pipes,
13152 	.ipa_disable_pipes = dp_ipa_disable_pipes,
13153 	.ipa_set_perf_level = dp_ipa_set_perf_level,
13154 	.ipa_rx_intrabss_fwd = dp_ipa_rx_intrabss_fwd,
13155 	.ipa_tx_buf_smmu_mapping = dp_ipa_tx_buf_smmu_mapping,
13156 	.ipa_tx_buf_smmu_unmapping = dp_ipa_tx_buf_smmu_unmapping,
13157 	.ipa_rx_buf_smmu_pool_mapping = dp_ipa_rx_buf_pool_smmu_mapping,
13158 	.ipa_set_smmu_mapped = dp_ipa_set_smmu_mapped,
13159 	.ipa_get_smmu_mapped = dp_ipa_get_smmu_mapped,
13160 #ifdef QCA_SUPPORT_WDS_EXTENDED
13161 	.ipa_rx_wdsext_iface = dp_ipa_rx_wdsext_iface,
13162 #endif
13163 #ifdef QCA_ENHANCED_STATS_SUPPORT
13164 	.ipa_update_peer_rx_stats = dp_ipa_update_peer_rx_stats,
13165 #endif
13166 #ifdef IPA_OPT_WIFI_DP
13167 	.ipa_rx_super_rule_setup = dp_ipa_rx_super_rule_setup,
13168 	.ipa_pcie_link_up = dp_ipa_pcie_link_up,
13169 	.ipa_pcie_link_down = dp_ipa_pcie_link_down,
13170 #endif
13171 #ifdef IPA_WDS_EASYMESH_FEATURE
13172 	.ipa_ast_create = dp_ipa_ast_create,
13173 #endif
13174 	.ipa_get_wdi_version = dp_ipa_get_wdi_version,
13175 };
13176 #endif
13177 
13178 #ifdef DP_POWER_SAVE
13179 static QDF_STATUS dp_bus_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13180 {
13181 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13182 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13183 	int timeout = SUSPEND_DRAIN_WAIT;
13184 	int drain_wait_delay = 50; /* 50 ms */
13185 	int32_t tx_pending;
13186 
13187 	if (qdf_unlikely(!pdev)) {
13188 		dp_err("pdev is NULL");
13189 		return QDF_STATUS_E_INVAL;
13190 	}
13191 
13192 	/* Abort if there are any pending TX packets */
13193 	while ((tx_pending = dp_get_tx_pending((struct cdp_pdev *)pdev))) {
13194 		qdf_sleep(drain_wait_delay);
13195 		if (timeout <= 0) {
13196 			dp_info("TX frames are pending %d, abort suspend",
13197 				tx_pending);
13198 			dp_find_missing_tx_comp(soc);
13199 			return QDF_STATUS_E_TIMEOUT;
13200 		}
13201 		timeout = timeout - drain_wait_delay;
13202 	}
13203 
13204 	if (soc->intr_mode == DP_INTR_POLL)
13205 		qdf_timer_stop(&soc->int_timer);
13206 
13207 	/* Stop monitor reap timer and reap any pending frames in ring */
13208 	dp_monitor_reap_timer_suspend(soc);
13209 
13210 	return QDF_STATUS_SUCCESS;
13211 }
13212 
13213 static QDF_STATUS dp_bus_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13214 {
13215 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13216 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13217 
13218 	if (qdf_unlikely(!pdev)) {
13219 		dp_err("pdev is NULL");
13220 		return QDF_STATUS_E_INVAL;
13221 	}
13222 
13223 	if (soc->intr_mode == DP_INTR_POLL)
13224 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
13225 
13226 	/* Start monitor reap timer */
13227 	dp_monitor_reap_timer_start(soc, CDP_MON_REAP_SOURCE_ANY);
13228 
13229 	soc->arch_ops.dp_update_ring_hptp(soc, false);
13230 
13231 	return QDF_STATUS_SUCCESS;
13232 }
13233 
13234 /**
13235  * dp_process_wow_ack_rsp() - process wow ack response
13236  * @soc_hdl: datapath soc handle
13237  * @pdev_id: data path pdev handle id
13238  *
13239  * Return: none
13240  */
13241 static void dp_process_wow_ack_rsp(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13242 {
13243 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13244 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13245 
13246 	if (qdf_unlikely(!pdev)) {
13247 		dp_err("pdev is NULL");
13248 		return;
13249 	}
13250 
13251 	/*
13252 	 * As part of wow enable FW disables the mon status ring and in wow ack
13253 	 * response from FW reap mon status ring to make sure no packets pending
13254 	 * in the ring.
13255 	 */
13256 	dp_monitor_reap_timer_suspend(soc);
13257 }
13258 
13259 /**
13260  * dp_process_target_suspend_req() - process target suspend request
13261  * @soc_hdl: datapath soc handle
13262  * @pdev_id: data path pdev handle id
13263  *
13264  * Return: none
13265  */
13266 static void dp_process_target_suspend_req(struct cdp_soc_t *soc_hdl,
13267 					  uint8_t pdev_id)
13268 {
13269 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13270 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13271 
13272 	if (qdf_unlikely(!pdev)) {
13273 		dp_err("pdev is NULL");
13274 		return;
13275 	}
13276 
13277 	/* Stop monitor reap timer and reap any pending frames in ring */
13278 	dp_monitor_reap_timer_suspend(soc);
13279 }
13280 
13281 static struct cdp_bus_ops dp_ops_bus = {
13282 	.bus_suspend = dp_bus_suspend,
13283 	.bus_resume = dp_bus_resume,
13284 	.process_wow_ack_rsp = dp_process_wow_ack_rsp,
13285 	.process_target_suspend_req = dp_process_target_suspend_req
13286 };
13287 #endif
13288 
13289 #ifdef DP_FLOW_CTL
13290 static struct cdp_throttle_ops dp_ops_throttle = {
13291 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13292 };
13293 
13294 static struct cdp_cfg_ops dp_ops_cfg = {
13295 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13296 };
13297 #endif
13298 
13299 #ifdef DP_PEER_EXTENDED_API
13300 static struct cdp_ocb_ops dp_ops_ocb = {
13301 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13302 };
13303 
13304 static struct cdp_mob_stats_ops dp_ops_mob_stats = {
13305 	.clear_stats = dp_txrx_clear_dump_stats,
13306 };
13307 
13308 static struct cdp_peer_ops dp_ops_peer = {
13309 	.register_peer = dp_register_peer,
13310 	.clear_peer = dp_clear_peer,
13311 	.find_peer_exist = dp_find_peer_exist,
13312 	.find_peer_exist_on_vdev = dp_find_peer_exist_on_vdev,
13313 	.find_peer_exist_on_other_vdev = dp_find_peer_exist_on_other_vdev,
13314 	.peer_state_update = dp_peer_state_update,
13315 	.get_vdevid = dp_get_vdevid,
13316 	.get_vdev_by_peer_addr = dp_get_vdev_by_peer_addr,
13317 	.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
13318 	.get_peer_state = dp_get_peer_state,
13319 	.peer_flush_frags = dp_peer_flush_frags,
13320 	.set_peer_as_tdls_peer = dp_set_peer_as_tdls_peer,
13321 };
13322 #endif
13323 
13324 static void dp_soc_txrx_ops_attach(struct dp_soc *soc)
13325 {
13326 	soc->cdp_soc.ops->cmn_drv_ops = &dp_ops_cmn;
13327 	soc->cdp_soc.ops->ctrl_ops = &dp_ops_ctrl;
13328 	soc->cdp_soc.ops->me_ops = &dp_ops_me;
13329 	soc->cdp_soc.ops->host_stats_ops = &dp_ops_host_stats;
13330 	soc->cdp_soc.ops->wds_ops = &dp_ops_wds;
13331 	soc->cdp_soc.ops->raw_ops = &dp_ops_raw;
13332 #ifdef PEER_FLOW_CONTROL
13333 	soc->cdp_soc.ops->pflow_ops = &dp_ops_pflow;
13334 #endif /* PEER_FLOW_CONTROL */
13335 #ifdef DP_PEER_EXTENDED_API
13336 	soc->cdp_soc.ops->misc_ops = &dp_ops_misc;
13337 	soc->cdp_soc.ops->ocb_ops = &dp_ops_ocb;
13338 	soc->cdp_soc.ops->peer_ops = &dp_ops_peer;
13339 	soc->cdp_soc.ops->mob_stats_ops = &dp_ops_mob_stats;
13340 #endif
13341 #ifdef DP_FLOW_CTL
13342 	soc->cdp_soc.ops->cfg_ops = &dp_ops_cfg;
13343 	soc->cdp_soc.ops->flowctl_ops = &dp_ops_flowctl;
13344 	soc->cdp_soc.ops->l_flowctl_ops = &dp_ops_l_flowctl;
13345 	soc->cdp_soc.ops->throttle_ops = &dp_ops_throttle;
13346 #endif
13347 #ifdef IPA_OFFLOAD
13348 	soc->cdp_soc.ops->ipa_ops = &dp_ops_ipa;
13349 #endif
13350 #ifdef DP_POWER_SAVE
13351 	soc->cdp_soc.ops->bus_ops = &dp_ops_bus;
13352 #endif
13353 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
13354 	soc->cdp_soc.ops->cfr_ops = &dp_ops_cfr;
13355 #endif
13356 #ifdef WLAN_SUPPORT_MSCS
13357 	soc->cdp_soc.ops->mscs_ops = &dp_ops_mscs;
13358 #endif
13359 #ifdef WLAN_SUPPORT_MESH_LATENCY
13360 	soc->cdp_soc.ops->mesh_latency_ops = &dp_ops_mesh_latency;
13361 #endif
13362 #ifdef CONFIG_SAWF_DEF_QUEUES
13363 	soc->cdp_soc.ops->sawf_ops = &dp_ops_sawf;
13364 #endif
13365 #ifdef WLAN_SUPPORT_SCS
13366 	soc->cdp_soc.ops->scs_ops = &dp_ops_scs;
13367 #endif
13368 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
13369 	soc->cdp_soc.ops->fse_ops = &dp_ops_fse;
13370 #endif
13371 };
13372 
13373 #if defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018) || \
13374 	defined(QCA_WIFI_QCA5018) || defined(QCA_WIFI_QCA9574) || \
13375 	defined(QCA_WIFI_QCA5332)
13376 
13377 /**
13378  * dp_soc_attach_wifi3() - Attach txrx SOC
13379  * @ctrl_psoc: Opaque SOC handle from control plane
13380  * @params: SOC attach params
13381  *
13382  * Return: DP SOC handle on success, NULL on failure
13383  */
13384 struct cdp_soc_t *
13385 dp_soc_attach_wifi3(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13386 		    struct cdp_soc_attach_params *params)
13387 {
13388 	struct dp_soc *dp_soc = NULL;
13389 
13390 	dp_soc = dp_soc_attach(ctrl_psoc, params);
13391 
13392 	return dp_soc_to_cdp_soc_t(dp_soc);
13393 }
13394 
13395 static inline void dp_soc_set_def_pdev(struct dp_soc *soc)
13396 {
13397 	int lmac_id;
13398 
13399 	for (lmac_id = 0; lmac_id < MAX_NUM_LMAC_HW; lmac_id++) {
13400 		/*Set default host PDEV ID for lmac_id*/
13401 		wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
13402 				      INVALID_PDEV_ID, lmac_id);
13403 	}
13404 }
13405 
13406 static void dp_soc_unset_qref_debug_list(struct dp_soc *soc)
13407 {
13408 	uint32_t max_list_size = soc->wlan_cfg_ctx->qref_control_size;
13409 
13410 	if (max_list_size == 0)
13411 		return;
13412 
13413 	qdf_mem_free(soc->list_shared_qaddr_del);
13414 	qdf_mem_free(soc->reo_write_list);
13415 	qdf_mem_free(soc->list_qdesc_addr_free);
13416 	qdf_mem_free(soc->list_qdesc_addr_alloc);
13417 }
13418 
13419 static void dp_soc_set_qref_debug_list(struct dp_soc *soc)
13420 {
13421 	uint32_t max_list_size = soc->wlan_cfg_ctx->qref_control_size;
13422 
13423 	if (max_list_size == 0)
13424 		return;
13425 
13426 	soc->list_shared_qaddr_del =
13427 			(struct test_qaddr_del *)
13428 				qdf_mem_malloc(sizeof(struct test_qaddr_del) *
13429 					       max_list_size);
13430 	soc->reo_write_list =
13431 			(struct test_qaddr_del *)
13432 				qdf_mem_malloc(sizeof(struct test_qaddr_del) *
13433 					       max_list_size);
13434 	soc->list_qdesc_addr_free =
13435 			(struct test_mem_free *)
13436 				qdf_mem_malloc(sizeof(struct test_mem_free) *
13437 					       max_list_size);
13438 	soc->list_qdesc_addr_alloc =
13439 			(struct test_mem_free *)
13440 				qdf_mem_malloc(sizeof(struct test_mem_free) *
13441 					       max_list_size);
13442 }
13443 
13444 static uint32_t
13445 dp_get_link_desc_id_start(uint16_t arch_id)
13446 {
13447 	switch (arch_id) {
13448 	case CDP_ARCH_TYPE_LI:
13449 	case CDP_ARCH_TYPE_RH:
13450 		return LINK_DESC_ID_START_21_BITS_COOKIE;
13451 	case CDP_ARCH_TYPE_BE:
13452 		return LINK_DESC_ID_START_20_BITS_COOKIE;
13453 	default:
13454 		dp_err("unknown arch_id 0x%x", arch_id);
13455 		QDF_BUG(0);
13456 		return LINK_DESC_ID_START_21_BITS_COOKIE;
13457 	}
13458 }
13459 
13460 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
13461 static inline
13462 void dp_soc_init_tx_ilp(struct dp_soc *soc)
13463 {
13464 	soc->tx_ilp_enable = false;
13465 }
13466 #else
13467 static inline
13468 void dp_soc_init_tx_ilp(struct dp_soc *soc)
13469 {
13470 }
13471 #endif
13472 
13473 /**
13474  * dp_soc_attach() - Attach txrx SOC
13475  * @ctrl_psoc: Opaque SOC handle from control plane
13476  * @params: SOC attach params
13477  *
13478  * Return: DP SOC handle on success, NULL on failure
13479  */
13480 static struct dp_soc *
13481 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13482 	      struct cdp_soc_attach_params *params)
13483 {
13484 	struct dp_soc *soc =  NULL;
13485 	uint16_t arch_id;
13486 	struct hif_opaque_softc *hif_handle = params->hif_handle;
13487 	qdf_device_t qdf_osdev = params->qdf_osdev;
13488 	struct ol_if_ops *ol_ops = params->ol_ops;
13489 	uint16_t device_id = params->device_id;
13490 
13491 	if (!hif_handle) {
13492 		dp_err("HIF handle is NULL");
13493 		goto fail0;
13494 	}
13495 	arch_id = cdp_get_arch_type_from_devid(device_id);
13496 	soc = qdf_mem_common_alloc(dp_get_soc_context_size(device_id));
13497 	if (!soc) {
13498 		dp_err("DP SOC memory allocation failed");
13499 		goto fail0;
13500 	}
13501 
13502 	dp_info("soc memory allocated %pK", soc);
13503 	soc->hif_handle = hif_handle;
13504 	soc->hal_soc = hif_get_hal_handle(soc->hif_handle);
13505 	if (!soc->hal_soc)
13506 		goto fail1;
13507 
13508 	hif_get_cmem_info(soc->hif_handle,
13509 			  &soc->cmem_base,
13510 			  &soc->cmem_total_size);
13511 	soc->cmem_avail_size = soc->cmem_total_size;
13512 	soc->device_id = device_id;
13513 	soc->cdp_soc.ops =
13514 		(struct cdp_ops *)qdf_mem_malloc(sizeof(struct cdp_ops));
13515 	if (!soc->cdp_soc.ops)
13516 		goto fail1;
13517 
13518 	dp_soc_txrx_ops_attach(soc);
13519 	soc->cdp_soc.ol_ops = ol_ops;
13520 	soc->ctrl_psoc = ctrl_psoc;
13521 	soc->osdev = qdf_osdev;
13522 	soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS;
13523 	dp_soc_init_tx_ilp(soc);
13524 	hal_rx_get_tlv_size(soc->hal_soc, &soc->rx_pkt_tlv_size,
13525 			    &soc->rx_mon_pkt_tlv_size);
13526 	soc->idle_link_bm_id = hal_get_idle_link_bm_id(soc->hal_soc,
13527 						       params->mlo_chip_id);
13528 	soc->features.dmac_cmn_src_rxbuf_ring_enabled =
13529 		hal_dmac_cmn_src_rxbuf_ring_get(soc->hal_soc);
13530 	soc->arch_id = arch_id;
13531 	soc->link_desc_id_start =
13532 			dp_get_link_desc_id_start(soc->arch_id);
13533 	dp_configure_arch_ops(soc);
13534 
13535 	/* Reset wbm sg list and flags */
13536 	dp_rx_wbm_sg_list_reset(soc);
13537 
13538 	dp_soc_cfg_history_attach(soc);
13539 	dp_soc_tx_hw_desc_history_attach(soc);
13540 	dp_soc_rx_history_attach(soc);
13541 	dp_soc_mon_status_ring_history_attach(soc);
13542 	dp_soc_tx_history_attach(soc);
13543 	wlan_set_srng_cfg(&soc->wlan_srng_cfg);
13544 	soc->wlan_cfg_ctx = wlan_cfg_soc_attach(soc->ctrl_psoc);
13545 	if (!soc->wlan_cfg_ctx) {
13546 		dp_err("wlan_cfg_ctx failed");
13547 		goto fail2;
13548 	}
13549 
13550 	qdf_ssr_driver_dump_register_region("wlan_cfg_ctx", soc->wlan_cfg_ctx,
13551 					    sizeof(*soc->wlan_cfg_ctx));
13552 
13553 	/*sync DP soc cfg items with profile support after cfg_soc_attach*/
13554 	wlan_dp_soc_cfg_sync_profile((struct cdp_soc_t *)soc);
13555 
13556 	soc->arch_ops.soc_cfg_attach(soc);
13557 
13558 	qdf_ssr_driver_dump_register_region("tcl_wbm_map_array",
13559 					    &soc->wlan_cfg_ctx->tcl_wbm_map_array,
13560 					    sizeof(struct wlan_cfg_tcl_wbm_ring_num_map));
13561 
13562 	if (dp_hw_link_desc_pool_banks_alloc(soc, WLAN_INVALID_PDEV_ID)) {
13563 		dp_err("failed to allocate link desc pool banks");
13564 		goto fail3;
13565 	}
13566 
13567 	if (dp_hw_link_desc_ring_alloc(soc)) {
13568 		dp_err("failed to allocate link_desc_ring");
13569 		goto fail4;
13570 	}
13571 
13572 	if (!QDF_IS_STATUS_SUCCESS(soc->arch_ops.txrx_soc_attach(soc,
13573 								 params))) {
13574 		dp_err("unable to do target specific attach");
13575 		goto fail5;
13576 	}
13577 
13578 	if (dp_soc_srng_alloc(soc)) {
13579 		dp_err("failed to allocate soc srng rings");
13580 		goto fail6;
13581 	}
13582 
13583 	if (dp_soc_tx_desc_sw_pools_alloc(soc)) {
13584 		dp_err("dp_soc_tx_desc_sw_pools_alloc failed");
13585 		goto fail7;
13586 	}
13587 
13588 	if (!dp_monitor_modularized_enable()) {
13589 		if (dp_mon_soc_attach_wrapper(soc)) {
13590 			dp_err("failed to attach monitor");
13591 			goto fail8;
13592 		}
13593 	}
13594 
13595 	if (hal_reo_shared_qaddr_setup((hal_soc_handle_t)soc->hal_soc,
13596 				       &soc->reo_qref)
13597 	    != QDF_STATUS_SUCCESS) {
13598 		dp_err("unable to setup reo shared qaddr");
13599 		goto fail9;
13600 	}
13601 
13602 	if (dp_sysfs_initialize_stats(soc) != QDF_STATUS_SUCCESS) {
13603 		dp_err("failed to initialize dp stats sysfs file");
13604 		dp_sysfs_deinitialize_stats(soc);
13605 	}
13606 
13607 	dp_soc_swlm_attach(soc);
13608 	dp_soc_set_interrupt_mode(soc);
13609 	dp_soc_set_def_pdev(soc);
13610 	dp_soc_set_qref_debug_list(soc);
13611 	qdf_ssr_driver_dump_register_region("dp_soc", soc, sizeof(*soc));
13612 	qdf_nbuf_ssr_register_region();
13613 
13614 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
13615 		qdf_dma_mem_stats_read(),
13616 		qdf_heap_mem_stats_read(),
13617 		qdf_skb_total_mem_stats_read());
13618 
13619 	return soc;
13620 fail9:
13621 	if (!dp_monitor_modularized_enable())
13622 		dp_mon_soc_detach_wrapper(soc);
13623 fail8:
13624 	dp_soc_tx_desc_sw_pools_free(soc);
13625 fail7:
13626 	dp_soc_srng_free(soc);
13627 fail6:
13628 	soc->arch_ops.txrx_soc_detach(soc);
13629 fail5:
13630 	dp_hw_link_desc_ring_free(soc);
13631 fail4:
13632 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
13633 fail3:
13634 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
13635 fail2:
13636 	qdf_mem_free(soc->cdp_soc.ops);
13637 fail1:
13638 	qdf_mem_common_free(soc);
13639 fail0:
13640 	return NULL;
13641 }
13642 
13643 void *dp_soc_init_wifi3(struct cdp_soc_t *cdp_soc,
13644 			struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13645 			struct hif_opaque_softc *hif_handle,
13646 			HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
13647 			struct ol_if_ops *ol_ops, uint16_t device_id)
13648 {
13649 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
13650 
13651 	return soc->arch_ops.txrx_soc_init(soc, htc_handle, hif_handle);
13652 }
13653 
13654 #endif
13655 
13656 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id)
13657 {
13658 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
13659 		return (mac_id < MAX_PDEV_CNT) ? soc->pdev_list[mac_id] : NULL;
13660 
13661 	/* Typically for MCL as there only 1 PDEV*/
13662 	return soc->pdev_list[0];
13663 }
13664 
13665 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
13666 				     int *max_mac_rings)
13667 {
13668 	bool dbs_enable = false;
13669 
13670 	if (soc->cdp_soc.ol_ops->is_hw_dbs_capable)
13671 		dbs_enable = soc->cdp_soc.ol_ops->
13672 				is_hw_dbs_capable((void *)soc->ctrl_psoc);
13673 
13674 	*max_mac_rings = dbs_enable ? (*max_mac_rings) : 1;
13675 	dp_info("dbs_enable %d, max_mac_rings %d",
13676 		dbs_enable, *max_mac_rings);
13677 }
13678 
13679 qdf_export_symbol(dp_update_num_mac_rings_for_dbs);
13680 
13681 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
13682 /**
13683  * dp_get_cfr_rcc() - get cfr rcc config
13684  * @soc_hdl: Datapath soc handle
13685  * @pdev_id: id of objmgr pdev
13686  *
13687  * Return: true/false based on cfr mode setting
13688  */
13689 static
13690 bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13691 {
13692 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13693 	struct dp_pdev *pdev = NULL;
13694 
13695 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13696 	if (!pdev) {
13697 		dp_err("pdev is NULL");
13698 		return false;
13699 	}
13700 
13701 	return pdev->cfr_rcc_mode;
13702 }
13703 
13704 /**
13705  * dp_set_cfr_rcc() - enable/disable cfr rcc config
13706  * @soc_hdl: Datapath soc handle
13707  * @pdev_id: id of objmgr pdev
13708  * @enable: Enable/Disable cfr rcc mode
13709  *
13710  * Return: none
13711  */
13712 static
13713 void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable)
13714 {
13715 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13716 	struct dp_pdev *pdev = NULL;
13717 
13718 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13719 	if (!pdev) {
13720 		dp_err("pdev is NULL");
13721 		return;
13722 	}
13723 
13724 	pdev->cfr_rcc_mode = enable;
13725 }
13726 
13727 /**
13728  * dp_get_cfr_dbg_stats - Get the debug statistics for CFR
13729  * @soc_hdl: Datapath soc handle
13730  * @pdev_id: id of data path pdev handle
13731  * @cfr_rcc_stats: CFR RCC debug statistics buffer
13732  *
13733  * Return: none
13734  */
13735 static inline void
13736 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
13737 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats)
13738 {
13739 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13740 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13741 
13742 	if (!pdev) {
13743 		dp_err("pdev is NULL");
13744 		return;
13745 	}
13746 
13747 	qdf_mem_copy(cfr_rcc_stats, &pdev->stats.rcc,
13748 		     sizeof(struct cdp_cfr_rcc_stats));
13749 }
13750 
13751 /**
13752  * dp_clear_cfr_dbg_stats - Clear debug statistics for CFR
13753  * @soc_hdl: Datapath soc handle
13754  * @pdev_id: id of data path pdev handle
13755  *
13756  * Return: none
13757  */
13758 static void dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl,
13759 				   uint8_t pdev_id)
13760 {
13761 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13762 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13763 
13764 	if (!pdev) {
13765 		dp_err("dp pdev is NULL");
13766 		return;
13767 	}
13768 
13769 	qdf_mem_zero(&pdev->stats.rcc, sizeof(pdev->stats.rcc));
13770 }
13771 #endif
13772 
13773 /**
13774  * dp_bucket_index() - Return index from array
13775  *
13776  * @delay: delay measured
13777  * @array: array used to index corresponding delay
13778  * @delay_in_us: flag to indicate whether the delay in ms or us
13779  *
13780  * Return: index
13781  */
13782 static uint8_t
13783 dp_bucket_index(uint32_t delay, uint16_t *array, bool delay_in_us)
13784 {
13785 	uint8_t i = CDP_DELAY_BUCKET_0;
13786 	uint32_t thr_low, thr_high;
13787 
13788 	for (; i < CDP_DELAY_BUCKET_MAX - 1; i++) {
13789 		thr_low = array[i];
13790 		thr_high = array[i + 1];
13791 
13792 		if (delay_in_us) {
13793 			thr_low = thr_low * USEC_PER_MSEC;
13794 			thr_high = thr_high * USEC_PER_MSEC;
13795 		}
13796 		if (delay >= thr_low && delay <= thr_high)
13797 			return i;
13798 	}
13799 	return (CDP_DELAY_BUCKET_MAX - 1);
13800 }
13801 
13802 #ifdef HW_TX_DELAY_STATS_ENABLE
13803 /*
13804  * cdp_fw_to_hw_delay_range
13805  * Fw to hw delay ranges in milliseconds
13806  */
13807 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
13808 	0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, 500};
13809 #else
13810 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
13811 	0, 2, 4, 6, 8, 10, 20, 30, 40, 50, 100, 250, 500};
13812 #endif
13813 
13814 /*
13815  * cdp_sw_enq_delay_range
13816  * Software enqueue delay ranges in milliseconds
13817  */
13818 static uint16_t cdp_sw_enq_delay[CDP_DELAY_BUCKET_MAX] = {
13819 	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
13820 
13821 /*
13822  * cdp_intfrm_delay_range
13823  * Interframe delay ranges in milliseconds
13824  */
13825 static uint16_t cdp_intfrm_delay[CDP_DELAY_BUCKET_MAX] = {
13826 	0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60};
13827 
13828 /**
13829  * dp_fill_delay_buckets() - Fill delay statistics bucket for each
13830  *				type of delay
13831  * @tstats: tid tx stats
13832  * @rstats: tid rx stats
13833  * @delay: delay in ms
13834  * @tid: tid value
13835  * @mode: type of tx delay mode
13836  * @ring_id: ring number
13837  * @delay_in_us: flag to indicate whether the delay in ms or us
13838  *
13839  * Return: pointer to cdp_delay_stats structure
13840  */
13841 static struct cdp_delay_stats *
13842 dp_fill_delay_buckets(struct cdp_tid_tx_stats *tstats,
13843 		      struct cdp_tid_rx_stats *rstats, uint32_t delay,
13844 		      uint8_t tid, uint8_t mode, uint8_t ring_id,
13845 		      bool delay_in_us)
13846 {
13847 	uint8_t delay_index = 0;
13848 	struct cdp_delay_stats *stats = NULL;
13849 
13850 	/*
13851 	 * Update delay stats in proper bucket
13852 	 */
13853 	switch (mode) {
13854 	/* Software Enqueue delay ranges */
13855 	case CDP_DELAY_STATS_SW_ENQ:
13856 		if (!tstats)
13857 			break;
13858 
13859 		delay_index = dp_bucket_index(delay, cdp_sw_enq_delay,
13860 					      delay_in_us);
13861 		tstats->swq_delay.delay_bucket[delay_index]++;
13862 		stats = &tstats->swq_delay;
13863 		break;
13864 
13865 	/* Tx Completion delay ranges */
13866 	case CDP_DELAY_STATS_FW_HW_TRANSMIT:
13867 		if (!tstats)
13868 			break;
13869 
13870 		delay_index = dp_bucket_index(delay, cdp_fw_to_hw_delay,
13871 					      delay_in_us);
13872 		tstats->hwtx_delay.delay_bucket[delay_index]++;
13873 		stats = &tstats->hwtx_delay;
13874 		break;
13875 
13876 	/* Interframe tx delay ranges */
13877 	case CDP_DELAY_STATS_TX_INTERFRAME:
13878 		if (!tstats)
13879 			break;
13880 
13881 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
13882 					      delay_in_us);
13883 		tstats->intfrm_delay.delay_bucket[delay_index]++;
13884 		stats = &tstats->intfrm_delay;
13885 		break;
13886 
13887 	/* Interframe rx delay ranges */
13888 	case CDP_DELAY_STATS_RX_INTERFRAME:
13889 		if (!rstats)
13890 			break;
13891 
13892 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
13893 					      delay_in_us);
13894 		rstats->intfrm_delay.delay_bucket[delay_index]++;
13895 		stats = &rstats->intfrm_delay;
13896 		break;
13897 
13898 	/* Ring reap to indication to network stack */
13899 	case CDP_DELAY_STATS_REAP_STACK:
13900 		if (!rstats)
13901 			break;
13902 
13903 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
13904 					      delay_in_us);
13905 		rstats->to_stack_delay.delay_bucket[delay_index]++;
13906 		stats = &rstats->to_stack_delay;
13907 		break;
13908 	default:
13909 		dp_debug("Incorrect delay mode: %d", mode);
13910 	}
13911 
13912 	return stats;
13913 }
13914 
13915 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
13916 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
13917 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
13918 			   bool delay_in_us)
13919 {
13920 	struct cdp_delay_stats *dstats = NULL;
13921 
13922 	/*
13923 	 * Delay ranges are different for different delay modes
13924 	 * Get the correct index to update delay bucket
13925 	 */
13926 	dstats = dp_fill_delay_buckets(tstats, rstats, delay, tid, mode,
13927 				       ring_id, delay_in_us);
13928 	if (qdf_unlikely(!dstats))
13929 		return;
13930 
13931 	if (delay != 0) {
13932 		/*
13933 		 * Compute minimum,average and maximum
13934 		 * delay
13935 		 */
13936 		if (delay < dstats->min_delay)
13937 			dstats->min_delay = delay;
13938 
13939 		if (delay > dstats->max_delay)
13940 			dstats->max_delay = delay;
13941 
13942 		/*
13943 		 * Average over delay measured till now
13944 		 */
13945 		if (!dstats->avg_delay)
13946 			dstats->avg_delay = delay;
13947 		else
13948 			dstats->avg_delay = ((delay + dstats->avg_delay) >> 1);
13949 	}
13950 }
13951 
13952 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
13953 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
13954 			      u_int16_t mac_cnt, bool limit)
13955 {
13956 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
13957 	struct dp_vdev *vdev =
13958 		dp_vdev_get_ref_by_id(dp_soc, vdev_id, DP_MOD_ID_CDP);
13959 	struct dp_peer *peer;
13960 	uint16_t new_mac_cnt = 0;
13961 
13962 	if (!vdev)
13963 		return new_mac_cnt;
13964 
13965 	if (limit && (vdev->num_peers > mac_cnt)) {
13966 		dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
13967 		return 0;
13968 	}
13969 
13970 	qdf_spin_lock_bh(&vdev->peer_list_lock);
13971 	TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
13972 		if (peer->bss_peer)
13973 			continue;
13974 		if (new_mac_cnt < mac_cnt) {
13975 			WLAN_ADDR_COPY(newmac[new_mac_cnt], peer->mac_addr.raw);
13976 			new_mac_cnt++;
13977 		}
13978 	}
13979 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
13980 	dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
13981 	return new_mac_cnt;
13982 }
13983 
13984 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac)
13985 {
13986 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
13987 						       mac, 0, vdev_id,
13988 						       DP_MOD_ID_CDP);
13989 	uint16_t peer_id = HTT_INVALID_PEER;
13990 
13991 	if (!peer) {
13992 		dp_cdp_debug("%pK: Peer is NULL!", (struct dp_soc *)soc);
13993 		return peer_id;
13994 	}
13995 
13996 	peer_id = peer->peer_id;
13997 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
13998 	return peer_id;
13999 }
14000 
14001 #ifdef QCA_SUPPORT_WDS_EXTENDED
14002 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
14003 				  uint8_t vdev_id,
14004 				  uint8_t *mac,
14005 				  ol_txrx_rx_fp rx,
14006 				  ol_osif_peer_handle osif_peer)
14007 {
14008 	struct dp_txrx_peer *txrx_peer = NULL;
14009 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
14010 						       mac, 0, vdev_id,
14011 						       DP_MOD_ID_CDP);
14012 	QDF_STATUS status = QDF_STATUS_E_INVAL;
14013 
14014 	if (!peer) {
14015 		dp_cdp_debug("%pK: Peer is NULL!", (struct dp_soc *)soc);
14016 		return status;
14017 	}
14018 
14019 	txrx_peer = dp_get_txrx_peer(peer);
14020 	if (!txrx_peer) {
14021 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14022 		return status;
14023 	}
14024 
14025 	if (rx) {
14026 		if (txrx_peer->osif_rx) {
14027 			status = QDF_STATUS_E_ALREADY;
14028 		} else {
14029 			txrx_peer->osif_rx = rx;
14030 			status = QDF_STATUS_SUCCESS;
14031 		}
14032 	} else {
14033 		if (txrx_peer->osif_rx) {
14034 			txrx_peer->osif_rx = NULL;
14035 			status = QDF_STATUS_SUCCESS;
14036 		} else {
14037 			status = QDF_STATUS_E_ALREADY;
14038 		}
14039 	}
14040 
14041 	txrx_peer->wds_ext.osif_peer = osif_peer;
14042 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14043 
14044 	return status;
14045 }
14046 
14047 QDF_STATUS dp_wds_ext_get_peer_osif_handle(
14048 				ol_txrx_soc_handle soc,
14049 				uint8_t vdev_id,
14050 				uint8_t *mac,
14051 				ol_osif_peer_handle *osif_peer)
14052 {
14053 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
14054 	struct dp_txrx_peer *txrx_peer = NULL;
14055 	struct dp_peer *peer = dp_peer_find_hash_find(dp_soc,
14056 						      mac, 0, vdev_id,
14057 						      DP_MOD_ID_CDP);
14058 
14059 	if (!peer) {
14060 		dp_cdp_debug("%pK: Peer is NULL!", dp_soc);
14061 		return QDF_STATUS_E_INVAL;
14062 	}
14063 
14064 	txrx_peer = dp_get_txrx_peer(peer);
14065 	if (!txrx_peer) {
14066 		dp_cdp_debug("%pK: TXRX Peer is NULL!", dp_soc);
14067 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14068 		return QDF_STATUS_E_INVAL;
14069 	}
14070 
14071 	*osif_peer = txrx_peer->wds_ext.osif_peer;
14072 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14073 
14074 	return QDF_STATUS_SUCCESS;
14075 }
14076 
14077 QDF_STATUS dp_wds_ext_set_peer_bit(ol_txrx_soc_handle soc, uint8_t *mac)
14078 {
14079 	struct dp_txrx_peer *txrx_peer = NULL;
14080 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
14081 						       mac, 0, DP_VDEV_ALL,
14082 						       DP_MOD_ID_IPA);
14083 	if (!peer) {
14084 		dp_cdp_debug("%pK: Peer is NULL!\n", (struct dp_soc *)soc);
14085 		return QDF_STATUS_E_INVAL;
14086 	}
14087 
14088 	txrx_peer = dp_get_txrx_peer(peer);
14089 	if (!txrx_peer) {
14090 		dp_peer_unref_delete(peer, DP_MOD_ID_IPA);
14091 		return QDF_STATUS_E_INVAL;
14092 	}
14093 	qdf_atomic_test_and_set_bit(WDS_EXT_PEER_INIT_BIT,
14094 				    &txrx_peer->wds_ext.init);
14095 	dp_peer_unref_delete(peer, DP_MOD_ID_IPA);
14096 
14097 	return QDF_STATUS_SUCCESS;
14098 }
14099 #endif /* QCA_SUPPORT_WDS_EXTENDED */
14100 
14101 /**
14102  * dp_pdev_srng_deinit() - de-initialize all pdev srng ring including
14103  *			   monitor rings
14104  * @pdev: Datapath pdev handle
14105  *
14106  */
14107 static void dp_pdev_srng_deinit(struct dp_pdev *pdev)
14108 {
14109 	struct dp_soc *soc = pdev->soc;
14110 	uint8_t i;
14111 
14112 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
14113 		dp_srng_deinit(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14114 			       RXDMA_BUF,
14115 			       pdev->lmac_id);
14116 
14117 	if (!soc->rxdma2sw_rings_not_supported) {
14118 		for (i = 0;
14119 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14120 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14121 								 pdev->pdev_id);
14122 
14123 			wlan_minidump_remove(soc->rxdma_err_dst_ring[lmac_id].
14124 							base_vaddr_unaligned,
14125 					     soc->rxdma_err_dst_ring[lmac_id].
14126 								alloc_size,
14127 					     soc->ctrl_psoc,
14128 					     WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
14129 					     "rxdma_err_dst");
14130 			dp_srng_deinit(soc, &soc->rxdma_err_dst_ring[lmac_id],
14131 				       RXDMA_DST, lmac_id);
14132 		}
14133 	}
14134 
14135 
14136 }
14137 
14138 /**
14139  * dp_pdev_srng_init() - initialize all pdev srng rings including
14140  *			   monitor rings
14141  * @pdev: Datapath pdev handle
14142  *
14143  * Return: QDF_STATUS_SUCCESS on success
14144  *	   QDF_STATUS_E_NOMEM on failure
14145  */
14146 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev)
14147 {
14148 	struct dp_soc *soc = pdev->soc;
14149 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14150 	uint32_t i;
14151 
14152 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14153 
14154 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
14155 		if (dp_srng_init(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14156 				 RXDMA_BUF, 0, pdev->lmac_id)) {
14157 			dp_init_err("%pK: dp_srng_init failed rx refill ring",
14158 				    soc);
14159 			goto fail1;
14160 		}
14161 	}
14162 
14163 	/* LMAC RxDMA to SW Rings configuration */
14164 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
14165 		/* Only valid for MCL */
14166 		pdev = soc->pdev_list[0];
14167 
14168 	if (!soc->rxdma2sw_rings_not_supported) {
14169 		for (i = 0;
14170 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14171 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14172 								 pdev->pdev_id);
14173 			struct dp_srng *srng =
14174 				&soc->rxdma_err_dst_ring[lmac_id];
14175 
14176 			if (srng->hal_srng)
14177 				continue;
14178 
14179 			if (dp_srng_init(soc, srng, RXDMA_DST, 0, lmac_id)) {
14180 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
14181 					    soc);
14182 				goto fail1;
14183 			}
14184 			wlan_minidump_log(soc->rxdma_err_dst_ring[lmac_id].
14185 						base_vaddr_unaligned,
14186 					  soc->rxdma_err_dst_ring[lmac_id].
14187 						alloc_size,
14188 					  soc->ctrl_psoc,
14189 					  WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
14190 					  "rxdma_err_dst");
14191 		}
14192 	}
14193 	return QDF_STATUS_SUCCESS;
14194 
14195 fail1:
14196 	dp_pdev_srng_deinit(pdev);
14197 	return QDF_STATUS_E_NOMEM;
14198 }
14199 
14200 /**
14201  * dp_pdev_srng_free() - free all pdev srng rings including monitor rings
14202  * @pdev: Datapath pdev handle
14203  *
14204  */
14205 static void dp_pdev_srng_free(struct dp_pdev *pdev)
14206 {
14207 	struct dp_soc *soc = pdev->soc;
14208 	uint8_t i;
14209 
14210 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
14211 		dp_srng_free(soc, &soc->rx_refill_buf_ring[pdev->lmac_id]);
14212 
14213 	if (!soc->rxdma2sw_rings_not_supported) {
14214 		for (i = 0;
14215 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14216 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14217 								 pdev->pdev_id);
14218 
14219 			dp_srng_free(soc, &soc->rxdma_err_dst_ring[lmac_id]);
14220 		}
14221 	}
14222 }
14223 
14224 /**
14225  * dp_pdev_srng_alloc() - allocate memory for all pdev srng rings including
14226  *			  monitor rings
14227  * @pdev: Datapath pdev handle
14228  *
14229  * Return: QDF_STATUS_SUCCESS on success
14230  *	   QDF_STATUS_E_NOMEM on failure
14231  */
14232 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev)
14233 {
14234 	struct dp_soc *soc = pdev->soc;
14235 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14236 	uint32_t ring_size;
14237 	uint32_t i;
14238 
14239 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14240 
14241 	ring_size = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
14242 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
14243 		if (dp_srng_alloc(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14244 				  RXDMA_BUF, ring_size, 0)) {
14245 			dp_init_err("%pK: dp_srng_alloc failed rx refill ring",
14246 				    soc);
14247 			goto fail1;
14248 		}
14249 	}
14250 
14251 	ring_size = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx);
14252 	/* LMAC RxDMA to SW Rings configuration */
14253 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
14254 		/* Only valid for MCL */
14255 		pdev = soc->pdev_list[0];
14256 
14257 	if (!soc->rxdma2sw_rings_not_supported) {
14258 		for (i = 0;
14259 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14260 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14261 								 pdev->pdev_id);
14262 			struct dp_srng *srng =
14263 				&soc->rxdma_err_dst_ring[lmac_id];
14264 
14265 			if (srng->base_vaddr_unaligned)
14266 				continue;
14267 
14268 			if (dp_srng_alloc(soc, srng, RXDMA_DST, ring_size, 0)) {
14269 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
14270 					    soc);
14271 				goto fail1;
14272 			}
14273 		}
14274 	}
14275 
14276 	return QDF_STATUS_SUCCESS;
14277 fail1:
14278 	dp_pdev_srng_free(pdev);
14279 	return QDF_STATUS_E_NOMEM;
14280 }
14281 
14282 #if defined(WLAN_FEATURE_11BE_MLO) && defined(DP_MLO_LINK_STATS_SUPPORT)
14283 /**
14284  * dp_init_link_peer_stats_enabled() - Init link_peer_stats as per config
14285  * @pdev: DP pdev
14286  *
14287  * Return: None
14288  */
14289 static inline void
14290 dp_init_link_peer_stats_enabled(struct dp_pdev *pdev)
14291 {
14292 	pdev->link_peer_stats = wlan_cfg_is_peer_link_stats_enabled(
14293 						pdev->soc->wlan_cfg_ctx);
14294 }
14295 #else
14296 static inline void
14297 dp_init_link_peer_stats_enabled(struct dp_pdev *pdev)
14298 {
14299 }
14300 #endif
14301 
14302 static QDF_STATUS dp_pdev_init(struct cdp_soc_t *txrx_soc,
14303 				      HTC_HANDLE htc_handle,
14304 				      qdf_device_t qdf_osdev,
14305 				      uint8_t pdev_id)
14306 {
14307 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14308 	int nss_cfg;
14309 	void *sojourn_buf;
14310 
14311 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
14312 	struct dp_pdev *pdev = soc->pdev_list[pdev_id];
14313 
14314 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14315 	pdev->soc = soc;
14316 	pdev->pdev_id = pdev_id;
14317 
14318 	/*
14319 	 * Variable to prevent double pdev deinitialization during
14320 	 * radio detach execution .i.e. in the absence of any vdev.
14321 	 */
14322 	pdev->pdev_deinit = 0;
14323 
14324 	if (dp_wdi_event_attach(pdev)) {
14325 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
14326 			  "dp_wdi_evet_attach failed");
14327 		goto fail0;
14328 	}
14329 
14330 	if (dp_pdev_srng_init(pdev)) {
14331 		dp_init_err("%pK: Failed to initialize pdev srng rings", soc);
14332 		goto fail1;
14333 	}
14334 
14335 	/* Initialize descriptors in TCL Rings used by IPA */
14336 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
14337 		hal_tx_init_data_ring(soc->hal_soc,
14338 				      soc->tcl_data_ring[IPA_TCL_DATA_RING_IDX].hal_srng);
14339 		dp_ipa_hal_tx_init_alt_data_ring(soc);
14340 	}
14341 
14342 	/*
14343 	 * Initialize command/credit ring descriptor
14344 	 * Command/CREDIT ring also used for sending DATA cmds
14345 	 */
14346 	dp_tx_init_cmd_credit_ring(soc);
14347 
14348 	dp_tx_pdev_init(pdev);
14349 
14350 	/*
14351 	 * set nss pdev config based on soc config
14352 	 */
14353 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
14354 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
14355 					 (nss_cfg & (1 << pdev_id)));
14356 	pdev->target_pdev_id =
14357 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
14358 
14359 	if (soc->preferred_hw_mode == WMI_HOST_HW_MODE_2G_PHYB &&
14360 	    pdev->lmac_id == PHYB_2G_LMAC_ID) {
14361 		pdev->target_pdev_id = PHYB_2G_TARGET_PDEV_ID;
14362 	}
14363 
14364 	/* Reset the cpu ring map if radio is NSS offloaded */
14365 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
14366 		dp_soc_reset_cpu_ring_map(soc);
14367 		dp_soc_reset_intr_mask(soc);
14368 	}
14369 
14370 	/* Reset the cpu ring map if radio is NSS offloaded */
14371 	dp_soc_reset_ipa_vlan_intr_mask(soc);
14372 
14373 	TAILQ_INIT(&pdev->vdev_list);
14374 	qdf_spinlock_create(&pdev->vdev_list_lock);
14375 	pdev->vdev_count = 0;
14376 	pdev->is_lro_hash_configured = 0;
14377 
14378 	qdf_spinlock_create(&pdev->tx_mutex);
14379 	pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MON_INVALID_LMAC_ID;
14380 	pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MON_INVALID_LMAC_ID;
14381 	pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MON_INVALID_LMAC_ID;
14382 
14383 	DP_STATS_INIT(pdev);
14384 
14385 	dp_local_peer_id_pool_init(pdev);
14386 
14387 	dp_dscp_tid_map_setup(pdev);
14388 	dp_pcp_tid_map_setup(pdev);
14389 
14390 	/* set the reo destination during initialization */
14391 	dp_pdev_set_default_reo(pdev);
14392 
14393 	qdf_mem_zero(&pdev->sojourn_stats, sizeof(struct cdp_tx_sojourn_stats));
14394 
14395 	pdev->sojourn_buf = qdf_nbuf_alloc(pdev->soc->osdev,
14396 			      sizeof(struct cdp_tx_sojourn_stats), 0, 4,
14397 			      TRUE);
14398 
14399 	if (!pdev->sojourn_buf) {
14400 		dp_init_err("%pK: Failed to allocate sojourn buf", soc);
14401 		goto fail2;
14402 	}
14403 	sojourn_buf = qdf_nbuf_data(pdev->sojourn_buf);
14404 	qdf_mem_zero(sojourn_buf, sizeof(struct cdp_tx_sojourn_stats));
14405 
14406 	qdf_event_create(&pdev->fw_peer_stats_event);
14407 	qdf_event_create(&pdev->fw_stats_event);
14408 	qdf_event_create(&pdev->fw_obss_stats_event);
14409 
14410 	pdev->num_tx_allowed = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
14411 	pdev->num_tx_spl_allowed =
14412 		wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
14413 	pdev->num_reg_tx_allowed =
14414 		pdev->num_tx_allowed - pdev->num_tx_spl_allowed;
14415 	if (dp_rxdma_ring_setup(soc, pdev)) {
14416 		dp_init_err("%pK: RXDMA ring config failed", soc);
14417 		goto fail3;
14418 	}
14419 
14420 	if (dp_init_ipa_rx_refill_buf_ring(soc, pdev))
14421 		goto fail3;
14422 
14423 	if (dp_ipa_ring_resource_setup(soc, pdev))
14424 		goto fail4;
14425 
14426 	if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) {
14427 		dp_init_err("%pK: dp_ipa_uc_attach failed", soc);
14428 		goto fail4;
14429 	}
14430 
14431 	if (dp_pdev_bkp_stats_attach(pdev) != QDF_STATUS_SUCCESS) {
14432 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
14433 			  FL("dp_pdev_bkp_stats_attach failed"));
14434 		goto fail5;
14435 	}
14436 
14437 	if (dp_monitor_pdev_init(pdev)) {
14438 		dp_init_err("%pK: dp_monitor_pdev_init failed", soc);
14439 		goto fail6;
14440 	}
14441 
14442 	/* initialize sw rx descriptors */
14443 	dp_rx_pdev_desc_pool_init(pdev);
14444 	/* allocate buffers and replenish the RxDMA ring */
14445 	dp_rx_pdev_buffers_alloc(pdev);
14446 
14447 	dp_init_tso_stats(pdev);
14448 	dp_init_link_peer_stats_enabled(pdev);
14449 
14450 	/* Initialize dp tx fast path flag */
14451 	pdev->tx_fast_flag = DP_TX_DESC_FLAG_SIMPLE;
14452 	if (soc->hw_txrx_stats_en)
14453 		pdev->tx_fast_flag |= DP_TX_DESC_FLAG_FASTPATH_SIMPLE;
14454 
14455 	pdev->rx_fast_flag = false;
14456 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
14457 		qdf_dma_mem_stats_read(),
14458 		qdf_heap_mem_stats_read(),
14459 		qdf_skb_total_mem_stats_read());
14460 
14461 	return QDF_STATUS_SUCCESS;
14462 fail6:
14463 	dp_pdev_bkp_stats_detach(pdev);
14464 fail5:
14465 	dp_ipa_uc_detach(soc, pdev);
14466 fail4:
14467 	dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
14468 fail3:
14469 	dp_rxdma_ring_cleanup(soc, pdev);
14470 	qdf_nbuf_free(pdev->sojourn_buf);
14471 fail2:
14472 	qdf_spinlock_destroy(&pdev->tx_mutex);
14473 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
14474 	dp_pdev_srng_deinit(pdev);
14475 fail1:
14476 	dp_wdi_event_detach(pdev);
14477 fail0:
14478 	return QDF_STATUS_E_FAILURE;
14479 }
14480 
14481 /**
14482  * dp_pdev_init_wifi3() - Init txrx pdev
14483  * @txrx_soc:
14484  * @htc_handle: HTC handle for host-target interface
14485  * @qdf_osdev: QDF OS device
14486  * @pdev_id: pdev Id
14487  *
14488  * Return: QDF_STATUS
14489  */
14490 static QDF_STATUS dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
14491 				     HTC_HANDLE htc_handle,
14492 				     qdf_device_t qdf_osdev,
14493 				     uint8_t pdev_id)
14494 {
14495 	return dp_pdev_init(txrx_soc, htc_handle, qdf_osdev, pdev_id);
14496 }
14497 
14498 #ifdef FEATURE_DIRECT_LINK
14499 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
14500 						 uint8_t pdev_id)
14501 {
14502 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14503 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
14504 
14505 	if (!pdev) {
14506 		dp_err("DP pdev is NULL");
14507 		return NULL;
14508 	}
14509 
14510 	if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring4,
14511 			  RXDMA_BUF, DIRECT_LINK_REFILL_RING_ENTRIES, false)) {
14512 		dp_err("SRNG alloc failed for rx_refill_buf_ring4");
14513 		return NULL;
14514 	}
14515 
14516 	if (dp_srng_init(soc, &pdev->rx_refill_buf_ring4,
14517 			 RXDMA_BUF, DIRECT_LINK_REFILL_RING_IDX, 0)) {
14518 		dp_err("SRNG init failed for rx_refill_buf_ring4");
14519 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14520 		return NULL;
14521 	}
14522 
14523 	if (htt_srng_setup(soc->htt_handle, pdev_id,
14524 			   pdev->rx_refill_buf_ring4.hal_srng, RXDMA_BUF)) {
14525 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF,
14526 			       DIRECT_LINK_REFILL_RING_IDX);
14527 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14528 		return NULL;
14529 	}
14530 
14531 	return &pdev->rx_refill_buf_ring4;
14532 }
14533 
14534 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
14535 					uint8_t pdev_id)
14536 {
14537 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14538 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
14539 
14540 	if (!pdev) {
14541 		dp_err("DP pdev is NULL");
14542 		return;
14543 	}
14544 
14545 	dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF, 0);
14546 	dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14547 }
14548 #endif
14549 
14550 #ifdef QCA_MULTIPASS_SUPPORT
14551 QDF_STATUS dp_set_vlan_groupkey(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
14552 				uint16_t vlan_id, uint16_t group_key)
14553 {
14554 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14555 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
14556 						     DP_MOD_ID_TX_MULTIPASS);
14557 	QDF_STATUS status;
14558 
14559 	dp_info("Try: vdev_id %d, vdev %pK, multipass_en %d, vlan_id %d, group_key %d",
14560 		vdev_id, vdev, vdev ? vdev->multipass_en : 0, vlan_id,
14561 		group_key);
14562 	if (!vdev || !vdev->multipass_en) {
14563 		status = QDF_STATUS_E_INVAL;
14564 		goto fail;
14565 	}
14566 
14567 	if (!vdev->iv_vlan_map) {
14568 		uint16_t vlan_map_size = (sizeof(uint16_t)) * DP_MAX_VLAN_IDS;
14569 
14570 		vdev->iv_vlan_map = (uint16_t *)qdf_mem_malloc(vlan_map_size);
14571 		if (!vdev->iv_vlan_map) {
14572 			QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "iv_vlan_map");
14573 			status = QDF_STATUS_E_NOMEM;
14574 			goto fail;
14575 		}
14576 
14577 		/*
14578 		 * 0 is invalid group key.
14579 		 * Initilalize array with invalid group keys.
14580 		 */
14581 		qdf_mem_zero(vdev->iv_vlan_map, vlan_map_size);
14582 	}
14583 
14584 	if (vlan_id >= DP_MAX_VLAN_IDS) {
14585 		status = QDF_STATUS_E_INVAL;
14586 		goto fail;
14587 	}
14588 
14589 	dp_info("Successful setting: vdev_id %d, vlan_id %d, group_key %d",
14590 		vdev_id, vlan_id, group_key);
14591 	vdev->iv_vlan_map[vlan_id] = group_key;
14592 	status = QDF_STATUS_SUCCESS;
14593 fail:
14594 	if (vdev)
14595 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
14596 	return status;
14597 }
14598 
14599 void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
14600 {
14601 	struct vlan_ethhdr veth_hdr;
14602 	struct vlan_ethhdr *veh = (struct vlan_ethhdr *)nbuf->data;
14603 
14604 	/*
14605 	 * Extract VLAN header of 4 bytes:
14606 	 * Frame Format : {dst_addr[6], src_addr[6], 802.1Q header[4],
14607 	 *		   EtherType[2], Payload}
14608 	 * Before Removal : xx xx xx xx xx xx xx xx xx xx xx xx 81 00 00 02
14609 	 *		    08 00 45 00 00...
14610 	 * After Removal  : xx xx xx xx xx xx xx xx xx xx xx xx 08 00 45 00
14611 	 *		    00...
14612 	 */
14613 	qdf_mem_copy(&veth_hdr, veh, sizeof(veth_hdr));
14614 	qdf_nbuf_pull_head(nbuf, ETHERTYPE_VLAN_LEN);
14615 	veh = (struct vlan_ethhdr *)nbuf->data;
14616 	qdf_mem_copy(veh, &veth_hdr, 2 * QDF_MAC_ADDR_SIZE);
14617 }
14618 
14619 void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev)
14620 {
14621 	struct dp_txrx_peer *txrx_peer = NULL;
14622 
14623 	qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
14624 	TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list, mpass_peer_list_elem)
14625 		qdf_err("Peers present in mpass list : %d", txrx_peer->peer_id);
14626 	qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
14627 
14628 	if (vdev->iv_vlan_map) {
14629 		qdf_mem_free(vdev->iv_vlan_map);
14630 		vdev->iv_vlan_map = NULL;
14631 	}
14632 
14633 	qdf_spinlock_destroy(&vdev->mpass_peer_mutex);
14634 }
14635 
14636 void dp_peer_multipass_list_init(struct dp_vdev *vdev)
14637 {
14638 	/*
14639 	 * vdev->iv_vlan_map is allocated when the first configuration command
14640 	 * is issued to avoid unnecessary allocation for regular mode VAP.
14641 	 */
14642 	TAILQ_INIT(&vdev->mpass_peer_list);
14643 	qdf_spinlock_create(&vdev->mpass_peer_mutex);
14644 }
14645 #endif /* QCA_MULTIPASS_SUPPORT */
14646 
14647 #ifdef WLAN_FEATURE_SSR_DRIVER_DUMP
14648 #define MAX_STR_LEN 50
14649 #define MAX_SRNG_STR_LEN 30
14650 
14651 void dp_ssr_dump_srng_register(char *region_name, struct dp_srng *srng, int num)
14652 {
14653 	char ring[MAX_SRNG_STR_LEN], ring_handle[MAX_STR_LEN];
14654 
14655 	if (num >= 0)
14656 		qdf_snprint(ring, MAX_SRNG_STR_LEN, "%s%s%d",
14657 			    region_name, "_", num);
14658 	else
14659 		qdf_snprint(ring, MAX_SRNG_STR_LEN, "%s", region_name);
14660 
14661 	qdf_snprint(ring_handle, MAX_STR_LEN, "%s%s", ring, "_handle");
14662 
14663 	qdf_ssr_driver_dump_register_region(ring_handle, srng->hal_srng,
14664 					    sizeof(struct hal_srng));
14665 	qdf_ssr_driver_dump_register_region(ring,
14666 					    srng->base_vaddr_aligned,
14667 					    srng->alloc_size);
14668 }
14669 
14670 void dp_ssr_dump_srng_unregister(char *region_name, int num)
14671 {
14672 	char ring[MAX_SRNG_STR_LEN], ring_handle[MAX_STR_LEN];
14673 
14674 	if (num >= 0)
14675 		qdf_snprint(ring, MAX_SRNG_STR_LEN, "%s%s%d",
14676 			    region_name, "_", num);
14677 	else
14678 		qdf_snprint(ring, MAX_SRNG_STR_LEN, "%s", region_name);
14679 
14680 	qdf_snprint(ring_handle, MAX_STR_LEN, "%s%s", ring, "_handle");
14681 
14682 	qdf_ssr_driver_dump_unregister_region(ring);
14683 	qdf_ssr_driver_dump_unregister_region(ring_handle);
14684 }
14685 
14686 void dp_ssr_dump_pdev_register(struct dp_pdev *pdev, uint8_t pdev_id)
14687 {
14688 	char pdev_str[MAX_STR_LEN];
14689 
14690 	qdf_snprint(pdev_str, MAX_STR_LEN, "%s%s%d", "dp_pdev", "_", pdev_id);
14691 	qdf_ssr_driver_dump_register_region(pdev_str, pdev, sizeof(*pdev));
14692 }
14693 
14694 void dp_ssr_dump_pdev_unregister(uint8_t pdev_id)
14695 {
14696 	char pdev_str[MAX_STR_LEN];
14697 
14698 	qdf_snprint(pdev_str, MAX_STR_LEN, "%s%s%d", "dp_pdev", "_", pdev_id);
14699 	qdf_ssr_driver_dump_unregister_region(pdev_str);
14700 }
14701 #endif
14702